WorldWideScience

Sample records for based dental nanocomposite

  1. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  2. Novel bioactive Co-based alloy/FA nanocomposite for dental applications

    Directory of Open Access Journals (Sweden)

    Mohammadhossein Fathi

    2012-01-01

    Full Text Available Background: Dental cobalt base alloys are biocompatible dental materials and have been widely used in dentistry. However, metals are bioinert and may not present bioactivity in human body. Bioactivity is the especial ability to interact with human body and make a bonding to soft and hard tissues. The aim of the present research was fabrication and bioactivity evaluation of novel cobalt alloy/Fluorapatite nanocomposite (CoA/FaNC with different amounts of Fluorapatite (FA nanopowder. Materials and Methods: Co-Cr-Mo alloy (ASTM F75 powder was prepared and mixed in a planetary ball mill with different amounts of FA nanopowders (10, 15, 20% wt. Prepared composite powders were cold pressed and sintered at 1100°C for 4 h. X-ray diffraction (XRD, scanning electron microscopy and transition electron microscopy techniques were used for phase analysis, crystallite size determination of FA and also for phase analysis and evaluation of particle distribution of composites. Bioactivity behavior of prepared nanocomposites was evaluated in simulated body fluid (SBF for 1 up to 28 days. Results: Results showed that nucleus of apatite were formed on the surface of the prepared CoA/FaNC during 1 up to 28 days immersion in the SBF solution. On the other hand, CoA/FaNC unlike Co-base alloy possessed bone-like apatite-formation ability. Conclusion: It was concluded that bioinert Co-Cr-Mo alloy could be successfully converted into bioactive nanocomposite by adding 10, 15, 20 wt% of FA nano particles.

  3. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  4. Determination of surface roughness and topography of dental resin-based nanocomposites using AFM analysis.

    Science.gov (United States)

    Lainović, Tijana; Vilotić, Marko; Blažić, Larisa; Kakaš, Damir; Marković, Dubravka; Ivanišević, Aljoša

    2013-02-01

    The aim of this study was to determine surface roughness and topography of polished dental resin-based nanocomposites. Four representative dental resin-based nanocomposites were tested in the study: two nanohybrids (Filtek Z550 and Tetric EvoCeram) and two nanofilled (Filtek Ultimate Body and Filtek Ultimate Translucent); and two reference materials: one microfilled (Gradia Direct) and one microhybrid (Filtek Z250). Polymerized cylindrical specimens (4 mm x 2 mm) were polished with multi-step polishing system- Super Snap. Immediately after the polishing, topography of each specimen was examined by Veeco di CP-II Atomic Force Microscope. Specimen's surface has been scanned in 6 points in contact mode with CONT20A-CP tips. 1 Hz scan rate and 256 × 256 resolution were used to obtain topography on a 90 µm × 90 µm scanning area. Measured topography data were processed by Image Processing and Data Analysis v2.1.15 software. Following parameters were compared among specimens: average roughness and maximum peak-to-valley distance. All of the tested materials had similar average surface roughness after finishing and polishing procedure. The lowest values occurred in the material Filtek Ultimate Body, and the highest in the Filtek Z550. When interpreting maximum peak-to-valley distance the larger differences in values (up to 100%) occurred in Filtek Z550, Filtek Z250 and Filtek Ultimate Body, which is a result of the deep polishing channels and tracks. Type, size, distribution of fillers and filler loading in tested materials, didn't influence average roughness values, but had an impact on maximum peak-to-valley distance values.

  5. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly.

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO(2) (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO(2). To determine the optimum addition levels for nano-ZrO(2), ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO(2) were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO(2) resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P ceramics are good potential candidates for ceramic-based dental materials.

  6. Development of novel low shrinkage dental nanocomposite

    Science.gov (United States)

    Sun, Yi; Wu, Xiaorong; Liu, Yanju; Xie, Weili; Sun, Shouhua

    2009-07-01

    It has been the focus to develop low shrinkage dental composite resins in recent ten years. A major difficulty in developing low shrinkage dental materials is their deficiency in mechanical properties to clinical use. This paper reviews the present investigations of low shrinkage dental composite resins and attempts to develop a novel system with multifunctional POSS incorporated. In this paper, it is especially interesting to evaluate the influences of shrinkage with different weight percentage of POSS (0~15wt%) incorporated in dental composite resins. Their double bond conversions are evaluated and their microstructures are characterized with Fourier-transform infra-red spectroscopy and X-ray diffraction. Their mechanical properties are also presented in this paper. The results show that the shrinkage of nanocomposites with POSS can be reduced effectively from 3.53% to 2.18%. The mechanical properties of this novel system, such as strength, hardness and toughness, are also enhanced greatly. Especially with 2wt%POSS incorporated, the best integrative improved effects are revealed. The mechanism of shrinkage is discussed.

  7. Synthesis of new dental nanocomposite with glass nanoparticles

    Directory of Open Access Journals (Sweden)

    Alireza Khavandi

    2013-09-01

    Full Text Available Objective(s: The aim of this study was to synthesis new dental nanocomposites reinforced with fabricated glass nanoparticles and compare two methods for fabrication and investigate the effect of this filler on mechanical properties. Materials and Methods : The glass nanoparticles were produced by wet milling process. The particle size and shape was achieved using PSA and SEM. Glass nanoparticles surface was modified with MPTMS silane. The composite was prepared by mixing these silane-treated nanoparticles with monomers. The resin composition was UDMA /TEGDMA (70/30 weight ratio. Three composites were developed with 5, 7.5 and 10 wt% glass fillers in each group. Two preparation methods were used, in dispersion in solvent method (group D glass nanoparticles were sonically dispersed in acetone and the solution was added to resin, then acetone was evaporated. In non-dispersion in solvent method (group N the glass nanoparticles were directly added to resin. Mechanical properties were investigated included flexural strength, flexural modulus and Vickers hardness. Results: Higher volume of glass nanoparticles improves mechanical properties of composite. Group D has batter mechanical properties than group N. Flexural strength of composite with 10%w filler of group D was 75Mpa against 59 Mpa of the composite with the same filler content of group N. The flexural modulus and hardness of group D is more than group N. Conclusion: It can be concluded that dispersion in solvent method is the best way to fabricate nanocomposites and glass nanoparticles is a significant filler to improve mechanical properties of dental nanocomposite.

  8. Structure–property relationships in hybrid dental nanocomposite resins containing monofunctional and multifunctional polyhedral oligomeric silsesquioxanes

    Directory of Open Access Journals (Sweden)

    Wang WG

    2014-02-01

    Full Text Available Weiguo Wang,1,* Xiang Sun,1,* Li Huang,2,* Yu Gao,1 Jinghao Ban,1 Lijuan Shen,1 Jihua Chen1 1Department of Prosthodontics, 2Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China*These authors contributed equally to this workAbstract: Organic-inorganic hybrid materials, such as polyhedral oligomeric silsesquioxanes (POSS, have the potential to improve the mechanical properties of the methacrylate-based composites and resins used in dentistry. In this article, nanocomposites of methacryl isobutyl POSS (MI-POSS [bears only one methacrylate functional group] and methacryl POSS (MA-POSS [bears eight methacrylate functional groups] were investigated to determine the effect of structures on the properties of dental resin. The structures of the POSS-containing networks were determined by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. Monofunctional POSS showed a strong tendency toward aggregation and crystallization, while multifunctional POSS showed higher miscibility with the dimethacrylate monomer. The mechanical properties and wear resistance decreased with increasing amounts of MI-POSS, indicating that the MI-POSS agglomerates act as the mechanical weak point in the dental resins. The addition of small amounts of MA-POSS improved the mechanical and shrinkage properties. However, samples with a higher MA-POSS concentration showed lower flexural strength and flexural modulus, indicating that there is a limited range in which the reinforcement properties of MA-POSS can operate. This concentration dependence is attributed to phase separation at higher concentrations of POSS, which affects the structural integrity, and thus, the mechanical and shrinkage properties of the dental resin. Our results show that resin with 3% MA-POSS is a potential candidate for resin-based dental materials

  9. Chitin-based Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    D.K.Polyakov; S.N.Chvalun

    2007-01-01

    1 Results The one of the promising development of biodegradable nanocomposites is using native polysaccharides which have pronounced fibril structure to provide not only excellent mechanical properties and biodegradability of produced material but also control the barrier properties, for example increasing selectivity of pervaporation membrane. Chitin is the most popular biopolymer in the nature after cellulose. It is the 2-acetoamido-derivative of cellulose and serves as the fibrous component of the sk...

  10. Surface roughness and morphology of dental nanocomposites polished by four different procedures evaluated by a multifractal approach

    Science.gov (United States)

    Ţălu, Ştefan; Stach, Sebastian; Lainović, Tijana; Vilotić, Marko; Blažić, Larisa; Alb, Sandu Florin; Kakaš, Damir

    2015-03-01

    The objective of this study was to determine the effect of different dental polishing methods on surface texture parameters of dental nanocomposites. The 3-D surface morphology was investigated by atomic force microscopy (AFM) and multifractal analysis. Two representative dental resin-based nanocomposites were investigated: a nanofilled and a nanohybrid composite. The samples were polished by two dental polishing protocols using multi-step and one-step system. Both protocols were then followed by diamond paste polishing. The 3-D surface roughness of samples was studied by AFM on square areas of topography on the 80 × 80 μm2 scanning area. The multifractal spectrum theory based on computational algorithms was applied for AFM data and multifractal spectra were calculated. The generalized dimension Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of dental nanocomposites polished by four different dental polishing protocols at nanometer scale. The results showed that the larger the spectrum width Δα (Δα = αmax - αmin) of the multifractal spectra f(α), the more non-uniform was the surface morphology. Also, the 3-D surface topography was described by statistical parameters, according to ISO 25178-2:2012. The 3-D surface of samples had a multifractal nature. Nanofilled composite had lower values of height parameters than nanohybrid composites, due to its composition. Multi-step polishing protocol created a better finished surface, for both tested materials, than one-step polishing protocol, even when it was followed by diamond paste polishing. Diamond paste polishing created smooth surface and reduced roughness of tested materials.

  11. Based Adaptive Nanocomposite Coatings

    Science.gov (United States)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2014-08-01

    A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.

  12. Surface roughness and morphology of dental nanocomposites polished by four different procedures evaluated by a multifractal approach

    Energy Technology Data Exchange (ETDEWEB)

    Ţălu, Ştefan, E-mail: stefan_ta@yahoo.com [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641, Cluj (Romania); Stach, Sebastian, E-mail: sebastian.stach@us.edu.pl [University of Silesia, Faculty of Computer Science and Materials Science, Institute of Informatics, Department of Biomedical Computer Systems, Będzińska 39, 41-205 Sosnowiec (Poland); Lainović, Tijana, E-mail: tijana.lainovic@gmail.com [University of Novi Sad, Faculty of Medicine, School of Dentistry, Hajduk Veljkova 3, 21000 Novi Sad (Serbia); Vilotić, Marko, E-mail: markovil@uns.ac.rs [University of Novi Sad, Faculty of Technical Sciences, Department for Production Engineering, Trg Dositeja Obradovića 6, 21000 Novi Sad (Serbia); Blažić, Larisa, E-mail: larisa.blazic@gmail.com [University of Novi Sad, Faculty of Medicine, School of Dentistry, Clinic of Dentistry of Vojvodina, Department of Restorative Dentistry and Endodontics, Hajduk Veljkova 3, 21000 Novi Sad (Serbia); Alb, Sandu Florin, E-mail: albflorin@yahoo.com [“Iuliu Haţieganu” University of Medicine and Pharmacy, Faculty of Dentistry, Department of Periodontology, 8 Victor Babeş St., 400012 Cluj-Napoca (Romania); Kakaš, Damir, E-mail: kakasdam@uns.ac.rs [University of Novi Sad, Faculty of Technical Sciences, Department for Production Engineering, Trg Dositeja Obradovića 6, 21000 Novi Sad (Serbia)

    2015-03-01

    Graphical abstract: - Highlights: • Multifractals are good indicators of polished dental composites 3-D surface structure. • The nanofilled composite had superior 3-D surface properties than the nanohybrid one. • Composite polishing with diamond paste created improved 3-D multifractal structure. • Recommendation: polish the composite with diamond paste if using the one-step tool. • Multifractal analysis could become essential in designing new dental surfaces. - Abstract: The objective of this study was to determine the effect of different dental polishing methods on surface texture parameters of dental nanocomposites. The 3-D surface morphology was investigated by atomic force microscopy (AFM) and multifractal analysis. Two representative dental resin-based nanocomposites were investigated: a nanofilled and a nanohybrid composite. The samples were polished by two dental polishing protocols using multi-step and one-step system. Both protocols were then followed by diamond paste polishing. The 3-D surface roughness of samples was studied by AFM on square areas of topography on the 80 × 80 μm{sup 2} scanning area. The multifractal spectrum theory based on computational algorithms was applied for AFM data and multifractal spectra were calculated. The generalized dimension D{sub q} and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of dental nanocomposites polished by four different dental polishing protocols at nanometer scale. The results showed that the larger the spectrum width Δα (Δα = α{sub max} − α{sub min}) of the multifractal spectra f(α), the more non-uniform was the surface morphology. Also, the 3-D surface topography was described by statistical parameters, according to ISO 25178-2:2012. The 3-D surface of samples had a multifractal nature. Nanofilled composite had lower values of height parameters than nanohybrid composites, due to its composition. Multi-step polishing protocol

  13. Polyamide blend-based nanocomposites: A review

    Directory of Open Access Journals (Sweden)

    W. S. Chow

    2015-03-01

    Full Text Available Polymer blend nanocomposites have been considered as a stimulating route for creating a new type of high performance material that combines the advantages of polymer blends and the merits of polymer nanocomposites. In nanocomposites with multiphase matrices, the concept of using nanofillers to improve select properties (e.g., mechanical, thermal, chemical, etc of a polymer blend, as well as to modify and stabilize the blend morphology has received a great deal of interest. This review reports recent advances in the field of polyamide (PA blend-based nanocomposites. Emphasis is placed on the PA-rich blends produced by blending with other thermoplastics in the presence of nanofillers. The processing and properties of PA blend-based nanocomposites with nanofillers are discussed. In addition, the mechanical properties and morphology changes of PA blends with the incorporation of nanofillers are described. The issues of compatibility and toughening of PA blend nanocomposites are discussed, and current challenges are highlighted.

  14. Bond strength of dental nanocomposites repaired with a bulkfill composite

    Science.gov (United States)

    Kerimova, Leyla; Baltacioglu, İsmail H.; Kiremitçi, Arlin

    2017-01-01

    Background The aim of this study was to analyze the bond strength of aged resin based nanocomposites repaired with the same and bulk fill composites. Material and Methods Seventy-two disc shaped resin composites consisted of three different nanocomposite resins (Filtek Ultimate/FU, Herculite XRV Ultra/HXRV, and Reflectys/R) were produced. After storing the samples for 8 weeks in distilled water, each material was combined with the same material or the bulk-fill composite resin system (Filtek Ultimate+Filtek Ultimate/Group-1; Filtek Ultimate+Tetric BF/Group-2; Herculite XRV+Herculite XRV/Group-3; Herculite XRV+Tetric BF/ Group-4; Reflectys+Reflectys/Group 5; Reflectys+Tetric BF/Group-6), for repair. Then specimens were subjected to shear bond strength testing(SBS), and the debonded surfaces were examined. Results There was a significant difference among three materials(repaired with itself+bulk fill) for SBS testing values (p=0.001). FU and R were found to be similar, while HXRV was significantly different from them. A significant difference between group-1 and 2 (p=0.006) was detected, while there were no differences between group 3 and 4 (p= 0.142), and 5 and 6 (p=0.346). Among the six groups, repair SBS testing values with TBF were higher than repair with itself except for FU. Conclusions The bulk-fill repaired materials showed higher bond strength except for FU, which showed the highest SBS value when repaired with itself. An increased incidence of adhesive fracture was observed at low strengths. Key words:Resin-based composites, nanofillers, surface treatment, macro-shear, repair. PMID:28298988

  15. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test

    Science.gov (United States)

    Musa, Marahaini; Thirumulu Ponnuraj, Kannan; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-01

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions.

  16. Measurement of solubility and water sorption of dental nanocomposites light cured by argon laser.

    Science.gov (United States)

    Mirsasaani, Seyed Shahabeddin; Ghomi, Farhad; Hemati, Mehran; Tavasoli, Tina

    2013-03-01

    Different parameters used for photoactivation process and also composition provide changes in the properties of dental composites. In the present work the effect of different power density of argon laser and filler loading on solubility (SL) and water sorption (WS) of light-cure dental nanocomposites was studied. The resin of nanocomposites was prepared by mixing bisphenol A glycol dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) with a mass ratio of 65/35. 20 wt.% and 25 wt.% of nanosilica fillers with a primary particle size of 10 nm were added to the resin. Camphorquinone (CQ) and DMAEMA were added as photoinitiator system. The nanocomposites were cured by applying the laser beam at the wavelength of 472 nm and power densities of 260 and 340 mW/cm(2) for 40 sec. Solubility and water sorption were then measured according to ISO 4049, which in our case, the maximums were 2.2% and 4.3% at 260 mW/cm(2) and 20% filler, respectively. The minimum solubility (1.2%) and water sorption (3.8%) were achieved for the composite containing 25% filler cured at 340 mW/cm(2). The results confirmed that higher power density and filler loading decreased solubility of unreacted monomers and water sorption and improved physico-mechanical properties of nanocomposites.

  17. 层层组装技术制备牙科硅藻土基纳米复相陶瓷粉体%Preparation of diatomite based nano-composite dental ceramic powders by layer-by-layer technique

    Institute of Scientific and Technical Information of China (English)

    陆小丽; 钱蕴珠; 刘梅; 周雪锋; 章非敏; 顾宁

    2011-01-01

    Objective To prepare a novel bioactive and degradable scaffold with mineralized collagenpolyose based composite by biomimetic synthesis for bone tissue engineering and explore the compatibility of osteoblast culturing on the scaffold. Methods Two kinds of polyelectrolyte were assembled on the surface of diatomite particles in order to adsorbe on nano-zirconia through opposite charges. Zeta potential,particle size and size distribution were compared before and after the modification of diatomite; IR was used to analysis molecular structure of functional group changes on the surface of diatomite particles, nano-composite powder morphology was observed by SEM. Results Two kinds of the polyelectrolyte were successfully assembled on the surface of diatomite powders. Particle size and size distribution were significantly reduced, d (0.5) reduce from 16.421 μm to 0.420 μm. SEM showed the dispersion of the modified diatomite was improved and had a good adsorption with nano-zirconia. Conclusion Layer-by-layer technique could enhance the dispersion of diatomite-based dental ceramic powders as well as a good adsorption of nano-composite ceramic powder.%目的 探讨层层组装技术对硅藻土基牙科陶瓷粉体的改性效果及其与纳米氧化锆的吸附能力的影响,减小硅藻土及纳米氧化锆粉体的团聚现象,制备出分散均匀的纳米复相陶瓷粉体.方法 采用层层组装将2种聚电解质分别组装到硅藻土颗粒表面,再将硅藻土与纳米氧化锆通过异种电荷进行吸附.比较改性前后硅藻土Zeta电位、粒径及粒径分布的变化、红外谱图(IR)分析硅藻土颗粒表面官能团和分子结构特征的变化,扫描电子显微镜(SEM)观察纳米复相陶瓷粉体的形貌.结果 聚电解质在硅藻土表面成功组装,且硅藻土粒径和粒径分布明显减小,d(0.5)从16.421μm减小到0.420μm;SEM显示改性后硅藻土的分散性得到提高且与纳米氧化锆吸附良好.结论 层层组装

  18. Structure and property of Cu-based thermosensitive nanocomposite

    Institute of Scientific and Technical Information of China (English)

    LOU Bai-yang; XU Bin; MA Xiao-chun; LI Le-guo

    2006-01-01

    The Cu-based thermosensitive nanocomposites are made by high energy ball milling. The microstructures and properties of Cu-based thermosensitive nanocomposites are studied by transmission electron microscopy(TEM) and themosensitivity test. The effects of milling time on the microstructures and the thermosensitivity of Cu-based nanocomposite material are researched. The results show that the Cu-based nanocomposite can be made by high energy ball milling. As the milling time increases, the copper particle size decreases in the nanocomposite, then the thermoexpansivity of nanocomposite increases. The nanocomposite is of best thermoexpansivity when the milling time is up to 100 h. At 35-45 ℃, the nanocomposite shows good thermosensitivity.

  19. Biocompatibility of Resin-based Dental Materials

    OpenAIRE

    Keyvan Moharamzadeh; Ian M. Brook; Richard van Noort

    2009-01-01

    Oral and mucosal adverse reactions to resin-based dental materials have been reported. Numerous studies have examined thebiocompatibility of restorative dental materials and their components, and a wide range of test systems for the evaluation of the biological effects of these materials have been developed. This article reviews the biological aspects of resin-based dental materials and discusses the conventional as well as the new techniques used for biocompatibility assessment of dental mat...

  20. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    coincidence with the theoretical models demonstrates that it still follows continuous mechanics at this scale. The interfacial shear stress was...Graphene Oxide- Induced Polyethylene Crystallization in Solution and Nanocomposites. Macromolecules 2011, 45, 993-1000. 69. Putz, K. W.; Compton , O. C...the graphene-Cu were obtained at 200 kV using a JEOL 2000FX with a Gatan Orius camera . AFM images were obtained from the surfaces of the graphene on

  1. Thermoelectric Properties of Polyacrylonitrile-Based Nanocomposite

    Science.gov (United States)

    Yusupov, K.; Khovaylo, V.; Muratov, D.; Kozhitov, L.; Arkhipov, D.; Pryadun, V.; Vasiliev, A.

    2016-07-01

    A polyacrylonitrile (PAN)-based nanocomposite with 20 wt.% Fe-Co/C has been prepared by infrared pyrolysis. Morphological and structural studies revealed that the composite consists of polyacrylonitrile as a plastifier, Fe-Co as a filler alloy, and carbon, which was formed during combustion of the polymer. Electrical resistivity and thermal conductivity of the composite are rather low at ambient temperatures and do not exceed 1 Ohm m and 0.5 W/m K, respectively. However, due to a very low Seebeck coefficient, the calculated figure of merit ZT of the nanocomposite does not exceed 2.1 × 10-8.

  2. Graphitic carbon nitride based nanocomposites: a review.

    Science.gov (United States)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2015-01-07

    Graphitic carbon nitride (g-C(3)N(4)), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C(3)N(4) suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C(3)N(4) could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C(3)N(4)-based nanocomposites can be classified and summarized: namely, the g-C(3)N(4) based metal-free heterojunction, the g-C(3)N(4)/single metal oxide (metal sulfide) heterojunction, g-C(3)N(4)/composite oxide, the g-C(3)N(4)/halide heterojunction, g-C(3)N(4)/noble metal heterostructures, and the g-C(3)N(4) based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C(3)N(4)-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C(3)N(4)-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C(3)N(4)-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C(3)N(4)-based advanced nanomaterials.

  3. A Nanocomposite Shield Constructed for Protection Against the Harmful Effects of Dental X-Rays

    Directory of Open Access Journals (Sweden)

    Simel Ayyıldız

    2015-10-01

    Full Text Available Objectives: This study aimed to compare a number of new nanocomposites capable of pro- tecting the jaw from ionizing radiation.Materials and Methods: Four different types of nano-powders [Ti, Zr (IV oxide, Ag and Co] were mixed in a polymer matrix to create nano-composites with doping values of 8% in weight. Small-angle X-ray scattering (SAXS analysis was performed using a HECUS- SAXS system with 50 kV- 50 mA. Co nano-composites (Co-pnm yielded the most prom- ising values of the 4 nanocomposites tested in terms of x-ray absorption. Thus, 4x2 cm Co- pnm samples of different thicknesses (0.20, 0.50, 0.57 and 0.60 cm were prepared, and SAXS analysis was performed in order to assess the effects of material thickness on x-ray absorption. An experimental multi part shield was constructed from Co-pnm around tooth#36 to test the effect of nanomaterial on the image quality under X-ray beam.Results: Logarithmic distributions of the transmitted intensity values (I showed that 0.20 cm Co-pnm had the highest transmission value (16.05 followed by 0.50 cm Co-pnm (15.44, 0.57 cm Co-pnm (15.07 and 0.60 cm Co-pnm (15.06. The 0.2 cm Co-pnm had an effective radius of the nano-aggregation value (77.44 Å lower than that of the other thick- nesses (0.50, 0.57 and 0.60 cm of Co-pnm, which had similar values ranging from 66.22-66.34 Å. The 0.50 cm Co-pnm had the lowest Dmax value of the different thicknesses of Co- pnm tested.Conclusion: Co nanocomposite can be used as a protection shield for the harmful effects of dental X-ray.

  4. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    Science.gov (United States)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  5. Effect of nano SiO2 particles on the morphology and mechanical properties of POSS nanocomposite dental resins

    Science.gov (United States)

    Liu, Yizhi; Sun, Yi; Zeng, Fanlin; Xie, Weili; Liu, Yang; Geng, Lin

    2014-12-01

    Nanocomposite dental resins composed of polyhedral oligomeric silsesquioxane nanocomposite matrix and 0, 0.5,1, 1.5 and 2 wt% nano SiO2 as filler were prepared by light curing method. The nanocomposite resins were characterized by performing compressive, three-point flexure, nanoindentation and nanoscratch testings as well as optical microscopy and scanning electron microscope analysis. The effects of different nano SiO2 contents were studied on compressive strength, flexural strength, hardness and resistance of composite resin. From the mechanical results, it was found that nano SiO2 effectively enhanced the mechanical properties of the composite resins at low content. With the increase of the nano SiO2 content, the mechanical properties decreased. It was attributed to the content of nano SiO2 and dispersion of nanoparticles in matrix.

  6. Effect of nano SiO{sub 2} particles on the morphology and mechanical properties of POSS nanocomposite dental resins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhi; Sun, Yi, E-mail: sunyi@hit.edu.cn; Zeng, Fanlin [Harbin Institute of Technology, Department of Astronautic Science and Mechanics (China); Xie, Weili, E-mail: xwl811@126.com [Harbin Medical University, Department of Stomatology (China); Liu, Yang [Harbin Stomatology Hospital (China); Geng, Lin [Harbin Institute of Technology, School of Materials Science and Engineering (China)

    2014-12-15

    Nanocomposite dental resins composed of polyhedral oligomeric silsesquioxane nanocomposite matrix and 0, 0.5,1, 1.5 and 2 wt% nano SiO{sub 2} as filler were prepared by light curing method. The nanocomposite resins were characterized by performing compressive, three-point flexure, nanoindentation and nanoscratch testings as well as optical microscopy and scanning electron microscope analysis. The effects of different nano SiO{sub 2} contents were studied on compressive strength, flexural strength, hardness and resistance of composite resin. From the mechanical results, it was found that nano SiO{sub 2} effectively enhanced the mechanical properties of the composite resins at low content. With the increase of the nano SiO{sub 2} content, the mechanical properties decreased. It was attributed to the content of nano SiO{sub 2} and dispersion of nanoparticles in matrix.

  7. Polymer based nanocomposites with tailorable optical properties

    Science.gov (United States)

    Colombo, Annalisa; Simonutti, Roberto

    2014-09-01

    Transparent polymers are extensively used in everyday life, from windows to computer displays, from food packaging to lenses. A possible approach for modulating their optical properties (refractive index, transparency, color and luminescence) is to change the chemical structure of the polymer, however this option is in many cases economically prohibitive. Our approach, instead, relies in the use of standard polymers with the supplement of specific nanostructured additives able to tune the final property of the material. Among others, the cases of luminescent solar concentrators based on poly(methylmethacrylate) containing luminescent quantum dots and highly transparent polymer nanocomposites with high refractive index will be presented.

  8. Polycarbonate based three-phase nanocomposite dielectrics

    Science.gov (United States)

    Sain, P. K.; Goyal, R. K.; Prasad, Y. V. S. S.; Bhargava, A. K.

    2016-08-01

    Three-phase polycarbonate (PC) matrix nanocomposites are prepared using the solution method. One of the nanocomposite fillers is dielectric and the other is conducting. Lead zirconate titanate (PZT) is used as the dielectric filler. The conducting fillers, nano-Cu and multi-walled carbon nanotubes (MWCNTs), are used to make two different nanocomposites, MWCNT-PZT-PC and Cu-PZT-PC. The prepared nanocomposites are characterized using density measurement, x-ray diffractometry, scanning electron microscopy, energy dispersive x-ray spectroscopy, and differential scanning calorimetry. Percolation is absent in both three-phase nanocomposites within the study’s concentration window of conducting fillers. The dielectric properties of the nanocomposites are evaluated using a precision impedance analyser. The dielectric constant of the Cu-PZT-PC nanocomposite increases to 14 (a dissipation factor of 0.17), whereas in the case of the MWCNT-PZT-PC nanocomposite it increases to 8.5 (a dissipation factor of 0.002). The melting point of both nanocomposites decreases with respect to the control PC. The frequency (1 kHz to 1 MHz) and temperature (room temperature to 200 °C) dependence of the dielectric constant and dissipation factor are examined. For the Cu-PZT-PC nanocomposites, the dielectric constant decreases with increasing frequency, whereas in the case of the MWCNT-PZT-PC nanocomposites the dielectric constant is almost constant. The dielectric constant and dissipation factor exhibit a slight temperature dependence.

  9. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  10. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Science.gov (United States)

    Deka, Harekrishna; Karak, Niranjan

    2009-07-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  11. Use of Case-Based Learning in Dental Hygiene Curricula.

    Science.gov (United States)

    Vaughan, Dina Agnone; DeBiase, Christina B.; Gibson-Howell, Joan C.

    1998-01-01

    A survey investigated the extent of use of case-based learning in 141 dental hygiene programs. A majority of responding schools use the approach, most frequently in clinical dental hygiene, community dental health, and dental science courses. Proportion of instructional time was greatest in the content areas of special needs, ethics, medical…

  12. The difference of dental anxiety in children based on frequency of dental appointment

    OpenAIRE

    Mia Giri Astri; Eka Chemiawan; Eriska Rriyanti

    2011-01-01

    Background: Problem of children’s anxiety during dental procedures is a common phenomenon. This is called dental anxiety. The anxiety children patien need to be paid a special attention, because it will affect the success of dental treatment. Purpose: The purpose of this research was to find out the difference of dental anxiety degree in children aged 8 to 12 years old based on the frequency of dental visits in dental community health centre Bandung. Methods: The method of this research was a...

  13. Graphene based nanocomposite hybrid electrodes for supercapacitors

    Science.gov (United States)

    Aphale, Ashish N.

    There is an unmet need to develop high performance energy storage systems (ESS), capable of storing energy from both renewable and non-renewable sources to meet the current energy crisis and depletion of non-renewable sources. Amongst many available ESS, supercapacitors (ECs) are the most promising because they exhibit a high charge/discharge rate and power density, along with a long cycle life. The possibility of exploring the use of atomically thin carbon allotropes like graphene, carbon nanotubes (CNTs) and electrically conducting polymers (ECPs) such as polypyrrole (PPy) has been studied as a high performance conducting electrodes in supercapacitor application. A novel templated sustainable nanocomposite electrode has been fabricated using cellulose extracted from Cladophora c. aegagropila algae as component of the assembled supercapacitor device which later has been transitioned to a unique template-less freestanding nanocomposite supercapacitor electrode. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 F g -1 at the scan rate 50 m Vs-1 in the presence of 1M NaCl electrolyte. The open circuit voltage of the device with polypyrrole -graphene-cellulose electrode was found to be around 225 m V and that of the polypyrrole -cellulose device is only 53 m V without the presence of graphene in the nanocomposite electrode. Understanding the fundamentals by fabricating template nanocomposite electrode, it led to fabricate a unique nanocomposite template-less freestanding film which comprises of polypyrrole-graphene-CNT hybrid. Various experiments have been performed using different electrolytes such ascorbic acid, sodium sulfate and sulfuric acid in different scan rates. The specific capacitance of polypyrrole-graphene-CNT nanocomposite with 0.1 wt% of graphene-CNT, as calculated from cyclic voltammetry curve is 450 F g-1 at the scan rate 5 m V s-1. For the first time a nanofibrous membrane has

  14. Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, Farah [Department of Electrical Engineering, University of South Florida, ENB 118, Tampa, FL 33620-5350 (United States); Ram, Manoj K., E-mail: mkram@mail.usf.edu [Clean Energy Research center (CERC), University of South Florida, ENB 118, Tampa, FL 33620-5350 (United States); Basnayaka, Punya A. [Department of Mechanical Engineering, University of South Florida, ENB 118, Tampa, FL 33620-5350 (United States); Stefanakos, Elias [Department of Electrical Engineering, University of South Florida, ENB 118, Tampa, FL 33620-5350 (United States); Goswami, Yogi [Department of Chemical and Biomedical Engineering, University of South Florida, ENB 118, Tampa, FL 33620-5350 (United States); Kumar, Ashok [Department of Mechanical Engineering, University of South Florida, ENB 118, Tampa, FL 33620-5350 (United States); Clean Energy Research center (CERC), University of South Florida, ENB 118, Tampa, FL 33620-5350 (United States)

    2011-10-30

    Graphical abstract: Schematic diagrams of an electrochemical double layer type capacitor showing the charged (left) and discharged (right) states. Highlights: > The Graphene-PEDOT nanocomposite based smart coating has shown the excellent redox properties in acidic, organic electrolytes, which is promising for suprecapcitor application. > The electrochemical impedance studies have also been estimated which clearly indicates the high conductivity and less charge transfer resistance in the synthesized material. > The specific capacitance of 380F/g have been calculated for G-Pedot material, also it shows the columbic efficiency of 95% for 800 cycles, which tells the remarkable stability of synthesized material. - Abstract: We present here the synthesis, characterization and application of graphene (G)-polyethylenedioxythiophene (PEDOT) nanocomposites as electrode material for supercapacitor applications. The G-PEDOT nanocomposite was synthesized using a chemical oxidative polymerization technique, and characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, FTIR spectroscopy, X-ray-diffraction, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) techniques. The electrochemical charge/discharge characteristics of G-PEDOT nanocomposites were investigated in different electrolytic media, and the specific discharge capacitance was estimated to be 374 Farad/gram (F/gm). This manuscript presents the capacitance studies on supercapacitor G-PEDOT electrode with respect to stability of material, specific capacitance, electrical conductivity and specific charge/discharge properties of the supercapacitor electrodes. Our study has revealed that the G-PEDOT nanocomposite could be a transformable and viable electrode material for supercapacitor applications.

  15. Study of nanocomposites based on iron oxides and pectin

    Science.gov (United States)

    Chistyakova, Nataliya I.; Shapkin, Alexey A.; Sirazhdinov, Ruslan R.; Gubaidulina, Tatiana V.; Kiseleva, Tatiana Yu.; Kazakov, Alexander P.; Rusakov, Vyacheslav S.

    2014-10-01

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the "iron-polymer" interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  16. Study of nanocomposites based on iron oxides and pectin

    Energy Technology Data Exchange (ETDEWEB)

    Chistyakova, Nataliya I., E-mail: nchistyakova@yandex.ru; Shapkin, Alexey A., E-mail: nchistyakova@yandex.ru; Sirazhdinov, Ruslan R., E-mail: nchistyakova@yandex.ru; Gubaidulina, Tatiana V., E-mail: nchistyakova@yandex.ru; Kiseleva, Tatiana Yu., E-mail: nchistyakova@yandex.ru; Kazakov, Alexander P., E-mail: nchistyakova@yandex.ru; Rusakov, Vyacheslav S., E-mail: nchistyakova@yandex.ru [M. V. Lomonosov Moscow State University, Faculty of Physics, Leninskie gory, 119991 Moscow (Russian Federation)

    2014-10-27

    Mössbauer and X-ray diffraction study of nanocomposites based on iron oxides and pectin (PC) was carried out involving magnetization measurements. The concentrations of PC in nanocomposites varied from 0 to 10%. Mössbauer investigations of nanocomposites were carried out in the temperature range from 5 to 300 K. Many-state superparamagnetic relaxation model was used for spectra fitting. The magnetization, M(T,H), was measured in the temperature interval of 80-300 K and magnetic field up to 10 kOe. Formation of the 'iron-polymer' interface was not observed. Particle sizes were estimated using the Mössbauer and X-ray powder diffraction data.

  17. Titanium dioxide-cellulose hybrid nanocomposite based conductometric glucose biosensor

    Science.gov (United States)

    Maniruzzaman, Mohammad; Mahadeva, Suresha K.; Khondoker, Abu Hasan; Kim, Jaehwan

    2012-04-01

    This paper investigates the feasibility of conductometric glucose biosensor based on glucose oxidase (GOx) immobilized TiO2-cellulose hybrid nanocomposite. TiO2 nanoparticles were blended with cellulose solution prepared by dissolving cotton pulp with lithium chloride/N, N-dimethylacetamide solvent to fabricate TiO2-cellulose hybrid nanocomposite. The enzyme (GOx) was immobilized into this hybrid material by physical adsorption method. The successful immobilization of GOx into TiO2-cellulose hybrid nanocomposite via covalent bonding between TiO2 and GOx was confirmed by X-ray photoelectron analysis. The linear response of our propose glucose biosensor is obtained in the range of 1-10mM with correlation coefficient of 0.93. Our study demonstrates TiO2-cellulose hybrid material as a potential candidate for an inexpensive, flexible and disposable glucose biosensor.

  18. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  19. Variation, Certainty, Evidence, and Change in Dental Education: Employing Evidence-based Dentistry in Dental Education.

    Science.gov (United States)

    Marinho, Valeria Coelho Catao; Richards, Derek; Niederman, Richard

    2001-01-01

    Using a case-based dental scenario, presents systematic evidence-based methods for accessing dental health care information, evaluating this information for validity and importance, and using this information to make informed curricular and clinical decisions. Also discusses barriers inhibiting these systematic approaches to evidence-based…

  20. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karimi

    2011-01-01

    Full Text Available This paper discusses the synthesis of nanoparticles of ZnO and MgO and ZnO/MgO nanocomposite by the sonochemical method. At first, nanoparticles were synthesized by the reaction of Zn(CHCOO32 and Mg(CHCOO32 with tetramethylammonium hydroxide (TMAH in the presence of polyvinyl pyrrolidone (PVP and constant frequency ultrasonic waves (sonochemical method. Then, ZnO/MgO nanocomposite was prepared through reaction of magnesium acetate with TMAH in the presence of ZnO nanoparticles and PVP as structure director using ultrasonic assisted method. After filtration, the synthesized solution was obtained containing magnesium hydroxide in the presence of ZnO nanoparticles. It was calcinated at the temperature of 550 ºC, so that ZnO/MgO nanocomposite could be produced. The effects of different parameters on particle size and morphology of final ZnO and MgO powders and ZnO/MgO nanocomposite were optimized by ‘‘one at a time’’ method. Under optimum conditions, spongy shaped, uniformed and homogeneous nanostructured zinc oxide and magnesium oxide powders were obtained with particle sizes of 25–50 and 30-60 nm, respectively. ZnO/MgO nanocomposite was also obtained with more spongy morphology and particle size about 65 nm. Both synthesized ZnO and MgO nanoparticles and ZnO/MgO nanocomposite were successfully applied to the preparation of zinc polycarboxylate dental cement.

  1. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  2. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2016-10-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  3. Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells.

    Science.gov (United States)

    Olteanu, Diana; Filip, Adriana; Socaci, Crina; Biris, Alexandru Radu; Filip, Xenia; Coros, Maria; Rosu, Marcela Corina; Pogacean, Florina; Alb, Camelia; Baldea, Ioana; Bolfa, Pompei; Pruneanu, Stela

    2015-12-01

    Graphene-oxide (GO) and its most encountered derivatives, thermally reduced graphene oxide (TRGO) and nitrogen-doped graphene (N-Gr), were synthesized and structurally characterized by spectroscopic techniques, like Raman and (13)C MAS solid state NMR. Several biological effects (cytotoxicity, oxidative stress induction, and cellular and mithocondrial membrane alterations) induced by such graphene-based materials on human dental follicle stem cells were investigated. Graphene oxide shows the lowest cytotoxic effect, followed by the nitrogen-doped graphene, while thermally reduced graphene oxide exhibits high cytotoxic effects. Graphene oxide induces oxidative stress without causing cell membrane damage. Nitrogen-doped graphene shows a slight antioxidant activity; however, at high doses (20 and 40 μg/ml) it causes membrane damage. Both graphene oxide and nitrogen-doped graphene seem to be valuable candidates for usage in dental nanocomposites.

  4. Carbon nanotube macrofilm-based nanocomposite electrodes for energy applications

    Science.gov (United States)

    Cao, Zeyuan

    Finding new electrode materials for energy conversion and storage devices have been the focus of recent research in the fields of science and engineering. Suffering from poor electronic conductivity, chemical and mechanical stability, active electrode materials are usually coupled with different carbon nanostructured materials to form nanocomposite electrodes, showing promising electrochemical performance. Among the carbon nanostructured materials, carbon nanotube (CNT) macrofilms draw great attention owing to their extraordinary properties, such as a large specific surface area, exceptionally high conductivity, porous structure, flexibility, mechanical robustness, and adhesion. They could effectively enhance the electrochemical performance of the incorporated active materials in the nanocomposites. In this dissertation, CNT macrofilm-based nanocomposites are investigated for rechargeable lithium-ion batteries, supercapacitors, and electrocatalysts of fuel cells. The progressive research developed various nanocomposites from cathode materials to anode materials followed by a general nanocomposite solution due to the unique adhesive property of the fragmented CNT macrofilms. The in-situ synthesis strategy are explored to in-situ deposit unlithiated cathode materials V2O5 and lithiated cathode materials LiMn2O4 nanocrystals in the matrix of the CNT macrofilms as nanocomposites to be paired with metallic lithium in half cells. The presence of oxygen-containing functional groups on the surface of the CNT macrofilms after purification can enhance the association with the active materials to enable the facilitated transport of solvated ions to the electrolyte/electrode interfaces and increase the diffusion kinetics, consequently enhancing the battery performance in terms of high specific capacity, rate capability, and cycling stability. It is also significant to demonstrate a reliable, low-cost, and effective route to synthesize the family of metal oxides (MxOy (M=Fe, Co

  5. Financial impact of community-based dental education.

    Science.gov (United States)

    Bailit, Howard L

    2010-10-01

    The financial impact of community-based dental education on dental school and community clinic budgets is a major issue. The evidence suggests that community experiences for dental students of fifty or more days, if effectively managed, can increase school net revenues due to the following factors: 1) the community rotations increase student productivity, approximating the loss of dental school clinical income; 2) the reallocation of unused clinical resources at the dental school reduces student clinic deficits; 3) schools and federally qualified health centers (FQHCs) that share surplus student patient revenues generate additional net income; and 4) enrollment of more students without additional new facilities and faculty increases total school tuition revenues. For FQHC dental clinics, student rotations increase the number of patients treated and may generate surplus revenues. Community-based dental education also provides schools and clinics important non-financial advantages.

  6. Development of polymer nanocomposites based on layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Sipusic, J.

    2009-05-01

    Full Text Available Polymeric nanocomposites are commonly considered as systems composed of a polymeric matrix and - usually inorganic - filler. The types of nanofillers are indicated in Fig. 1. Beside wellknown layered silicate fillers, recent attention is attracted to layered double hydroxide fillers (LDH, mainly of synthetic origin. The structure of LDH is based on brucite, or magnesium hydroxide, Mg(OH2 and is illustrated in Fig. 2. The modification of LDHs is commonly done by organic anions, to increase the original interlayer distance and to improve the organophilicity of the filler, keeping in mind their final application as fillers for, usually hydrophobic, polymer matrices. We have used the modified rehydration procedure for preparing organically modified LDH. The stoichiometric quantities of Ca33Al2O6, CaO and benzoic (B (or undecenoic (U acid were mixed with water and some acetone. After long and vigorous shaking, the precipitated fillers were washed, dried and characterized. X-ray diffraction method (XRD has shown the increase of the original interlayer distance for unmodified LDH (OH–-saturated of 0.76 nm to the 1.6 nm in LDH-B or LDH-U fillers (Fig. 3. Infrared spectroscopy method (FTIR has confirmed the incorporation of benzoic anion within the filler layers (Fig. 4. For the preparation of LDH-B and LDH-U composites with polystyrene (PS, poly(methyl methacrylate (PMMA and copolymer (SMMA matrices, a two-step in situ bulk radical polymerization was selected (Table 1 for recipes, azobisisobutyronitrile as initiator, using conventional stirred tank reactor in the first step, and heated mold with the movable wall (Fig. 6 in the second step of polymerization. All the prepared composites with LDH-U fillers were macroscopically phase-separated, as was the PMMA/LDH-B composite.PS/LDH-B and SMMA/LDH-B samples were found to be transparent and were further examined for deduction of their structure (Fig. 5 and thermal properties. FTIR measurements showed that

  7. Caries treatment in a dental practice-based research network

    DEFF Research Database (Denmark)

    Gilbert, Gregg H; Gordan, Valeria V; Funkhouser, Ellen M

    2012-01-01

    OBJECTIVES: Practice-based research networks (PBRNs) provide a venue to foster evidence-based care. We tested the hypothesis that a higher level of participation in a dental PBRN is associated with greater stated change toward evidence-based practice. METHODS: A total of 565 dental PBRN...

  8. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  9. Polylactic Acid Based Nanocomposites: Promising Safe and Biodegradable Materials in Biomedical Field

    OpenAIRE

    Lili Sha; Zhaofeng Chen; Zhou Chen; Aili Zhang; Zhaogang Yang

    2016-01-01

    Polylactic acid (PLA) is widely used in biological areas due to its excellent compatibility, bioabsorbability, and degradation behavior in human bodies. Pure polylactic acid has difficulty in meeting all the requirements that specific field may demand. Therefore, PLA based nanocomposites are extensively investigated over the past few decades. PLA based nanocomposites include PLA based copolymers in nanometer size and nanocomposites with PLA or PLA copolymers as matrix and nanofillers as annex...

  10. Titania based nanocomposites as a photocatalyst: A review

    Directory of Open Access Journals (Sweden)

    Farha Modi

    2016-08-01

    Full Text Available Titanium dioxide or Titania is a semiconductor compound having remarkable dielectric, electronic and physico-chemical surface properties. It has excellent photocatalytic efficiency in presence of UV light. The curious grey matter of scientists has forced them to focus their attention to make Titania capable of utilizing the whole visible spectrum of light also. The hurdle that they faced was larger band gap of 3 eV and more, for this, efforts were directed towards adding other materials to Titania. The present article reviews the recent advances in the synthesis of different Titanium-based nanocomposite materials and their photocatalytic efficiency so as to apply them for several applications such as removal of dyes, other water pollutants, microbes and metals. A brief explanation of the photocatalytic process and the structural properties of TiO2 are also touched upon. Various past and recent approaches made in these directions of utilizing Titania based nanocomposites for photocatalytic activities are reviewed. It is suggested that there is a need to establish the kinetics of photo-corrosion and thermodynamic part of the photo-corrosion of various composites developed by different group across the globe, so that Titania based nanocomposites could be commercially utilized.

  11. Protein-based green resins and nanocomposites from waste residues

    Science.gov (United States)

    Rahman, Muhammad Maksudur

    The main goal of the present research is to design and fabricate 'green' nanocomposites using eco-friendly and biodegradable polymers, an effort driven towards an alternative of conventional petroleum-derived polymers in structural applications considering environmental and economic concerns. The behavior of structure, composition and property relationships between the novel combinations of these materials has been analyzed and discussed. The materials used in this study, many of them from non-edible sources, are obtained, derived and/or synthesized using various wastes from agricultural and food industries, as much as possible, so as to utilize wastes that are discarded at present. At the same time, the use of waste sources reduces the dependency of edible source-based biopolymers in various structural applications and thus, reduces the cost of materials significantly. Overall, this study opens up new avenues in the fabrication of low-cost 'green' nanocomposite with facile and 'green' methodology using various agricultural and food wastes.

  12. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  13. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite.

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm(-2)·mM(-1). The biosensor achieved a broad linear range of detection (0.12-12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection.

  14. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  15. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    Science.gov (United States)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  16. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  17. The evaluation of prepared microgroove pattern by femtosecond laser on alumina-zirconia nano-composite for endosseous dental implant application.

    Science.gov (United States)

    Aivazi, Moluk; Hossein Fathi, Mohammad; Nejatidanesh, Farahnaz; Mortazavi, Vajihesadat; HashemiBeni, Batoul; Matinlinna, Jukka Pekka; Savabi, Omid

    2016-12-01

    Ceramic dental materials, especially alumina (20 %vol)-yttrium stabilized tetragonal zirconia poly crystal (A-Y-TZP20), have been considered as alternatives to metals for endosseous dental implant application. For increasing the bone-to-implant contact as well as the speed of bone formation, a new surface modification can be effective. The aim of this study was to design microgroove patterns by femtosecond laser on A-Y-TZP20 nano-composite disks for endosseous dental implant application. The phase composition and the morphology of the A-Y-TZP20 nano-composite samples were characterized using X-ray diffraction and Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy techniques. Statistical analysis was submitted to Kolmogorov-Smirnov test and Student's t test for independent variables, with a 5 % significance level. EDAX analysis revealed a significant decrease in the relative content of contaminants like carbon (p < 0.05) in laser surface-treated group as compared to non surface-treated group. X-ray diffraction did not show any change in the crystalline structure induced by laser processing. It was concluded that the femtosecond laser is a clean and safe method for surface modification of A-Y-TZP20.

  18. New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Khashirov, Azamat A.; Zhansitov, Azamat A.; Khashirova, Svetlana Yu. [Kabardino-Balkarian State University a. Kh.M. Berbekov, 173 Chernyshevskogo st., 360004, Nalchik (Russian Federation); Zaikov, Genadiy E. [N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygin St., 119991, Moscow (Russian Federation)

    2014-05-15

    The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, {sup 1}H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used.

  19. Odontogenic stimulation of human dental pulp cells with bioactive nanocomposite fiber.

    Science.gov (United States)

    Kim, Ga-Hyun; Park, Yong-Duk; Lee, So-Youn; El-Fiqi, Ahmed; Kim, Jung-Ju; Lee, Eun-Jung; Kim, Hae-Won; Kim, Eun-Cheol

    2015-01-01

    The aim of the present study was to investigate the effects of a composite nanofibrous matrix made of biopolymer blend polycaprolactone-gelatin (BP) and mesoporous bioactive glass nanoparticles (BGNs) on the odontogenic differentiation of human dental pulp cells (HDPCs). BGN-BP nanomatrices, with BGN content of up to 20 wt%, were produced via electrospinning. The differentiation of the HDPCs was evaluated by using an ALP activity assay, calcified nodule formation, and mRNA expression for markers. Integrin and its underlying signal pathways were assessed via reverse transcriptase-polymerase chain reaction and Western blot analysis. Although cell growth and attachment on the BGN-BP nanomatrix was similar to that on BP, ALP activity, mineralized nodule formation, and mRNA, expressions involving ALP, osteocalcin, osteopontin, dentin sialophosphoprotein, and dentin matrix protein-1 were greater on BGN-BP. BGN-BP upregulated the key adhesion receptors (integrin components α1, α2, α5, and β1) and activated integrin downstream pathways, such as phosphorylated-focal adhesion kinase (p-FAK), and p-paxillin. In addition, BGN-BP activated BMP receptors, BMP-2 mRNA, and p-Smad 1/5/8, and such activation was blocked by the BMP antagonist, noggin. Furthermore, BGN-BP induced phosphorylation of extracellular signal-regulated kinase, protein kinase 38, and c-Jun-N-terminal kinase mitogen-activated protein kinases and activated expression of the transcription factors Runx2 and Osterix in HDPCs. Collectively, the results indicated for the first time that a BGN-BP composite nanomatrix promoted odontogenic differentiation of HDPCs through the integrin, BMP, and mitogen-activated protein kinases signaling pathway. Moreover, the nanomatrix is considered to be promising scaffolds for the culture of HDPCs and dental tissue engineering.

  20. A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites

    Science.gov (United States)

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). One of the reasons for unique properties of bio-nanocomposites is the differ...

  1. Nanotechnology-based restorative materials for dental caries management.

    Science.gov (United States)

    Melo, Mary A S; Guedes, Sarah F F; Xu, Hockin H K; Rodrigues, Lidiany K A

    2013-08-01

    Nanotechnology has been applied to dental materials as an innovative concept for the development of materials with better properties and anticaries potential. In this review we discuss the current progress and future applications of functional nanoparticles incorporated in dental restorative materials as useful strategies to dental caries management. We also overview proposed antimicrobial and remineralizing mechanisms. Nanomaterials have great potential to decrease biofilm accumulation, inhibit the demineralization process, to be used for remineralizing tooth structure, and to combat caries-related bacteria. These results are encouraging and open the doors to future clinical studies that will allow the therapeutic value of nanotechnology-based restorative materials to be established.

  2. Graphene-based nanocomposite anodes for lithium-ion batteries

    Science.gov (United States)

    Sun, Weiwei; Wang, Yong

    2014-09-01

    Graphene-based nanocomposites have been demonstrated to be promising high-capacity anodes for lithium ion batteries to satisfy the ever-growing demands for higher capacity, longer cycle life and better high-rate performance. Synergetic effects between graphene and the introduced second-phase component are generally observed. In this feature review article, we will focus on the recent work on four different categories of graphene-based nanocomposite anodes by us and others: graphene-transitional metal oxide, graphene-Sn/Si/Ge, graphene-metal sulfide, and graphene-carbon nanotubes. For the supported materials on graphene, we will emphasize the non-zero dimensional (non-particle) morphologies such as two dimensional nanosheet/nanoplate and one dimensional nanorod/nanofibre/nanotube morphologies. The synthesis strategies and lithium-ion storage properties of these highlighted electrode morphologies are distinct from those of the commonly obtained zero dimensional nanoparticles. We aim to stress the importance of structure matching in the composites and their morphology-dependent lithium-storage properties and mechanisms.

  3. Chromatic Mechanical Response in 2-D Layered Transition Metal Dichalcogenide (TMDs) based Nanocomposites

    Science.gov (United States)

    Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji

    2016-10-01

    The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors.

  4. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pporcelain.

  5. Free Volume Structure of Acrylic-Type Dental Nanocomposites Tested with Annihilating Positrons

    Science.gov (United States)

    Shpotyuk, Olha; Ingram, Adam; Shpotyuk, Oleh

    2016-11-01

    Positron annihilation spectroscopy in lifetime measuring mode exploring conventional fast-fast coincidence ORTEC system is employed to characterize free volume structure of commercially available acrylic-type dental restorative composite Charisma® (Heraeus Kulzer GmbH, Germany). The measured lifetime spectra for uncured and light-cured composites are reconstructed from unconstrained x3-term fitting and semi-empirical model exploring x3-x2-coupling decomposition algorithm. The governing channel of positron annihilation in the composites studied is ascribed to mixed positron-Ps trapping, where Ps decaying in the third component is caused entirely by input from free-volume holes in polymer matrix, while the second component is defined by free positron trapping in interfacial free-volume holes between filler nanoparticles and surrounded polymer matrix. Microstructure scenario of the photopolymerization shrinkage includes cross-linking of structural chains in polymer matrix followed by conversion of bound positron-electron (positronium) traps in positron-trapping interfacial free-volume voids in a vicinity of agglomerated filler nanoparticles.

  6. Predictive Model of Graphene Based Polymer Nanocomposites: Electrical Performance

    Science.gov (United States)

    Manta, Asimina; Gresil, Matthieu; Soutis, Constantinos

    2017-04-01

    In this computational work, a new simulation tool on the graphene/polymer nanocomposites electrical response is developed based on the finite element method (FEM). This approach is built on the multi-scale multi-physics format, consisting of a unit cell and a representative volume element (RVE). The FE methodology is proven to be a reliable and flexible tool on the simulation of the electrical response without inducing the complexity of raw programming codes, while it is able to model any geometry, thus the response of any component. This characteristic is supported by its ability in preliminary stage to predict accurately the percolation threshold of experimental material structures and its sensitivity on the effect of different manufacturing methodologies. Especially, the percolation threshold of two material structures of the same constituents (PVDF/Graphene) prepared with different methods was predicted highlighting the effect of the material preparation on the filler distribution, percolation probability and percolation threshold. The assumption of the random filler distribution was proven to be efficient on modelling material structures obtained by solution methods, while the through-the -thickness normal particle distribution was more appropriate for nanocomposites constructed by film hot-pressing. Moreover, the parametrical analysis examine the effect of each parameter on the variables of the percolation law. These graphs could be used as a preliminary design tool for more effective material system manufacturing.

  7. The role of school-based dental programme on dental caries experience in Yogyakarta Province, Indonesia

    NARCIS (Netherlands)

    Amalia, Rosa; Schaub, Rob M. H.; Widyanti, Niken; Stewart, Roy; Groothoff, Johan W.

    2012-01-01

    Objectives. To assess the effectiveness of a school-based dental programme (SBDP) in controlling caries by measuring the relationship between the SBDP performance and caries experience in children aged 12 in Yogyakarta Province, Indonesia, by taking into account influencing factors. Methods. A cross

  8. Niobium based coatings for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, G., E-mail: enggiova@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Facultad de Quimica, Departamento de Ingenieria Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Arzate, H. [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, Mexico D.F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Olaya, J.J. [Unidad de Materiales, Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Cra. 30 45-03 Bogota (Colombia)

    2011-01-15

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb{sub 2}O{sub 5} (a-Nb{sub 2}O{sub 5}), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  9. Librarian-facilitated problem-based learning course in a school of dental medicine.

    Science.gov (United States)

    Hasman, Linda

    2012-01-01

    While problem-based learning has been used in medical practice for several decades, dental education was slower to adapt this education model. However, as dental curricula are embracing this pedagogy, dental and other health sciences librarians are in a position to provide important curricular support. This article will detail one dental liaison librarian's experience with facilitating a problem-based, case-based studies course within the curriculum of a dental school.

  10. Solar Cells Based on Low-dimensional Nanocomposite Structures

    Directory of Open Access Journals (Sweden)

    S.L. Khrypko

    2016-12-01

    Full Text Available Converting solar energy into electric energy with using of solar batteries is a major task for developers and research teams. In this article we will look at the development of different generations of solar batteries for to create a nanocomposite structure. Production of solar batteries has gone through some steps, taking into account technological and economic aspects that have been associated with improved of their parameters. Thus the first generations of solar batteries have been based on the single-crystal silicon substrates (с-Si. The use of polycrystalline silicon and multi- crystalline allowed lower costs of modules, but due to the efficiency of solar energy conversion. The solar batteries of the second generation were based on thin-film technology, in which use different materials: silicon films based on amorphous silicon (a-Si, a film based on cadmium telluride (CdTe and film selenide copper-indium-gallium (CuInGaSe2, or CIGS. The use of such technology has allowed increasing the coefficient of performance (COP solar cell with a significant reduction in costs. The solar batteries of third-generation based on nanotechnology, nanocrystals and nano-sized clusters of semiconductors. The creation of such solar cells requires availability of a low-dimensional composite structure. Low-dimensional nanocomposite structures that are constructed on quantum dots and nano-porous materials have new modified optoelectronic properties. They can be used in solar elements, where absorption bands can be optimally adapted to the wavelength of radiation light. These structures could theoretically can lead to increased efficiency of solar energy conversion more than 65%, which can double practically current efficiency of solar batteries.

  11. Preparing dental students for careers as independent dental professionals: clinical audit and community-based clinical teaching.

    Science.gov (United States)

    Lynch, C D; Llewelyn, J; Ash, P J; Chadwick, B L

    2011-05-28

    Community-based clinical teaching programmes are now an established feature of most UK dental school training programmes. Appropriately implemented, they enhance the educational achievements and competences achieved by dental students within the earlier part of their developing careers, while helping students to traverse the often-difficult transition between dental school and vocational/foundation training and independent practice. Dental school programmes have often been criticised for 'lagging behind' developments in general dental practice - an important example being the so-called 'business of dentistry', including clinical audit. As readers will be aware, clinical audit is an essential component of UK dental practice, with the aims of improving the quality of clinical care and optimising patient safety. The aim of this paper is to highlight how training in clinical audit has been successfully embedded in the community-based clinical teaching programme at Cardiff.

  12. Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device.

    Science.gov (United States)

    Xu, Shiyou; Yeh, Yao-wen; Poirier, Gerald; McAlpine, Michael C; Register, Richard A; Yao, Nan

    2013-06-12

    Piezoelectric nanocomposites represent a unique class of materials that synergize the advantageous features of polymers and piezoelectric nanostructures and have attracted extensive attention for the applications of energy harvesting and self-powered sensing recently. Currently, most of the piezoelectric nanocomposites were synthesized using piezoelectric nanostructures with relatively low piezoelectric constants, resulting in lower output currents and lower output voltages. Here, we report a synthesis of piezoelectric (1 - x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) nanowire-based nanocomposite with significantly improved performances for energy harvesting and self-powered sensing. With the high piezoelectric constant (d33) and the unique hierarchical structure of the PMN-PT nanowires, the PMN-PT nanowire-based nanocomposite demonstrated an output voltage up to 7.8 V and an output current up to 2.29 μA (current density of 4.58 μA/cm(2)); this output voltage is more than double that of other reported piezoelectric nanocomposites, and the output current is at least 6 times greater. The PMN-PT nanowire-based nanocomposite also showed a linear relationship of output voltage versus strain with a high sensitivity. The enhanced performance and the flexibility of the PMN-PT nanowire-based nanocomposite make it a promising building block for energy harvesting and self-powered sensing applications.

  13. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  14. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Hongwei, E-mail: hqiu@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Stepanov, Victor; Di Stasio, Anthony R. [U.S. Army - Armament Research, Development, and Engineering Center, Picatinny, NJ 07806 (United States); Chou, Tsengming; Lee, Woo Y. [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2011-01-15

    Cyclotrimethylenetrinitramine (RDX)-based nanocomposite microparticles were produced by a simple, yet novel spray drying method. The microparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC), which shows that they consist of small RDX crystals ({approx}0.1-1 {mu}m) uniformly and discretely dispersed in a binder. The microparticles were subsequently pressed to produce dense energetic materials which exhibited a markedly lower shock sensitivity. The low sensitivity was attributed to small crystal size as well as small void size ({approx}250 nm). The method developed in this work may be suitable for the preparation of a wide range of insensitive explosive compositions.

  15. Methane sensor based on palladium/MWNT nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Zhong Ping Li; Yong Guo; Suo Zhu Wu; Shao Min Shuang; Chuan Dong

    2009-01-01

    Methane gas sensor was fabricated based on electrocatalytic properties of the Pd/MWNT nanocomposites on indium tin oxide (ITO) glass substrates.A linear response for methane was obtained in the range of 0-16% (v/v) with a detection limit of 0.167% (v/v) and R.S.D.of 4.1%.After 100 times sensing or stable stored more than 12 months in atmosphere,unconspicuous measurable decrease was observed.The response time was less than 60 s at room temperature and ambient pressure.Some common potential interferents in samples such as N2,CO,CO2,ethane,propane,pentane,methanol,ethanol,H2 and NH3 were investigated and all the effects were less than 5% on the response for 3.0% (v/v) methane.The sensor was applied to methane determinations in man-made gas samples,the results are satisfied.

  16. Evidence-based dentistry as it relates to dental materials.

    Science.gov (United States)

    Bayne, Stephen C; Fitzgerald, Mark

    2014-01-01

    Evidence-based dentistry (EBD) is reviewed in depth to underscore the limitations for evidence-based dental materials information that exist at this time. Anecdotal estimates of evidence for dental practice are in the range of 8 percent to 10 percent. While the process of evaluating the literature base for dental evidence began 20 years ago, it was not practical to implement it until high-speed wireless connections, open access to journals, and omnipresent connections via smart phones became a reality. EBD includes five stages of information collection and analysis, starting with a careful definition of a clinical question using the PICO(T) approach. Clinical evidence in randomized control trials is considered the best. Clinical trial perspectives (prospective, cross-sectional, retrospective) and outcome designs (RCTs, SCTs, CCTs, cohort studies, case-control studies) are quite varied. Aggregation techniques (including meta-analyses) allow meaningful combinations of clinical data from trials with similar designs but with fewer rigors. Appraisals attempt to assess the entire evidence base without bias and answer clinical questions. Varying intensities to these approaches, Cochrane Collaboration, ADA-EBD Library, UTHSCSA CATs Library, are used to answer questions. Dental materials evidence from clinical trials is infrequent, short-term, and often not compliant with current guidelines (registration, CONSORT, PRISMA). Reports in current evidence libraries indicate less than 5 percent of evidence is related to restorative dental materials.

  17. Evidence-based practice and the professionalization of dental hygiene.

    Science.gov (United States)

    Cobban, Sandra J

    2004-11-01

    The application of knowledge is fundamental to human problem solving. In health disciplines, knowledge utilization commonly manifests through evidence-based decision making in practice. The purpose of this paper is to explore the development of the evidence-based practice (EBP) movement in health professions in general, and dental hygiene in particular, and to examine its relationship to the professionalization agenda of dental hygiene in Canada. EBP means integrating practitioner expertise with the best available external evidence from research. Proponents of EBP believe that it holds promise for reducing a research-practice gap by encouraging clinicians to seek current research results. Both the Canadian and American Dental Hygienists Associations support practice based on current research evidence, yet recent studies show variation in practice. Professionalization refers to the developmental stages through which an organized occupation passes as it develops traits that characterize it as a profession. The status conferred by professionalization privileges a group to make and monitor its own decisions relative to practice. Dental hygiene's success in acquiring attributes of a profession suggests that transformation to a profession is occurring. This paper compares the assumptions and challenges of both movements, and argues the need for a principal focus on the development of a culture of evidence-based dental hygiene practice.

  18. PET based nanocomposite films for microwave packaging applications

    Science.gov (United States)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  19. PET based nanocomposite films for microwave packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Galdi, M. R., E-mail: mrgaldi@unisa.it; Olivieri, R.; Liguori, L.; Albanese, D., E-mail: dalbanese@unisa.it; Di Matteo, M.; Di Maio, L., E-mail: ldimaio@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  20. Information-Seeking Behaviors of Dental Practitioners in Three Practice-Based Research Networks

    OpenAIRE

    Botello-Harbaum, Maria T; Demko, Catherine A.; Curro, Frederick A.; Rindal, D Brad; Collie, Damon; Gilbert, Gregg H.; Hilton, Thomas J.; Craig, Ronald G.; Wu, Juliann; Funkhouser, Ellen; Lehman, Maryann; McBride, Ruth; Thompson; Lindblad, Anne

    2013-01-01

    Research on the information-seeking behaviors of dental practitioners is scarce. Knowledge of dentists’ information-seeking behaviors should advance the translational gap between clinical dental research and dental practice. A cross-sectional survey was conducted to examine the self-reported information-seeking behaviors of dentists in three dental practice-based research networks (PBRNs). A total of 950 dentists (65 percent response rate) completed the survey. Dental journals and continuing ...

  1. Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties

    Directory of Open Access Journals (Sweden)

    Sevan Davtyan

    2009-12-01

    Full Text Available High temperature superconducting (SC nanocomposites based on SC ceramics and various polymeric binders were prepared. Regardless of the size of the ceramics’ grains, the increase of their amount leads to an increase of resistance to rupture and modulus and a decrease in limiting deformation, whereas an increase in the average ceramic grain size worsens resistance properties. The SC, thermo-chemical, mechanical and dynamic-mechanical properties of the samples were investigated. Superconducting properties of the polymer ceramic nanocomposites are explained by intercalation of macromolecule fragments into the interstitial layer of the ceramics’ grains. This phenomenon leads to a change in the morphological structure of the superconducting nanocomposites.

  2. Evidence-based prevention, management, and monitoring of dental caries.

    Science.gov (United States)

    Barber, Lois Rigmont; Wilkins, Esther M

    2002-01-01

    Dental caries, not unlike periodontal diseases, is now recognized as an infectious, transmissible, multifactorial disease of bacterial origin. Current evidence-based emphasis is on the need to recognize a carious lesion in its earliest stage before demineralization has produced a cavitated lesion that requires restoration by a dentist. As a result of current understanding of caries control, the dental hygienist's role as a prevention specialist is to determine the dental caries risk factors for patients of all ages and to introduce remineralization strategies into the patient's dental hygiene care plan. Conservative strategies of a concentrated program include initial infection control with a chlorhexidine rinse; extra daily fluoride exposures; placement of pit and fissure sealants where indicated; control of sucrose exposures; use of sugar substitutes, particularly xylitol-containing sugar-free chewing gum; and an emphasis on a daily bacterial plaque removal routine. Evidence supports the management and monitoring of dental caries. Caries risk level must be reevaluated at each maintenance appointment. Appropriate in-office strategies to preserve tooth structure should be carried out and followed by applicable home regimens that are based on need, not age.

  3. Surface segregation in TiO2-based nanocomposite thin films

    Science.gov (United States)

    Sai Kiran Chakravadhanula, Venkata; Kübel, Christian; Hrkac, Tomislav; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Kienle, Lorenz

    2012-12-01

    The morphology of nanocomposites plays a pivotal role in understanding their functionality and determines their capabilities for applications. The use of nanocomposite coatings requires a study of the size effects on their functional properties. Noble metal nanoparticles are promising candidates for nanocomposite thin film applications due to their antibacterial, plasmonic and photocatalytic properties. In this contribution, the morphology of Ag-TiO2 and Au-TiO2 nanocomposite thin films has been investigated experimentally using electron tomography in transmission electron microscopy in combination with UV/vis spectroscopy. Based on the additional 3D information obtained from tomography, we propose a two-step model towards the observed bimodal particle size in these nanocomposite thin films prepared by co-sputtering from two different sources. Furthermore, we show that the optical properties exhibit a well-defined relation with the morphology of the nanocomposite thin films. The present investigations demonstrate the potential of electron tomography for revealing the complex structure and formation processes of functional nanocomposites.

  4. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    Science.gov (United States)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-05-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe3O4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe3O4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe3O4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent.

  5. Dental Trauma Guide: a source of evidence-based treatment guidelines for dental trauma.

    Science.gov (United States)

    Andreasen, Jens Ove; Lauridsen, Eva; Gerds, Thomas Alexander; Ahrensburg, Søren Steno

    2012-10-01

    Diagnosis and treatment for traumatic dental injuries are very complex owing to the multiple trauma entities represented by six luxation types and nine fracture types affecting both the primary and the permanent dentition. When it is further considered that fracture and luxation injuries are often combined, the result is that more than 100 trauma scenarios exist, when the two dentitions are combined. Each of these trauma scenarios has a specific treatment demand and prospect for healing. With such a complexity in diagnosis and treatment, it is obvious that even experienced practitioners may have problems in selecting proper treatment for some of these trauma types. To remedy this situation, an Internet-based knowledge base consisting of 4000 dental trauma cases with long-term follow up is now available to the public and the professions on the Internet using the address http://www.DentalTraumaGuide.org. It is the aspiration that the use of this Guide may lead the practitioner to offer an evidence-based diagnosis and treatment.

  6. UV-curable nanocomposite based on methacrylic-siloxane resin and surface-modified TiO2 nanocrystals.

    Science.gov (United States)

    Ingrosso, Chiara; Esposito Corcione, Carola; Striani, Raffaella; Comparelli, Roberto; Striccoli, Marinella; Agostiano, Angela; Curri, M Lucia; Frigione, Mariaenrica

    2015-07-22

    A novel UV-light-curable nanocomposite material formed of a methacrylic-siloxane resin loaded with 1 wt % oleic acid and 3-(trimethoxysilyl)propyl methacrylate silane (OLEA/MEMO)-coated TiO2 nanorods (NRs) has been manufactured as a potential self-curing structural coating material for protection of monuments and artworks, optical elements, and dental components. OLEA-coated TiO2 NRs, presynthesized by a colloidal chemistry route, have been surface-modified by a treatment with the methacrylic-based silane coupling agent MEMO. The resulting OLEA/MEMO-capped TiO2 NRs have been dispersed in MEMO; that is a monomer precursor of the organic formulation, used as a "common solvent" for transferring the NRs in prepolymer components of the formulation. Differential scanning calorimetry and Fourier transform infrared spectroscopy have allowed investigation of the effects of the incorporation of the OLEA/MEMO-capped TiO2 NRs on reactivity and photopolymerization kinetics of the nanocomposite, demonstrating that the embedded NRs significantly increase curing reactivity of the neat organic formulation both in air and inert atmosphere. Such a result has been explained on the basis of the photoactivity of the nanocrystalline TiO2 which behaves as a free-radical donor photocatalyst in the curing reaction, finally turning out more effective than the commonly used commercial photoinitiator. Namely, the NRs have been found to accelerate the cure rate and increase cross-linking density, promoting multiple covalent bonds between the resin prepolymers and the NR ligand molecules, and, moreover, they limit inhibition effect of oxygen on photopolymerization. The NRs distribute uniformly in the photocurable matrix, as assessed by transmission electron microscopy analysis, and increase glass transition temperature and water contact angle of the nanocomposite with respect to the neat resin.

  7. Influence of expanded graphite (EG and graphene oxide (GO on physical properties of PET based nanocomposites

    Directory of Open Access Journals (Sweden)

    Paszkiewicz Sandra

    2014-12-01

    Full Text Available This work is the continuation and refinement of already published communications based on PET/EG nanocomposites prepared by in situ polymerization1, 2. In this study, nanocomposites based on poly(ethylene terephthalate with expanded graphite were compared to those with functionalized graphite sheets (GO. The results suggest that the degree of dispersion of nanoparticles in the PET matrix has important effect on the structure and physical properties of the nanocomposites. The existence of graphene sheets nanoparticles enhances the crystallization rate of PET. It has been confirmed that in situ polymerization is the effective method for preparation nanocomposites which can avoid the agglomeration of nanoparticles in polymer matrices and improve the interfacial interaction between nanofiller and polymer matrix. The obtained results have shown also that due to the presence of functional groups on GO surface the interactions with PET matrix can be stronger than in the case of exfoliated graphene (EG and matrix.

  8. Introducing evidence-based dentistry to dental students using histology.

    Science.gov (United States)

    Lallier, Thomas E

    2014-03-01

    The expansion of evidence-based dentistry (EBD) is essential to the continued growth and development of the dental profession. Expanding EBD requires increased emphasis on critical thinking skills during dental education, as noted in the American Dental Education Association's Competencies for the New General Dentist. In order to achieve this goal, educational exercises must be introduced to increase the use of critical thinking skills early in the dental curriculum, with continued reinforcement as students progress through subsequent years. Described in this article is one approach to increasing student exposure to critical thinking during the early basic science curriculum-specifically, within the confines of a traditional histology course. A method of utilizing the medical and dental research literature to reinforce and enliven the concepts taught in histology is described, along with an approach for using peer-to-peer presentations to demonstrate the tools needed to critically evaluate research studies and their presentation in published articles. This approach, which could be applied to any basic science course, will result in a stronger foundation on which students can build their EBD and critical thinking skills.

  9. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  10. Millimeter Waveband Dielectric Properties of Nanocomposite Materials Based on Opal Matrices with Particles of Spinels

    Science.gov (United States)

    Rinkevich, A. B.; Perov, D. V.; Pakhomov, Ya A.; Samoylovich, M. I.; Kuznetsov, E. A.

    2016-09-01

    The dielectric properties of 3D nanocomposites based on opal matrices containing the particles of compounds with spinel structure have been studied. Microwave measurements have been carried out in the frequency range from 26 to 38 GHz. The frequency dependences of transmission and reflection coefficients are obtained. The values of the real and imaginary parts of complex dielectric permittivity have been retrieved. The X-ray phase analysis of the nanocomposites is performed and their structures are studied.

  11. Study of annealing and orientation effects on physical properties of PLA based nanocomposite films

    OpenAIRE

    Cammarano, Sara

    2010-01-01

    PLA-sepiolite and PLA-halloysite nanocomposites prepared by melt blending were systematically characterized in terms of mechanical, thermal and barrier properties. Annealing and unidirectional stretching techniques were used with the aim to improve matrix performances of nanocomposite based films; a preliminary study on the production of PLA-halloysite composites via film blowing has been also considered. Addition of unmodified clays did not significantly alter PLA properties mainly b...

  12. Models for Delivering School-Based Dental Care.

    Science.gov (United States)

    Albert, David A.; McManus, Joseph M.; Mitchell, Dennis A.

    2005-01-01

    School-based health centers (SBHCs) often are located in high-need schools and communities. Dental service is frequently an addition to existing comprehensive services, functioning in a variety of models, configurations, and locations. SBHCs are indicated when parents have limited financial resources or inadequate health insurance, limiting…

  13. Changes in scattering and absorption during curing of denta-resin composites: silorane and nanocomposite

    Science.gov (United States)

    del Mar Pérez, Maria; Ghinea, Razvan; Ionescu, Ana-Maria; de la Cruz Cardona, Juan

    2011-05-01

    Photocured polymers are widely used in dental applications. The optical properties of the dental composites change during curing; the appearance of the composites also changes. Recently, a new silorane-based composite resin and dental nanocomposite have been introduced. However, research regarding the effect of the silorane monomers or the size filler on appearance after curing of the resin composite is limited. This work aims to examine the optical properties of silorane-based composite and nanocomposite, in terms of scattering and absorption during curing. Six dimethacrylate-based dental resin composite (five universal and one nanocomposite) and one silorane-based dental resin composite (all shades A2 and T) were studied. The curing irradiance was 1100mW/cm2. The spectral reflectance of 1mm thick composite samples against white and black backgrounds were measured both before and after curing, and were converted to scattering and absorption coefficients using the Kubelka-Munk Theory. Both for pre and post-curing dental resin composites, the Albedo coefficient (K/S) shows that absorption prevails over the scattering for short wavelengths while for medium and large wavelengths, the scattering becomes more important, except for the T shade of the nanocomposite. After curing, the scattering and absorption values decreased for both types of materials. Changes in the absorption coefficient values should be caused by changes in the camphorquinone (CQ) absorption, whereas the scattering changes found should be directly attributable to index of refraction changes of the resin during curing.

  14. Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites

    Directory of Open Access Journals (Sweden)

    N. N. Sudareva

    2012-03-01

    Full Text Available Poly(phenylene isophtalamide (PA was modified by fullerene C60 using solid-phase method. Novel ultrafiltration membranes based on nanocomposites containing up to 10 wt% of fullerene and carbon black were prepared. Properties of PA/C60 composites in solutions were studied by light scattering and rheological methods. The relationship between characteristics of casting solutions and properties of nanocomposite membranes was studied. Scanning electron microscopy was used for structural characterization of the membranes. It was found that increase in fullerene content in nanocomposite enhances the membrane rigidity. All nanocomposite membranes were tested in dynamic (ultrafiltration and static sorption experiments using a solution of protein mixture, with the purpose of studying protein sorption. The membranes modified by fullerene demonstrate the best values of flux reduced recovery after contact with protein solution. It was found that addition of fullerene C60 to the polymer improves technological parameters of the obtained composite membranes.

  15. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris [Institute of Polymer Materials, Riga Technical University, Azenes street 14/24, LV-1048, Riga (Latvia); Kuzhir, Polina; Maksimenko, Sergey [Institute of Nuclear Problems, Belarus State University, Bobruiskaya str. 11, 220030, Minsk (Belarus); Kuznetsov, Vladimir; Moseenkov, Sergey [Boreskov Institute of Catalyst Siberian branch of RAS, pr. Lavrentieva 5, 630090, Novosibirsk (Russian Federation)

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  16. UHMWPE-based nanocomposite as a material for damaged cartilage replacement.

    Science.gov (United States)

    Senatov, F S; Kopylov, A N; Anisimova, N Yu; Kiselevsky, M V; Maksimkin, A V

    2015-03-01

    In the present work dispersion-strengthened nanocomposites based on ultra-high molecular weight polyethylene (UHMWPE) after mechanical activation were studied. Mechanical activation was performed for hardening of the boundaries between the polymer particles, reducing the fusion defects and increasing of wear-resistance. Three types of samples were prepared: UHMWPE, UHMWPE/Al2O3 nanocomposite and UHMWPE/Al2O3 nanocomposite after mechanical activation. UHMWPE/Al2O3 nanocomposites prepared with mechanical activation show the best mechanical properties in compression and higher wear-resistance. UHMWPE/Al2O3 nanocomposites prepared with mechanical activation were chosen for in vivo study by orthotopical transplantation in rats. Animals' activity has been being monitored for 60days after surgery. No signs of inflammation, cellular infiltration, destruction of material or bone-cartilage defect were found. Implanted sample has not changed its position of implantation, there were no any shifts. Obtained data shows that UHMWPE-based nanocomposite is a promising material for creating bioimplants for cartilage defect replacement.

  17. Processing, characterization and properties of oxide based nanocomposites

    Science.gov (United States)

    Bhaduri, Sutapa

    The synthesis, characterization and mechanical properties of oxide based nanocomposites are reported in this dissertation. Two binary systems are studied: Alsb2Osb3-MgO and Alsb2Osb3-ZrOsb2. Alsb2Osb3-MgO was chosen because of its relatively large field of solid solubilities at a moderate temperature. On the other hand, Alsb2Osb3-ZrOsb2 was chosen because it shows minimal solid solubility of the constituents. A novel "Auto Ignition" process using suitable fuels and oxidizers was utilized in the synthesis of nanocomposites and solid solutions. Thermodynamic calculations were carried out in predicting end point adiabatic temperatures (Tsbad) for each composition in both systems. Combustion temperatures were experimentally measured by means of a data acquisition system. Characterizations of the powders were carried out by x-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis (EDAX) and differential thermal analysis (DTA). Heat treatment experiments were carried out to study the grain growth behavior. A hot isostatic pressing (HIP) model was developed for the present nanoceramics. Input parameters were carefully chosen for such nanomaterials. The as-synthesized nanocrystalline powders were consolidated to near theoretical density by hot isostatic pressing (HIPing) while retaining fine grain size. The experimental results were compared with the predictions of the model. Mechanical properties, such as room temperature toughness, low temperatures well as high temperature hardness, were determined for both systems. Room temperature hardness values were (2.89-7.79) GPa and fracture toughness was between 2.7 and 5.82 MPa.msp{1/2} for various compositions in the Alsb2Osb3-MgO system. Room temperature hardness values were between 5.33 and 8.71 GPa and fracture toughness values ranged from (5.3-9.62) MPa.msp{1/2} for various compositions in the Alsb2Osb3-ZrOsb2 system. Nanoindentation experiments were carried out to further explore the room

  18. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels.

    Science.gov (United States)

    Huang, Yao; Yao, Mengyu; Zheng, Xing; Liang, Xichao; Su, Xiaojuan; Zhang, Yu; Lu, Ang; Zhang, Lina

    2015-11-09

    Novel nanocomposite hydrogels composed of polyelectrolytes alginate and chitin whiskers with biocompatibility were successfully fabricated based on the pH-induced charge shifting behavior of chitin whiskers. The chitin whiskers with mean length and width of 300 and 20 nm were uniformly dispersed in negatively charged sodium alginate aqueous solution, leading to the formation of the homogeneous nanocomposite hydrogels. The experimental results indicated that their mechanical properties were significantly improved compared to alginate hydrogel and the swelling trends were inhibited as a result of the strong electrostatic interactions between the chitin whiskers and alginate. The nanocomposite hydrogels exhibited certain crystallinity and hierarchical structure with nanoscale chitin whiskers, similar to the structure of the native extracellular matrix. Moreover, the nanocomposite hydrogels were successfully applied as bone scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs and scanning electronic microscope (SEM) images revealed that the addition of chitin whiskers into the nanocomposite hydrogels markedly promoted the cell adhesion and proliferation of the osteoblast cells. The biocompatible nanocomposite hydrogels have potential application in bone tissue engineering.

  19. Biochar-based nano-composites for the decontamination of wastewater: A review.

    Science.gov (United States)

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Xu, Yan; Zeng, Guang-Ming; Hu, Xin-Jiang; Liu, Shao-Bo; Wang, Xin; Liu, Si-Mian; Li, Jiang

    2016-07-01

    Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified.

  20. American Dental Association's Resources to Support Evidence-Based Dentistry.

    Science.gov (United States)

    Aravamudhan, K; Frantsve-Hawley, Julie

    2009-09-01

    Time and access have often been cited as barriers to implementing Evidence-Based Dentistry (EBD). This paper describes a new web-based resource launched by the American Dental Association to enable practitioners to incorporate evidence into treatment planning. The website offers a database of systematic reviews, critical summaries of systematic reviews, evidence-based clinical recommendations and links to external resources to enable practitioners to access evidence at the point of care. In addition the site offers an online space for clinicians to suggest clinical scenarios where evidence is lacking. This could potentially be a source of topics to drive future research. With the explosion in the use of information technology within a dental office, this web-site will serve as the one-stop resource for credible scientific information for practitioners.

  1. UHMWPE-based nanocomposite as a material for damaged cartilage replacement

    Energy Technology Data Exchange (ETDEWEB)

    Senatov, F.S., E-mail: Senatov@misis.ru [National University of Science and Technology “MISIS”, 119049, Leninskiy pr. 4, Moscow (Russian Federation); Kopylov, A.N.; Anisimova, N.Yu.; Kiselevsky, M.V. [N.N. Blokhin Russian Cancer Research Center, 115478, Kashirskoye sh. 23, Moscow (Russian Federation); Maksimkin, A.V. [National University of Science and Technology “MISIS”, 119049, Leninskiy pr. 4, Moscow (Russian Federation)

    2015-03-01

    In the present work dispersion-strengthened nanocomposites based on ultra-high molecular weight polyethylene (UHMWPE) after mechanical activation were studied. Mechanical activation was performed for hardening of the boundaries between the polymer particles, reducing the fusion defects and increasing of wear-resistance. Three types of samples were prepared: UHMWPE, UHMWPE/Al{sub 2}O{sub 3} nanocomposite and UHMWPE/Al{sub 2}O{sub 3} nanocomposite after mechanical activation. UHMWPE/Al{sub 2}O{sub 3} nanocomposites prepared with mechanical activation show the best mechanical properties in compression and higher wear-resistance. UHMWPE/Al{sub 2}O{sub 3} nanocomposites prepared with mechanical activation were chosen for in vivo study by orthotopical transplantation in rats. Animals' activity has been being monitored for 60 days after surgery. No signs of inflammation, cellular infiltration, destruction of material or bone–cartilage defect were found. Implanted sample has not changed its position of implantation, there were no any shifts. Obtained data shows that UHMWPE-based nanocomposite is a promising material for creating bioimplants for cartilage defect replacement. - Highlights: • Mechanical activation of UHMWPE composite leads to changing of fracture mechanism. • Mechanical activation leads to increasing of wear-resistance of UHMWPE composite. • The presence of Al{sub 2}O{sub 3} in grain boundaries of UHMWPE inhibits crack growth. • Complete integration of UHMWPE-based implant in cartilage defect of rat was shown. • UHMWPE/Al{sub 2}O{sub 3} nanocomposite may be recommended for use in cartilage replacement.

  2. Effect of Nanodiamonds on Structure and Durability of Polyethylene Oxide-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rossella Arrigo

    2016-01-01

    Full Text Available Polymer-based nanocomposites containing nanodiamonds (NDs are attractive multifunctional materials with a growing range of applications. In this work, in the frame of developing completely biocompatible systems, nanocomposites based on polyethylene oxide (PEO and different amount of NDs have been formulated through melt mixing and fully characterized. In particular, the reinforcement effect of NDs in PEO has been probed through tensile tests, and the rheological response of PEO-based nanocomposites as a function of the nanoparticles amount has been investigated and discussed. The obtained results show that the presence of well-distributed NDs strengthens the mechanical performance of the nanocomposites and brings about an increase of the PEO crystallinity, suggesting a strong adhesion between NDs and polymer matrix. Furthermore, as a result of NDs adding, alterations of the rheological behaviour of neat PEO can be noticed, as NDs are able to significantly influence the long-range dynamics of PEO chains. Besides, accelerated aging tests demonstrate that NDs show a remarkable protective ability against PEO photodegradation, due to their ability to attenuate efficiently UV radiation. The latter opens up new avenues for the use of NDs as multifunctional nanofillers for polymer-based nanocomposites with enhanced photooxidative resistance.

  3. Effect of mono- and bimetallic nanoparticles Fe, Ni, & Fe/Ni based on carbon nanocomposites on electrocatalytic properties of anodes

    Science.gov (United States)

    Ranabhat, K.; Pylinina, A. I.; Skripkin, K. S.; Sofronova, E. A.; Revina, A. A.; Kasatkin, V. E.; Patrikeev, L. N.; Lapshinsky, V. A.

    2016-10-01

    The optical properties of metallic Fe nanoparticles (NPs), Ni NPs and bimetallic Fe/Ni NPs produced under radiolysis in anaerobic condition based on a chemical reduction in the presence of oxygen and quercetin in reversed micellar solutions, and electrokinetic properties of nanoparticles carbon-based nanocomposites were studied. The possibility of the preparation of coating using different nanocomposites with anomalous electrocatalytic is addressed.

  4. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.

    Science.gov (United States)

    Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan; Mohammed, Amr M S; Snyder, G Jeffrey; Shakouri, Ali; Wu, Yue

    2015-02-11

    To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride-silver telluride (PbTe-Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe-Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe-Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe-Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.

  5. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    Science.gov (United States)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  6. Methyltrimethoxysilane (MTMS)-based silica-iron oxide superhydrophobic nanocomposites.

    Science.gov (United States)

    Nadargi, Digambar; Gurav, Jyoti; Marioni, Miguel A; Romer, Sara; Matam, Santhosh; Koebel, Matthias M

    2015-12-01

    We report a facile synthesis of superhydrophobic silica-iron oxide nanocomposites via a co-precursor sol-gel process. The choice of the silica precursor (Methyltrimethoxysilane, MTMS) in combination with iron nitrate altered the pore structure dramatically. The influence of iron oxide doping on the structural properties of pristine MTMS aerogel is discussed.

  7. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites.

    Science.gov (United States)

    Kiziltas, Esra Erbas; Kiziltas, Alper; Bollin, Shannon C; Gardner, Douglas J

    2015-01-01

    Nanocomposites of polymethylmethacrylate (PMMA) and cellulose were made by a solution casting method using acetone as the solvent. The nanofiber networks were prepared using three different types of cellulose nanofibers: (i) nanofibrillated cellulose (NFC), (ii) cellulose nanocrystals (CNC) and (iii) bacterial cellulose from nata de coca (NDC). The loading of cellulose nanofibrils in the PMMA varied between 0.25 and 0.5 wt%. The mechanical properties of the composites were evaluated using a dynamic mechanical thermal analyzer (DMTA). The flexural modulus of the nanocomposites reinforced with NDC at the 0.5 wt% loading level increased 23% compared to that of pure PMMA. The NFC composite also exhibited a slightly increased flexural strength around 60 MPa while PMMA had a flexural strength of 57 MPa. The addition of NDC increased the storage modulus (11%) compared to neat PMMA at room temperature while the storage modulus of PPMA/CNC nanocomposite containing 0.25 and 0.5 wt% cellulose increased about 46% and 260% to that of the pure PMMA at the glass transition temperature, respectively. Thermogravimetric analysis (TGA) indicated that there was no significant change in thermal stability of the composites. The UV-vis transmittance of the CNF nanocomposites decreased by 9% and 27% with the addition of 0.25 wt% CNC and NDC, respectively. This work is intended to spur research and development activity for application of CNF reinforced PMMA nanocomposites in applications such as: packaging, flexible screens, optically transparent films and light-weight transparent materials for ballistic protection.

  8. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites.

    Science.gov (United States)

    Zhang, Xianpeng; Lan, Pinjun; Lu, Yuehui; Li, Jia; Xu, Hua; Zhang, Jing; Lee, YoungPak; Rhee, Joo Yull; Choy, Kwang-Leong; Song, Weijie

    2014-02-12

    Antireflection (AR) coatings that exhibit multifunctional characteristics, including high transparency, robust resistance to moisture, high hardness, and antifogging properties, were developed based on hollow silica-silica nanocomposites. These novel nanocomposite coatings with a closed-pore structure, consisting of hollow silica nanospheres (HSNs) infiltrated with an acid-catalyzed silica sol (ACSS), were fabricated using a low-cost sol-gel dip-coating method. The refractive index of the nanocomposite coatings was tailored by controlling the amount of ACSS infiltrated into the HSNs during synthesis. Photovoltaic transmittance (TPV) values of 96.86-97.34% were obtained over a broad range of wavelengths, from 300 to 1200 nm; these values were close to the theoretical limit for a lossy single-layered AR coating (97.72%). The nanocomposite coatings displayed a stable TPV, with degradation values of less than 4% and 0.1% after highly accelerated temperature and humidity stress tests, and abrasion tests, respectively. In addition, the nanocomposite coatings had a hardness of approximately 1.6 GPa, while the porous silica coatings with an open-pore structure showed more severe degradation and had a lower hardness. The void fraction and surface roughness of the nanocomposite coatings could be controlled, which gave rise to near-superhydrophilic and antifogging characteristics. The promising results obtained in this study suggest that the nanocomposite coatings have the potential to be of benefit for the design, fabrication, and development of multifunctional AR coatings with both omnidirectional broadband transmission and long-term durability that are required for demanding outdoor applications in energy harvesting and optical instrumentation in extreme climates or humid conditions.

  9. Analysis of Toxicity of Ceramic Nanoparticles and Functional Nanocomposites Based on Vulcanized Natural Rubber

    Directory of Open Access Journals (Sweden)

    Bellucci Felipe Silva

    2015-01-01

    Full Text Available Nanocomposites are multiphase materials of which, at least one of the phases, has a dimension smaller than 100 nm. These materials have attracted technological and scientific interest due to their multifunctional characteristics and potential, which allow them to combine unique properties which are not found in traditional commercial materials, such as natural rubber alone. The objective of this work is to analyse the toxicity of nanoparticles and nanocomposites when applied to mammal cells in order to obtain bioactive agents, as well as to evaluate the potential to be applied in biological systems. Ferroelectric ceramic nanoparticles of KSr2Nb5O15 (KSN and paramagnetic ceramic nanoparticles Ni0.5Zn0.5Fe2O4 (NZF were prepared and utilized to produce functional and multifunctional nanocomposites based on vulcanized natural rubber (NR/KSN and NR/NZF with different nanoparticle concentrations. For both kinds of nanoparticles and both classes of nanocomposites, independently of the nanoparticle concentration, it is not possible to observe any reduction of the cellular viability until the incubation time is finished. In this way, these results point to the possibility of using these nanoparticles and nanocomposites, from the toxicity point of view, as bioactivity agents in biological systems based on mammalian cells.

  10. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion.

    Science.gov (United States)

    Fan, Wenqing; Zhang, Qinghong; Wang, Ye

    2013-02-28

    Semiconductor-based photocatalysis has attracted much attention in recent years because of its potential for solving energy and environmental problems that we are now facing. Among many photocatalytic reactions, the splitting of H(2)O into H(2) and O(2) and the reduction of CO(2) with H(2)O into organic compounds such as CH(4) and CH(3)OH are two of the most important and challenging reactions. Many studies have been devoted to designing and preparing novel photocatalytic materials for these two reactions. This article highlights recent advances in developing semiconductor-based nanocomposite photocatalysts for the production of H(2) and the reduction of CO(2). The systems of semiconductor-cocatalyst, semiconductor-carbon (carbon nanotube or graphene) and semiconductor-semiconductor nanocomposites have mainly been described. It has been demonstrated that the design and preparation of nanocomposites with proper structures can facilitate charge separation/migration and decrease the charge recombination probability, thus promoting the photocatalytic activity. Keeping the reduction and oxidation processes in different regions in the nanocomposite may also enhance the photocatalytic efficiency and stability. The location and size of cocatalysts, the interfacial contact between semiconductor and carbon materials, and the heterojunctions between different semiconductors together with the suitable alignment of band edges of semiconductors are key factors determining the photocatalytic behaviours of the nanocomposite catalysts.

  11. Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Montazeri, A. [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Rafii-Tabar, H., E-mail: rafii-tabar@nano.ipm.ac.ir [Computational Physical Sciences Research Laboratory, School of Nano-Science, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, and Research Centre for Medical Nanotechnology and Tissue Engineering, Shahid Beheshti University of Medical Sciences, Evin, Tehran (Iran, Islamic Republic of)

    2011-10-31

    A combination of molecular dynamics, molecular structural mechanics, and finite element method is employed to compute the elastic constants of a polymeric nanocomposite embedded with graphene sheets, and carbon nanotubes. The model is first applied to study the effect of inclusion of graphene sheets on the Young modulus of the composite. To explore the significance of the nanofiller geometry, the elastic constants of nanotube-based and graphene-based polymer composites are computed under identical conditions. The reinforcement role of these nanofillers is also investigated in transverse directions. Moreover, the dependence of the nanocomposite's axial Young modulus on the presence of ripples on the surface of the embedded graphene sheets, due to thermal fluctuations, is examined via MD simulations. Finally, we have also studied the effect of sliding motion of graphene layers on the elastic constants of the nanocomposite. -- Highlights: → A hierarchical MD/FEM multiscale model of nanocomposites is developed. → At low nanofiller content, graphene layers perform significantly better than CNTs. → Ripples in the graphene layers reduce the Young modulus of nanocomposites. → The elastic moduli is considerably affected by the shear of graphene layers.

  12. Poly(vinylidene fluoride) polymer based nanocomposites with enhanced energy density by filling with polyacrylate elastomers and BaTiO3 nanoparticles

    Science.gov (United States)

    Yu, Ke; Bai, Yuanyuan; Zhou, Yongcun; Niu, Yujuan; Wang, Hong

    2014-02-01

    Polyacrylate elastomers were introduced into poly(vinylidene fluoride) polymer-based nanocomposites filled with BaTiO3 nanoparticles and the three-phase nanocomposite films were prepared. The energy discharged of the nanocomposite with 3 vol. % polyacrylate elastomers is 8.8 J/cm3, approximately 11% higher compared to that of the nanocomposite without adding polyacrylate elastomers. Large elastic deformation of the polyacrylate elastomers increases Maxwell-Wagner-Sillars interfacial polarization and space charge polarization of the nanocomposites with the electric field increasing, which results in increased maximum polarization and energy discharged of the nanocomposites.

  13. [Evidence-based clinical guidelines in dental practice 6. Guidelines for clinical practice in dental education].

    Science.gov (United States)

    van der Sanden, W J M; Gorter, R; Tams, J

    2015-09-01

    In response to the initiatives of the Kennisinstituut Mondzorg (Institute for Knowledge Translation in Oral Care), the importance of effective education in the area of guidelines is increasing. Future dentists will, after all, be confronted with new guidelines and need to be able to integrate them in their daily practice. Various guidelines and protocols have been established within the 3 dental schools. For students and instructors, however, the motivation for these guidelines and protocols is not always sufficiently clear. In addition, the terms guideline, clinical practice guideline and protocol are used interchangeably, resulting in terminological confusion. Embedding within and coordination with theoretical education is also still limited in all programmes and it is proposed that the 3 dental schools collaborate on this issue. Finally, it is advised to replace the term 'evidence-based' with 'evidence-informed' because this indicates more clearly that other factors (patients opinion, available financial means, etc.) play a role in the final choice of treatment in a specific situation.

  14. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated...... nanoclay platelets surrounded by interphase layers is developed. With this model, the elastic properties of the interphase layer are estimated using the inverse analysis. The effects of aspect ratio, intercalation and orientation of nanoparticles on the elastic properties of the nanocomposites are analyzed....... For modeling the damage in nanocomposites with intercalated structures, “four phase” model is suggested, in which the strength of “intrastack interphase” is lower than that of “outer” interphase around the nanoplatelets. Analyzing the effect of nanoreinforcement in the matrix on the failure probability...

  15. Titanium-based nanocomposite materials: a review of recent advances and perspectives.

    Science.gov (United States)

    Shahadat, Mohammad; Teng, Tjoon Tow; Rafatullah, Mohd; Arshad, Mohd

    2015-02-01

    This article explains recent advances in the synthesis and characterization of novel titanium-based nanocomposite materials. Currently, it is a pressing concern to develop innovative skills for the fabrication of hybrid nanomaterials under varying experimental conditions. This review generally focuses on the adsorption behavior of nanocomposites for the exclusion of organic and inorganic pollutants from industrial effluents and their significant applications in various fields. The assessment of recently published articles on the conjugation of organic polymers with titanium has revealed that these materials may be a new means of managing aquatic pollution. These nanocomposite materials not only create alternative methods for designing novel materials, but also develop innovative industrial applications. In the future, titanium-based hybrid nanomaterials are expected to open new approaches for demonstrating their outstanding applications in diverse fields.

  16. Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property.

    Science.gov (United States)

    Bozaci, Ebru; Akar, Emine; Ozdogan, Esen; Demir, Asli; Altinisik, Aylin; Seki, Yoldas

    2015-12-10

    In this study, fumaric acid (FA) crosslinked carboxymethylcellulose (CMC) hydrogel (CMCF) based silver nanocomposites were coated on cotton fabric for antibacterial property for the first time. The performance of the nanocomposite treated cotton fabric was tested for different mixing times of hydrogel solution, padding times and concentrations of silver. The cotton fabrics treated with CMC hydrogel based silver nanocomposites demonstrated 99.9% reduction for both Staphylococcus aureus (Sa) and Klebsiella pneumonia (Kp). After one cycle washing processes of treated cotton fabric, there is no significant variation observed in antibacterial activity. From SEM and AFM analyses, silver particles in nano-size, homogenously distributed, were observed. The treated samples were also evaluated by tensile strength, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) analysis, fluid absorbency properties, and whiteness index. The treatment of cotton fabric with CMCF hydrogel did not affect the whiteness considerably, but increased the absorbency values of cotton.

  17. Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors

    Directory of Open Access Journals (Sweden)

    Sangryun Lee

    2015-11-01

    Full Text Available Possessing a strong piezoresistivity, nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowire percolation network as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolation network, which leads to a bottleneck in the electric path. We find that, due to enhanced percolation, the linearity of the sensor improves with increasing aspect ratio or volume fraction of the nanowires at the expense of decreasing gauge factor. In addition, we show that a wide range of gauge factors (from negative to positive can be obtained by changing the orientation distribution of nanowires. Our study suggests a way to intelligently design nanocomposite-based piezoresistive sensors for flexible and wearable devices.

  18. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    Kaushik Brahmachari; Mina Ray

    2014-07-01

    Surface plasmon resonance (SPR) is a very efficient tool for chemical and biological sensing in nanotechnology, nanobiotechnology, medicine and environmental monitoring. A theoretical simulation study incorporating the use of admittance loci design methodology in SPR-based sensing device using gold-tungsten trioxide (Au-WO3−) nanocomposite film is reported in this paper. A simple Kretschmann–Raether-type prism-based plasmonic device consisting of a glass prism, Au-WO3− nanocomposite film and various gas samples is considered. Complex permittivity for both stoichiometric and non-stoichiometric Au-WO3− nanocomposite films has been used for the simulation of the admittance loci plots, resonance curves and sensitivity curves by considering angular interrogation at a fixed wavelength of 632.8 nm.

  19. Optimizing Properties of Aluminum-Based Nanocomposites by Genetic Algorithm Method

    Directory of Open Access Journals (Sweden)

    M.R. Dashtbayazi

    2015-07-01

    Full Text Available Based on molecular dynamics simulation results, a model was developed for determining elastic properties of aluminum nanocomposites reinforced with silicon carbide particles. Also, two models for prediction of density and price of nanocomposites were suggested. Then, optimal volume fraction of reinforcement was obtained by genetic algorithm method for the least density and price, and the highest elastic properties. Based on optimization results, the optimum volume fraction of reinforcement was obtained equal to 0.44. For this optimum volume fraction, optimum Young’s modulus, shear modulus, the price and the density of the nanocomposite were obtained 165.89 GPa, 111.37 GPa, 8.75 $/lb and 2.92 gr/cm3, respectively.

  20. Isothermal curing of polymer layered silicate nanocomposites based upon epoxy resin by means of anionic homopolymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Román, Frida, E-mail: roman@mmt.upc.edu; Calventus, Yolanda, E-mail: calventus@mmt.upc.edu; Colomer, Pere, E-mail: colomer@mmt.upc.edu; Hutchinson, John M., E-mail: hutchinson@mmt.upc.edu

    2013-12-20

    Highlights: • The nanocomposite with low content of clay displayed improved thermal properties. • The vitrification was observed in the isothermal curing. • Dielectric relaxations outside and inside of the clay galleries were detected. - Abstract: The use of an initiator, 4-(dimethylamino) pyridine (DMAP), to promote an anionic homopolymerisation reaction for the isothermal cure of polymer layered silicate (PLS) nanocomposites based on an epoxy resin, as well as the effect of the nanoclay content, have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dielectric relaxation spectroscopy (DRS) and transmission electron microscopy (TEM). The vitrification phenomenon was observed during the isothermal cure process, and it was found that the nanocomposite with a low clay content (2 wt%), denoted EDM2, shows improved thermal properties with respect to the unreinforced resin (denoted ED), while the nanocomposite with a higher clay content (5 wt%), denoted EDM5, displayed inferior properties. The cure kinetics were analysed by different methods, and it was observed that the activation energy and kinetic parameters of EDM2 were lower compared to the other two systems. Examination of the nanostructure of the cured EDM2 nanocomposite showed partial exfoliation, while the EDM5 system retains an intercalated nanostructure. In the DRS studies of the curing process of the EDM2 system, two dielectric relaxations were detected, which are associated with the molecular mobility in the curing reaction which takes place both outside and inside the clay galleries.

  1. Novel Magnetorheological Suspensions Based on Co-Phthalocyanine/Fe Nanocomposite Particles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel magnetorheological (MR) suspension was based on methyl silicone oil and cobaltphthalocyanine (Co-Pc)/Fe nanocomposite particles, which were synthesized by thermally decomposing liquid carbonyl Fe in the solution of Co-Pc in N, N-dimethyl formamide. The nanocomposite particles were fully characterized by XRD, SEM and HREM, and the thermal,magnetic and MR properties of nanocomposite particles were measured. Such factors as weight percent of particles (w), magnetic field strength (H), temperature (T) and shear rate (γ) etc influencing on MR properties were investigated. The results indicated that Co-Pc/Fe nanocomposite with density of 3.66 g/cm3 was almost micro-sized regular spheroids consisting of tens of Co-Pc coated c-Fe nanoparticles in inner and Co-Pc layers on surface of the spheroids. They showed good characteristics of anti-oxidation and soft magnetic. Increment of w increased fieldinduced shear stress ( △γ ) and zero-field viscosity (ηo) of MR suspensions monotonously, and improved anti-settlement stability, but η0 increased more markedly than △γ with increasing w.△γ was basically independent on T and γ while increased obviously with increasing H. With increasing T, response time of the MR suspension to external magnetic field seemed to decrease. As a result, MR suspensions with .satisfactory stability and rapid, completely reversible and significant MR effect can be obtained from Co-Pc/Fe nanocomposite particles.

  2. Pattern of dental diseases among patients attending outpatient department of dental: a hospital based cross-sectional study

    Directory of Open Access Journals (Sweden)

    Pitamber Datt Garkoti

    2015-06-01

    Full Text Available Introduction: The public health problems associated with oral disease are a serious burden in India and other countries of the world. The causes of oral diseases are primarily rooted in poor socioeconomic and physical environment; unhealthy lifestyles and oral health related behaviour accordingly the action towards improvement of oral health should be directed towards modification of unhealthy environment and behaviours. Objective: To know the pattern of dental diseases among the patients attending Dental OPD. Materials and Methods: A hospital based cross sectional study among patients attending dental OPD in a tertiary care centre of Kumaun region during a period of one year i.e. from 1st January 2012 to 31st December 2012. Results: A total of 8928 patients attended dental OPD. Majority of the patients (25.3% were in the age group 30-39 years. Mostly were males (51.54%. Most common disease was dental caries (54.54%, followed by gingivitis (37.62%, abrasion (3.82%, malocclusion (3.05%, pericoronitis (0.53% and jaw fracture (0.44%. Conclusion: Dental Caries was the most common disease. Majority of the patients were in 30-39 years of age group. Health education and awareness at school level and in the community might prevent tooth loss in later life. [Natl J Med Res 2015; 5(2.000: 112-115

  3. Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Nuvoli, Daniele; Alzari, Valeria; Sanna, Roberta; Scognamillo, Sergio [Universita di Sassari, Local INSTM Unit, Dipartimento di Chimica e Farmacia (Italy); Alongi, Jenny; Malucelli, Giulio, E-mail: giulio.malucelli@polito.it [Politecnico di Torino, sede di Alessandria, Local INSTM Unit, Dipartimento di Scienza Applicata e Tecnologia (Italy); Mariani, Alberto, E-mail: mariani@uniss.it [Universita di Sassari, Local INSTM Unit, Dipartimento di Chimica e Farmacia (Italy)

    2013-03-15

    In the present study, graphene-based nanocomposites containing different amounts of nanofiller dispersed into Bis-GMA/tetraethyleneglycol diacrylate (Bis-GMA/TEGDA) polymer matrix have been prepared. In particular, the graphene dispersions, produced at high concentration (up to 6 mg/ml) by simple sonication of graphite in TEGDA monomer, have been used for the direct preparation of nanocomposite copolymers with Bis-GMA. The morphology of the obtained nanocomposites has been investigated as well as their thermal and mechanical properties. SEM analyses have clearly shown that graphene deeply interacts with the polymer matrix, thus resulting in a reinforcing effect on the material as proved by compression and hardness tests; at variance, graphene does not seem to affect the glass transition temperature of the obtained polymer networks.

  4. Assembly of PbTe/Pb-based nanocomposite and photoelectric property.

    Science.gov (United States)

    Zong, Zhaocun; Wang, Hongxia; Kong, Lingmin

    2013-04-24

    PbTe/Pb-based nanocomposite was assembled by combining the regular PbTe/Pb nanostructure and the ZnxMn1-xS nanoparticles; the photoelectric property of the nanocomposite was measured in situ. The results showed that the through current of the nanocomposite had an obvious increase compared to that of the individual PbTe/Pb nanomaterial under the same irradiation conditions. The improvement of photoelectric performance would be attributed to the synergistic effect brought by the incident light and exciting light of the ZnxMn1-xS nanoparticles. The result implied that the underlying mechanism could be used to improve the performance of nano-optoelectronic devices and the light-use efficiency of solar devices.

  5. Cytotoxicity and mechanical behavior of chitin-bentonite clay based polyurethane bio-nanocomposites.

    Science.gov (United States)

    Zia, Khalid Mahmood; Zuber, Mohammad; Barikani, Mehdi; Hussain, Rizwan; Jamil, Tahir; Anjum, Sohail

    2011-12-01

    Chitin based polyurethane bio-nanocomposites (PUBNC) were prepared using chitin, Delite HPS bentonite nanoclay enriched in montmorillonite (MMT), 4,4'-diphenylmethane diisocyanate (MDI) and polycaprolactone polyol CAPA 231 (3000 g/mol(-1)). The prepolymers having different concentration of Delite HPS bentonite nanoclay were extended with 2 moles of chitin. The structures of the resulted polymers were determined by FT-IR technique. The effect of nanoclay contents on mechanical properties and in vitro biocompatibility was investigated. The mechanical properties of the synthesized materials were improved with increase in the Delite HPS bentonite nanoclay contents. Optimum mechanical properties were obtained from the PU bio-nanocomposite samples having 4% Delite HPS bentonite nanoclay. The results revealed that the final PU bio-nanocomposite having 2% Delite HPS bentonite nanoclay contents is ideal contenders for surgical threads with on going investigations into their in vitro biocompatibility, non-toxicity, and mechanical properties.

  6. Novel Epoxy Resin/SiO2 Nanocomposites Preparation Method Based on Diminutive Bubbles Explosion

    Institute of Scientific and Technical Information of China (English)

    NIE Peng; ZHAO Xue-zeng; CHEN Fang; WANG Wei-jie; BAI Yong-ping

    2006-01-01

    To obtain suspended dispersion of nano-particles in liquid without any dispersant, a novel epoxy resin/SiO2 nanocomposites preparation method based on diminutive bubbles explosion is presented. And, corresponding nanocomposites preparation system was designed. The preparation system applies compressed gas as transmission medium to carry nanomaterials into epoxy resin solution. The compressed gas with nanomaterials turns into diminutive bubbles distributing in epoxy resin/SiO2. The great pressure difference between inner and outer-bubbles led to bubbles inflation and explosion. During the bubble inflation, bubble oscillation may generate. The stretching rate may reach 106 s-1, which favors more homogeneous dispersion of nanoparticles. During the bubbles explosion the released energy and the explosion shock waves disperse the nanoparticles into epoxy resin solution. By using the preparation system, epoxy resin/SiO2 nanocomposites were prepared. The SiO2 dispersed into epoxy as the configuration of 15 nm - 30 nm particles.

  7. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.

    Science.gov (United States)

    Salarian, Mehrnaz; Xu, William Z; Wang, Zhiqiang; Sham, Tsun-Kong; Charpentier, Paul A

    2014-10-08

    Calcium phosphate-based nanocomposites offer a unique solution toward producing scaffolds for orthopedic and dental implants. However, despite attractive bioactivity and biocompatibility, hydroxyapatite (HAp) has been limited in heavy load-bearing applications due to its intrinsically low mechanical strength. In this work, to improve the mechanical properties of HAp, we grew HAp nanoplates from the surface of one-dimensional titania nanorod structures by combining a coprecipitation and sol-gel methodology using supercritical fluid processing with carbon dioxide (scCO2). The effects of metal alkoxide concentration (1.1-1.5 mol/L), reaction temperature (60-80 °C), and pressure (6000-8000 psi) on the morphology, crystallinity, and surface area of the resulting nanostructured composites were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) method. Chemical composition of the products was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure (XANES) analyses. HAp nanoplates and HAp-TiO2 nanocomposites were homogeneously mixed within poly(ε-caprolactone) (PCL) to develop scaffolds with enhanced physical and mechanical properties for bone regeneration. Mechanical behavior analysis demonstrated that the Young's and flexural moduli of the PCL/HAp-TiO2 composites were substantially higher than the PCL/HAp composites. Therefore, this new synthesis methodology in scCO2 holds promise for bone tissue engineering with improved mechanical properties.

  8. Characterization of polymer based nanocomposites with carbon nanotubes.

    Science.gov (United States)

    Ciecierska, Ewelina; Boczkowska, Anna; Kurzydłowski, Krzysztof J

    2014-04-01

    The paper concerns investigation of the processing methods influence on the electrical, thermal and mechanical properties of the polymer matrix nanocomposites with carbon nanotubes (CNTs) as a filler. The focus is put on the relation between microstructure and properties dependently on the parameters of mixing, epoxy matrix curing parameters, neat epoxy resin viscosity, carbon nanotubes modified with different functional groups, as well as carbon nanotubes weight fraction. Nanocomposites with the CNTs varied from 0.05 to 5 wt.% were obtained by dispersion methods such as: mechanical stirring, ultrasonication and combination both of them, as well as calendaring. Three epoxy resin systems were tested, varied in viscosity and curing temperature. Also CNTs nonmodified and modified with amino, carboxyl and hydroxyl groups were used. The choice of the best epoxy resin system and kind of CNTs for fabrication of conductive nanocomposites was done. The lower neat epoxy resin viscosity the better dispersion of CNTs can be achieved. The distribution of CNTs in the epoxy matrix was evaluated using high resolution scanning electron microscopy, supported by image analysis. Electrical conductivity, as well as thermal stability and thermodynamic properties of polymers filled with CNTs were determined. Activation energy of decomposition process was calculated from thermogravimetric curves by Flynn-Wall-Ozawa method. The deterioration of thermal stability was obtained, while mechanical properties increase with the CNTs weight fraction growth up to 0.1%. Calendaring was found as the best method of CNTs dispersion in the polymer matrix.

  9. Epoxy nanocomposites based on high temperature pyridinium-modified clays.

    Science.gov (United States)

    Zhang, Qingxin; Naito, Kimiyoshi; Qi, Ben; Kagawa, Yutaka

    2009-01-01

    Polymer/clay nanocomposites are generally fabricated by thermal curing or melt compounding at elevated temperatures, however the thermal stability of common alkyl ammonium treated clays is poor and decomposition occurs inevitably during high temperature processing. In this study, we modified clays with an aromatic pyridinium salt. Thermogravimetric analysis (TGA) showed that the onset degradation temperature (Td(onset)) and maximum decomposition temperature (Td(max)) of the pyridinium treatment clays was up to 310 and 457 degrees C respectively implying high thermal stability. The thermal decomposition behaviour of the pyridinium modified clays was discussed. A series of epoxy/clay nanocomposites were synthesized using a diglycidyl ether of bisphenol A (DGEBA) epoxy and diethyltoluene diamine (DETDA). The morphology of epoxy/clay nanocomposites was characterized with wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM), and intercalated structures were observed. The storage modulus of epoxy was increased but glass transition temperature was decreased with clay incorporation. The effects of clays on glass transition temperature (Tg) of epoxy were also discussed.

  10. In vivo characterization of polymer based dental cements

    Directory of Open Access Journals (Sweden)

    Widiyanti P

    2011-12-01

    Full Text Available Background: In vivo studies investigating the characterization of dental cements have been demonstrated. As few in vitro studies on this cement system have been performed. Previous researches in dental material has been standardized dental cement which fulfilled the physical and mechanical characteristic such as shear strength but were on in vitro condition, the animal model and clinical study of dental cement from laboratory has not been done yet. This research examined physical and mechanical characteristic in vivo using rabbit by making the caries (class III in anterior teeth especially in mesial or distal incisive, fulfilled the cavity by dental cement and analyzed the compressive strength, tensile strength, and microstructure using scanning electron microscope (SEM. Purpose: This study is aimed to describe the in vivo characterization of dental cements based on polymer (zinc phosphate cement, polycarboxylate, glass ionomer cement and zinc oxide eugenol. Methods: First, preparation was done on animal model’s teeth (6 rabbits, male, 5 months old. The cavity was made which involved the dentin. Then the cavity was filled with dental cement. After the filling procedure, the animal model should be kept until 21 days and than the compressive test, tensile test and microstructure was characterized. Compressive test and tensile test was analyzed using samples from extracted tooth and was measured with autograph. The microstructure test was measured using SEM. Results: The best compressive strength value was belongs to zinc phosphate cement which was 101.888 Mpa and the best tensile strength value was belongs to glass ionomer cement which was 6.555 Mpa. Conclusion: In conclusion, comparing with 3 others type of dental cements which are zinc phosphate, polycarboxylate and glass ionomer cement, zinc oxide eugenol cement has the worst for both physical and mechanical properties.Latar belakang: Studi in vivo meneliti karakterisasi secara in vivo dari

  11. Information-Seeking Behaviors of Dental Practitioners in Three Practice-Based Research Networks

    Science.gov (United States)

    Botello-Harbaum, Maria T.; Demko, Catherine A.; Curro, Frederick A.; Rindal, D. Brad; Collie, Damon; Gilbert, Gregg H.; Hilton, Thomas J.; Craig, Ronald G.; Wu, Juliann; Funkhouser, Ellen; Lehman, Maryann; McBride, Ruth; Thompson, Van; Lindblad, Anne

    2013-01-01

    Research on the information-seeking behaviors of dental practitioners is scarce. Knowledge of dentists’ information-seeking behaviors should advance the translational gap between clinical dental research and dental practice. A cross-sectional survey was conducted to examine the self-reported information-seeking behaviors of dentists in three dental practice-based research networks (PBRNs). A total of 950 dentists (65 percent response rate) completed the survey. Dental journals and continuing dental education (CDE) sources used and their influence on practice guidance were assessed. PBRN participation level and years since dental degree were measured. Full-participant dentists reported reading the Journal of the American Dental Association and General Dentistry more frequently than did their reference counterparts. Printed journals were preferred by most dentists. A lower proportion of full participants obtained their CDE credits at dental meetings compared to partial participants. Experienced dentists read other dental information sources more frequently than did less experienced dentists. Practitioners involved in a PBRN differed in their approaches to accessing information sources. Peer-reviewed sources were more frequently used by full participants and dentists with fifteen years of experience or more. Dental PBRNs potentially play a significant role in the dissemination of evidence-based information. This study found that specific educational sources might increase and disseminate knowledge among dentists. PMID:23382524

  12. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p S. mutans-treated Ni-based dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  13. Microstructural characterization of Mg-based bulk metallic glass and nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Babilas, Rafał, E-mail: rafal.babilas@polsl.pl [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Nowosielski, Ryszard; Pawlyta, Mirosława [Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice (Poland); Fitch, Andy [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble (France); Burian, Andrzej [A. Chelkowski Institute of Physics, University of Silesia, Uniwersytecka 4 St., 40-007 Katowice (Poland)

    2015-04-15

    New magnesium-based bulk metallic glasses Mg{sub 60}Cu{sub 30}Y{sub 10} have been prepared by pressure casting. Glassy alloys were successfully annealed to become nanocomposite containing 200 nm crystallites in an amorphous matrix. The microstructure of bulk glassy alloy and nanocomposite obtained during heat treatment was examined by X-ray diffraction and scanning and high-resolution electron microscopy. Metallic glass has been also studied to explain the structural characteristics by the reverse Monte Carlo (RMC) modeling based on the diffraction data. The HRTEM images allow to indicate some medium-range order (MRO) regions about 2–3 nm in size and formation of local atomic clusters. The RMC modeling results confirmed some kinds of short range order (SRO) structures. It was found that the structure of bulk metallic glass formed by the pressure casting is homogeneous. The composite material contained very small particles in the amorphous matrix. Homogeneous glassy alloy had better corrosion resistance than a composite containing nanocrystalline particles in a glassy matrix. - Highlights: • RMC modeling demonstrates some kinds of SRO structures in Mg-based BMGs. • HRTEM indicated MRO regions about 2–3 nm and SRO regions about 0.5 nm in size. • Mg-based glassy alloys were successfully annealed to become nanocomposite material. • Crystalline particles have spherical morphology with an average diameter of 200 nm. • Glassy alloy had higher corrosion resistance than a nanocomposite sample.

  14. Dynamic melt flow of nanocomposites based on poly-epsilon-caprolactam

    DEFF Research Database (Denmark)

    Utracki, Leszek; Lyngaae-Jørgensen, Jørgen

    2002-01-01

    The dynamic flow behavior of polyamide-6 (PA-6) and a nanocomposite (PNC) based on it was studied. The latter resin contained 2 wt% of organoclay. The two materials were blended in proportions of 0, 25, 50, 75, and 100 wt% PNC. The dynamic shear rheological properties of well-dried specimens were...

  15. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium

    NARCIS (Netherlands)

    Kubacka, A.; Suarez Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins Dos Santos, V.A.P.; Fernández-García, M.; Ferrer, M.

    2014-01-01

    Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose radical-media

  16. A register-based study of variations in services received among dental care attenders

    DEFF Research Database (Denmark)

    Rosing, Kasper; Hede, Børge; Christensen, Lisa Bøge

    2016-01-01

    . Materials and methods . This retrospective register-based study followed two Danish cohorts, aged 25 and 40, with a dental examination in 2009 (n = 32,351). The dental service data were registered during 2005–2009. The number of dental examinations, individual preventive services (IPS), tooth extractions......Objectives . To investigate whether receipt of dental services, among attenders, reflects variations in dental health or whether and to what degree it is associated with socioeconomic status, with irregular or regular dental attendance and with the availability of dentists in residential areas......, root fillings and composite fillings were analyzed in relation to socioeconomic status, irregular/regular dental attendance, inhabitant/dentist ratio and to DMFT at age 15 (DMFT15) and change in DMFT (ΔDMFT) from age 15 to age 25 and age 40, respectively. Poisson regression and negative binomial...

  17. Amperometric hydrogen peroxide biosensor based on cobalt ferrite-chitosan nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Yard Latin-Small-Letter-Dotless-I mc Latin-Small-Letter-Dotless-I , Feyza S.; Senel, Mehmet, E-mail: msenel@fatih.edu.tr; Baykal, Abduelhadi

    2012-02-01

    A novel H{sub 2}O{sub 2} biosensor based on horseradish peroxidase (HRP) immobilized into CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for the detection of hydrogen peroxide. The nanocomposite films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). HRP has been entrapped into CoFe{sub 2}O{sub 4}-chitosan nanocomposite film and the immobilized enzyme could retain its bioactivity. This biosensor exhibited a fast amperometric response to hydrogen peroxide. The linear range for H{sub 2}O{sub 2} determination was from 3 Multiplication-Sign 10{sup -2} to 8 mM, with a detection limit of 2 Multiplication-Sign 10{sup -3} mM based on S/N = 3. The response time of the biosensor was 4 s. The effects of the pH and the temperature of the immobilized HRP electrode were also studied. - Highlights: Black-Right-Pointing-Pointer HRP biosensor based on CoFe{sub 2}O{sub 4}-chitosan nanocomposite has been developed for H{sub 2}O{sub 2} detection. Black-Right-Pointing-Pointer The biosensor seems to be simple to prepare, fast to respond, inexpensive and sensitive. Black-Right-Pointing-Pointer The biosensor had high sensitivity, good repeatability, reusability and long term stability.

  18. Dental unit waterlines disinfection using hypochlorous acid-based disinfectant

    OpenAIRE

    Irfana Fathima Shajahan; Kandaswamy, D; Padma Srikanth; L Lakshmi Narayana; R Selvarajan

    2016-01-01

    Objective: The purpose of the study was to investigate the efficacy of a new disinfectant to disinfect the dental unit waterlines. Materials and Methods: New dental unit waterlines were installed in 13 dental chairs, and biofilm was allowed to grow for 10 days. Disinfection treatment procedure was carried out in the 12 units, and one unit was left untreated. The dental unit waterlines were removed and analyzed using the scanning electron microscope (SEM) (TESCAN VEGA3 SBU). Result: On examina...

  19. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    Muris, J.; Scheper, R.J.; Kleverlaan, C.J.; Rustemeyer, T.; van Hoogstraten, I.M.W.; von Blomberg, M.E.; Feilzer, A.J.

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitr

  20. Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction

    Science.gov (United States)

    Sun, Meng; Liu, Huijuan; Liu, Yang; Qu, Jiuhui; Li, Jinghong

    2015-01-01

    The development of low cost, durable and efficient nanocatalysts to substitute expensive and rare noble metals (e.g. Pt, Au and Pd) in overcoming the sluggish kinetic process of the oxygen reduction reaction (ORR) is essential to satisfy the demand for sustainable energy conversion and storage in the future. Graphene based transition metal oxide nanocomposites have extensively been proven to be a type of promising highly efficient and economic nanocatalyst for optimizing the ORR to solve the world-wide energy crisis. Synthesized nanocomposites exhibit synergetic advantages and avoid the respective disadvantages. In this feature article, we concentrate on the recent leading works of different categories of introduced transition metal oxides on graphene: from the commonly-used classes (FeOx, MnOx, and CoOx) to some rare and heat-studied issues (TiOx, NiCoOx and Co-MnOx). Moreover, the morphologies of the supported oxides on graphene with various dimensional nanostructures, such as one dimensional nanocrystals, two dimensional nanosheets/nanoplates and some special multidimensional frameworks are further reviewed. The strategies used to synthesize and characterize these well-designed nanocomposites and their superior properties for the ORR compared to the traditional catalysts are carefully summarized. This work aims to highlight the meaning of the multiphase establishment of graphene-based transition metal oxide nanocomposites and its structural-dependent ORR performance and mechanisms.

  1. Structure and mechanical properties of new biomass-based nanocomposite: castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal.

    Science.gov (United States)

    Lin, Song; Huang, Jin; Chang, Peter R; Wei, Siwen; Xu, Yixiang; Zhang, Qiaoxin

    2013-06-01

    New nanocomposites consisting of a castor oil-based polyurethane matrix filled with acetylated cellulose nanocrystals (ACNs) were developed. The ACN exhibited improved dispersion in tetrahydrofuran as a blending medium, and reduced polarity as compared with unmodified cellulose nanocrystals, resulting in a high loading level of 25 wt% in the nanocomposite. As the ACN loading-level increased from 0% to 25%, the tensile strength and Young's modulus of the nanocomposites increased from 2.79 MPa to 10.41 MPa and from 0.98 MPa to 42.61 MPa, respectively. When the ACN loading-level was 10 wt%, the breaking elongation of the nanocomposites reached the maximum value of more than twice that of the polyurethane. The enhanced mechanical performance was primarily attributed to the formation of a three-dimensional ACN network and strong interfacial interactions between filler and matrix. This work produced new polyurethane-based nanocomposites containing modified cellulose nanocrystal with a high biomass content. Its high performance could contribute to potential applications.

  2. Evidence-based dentistry resources for dental practitioners.

    Science.gov (United States)

    Scarbecz, Mark

    2008-01-01

    The American Dental Association has taken an active role in support of an evidence-based approach to the practice of dentistry. This concept integrates clinically relevant scientific evidence into a clinician's decision-making process, along with the patient's oral and medical history, the dentist's own expertise and the patient's treatment needs and preferences. The purpose of this article is to assist dentists in locating and retrieving quality research reports and research evidence which can be integrated into the clinical decision making process. The research methodologies which constitute the foundation of evidence-based dentistry are described. The advantages and disadvantages associated with literature that summarizes research, such as the literature review, the systematic review and meta-analysis are described. Evidence-based resources for dentists are described, such as journals specializing in an evidence-based approach, online resources such as PubMed and the Cochrane Collaboration.

  3. Functional features of the nanocomposites, based on CNT

    Directory of Open Access Journals (Sweden)

    R.R. Abdrakhimov

    2015-10-01

    Full Text Available This article includes working out and trial of technological process of manufacturing functional nanocomposite on the basis of the epoxy resin and multiwall carbon nanotubes (CNT of the Taunit-MD type. We discuss two advanced variants of implementing this nanocomposite: first of them - increasing strength of fiber composite material; second - using acquired material electric conductivity for determining temperature and pressure (deformation changes. Material was prepared by means of a planetary mixer and ceramic grinding bodies. We performed dispersion quality analysis by means of an atomic-force microscope. This analysis demonstrated uniform distribution of the nanoparticles over the solidified material surface. Strength analysis result allowed obtaining data on material and matrix modulus of elasticity and strength changing. Material electric conductivity study allowed obtaining coefficients of thermo- and pressure sensitivity for sensors with different orientation of carbon nanotubes with weight content of 1%, 2%, and 3%. Performed study data demonstrate potential of using CNT as conductive particles in composite unit, allowing, for example, perform monitoring of the structure condition.

  4. Carbon matrix based magnetic nanocomposites for potential biomedical applications.

    Science.gov (United States)

    Izydorzak-Wozniak, M; Leonowicz, M

    2014-03-01

    It was found that by varying the pyrolysis temperature of the polymeric precursor, carbon matrix magnetic nanocomposites with different constitution and fractions of magnetic component were made. X-ray diffraction, transmission electron microscopy and Raman spectroscopy revealed the presence of nanocrystallites (NCs) of Co, Fe3C and Ni embedded in porous, partially-graphitized carbon matrix. Vibrating sample magnetometer measurements enabled to determine the correlation between NCs size distribution and magnetic properties. The magnetic studies confirmed that the coercivity, saturation and remanent magnetizations, as well as fraction of the magnetic component depend on the pyrolysis temperature. The Co#C and Fe3C#C composites exhibited ferromagnetic behavior with a remanent to saturation magnetization (M(R)/M(S)) ratio ranging from 0.25 to 0.3, whereas in the Ni containing samples a relatively small M(R)/M(S) ratio point to significant contribution of superparamagnetic interactions. As the carbon matrix magnetic nanocomposites are proposed for biomedical application the basic cytotoxicity test were performed to evaluate a potential toxic effect of the materials on MG-63 cells line.

  5. The American Dental Association's Center for Evidence-Based Dentistry: a critical resource for 21st century dental practice.

    Science.gov (United States)

    Frantsve-Hawley, Julie; Jeske, Arthur

    2011-02-01

    Through its website (http:// www.ada.org/prof/resources/ebd/index.asp), the American Dental Association's Center for Evidence-Based Dentistry offers dental health professionals access to systematic reviews of oral health-related research findings, as well as Clinical Recommendations, which summarize large bodies of scientific evidence in the form of practice recommendations, e.g., the use of professionally-applied topical fluoride and pit-and-fissure sealants. Another feature of the site of great practical importance to the practicing dentist is the Critical Summary, which is a concise review of an individual systematic review's methodology and findings, as well as the importance and context of the outcomes, and the strengths and weaknesses of the systematic review and its implications for dental practice.

  6. [A rapid prototype fabrication method of dental splint based on 3D simulation and technology].

    Science.gov (United States)

    Lin, Yanping; Chen, Xiaojun; Zhang, Shilei; Wang, Chengtao

    2006-04-01

    The conventional design and fabrication of the dental splint (in orthognathic surgery) is based on the preoperative planning and model surgery so this process is of low precision and efficiency. In order to solve the problems and be up to the trend of computer-assisted surgery, we have developed a novel method to design and fabricate the dental splint--computer-generated dental splint, which is based on three-dimensional model simulation and rapid prototype technology. After the surgical planning and simulation of 3D model, we can modify the model to be superior in chewing action (functional) and overall facial appearance (aesthetic). Then, through the Boolean operation of the dental splint blank and the maxillofacial bone model the model of dental splint is formed. At last, the dental splint model is fabricated through rapid prototype machine and applied in clinic. The result indicates that, with the use of this method, the surgical precision and efficiency are improved.

  7. Biosensor based on Prussian blue nanocubes/reduced graphene oxide nanocomposite for detection of organophosphorus pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin; Zhang, Aidong; Du, Dan; Lin, Yuehe

    2012-07-13

    We demonstrate a facile procedure to efficiently prepare Prussian blue nanocubes/reduced graphene oxide (PBNCs/rGO) nanocomposite by directly mixing Fe3+ and [Fe(CN)6]3 in the presence of GO in polyethyleneimine aqueous solution, resulting in a novel acetylcholinesterase (AChE) biosensor for detection of organophosphorus pesticides (OPs). The obtained nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX) microanalysis. It was clearly observed that the nanosheet has been decorated with cubic PB nanoparticles and nearly all the nanoparticles are distributed uniformly only on the surface of the reduced GO. No isolated PB nanoparticles were observed, indicating the strong interaction between PB nanocubes and the reduced GO and the formation of PBNCs/rGO nanocomposite. The obtained PBNCs/rGO based AChE biosensor make the peak potential shift negatively to 220 mV. The AChE biosensor shows rapid response and high sensitivity for detection of monocrotophos. These results suggest that the PBNCs/rGO hybrids nanocomposite exhibited high electrocatalytic activity towards the oxidation of thiocholine, which lead to the sensitive detection of OP pesticides.

  8. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine.

    Science.gov (United States)

    Xue, Zhonghua; Yin, Bo; Wang, Hui; Li, Mengqian; Rao, Honghong; Liu, Xiuhui; Zhou, Xinbin; Lu, Xiaoquan

    2016-03-14

    Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies.

  9. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Annamaria Panniello

    2014-01-01

    Full Text Available Polymeric ionic liquids (PILs are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

  10. Development of multifunctional fluoroelastomers based on nanocomposites; Desenvolvimento de elastomeros fluorados multifuncionais baseados em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Heloisa Augusto

    2015-07-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  11. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria.

    Science.gov (United States)

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Raju, Konduru Mohana

    2013-06-05

    In this paper, we report the synthesis and characterization of Iota-Carrageenan based on a novel biodegradable silver nanocomposite hydrogels. The aim of study was to investigate whether these hydrogels have the potential to be used in bacterial inactivation applications. Biodegradable silver nanocomposite hydrogels were prepared by a green process using acrylamide (AM) with I-Carrageenan (IC). The silver nanoparticles were prepared as silver colloid by reducing AgNO3 with leaf extracts of Azadirachta indica (neem leaf) that (Ag(0)) formed the hydrogel network. The formation of biodegradable silver nanoparticles in the hydrogels was characterized using UV-vis spectroscopy, thermo gravimetrical analysis, X-ray diffractometry studies, scanning electron microscopy and transmission electron microscopy studies. In addition, swelling behavior and degradation properties were systematically investigated. Furthermore, the biodegradable silver nanoparticle composite hydrogels developed were tested for antibacterial activities. The antibacterial activity of the biodegradable silver nanocomposite hydrogels was studied by inhibition zone method against Bacillus and Escherichia coli, which suggested that the silver nanocomposite hydrogels developed were effective as potential candidates for antimicrobial applications. Therefore, the inorganic biodegradable hydrogels developed can be used effectively for biomedical application.

  12. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.

    Science.gov (United States)

    Shahbazi, S; Moztarzadeh, F; Sadeghi, G Mir Mohamad; Jafari, Y

    2016-12-01

    A novel poly propylene fumarate (PPF)-based glue which is reinforced by nanobioactive glass (NBG) particles and promoted by hydroxyethyl methacrylate (HEMA) as crosslinker agent, was developed and investigated for bone-to-bone bonding applications. In-vitro bioactivity, biodegradability, biocompatibility, and bone adhesion were tested and the results have verified that it can be used as bone glue. In an in-vitro condition, the prepared nanocomposite (PPF/HEMA/NBG) showed improved adhesion to wet bone surfaces. The combined tension and shear resistance between two wet bone surfaces was measured, and its maximum value was 9±59MPa. To investigate the bioactivity and biodegradability of the nanocomposite, it has been immersed in simulated body fluid (SBF). After 14days exposure to SBF, a hydroxyapatite (HA) layer formed on the surface of the composite confirms the bioactivity of this material. In the XRD pattern of the nanocomposite surface, the HA characteristic diffraction peak at θ=26 and 31.8 were observed. Also, by monitoring the weight change after 8weeks immersion in SBF, the mass loss was about 16.46wt%. It has been confirmed that this nanocomposite is a biodegradable material. Also, bioactivity and biodegradability of nanocomposite have been proved by SEM images. It has been showed that by using NBG particles and HEMA precursor, mechanical properties increased significantly. The ultimate tensile strength (UTS) of nanocomposite which contains 20% NBG and the ratio of 70/30wt% PPF/HEMA (PHB.732) was approximately 62MPa, while the UTS in the pure PPF/HEMA was about 32MPa. High cell viability in this nanocomposite (MTT assays, 85-95%) can be attributed to the NBG nature which contains calcium phosphate and is similar to physiological environment. Furthermore, it possesses biomineralization and biodegradation which significantly affected by impregnation of hydrophilic HEMA in the PPF-based polymeric matrix. The results indicated that the new synthesized

  13. Design Wood Nanocomposites from Polymer Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    LVWenhua; ZHAOGuangjie

    2004-01-01

    Researches on wood nanocomposites, which involve nano science and technology, wood science,materials science and other related subjects, have important science signification and promising prospect for the development and study of new wood composites with high appending values and multi-properties. This paper reviewed the conventional wood composites, and then discussed the approaches to prepare wood nanocomposites. Based on the achievements of researches on polymer/montmorillonite (MMT) nanocomposites, the design ideas of preparing nanocomposites of wood and inorganic MMT were systematically put forward. Nano compounding of wood and other materials is an effective approach to greatly improve or modify wood.

  14. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans II, 90128 Palermo (Italy)

    2014-05-15

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  15. A Comparison of Urban School- and Community-Based Dental Clinics

    Science.gov (United States)

    Larsen, Charles D.; Larsen, Michael D.; Handwerker, Lisa B.; Kim, Maile S.; Rosenthal, Murray

    2009-01-01

    Background: The objective of the study was to quantitatively compare school- and community-based dental clinics in New York City that provide dental services to children in need. It was hypothesized that the school-based clinics would perform better in terms of several measures. Methods: We reviewed billing and visit data derived from encounter…

  16. Dental hard tissue characterization using laser-based ultrasonics

    Science.gov (United States)

    Blodgett, David W.; Massey, Ward L.

    2003-07-01

    Dental health care and research workers require a means of imaging the structures within teeth in vivo. One critical need is the detection of tooth decay in its early stages. If decay can be detected early enough, the process can be monitored and interventional procedures, such as fluoride washes and controlled diet, can be initiated to help re-mineralize the tooth. Currently employed x-ray imaging is limited in its ability to visualize interfaces and incapable of detecting decay at a stage early enough to avoid invasive cavity preparation followed by a restoration. To this end, non-destructive and non-contact in vitro measurements on extracted human molars using laser-based ultrasonics are presented. Broadband ultrasonic waves are excited in the extracted sections by using a pulsed carbon-dioxide (CO2) laser operating in a region of high optical absorption in the dental hard tissues. Optical interferometric detection of the ultrasonic wave surface displacements in accomplished with a path-stabilized Michelson-type interferometer. Results for bulk and surface in-vitro characterization of caries are presented on extracted molars with pre-existing caries.

  17. Mathematical Simulation of Temperature Profiles within Microwave Heated Wood Made for Wood-Based Nanocomposites

    OpenAIRE

    Xianjun Li; Yongfeng Luo; Hongbin Chen; Xia He; Jianxiong Lv; Yiqiang Wu

    2013-01-01

    High intensive microwave pretreatment is a new method to modify wood for the fabrication of wood-based nanocomposites. Based on the physical law on heat transfer, a mathematical model to describe the temperature profiles within wood heated by high intensive microwave was established and simulated in this research. The results showed that the temperature profiles within wood were related to microwave heating methods; The temperature inside wood firstly increased and then gradually decreased al...

  18. Development of Novel Metal Hydride-Carbon Nanomaterial Based Nanocomposites as Anode Electrode Materials for Lithium Ion Battery

    Science.gov (United States)

    2014-06-30

    Final Progress Report (27-02-2012 To 26-02-2014) Project Title:- Development of novel metal hydride -carbon nanomaterial based nanocomposites as...anode electrode materials for Lithium ion battery Objectives:- The aim of this study is to develop metal hydride –carbon nanomaterial based...be as follows:- Milestone I • Synthesis of nanosized metal hydrides (NMH)-carbon nanotubes (CNT) hybridizing with G (NMH- CNT-G) nanocomposites

  19. Hydrogen sensor based on a graphene - palladium nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Ulrich, E-mail: ulrich.lange@chemie.uni-r.d [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany); Hirsch, Thomas [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany); Mirsky, Vladimir M. [Department of Nanobiotechnology, Lausitz University of Applied Sciences, 01968 Senftenberg (Germany); Wolfbeis, Otto S. [Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg (Germany)

    2011-04-01

    A composite material was prepared from graphene and palladium nanoparticles (PdNP) by layer-by-layer deposition on gold electrodes. The material was characterized by absorption spectroscopy, scanning electron microscopy, Raman spectroscopy and surface plasmon resonance. Cyclic voltammetry demonstrated the presence of electrocatalytic centers in the palladium decorated graphene. This material can serve as a sensor material for hydrogen at levels from 0.5 to 1% in synthetic air. Pure graphene is poorly sensitive to hydrogen, but incorporation of PdNPs increases its sensitivity by more than an order of magnitude. The effects of hydrogen, nitrogen dioxide and humidity were studied. Sensor regeneration is accelerated in humid air. The sensitivity of the nanocomposite depends on the number of bilayers of graphene-PdNPs.

  20. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N{sub 3}) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98 MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400–800 nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. - Highlights: • IPN hydrogel nanocomposites were prepared by a one-pot strategy. • The maximum compressive and tensile strengths reached 24.8 and 1.98 MPa. • IPN hydrogels displayed excellent antibacterial activity and cytocompatibility. • This study provided a facile method for preparing IPN hydrogel nanocomposites.

  1. BisGMA-polyvinylpyrrolidone blend based nanocomposites reinforced with chitosan grafted f-multiwalled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A. Praharaj

    2015-01-01

    Full Text Available In this work, initially a non-destroyable surface grafting of acid functionalized multiwalled carbon nanotubes (f-MWCNTs with biopolymer chitosan (CS was carried out using glutaraldehyde as a cross-linking agent via the controlled covalent deposition method which was characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Then, BisGMA (bisphenol-A glycidyldimethacrylate-polyvinylpyrrolidone (PVP blend was prepared (50:50 wt% by a simple sonication method. The CS grafted f-MWCNTs (CS/f-MWCNTs were finally dispersed in BisGMA-PVP blend (BGP50 system in different compositions i.e. 0, 2, 5 and 7 wt% and pressed into molds for the fabrication of reinforced nanocomposites which were characterized by SEM. Nanocomposites reinforced with 2 wt% raw MWCNTs and acid f-MWCNTs were also fabricated and their properties were studied in detail. The results of comparative study report lower values of the investigated properties in nanocomposites with 2 wt% raw and f-MWCNTs than the one with 2 wt% CS/f-MWCNTs proving it to be a better reinforcing nanofiller. Further, the mechanical behavior of the nanocomposites with various CS/f-MWCNTs content showed a dramatic increase in Young’s Modulus, tensile strength, impact strength and hardness along with improved dynamic mechanical, thermal and electrical properties at 5 wt% content of CS/f-MWCNTs. The addition of CS/f-MWCNTs also resulted in reduced corrosion and swelling properties. Thus, the fabricated nanocomposites with optimum nanofiller content could serve as low cost and light weight structural, thermal and electrical materials compatible in various corrosive and solvent based environments.

  2. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Directory of Open Access Journals (Sweden)

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  3. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    Science.gov (United States)

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias.

  4. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  5. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  6. GRAPHENE BASED METAL AND METAL OXIDE NANOCOMPOSITES: SYNTHESIS, PROPERTIES AND THEIR APPLICATIONS

    KAUST Repository

    Khan, Mujeeb

    2015-06-11

    Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials have increased exponentially. Particularly the easy preparation of graphene like materials, such as, highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of various functional nanomaterials for a variety of applications. In this review, we discuss the current development of graphene based metal and metal oxide nanocomposites, with a detailed account of their synthesis and properties. Specifically, much attention has been given to their wide range of applications in various fields, including, electronics, electrochemical and electrical fields. Overall, by the inclusion of various references, this review covers in detail aspects of the graphene-based inorganic nanocomposites.

  7. Long Term Fatigue Behavior of Zirconia Based Dental Ceramics

    Directory of Open Access Journals (Sweden)

    Moustafa N. Aboushelib

    2010-04-01

    Full Text Available This study evaluated the influence of cyclic loading on zirconia bar-shaped specimens after being subjected to three different surface treatments: particle abrasion with either 50 μm or 110 μm alumina and grinding with diamond points, while polished specimens served as a control. Statistical analysis revealed significant reduction (38-67% in flexure strength (P < 0.001 after three million cycles of dynamic loading for all surface treatments. Scanning electron imaging revealed grain boundary thickening, grain pull-out, and micro-cracking as the main structural defects. The results suggest that various surface treatments of zirconia based dental ceramics may significantly influence their long term fatigue resistance in the oral environment.

  8. A NOVEL RESISTIVE HUMIDITY SENSOR BASED ON SODIUM POLYSTYRENESULFONATE/TiO2 NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Yang Li; Mu-jie Yang; Yong She

    2002-01-01

    A resistive humidity sensor was prepared based on sodium polystyrenesulfonate (NaPSS)/TiO2 nanocomposites,and its electrical response to humidity was examined. The sensor exhibits better linearity, smaller hysteresis (< 4% RH) and quicker response (absorption: less than 2 s; desorption: less than 20 s) in comparison with sensor composed of NaPSS. The effect of concentration of NaPSS and TiO2 on humidity response of sensors was discussed.

  9. Isothermal curing of polymer layered silicate nanocomposites based upon epoxy resin by means of anionic homopolymerisation

    OpenAIRE

    Román Concha, Frida Rosario; Calventus Solé, Yolanda; Colomer Vilanova, Pere; Hutchinson, John M.

    2013-01-01

    The use of an initiator, 4-(dimethylamino) pyridine (DMAP), to promote an anionic homopolymerisation reaction for the isothermal cure of polymer layered silicate (PLS) nanocomposites based on an epoxy resin, as well as the effect of the nanoclay content, have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dielectric relaxation spectroscopy (DRS) and transmission electron microscopy (TEM). The vitrification phenomenon was observed during the isotherm...

  10. Magnetic properties of nanocomposites based on opal matrices with embedded ferrite-spinel nanoparticles

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Klescheva, S. M.; Perov, D. V.

    2016-02-01

    Magnetic properties of nanocomposites based on opal matrices with ferrite-spinel nanoparticles embedded have been investigated in temperature range from 2 to 300 K. The magnetization curves and hysteresis loops as well as the temperature dependence of magnetic moment and the temperature and frequency dependences of AC susceptibility have been measured. The results of magnetic measurements are compared to X-ray analysis and electron microscopy investigations.

  11. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties

    OpenAIRE

    Ehsan Naderi Kalali; Xin Wanga; De-Yi Wang

    2015-01-01

    Functionalized layered double hydroxides (LDHs) based on a multi-modifier system composed of hydroxypropyl-sulfobutyl-beta-cyclodextrin sodium (sCD), dodecylbenzenesulfonate (DBS) and taurine (T) have been designed and fabricated in this paper, aiming at developing high performance fire retardant epoxy nanocomposites. In this multi-modifier system, sCD was utilized to improve the char yield, DBS was used to enlarge the inter-layer distance of LDH and T was used to enhance the interaction betw...

  12. Nanocomposite-forming solutions based on cassava starch and laponite: viscoelastic and rheological characterization

    OpenAIRE

    2015-01-01

    Nanocomposites-forming solutions (NFS) based on cassava starch and laponite were prepared and next characterized by means of dynamic oscillatory and steady shear rheological tests to evaluate their ability to be processed by knife coating. The effects of speed (rpm) and homogenization time on the laponite dispersion characteristics were first analyzed. Laponite dispersions were affected by both process parameters. High speed (rpm), i.e. 20,000 or 23,000 rpm for 30 min or prolonged...

  13. Highly Efficient Bienzyme Functionalized Nanocomposite-Based Microfluidics Biosensor Platform for Biomedical Application

    OpenAIRE

    Md. Azahar Ali; Saurabh Srivastava; Solanki, Pratima R.; Venu Reddy; Ved V. Agrawal; CheolGi Kim; Renu John; Malhotra, Bansi D.

    2013-01-01

    This report describes the fabrication of a novel microfluidics nanobiochip based on a composite comprising of nickel oxide nanoparticles (nNiO) and multiwalled carbon nanotubes (MWCNTs), as well as the chip's use in a biomedical application. This nanocomposite was integrated with polydimethylsiloxane (PDMS) microchannels, which were constructed using the photolithographic technique. A structural and morphological characterization of the fabricated microfluidics chip, which was functionalized ...

  14. Elaboration and Properties of Nanocomposite Structures Based on Crown Modified Platinum Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    H.Perez; S.Cavaliere-jaricot; P-A.Albouy; A.Etcheberry

    2007-01-01

    1 Results This paper presents the development of platinum nanocomposites structures based on organically modified c.a.2 nm core platinum nanoparticles.The chemical modification of the 4-mercaptoaniline functionalized particles by various in coming molecules is evidenced and precisely quantified.The particles can be dissolved like molecules in various solvents depending on the features of the new crown and X-rays shows that the interparticle distance is affected by the crown modification.These platinum n...

  15. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  16. Multifunctional polymer nano-composite based superhydrophobic surface

    Science.gov (United States)

    Maitra, Tanmoy; Asthana, Ashish; Buchel, Robert; Tiwari, Manish K.; Poulikakos, Dimos

    2014-11-01

    Superhydrophobic surfaces become desirable in plethora of applications in engineering fields, automobile industry, construction industries to name a few. Typical fabrication of superhydrophobic surface consists of two steps: first is to create rough morphology on the substrate of interest, followed by coating of low energy molecules. However, typical exception of the above fabrication technique would be direct coating of functional polymer nanocomposites on substrate where superhydrophobicity is needed. Also in this case, the use of different nanoparticles in the polymer matrix can be exploited to impart multi-functional properties to the superhydrophobic coatings. Herein, different carbon nanoparticles like graphene nanoplatelets (GNP), carbon nanotubes (CNT) and carbon black (CB) are used in fluropolymer matrix to prepare superhydrophobic coatings. The multi-functional properties of coatings are enhanced by combining two different carbon fillers in the matrix. The aforementioned superhydrophobic coatings have shown high electrical conductivity and excellent droplet meniscus impalement resistance. Simultaneous superhydrophobic and oleophillic character of the above coating is used to separate mineral oil and water through filtration of their mixture. Swiss National Science Foundation (SNF) Grant 200021_135479.

  17. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes.

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I; Wise, Kristopher E; Lowther, Sharon E; Fay, Catharine C; Thibeault, Sheila A; Bryant, Robert G

    2015-12-22

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.

  18. Supervising dentists' perspectives on the effectiveness of community-based dental education.

    Science.gov (United States)

    Nayar, Preethy; McFarland, Kimberly; Lange, Brian; Ojha, Diptee; Chandak, Aastha

    2014-08-01

    The Commission on Dental Accreditation recently implemented new predoctoral standards that require dental schools in the United States to provide students with community-based dental education (CBDE) experiences. The objective of this study was to examine the perspectives of supervising dentists (also known as dental preceptors) at rural CBDE sites regarding the University of Nebraska Medical Center program's effectiveness in improving the competencies of dental students. Surveys were sent to all forty-three preceptors in two subsequent years: nineteen responded to all questions in 2012 and sixteen in 2013, for a total of thirty-five participants. These preceptors evaluated the effectiveness of the program based on the American Dental Education Association (ADEA) Competencies for the New General Dentist. Overall, these preceptors rated the CBDE program as effective (excellent or very good) in improving the students' competence in five of the six ADEA domains: Critical Thinking, Professionalism, Communication and Interpersonal Skills, Health Promotion, Patient Care: Assessment, Diagnosis, and Treatment Planning, and Patient Care: Establishment and Maintenance of Oral Health. Practice Management and Informatics was found to be the least effective domain of competence. CBDE provides a unique opportunity to develop a competent dental workforce with an appreciation for the value of community service. Applying a competency-based framework to program evaluation can provide valuable information on program effectiveness to program administrators, educators, and the dental preceptors.

  19. Reasons for placement of restorations on previously unrestored tooth surfaces by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Nascimento, Marcelle M; Gordan, Valeria V; Qvist, Vibeke;

    2010-01-01

    The authors conducted a study to identify and quantify the reasons used by dentists in The Dental Practice-Based Research Network (DPBRN) for placing restorations on unrestored permanent tooth surfaces and the dental materials they used in doing so....

  20. Intelligent technique for knowledge reuse of dental medical records based on case-based reasoning.

    Science.gov (United States)

    Gu, Dong-Xiao; Liang, Chang-Yong; Li, Xing-Guo; Yang, Shan-Lin; Zhang, Pei

    2010-04-01

    With the rapid development of both information technology and the management of modern medical regulation, the generation of medical records tends to be increasingly intelligent. In this paper, Case-Based Reasoning is applied to the process of generating records of dental cases. Based on the analysis of the features of dental records, a case base is constructed. A mixed case retrieval method (FAIES) is proposed for the knowledge reuse of dental records by adopting Fuzzy Mathematics, which improves similarity algorithm based on Euclidian-Lagrangian Distance, and PULL & PUSH weight adjustment strategy. Finally, an intelligent system of dental cases generation (CBR-DENT) is constructed. The effectiveness of the system, the efficiency of the retrieval method, the extent of adaptation and the adaptation efficiency are tested using the constructed case base. It is demonstrated that FAIES is very effective in terms of reducing the time of writing medical records and improving the efficiency and quality. FAIES is also proven to be an effective aid for diagnoses and provides a new idea for the management of medical records and its applications.

  1. Preparation and properties of aqueous castor oil-based polyurethane-silica nanocomposite dispersions through a sol-gel process.

    Science.gov (United States)

    Xia, Ying; Larock, Richard C

    2011-09-01

    Waterborne castor oil-based polyurethane-silica nanocomposites with the polymer matrix and silica nanoparticles chemically bonded have been successfully prepared through a sol-gel process. The formation of silica nanoparticles in water not only reinforces the resulting coatings, but also increases the crosslink density of the nanocomposites. The (29)Si solid state NMR spectrum indicates the formation of silica and the TEM indicates that the nanoparticles are embedded in the polymers, resembling a core-shell structure. The silica nanoparticles in the polymer matrix play an important role in improving both the mechanical properties and the thermal stabilities of the resulting nanocomposites. This work provides an effective and promising way to prepare biorenewable, high performance nanocomposite coatings.

  2. Chip-integrated all-optical diode based on nonlinear plasmonic nanocavities covered with multicomponent nanocomposite

    Science.gov (United States)

    Chai, Zhen; Hu, Xiaoyong; Yang, Hong; Gong, Qihuang

    2017-01-01

    Ultracompact chip-integrated all-optical diode is realized experimentally in a plasmonic microstructure, consisting of a plasmonic waveguide side-coupled two asymmetric plasmonic composite nanocavities covered with a multicomponent nanocomposite layer, formed directly in a plasmonic circuit. Extremely large optical nonlinearity enhancement is obtained for the multicomponent nanocomposite cover layer, originating from resonant excitation, slow-light effect, and field enhancement effect. Nonreciprocal transmission was achieved based on the difference in the shift magnitude of the transparency window centers of two asymmetric plasmonic nanocavities induced by the signal light, itself, for the forward and backward propagation cases. An ultralow threshold incident light power of 145 μW (corresponding to a threshold intensity of 570 kW/cm2) is realized, which is reduced by seven orders of magnitude compared with previous reports. An ultrasmall feature size of 2 μm and a transmission contrast ratio of 15 dB are obtained simultaneously.

  3. Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose.

    Science.gov (United States)

    Atef, Maryam; Rezaei, Masoud; Behrooz, Rabi

    2014-09-01

    Nanocrystalline cellulose (NCC) was prepared from microcrystalline cellulose (MCC) with particle size of 24.7 μm using sulfuric acid hydrolysis technique. The obtained NCC revealed size of 0-100 nm, which the major part of them was about 30 nm. Then different contents (2.5, 5 and 10 wt%) of these NCC incorporated in agar film solution and the morphology, structure, and properties of the nanocomposite films were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), mechanical, physical and optical testing. Results showed that the water vapor permeability (WVP) and water solubility (WS) of the agar-based nanocomposite films significantly (P0.05). In addition, swelling percentage, transparency and light transmission of the films were decreased by incorporating NCC into polymer matrix.

  4. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammed Naffakh

    2014-06-01

    Full Text Available Using inorganic fullerene-like (IF nanoparticles and inorganic nanotubes (INT in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1–4 wt.% of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2 generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

  5. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    Science.gov (United States)

    Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.

    2016-03-01

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  6. Shape-memory effect of nanocomposites based on liquid-crystalline elastomers

    Science.gov (United States)

    Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.

    2016-05-01

    In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.

  7. Densely Packed Linear Assembles of Carbon Nanotube Bundles in Polysiloxane-Based Nanocomposite Films

    Directory of Open Access Journals (Sweden)

    Hong-Baek Cho

    2013-01-01

    Full Text Available Linear assemblies of carbon nanotubes (LACNTs were fabricated and controlled in polysiloxane-based nanocomposite films and the effects of the LACNTs on the thermal and electrical properties of the films were investigated. CNTs were dispersed by mechanical stirring and sonication in a prepolymer of polysiloxane. Homogeneous suspensions were cast on polyamide spacers and oriented by linear-assembly by applying DC and switching DC electric fields before the mixture became cross-linked. Densely packed LACNTs that fixed the composite film surfaces were fabricated with various structures and thicknesses that depended on the DC and switching DC conditions. Polymer nanocomposites with different LACNT densities exhibited enhanced thermal and electrical conductivities and high optical transmittances. They are considered promising structural materials for electronic sectors in automotive and aerospace applications.

  8. Development and characterization of new phosphorus based flame retardant tetraglycidyl epoxy nanocomposites for aerospace application

    Indian Academy of Sciences (India)

    K Shree Meenakshi; E Pradeep Jaya Sudhan; S Ananda Kumar

    2012-04-01

    A study was made in the present investigation on the development and characterization of triphenyl phosphine oxide based phosphorus tetraglycidyl epoxy nanocomposites denoted as ‘C’ and to find out its suitability for use in high performance applications. The synthesized resin was characterized by Fourier transform infrared spectra (FT–IR) and 1H, 13C nuclear magnetic resonance (NMR) spectra. Nanoclay and POSS-amine nanoreinforcements denoted as N1 and N2 were incorporated into the synthesized epoxy resin. Curing was done with diaminodiphenylmethane (DDM) and bis(3-aminophenyl) phenylphosphine oxide (BAPPO) curing agents denoted as and , respectively. Mechanical, thermal, flame retardant, water absorption behaviour and electrical properties of the epoxy nanocomposites were studied and the results are discussed.

  9. Furfural resin-based bio-nanocomposites reinforced by reactive nanocrystalline cellulose

    Science.gov (United States)

    Wang, C.; Sun, S.; Zhao, G.; He, B.; Xiao, H.

    2009-07-01

    The work presented herein has been focused on reinforcing the furfural resins (FA) by reactive-modified nanocrystalline cellulose (NCC) in an attempt to create a bio-nanocomposite completely based on natural resources. FA prepolymers were synthesized with an acid catalyst, and NCC was rendered reactive via the grafting of maleic anhydride (MAH). The resulting NCC and nanocomposites were characterized using TEM, SEM and FT-IR. It was found that NCC appeared to be spherical in shape with diameters under 100 nm. FT-IR confirmed that there were hydrogen and esterification bonding between MAH and NCC or FA prepolymer. After solidified with paratoluenesulfonic acid, NCC-reinforced FA resin composites showed granular cross-section while FA resin with layered structures. Mechanical property tests indicated that NCC-reinforced FA resin composites possessed the improved tensile and flexural strengths, in comparison with FA resin.

  10. Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ioanna Savva

    2012-01-01

    Full Text Available Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA and 2-(acetoacetoxyethyl methacrylate (AEMA (MMA-co-AEMA and oleic acid-coated magnetite (OA·Fe3O4 nanoparticles. The AEMA moieties containing β-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4 content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

  11. Issues in nanocomposite ceramic engineering: focus on processing and properties of alumina-based composites.

    Science.gov (United States)

    Palmero, Paola; Kern, Frank; Sommer, Frank; Lombardi, Mariangela; Gadow, Rainer; Montanaro, Laura

    2014-12-30

    Ceramic nanocomposites, containing at least one phase in the nanometric dimension, have received special interest in recent years. They have, in fact, demonstrated increased performance, reliability and lifetime with respect to monolithic ceramics. However, a successful approach to the production of tailored composite nanostructures requires the development of innovative concepts at each step of manufacturing, from the synthesis of composite nanopowders, to their processing and sintering.This review aims to deepen understanding of some of the critical issues associated with the manufacturing of nanocomposite ceramics, focusing on alumina-based composite systems. Two case studies are presented and briefly discussed. The former illustrates the benefits, in terms of sintered microstructure and related mechanical properties, resulting from the application of an engineering approach to a laboratory-scale protocol for the elaboration of nanocomposites in the system alumina-ZrO2-YAG (yttrium aluminium garnet). The latter illustrates the manufacturing of alumina-based composites for large-scale applications such as cutting tools, carried out by an injection molding process. The need for an engineering approach to be applied in all processing steps is demonstrated also in this second case study, where a tailored manufacturing process is required to obtain the desired results.

  12. Hybrid nanocomposites based on conducting polymer and silicon nanowires for photovoltaic application

    Energy Technology Data Exchange (ETDEWEB)

    Chehata, Nadia, E-mail: nadiachehata2@gmail.com [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Ltaief, Adnen [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Ilahi, Bouraoui [Laboratoire de Micro-optoélectronique et Nanostructures, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Salem, Bassem [Laboratoire des Technologies de la Microélectronique (LTM), UMR 5129 CNRS - UJF, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Bouazizi, Abdelaziz [Equipe Dispositifs Electroniques Organiques et Photovoltaïque Moléculaire, Laboratoire de la Matière Condensée et des Nanosciences, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Maaref, Hassen [Laboratoire de Micro-optoélectronique et Nanostructures, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Baron, Thierry [Laboratoire des Technologies de la Microélectronique (LTM), UMR 5129 CNRS - UJF, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); and others

    2014-12-15

    Hybrid nanocomposites based on a nanoscale combination of organic and inorganic semiconductors are a promising way to enhance the performance of solar cells through a higher aspect ratio of the interface and the good processability of polymers. Nanocomposites are based on a heterojunction network between poly (2-methoxy-5-(2-ethyhexyl-oxy)-p-phenylenevinylene) (MEH-PPV) as an organic electron donor and silicon nanowires (SiNWs) as an inorganic electron acceptor. Nanowires (NWs) seem to be a promising material for this purpose, as they provide a large surface area for contact with the polymer and a designated conducting pathway whilst their volume is low. In this paper, silicon nanowires are introduced by mixing them into the polymer matrix. Hybrid nanocomposites films were deposited onto ITO substrate by spin coating method. Optical properties and photocurrent response were investigated. Charge transfer between the polymer and SiNWs has been demonstrated through photoluminescence measurements. The photocurrent density of ITO/MEH-PPV:SiNWs/Al structures have been obtained by J–V characteristics. The J{sub sc} value is about 0.39 µA/cm{sup 2}. - Highlights: • SiNWs synthesis by Vapor–Liquid–Solid (VLS) mechanism. • SiNWs contribution to absorption spectra enhancement of MEH-PPV:SiNWs nanocomposites. • Decrease of PL intensity of MEH-PPV by addition of SiNWs. • Charge transfer process was taken place. • ITO/MEH-PPV:SiNWs/Al structure shows a photovoltaic effect, with a FF of 0.32.

  13. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine

    Science.gov (United States)

    Xue, Zhonghua; Yin, Bo; Wang, Hui; Li, Mengqian; Rao, Honghong; Liu, Xiuhui; Zhou, Xinbin; Lu, Xiaoquan

    2016-03-01

    Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS functionalized GO nanocomposite through π-π stacking has been demonstrated to be useful as a highly efficient catalyst system for the selective and sensitive colorimetric determination of sarcosine by providing a nanocomposite-amplified colorimetric response. Meanwhile, the strategy offered excellent selectivity toward sarcosine species against other amino acids as well as a satisfying detection limit of 0.73 μM. More importantly, by using an electrochemical method, a credible sensing mechanism of GO nanocomposite-based colorimetric platform for a special analyte determination can be easily verified and elucidated, which also provides an attractive alternative to conventional characterization strategies.Rapid detection of sarcosine is a key requirement for both diagnosis and treatment of disease. We report here a simple yet sensitive colorimetric nanocomposite platform for rapid detection of sarcosine in alkaline media. The approach exploited the benefits of a rapid color-producing reaction between an organic indicator, 1,2-naphthoquinone-4-sulphonic acid sodium salt (NQS), and the analyte of sarcosine species as well as the good catalytic ability of graphene oxide (GO) to the formation of highly colored products due to its good water dispersibility, extremely large surface area and facile surface modification. As a result, a NQS

  14. Pyrene-based fluorescent ambidextrous gelators: scaffolds for mechanically robust SWNT-gel nanocomposites.

    Science.gov (United States)

    Mandal, Deep; Kar, Tanmoy; Das, Prasanta Kumar

    2014-01-27

    With the rapid progress in the development of supramolecular soft materials, examples of low-molecular-weight gelators (LMWGs) with the ability to immobilise both water and organic solvents by the same structural scaffold are very limited. In this paper, we report the development of pyrene-containing peptide-based ambidextrous gelators (AGs) with the ability to efficiently gelate both organic and aqueous solvents. The organo- and hydrogelation efficiencies of these gelators are in the range 0.7-1.1% w/v in various organic solvents and 0.5-5% w/v in water at certain acidic pH values (pH 2.0-4.0). Moreover, for the first time, AGs have been utilised to prepare single-walled carbon-nanotube (SWNT)-included soft nanocomposites in both hydro- and organogel matrices. The influence of different non-covalent interactions such as hydrogen bonding, hydrophobic, π-π and van der Waals interactions in self-assembled gelation has been studied in detail by circular dichroism, FTIR, variable-temperature NMR, 2D NOESY and luminescence spectroscopy. Interestingly, the presence of the pyrene moiety in the structure rendered these AGs intrinsically fluorescent, which was quenched upon successful integration of the SWNTs within the gel. The prepared hydro- and organogels along with their SWNT-integrated nanocomposites are thermoreversible in nature. The supramolecular morphologies of the dried gels and SWNT-gel nanocomposites have been studied by transmission electron microscopy, fluorescence microscopy and polarising optical microscopy, which confirmed the presence of three-dimensional self-assembled fibrillar networks (SAFINs) as well as the integrated SWNTs. Importantly, rheological studies revealed that the inclusion of SWNTs within the ambidextrous gels improved the mechanical rigidity of the resulting soft nanocomposites up to 3.8-fold relative to the native gels.

  15. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  16. Thermally Sprayable Anti-corrosion Marine Coatings Based on MAH-g-LDPE/UHMWPE Nanocomposites

    Science.gov (United States)

    Jeeva Jothi, K.; Santhoskumar, A. U.; Amanulla, Syed; Palanivelu, K.

    2014-12-01

    Polymer composite coatings based on low-density polyethylene (LDPE) and ultra-high-molecular-weight polyethylene (UHMWPE) blends were prepared for marine coatings. The incorporation of carboxyl moiety in the polymer blends of LDPE/UHMWPE was carried out by grafting with maleic anhydride (MAH) at varying concentrations of 1-8 wt.% using reactive extrusion process. An optimum percentage of grafting of 2.1% was achieved with 5 wt.% of maleic anhydride. Further, the nanocomposites of MAH-grafted-LDPE/UHMWPE blends were prepared by incorporating cloisite 15A nanoclay at varying concentrations of 1-4 wt.%. The polymer nanocomposites were converted into fine powders suitable for thermal spray having ≤200 μ particle size using cryogenic grinding. The effect of the intact coatings applied on grit-blasted mild steel by thermal spray technique was evaluated for abrasion resistance, adhesion strength, and corrosion resistance. The corrosion resistance of the polymer nanocomposites was studied by salt spray technique and Electrochemical Impedance Spectroscopy The abrasion resistance of coatings increases with increasing UHMWPE content in the blends. However, blends with higher concentration of UHMWPE resulted in coarse coatings with poor adhesion. The coatings with 90:10 MAH-grafted-LDPE/UHMWPE having 3 wt.% of nanoclay showed good abrasion resistance, adhesion strength, and better corrosion resistance.

  17. High flux filtration medium based on nanofibrous substrate with hydrophilic nanocomposite coating.

    Science.gov (United States)

    Wang, Xuefen; Chen, Xuming; Yoon, Kyunghwan; Fang, Dufei; Hsiao, Benjamin S; Chu, Benjamin

    2005-10-01

    A novel high flux filtration medium, consisting of a three-tier composite structure, i.e., a nonporous hydrophilic nanocomposite coating top layer, an electrospun nanofibrous substrate midlayer, and a conventional nonwoven microfibrous support, was demonstrated for oil/water emulsion separations for the first time. The nanofibrous substrate was prepared by electrospinning of poly(vinyl alcohol) (PVA) followed by chemical cross-linking with glutaraldehyde (GA) in acetone. The resulting cross-linked PVA substrates showed excellent water resistance and good mechanical properties. The top coating was based on a nanocomposite layer containing hydrophilic polyether-b-polyamide copolymer or a cross-linked PVA hydrogel incorporated with surface-oxidized multiwalled carbon nanotubes (MWNTs). Scanning electron microscopy (SEM) examinations indicated that the nanocomposite layer was nonporous within the instrumental resolution and MWNTs were well dispersed in the polymer matrix. Oil/ water emulsion tests showed that this unique type of filtration media exhibited a high flux rate (up to 330 L/m2-h at the feed pressure of 100 psi) and an excellent total organic solute rejection rate (99.8%) without appreciable fouling. The increase in the concentration of surface-oxidized MWNT in the coating layer generally improves the flux rate, which can be attributed to the generation of more effective hydrophilic nanochannels for water passage in the composite membranes.

  18. SU-8 photoresist and SU-8 based nanocomposites for broadband acoustical matching at 1 GHz

    Science.gov (United States)

    Ndieguene, A.; Campistron, P.; Carlier, J.; Wang, S.; Callens-Debavelaere, D.; Nongaillard, B.

    2009-11-01

    So as to integrate acoustic functions in BioMEMS using 1 GHz ZnO transducers deposited on silicon substrates, acoustic waves propagation through the silicon substrate and its transmission in water needs to be maximized (the insertion losses at the Si / water interface are about 6dB). In the context of integration, it is interesting for mechanical impedance matching to use photosensitive materials such as SU-8 so that patterns may be obtained. Nanocomposite materials based on SU-8 mixed with nanoparticles having adequate impedances were fabricated. These new materials are characterized in terms of their acoustic velocity, impedance and attenuation. For this, the nanocomposite layers are deposited on the substrate by spin coating to obtain a thickness of about 10 μm, in order to separate acoustic echoes from the material (even if λ/4 layer thickness is lower than 1 μm). The insertion losses of the device immersed in water can be simulated as a function of frequency for a given reflection coefficient between the silicon substrate and the photoresist. The characteristics of some nanocomposites made with SU-8 and various concentrations of nanoparticles like Ti02, SrTiO3 or W have been determined.

  19. SU-8 photoresist and SU-8 based nanocomposites for broadband acoustical matching at 1 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Ndieguene, A; Campistron, P; Carlier, J; Wang, S; Callens-Debavelaere, D; Nongaillard, B, E-mail: Assane.Ndieguene@meletu.univ-valenciennes.f [Univ Lille Nord de France, F-59000 Lille (France)

    2009-11-01

    So as to integrate acoustic functions in BioMEMS using 1 GHz ZnO transducers deposited on silicon substrates, acoustic waves propagation through the silicon substrate and its transmission in water needs to be maximized (the insertion losses at the Si / water interface are about 6dB). In the context of integration, it is interesting for mechanical impedance matching to use photosensitive materials such as SU-8 so that patterns may be obtained. Nanocomposite materials based on SU-8 mixed with nanoparticles having adequate impedances were fabricated. These new materials are characterized in terms of their acoustic velocity, impedance and attenuation. For this, the nanocomposite layers are deposited on the substrate by spin coating to obtain a thickness of about 10 {mu}m, in order to separate acoustic echoes from the material (even if {lambda}/4 layer thickness is lower than 1 {mu}m). The insertion losses of the device immersed in water can be simulated as a function of frequency for a given reflection coefficient between the silicon substrate and the photoresist. The characteristics of some nanocomposites made with SU-8 and various concentrations of nanoparticles like Ti0{sub 2}, SrTiO{sub 3} or W have been determined.

  20. Mechanical and barrier properties of guar gum based nano-composite films.

    Science.gov (United States)

    Saurabh, Chaturbhuj K; Gupta, Sumit; Bahadur, Jitendra; Mazumder, S; Variyar, Prasad S; Sharma, Arun

    2015-06-25

    Guar gum based nano-composite films were prepared using organically modified (cloisite 20A) and unmodified (nanofil 116) nanoclays. Effect of nanoclay incorporation on mechanical strength, water vapor barrier property, chromatic characteristics and opacity of films was evaluated. Nano-composites were characterized using X-ray scattering, FTIR and scanning electron microscopy. A nanoclay concentration dependent increase in mechanical strength and reduction in water vapor transmission rate was observed. Films containing nanofil 116 (2.5% w/w guar gum) and closite 20A (10% w/w guar gum) demonstrated a 102% and 41% higher tensile strength, respectively, as compared to the control. Lower tensile strength of cloisite 20A films as compared to nanofil 116 films was due to its incompatibility with guar gum. X-ray scattering analysis revealed that interstitial spacing between nanofil 116 and cloisite 20A sheets increased due to intercalation by guar gum polymer. This resulted in improved mechanical and barrier properties of nano-composites compared to control.

  1. Characterization of alumina-based ceramic nanocomposites by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Ahmad, Kaleem; Al-Eshaikh, Mohammad A.; Kadachi, Ahmed N.

    2015-06-01

    Alumina-based hybrids containing different concentrations of carbon nanostructure and SiC nanoparticles were consolidated by the spark plasma sintering in order to obtain fully dense bulk ceramic nanocomposites. Laser-induced breakdown spectroscopy was employed to determine relationship between plasma temperature and surface hardness of the composites. The characteristic parameters of plasma generated by irradiation of laser Nd:YAG ( λ = 1064 nm) on different bulk nanocomposites were determined at different delay times and energies by assuming the LTE condition for optically thin plasma. The plasma temperatures were estimated through intensity of selected aluminum emission lines using the Boltzmann plot method. The electron density was determined using the Stark broadening of selected aluminum and silicon emission lines. The samples were mechanically characterized by the Vickers hardness test. It has been observed that the plasma temperature increases with the increase in hardness and shows a perfect linear relationship. The results suggest that calibration curve between hardness and the plasma temperature can be employed as an alternate method to estimate the hardness of nanocomposite with varying concentrations of nanostructures just by measuring the plasma temperature with better reproducibility and accuracy. Therefore, laser-induced break down spectroscopy (LIBS) offers potential applications in nuclear industry.

  2. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    Science.gov (United States)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  3. Primary oral health service provision in Aboriginal Medical Services-based dental clinics in Western Australia.

    Science.gov (United States)

    Kruger, Estie; Perera, Irosha; Tennant, Marc

    2010-01-01

    Australians living in rural and remote areas have poorer access to dental care. This situation is attributed to workforce shortages, limited facilities and large distances to care centres. Against this backdrop, rural and remote Indigenous (Aboriginal) communities in Western Australia seem to be more disadvantaged because evidence suggests they have poorer oral health than non-Indigenous people. Hence, provision of dental care for Aboriginal populations in culturally appropriate settings in rural and remote Western Australia is an important public health issue. The aim of this research was to compare services between the Aboriginal Medical Services (AMS)-based clinics and a typical rural community clinic. A retrospective analysis of patient demographics and clinical treatment data was undertaken among patients who attended the dental clinics over a period of 6 years from 1999 to 2004. The majority of patients who received dental care at AMS dental clinics were Aboriginal (95.3%), compared with 8% at the non-AMS clinic. The rate of emergency at the non-AMS clinic was 33.5%, compared with 79.2% at the AMS clinics. The present study confirmed that more Indigenous patients were treated in AMS dental clinics and the mix of dental care provided was dominated by emergency care and oral surgery. This indicated a higher burden of oral disease and late utilisation of dental care services (more focus on tooth extraction) among rural and remote Indigenous people in Western Australia.

  4. Residual Monomer Content and Its Release into Water from the Denture Base Nanocomposite Using Organic Montmorillonite as Reinforcement

    Institute of Scientific and Technical Information of China (English)

    LI Hongbo; ZHANG Chao; LI Zhian; WANG Yining; XIAO Qun

    2008-01-01

    A novel kind of denture base nanocomposite was prepared by polymethyl methyacrylate(PMMA) and cethyltrimethylammonium bromide modified organic montmorillonite (OMMT).The dispersion of montmorillonite in the polymer matrix was characterized by x-ray diffraction (XRD) and transimission electron microscope (TEM).The content of residual MMA in nanocomposites and the amount of MMA released to water from nanocomposites were determined by gas chromatography (GC).The analysis of TEM and XRD showed that exfoliated-intercalated and intercalated nanocomposites were formed when the content of OMMT was 3% and 5% in the PMMA powder respectively.The results of GC showed that the residual MMA increased with the increase of OMMT content in the polymer matrix.After 7 days in water,the amount of MMA released into water from the nanocomposites tended to be stable.The results of one-way ANOVA and t-test showed that OMMT gave a significant increase of residual MMA concentration (p<0.05) in nanocomposites.

  5. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  6. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  7. Ferroelectric polymer-based nanocomposites: Towards multiferroic materials

    Science.gov (United States)

    Andrew, Jennifer S.

    This dissertation describes new routes towards magnetic-ferroelectric materials, leading to new materials for multiferroic applications. Multiferroic materials exhibit both ferromagnetic and ferroelectric properties, which tend to be mutually exclusive in single-phase materials. Therefore, composite materials are the obvious approach to realizing a material with both a high electric permittivity and high magnetic permeability. In composite systems the magnetoelectric effect arises from a mechanical coupling between a magnetostrictive and a piezoelectric phase. In order to enhance this coupling the interfacial area between the two phases should be maximized. This can be accomplished with nanoparticles, which have a large surface to volume ratio. This work begins with the synthesis of ferrimagnetic (MFe2O 4, M=Ni, Ni0.5Zn0.5, Co) and ferroelectric (BaTiO 3) nanoparticles. Aqueous coprecipitation routes produced superparamagnetic ferrite nanoparticles with an average diameter of 8-10 nanometers. Nanometer sized particles of barium titanate were also produced, but they were cubic and therefore do not exhibit ferroelectric behavior. We then developed routes to form nanoparticle-nanoparticle composites by controlling their stability in solution and therefore their final assembly into magnetic-dielectric nanocomposites. We also developed novel magnetic-ferroelectric composites by filling a ferroelectric polymer with magnetic and dielectric nanoparticles. Polyvinylidene difluoride (PVDF) fibers as well as fibers with continuously dispersed ferrite (Ni0.5Zn0.5Fe2O4) nanoparticles were prepared by electrospinning from dimethyl formamide (DMF) solutions. The effects of the electrospinning processing conditions and nanoparticle loading on the fiber morphology, crystallinity, and the crystalline structure of PVDF were examined. Magnetic and dielectric measurements were also performed. Electrospinning provides a simple technique to form PVDF in the ferroelectric beta

  8. Corrosion evaluation of gold-based dental alloys.

    Science.gov (United States)

    Corso, P P; German, R M; Simmons, H D

    1985-05-01

    Three commercial gold-based dental alloys and three constant-nobility ternary alloys (Au-Ag-Cu) were evaluated for corrosion using a quantitative test battery. Integration of the current density, in a de-aerated solution of 1% NaCl along the approximate potential range found in the mouth (-300 mV to +300 mV vs. SCE), yields a quantitative rank ordering of the test alloys. The results are combined with prior findings on other commercial alloys to demonstrate the interaction of nobility and microstructure. Nobility determines the overall corrosion resistance for gold-based alloys. However, because of mutual insolubility, alloying with copper induces silver segregation, resulting in a higher corrosion rate at a given nobility. Thus, microstructure has an influence on corrosion, but heat treatments are largely ineffective in altering the basic corrosion characteristics. The test techniques, in combination with tarnish evaluations, provide a quantitative battery for alloy evaluation. The results indicate the combinations of nobility, microstructure, and environment most likely to avoid corrosion difficulties.

  9. Optimization of compressive strength of zirconia based dental composites

    Indian Academy of Sciences (India)

    U V Hambire; V K Tripathi

    2014-10-01

    Dental composites are tooth-coloured restorative material used by dentists for various applications. Restoration of a lost tooth structure requires a material having mechanical as well as aesthetic properties similar to that of tooth. This poses challenges to engineers and the dentist alike. Dental composites consist of a matrix and a dispersed phase called filler, which are mainly responsible for its mechanical properties. Most commonly used matrix is bisphenol glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGMA). Silica and glass are conventional fillers used in the past. Recently, zirconia is being used due to its improved mechanical properties. A study was conducted to evaluate the contribution of zirconia to the mechanical properties in general and compressive strength in particular. We have attempted to make an experimental dental composite with a conglomerate of nanofillers, namely, zirconia, glass and silica, and optimize this filler volume percentage and obtain an optimum compressive strength for the experimental dental composite.

  10. Restoration of noncarious tooth defects by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Nascimento, Marcelle M; Gordan, Valeria V; Qvist, Vibeke;

    2011-01-01

    The authors conducted a study to quantify the reasons for restoring noncarious tooth defects (NCTDs) by dentists in The Dental Practice-Based Research Network (DPBRN) and to assess the tooth, patient and dentist characteristics associated with those reasons....

  11. Dental education and evidence-based educational best practices: bridging the great divide.

    Science.gov (United States)

    Masella, Richard S; Thompson, Thomas J

    2004-12-01

    Research about educational best practices is negatively perceived by many dental faculty. Separation between teaching and learning strategies commonly employed in dental education and evidence-based educational techniques is real and caused by a variety of factors: the often incomprehensible jargon of educational specialists; traditional academic dominance of research, publication, and grantsmanship in faculty promotions; institutional undervaluing of teaching and the educational process; and departmentalization of dental school governance with resultant narrowness of academic vision. Clinician-dentists hired as dental school faculty may model teaching activities on decades-old personal experiences, ignoring recent educational evidence and the academic culture. Dentistry's twin internal weaknesses--factionalism and parochialism--contribute to academic resistance to change and unwillingness to share power. Dental accreditation is a powerful impetus toward inclusion of best teaching and learning evidence in dental education. This article will describe how the gap between traditional educational strategies and research-based practices can be reduced by several approaches including dental schools' promotion of learning cultures that encourage and reward faculty who earn advanced degrees in education, regular evaluation of teaching by peers and educational consultants with inclusion of the results of these evaluations in promotion and tenure committee deliberations, creating tangible reward systems to recognize and encourage teaching excellence, and basing faculty development programs on adult learning principles. Leadership development should be part of faculty enrichment, as effective administration is essential to dental school mission fulfillment. Finally, faculty who investigate the effectiveness of educational techniques need to make their research more available by publishing it, more understandable by reducing educational jargon, and more relevant to the day

  12. Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability

    Energy Technology Data Exchange (ETDEWEB)

    Arranz-Andrés, J., E-mail: jarranz@ictp.csic.es [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); Pulido-González, N. [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); Fonseca, C. [POLCA, Departamento de Química Industrial y Polímeros, E. T. de Ingenieros Industriales, Universidad Politécnica de Madrid, Ronda de Valencia, 3, 28012 Madrid (Spain); Pérez, E.; Cerrada, M.L. [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)

    2013-11-01

    Novel (nano)composites based on PVDF and different content of Al nanoparticles have been prepared in order to learn about their electromagnetic interference shielding capability. Very promising results are obtained, with an excellent balance between shielding and sample weight, so that these materials are potentially good alternatives to replace neat metals for that application. Moreover, a complete structural and morphological characterization, as well as an evaluation of their thermal and mechanical behavior, has been also performed. - Graphical abstract: EMI shielding capability in lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles. - Highlights: • Novel hybrids based on PVDF and different contents of Al nanoparticles have been prepared. • A complete characterization of the nanocomposites has been performed. • Interactions between PVDF matrix and Al nanoparticles are deduced from FTIR. • Attenuation of the electromagnetic radiation increases spectacularly with the Al content.

  13. Thermal Property Simulation of Zr{sub O}2-based Nanocomposites for Inert Matrix Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Vivek Raj [Indian Institute of Technology-Kanpur, Kalyanpur (India); Mistarihi, Qusai M.; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Inert matrix fuel (IMF) is a promising concept to incinerate TRU without further producing plutonium from U-238 which is a main host material for current nuclear fuels containing fissile isotopes such as U-235 or Pu-239. ZrO{sub 2} is one of the suitable materials for a matrix of IMF because it has an excellent chemical stability and an irradiation resistance. However, ZrO{sub 2} has a very low thermal conductivity around 3 W/mK at 1000 .deg. C which is not beneficial for the in-reactor fuel performances, and the low thermal conductivity might result in a high fission gas release and high fuel swelling. Therefore, enhancing the thermal conductivity of ZrO{sub 2} might be very effective in improving the fuel performance of ZrO{sub 2} based IMF. Metallic wires with a high thermal conductivity can be used as reinforcement for ZrO{sub 2}. In this study, Mo wire has been selected for the modeling and characterization of ZrO{sub 2}-based nanocomposites because Mo has a high thermal conductivity approximately 138 W/mK and a relatively low neutron absorption cross section. The experimental results and computational simulations presented a good agreement in estimating the effects of the reinforcement on the thermal conductivities of Mo reinforced ZrO{sub 2} nanocomposites. It is found that one of the most contributing factors to the enhancement of the thermal conductivity of ZrO{sub 2}-based nanocomposites is the interconnection of Mo wire.

  14. Facile approach in fabricating superhydrophobic coatings from silica-based nanocomposite

    Science.gov (United States)

    Guo, Yonggang; Wang, Qihua

    2010-10-01

    This study develops a one-step technique to synthesize various super water-repellent coatings with addition of modified silica nanoparticles. Surface topography observation showed that stacking of spherical silica nanoparticles formed primary surface roughness. The wettability of the products was investigated. It was found that the as-prepared surface possesses superhydrophobic properties not only for pure water but also for corrosive water under both acidic and basic conditions. The silica-based nanocomposite coatings can be fabricated on glass substrates and other functional engineering material surfaces, such as copper, iron, aluminum alloy, to form self-cleaning coatings.

  15. Synthesis and Characterization of Novel Polycarbonate Based Polyurethane/Polymer Wrapped Hydroxyapatite Nanocomposites: Mechanical Properties, Osteoconductivity and Biocompatibility.

    Science.gov (United States)

    Selvakumar, M; Jaganathan, Saravana Kumar; Nando, Golok B; Chattopadhyay, Santanu

    2015-02-01

    The present investigation reports the preparation of two types of 2D rod-like nano-hydroxyapatite (nHA) (unmodified and Polypropylene glycol (PPG) wrapped) of varying high-aspect ratios, by modified co-precipitation methods, without any templates. These nHA were successfully introduced into novel synthesized Thermoplastic Polyurethane (TPU) matrices based on polycarbonate soft segments, by both in-situ and ex-situ techniques. Physico-mechanical properties of the in-situ prepared TPU/nHA nanocomposites were found to be superior compared to the ex-situ counterparts, and pristine nHA reinforced TPU. Improved biocompatibility of the prepared nanocomposites was confirmed by MTT assays using osteoblast-like MG63 cells. Cell proliferation was evident over an extended period. Osteoconductivity of the nanocomposites was observed by successful formation of an apatite layer on the surface of the samples, after immersion into simulated body fluid (SBF). Prothrombin time (PT) and activated partial thromboplastin time (APTT), as calculated from coagulation assays, displayed an increase in the clotting time, particularly for the PPG-wrapped nHA nanocomposites, prepared through the in-situ technique. Only 0.3% of hemolysis was observed for the in-situ prepared nanocomposites, which establishes the antithrombotic property of the material. The key parameters for enhancing the technical properties and biocompatibility of the nanocomposites are: the interfacial adhesion parameter (B(σy)), the polymer-filler affinity, the aspect ratio of filler and non-covalent modifications, and the state of dispersion. Thus, the novel TPU/polymer wrapped nHA nanocomposites have great potential for biomedical applications, in particular for vascular prostheses, cardiovascular implants, scaffolds, and soft and hard tissues implants.

  16. Dental care protocol based on visual supports for children with autism spectrum disorders

    OpenAIRE

    2015-01-01

    Background Subjects with Autism Spectrum Disorders (ASDs) have often difficulties to accept dental treatments. The aim of this study is to propose a dental care protocol based on visual supports to facilitate children with ASDs to undergo to oral examination and treatments. Material and Methods 83 children (age range 6-12 years) with a signed consent form were enrolled; intellectual level, verbal fluency and cooperation grade were evaluated. Children were introduced into a four stages path in...

  17. Classifying Cyst and Tumor Lesion Using Support Vector Machine Based on Dental Panoramic Images Texture Features

    OpenAIRE

    Nurtanio, Ingrid

    2013-01-01

    Dental radiographs are essential in diagnosing the pathology of the jaw. However, similar radiographic appearance of jaw lesions causes difficulties in differentiating cyst from tumor. Therefore, we conducted a development of computer-aided classification system for cyst and tumor lesions in dental panoramic images. The proposed system consists of feature extraction based on texture using the first-order statistics texture (FO), Gray Level Co-occurrence Matrix (GLCM) and Gray Level Run ...

  18. In situ formation of a MoS2 -based inorganic-organic nanocomposite by directed thermal decomposition.

    Science.gov (United States)

    Djamil, John; Segler, Stefan A W; Bensch, Wolfgang; Schürmann, Ulrich; Deng, Mao; Kienle, Lorenz; Hansen, Sven; Beweries, Torsten; von Wüllen, Leo; Rosenfeldt, Sabine; Förster, Stephan; Reinsch, Helge

    2015-06-08

    Nanocomposites based on molybdenum disulfide (MoS2 ) and different carbon modifications are intensively investigated in several areas of applications due to their intriguing optical and electrical properties. Addition of a third element may enhance the functionality and application areas of such nanocomposites. Herein, we present a facile synthetic approach based on directed thermal decomposition of (Ph4 P)2 MoS4 generating MoS2 nanocomposites containing carbon and phosphorous. Decomposition at 250 °C yields a composite material with significantly enlarged MoS2 interlayer distances caused by in situ formation of Ph3 PS bonded to the MoS2 slabs through MoS bonds and (Ph4 P)2 S molecules in the van der Waals gap, as was evidenced by (31) P solid-state NMR spectroscopy. Visible-light-driven hydrogen generation demonstrates a high catalytic performance of the materials.

  19. Preparation, characterisation, and in vitro evaluation of electrically conducting poly(ɛ-caprolactone)-based nanocomposite scaffolds using PC12 cells.

    Science.gov (United States)

    Gopinathan, Janarthanan; Quigley, Anita F; Bhattacharyya, Amitava; Padhye, Rajiv; Kapsa, Robert M I; Nayak, Rajkishore; Shanks, Robert A; Houshyar, Shadi

    2016-04-01

    In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties.

  20. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.

    Science.gov (United States)

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-03-02

    In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH.

  1. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  2. A novel aluminum based nanocomposite with high strength and good ductility

    Energy Technology Data Exchange (ETDEWEB)

    Ramezanalizadeh, Hossein, E-mail: hralizadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Emamy, Masoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Shokouhimehr, Mohammadreza [School of Chemical and Biological Engineering, College of Engineering, Seoul National University, Seoul (Korea, Republic of)

    2015-11-15

    Aluminum based nanocomposite containing nano-sized Al{sub 3}Mg{sub 2} reinforcing was fabricated via mechanical milling followed by hot extrusion techniques. For this, Al and Al{sub 3}Mg{sub 2} powders were mixed mechanically and milled at different times (0, 2, 5, 7, 10, 15 and 20 h) to achieve Al–10 wt.% Al{sub 3}Mg{sub 2} composite powders. Hot extrusion of cold pressed powders was done at 400 °C with extrusion ratio of 6:1. Microstructures of the powders and consolidated materials were studied using transmission electron microscopy, scanning electron microscope and X-ray diffraction. Fracture surfaces were also investigated by scanning electron microscopy equipped with EDS analyzer. The results showed that an increase in milling time caused to reduce the grain size unlike the lattice strain of Al matrix. In addition, the fabricated composites exhibited homogeneous distribution and less agglomerations of the n-Al{sub 3}Mg{sub 2} with increasing milling time. The mechanical behavior of these nanocomposites was investigated by hardness and tensile tests, which revealed it has four times the strength of a conventional Al along with good ductility. It was found that the ultimate tensile strength (UTS) and elongation of the nanocomposites were significantly improved with increases in milling time up to 15 h. This improvement was attributed to the grain refinement strengthening and homogeneous distribution of the n-Al{sub 3}Mg{sub 2}. Fracture surfaces showed that the interfacial bonding between Al and Al{sub 3}Mg{sub 2} could be improved with increasing in milling time. Also HRTEM results from interface showed that a metallurgical clean interface and intimate contact between matrix and second phase. By extending the milling process up to 20 h, there was no significant improvement in mechanical behavior of materials, due to the completion of milling process and dynamic and static recovery of composite at higher milling times. - Highlights: • A novel aluminum-based

  3. Synthesis and characterization of smart N-isopropylacrylamide-based magnetic nanocomposites containing doxorubicin anti-cancer drug.

    Science.gov (United States)

    Motaali, Soheila; Pashaeiasl, Maryam; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-05-01

    In the present study, magnetic and thermo/pH-sensitive (multiresponsive) nanocomposites based on N-isopropylacrylamide (NIPAAM) were synthesized and characterized. Nanocomposites were synthesized by free radical emulsion polymerization of NIPAAM as thermosensitive monomer and N,N-dimethyl-aminoethyl methacrylate (DMAEMA) as pH-sensitive monomer in the presence of methylene-bis-acrylamide as cross-linking agent. Doxorubicin, an anti-cancer drug, was loaded into these nanocomposites via equilibrium swelling method. Thermo/pH-sensitive cross-linked poly (NIPAAM-DMAEMA)-Fe3O4 nanocomposites were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The volume of the loaded drug and drug release amount was determined by UV measurements. The results showed that this thermo/pH-sensitive magnetic nanocomposite has a high drug-loading efficiency. Doxorubicin was released at 40 °C and pH 5.8 more than the 37 °C and pH 7.4.

  4. Preparation and characterization of agar-based nanocomposite films reinforced with bimetallic (Ag-Cu) alloy nanoparticles.

    Science.gov (United States)

    Arfat, Yasir Ali; Ahmed, Jasim; Jacob, Harsha

    2017-01-02

    Agar-based active nanocomposite films were prepared by incorporating silver-copper (Ag-Cu) alloy nanoparticles (NPs) (0.5-4wt%) into glycerol plasticized agar solution. Thermo-mechanical, morphological, structural, and optical properties of the nanocomposite films were characterized by texture analyzer, differential scanning calorimetry (DSC), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transforms infrared (FTIR) spectroscopy, and surface color measurement. Tensile strength and the melting temperature of the film increased linearly with NPs loading concentration. Color, transparency and UV barrier properties of agar films were influenced by the reinforcement of Ag-Cu NPs. XRD analysis confirmed the crystalline structure of the Agar/Ag-Cu nanocomposite films, whereas the smoothness and the homogeneity of film surface strongly reduced as observed through the SEM. The nanocomposite films exhibited a profound antibacterial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Salmonella enterica sv typhimurium) bacteria. Overall, the agar nanocomposite films could be used as packaging material for food preservation by controlling foodborne pathogens and spoilage bacteria.

  5. Carrageenan-based semi-IPN nanocomposite hydrogels: Swelling kinetic and slow release of sequestrene Fe 138 fertilizer

    Directory of Open Access Journals (Sweden)

    Mohammad Kazem Bahrami

    2016-09-01

    Full Text Available Nanocomposite hydrogels based on kappa-carrageenan were synthesized by incorporating natural sodium montmorillonite (Cloisite nanoclay. Acrylamide (AAm and methylenebisacrylamide (MBA were used as a monomer and a crosslinker, respectively. Effects of reaction variables on the swelling kinetics were studied. The results revealed that the rate of swelling for nanocomposites with high content of MBA was higher than those of nanocomposites consisting of low content of MBA. Similar to the effect of MBA, the rate of swelling enhanced as the carrageenan content was decreased. The influence of clay content on swelling rate was not remarkable. The experimental swelling data were evaluated by pseudo-first-order and pseudo-second-order kinetic models. The swelling data described well by pseudo-second-order kinetic model. Sequestrene Fe 138 (Sq as an agrochemical was loaded into nanocomposites and releasing of this active agent from nanocomposites was studied. The clay-free hydrogel released the whole loaded Sq; whereas the presence of clay restricted the release of Sq.

  6. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    Science.gov (United States)

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  7. Knowledge of evidence-based dentistry among academic dental practitioners of Bhopal, India: a preliminary survey

    Directory of Open Access Journals (Sweden)

    Aishwarya Singh

    2015-06-01

    Full Text Available This study aimed to characterize the knowledge of evidence-based dentistry (EBD among dental faculty members in the city of Bhopal in central India. A cross-sectional questionnaire was administered at two dental colleges in Bhopal City. All dental faculty members who were present on the day of the study and who agreed to participate were included in the study. A total of 50 dental faculty members returned the questionnaire. Six Likert-type questions were asked, and the percentages of various responses were used for analysis. Sixteen faculty members (32.0% strongly agreed that EBD is a process of making decisions based on scientifically proven evidence. Fifteen faculty members (30.0% strongly disagreed or disagreed with the item stating that the best and quickest way to find evidence is by reading textbooks or asking experienced colleagues. Thirteen faculty members (26.0% strongly agreed that EBD allows dentists to improve their scientific knowledge and clinical skills. It is recommended that EBD be included in undergraduate and postgraduate curricula and in intensive continuing dental education programs that are conducted for dental faculty members.

  8. Knowledge of evidence-based dentistry among academic dental practitioners of Bhopal, India: a preliminary survey.

    Science.gov (United States)

    Singh, Aishwarya; Saxena, Sudhanshu; Tiwari, Vidhatri; Tiwari, Utkarsh

    2015-01-01

    This study aimed to characterize the knowledge of evidence-based dentistry (EBD) among dental faculty members in the city of Bhopal in central India. A cross-sectional questionnaire was administered at two dental colleges in Bhopal City. All dental faculty members who were present on the day of the study and who agreed to participate were included in the study. A total of 50 dental faculty members returned the questionnaire. Six Likert-type questions were asked, and the percentages of various responses were used for analysis. Sixteen faculty members (32.0%) strongly agreed that EBD is a process of making decisions based on scientifically proven evidence. Fifteen faculty members (30.0%) strongly disagreed or disagreed with the item stating that the best and quickest way to find evidence is by reading textbooks or asking experienced colleagues. Thirteen faculty members (26.0%) strongly agreed that EBD allows dentists to improve their scientific knowledge and clinical skills. It is recommended that EBD be included in undergraduate and postgraduate curricula and in intensive continuing dental education programs that are conducted for dental faculty members.

  9. Synthesis and Examination of Nanocomposites Based on Poly(2-hydroxyethyl methacrylate) for Medicinal Use

    Science.gov (United States)

    Kukolevska, Olena S.; Gerashchenko, Igor I.; Borysenko, Mykola V.; Pakhlov, Evgenii M.; Machovsky, Michal; Yushchenko, Tetyana I.

    2017-02-01

    Preparation of poly(2-hydroxyethyl methacrylate) (PHEMA) based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC) such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1) directly, or (2) with a solution of colloidal silica, or (3) through immobilization on silica (sol-densil). Morphology of prepared materials was investigated by laser scanning microscopy and low-vacuum scanning electron microscopy. In vacuum freeze-drying, prior imaging was proposed for improving visualization of the porous structure of composites. The interaction between PHEMA matrix and silica filler was investigated by IR spectroscopy. Adsorption of 2-hydroxyethyl methacrylate and BAC from aqueous solution on the silica surface was also examined. Phase composition and thermal stability of composites were studied by the differential thermogravimetry/differential thermal analysis. Release of BAC into water medium from prepared composites were shown to depend on the synthetic method and differed significantly. Obtained PHEMA-base materials which are characterized by controlled release of BAC have a strong potential for application in manufacturing of different surgical devices like implants, catheters and drainages.

  10. Chitosan-based copper nanocomposite accelerates healing in excision wound model in rats.

    Science.gov (United States)

    Gopal, Anu; Kant, Vinay; Gopalakrishnan, Anu; Tandan, Surendra K; Kumar, Dinesh

    2014-05-15

    Copper possesses efficacy in wound healing which is a complex phenomenon involving various cells, cytokines and growth factors. Copper nanoparticles modulate cells, cytokines and growth factors involved in wound healing in a better way than copper ions. Chitosan has been shown to be beneficial in healing because of its antibacterial, antifungal, biocompatible and biodegradable polymeric nature. In the present study, chitosan-based copper nanocomposite (CCNC) was prepared by mixing chitosan and copper nanoparticles. CCNC was applied topically to evaluate its wound healing potential and to study its effects on some important components of healing process in open excision wound model in adult Wistar rats. Significant increase in wound contraction was observed in the CCNC-treated rats. The up-regulation of vascular endothelial growth factor (VEGF) and transforming growth factor-beta1(TGF-β1) by CCNC-treatment revealed its role in facilitating angiogenesis, fibroblast proliferation and collagen deposition. The tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) were significantly decreased and increased, respectively, in CCNC-treated rats. Histological evaluation showed more fibroblast proliferation, collagen deposition and intact re-epithelialization in CCNC-treated rats. Immunohistochemistry of CD31 revealed marked increase in angiogenesis. Thus, we concluded that chitosan-based copper nanocomposite efficiently enhanced cutaneous wound healing by modulation of various cells, cytokines and growth factors during different phases of healing process.

  11. Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students

    Science.gov (United States)

    Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina

    2007-03-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  12. CRYSTALLIZATION KINETICS OF POLYMERIC NANOCOMPOSITES BASED ON POLYAMIDE 12 MODIFIED BY Cr2O3 NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    E. S. Shapoval

    2014-09-01

    Full Text Available In situ polymerization method is used for obtaining polymeric composites based on polyamide12 matrix (PA 12, filled with Cr2O3 nanoparticles. The carried out researches result in synthesis method development for polymeric nanocomposites based on PA 12 matrix filled with nano-sized Cr2O3magnetic particles providing uniform embedding of the filler into polymeric matrix without formation of nanoparticles agglomerates. Mechanical tests on samples compression are carried out. It is shown that mechanical properties of polymeric composites (Young’s modulus, durability limit are decreased for 20-30 % as compared with not modified PA 12 synthesized by means of the chosen method. The influence of the filler on crystallization morphology and kinetics of polymeric nanocomposites is determined by electron microscopy and differential scanning calorimetry. The values of crystallization degree, crystallization rate constant for different supercooling intervals and parameters of Avrami equation are obtained. The initial nucleation is shown to be going on according to non-thermal mechanism, and nanoparticles are not the germs of crystallization. It is stated that nanoparticles are embedded into polymeric matrix and uniformly allocated in crystallites. Research results can find their application at creation of electric and magnetic fields, micro-sized mechanical devices, and at development of new materials for 3D printers.

  13. Waste to Want: Polymer nanocomposites using nanoclays extracted from Oil based drilling mud waste

    Science.gov (United States)

    Adegbotolu, Urenna V.; Njuguna, James; Pollard, Pat; Yates, Kyari

    2014-08-01

    Due to the European Union (EU) waste frame work directive (WFD), legislations have been endorsed in EU member states such as UK for the Recycling of wastes with a vision to prevent and reduce landfilling of waste. Spent oil based drilling mud (drilling fluid) is a waste from the Oil and Gas industry with great potentials for recycling after appropriate clean-up and treatment processes. This research is the novel application of nanoclays extracted from spent oil based drilling mud (drilling fluid) clean-up as nanofiller in the manufacture of nanocomposite materials. Research and initial experiments have been undertaken which investigate the suitability of Polyamide 6 (PA6) as potential polymer of interest. SEM and EDAX were used to ascertain morphological and elemental characteristics of the nanofiller. ICPOES has been used to ascertain the metal concentration of the untreated nanofiller to be treated (by oil and heavy metal extraction) before the production of nanocomposite materials. The challenges faced and future works are also discussed.

  14. Synthesis and Study of Optical properties of MgO based TM oxide (TM=Cu, Mn and Zn) nanocomposites

    Science.gov (United States)

    Tamizh Selvi, K.; Alamelumangai, K.; Priya, M.; Rathnakumari, M.; Kumar, P. Suresh; Sagadevan, Suresh

    2016-11-01

    A nanocomposite of MgO based transition metal (TM) oxide (TM=Zn, Mn, and Cu) was synthesized using sol-gel method. The powder x-ray diffraction confirmed the phase purity and particle size. The surface morphology and elemental composition were examined by High resolution scanning electron microscopy and energy-dispersive x-ray spectroscopy. The change in optical band gap of the synthesized nanocomposites, by increasing the Mg content was determined using UV-vis spectra and the luminescent properties were analyzed using photoluminescence spectra.

  15. S-Layer-Based Nanocomposites for Industrial Applications.

    Science.gov (United States)

    Raff, Johannes; Matys, Sabine; Suhr, Matthias; Vogel, Manja; Günther, Tobias; Pollmann, Katrin

    This chapter covers the fundamental aspects of bacterial S-layers: what are S-layers, what is known about them, and what are their main features that makes them so interesting for the production of nanostructures. After a detailed introduction of the paracrystalline protein lattices formed by S-layer systems in nature the chapter explores the engineering of S-layer-based materials. How can S-layers be used to produce "industry-ready" nanoscale bio-composite materials, and which kinds of nanomaterials are possible (e.g., nanoparticle synthesis, nanoparticle immobilization, and multifunctional coatings)? What are the advantages and disadvantages of S-layer-based composite materials? Finally, the chapter highlights the potential of these innovative bacterial biomolecules for future technologies in the fields of metal filtration, catalysis, and bio-functionalization.

  16. Solid Propellant Burn Rate Modifiers Based on Reactive Nanocomposite Materials

    Science.gov (United States)

    2010-10-26

    NaNO3 Al x x* x* x x x x** Mg x x x Al0.5Mg0.5 x MgH2 x x Si x x x Zr x x x x 2B·Ti*** x** Reactive Metal-Metalloid...composites B Reactive metals: Ti, Zr, Hf Nanostructured Al-based alloys Al Alloying components: W, Hf, Mg, MgH2 , Ti, Li, Zr, C * Metal-rich

  17. Dental students' HIV/AIDS-related knowledge, attitudes, and intentions: impact of the U.S. Health Resources and Services Administration's community-based dental partnership program.

    Science.gov (United States)

    Hamershock, Rose A; Rajabiun, Serena; Fox, Jane E; Mofidi, Mahyar; Abel, Stephen N; York, Jill A; Kunzel, Carol; Sanogo, Moussa; Mayfield, Theresa G

    2014-08-01

    Access to oral health care for vulnerable populations is one of the concerns addressed by the U.S. Health Resources and Services Administration HIV/AIDS Bureau's Community-Based Dental Partnership Program (CBDPP). The program introduces dental students and residents at several dental schools to care for vulnerable patients through didactic and clinical work in community-based dental settings. This study of the dental students and residents in this program answered three questions: 1) What are their HIV knowledge, attitudes, and behaviors? 2) How has participation in the CBDPP impacted their knowledge, attitudes, and behaviors? 3) Has the intervention affected their work placement decisions and attitudes after graduation, particularly with respect to treating people living with HIV and other underserved populations? A total of 305 first- through fourth-year dental students and first- and second-year residents at five dental schools across the United States completed surveys before and after a community-based rotation and following graduation. Response rates at each of the five schools ranged from 82.4 to 100 percent. The results showed an increase in the participants' knowledge and positive attitudes regarding treatment for patients with HIV and other vulnerable populations post-rotation compared to pre-rotation. Results after graduation found that most respondents were practicing in private settings or in academic institutions as residents but were willing to treat a diverse patient population. These findings support the role of training programs, such as the CBDPP, for expanding the dental workforce to treating vulnerable populations including people living with HIV/AIDS.

  18. Development of nanocomposites based on potato starch; Desenvolvimento de nanocompositos a base de amido de batata

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Luciana Macedo; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-07-01

    Nanocomposites of potato starch were prepared by the solution intercalation method with the addition of organically modified montmorillonite clay (Viscogel B and unmodified sodic clay (NT25) as well as modified and unmodified silica (R972 and A200, respectively), using water as the solvent. The nanocomposites were characterized by conventional techniques of X-ray diffraction and thermogravimetric analysis. They were also characterized using the non-conventional low-field nuclear magnetic resonance, which is an effective alternative technique for characterizing nanocomposites. This technique allows one to investigate dispersion of nanofillers by the degree of intercalation and/or exfoliation, in addition to determine the distribution of nanoparticles in the polymer matrix and modifications of the molecular mobility of these fillers. The nanostructured materials obtained with the clays presented good dispersion and formation of mixed nanomaterials, with different degrees of intercalation and exfoliation. The mobility of the material decreased upon adding silica in the starch matrix, which applied to both types of silica. From the TGA technique, a slight increase in thermal stability of the nanocomposite was noted in relation to the starch matrix. (author)

  19. Influence of dispersion states on the performance of polymer-based nanocomposites

    Science.gov (United States)

    Khodaparast, Payam; Ounaies, Zoubeida

    2014-10-01

    Although nanoparticle-modified polymers have tremendous promise in many applications, particularly dielectric energy storage, true nanoscale dispersion is extremely difficult to achieve. In this paper, we carefully engineer various dispersion states of titania nanoparticles in polyvinylidene fluoride and analyze their impact on dielectric behavior and energy storage ability. In particular, we compare nanocomposites prepared using commercially available nanoparticles to those we prepared using in situ and ex situ synthesis of nanoparticles. SEM and TEM studies showed that the in situ case leads to the best dispersion. Interestingly, dielectric permittivity was most influenced by dispersion state where the in situ case showed a higher increase, however, dielectric breakdown and energy storage density were less affected by dispersion and more affected by procedure that minimized residues and impurities. The in situ technique, in particular, showed nanoscale dispersion, low dielectric loss and higher energy storage density. In terms of mechanical behavior, all three cases showed a similar performance in the rubbery region, whereas the impact of dispersion was more pronounced in the glassy region. In fact, the trend was opposite to the dielectric permittivity where nanoscale dispersion resulted in a lower storage modulus likely due to the lower effective mechanical load transfer going to the nanoscale. The results of our study shed some light on the role of dispersion quality and processing techniques in affecting the final dielectric, mechanical and breakdown behavior of TiO2-based polymer nanocomposites.

  20. Photoluminescent nanocomposite materials based on SBMA copolymer and CdS

    Science.gov (United States)

    Iovu, M.; Enachescu, M.; Culeac, I.; Verlan, V.; Robu, S.; Bojin, D.; Nistor, Iu.; Cojocaru, I.

    2015-02-01

    We present experimental results on copolymer-based nanocomposite made of styrene with butyl methacrylate (SBMA) (1:1) and inorganic semiconductor CdS. Thin film composite samples have been characterized by UV-Vis absorption and photoluminescent spectroscopy, as well as by transmission electron microscopy. Transmission electron microscope (TEM) examination confirms a relatively narrow distribution of CdS nanoclusters in the SBMA matrix, which covers the range 2-10 nm. On the other side, the average CdS particles size estimated from the position of first excitonic peak in the UV-Vis absorption spectrum was found to be 2.8 nm and 4.4 nm for two samples with different duration of thermal treatment, which is in good agreement with photoluminescence (PL) experimental data. The PL spectrum for CdS nanocrystals is dominated by near-band-edge emission. The relatively narrow line width (40-45 nm) of the main PL band suggests the nanoparticles having narrow size distribution. On the other side, relatively low PL emission from surface trap states at longer wavelengths were observed in the region 500-750 nm indicating on recombination on defects. Key words: nanocomposite, polymer matrix, photoluminescence,

  1. A novel graphene based nanocomposite for application in 3D flexible micro-supercapacitors

    Science.gov (United States)

    Marasso, S. L.; Rivolo, P.; Giardi, R.; Mombello, D.; Gigot, A.; Serrapede, M.; Benetto, S.; Enrico, A.; Cocuzza, M.; Tresso, E.; Pirri, C. F.

    2016-06-01

    In this work a hybrid graphene-based flexible micro-supercapacitor (MSC) exploiting a novel composite material was fabricated and extensively characterized. The MSC electrodes have been obtained from a synthesized composite aerogel of reduced graphene oxide and polycrystalline nanoparticles of molybdenum (IV) oxide (MoO2) and then dispersed in a solution containing poly(3,4-ethylenedioxythiophene) (PEDOT). Usually in MSCs the electrons have to percolate through the nanostructured Three-dimensional (3D) matrix in order to reach the collectors, made by metal thin films that provide electrical contacts only on the surface of active material. In the attempt to enable a more efficient charge transfer and to allow direct electrical contact without metal deposition, in this study a highly doped PEDOT acting both as current collector and as binder for the nanocomposite material has been employed. 3D MSCs were fabricated through a Lithographie, Galvanoformung, Abformung (LIGA)-like process to obtain high aspect ratio microstructures in polydimethylsiloxane replicas. Capacitance values of 94 F g-1 for the nanocomposite and of 14 mF cm-2 for the device were achieved. Moreover, bending test has demonstrated good performance preservation in a U shape conformation of the device.

  2. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion.

    Science.gov (United States)

    Prabhakar, Nirmal; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-01

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV-Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80-92% recovery of malathion from the lettuce leaves and soil sample.

  3. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites.

    Science.gov (United States)

    Meyers, Frederick N; Loh, Kenneth J; Dodds, John S; Baltazar, Arturo

    2013-05-10

    This study investigated the design and performance of piezoelectric nanocomposite-based interdigitated transducers (IDTs) for active sensing and damage detection. First, thin films that are highly piezoelectric and mechanically flexible were designed by embedding zinc oxide (ZnO) nanoparticles in a poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) piezo-polymer matrix. Second, the suspended nanoparticle solutions were then spin coated onto patterned comb electrodes to fabricate the IDTs. The films were then poled to align their electric domains and to increase their permanent piezoelectricity. Upon IDT fabrication, its sensing and actuation of Lamb waves on an aluminum pipe was validated. These results were also compared to data obtained from commercial Macro Fiber Composite IDT transducers. In the last phase of this work, damage detection was demonstrated by mounting these nanocomposite sensors and actuators (using a pitch-catch setup) onto an aluminum pipe and plate. Damage was simulated by tightening a band clamp around the pipe and by drilling holes in the plate. A damage index calculation was used to compare results corresponding to different levels of damage applied to the plate (i.e., different drilled hole depths), and good correlation was observed. Thus, ZnO/PVDF-TrFE transducers were shown to have the potential for use as piezoelectric transducers for structural health monitoring and damage detection.

  4. Very High Output Thermoelectric Devices Based on ITO Nanocomposites

    Science.gov (United States)

    Fralick, Gustave; Gregory, Otto J.

    2009-01-01

    A material having useful thermoelectric properties was synthesized by combining indium-tin-oxide (ITO) with a NiCoCrAlY alloy/alumina cermet. This material had a very large Seebeck coefficient with electromotive-force-versustemperature behavior that is considered to be excellent with respect to utility in thermocouples and other thermoelectric devices. When deposited in thin-film form, ceramic thermocouples offer advantages over precious-metal (based, variously, on platinum or rhodium) thermocouples that are typically used in gas turbines. Ceramic thermocouples exhibit high melting temperatures, chemical stability at high temperatures, and little or no electromigration. Oxide ceramics also resist oxidation better than metal thermocouples, cost substantially less than precious-metal thermocouples, and, unlike precious-metal thermocouples, do not exert catalytic effects.

  5. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  6. Automatic Tooth Segmentation of Dental Mesh Based on Harmonic Fields

    Directory of Open Access Journals (Sweden)

    Sheng-hui Liao

    2015-01-01

    Full Text Available An important preprocess in computer-aided orthodontics is to segment teeth from the dental models accurately, which should involve manual interactions as few as possible. But fully automatic partition of all teeth is not a trivial task, since teeth occur in different shapes and their arrangements vary substantially from one individual to another. The difficulty is exacerbated when severe teeth malocclusion and crowding problems occur, which is a common occurrence in clinical cases. Most published methods in this area either are inaccurate or require lots of manual interactions. Motivated by the state-of-the-art general mesh segmentation methods that adopted the theory of harmonic field to detect partition boundaries, this paper proposes a novel, dental-targeted segmentation framework for dental meshes. With a specially designed weighting scheme and a strategy of a priori knowledge to guide the assignment of harmonic constraints, this method can identify teeth partition boundaries effectively. Extensive experiments and quantitative analysis demonstrate that the proposed method is able to partition high-quality teeth automatically with robustness and efficiency.

  7. Automatic Tooth Segmentation of Dental Mesh Based on Harmonic Fields.

    Science.gov (United States)

    Liao, Sheng-hui; Liu, Shi-jian; Zou, Bei-ji; Ding, Xi; Liang, Ye; Huang, Jun-hui

    2015-01-01

    An important preprocess in computer-aided orthodontics is to segment teeth from the dental models accurately, which should involve manual interactions as few as possible. But fully automatic partition of all teeth is not a trivial task, since teeth occur in different shapes and their arrangements vary substantially from one individual to another. The difficulty is exacerbated when severe teeth malocclusion and crowding problems occur, which is a common occurrence in clinical cases. Most published methods in this area either are inaccurate or require lots of manual interactions. Motivated by the state-of-the-art general mesh segmentation methods that adopted the theory of harmonic field to detect partition boundaries, this paper proposes a novel, dental-targeted segmentation framework for dental meshes. With a specially designed weighting scheme and a strategy of a priori knowledge to guide the assignment of harmonic constraints, this method can identify teeth partition boundaries effectively. Extensive experiments and quantitative analysis demonstrate that the proposed method is able to partition high-quality teeth automatically with robustness and efficiency.

  8. Predictive analysis of chitosan-based nanocomposite biopolymers elastic properties at nano- and microscale.

    Science.gov (United States)

    Kossovich, Elena L; Safonov, Roman A

    2016-04-01

    Chitosan nanocomposites mechanical properties play a major role in usage of such materials for specific areas of application, mostly in medicine and development of ecologically-friendly production. Computer-based predictive modelling of such composites will reduce costs of their development. In this paper, a multiscale approach for structural characterization and evaluation of mechanical properties is proposed based on hybrid coarse-grained/all atom molecular dynamics. Chitosan films and fibers are constructed and studied in silico as well as chitosan composites with different types of randomly distributed reinforcing fillers (graphene nanoparticles, graphene oxide nanoparticles, carbon nanotubes, chitin nanoparticles). Young's moduli are found for such composites, degrees of improvement of mechanical properties and size effects within the framework of proposed methodology are discussed.

  9. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    Directory of Open Access Journals (Sweden)

    V. Jovanov

    2017-02-01

    Full Text Available The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %, was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency after the water rinsing procedure.

  10. Restored viability and function of dental pulp cells on poly-methylmethacrylate (PMMA)-based dental resin supplemented with N-acetyl cysteine (NAC).

    Science.gov (United States)

    Kojima, N; Yamada, M; Paranjpe, A; Tsukimura, N; Kubo, K; Jewett, A; Ogawa, T

    2008-12-01

    This study examines cytotoxicity of poly-methylmethacrylate (PMMA)-based dental temporary filling resin to dental pulp cells, and the potential amelioration of the toxicity with an anti-oxidant amino-acid, N-acetyl cysteine (NAC). Dental pulp cells extracted from rat maxillary incisors were cultured on the resin material with or without NAC incorporation, or on the polystyrene. The cultures were supplied with osteoblastic media, containing dexamethasone. Forty five percent of cells on the PMMA dental resin were necrotic at 24h after seeding. However, this percentage was reduced to 27% by incorporating NAC in the resin, which was the level equivalent to that in the culture on polystyrene. The culture on the untreated resin was found to be negative for alkaline phosphate (ALP) activity at days 5 and 10 or von Kossa mineralized nodule formation at day 20. In contrast, some areas of the cultures on NAC-incorporated resin substrates were ALP and von Kossa positive. Collagen I and dentin sialoprotein genes were barely expressed in day 7 culture on the untreated resin. However, those genes were expressed in the culture on the resin with NAC. These results suggest that the decreased cell viability and the nearly completely suppressed odontoblast-like cell phenotype of dental pulp cells cultured on PMMA dental resin can be salvaged to a biologically significant degree by the incorporation of NAC in the resin.

  11. From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites.

    Science.gov (United States)

    Goffin, Anne-Lise; Raquez, Jean-Marie; Duquesne, Emmanuel; Siqueira, Gilberto; Habibi, Youssef; Dufresne, Alain; Dubois, Philippe

    2011-07-11

    In the present work, cellulose nanowhiskers (CNWs), extracted from ramie fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of l-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. It was clearly evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.

  12. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    Science.gov (United States)

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  13. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue

    Directory of Open Access Journals (Sweden)

    Letizia Ferroni

    2015-03-01

    Full Text Available Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D hyaluronan scaffold and human dental pulp stem cells (DPSCs to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  14. Analysis of the Permanent Tooth Eruption and Contraction of Dental Caries Based on Physical Development in School Children

    OpenAIRE

    相澤 徳久; 結城 昌子; アイザワ ノリヒサ; ユキ マサコ; Aizawa, Norihisa; Masako YUKI

    2006-01-01

    We performed a cohort study on the physical development, eruption of permanent teeth, and contraction of dental caries in school children. To establish criteria for the effective maintenance of dental hygiene, we analyzed the relationship between the eruption of permanent teeth and contraction of dental caries based on the physical development. The subjects were 373 elementary school children in Koriyama City, consisting of 215 boys and 158 girls, who were examined from their first to sixth g...

  15. [Current status and further prospects of dental resin-based materials with antibacterial properties].

    Science.gov (United States)

    Shi, X; Lu, H B; Mao, J; Gong, S Q

    2016-09-01

    The mode of dental antibacterial resin-based materials can be divided into two types, namely, single and combined antibacterial mode. With regard to single antibacterial mode, only one kind of antibacterial agent is added into the resin, which can be released or act as contacting antibacterial agent. The single mode resin has limitation in sterilization methods and effect. As for combined antibacterial mode, it is a combination of different types of biocides and thus maximizes the sterilizing effect, including the releasing antibacterial agent incorporated with the contacting antibacterial agent or antibacterial agents combined with calcium compound possessing biological mineralization function. In this paper, current status and further prospects of dental resin-based materials with antibacterial properties are reviewed from the perspectives of single and combined antibacterial modes to provide guidance for dental antibacterial resin material research.

  16. Dental emergencies in a university-based pediatric dentistry postgraduate outpatient clinic: a retrospective study.

    Science.gov (United States)

    Agostini, F G; Flaitz, C M; Hicks, M J

    2001-01-01

    The purpose of this retrospective study was to determine the prevalence and types of dental emergencies occurring in a university-based, pediatric dentistry postgraduate outpatient clinic. All patients presenting for emergency dental care during scheduled clinic hours over a three year were identified, and their charts were retrieved. Each record was reviewed for demographic information, chief complaint and clinical diagnosis. Only those charts with both chief complaints and clinical diagnoses recorded were included in this study. A total of 816 patients received emergency care, representing 15.3 percent of all patient treated during the study period. The patient population had a slight female predilection (53 percent female, 47 percent male) and a mean age of 5.1 years (range 10 days to 15 years). Ethnicity (39 percent African-American, 36 percent Hispanic, 24 percent Caucasian emergency visit was their first dental visit. Reasons for seeking emergency included 1) pain or discomfort due to caries [30.1 percent] with 27 percent due to early childhood caries; 2) dental trauma [23 percent];3) eruption difficulties [18 percent] with 27 percent due to early childhood caries; 2) dental trauma [23 percent];3 eruption difficulties [18 percent];4) soft tissue pathoses [16 percent]; 5) problems with orthodontic appliances or space maintainers [10 percent]; and 6) lost restorations [2 percent]. Pain and bleeding were the most common reasons for seeking emergency dental care. Most causes for seeking outpatient emergency dental care are disease processes which may be avoided by infant oral health and preventive dentistry programs and early treatment intervention.

  17. Outcome-Based Quality Control by a Dental Reference Profile of a Population-Based Study (SHIP-0)

    Science.gov (United States)

    Samietz, Stefanie; Söhnel, Andreas; Schwahn, Christian; Holtfreter, Birte; Mundt, Torsten; Meisel, Peter; Hoffmann, Wolfgang; Kocher, Thomas; Biffar, Reiner

    2015-01-01

    Objectives. The aim was to develop an instrument for quality control in dental practices. We compared the number of teeth of subjects of the Study of Health in Pomerania (SHIP-0) with those from patients of dental practices. Methods. Patients from seven dental practices (n = 1,497) were randomly sampled by age strata and gender for a period of two years. Dental status derived from patient files was transformed into practice profiles using age-specific number of teeth as a parameter. Practice profiles were compared with a nomogram, which was based on the age-specific number of teeth of 3,990 SHIP-0 participants regularly visiting the dentist. Further, negative binomial regression models were evaluated to model associations between the number of teeth with age and dental practices, including interactions. Results. The practice profiles ranged between the 45th and 95th quantile curves of the reference population SHIP-0. The rate ratios (RR) for the number of missing teeth ranged from 0.37 to 0.67 (p < 0.001) between the different dental practices, indicating lower risk for higher numbers of missing teeth in comparison to SHIP-0. Conclusions. This study showed considerable differences between dental practices and the reference population of SHIP-0 regarding the pattern of tooth loss and confirms the value of nomograms to compare age-specific numbers of teeth between patients of dental practices and a population-based-study as a tool for quality control. For further analyses, the socioeconomic status of patients and relevant risk factors will be used to adjust for structural differences in order to improve the validity of the comparisons. PMID:27347549

  18. Mechanical and thermomechanical properties of polycarbonate-based polyurethane-silica nanocomposites

    Directory of Open Access Journals (Sweden)

    Rafał Poręba

    2011-09-01

    Full Text Available In this work aliphatic polycarbonate-based polyurethane-silica nanocomposites were synthesized and characterized. The influence of the type and of the concentration of nanofiller differing in average particle size (7 nm for Aerosil 380 and 40 nm for Nanosilica 999 on mechanical and thermomechanical properties was investigated. DMTA measurements showed that Nanosilica 999, irrespective of its concentration, slightly increased the value of the storage shear modulus G’ but Aerosil 380 brings about a nearly opposite effect, the shear modulus in the rubber region decreases with increasing filler content. Very high elongations at break ranging from 800% to more than 1000%, as well as high tensile strengths illustrate excellent ultimate tensile properties of the prepared samples. The best mechanical and thermomechanical properties were found for the sample filled with 0.5 wt.% of Nanosilica 999.

  19. Organophilic bentonites based on Argentinean and Brazilian bentonites: part 2: potential evaluation to obtain nanocomposites

    Directory of Open Access Journals (Sweden)

    L. B. Paiva

    2012-12-01

    Full Text Available This work describes the preparation of composites of polypropylene and organophilic bentonites based on Brazilian and Argentinean bentonites. During the processing of the samples in a twin screw microextruder, torque and pressures of the extruder were accompanied and the viscosity values were calculated. No significant changes in the torque, pressure and viscosity were found for composites prepared with different bentonites. The samples were characterized by XRD and TEM to evaluate the structure and dispersion of the organophilic bentonites. Composites with exfoliated, partially exfoliated and intercalated structures were obtained and correlations between the intrinsic properties of the sodium clays and organophilic bentonites and their influence on the composites were studied. The cation exchange capacity of the sodium bentonites and the swelling capacity of the organophilic bentonites were the most important properties to obtain exfoliated structures in composites. All bentonites showed the potential to obtain polymer nanocomposites, but the ones from Argentina displayed the best results.

  20. Nanocomposite tantalum-carbon-based films deposited by femtosecond pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Benchikh, N. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Garrelie, F. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Wolski, K. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SMS - URA CNRS 5146, 158 cours Fauriel, 42023 Saint-Etienne, Cedex 02 (France); Donnet, C. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France)]. E-mail: Christophe.Donnet@univ-st-etienne.fr; Fillit, R.Y. [Ecole Nationale Superieure des Mines de Saint-Etienne, Centre SMS - URA CNRS 5146, 158 cours Fauriel, 42023 Saint-Etienne, Cedex 02 (France); Rogemond, F. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Subtil, J.L. [Laboratoire Traitement du Signal et Instrumentation, UMR 5516, Universite J. Monnet, 10 rue Barrouin, 42000 Saint-Etienne (France); Rouzaud, J.N. [Laboratoire de Geologie de l' Ecole Normale Superieure de Paris 24, rue Lhomond 75231-Paris Cedex 5 (France); Laval, J.Y. [Laboratoire de Physique du Solide, UPR5 CNRS-ESPCI, 10 rue Vauquelin 75231-Paris Cedex 05 (France)

    2006-01-03

    Nanostructured coatings of metal (tantalum) containing diamond-like carbon (a-C:Ta) have been prepared by femtosecond pulsed laser deposition (PLD). The films, containing 15 at.% tantalum, have been deposited by ablating sequentially graphite and metallic tantalum in vacuum conditions with an amplified Ti:sapphire laser. The coatings have been investigated by X-ray photoelectron spectroscopy, grazing angle X-ray diffraction, energy filtered transmission electron microscopy, scanning and high resolution transmission electron microscopies. Evidence of metallic {alpha}-Ta and {beta}-Ta particles (diameter in the 100 nm range) and smaller quasi-amorphous tantalum clusters embedded in the carbonaceous matrix have been shown. A thin tantalum carbide interface between the carbon matrix and the top surface of the tantalum nodules has also been identified. The ability of femtosecond pulsed laser deposition to synthetize nanocomposite carbon-based films and to control their nanostructure is discussed.

  1. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  2. Self-healing phenomenon and dynamic hardness of C60-based nanocomposite coatings.

    Science.gov (United States)

    Penkov, Oleksiy V; Pukha, Volodymyr E; Devizenko, Alexander Yu; Kim, Hae-Jin; Kim, Dae-Eun

    2014-05-14

    The phenomenon of surface self-healing in C60-based polymer coatings deposited by ion-beam assisted physical vapor deposition was investigated. Nanoindentation of the coatings led to the formation of a protrusion rather than an indent. This protrusion was accompanied by an abnormal shape of the force-distance curve, where the unloading curve lies above the loading curve due to an additional force applied in pulling the indenter out of the media. The coatings exhibited a nanocomposite structure that was strongly affected by the ratio of C60 ion and C60 molecular beam intensities during deposition. The coatings also demonstrated the dynamic hardness effect, where the effective value of the hardness depends significantly on the indentation speed.

  3. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, Alessandro [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Camarchia, Vittorio, E-mail: vittorio.camarchia@polito.it [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Electronics and Telecommunications Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Quaglia, Roberto; Pirola, Marco [Electronics and Telecommunications Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Pandolfi, Paolo [Politronica Inkjet Printing S.r.l., C/O i3p, Corso Castelfidardo 30/A, 10129 Torino (Italy); Pirri, Candido Fabrizio [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Applied Science and Technology Department, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2014-12-05

    Highlights: • Polymer–silver nanocomposite conductive ink for RF fast prototyping. • Reduction of the sintering temperature. • Improved printing resolution. • State-of-the-art electrical conductivity. • Good RF performances. - Abstract: The development of highly conductive Ag nanoparticle (NP)-based inkjet printed (IP) connections is a fundamental process for the success of next-generation digitally printed electronics. This is true both at low frequency and at RF, considering the increasing integration of heterogeneous technologies and the use of flexible substrates. Ink-based technologies provide and form at liquid state the functional material that is then delivered to solid via a sintering process to achieve NP coalescence and electrical percolation. Sintering must be performed at very low temperatures (depending on the substrate choice) to be compatible with previous process steps, to preserve the geometry and fulfill the requirements in term of electrical conductivity, as well as to reduce production costs. While IP, as additive technology, is now well settled for DC or low frequency applications, few results on electrical characterization at RF or microwave frequencies are present due to low conductivity, poor geometry definition and low reproducibility. Hence, a good setup of ink formulation and technological realization is fundamental to enable system performance assessment in the high frequency regime. In this paper we propose a breakthrough: we present a nanocomposite ink, whose thermal and DC electrical properties are extremely interesting and competitive with pure-metallic ink systems. Introducing a copolymer in the formulation, we obtained a reduction of the overall sintering temperature, if compared to the pristine NP suspension, along with improved printing resolution together with very good electrical conductivity. The RF characterization has been performed in the range 1–6 GHz on geometries printed on sintered alumina and on a power

  4. SnO2-SrO based nanocomposites and their photocatalytic activity for the treatment of organic pollutants

    Science.gov (United States)

    Sultana, Saima; Rafiuddin; Khan, Mohammad Zain; Umar, Khalid; Ahmed, Arham S.; Shahadat, Mohammad

    2015-10-01

    The present paper reports development of SnO2-SrO based nanocomposites using facile hydrothermal and sol-gel method. Nanocomposites were characterized on the basis of X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Studies (EDS), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR), Thermal Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) techniques. The materials were explored for the photocatalytic activity regarding the treatment of organic pollutants viz-azo-dye, pesticide and drug. In addition, a comparative study was performed in term of particle size using hydrothermal and sol-gel route. It was observed that hydrothermal route showed an improved particle size, which affects the photocatalytic activity, porosity and crystalline nature of the nanocomposite. Further, kinetic and thermodynamic parameters were also calculated for the photodegradation experiments. It was found that the rate of photodegradation reaction followed the pseudo-first order kinetics and the highest rate was observed for azo-dye while it was lowest for the drug. A negative values of the Gibbs free energy (ΔG) show that the photodegradation proceeds with a net decrease in free energy of the system. The results of photodegradation of dye, pesticide and drug indicate that nanocomposites of SnO2-SrO can be effectively applied for the treatment of organic pollutants.

  5. Fire and Gas Barrier Properties of Poly(styrene-co-acrylonitrile Nanocomposites Using Polycaprolactone/Clay Nanohybrid Based-Masterbatch

    Directory of Open Access Journals (Sweden)

    S. Benali

    2008-01-01

    Full Text Available Exfoliated nanocomposites are prepared by dispersion of poly(ε-caprolactone (PCL grafted montmorillonite nanohybrids used as masterbatches in poly(styrene-co-acrylonitrile (SAN. The PCL-grafted clay nanohybrids with high inorganic content are synthesized by in situ intercalative ring-opening polymerization of ε-caprolactone between silicate layers organomodified by alkylammonium cations bearing two hydroxyl functions. The polymerization is initiated by tin alcoholate species derived from the exchange reaction of tin(II bis(2-ethylhexanoate with the hydroxyl groups borne by the ammonium cations that organomodified the clay. These highly filled PCL nanocomposites (25 wt% in inorganics are dispersed as masterbatches in commercial poly(styrene-co-acrylonitrile by melt blending. SAN-based nanocomposites containing 3 wt% of inorganics are accordingly prepared. The direct blend of SAN/organomodified clay is also prepared for sake of comparison. The clay dispersion is characterized by wide-angle X-ray diffraction (WAXD, atomic force microscopy (AFM, and solid state NMR spectroscopy measurements. The thermal properties are studied by thermogravimetric analysis. The flame retardancy and gas barrier resistance properties of nanocomposites are discussed both as a function of the clay dispersion and of the matrix/clay interaction.

  6. Synthesis and Properties of Pulse Electrodeposited Lead-Free Tin-Based Sn/ZrSiO4 Nanocomposite Coatings

    Science.gov (United States)

    Bhattacharya, Sumit; Sharma, Ashutosh; Das, Siddhartha; Das, Karabi

    2016-03-01

    The Sn-based ZrSiO4 nanocomposite coatings have been synthesized by pulse co-electrodeposition technique from an aqueous electrolyte containing SnCl2·2H2O, C6H17N3O7, Triton X, and varying amounts of nano-sized ZrSiO4 particles (0, 5, 10, 15, 20, 25, 30, and 35 g/L). As-deposited films have been analyzed using X-ray diffraction, scanning electron microscope equipped with an energy dispersive X-ray spectrometer, and transmission electron microscope. The microhardness, wear as well as corrosion property of the coatings have been also evaluated. It is observed that the surface morphology of Sn-ZrSiO4 nanocomposite coatings is strongly dependent on the reinforcement concentration in the electrolyte, and the Sn-ZrSiO4 nanocomposite solder deposited from the electrolyte containing 25 g/L ZrSiO4 yields the highest hardness and the best wear and corrosion property among all the synthesized samples. The whisker growth propensity of the developed Sn-ZrSiO4 nanocomposites has also been examined after 90 days of aging at room temperature and reported here.

  7. Inorganic Nickel-Based Nanocomposites%无机镍纳米复合材料

    Institute of Scientific and Technical Information of China (English)

    林丽娟; 周苇; 郭林

    2011-01-01

    Nanocomposites have become hot issues in the field of nanomaterials due to their unique physical and chemical properties.As an important transitional metal nanomaterial,nickel material has been widely used in magnetics,electrochemistry,catalytic chemistry and other fields.The composites of nickel and other metals or oxides with improved inherent properties would show novel properties by the synergy of composition and nanostructure.Therefore,it is of scientific significance to study the nickel-based nanocomposites.Because of the differences of the combining positions and methods for different components in various nanostructures,the progress of nickel-based nanocomposites is reviewed according to three main structures,which are core-shell structure,supported structure,and multisegment nanowires.Based on the introduction to the various synthetic methods and structures,we summarize the advantages and disadvantages of these methods and composite structures,as well as probable applications.It will be helpful for preparing other similar nanocomposites.%纳米复合材料因具有独特的物理、化学性能而成为纳米领域研究的热点。镍纳米材料作为一种重要的过渡金属纳米材料,在磁学、电化学、催化等领域具有广泛的应用。将它与其他金属、氧化物等材料复合,一方面使其固有性质得到明显改善,另一方面利用其他组成和镍基材料的协同作用,可得到具有新特性的异质材料,因此研究镍基纳米复合材料的合成具有重要的科学意义。由于纳米材料的结构不同,其复合位置和复合方式均存在不同,本文按照复合材料的结构特征,分别从核壳型、负载型、多节段纳米线3种类型对镍纳米复合材料的研究进展进行评述,在介绍这些材料的合成方法、结构特点的基础上,综述各种方法、各类结构的优缺点及应用前景,为类似复合材料的合成提供借鉴。

  8. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys

    Institute of Scientific and Technical Information of China (English)

    Bo Chen; Gang Xia; Xin-Ming Cao; Jue Wang; Bi-Yao Xu; Pu Huang; Yue Chen; Qing-Wu Jiang

    2013-01-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of 〈 1 month of the restoration duration, among which higher Ni excretions were found in those with either a higher number of teeth replaced by dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of 〈1, 1 to 〈3 and 3 to 〈6 months, especially in those with a higher metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  9. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  10. Dental age estimation based on third molar eruption in First Nation people of Canada.

    Science.gov (United States)

    Schmeling, A; Olze, A; Pynn, B R; Kraul, V; Schulz, R; Heinecke, A; Pfeiffer, H

    2010-12-01

    Forensic age estimation of living subjects has become an increasing focus of interest in modern society. One main criterion for dental age estimation in the relevant age group is the evaluation of third molar eruption. The importance of ethnic variation in dental development requires population specific data for dental age evaluation. In the present study, we determined the stages of third molar eruption in 347 female and 258 male First Nations people of Canada aged 11 to 29 years based on radiological evidence from 605 conventional orthopantomograms. The results presented here provide data on the age of alveolar, gingival, and complete eruption of the third molars in the occlusal plane that can be used for forensic estimation of the minimum and most probable ages of investigated individuals.

  11. Benign Paroxysmal Positional Vertigo after Dental Procedures: A Population-Based Case-Control Study

    Science.gov (United States)

    Lin, Yueh-Wen; Sung, Pi-Yu; Chuang, Hsun-Yang; Liao, Wen-Ling

    2016-01-01

    Background Benign paroxysmal positional vertigo (BPPV), the most common type of vertigo in the general population, is thought to be caused by dislodgement of otoliths from otolithic organs into the semicircular canals. In most cases, however, the cause behind the otolith dislodgement is unknown. Dental procedures, one of the most common medical treatments, are considered to be a possible cause of BPPV, although this has yet to be proven. This study is the first nationwide population-based case-control study conducted to investigate the correlation between BPPV and dental manipulation. Methods Patients diagnosed with BPPV between January 1, 2007 and December 31, 2012 were recruited from the National Health Insurance Research Database in Taiwan. We further identified those who had undergone dental procedures within 1 month and within 3 months before the first diagnosis date of BPPV. We also identified the comorbidities of the patients with BPPV, including head trauma, osteoporosis, migraine, hypertension, diabetes, hyperlipidemia and stroke. These variables were then compared to those in age- and gender-matched controls. Results In total, 768 patients with BPPV and 1536 age- and gender-matched controls were recruited. In the BPPV group, 9.2% of the patients had undergone dental procedures within 1 month before the diagnosis of BPPV. In contrast, only 5.5% of the controls had undergone dental treatment within 1 month before the date at which they were identified (P = 0.001). After adjustments for demographic factors and comorbidities, recent exposure to dental procedures was positively associated with BPPV (adjusted odds ratio 1.77; 95% confidence interval 1.27–2.47). This association was still significant if we expanded the time period from 1 month to 3 months (adjusted odds ratio 1.77; 95% confidence interval 1.39–2.26). Conclusions Our results demonstrated a correlation between dental procedures and BPPV. The specialists who treat patients with BPPV should

  12. Benign Paroxysmal Positional Vertigo after Dental Procedures: A Population-Based Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Tzu-Pu Chang

    Full Text Available Benign paroxysmal positional vertigo (BPPV, the most common type of vertigo in the general population, is thought to be caused by dislodgement of otoliths from otolithic organs into the semicircular canals. In most cases, however, the cause behind the otolith dislodgement is unknown. Dental procedures, one of the most common medical treatments, are considered to be a possible cause of BPPV, although this has yet to be proven. This study is the first nationwide population-based case-control study conducted to investigate the correlation between BPPV and dental manipulation.Patients diagnosed with BPPV between January 1, 2007 and December 31, 2012 were recruited from the National Health Insurance Research Database in Taiwan. We further identified those who had undergone dental procedures within 1 month and within 3 months before the first diagnosis date of BPPV. We also identified the comorbidities of the patients with BPPV, including head trauma, osteoporosis, migraine, hypertension, diabetes, hyperlipidemia and stroke. These variables were then compared to those in age- and gender-matched controls.In total, 768 patients with BPPV and 1536 age- and gender-matched controls were recruited. In the BPPV group, 9.2% of the patients had undergone dental procedures within 1 month before the diagnosis of BPPV. In contrast, only 5.5% of the controls had undergone dental treatment within 1 month before the date at which they were identified (P = 0.001. After adjustments for demographic factors and comorbidities, recent exposure to dental procedures was positively associated with BPPV (adjusted odds ratio 1.77; 95% confidence interval 1.27-2.47. This association was still significant if we expanded the time period from 1 month to 3 months (adjusted odds ratio 1.77; 95% confidence interval 1.39-2.26.Our results demonstrated a correlation between dental procedures and BPPV. The specialists who treat patients with BPPV should consider dental procedures to be a

  13. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.r [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2011-07-15

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ({sup 1}H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu{sup 2+}) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: {yields} Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. {yields} Quenching effects by acids, Cu{sup 2+} and nitrobenzene in solution/film were evidenced. {yields} A fluorescence dequenching was observed for the composite with silsesquixane units. {yields} A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  14. Long-term performance of resin based fissure sealants placed in a general dental practice.

    NARCIS (Netherlands)

    Hevinga, M.; Opdam, N.J.M.; Bronkhorst, E.M.; Truin, G.J.; Huysmans, M.C.D.N.J.M.

    2010-01-01

    OBJECTIVES: The aim of the present retrospective study was to evaluate the long-term performance of resin based fissure sealants applied in a general dental practice. METHODS: Regularly attending patients visiting the practice between July 2006 until November 2007 and who had received sealants befor

  15. Developing a Competency-Based Curriculum for a Dental Hygiene Program.

    Science.gov (United States)

    DeWald, Janice P.; McCann, Ann L.

    1999-01-01

    Describes the three-step process used to develop a competency-based curriculum at the Caruth School of Dental Hygiene (Texas A&M University). The process involved development of a competency document (detailing three domains, nine major competencies, and 54 supporting competencies), an evaluation plan, and a curriculum inventory which defined…

  16. Dental Amalgam

    Science.gov (United States)

    ... and Medical Procedures Dental Devices Dental Amalgam Dental Amalgam Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Dental amalgam is a dental filling material which is used ...

  17. A comparative evaluation of microleakage of restorations using silorane-based dental composite and methacrylate-based dental composites in Class II cavities: An in vitro study

    Directory of Open Access Journals (Sweden)

    Jambai Sampath Kumar Sivakumar

    2016-01-01

    Full Text Available Aim: The aim of this in vitro study was to evaluate and compare the microleakage of restorations using low shrinkage silorane-based dental composite and methacrylate-based dental composites in Class II cavity at the occlusal and gingival margins. Materials and Methods: Sixty mandibular molars were collected and divided into three experimental groups and one negative control group. Class II slot cavity was prepared on the mesial surface. Experimental groups were restored with Group I: silorane-based microhybrid composite, Group II: methacrylate-based nanohybrid composite, and Group III: Methacrylate-based microhybrid composite, respectively. Group IV: negative control. The samples were thermocycled, root apices were sealed with sticky wax and coated with nail varnish except 1 mm around the restoration. This was followed by immersion in 2% Rhodamine-B dye solution under vacuum at room temperature for 24 h. Then, the samples were sectioned longitudinally in the mesiodistal direction and evaluated under stereomicroscope ×40 magnification. Scoring was done according to the depth of dye penetration in to the cavity. Statistical analysis of the data was done. Results: The results were that no statistically significant difference in the microleakage at the occlusal margin for all the restorative materials, whereas at the gingival margin, silorane-based microhybrid composite showed less microleakage than the methacrylate-based nano- and micro-hybrid composites. Conclusion: In general, silorane-based microhybrid composite had less microleakage among the other materials used in this in vitro study.

  18. Synchrotron-radiation-based X-ray micro-computed tomography reveals dental bur debris under dental composite restorations.

    Science.gov (United States)

    Hedayat, Assem; Nagy, Nicole; Packota, Garnet; Monteith, Judy; Allen, Darcy; Wysokinski, Tomasz; Zhu, Ning

    2016-05-01

    Dental burs are used extensively in dentistry to mechanically prepare tooth structures for restorations (fillings), yet little has been reported on the bur debris left behind in the teeth, and whether it poses potential health risks to patients. Here it is aimed to image dental bur debris under dental fillings, and allude to the potential health hazards that can be caused by this debris when left in direct contact with the biological surroundings, specifically when the debris is made of a non-biocompatible material. Non-destructive micro-computed tomography using the BioMedical Imaging & Therapy facility 05ID-2 beamline at the Canadian Light Source was pursued at 50 keV and at a pixel size of 4 µm to image dental bur fragments under a composite resin dental filling. The bur's cutting edges that produced the fragment were also chemically analyzed. The technique revealed dental bur fragments of different sizes in different locations on the floor of the prepared surface of the teeth and under the filling, which places them in direct contact with the dentinal tubules and the dentinal fluid circulating within them. Dispersive X-ray spectroscopy elemental analysis of the dental bur edges revealed that the fragments are made of tungsten carbide-cobalt, which is bio-incompatible.

  19. Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles.

    Science.gov (United States)

    Nasseri, Rasool; Mohammadi, Naser

    2014-06-15

    A comparative performance study of cellulose whiskers (CW) and starch nanoparticles (SN) on plasticized starch (PS) reinforcement has been presented. In order to study the involved surface phenomena, CW and SN were extracted through acid hydrolysis using sulfuric acid to fulfill the similar surface groups and interactions. CW-filled and SN-filled nanocomposites were then prepared with relatively identical process to alleviate the effect of fabrication method for better comparison of CW and SN performance on PS reinforcement. Morphology of nanoparticles and their dispersion state in the corresponding nanocomposites were investigated by transmission electron microscopy and field emission scanning electron microscopy, respectively. X-ray diffraction was used for crystallography of nanocomposites and established the transcrystallization only in CW-filled nanocomposites. Nanocomposites comprising quasi-spherical SNs showed higher reinforcement in dynamic mechanical tests compared to the corresponding nanocomposites containing rod-like CWs, which were attributed to more efficient filler/filler and filler/matrix interactions originated from hydrogen bonding in SN-filled nanocomposites.

  20. A novel multi-walled carbon nanotube (MWNT)-based nanocomposite for PEFC electrodes

    Indian Academy of Sciences (India)

    S Mohanapriya; K K Tintula; S D Bhat; S Pitchumani; P Sridhar

    2012-06-01

    A novel nanocomposite comprising MWNTs and mixed-conducting polymeric components (electronic and ionic) is prepared, characterized and investigated as a support for platinum (Pt). Nanocomposite of MWNTs and poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT–PSS) is prepared by in situ polymerization and characterized using Fourier–Transform infrared spectroscopy (FT–IR), thermogravimetric analysis (TGA) in conjunction with scanning electron microscopy (SEM). Atomic force microscopy (AFM) studies are also carried out to characterize the surface topography of MWNTs/PEDOT–PSS nanocomposite. X-ray diffraction (XRD) studies reveal that MWNTs/PEDOT–PSS nanocomposite provides better backbone for the improved dispersion of Pt as evidenced by the reduced Pt crystallite size over MWNTs/PEDOT–PSS nanocomposite compared to MWNTs. Electrochemical characterization studies performed with Pt/nanocomposite and Pt/MWNTs demonstrate the superior catalytic activity of Pt/nanocomposite under reduced Nafion loadings in relation to Pt/MWNTs. It is observed that mixed conducting nanoporous network ofMWNTs/PEDOT–PSS composite structure promotes the catalytic activity of Pt by enhancing catalyst utilization.

  1. Synergistic effects of alkylated graphene oxide on the properties of polypropylene-based carbon nanocomposites.

    Science.gov (United States)

    Yun, Young Soo; Pyo, Hye-Ri; Lee, Jae Yun; Chin, In-Joo; Jin, Hyoung-Joon

    2013-10-01

    Polypropylene (PP)/carbon black (CB)-alkylated graphene oxide (AGO) hybrid nanocomposites were prepared via solution process and the synergistic effects of AGO on the properties of the PP/CB nanocomposites were investigated. AGO at a content of only 0.2 wt% formed an overlapped network structure in the PP matrix and affected the electrical, thermal and mechanical properties of the PP/CB nanocomposites. Specifically, PP/CB (5 wt%)-AGO (0.2 wt%) nanocomposites exhibited an electrical percolation threshold at lower CB contents than the PP/CB nanocomposites did, and the sheet resistance was decreased to 2.3 x 10(7) omega/sq. The thermal degradation temperature and recrystallization temperature of the PP/CB (10 wt%) nanocomposites were increased by 11.3 and 1.6 degrees C, respectively, by the addition of 0.2 wt% AGO. In addition, the Young's modulus of the PP/CB (10 wt%) nanocomposite was increased from 438.1 to 540.1 MPa.

  2. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salih, A. M. [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor, Malaysia and Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum 1111 (Sudan); Ahmad, Mansor Bin; Ibrahim, Nor Azowa [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor (Malaysia); Dahlan, Khairul Zaman Hj Mohd [Polycomposite Sdn Bhd, No.75-2, Jalan TKS 1, Taman Kajang Sentral, 43000 Kajang, Selangor (Malaysia); Tajau, Rida [Radiation Processing Technology Division, Nuclear Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Mahmood, Mohd Hilmi [No. 107, Jalan 2, Taman Kajang Baru, Sg Jelok, 43000 Kajang, Selangor (Malaysia); Yunus, Wan Md. Zin Wan [Department of Chemistry, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000, Sungai Besi Camp, Kuala Lumpur (Malaysia)

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  3. IDIOS: An innovative index for evaluating dental imaging-based osteoporosis screening indices

    Energy Technology Data Exchange (ETDEWEB)

    Barngkgei, Imad; Al Haffar, Iyad; Khattab, Razan [Faculty of Dentistry, Damascus University, Damascus (Syrian Arab Republic); Halboub, Esam; Almashraqi, Abeer Abdulkareem [Dept. of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan (Saudi Arabia)

    2016-09-15

    The goal of this study was to develop a new index as an objective reference for evaluating current and newly developed indices used for osteoporosis screening based on dental images. Its name; IDIOS, stands for Index of Dental-imaging Indices of Osteoporosis Screening. A comprehensive PubMed search was conducted to retrieve studies on dental imaging-based indices for osteoporosis screening. The results of the eligible studies, along with other relevant criteria, were used to develop IDIOS, which has scores ranging from 0 (0%) to 15 (100%). The indices presented in the studies we included were then evaluated using IDIOS. The 104 studies that were included utilized 24, 4, and 9 indices derived from panoramic, periapical, and computed tomographic/cone-beam computed tomographic techniques, respectively. The IDIOS scores for these indices ranged from 0 (0%) to 11.75 (78.32%). IDIOS is a valuable reference index that facilitates the evaluation of other dental imaging-based osteoporosis screening indices. Furthermore, IDIOS can be utilized to evaluate the accuracy of newly developed indices.

  4. Users’ dissatisfaction with dental care: a population-based household study

    Science.gov (United States)

    Martins, Andréa Maria Eleutério de Barros Lima; Ferreira, Raquel Conceição; dos Santos, Pedro Eleutério; Carreiro, Danilo Lima; Souza, João Gabriel Silva; Ferreira e Ferreira, Efigênia

    2015-01-01

    OBJECTIVE To examine whether demographic, socioeconomic conditions, oral health subjectivity and characterization of dental care are associated with users’ dissatisfaction with such are. METHODS Cross-sectional study of 781 people who required dental care in Montes Claros, MG, Southeastern Brazil, in 2012, a city with of medium-sized population situated in the North of Minas Gerais. Household interviews were conducted to assess the users’ dissatisfaction with dental care (dependent variable), demographic, socioeconomic conditions, oral health subjectivity and characterization of dental care (independent variables). Sample calculation was used for the finite population, with estimates made for proportions of dissatisfaction in 50.0% of the population, a 5.0% error margin, a non-response rate of 5.0% and a 2.0% design effect. Logistic regression was used, and the odds ratio was calculated with a 5% significance level and 95% confidence intervals. RESULTS Of the interviewed individuals, 9.0% (7.9%, with correction for design effect) were dissatisfied with the care provided. These were associated with lower educational level; negative self-assessment of oral health; perception that the care provider was unable to give dental care; negative evaluation of the way the patient was treated, the cleanliness of the rooms, based on the examination rooms and the toilets, and the size of the waiting and examination rooms. CONCLUSIONS The rate of dissatisfaction with dental care was low. This dissatisfaction was associated with socioeconomic conditions, subjectivity of oral health, skill of the health professionals relating to the professional-patient relationship and facility infrastructure. Educational interventions are suggested that aim at improving the quality of care among professionals by responsible agencies as is improving the infrastructure of the care units. PMID:26270017

  5. Polyolefin nanocomposites

    Science.gov (United States)

    Chaiko, David J.

    2007-01-02

    The present invention relates to methods for the preparation of clay/polymer nanocomposites. The methods include combining an organophilic clay and a polymer to form a nanocomposite, wherein the organophilic clay and the polymer each have a peak recrystallization temperature, and wherein the organophilic clay peak recrystallization temperature sufficiently matches the polymer peak recrystallization temperature such that the nanocomposite formed has less permeability to a gas than the polymer. Such nanocomposites exhibit 2, 5, 10, or even 100 fold or greater reductions in permeability to, e.g., oxygen, carbon dioxide, or both compared to the polymer. The invention also provides a method of preparing a nanocomposite that includes combining an amorphous organophilic clay and an amorphous polymer, each having a glass transition temperature, wherein the organophilic clay glass transition temperature sufficiently matches the polymer glass transition temperature such that the nanocomposite formed has less permeability to a gas than the polymer.

  6. A paper-based detection method of cancer cells using the photo-thermal effect of nanocomposite.

    Science.gov (United States)

    Zhou, Jianhua; Zheng, Yanping; Liu, Jingjing; Bing, Xin; Hua, Jingjun; Zhang, Hongyan

    2016-01-01

    A novel paper-based dot immune-graphene-gold filtration assay (DIGGFA) for the detection of breast cancer cells was developed based on the photo-thermal effect of graphene oxide (GO)-Au nanocomposite. Anti-EpCAM antibody which specific to the MCF-7 cell surface antigen, was immobilized on the nitrocellulose paper. The GO-Au-anti-EpCAM composite would interact with the MCF-7 cells captured on the nitrocellulose paper. After the test zone was irradiated by a laser, GO-Au nanocomposite could generate heat, temperature contrast was recorded and positive correlated with the cell number. Standard curve was prepared according to the temperature contrast and the cell number. Under optimal conditions, this method could detect a minimum of 600 MCF-7 cells with a near infrared laser and an infrared temperature gun within 15 min. This simple and rapid method could be applied to the clinical diagnosis in hospitals.

  7. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials.

    Science.gov (United States)

    Tang, X Z; Kumar, P; Alavi, S; Sandeep, K P

    2012-01-01

    Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.

  8. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin, E-mail: liusq@seu.edu.cn

    2015-06-02

    Highlights: • We review the innovative advances in polymer-based signal amplification. • Conceptual connectivity between different amplified methodologies is illustrated. • Examples explain the mechanisms of polymers/polymerizations-based amplification. • Several elegant applications are summarized that illustrate underlying concept. - Abstract: Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.

  9. Evaluation of World Wide Web-based Lessons for a First Year Dental Biochemistry Course

    Directory of Open Access Journals (Sweden)

    Dr. Alan E. Levine

    2002-11-01

    Full Text Available First year dental students at The University of Texas Dental Branch at Houston (Dental Branch are required to take a basic biochemistry course. To facilitate learning and allow student self-assessment of their progress, WWW-based lessons covering intermediary metabolism were developed as a supplement to traditional lectures. Lesson design combined text, graphics, and animations and included learner control, links to other learning resources, and practice exercises and exams with immediate feedback. Results from an on-line questionnaire completed by students in two different classes showed that they completed 50% of the lessons and spent an average of 4 hrs. on-line. A majority of the students either agreed or strongly agreed that practice exercises were helpful, that the ability to control the pace of the lessons was important, that the lesson structure and presentation was easy to follow, that the illustrations, animations, and hyperlinks were helpful, and that the lessons were effective as a review. The very positive response to the WWW-based lessons indicates the usefulness of this approach as a study aid for dental students.

  10. Innovative Dental Stem Cell-Based Research Approaches: The Future of Dentistry

    Directory of Open Access Journals (Sweden)

    Shayee Miran

    2016-01-01

    Full Text Available Over the past decade, the dental field has benefited from recent findings in stem cell biology and tissue engineering that led to the elaboration of novel ideas and concepts for the regeneration of dental tissues or entire new teeth. In particular, stem cell-based regenerative approaches are extremely promising since they aim at the full restoration of lost or damaged tissues, ensuring thus their functionality. These therapeutic approaches are already applied with success in clinics for the regeneration of other organs and consist of manipulation of stem cells and their administration to patients. Stem cells have the potential to self-renew and to give rise to a variety of cell types that ensure tissue repair and regeneration throughout life. During the last decades, several adult stem cell populations have been isolated from dental and periodontal tissues, characterized, and tested for their potential applications in regenerative dentistry. Here we briefly present the various stem cell-based treatment approaches and strategies that could be translated in dental practice and revolutionize dentistry.

  11. Comparison of Dental Students' Self-Directed, Faculty, and Software-Based Assessments of Dental Anatomy Wax-Ups: A Retrospective Study.

    Science.gov (United States)

    Garrett, Pauline H; Faraone, Karen L; Patzelt, Sebastian B M; Keaser, Michael L

    2015-12-01

    Little is known about self-directed and self-reflective assessment in preclinical dental curricula. The aim of this study was to evaluate a visual dental anatomy teaching tool to train dental students to self-assess their dental anatomy wax carving practical examinations. The students self-assessed two waxing practical examinations (tooth #8 and tooth #19) using high-quality digital images in an assessment tool incorporated into a digital testing program. Student self-assessments were compared to the faculty evaluations and the results of a software-based evaluation tool (E4D Compare). Out of a total 130 first-year dental students at one U.S. dental school, wax-ups from 57 participants were available for this study. The assessment data were submitted to statistical analyses (p<0.05). For tooth #8, the student self-assessments were significantly different from the faculty and software assessments at a 400 micrometer level of tolerance (p=0.036), whereas the faculty assessment was not significantly different from the software assessment at a 300 micrometer level of tolerance (p=0.69). The evaluation of tooth #19 resulted in no significant differences between faculty members (p=0.94) or students (p=0.21) and the software at a level of tolerance of 400 micrometers. This study indicates that students can learn to self-assess their work using self-reflection in conjunction with faculty guidance and that it may be possible to use software-based evaluation tools to assist in faculty calibration and as objective grading tools.

  12. A Microfluidic DNA Sensor Based on Three-Dimensional (3D Hierarchical MoS2/Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Dahou Yang

    2016-11-01

    Full Text Available In this work, we present a novel microfluidic biosensor for sensitive fluorescence detection of DNA based on 3D architectural MoS2/multi-walled carbon nanotube (MWCNT nanocomposites. The proposed platform exhibits a high sensitivity, selectivity, and stability with a visible manner and operation simplicity. The excellent fluorescence quenching stability of a MoS2/MWCNT aqueous solution coupled with microfluidics will greatly simplify experimental steps and reduce time for large-scale DNA detection.

  13. Direct Production of a Novel Iron-Based Nanocomposite from the Laser Pyrolysis of Fe(CO)5/MMA Mixtures: Structural and Sensing Properties

    OpenAIRE

    Alexandrescu, R; Morjan, I.; Tomescu, A.; Simion, C. E.; M. Scarisoreanu; Birjega, R.; Fleaca, C.; Gavrila, L; I. Soare; F. Dumitrache; G. Prodan

    2010-01-01

    Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis of Fe(CO)5 and methyl methacrylate (MMA) mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized) polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation o...

  14. Nanocomposite Membranes based on Perlfuorosulfonic Acid/Ceramic for Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    LI Qiong; WANG Guangjin; YE Hong; YAN Shilin

    2015-01-01

    Perlfuorosulfonic acid/ceramic nanocomposite membranes were investigated as electrolytes for polymer electrolyte membrane fuel cell applications under low relative humidity. Different nanosized ceramics (SiO2, ZrO2, TiO2) with diameters in the range of 2-6 nm were synthesized in situ in Nafion solution through a sol-gel process and the formed nanosized ceramics were well-dispersed in the solution. The nanocomposite membranes were formed through a casting process. The nanocomposite membrane showes enhanced water retention ability and improved proton conductivity compared to those of pure Naifon membrane. The mechanical strength of the formed nanocomposite membranes is slightly less than that of pure Naifon membrane. The experimental results demonstrate that the polymer ceramic nanocompsite membranes are potential electrolyte for fuel cells operating at elevated temperature.

  15. Fluorescent glutathione probe based on MnO2-phenol formaldehyde resin nanocomposite.

    Science.gov (United States)

    Wang, Xudong; Wang, Dan; Guo, Yali; Yang, Chengduan; Liu, Xiaoyu; Iqbal, Anam; Liu, Weisheng; Qin, Wenwu; Yan, Dan; Guo, Huichen

    2016-03-15

    MnO2-phenol formaldehyde resin (MnO2-PFR) nanocomposite is successfully prepared by a simple chemical reduction process. The resultant MnO2-PFR nanocomposite is well characterized. The absorption band of non-fluorescent MnO2 nanosheets overlaps well with the fluorescence emission of PFR nanoparticles. The green fluorescence of PFR in this nanocomposite can be effectively quenched by fluorescence resonance energy transfer from PFR to MnO2. In the presence of glutathione (GSH), the fluorescence of PFR could be recovered due to MnO2 was reduced to Mn(2+) by GSH. The nanocomposite can be use for detecting glutathione in blood serum.

  16. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    Science.gov (United States)

    Roes, A. L.; Tabak, L. B.; Shen, L.; Nieuwlaar, E.; Patel, M. K.

    2010-08-01

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the `functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  17. Natural polyhydroxyalkanoate–gold nanocomposite based biosensor for detection of antimalarial drug artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Phukon, Pinkee [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Radhapyari, Keisham [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India); Konwar, Bolin Kumar [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam (India); Nagaland University (Central), Lumami, Zunheboto, Nagaland 798627 (India); Khan, Raju, E-mail: khan.raju@gmail.com [Analytical Chemistry Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam (India)

    2014-04-01

    The worrisome trend of antimalarial resistance has already highlighted the importance of artemisinin as a potent antimalarial agent. The current investigation aimed at fabricating a biosensor based on natural polymer polyhydroxyalkanoate–gold nanoparticle composite mounting on an indium-tin oxide glass plate for the analysis of artemisinin. The biosensor was fabricated using an adsorbing horse-radish peroxidase enzyme on the electrode surface for which cyclic voltammetry was used to monitor the electro-catalytic reduction of artemisinin under diffusion controlled conditions. Electrochemical interfacial properties and immobilization of enzyme onto a polyhydroxyalkanoate–gold nanoparticle film were evaluated, and confirmed by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The differential pulse voltammetric peak current for artemisinin was increased linearly (concentration range of 0.01–0.08 μg mL{sup −1}) with sensitivity of 0.26 μA μg mL{sup −1}. The greater sensitivity of the fabricated biosensor to artemisinin (optimum limits of detection were 0.0035 μg mL{sup −1} and 0.0036 μg mL{sup −1} in bulk and spiked human serum, respectively) could be of much aid in medical diagnosis. - Highlights: • Extraction of PHA from indigenously isolated Pseudomonas aeruginosa BPC2 • Developed PHA/AuNPs/HRP/ITO based biosensor without the use of chemical cross linker • Detection of antimalarial drug artemisinin using the nanocomposite based biosensor.

  18. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.;

    2014-01-01

    We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers......, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic...

  19. Automated classification and visualization of healthy and pathological dental tissues based on near-infrared hyper-spectral imaging

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Vrtovec, Tomaž; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots which are difficult to diagnose. If detected early enough, such demineralization can be arrested and reversed by non-surgical means through well established dental treatments (fluoride therapy, anti-bacterial therapy, low intensity laser irradiation). Near-infrared (NIR) hyper-spectral imaging is a new promising technique for early detection of demineralization based on distinct spectral features of healthy and pathological dental tissues. In this study, we apply NIR hyper-spectral imaging to classify and visualize healthy and pathological dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized areas. For this purpose, a standardized teeth database was constructed consisting of 12 extracted human teeth with different degrees of natural dental lesions imaged by NIR hyper-spectral system, X-ray and digital color camera. The color and X-ray images of teeth were presented to a clinical expert for localization and classification of the dental tissues, thereby obtaining the gold standard. Principal component analysis was used for multivariate local modeling of healthy and pathological dental tissues. Finally, the dental tissues were classified by employing multiple discriminant analysis. High agreement was observed between the resulting classification and the gold standard with the classification sensitivity and specificity exceeding 85 % and 97 %, respectively. This study demonstrates that NIR hyper-spectral imaging has considerable diagnostic potential for imaging hard dental tissues.

  20. Co-based ternary nanocomposites: synthesis and their superior performances for hydrogenation of p-nitrophenol and adsorption for methyl blue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fang-Yuan; Fan, Yan-Ling; Ni, Jing-Jing; Xu, Ting-Ting; Song, Ji-Ming, E-mail: songjm@ahu.edu.cn, E-mail: jiming@ahu.edu.cn [Anhui University, The Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, School of Chemistry & Chemical Engineering (China)

    2016-01-15

    A new kind of Co-based ternary nanocomposites has been obtained via one step without any additional surfactant at zero centigrade degree. Some experimental parameters play crucial roles in determining the morphologies and homogeneity of the final products, such as reaction temperature and the introduction of Na{sub 2}S{sub 2}O{sub 3}·5H{sub 2}O. The samples were characterized by XRD, SEM, TEM, UV–Vis, XPS, and BET. The result reveals that the as-prepared samples are Co{sub 1.29}Ni{sub 1.71}O{sub 4}–Co{sub 3}S{sub 4}–Co{sub 3}O{sub 4} Co-based ternary nanocomposites with an elliptic morphology composed of numerous fold-shaped superthin films (average thickness of ca. 2 nm). Interestingly, the obtained nanocomposites display superior performance for the hydrogenation of p-nitrophenol at room temperature in the presence of NaBH{sub 4}. More importantly, the as-prepared nanocomposites show the huge adsorption capacity for methyl blue at room temperature, reaches 1100 mg g{sup −1}. Graphical Abstract: A kind of new-type Co-based ternary nanocomposites has been obtained via one step without surfactants at zero centigrade degree. The as-prepared nanocomposites display superior performance for the hydrogenation of p-nitrophenol in the presence of NaBH{sub 4} at room temperature.

  1. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.

    Science.gov (United States)

    Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu

    2015-01-01

    Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix.

  2. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaoning [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Tian, Mingwei [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Qu, Lijun, E-mail: lijunqu@126.com [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Zhu, Shifeng [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Guo, Xiaoqing [College of Textiles, Qingdao University, Qingdao, Shandong 266071 (China); Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); Han, Guangting [Laboratory of New Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, Shandong 266071 (China); Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266071 (China); and others

    2014-10-30

    Highlights: • Multifunctional knit polyester fabric was facile fabricated by the combination of pad-dry-cure process and in situ chemical polymerization route. • High electrical conductivity and efficient water-repellent properties were endowed to the polymer nanocomposite coated fabric. • The polymer nanocomposite coated fabric also performed efficient and durable photocatalytic activities under the illumination of ultraviolet light. - Abstract: Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  3. Influence of different glass fiber reinforcements on denture base polymer strength (Fiber reinforcements of dental polymer)

    OpenAIRE

    Ketij Mehulić,; Asja Čelebić,; Zdravko Schauperl,; Dragutin Komar,; Denis Vojvodić,; Domagoj Žabarović

    2009-01-01

    Aim Assessment of flexural strength values of dental base polymersreinforced with different glass fibers (“dental” and “industrial”origin) after performed artificial ageing procedures.Methods Three hundred specimens (dimensions 18 x 10 x 3 mm)were produced of denture base polymers reinforced with differentglass fibers. The “short beam” testing method was used to determinethe flexural strength of the specimens after polymerization,immersion in water of temperature 37oC for 28 days, and thermoc...

  4. Genetic susceptibility to dental caries differs between the sexes: a family-based study.

    Science.gov (United States)

    Shaffer, John R; Wang, Xiaojing; McNeil, Daniel W; Weyant, Robert J; Crout, Richard; Marazita, Mary L

    2015-01-01

    Many of the factors affecting susceptibility to dental caries are likely influenced by genetics. In fact, genetics accounts for up to 65% of inter-individual variation in dental caries experience. Sex differences in dental caries experience have been widely reported, with females usually exhibiting a higher prevalence and severity of disease across all ages. The cause for this sex bias is currently uncertain, although it may be partly due to the differential effects of genetic factors between the sexes: gene-by-sex interactions. In this family based study (N = 2,663; 740 families; ages 1-93 years), we assessed dental caries via intra-oral examination and generated six indices of caries experience (DMFS, dfs, and indices of both pit-and-fissure surface caries and smooth surface caries in both primary and permanent dentitions). We used likelihood-based methods to model the variance in caries experience conditional on the expected genetic sharing among relatives in our sample. This modeling framework allowed us to test two lines of evidence for gene-by-sex interactions: (1) whether the magnitude of the cumulative effect of genes differs between the sexes, and (2) whether different genes are involved. We observed significant evidence of gene-by-sex interactions for caries experience in both the primary and permanent dentitions. In the primary dentition, the magnitude of the effect of genes was greater in males than females. In the permanent dentition, different genes may play important roles in each of the sexes. Overall, this study provides the first direct evidence that sex differences in dental caries experiences may be explained, in part, by gene-by-sex interactions.

  5. Evidence-based dentistry and clinical implementation by third-year dental students.

    Science.gov (United States)

    Teich, Sorin T; Demko, Catherine A; Lang, Lisa A

    2013-10-01

    Over the last two decades, the concept of evidence-based medicine (EBM) has become the standard of medical care. Defined by Sackett et al. as "the conscientious, explicit, and judicious use of current best evidence in making decisions about the care of individual patients," EBM recognizes that the practitioner should combine individual clinical expertise with the best available external evidence for optimal care. Consideration of the patient's needs and preferences is also an integral component of the clinical application. Dental educators have to account for the fact that not all dental treatment outcomes have been researched with randomized clinical trials. Dogmas in dentistry still exist regarding restorative treatments and methods taught to next generations of practitioners, while limited evidence is available. The purpose of this study was to determine how third-year dental students at one U.S. dental school select articles to provide supportive evidence related to treatment planning. The results show that knowledge provided in a three-week course in evidence-based dentistry (EBD) for first-year dental students was not efficiently applied when the students reached their third year. A significant percentage of the students perceived the use of literature as not beneficial for sustaining clinical aspects of a treatment plan, and they did not use appropriate tools to access best available resources. As a result of these findings, the article proposes incorporation of specific learning objectives related to EBD principles throughout the curriculum and a simplified method to search for best available evidence that has the advantage of not requiring knowledge and training in rigorous formulation of clinical questions.

  6. Impact of Community-Based Dental Education on Attainment of ADEA Competencies: Students' Self-Ratings.

    Science.gov (United States)

    McFarland, Kimberly K; Nayar, Preethy; Ojha, Diptee; Chandak, Aastha; Gupta, Niodita; Lange, Brian

    2016-06-01

    Fourth-year dental students at the College of Dentistry, University of Nebraska Medical Center participate in a community-based dental education (CBDE) program that includes a four-week rotation in rural dental practices and community health clinics across Nebraska and nearby states. The aim of this study was to assess the impact of participation in the CBDE program on the self-rated competencies of these students. A retrospective survey was administered to students who participated in extramural rotations in two academic years. The survey collected demographic data and asked students to rate themselves on a scale from 1=not competent at all to 5=very competent on attainment of the American Dental Education Association (ADEA) Competencies for the New General Dentist for before and after the rotations. A total of 92 responses were obtained: 43 students for 2011-12 and 49 students for 2012-13 (95% response rate for each cohort). The results showed that the students' mean pre-program self-ratings ranged from 3.28 for the competency domain of Practice Management and Informatics to 3.93 for Professionalism. Their mean post-program self-ratings ranged from 3.76 for Practice Management and Informatics to 4.31 for Professionalism. The students showed a statistically significant increase in self-ratings for all six competency domains. The increase was greatest in the domain of Critical Thinking and least in Communication and Interpersonal Skills. Overall, these results suggest that the CBDE program was effective in improving the students' self-perceptions of competence in all six domains and support the idea that a competency-based evaluation of CBDE programs can provide valuable information to dental educators about program effectiveness.

  7. Development of TiO2 and TiO2/Fe-based polymeric nanocomposites by single-step laser pyrolysis

    Science.gov (United States)

    Alexandrescu, R.; Morjan, I.; Dumitrache, F.; Scarisoreanu, M.; Fleaca, C. T.; Morjan, I. P.; Barbut, A. D.; Birjega, R.; Prodan, G.

    2013-08-01

    Polymer-based nanocomposites provided with inorganic cores were simultaneously manufactured by the single-step laser pyrolysis. A comparative study was performed on two types of nanocomposites, starting from two different systems: TiO2/methyl methacrylate (MMA) and TiO2/Fe/hexamethyl disiloxane (HMDSO) polymer. The reactive mixture contained TiCl4 as Ti precursor and alternatively, Fe(CO)5 (in case of TiO2/Fe mixture). The analytical techniques used for the characterization indicate distinct morphologies for the obtained nanostructures. Polyhedral and almost spherical nanoparticles in a coalescent matrix and very rare individual core-shell particles are noticed for the TiO2/MMA nanocomposites. Instead, nanoparticles presenting core-shell structures were often present in the TiO2/Fe/HMDSO polymeric nanocomposites.

  8. Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA-Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyeongrae; Babu, V. Ramesh; Rao, K. S. V. Krishna; Kim, Yonghyun; Mei, Surong; Lee, Yongill; Joo, Woo Hong [Changwon National Univ., Changwon (Korea, Republic of)

    2012-10-15

    New silver nanoparticle (AgNP)-loaded amino acid based hydrogels were synthesized successfully from poly (vinyl alcohol) (PVA) and poly(acryl amide-co-acryloyl phenyl alanine) (PAA) by redox polymerization. The formation of AgNP in hydrogels was confirmed by using a UV-Vis spectrophotometer and XRD. The structure and morphology of silver nanocomposite hydrogels were studied by using a scanning electron microscopy (SEM), which demonstrated scattered nanoparticles, ca. 10-20 nm. Thermogravimetric analysis revealed large differences of weight loss (i. e., 48%) between the prestine hydrogel and silver nanocomposite. The antibacterial studies of AgNP-loaded PAA (Ag-PAA) hydrogels was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. These Ag-PAA hydrogels showed significant activities against all the test bacteria. Newly developed hydrogels could be used for medical applications, such as artificial burn dressings.

  9. A novel magnetic poly(aniline-naphthylamine)-based nanocomposite for micro solid phase extraction of rhodamine B

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Daliri, Rasoul; Roostaie, Ali

    2013-09-10

    Graphical abstract: -- Highlights: •A Fe{sub 3}O{sub 4}–aniline-naphthylamine nanocomposite was prepared via a simple route. •The magnetic nanocomposite was applied for isolation of RhB from water. •The nanocomposite applicability was compared with other pristine polymers. •The method was applied for the determination of RhB in different samples. -- Abstract: A novel Fe{sub 3}O{sub 4}–poly(aniline-naphthylamine)-based nanocomposite was synthesized by chemical oxidative polymerization process as a magnetic sorbent for micro solid phase extraction. The scanning electron microscopy images of the synthesized nanocomposite revealed that the copolymer posses a porous structure with diameters less than 50 nm. The extraction efficiency of this sorbent was examined by isolation of rhodamine B, a mutagenic and carcinogenic dye, from aquatic media in dispersion mode. Among different synthesized polymers, Fe{sub 3}O{sub 4}/poly(aniline-naphthylamine) nanocomposite showed a prominent efficiency. Parameters including the desorption solvent, amount of sorbent, desorption time, sample pH, ionic strength, extraction time and stirring rate were optimized. Under the optimum condition, a linear spiked calibration curve in the range of 0.35–5.00 μg L{sup −1} with R{sup 2} = 0.9991 was obtained. The limits of detection (3S{sub b}) and limits of quantification (10S{sub b}) of the method were 0.10 μg L{sup −1} and 0.35 μg L{sup −1} (n = 3), respectively. The relative standard deviation for water sample with 0.5 μg L{sup −1} of RhB was 4.2% (n = 5) and the absolute recovery was 92%. The method was applied for the determination of rhodamine B in dishwashing foam, dishwashing liquid, shampoo, pencil, matches tips and eye shadows samples and the relative recovery percentage were in the range of 94–99%.

  10. High pressure synthesis of novel, zeolite based nano-composite materials

    Science.gov (United States)

    Santoro, Mario

    2013-06-01

    Meso/micro-porous solids such as zeolites are complex materials exhibiting an impressive range of applications, including molecular sieve, gas storage, catalysis, electronics and photonics. We used these materials, particularly non catalytic zeolites in an entirely different fashion. In fact, we performed high pressure (0.5-30 GPa) chemical reactions of simple molecules on a sub-nanometer scale in the channels of a pure SiO2 zeolite, silicalite to obtain unique nano-composite materials with drastically modified physical and chemical properties. Our material investigations are based on a combination of X-ray diffraction and optical spectroscopy techniques in the diamond anvil cell. I will first briefly show how silicalite can be easily filled by simple molecules such as Ar, CO2 and C2H4 among others from the fluid phase at high pressures, and how this efficient filling removes the well known pressure induced amorphization of the silica framework (Haines et al., JACS 2010). I will then present on a silicon carbonate crystalline phase synthesized by reacting silicalite and molecular CO2 that fills the nano-pores, at 18-26 GPa and 600-980 K; after the synthesis the compound is temperature quenched and it results to be slightly metastable at room conditions (Santoro et al., PNAS 2011). On the other hand, a stable at room condition spectacular crystalline nano-composite is obtained by photo-polymerizing ethylene at 0.5-1.5 GPa under UV (351-364 nm) irradiation in the channels of silicalite (Santoro et al., Nat. Commun, in press 2013). For this composite we obtained a structure with single polyethylene chains adapting very well to the confining channels, which results in significant increases in bulk modulus and density, and the thermal expansion coefficient changes sign from negative to positive with respect to the original silicalite host. Mechanical properties may thus be tuned by varying the amount of polymerized ethylene. We then think our findings could allow the

  11. Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples.

    Science.gov (United States)

    Wu, Qiuhua; Zhao, Guangying; Feng, Cheng; Wang, Chun; Wang, Zhi

    2011-11-04

    A graphene-based magnetic nanocomposite was synthesized and used for the first time as an effective adsorbent for the preconcentration of the five carbamate pesticides (metolcarb, carbofuran, pirimicarb, isoprocarb and diethofencarb) in environmental water samples prior to high performance liquid chromatography-diode array detection. The properties of the magnetic nanocomposite were characterized by scanning electron microscopy and X-ray diffraction. This novel graphene-based magnetic nanocomposite showed great adsorptive ability towards the analytes. The method, which takes the advantages of both nanoparticle adsorption and magnetic phase separation from the sample solution, could avoid some of the time-consuming experimental procedures related to the traditional solid phase extraction. Various experimental parameters that could affect the extraction efficiencies have been investigated. Under the optimum conditions, the enrichment factors of the method for the analytes were in the range from 474 to 868. A linear response was achieved in the concentration range of 0.1-50 ng mL(-1). The limits of detection of the method at a signal to noise ratio of 3 for the pesticides were 0.02-0.04 ng mL(-1). Compared with the dispersive liquid-liquid microextraction and the ultrasound-assisted surfactant-enhanced emulsification microextraction, much higher enrichment factors and sensitivities were achieved with the developed method. The method has been successfully applied for the determination of the carbamate pesticides in environmental water samples.

  12. Theoretical Study of Wood Microwave Pretreatment in Rectangular Cavity for Fabricating Wood-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yongfeng Luo

    2014-01-01

    Full Text Available Modifying wood by high intensive microwave pretreatment method is widely researched for the fabrication of wood-based nanocomposites, but the temperature uniformity and energy efficiency of microwave pretreatment have not reached the ideal state. In this study, the pretreated wood in rectangular cavity by high intensive microwave is theoretically studied by the finite element method based on the Maxwell electromagnetic field equations and the heat and mass transfer theory. The results show that the temperature uniformity and energy efficiency are related to the microwave feeding modes. Compared with the single-port and the two-port feeding mode, the four-port feeding mode is the best case on temperature uniformity and energy efficiency. The optimized parameters of cavity to pretreatment wood are achieved, which are that the height of cavities is between 0.08 m and 0.11 m in the four-port feeding mode when the thickness of wood is 0.06 m.

  13. Fabrication of a Biomass-Based Hydrous Zirconium Oxide Nanocomposite for Preferable Phosphate Removal and Recovery.

    Science.gov (United States)

    Qiu, Hui; Liang, Chen; Zhang, Xiaolin; Chen, Mindong; Zhao, Yunxia; Tao, Tao; Xu, Zhengwen; Liu, Gang

    2015-09-23

    Advanced removal of phosphate by low-cost adsorbents from municipal wastewater or industrial effluents is an effective and economic way to prevent the occurrence of eutrophication. Here, we proposed a novel method to immobilize hydrous zirconium oxide nanoparticle within quaternary-aminated wheat straw, and obtained an inexpensive, eco-friendly nanocomposite Ws-N-Zr. The biomass-based Ws-N-Zr exhibited higher preference toward phosphate than commercial anion exchanger IRA-900 when competing sulfate ions coexisted at relatively high levels. Such excellent performance of Ws-N-Zr resulted from its specific hybrid structure, the quaternary ammonium groups bonded on the host favor the preconcentration of phosphate ions inside the wheat straw based on Donnan effect, and the encapsulated HZO nanoparticle exhibits preferable sequestration of phosphate ions through specific interaction, as further demonstrated by FTIR and X-ray photoelectron spectroscopy. Cycle adsorption and regeneration experiments demonstrated that Ws-N-Zr could be employed for repeated use without significant capacity loss, when the binary NaOH-NaCl solution was employed as the regenerant. The influence of solution pH and contact time was also examined. The results suggested that Ws-N-Zr has a great potential in efficient removal of phosphate in contaminated waters.

  14. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    Science.gov (United States)

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants.

  15. Molybdenum blues based conducting nanocomposites of polypyrrole, polyN-vinylcarbazole and of their binary combination

    Energy Technology Data Exchange (ETDEWEB)

    Ballav, Nirmalya [Department of Chemistry, Presidency College, 86/1 College Street, Kolkata 700073 (India)]. E-mail: tnb123@rediffmail.com

    2005-11-20

    Molybdenum blues (MB) based nanocomposites of polypyrrole (PPY), polyN-vinylcarbazole (PNVC) and their binary combination (PPY-PNVC) were prepared by in situ polymerization (without using external oxidant) of PY and NVC and also by using ammonium perdisulfate oxidant (PDS). Formation and incorporation of PPY and PNVC in the respective MB based composite was confirmed by FTIR spectral analyses. Scanning electron microscopic (SEM) analyses revealed the formation of PPY-MB, PNVC-MB and PPY-MB-PNVC composite particles with average diameter in the nanometer range. Thermogravimetric analyses (TGA) showed the following thermal stability trend: MB > PPY-MB > PNVC-MB > PPY-MB-PNVC > PPY {>=} PNVC. Differential thermal analysis (DTA) for the PPY-MB-PNVC composite revealed exothermic oxidative degradation process characteristics of PPY and PNVC backbones. DC conductivity values (S/cm) for PPY-MB, PNVC-MB and PPY-MB-PNVC were 1.5 x 10{sup -5} and 7 x 10{sup -2} (a value 10{sup 12}-fold improved compared to that of unmodified PNVC-10{sup -12} to 10{sup -16}), respectively.

  16. Restorative treatment thresholds for interproximal primary caries based on radiographic images: findings from the Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Gordan, Valeria V; Garvan, Cynthia W; Heft, Marc W

    2009-01-01

    with restorative intervention in lesions that have penetrated only the enamel surface. This study surveyed dentists from the Dental Practice-Based Research Network (DPBRN) who had reported doing at least some restorative dentistry (n = 901). Dentists were asked to indicate the depth at which they would restore...

  17. Synergic catalytic effect of Ti hydride and Nb nanoparticles for improving hydrogenation and dehydrogenation kinetics of Mg-based nanocomposite

    Directory of Open Access Journals (Sweden)

    Xiujuan Ma

    2017-02-01

    Full Text Available The Mg-9.3 wt% (TiH1.971-TiH−0.7 wt% Nb nanocomposite has been synthesized by hydrogen plasma-metal reaction (HPMR approach to enhance the hydrogen sorption kinetics of Mg at moderate temperatures by providing nanosizing effect of increasing H “diffusion channels” and adding transition metallic catalysts. The Mg nanoparticles (NPs were in hexagonal shape range from 50 to 350 nm and the average size of the NPs was 177 nm. The small spherical TiH1.971, TiH and Nb NPs of about 25 nm uniformly decorated on the surface of the big Mg NPs. The Mg-TiH1.971-TiH-Nb nanocomposite could quickly absorb 5.6 wt% H2 within 5 min at 573 K and 4.5 wt% H2 within 5 min at 523 K, whereas the pure Mg prepared by HPMR could only absorb 4 and 1.5 wt% H2 at the same temperatures. TiH1.971, TiH and Nb NPs transformed into TiH2 and NbH during hydrogenation and recovered after dehydrogenation process. The apparent activation energies of the nanocomposite for hydrogenation and dehydrogenation were 45.0 and 50.7 kJ mol−1, which are much smaller than those of pure Mg NPs, 123.8 and 127.7 kJ mol−1. The improved sorption kinetics of the Mg-based nanocomposite at moderate temperatures and the small activation energy can be interpreted by the nanostructure of Mg and the synergic catalytic effects of Ti hydrides and Nb NPs.

  18. Improved dielectric properties of nanocomposites based on poly(vinylidene fluoride) and poly(vinyl alcohol)-functionalized graphene.

    Science.gov (United States)

    Wang, Dongrui; Bao, Yaru; Zha, Jun-Wei; Zhao, Jun; Dang, Zhi-Min; Hu, Guo-Hua

    2012-11-01

    In this work, two series of nanocomposites of poly(vinylidene fluoride) (PVDF) incorporated with reduced graphene oxide (rGO) and poly(vinyl alcohol)-modified rGO (rGO-PVA) were fabricated using solution-cast method and their dielectric properties were carefully characterized. Infrared spectroscopy and atom force microscope analysis indicated that PVA chains were successfully grafted onto graphene through ester linkage. The PVA functionalization of graphene surface can not only prevent the agglomeration of original rGO but also enhance the interaction between PVDF and rGO-PVA. Strong hydrogen bonds and charge transfer effect between rGO-PVA and PVDF were determined by infrared and Raman spectroscopies. The dielectric properties of rGO-PVA/PVDF and rGO/PVDF nanocomposites were investigated in a frequency range from 10² Hz to 10⁷ Hz. Both composite systems exhibited an insulator-to-conductor percolating transition as the increase of the filler content. The percolation thresholds were estimated to be 2.24 vol % for rGO-PVA/PVDF composites and 0.61 vol % for rGO/PVDF composites, respectively. Near the percolation threshold, the dielectric permittivity of the nanocomposites was significantly promoted, which can be well explained by interfacial polarization effect and microcapacitor model. Compared to rGO/PVDF composites, higher dielectric constant and lower loss factor were simultaneously achieved in rGO-PVA/PVDF nanocomposites at a frequency range lower than 1 × 10³ Hz. This work provides a potential design strategy based on graphene interface engineering, which would lead to higher-performance flexible dielectric materials.

  19. The Structure and Magnetic Properties Metal-carbon Nanocomposites FeCo / C on Based of Polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    L.V. Kozhitov

    2014-07-01

    Full Text Available For the first time in the conditions of the IR pyrolysis precursor based on polyacrylonitrile, cobalt acetate and acetylacetonate iron (ratio of metals in precursors Fe : Co = 3 : 1 metal-carbon nanocomposites have been obtained, which are carbon matrix with graphite-like structure, containing buried her nanoparticles of intermetallids of FeCo. It is shown that the phase formation FeCo occurs in the temperature range of obtaining 500-600 degrees centigrade, at T ≤ 500 degrees centigrade are only two distinct phases metals: HCC-With and BCC Fe. In the structure of nanocomposites obtained at T ≥ 600 degrees centigrade, at the same time there are nanoparticles of intermetallides and FeCo little content phase fсс-Co or solid solution of cobalt. It is determined that the composition of a metal component nanocomposite satisfies the ratio of Fe, Co, originally specified.

  20. Preparation and characterization of a novel epoxy based nanocomposite using tryptophan as an eco-friendly curing agent

    Energy Technology Data Exchange (ETDEWEB)

    Motahari, Ahmad, E-mail: motahari@umz.ac.ir [Faculty of Chemistry, University of Mazandaran, P.O. Box 453, Babolsar (Iran, Islamic Republic of); Omrani, Abdollah; Rostami, Abbas Ali [Faculty of Chemistry, University of Mazandaran, P.O. Box 453, Babolsar (Iran, Islamic Republic of); Ehsani, Morteza [Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran (Iran, Islamic Republic of)

    2013-12-20

    Highlights: • Epoxy cured with tryptophan in the presence of 2,4,5-triphenylimidazole. • Kinetic study on the epoxy nanocomposite using advanced isoconversional method. • Structural study and characterization of nanocomposite using SEM, XRD, AFM and DMTA. - Abstract: In this study, kinetics of the curing reaction between DGEBA epoxy resin and tryptophan as an environmentally friendly curing agent in the presence of 2,4,5-triphenylimidazole was reported. The role of silica nanoparticles (SiNP) in changing the mechanism of the curing reaction was also studied. The optimum molar ratio of DGEBA/tryptophan and the optimum content of SiNP were determined by calorimetry analyses. Kinetic analysis using the advanced isoconversional method revealed that the system undergoes the vitrification. Thermogravimetric analysis demonstrated that addition of SiNP does not improve the thermal stability of the tryptophan based thermosets. Impedance spectroscopy and also the standard four-probe method were performed to investigate the effect of curing agent and SiNP loading level on the electrical properties of the cured epoxy. The structure and morphology of the nanocomposite were studied by X-ray diffraction analysis, atomic force microscopy and scanning electron microscopy imaging. Dynamic mechanical thermal analysis revealed that the crosslinking density cannot be significantly affected with the addition of SiNP.

  1. Nanocomposite coatings based on Ti-N-Cr/Ni-Cr-B-Si-Fe, gained by two technologies

    Directory of Open Access Journals (Sweden)

    N.K. Erdybayeva

    2009-01-01

    Full Text Available The first results of manufacturing and investigations of a new type of nanocomposite protective coatings are presented. They were manufactured using a combination of two technologies: plasma-detonation coating deposition with the help of plasma jets and thin coating vacuum-arc deposition. We investigated structure, morphology, physical and mechanical properties of the coatings of 80-90 μm thickness, as well as defined the hardness, elastic Young modulus and their corrosion resistance in different media. Grain dimensions of the nanocomposite coatings on Ti-N-Cr base varied from 2.8 to 4 nm. The following phases and compounds formed as a result of plasma interaction with the thick coating surface were found in the coatings: Ti-N-Cr (200, (220, y-Ni3-Fe, a hexagonal Cr2-Ti, Fe3-Ni, (Fe, NiN and the following Ti-Ni compounds: Ti2Ni, Ni3Ti, Ni4Ti, etc. We also found that the nanocomposite coating microhardness increased to H = 31.6 ± 1.1 GPa. The Young elastic modulus was determined to be E = 319 ± 27 GPa – it was derived from the loading-unloading curves. The protective coating demonstrated the increased corrosion resistance in acidic and alkaline media in comparison with that of the stainless steel substrate.

  2. Enhanced photovoltaic properties in graphitic carbon nanospheres networked TiO{sub 2} nanocomposite based dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Radhe [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Sahoo, Satyaprakash, E-mail: satya504@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Chitturi, Venkateswara Rao [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Williams, Joseph D. [Department of Biomedical and Chemical Engineering, Syracuse University, L.C. Smith College of Engineering and Computer Science, Syracuse, NY (United States); Resto, Oscar [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Katiyar, Ram S., E-mail: rkatiyar@hpcf.uprrp.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States)

    2015-08-25

    Highlights: • Nano size graphitic carbon nanospheres were prepared from MWCNTs. • TiO{sub 2}/GCNS composite was used as the photoanode in dye-sensitized solar cell. • An improved photovoltaic performance with GCNS–TiO{sub 2} composite was noticed. - Abstract: In this work, we report a novel carbon based TiO{sub 2} nanocomposite electron injection layer (photoanode) toward the improved performance of DSSCs. Graphitic carbon nanospheres (GCNSs) were synthesized by a unique acidic treatment of multi-wall carbon nanotubes. GCNS–TiO{sub 2} nanocomposites with different concentrations of GCNSs (ranging from 5 to 20 μL) were prepared to use as photoanodes in DSSCs. Structural and morphological properties of GCNS–TiO{sub 2} nanocomposites were analyzed by Raman spectroscopy and ultra-high resolution transmission electron microscopy techniques, respectively. A systematic increment in the short circuit current density (J{sub SC}) and open circuit voltage (V{sub OC}) of DSSC was observed by increasing GCNS concentration up to an optimal value, possibly due to the combined effect of slight rise in quasi-Fermi level and higher carrier transport rate in the resultant composite. Thus, a significant enhancement of ∼47% in the efficiency of DSSC containing GCNS–TiO{sub 2} photoanode was observed as compare to DSSC with pure TiO{sub 2} photoanode.

  3. One-Pot Synthesized Polyurethane-Based Nanocomposites Filled by Original Rectorite with Enhanced Strength and Elongation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fang; XIAO Zhongliang; HUANG Jin; SU Zhongnin; ZHANG Hao; ZHANG Qiaoxin

    2011-01-01

    The unmodified rectorite (REC), a kind of layered silicate, was incorporated into polyurethane (PU) as matrix by the process of one-pot synthesizing polyurethane in situ, and hence produced a series of nanocomposite materials with enhanced strength and elongation. It is worth noting that the nanocomposite containing 2 wt% REC had the maximum elongation (1 449%) and strength (32.66 Mpa) as ca. 2.7- and 1.4-fold over those of neat PU film, respectively. Meanwhile, the unexfoliated agglomerates and exfoliated nanoplatelets of REC co-existed in PU matrix. By virtue of strong interfacial interaction on the surface of REC lamella,the stress facilely transferred to the rigid RECs and hence contributed to the enhancement of strength in spite that the original structure and interaction in the PU matrix were partly cleaved. Moreover, the intertwisting of polymer chains in PU matrix with REC as well as the gliding among the REC lamellae might produce greater strain. Nevertheless, excess unexfoliated REC agglomerates under high loading level inhibited the enhancement of mechanical performances, which verified the key role of exfoliated REC nanoplatelet in improving mechanical performances. As a result, this work submitted a simple method to develop a polyurethane-based nanocomposite with high mechanical performances without any modification of layered silicates and the complicated treatment for exfoliation and dispersion.

  4. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  5. Synthesis and optical properties of TiO2-based magnetic nanocomposites

    Science.gov (United States)

    Scarisoreanu, M.; Morjan, I.; Fleaca, C.-T.; Morjan, I. P.; Niculescu, A.-M.; Dutu, E.; Badoi, A.; Birjega, R.; Luculescu, C.; Vasile, E.; Danciu, V.; Filoti, G.

    2015-05-01

    Magnetic titania nanoparticles covered/embedded in SiO2 shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO2/Fe and TiO2/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO2 based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV-vis (ultraviolet-visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe2O3 and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14-34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (Eg = 1.85 eV) as compared with TiO2 P25 Degussa sample.

  6. Multiwalled carbon nanotubes/gold nanocomposites-based electrochemiluminescent sensor for sensitive determination of bisphenol A.

    Science.gov (United States)

    Guo, Weiwei; Zhang, Amin; Zhang, Xin; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2016-10-01

    An electrochemiluminescence (ECL) sensor for bisphenol A was proposed by using L-cysteine-functionalized multiwalled carbon nanotubes/gold nanocomposites-modified glassy carbon electrode (MWCNTs-Au/GCE) based on ECL of peroxydisulfate solution. The ECL behaviors of peroxydisulfate solution had been investigated at the chitosan/MWCNTs-Au/GCE, and bisphenol A was found to have quenching effects on the ECL of peroxydisulfate solution. Both Au nanoparticles (AuNPs) and multiwalled CNTs could promote the electron transfer and synergetically amplify the ECL signal of peroxydisulfate solution. Under the optimized conditions, the ECL signal intensity was linear with the concentration of bisphenol A in the concentration range between 0.25 and 100 μM (R = 0.9931) with a detection limit (S/N = 3) of 0.083 μM. The constructed ECL sensor has the advantages of simplicity, sensitivity, good selectivity, and reproducibility, exhibiting a great potential application in the determination of bisphenol A.

  7. Cation exchange resin nanocomposites based on multi-walled carbon nanotubes

    Science.gov (United States)

    Fathy, Mahmoud; Abdel Moghny, Th.; Awad Allah, Ahmed Elsayed; Alblehy, AbdElhamid

    2014-01-01

    Carbon nanotubes (CNTs) are of great interest due to their potential applications in different fields such as water treatment and desalination. The increasing exploitation of multi-walled carbon nanotubes (MWCNTs) into many industrial processes has raised considerable concerns for environmental applications. The interactions of soluble salt with MWNCTs influence in the total salt content in saline water. In this work, we synthesized two cation exchange resins nano composites from polystyrene divinylbenzene copolymer (PSDVB) and pristine MWNCTs. The prepared compounds were characterized using infra red spectroscopy, thermal stability, X-ray diffraction, and electro scan microscope. Also, the ion capacities of prepared cation exchange resins were determined by titration. Based on the experimental results, it was found that the thermal stability of prepared nanocomposites in the presence of MWNCTs increased up to 617 °C. The X-ray of PSDVB and its sulfonated form exhibits amorphous pattern texture structure, whereas the nano composite exhibits amorphous structure with indication peak at 20° and 26° for the PSDVB and MWCNTs, respectively. The ion-exchange capacity increased from 225.6 meq/100 g to 466 mg/100 g for sulfonated PSDVB and sulfonated PSDVB MWNCTs-pristine, respectively.

  8. Zirconia-poly(propylene imine) dendrimer nanocomposite based electrochemical urea biosensor.

    Science.gov (United States)

    Shukla, Sudheesh K; Mishra, Ajay K; Mamba, Bhekie B; Arotiba, Omotayo A

    2014-11-01

    In this article we report a selective urea electrochemical biosensor based on electro-co-deposited zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite modified screen printed carbon electrode (SPCE). ZrO2 nanoparticles, prepared by modified sol-gel method were dispersed in PPI solution, and electro-co-deposited by cyclic voltammetry onto a SPCE surface. The material and the modified electrodes were characterised using FTIR, electron microscopy and electrochemistry. The synergistic effect of the high active surface area of both materials, i.e. PPI and ZrO2 nanoparticles, gave rise to a remarkable improvement in the electrocatalytic properties of the biosensor and aided the immobilisation of the urease enzyme. The biosensor has an ampereometric response time of ∼4 s in urea concentration ranging from 0.01 mM to 2.99 mM with a correlation coefficient of 0.9985 and sensitivity of 3.89 μA mM(-1) cm(-2). The biosensor was selective in the presence of interferences. Photochemical study of the immobilised enzyme revealed high stability and reactivity.

  9. Synthesis and Complete Antimicrobial Characterization of CEOBACTER, an Ag-Based Nanocomposite

    Science.gov (United States)

    Vasquez-Peña, M.; Raymond-Herrera, O.; Villavicencio-García, H.; Petranovskii, V.; Vazquez-Duhalt, R.; Huerta-Saquero, A.

    2016-01-01

    The antimicrobial activity of silver nanoparticles (AgNPs) is currently used as an alternative disinfectant with diverse applications, ranging from decontamination of aquatic environments to disinfection of medical devices and instrumentation. However, incorporation of AgNPs to the environment causes collateral damage that should be avoided. In this work, a novel Ag-based nanocomposite (CEOBACTER) was successfully synthetized. It showed excellent antimicrobial properties without the spread of AgNPs into the environment. The complete CEOBACTER antimicrobial characterization protocol is presented herein. It is straightforward and reproducible and could be considered for the systematic characterization of antimicrobial nanomaterials. CEOBACTER showed minimal bactericidal concentration of 3 μg/ml, bactericidal action time of 2 hours and re-use capacity of at least five times against E. coli cultures. The bactericidal mechanism is the release of Ag ions. CEOBACTER displays potent bactericidal properties, long lifetime, high stability and re-use capacity, and it does not dissolve in the solution. These characteristics point to its potential use as a bactericidal agent for decontamination of aqueous environments. PMID:27824932

  10. Highly efficient bienzyme functionalized nanocomposite-based microfluidics biosensor platform for biomedical application.

    Science.gov (United States)

    Ali, Md Azahar; Srivastava, Saurabh; Solanki, Pratima R; Reddy, Venu; Agrawal, Ved V; Kim, CheolGi; John, Renu; Malhotra, Bansi D

    2013-09-27

    This report describes the fabrication of a novel microfluidics nanobiochip based on a composite comprising of nickel oxide nanoparticles (nNiO) and multiwalled carbon nanotubes (MWCNTs), as well as the chip's use in a biomedical application. This nanocomposite was integrated with polydimethylsiloxane (PDMS) microchannels, which were constructed using the photolithographic technique. A structural and morphological characterization of the fabricated microfluidics chip, which was functionalized with a bienzyme containing cholesterol oxidase (ChOx) and cholesterol esterase (ChEt), was accomplished using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The XPS studies revealed that 9.3% of the carboxyl (COOH) groups present in the nNiO-MWCNT composite are used to form amide bonds with the NH2 groups of the bienzyme. The response studies on this nanobiochip reveal good reproducibility and selectivity, and a high sensitivity of 2.2 mA/mM/cm2. This integrated microfluidics biochip provides a promising low-cost platform for the rapid detection of biomolecules using minute samples.

  11. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging

    Science.gov (United States)

    Zhou, Tao; Jia, Lei; Luo, Yi-Feng; Xu, Jun; Chen, Ru-Hua; Ge, Zhi-Jun; Ma, Tie-Liang; Chen, Hong; Zhu, Tao-Feng

    2016-01-01

    A novel multifunctional halloysite nanotube (HNT)-based Fe3O4@HNT-polyethyleneimine-Tip-Eu(dibenzoylmethane)3 nanocomposite (Fe-HNT-Eu NC) with both photoluminescent and magnetic properties was fabricated by a simple one-step hydrothermal process combined with the coupling grafting method, which exhibited high suspension stability and excellent photophysical behavior. The as-prepared multifunctional Fe-HNT-Eu NC was characterized using various techniques. The results of cell viability assay, cell morphological observation, and in vivo toxicity assay indicated that the NC exhibited excellent biocompatibility over the studied concentration range, suggesting that the obtained Fe-HNT-Eu NC was a suitable material for bioimaging and biological applications in human hepatic adenocarcinoma cells. Furthermore, the biocompatible Fe-HNT-Eu NC displayed superparamagnetic behavior with high saturation magnetization and also functioned as a magnetic resonance imaging (MRI) contrast agent in vitro and in vivo. The results of the MRI tests indicated that the Fe-HNT-Eu NC can significantly decrease the T2 signal intensity values of the normal liver tissue and thus make the boundary between the normal liver and transplanted cancer more distinct, thus effectively improving the diagnosis effect of cancers. PMID:27698562

  12. New layer-based imaging and rapid prototyping techniques for computer-aided design and manufacture of custom dental restoration.

    Science.gov (United States)

    Lee, M-Y; Chang, C-C; Ku, Y C

    2008-01-01

    Fixed dental restoration by conventional methods greatly relies on the skill and experience of the dental technician. The quality and accuracy of the final product depends mostly on the technician's subjective judgment. In addition, the traditional manual operation involves many complex procedures, and is a time-consuming and labour-intensive job. Most importantly, no quantitative design and manufacturing information is preserved for future retrieval. In this paper, a new device for scanning the dental profile and reconstructing 3D digital information of a dental model based on a layer-based imaging technique, called abrasive computer tomography (ACT) was designed in-house and proposed for the design of custom dental restoration. The fixed partial dental restoration was then produced by rapid prototyping (RP) and computer numerical control (CNC) machining methods based on the ACT scanned digital information. A force feedback sculptor (FreeForm system, Sensible Technologies, Inc., Cambridge MA, USA), which comprises 3D Touch technology, was applied to modify the morphology and design of the fixed dental restoration. In addition, a comparison of conventional manual operation and digital manufacture using both RP and CNC machining technologies for fixed dental restoration production is presented. Finally, a digital custom fixed restoration manufacturing protocol integrating proposed layer-based dental profile scanning, computer-aided design, 3D force feedback feature modification and advanced fixed restoration manufacturing techniques is illustrated. The proposed method provides solid evidence that computer-aided design and manufacturing technologies may become a new avenue for custom-made fixed restoration design, analysis, and production in the 21st century.

  13. Repair or replacement of defective restorations by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Gordan, Valeria V; Riley, Joseph L; Geraldeli, Saulo

    2012-01-01

    The authors aimed to determine whether dentists in practices belonging to The Dental Practice-Based Research Network (DPBRN) were more likely to repair or to replace a restoration that they diagnosed as defective; to quantify dentists' specific reasons for repairing or replacing restorations......; and to test the hypothesis that certain dentist-, patient- and restoration-related variables are associated with the decision between repairing and replacing restorations....

  14. An Exploration of Dental Students' Assumptions About Community-Based Clinical Experiences.

    Science.gov (United States)

    Major, Nicole; McQuistan, Michelle R

    2016-03-01

    The aim of this study was to ascertain which assumptions dental students recalled feeling prior to beginning community-based clinical experiences and whether those assumptions were fulfilled or challenged. All fourth-year students at the University of Iowa College of Dentistry & Dental Clinics participate in community-based clinical experiences. At the completion of their rotations, they write a guided reflection paper detailing the assumptions they had prior to beginning their rotations and assessing the accuracy of their assumptions. For this qualitative descriptive study, the 218 papers from three classes (2011-13) were analyzed for common themes. The results showed that the students had a variety of assumptions about their rotations. They were apprehensive about working with challenging patients, performing procedures for which they had minimal experience, and working too slowly. In contrast, they looked forward to improving their clinical and patient management skills and knowledge. Other assumptions involved the site (e.g., the equipment/facility would be outdated; protocols/procedures would be similar to the dental school's). Upon reflection, students reported experiences that both fulfilled and challenged their assumptions. Some continued to feel apprehensive about treating certain patient populations, while others found it easier than anticipated. Students were able to treat multiple patients per day, which led to increased speed and patient management skills. However, some reported challenges with time management. Similarly, students were surprised to discover some clinics were new/updated although some had limited instruments and materials. Based on this study's findings about students' recalled assumptions and reflective experiences, educators should consider assessing and addressing their students' assumptions prior to beginning community-based dental education experiences.

  15. Electrorheological fluid of kaolinite-based ternary nanocomposite and its properties

    Institute of Scientific and Technical Information of China (English)

    WANG; Baoxiang; ZHAO; Xiaopeng; YAO; Yuan

    2005-01-01

    According to the physical and chemical design, a kind of kaolinite /dimethylsulfoxide/carboxymethyl starch (CMS) ternary nanocomposite was prepared by the two-step composite method. Firstly, the polar liquid-dimethylsulfoxide (DMSO) was directly intercalated into the interlayer of kaolinite, and then the intercalated complex was composite with CMS by the solution method. The results showed that DMSO moderately intercalated the interlayer of kaolinite and the basal spacing of kaolinite was swollen from 0.715 to 1.120 nm. Under the electric fields of 5 kV mm-1 and volume fraction 30%, the static shear stress of kaolinite/DMSO/CMS ternary ERF could reach 17 kPa, which was 14 times and 4.25 times higher than that of pure kaolinite ERF and kaolinite/CMS ERF respectively. At the suitable component ratio (kaolinite:DMSO:CMS=1:0.75:0.6) of nanocomposite, a stronger synergetic effect and the optimum electrorheological effect could be attained. The ternary nanocomposite ERF also had good temperature effect and sedimentation properties. The sedimentation part of ternary nanocomposite ERF was only 9% after 30 days. The results of dielectric properties showed that the dielectric constant and conductivity of ternary nanocomposite ERF had been improved more enormously than that of the single component ERF and binary composite ERF. So the polarization and dielectric mismatch were strengthened, which was suitable to the enhancement of ER effect.

  16. Effect of sintering on mechanical and electrical properties of carbon nanotube based silver nanocomposites

    Science.gov (United States)

    Pal, H.; Sharma, V.

    2015-03-01

    Nanocrystalline (single and multiwall) carbon nanotube reinforced silver nanocomposites are successfully synthesized by a modified molecular level mixing method. These materials are subsequently sintered up to 800 °C in inert atmosphere for 12 h. To elucidate the effect of sintering, micro-structural, mechanical and electrical properties of fabricated nanocomposites are evaluated before and after sintering. Scanning and transmission electron microscopic characterization have revealed that the carbon nanotubes are embedded, anchored and homogenously dispersed in silver matrix. Measured hardness and Young's modulus of fabricated nanocomposites are increased by 20-30 % after sintering. The carbon nanotube reinforcement has also improved electrical conductivity of low conducting nano-silver matrix before sintering. However, negative reinforcement effect is observed in high conducting bulk silver matrix after sintering. Comparatively improved mechanical and electrical properties of single wall carbon nanotube reinforced nanocomposites than multiwall nanotube reinforced nanocomposite are observed, which are correlated with high aspect ratio and larger effective contact surface area of single wall carbon nanotubes.

  17. Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application.

    Science.gov (United States)

    Bhowmick, Arundhati; Pramanik, Nilkamal; Jana, Piyali; Mitra, Tapas; Gnanamani, Arumugam; Das, Manas; Kundu, Patit Paban

    2017-02-01

    Here, zirconium oxide nanoparticles (ZrO2 NPs) were incorporated for the first time in organic-inorganic hybrid composites containing chitosan, poly(ethylene glycol) and nano-hydroxypatite (CS-PEG-HA) to develop bone-like nanocomposites for bone tissue engineering application. These nanocomposites were characterized by FT-IR, XRD, TEM combined with SAED. SEM images and porosity measurements revealed highly porous structure having pore size of less than 1μm to 10μm. Enhanced water absorption capacity and mechanical strengths were obtained compared to previously reported CS-PEG-HA composite after addition of 0.1-0.3wt% of ZrO2 NPs into these nanocomposites. The mechanical strengths and porosities were similar to that of human spongy bone. Strong antimicrobial effects against gram-negative and gram-positive bacterial strains were also observed. Along with getting low alkalinity pH (7.4) values, similar to the pH of human plasma, hemocompatibility and cytocompatibility with osteoblastic MG-63 cells were also established for these nanocomposites. Addition of 15wt% HA-ZrO2 (having 0.3wt% ZrO2 NPs) into CS-PEG (55:30wt%) composite resulted in greatest mechanical strength, porosity, antimicrobial property and cytocompatibility along with suitable water absorption capacity and compatibility with human pH and blood. Thus, this nanocomposite could serve as a potential candidate to be used for bone tissue engineering.

  18. Metal-polymer nanocomposites based on Ni nanoparticles and polythiophene obtained by electrochemical method

    Science.gov (United States)

    Pascariu, Petronela; Airinei, Anton; Grigoras, Mircea; Vacareanu, Loredana; Iacomi, Felicia

    2015-10-01

    Polythiophene-nickel (PT-Ni) nanocomposites have been prepared by the electrochemical oxidative polymerization of thiophene in the presence of nickel nanoparticles. The metallic nickel nanoparticles were obtained by the chemical reduction of nickel chloride with hydrazine at 100-130 °C. Poly(N-vinylpyrrolidone) (PVP) was used as protective agent in the synthesis of nickel nanoparticles. Transmission electron microscopy data revealed the particle size to be in the range 6-20 nm. X-ray diffraction, scanning electron microscopy, thermal analysis, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were utilized to characterize the nanocomposites. XPS measurements for the PT-Ni nanocomposites showed that the nickel content varied between 0.43 and 1.3 at.% in the PT-Ni nanocomposites. The electrical conductivity of the composites increased from 4.5 × 10-3 Ω cm-1 to 1.25 × 10-2 Ω cm-1 as the amount of nickel was increased from 0.43% up to 1.3%, polythiophene-Ni nanocomposites exhibiting a good electrical conductivity response.

  19. Perceptions and practices of dental school faculty regarding evidence-based dentistry.

    Science.gov (United States)

    Marshall, Teresa A; Straub-Morarend, Cheryl L; Qian, Fang; Finkelstein, Michael W

    2013-02-01

    Successful integration of critical thinking and evidence-based dentistry (EBD) concepts throughout didactic and clinical dental curricula require faculty support. Critical thinking and EBD definitions and practice continue to evolve, and not all dental faculty members were exposed to such concepts during their education. The objective of this study was to understand faculty members' perspectives on both critical thinking and EBD. An online survey was designed to assess full- and part-time faculty members' understanding, practice and teaching of critical thinking and EBD, interest in and perceived significance of EBD, and perceived barriers to teaching critical thinking and EBD at one U.S. dental school. Forty-three faculty members completed the survey for a 41 percent response rate. Most respondents (46 percent) defined critical thinking as the use of evidence or the scientific method in decision making and EBD as clinical practice based on "science only" (39 percent) or "quality science only" (34 percent). Based on their individual definitions, over 75 percent of the respondents reported incorporating critical thinking into didactic and clinical teaching; 79 percent and 47 percent, respectively, reported incorporating EBD into their didactic and clinical teaching. While these faculty members confirmed the importance of teaching students EBD, they identified barriers to teaching as time, knowledge, and resources. These results, which reflect one school's efforts to understand faculty perceptions and practices of EBD, suggest that faculty training and resource support are necessary for successful curricular integration of critical thinking and EBD.

  20. Evidence Based Dental Care: Integrating Clinical Expertise with Systematic Research

    OpenAIRE

    2014-01-01

    Clinical dentistry is becoming increasingly complex and our patients more knowledgeable. Evidence-based care is now regarded as the “gold standard” in health care delivery worldwide. The basis of evidence based dentistry is the published reports of research projects. They are, brought together and analyzed systematically in meta analysis, the source for evidence based decisions. Activities in the field of evidence-based dentistry has increased tremendously in the 21st century, more and more p...

  1. Association of cardiometabolic risk factors and dental caries in a population-based sample of youths

    Directory of Open Access Journals (Sweden)

    Kelishadi Roya

    2010-04-01

    Full Text Available Abstract Background Cardiovascular disease (CVD risk factors begin from early life and track onto adulthood. Oral and dental diseases share some risk factors with CVD, therefore by finding a clear relation between dental diseases and cardiometabolic risk factors; we can then predict the potential risk of one based on the presence of the other. This study aimed to compare the prevalence of dental caries between two groups of age-matched adolescents with and without CVD risk factors. Methods In this case-control study, the decayed, missing and filled surfaces (DMFS, based on the criteria of the World Health Organization, were compared in two groups of equal number (n = 61 in each group of population-based sample of adolescents with and without CVD risk factors who were matched for sex and age group. Results The study participants had a median age 13 y 5 mo, age range 11 y 7 mo to 16 y 1 mo, with male-to-female proportion of 49/51. We found significant difference between the mean values of DMFS, body mass index, waist and hip circumferences, as well as serum lipid profile in the case and control groups. Significant correlations were documented for DMFS with TC (r = 0.54, p = 0.02, LDL-C (r = 0.55, p = 0.01 and TG (r = 0.52, p = 0.04 in the case group; with LDL-C (r = 0.47, p = 0.03 in the whole study participants and with TC in control s(r = 0.45, p = 0.04. Conclusions Given the significant associations between dental caries and CVD risk factors among adolescents, more attention should be paid to oral health, as one of the topics to be taken into account in primordial/primary prevention of cardiometabolic disorders.

  2. Modeling the electromechanical and strain response of carbon nanotube-based nanocomposites

    Science.gov (United States)

    Lee, Bo Mi; Loh, Kenneth J.; Burton, Andrew R.; Loyola, Bryan R.

    2014-04-01

    Over the last few decades, carbon nanotube (CNT)-based thin films or nanocomposites have been widely investigated as a multifunctional material. The proposed applications extend beyond sensing, ultra-strong coatings, biomedical grafts, and energy harvesting, among others. In particular, thin films characterized by a percolated and random distribution of CNTs within a flexible polymeric matrix have been shown to change its electrical properties in response to applied strains. While a plethora of experimental work has been conducted, modeling their electromechanical response remains challenging. Furthermore, their design and optimization require the derivation of accurate electromechanical models that could predict thin film response to applied strains. Thus, the objective of this study is to implement a percolation-based piezoresistive model that could explain the underlying mechanisms for strain sensing. First, a percolation-based model with randomly distributed, straight CNTs was developed in MATLAB. Second, the number of CNTs within a unit area was varied to explore its influence on percolation probability. Then, to understand how the film's electrical properties respond to strain, two different models were implemented. Both models calculated the geometrical response of the film and CNTs due to applied uniaxial strains. The first model considered the fact that the electrical resistance of individual CNTs changed depending solely on its length between junctions. The other model further explored the idea of incorporating strain sensitivity of individual CNTs. The electromechanical responses and the strain sensitivities of the two models were compared by calculating how their bulk resistance varied due to applied tensile and compressive strains. The numerical model results were then qualitatively compared to experimental results reported in the literature.

  3. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.

    Science.gov (United States)

    Lightcap, Ian V; Kamat, Prashant V

    2013-10-15

    Graphene not only possesses interesting electrochemical behavior but also has a remarkable surface area and mechanical strength and is naturally abundant, all advantageous properties for the design of tailored composite materials. Graphene-semiconductor or -metal nanoparticle composites have the potential to function as efficient, multifunctional materials for energy conversion and storage. These next-generation composite systems could possess the capability to integrate conversion and storage of solar energy, detection, and selective destruction of trace environmental contaminants or achieve single-substrate, multistep heterogeneous catalysis. These advanced materials may soon become a reality, based on encouraging results in the key areas of energy conversion and sensing using graphene oxide as a support structure. Through recent advances, chemists can now integrate such processes on a single substrate while using synthetic designs that combine simplicity with a high degree of structural and composition selectivity. This progress represents the beginning of a transformative movement leveraging the advancements of single-purpose chemistry toward the creation of composites designed to address whole-process applications. The promising field of graphene nanocomposites for sensing and energy applications is based on fundamental studies that explain the electronic interactions between semiconductor or metal nanoparticles and graphene. In particular, reduced graphene oxide is a suitable composite substrate because of its two-dimensional structure, outstanding surface area, and electrical conductivity. In this Account, we describe common assembly methods for graphene composite materials and examine key studies that characterize its excited state interactions. We also discuss strategies to develop graphene composites and control electron capture and transport through the 2D carbon network. In addition, we provide a brief overview of advances in sensing, energy conversion

  4. Radiation-induced synthesis of vinyl copolymer based nanocomposites filled with reactive organic montmorillonite clay

    Science.gov (United States)

    Kim, Sang-Kyum; Kwen, Hai-Doo; Choi, Seong-Ho

    2012-05-01

    Vinyl copolymer-clay nanocomposites were prepared by γ-irradiation-initiated radical polymerization using a mixture of styrene (St) and divinyl benzene (DVB) in the presence of reactive organic montmorillonite clay (OMMT) in methanol at room temperature. Reactive OMMT was synthesized by a cation exchange reaction of Na+-MMT and 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride as a reactive organic modifier in an aqueous solution. The microstructures of the nanocomposites were confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal stability was examined by thermo gravimetric analysis (TGA). As a result, the reactive OMMT was a good additive material for preparing vinyl copolymer-clay nanocomposites.

  5. An Automatic Detection Method of Nanocomposite Film Element Based on GLCM and Adaboost M1

    Directory of Open Access Journals (Sweden)

    Hai Guo

    2015-01-01

    Full Text Available An automatic detection model adopting pattern recognition technology is proposed in this paper; it can realize the measurement to the element of nanocomposite film. The features of gray level cooccurrence matrix (GLCM can be extracted from different types of surface morphology images of film; after that, the dimension reduction of film can be handled by principal component analysis (PCA. So it is possible to identify the element of film according to the Adaboost M1 algorithm of a strong classifier with ten decision tree classifiers. The experimental result shows that this model is superior to the ones of SVM (support vector machine, NN and BayesNet. The method proposed can be widely applied to the automatic detection of not only nanocomposite film element but also other nanocomposite material elements.

  6. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios

    2010-01-01

    Structure-properties relationships in poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, clay nanocomposites are reported for the first time. Addition of organically modified clays to PVDF-HFP promotes an α to β transformation of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure compared to the neat copolymer. In addition, their dielectric permittivity is higher over a wide temperature range. Their mechanical and dielectric properties scale similar to the amount of the β phase present in the nanocomposites. © 2009 Elsevier Ltd. All rights reserved.

  7. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria.

    Science.gov (United States)

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Raju, Konduru Mohana

    2013-02-15

    The design and fabrication of novel biodegradable gold nanocomposites hydrogels were developed as antibacterial agent. Biodegradable gold nanocomposite hydrogels were developed by using acrylamide (AM) and wheat protein isolate (WPI). The gold nanoparticles were prepared as a gold colloid by reducing HAuCl(4)·XH(2)O with leaf extracts of Azadirachta indica (neem leaf) that formed hydrogel network. The characterization of developed biodegradable hydrogels were studied using fourier transforms infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The biodegradable gold nanoparticle composite hydrogels developed were tested for antibacterial properties. The results indicate that these biodegradable gold nanocomposite hydrogels can be used as potential candidates for antibacterial applications.

  8. Dental esthetics and its impact on psycho-social well-being and dental self confidence: a campus based survey of north Indian university students.

    Science.gov (United States)

    Afroz, Shaista; Rathi, Shraddha; Rajput, Geeta; Rahman, Sajjad Abdur

    2013-12-01

    To evaluate the subjects perceived satisfaction of their dental appearance and to compare it with a various attitudes and practices which may affect social and psychological behavior and dental self confidence. This was a questionnaire based cross-sectional study done in the campus of Aligarh Muslim University, Aligarh (India). 426 students participated in the study. Questions were pooled in from various components of psychosocial impact of dental esthetics questionnaire (PIDAQ) for various attitudes and practices. Quantitative analysis was done using descriptive analysis and Chi square test using SPSS software. Majority of subjects (57.7 %) was highly satisfied with their smile, more than one-third (37.3 %) were satisfied and there were only 4.9 % subjects who were not satisfied with their smile. Tooth color was the most common (27.9 %) smile component causing dissatisfaction amongst the subjects. More than two-fifth (42.5 %) liked to show their teeth, one-half (49.5 %) liked to see their teeth in mirror, photographs and videos, almost one quarter (23.9 %) subjects used to hide their teeth while smiling. As compared to females, significantly higher proportion of males was conscious of opposite sex while smiling. The proportion of subjects which was highly satisfied with their smile was significantly higher for the item 'like to show their teeth and who liked to see their teeth in mirror, photographs and video' whereas for all the other items the proportion of respondents which was not satisfied with their smile was significantly higher. Self perceived satisfaction of dental esthetics has positive impact on person's social and psychological behavior and dental self confidence.

  9. Insights on Metal Based Dental Implants and their Interaction with the Surrounding Tissues.

    Science.gov (United States)

    Popa, Marcela; Hussien, Mohamed D; Cirstea, Alexandra; Grigore, Raluca; Lazar, Veronica; Bezirtzoglou, Eugenia; Chifiriuc, Mariana Carmen; Sakizlian, Monica; Stavropoulou, Elisavet; Bertesteanu, Serban

    2015-01-01

    At present, the use of dental implants is a very common practice as tooth loss is a frequent problem and can occur as a result of disease or trauma. An implant is usually made of biocompatible materials that do not cause rejection reactions and allow the implant union with the respective bone. To achieve this goal, the implant surface may have different structures and coatings, generally used to increase the adherence of the implant to the bone and to decrease the risk of the periimplantar inflammatory reactions. This review gives some insights of the metal based materials used for dental implants, their limits, improvement strategies as well as the pathophysiology, diagnosis, treatment and prevention of periimplantary diseases.

  10. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation.

  11. Novel kojic acid-polymer-based magnetic nanocomposites for medical applications

    Directory of Open Access Journals (Sweden)

    Hussein-Al-Ali SH

    2014-01-01

    Full Text Available Samer Hasan Hussein-Al-Ali,1 Mohamed Ezzat El Zowalaty,2,5 Mohd Zobir Hussein,3 Maznah Ismail,1,4 Dena Dorniani,3 Thomas J Webster6,7 1Laboratory of Molecular Biomedicine, 2Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, 3Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, 4Department of Nutrition and Dietetics, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 5Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia; 6Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 7Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Iron oxide magnetic nanoparticles (MNPs were synthesized by the coprecipitation of iron salts in sodium hydroxide followed by coating separately with chitosan (CS and polyethylene glycol (PEG to form CS-MNPs and PEG-MNPs nanoparticles, respectively. They were then loaded with kojic acid (KA, a pharmacologically bioactive natural compound, to form KA-CS-MNPs and KA-PEG-MNPs nanocomposites, respectively. The MNPs and their nanocomposites were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, vibrating sample magnetometry, and scanning electron microscopy. The powder X-ray diffraction data suggest that all formulations consisted of highly crystalline, pure magnetite Fe3O4. The Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed the presence of both polymers and KA in the nanocomposites. Magnetization curves showed that both nanocomposites (KA-CS-MNPs and KA-PEG-MNPs were superparamagnetic with saturation magnetizations of 8.1 emu/g and 26.4 emu/g, respectively. The KA drug loading was estimated using ultraviolet–visible spectroscopy, which gave a loading of 12.2% and 8.3% for the KA

  12. Tribology of nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering

    2013-02-01

    This book provides a comprehensive review of the latest developments in nanotribology. It contains the following five chapters: 1. Tribology of bulk polymer nanocomposites and nanocomposite coatings (M. D. Bermudez, F. J. Carrion, C. Espejo, J. Sanes); 2. Nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites (Jayashree Bijwe, Mohit Sharma); 3. Tribology of MoS{sub 2}-based nanocomposites (Kunhong Hu, Xianguo Hu, Yufu Xu, Xiaojun Sun, Yang Jiang); 4. Friction and wear of Al{sub 2}O{sub 3}-based composites with dispersed and agglomerated nanoparticles (Jinjun Lu, Jian Shang, Junhu Meng, Tao Wang); and 5. Wear of multi-scale phase reinforced composites (Zhenyu Jiang, Zhong Zhang).

  13. Evidence-based dentistry--overcoming the challenges for the UK's dental practitioners.

    Science.gov (United States)

    Fox, C; Kay, E J; Anderson, R

    2014-08-01

    This paper describes the historical origins and purpose of 'evidence-based practice' and describes the barriers to the growth of evidence-based practice within dentistry. It describes a new research agenda-setting process for dentistry, which includes identifying and prioritising the topics of most relevance to the work of primary dental care practitioners. By undertaking the work described in this paper we were striving to make research more relevant to the day to day decisions made by dentists in practice by introducing a new process, the intention being to promote and promulgate the practice of evidence-based dentistry.

  14. Visible-light driven photoelectrochemical immunosensor for insulin detection based on MWCNTs@SnS2@CdS nanocomposites.

    Science.gov (United States)

    Liu, Yixin; Zhang, Yifeng; Wu, Dan; Fan, Dawei; Pang, Xuehui; Zhang, Yong; Ma, Hongmin; Sun, Xu; Wei, Qin

    2016-12-15

    In this work, a label-free photoelectrochemical (PEC) immunosensor was developed for ultrasensitive detection of insulin based on MWCNTs@SnS2@CdS nanocomposites. As graphene-like 2D nanomaterial, SnS2 nanosheets loaded on the conducting framework of multi-walled carbon nanotubes (MWCNTs) were adopted for the construction of immunosensor for the first time, providing a favorable substrate for in-situ growth of CdS nanocrystal that had suitable band structure matching well with SnS2. The well-matched band structure of these two metal sulfides effectively inhibited the recombination of photogenerated electron-hole pairs, thus improving the photo-to-current conversion efficiency. Besides, the introduction of MWCNTs facilitated electron transfer across the surface of electrodes, leading to a further increment of photocurrent. The as constructed label-free PEC immunosensor based on MWCNTs@SnS2@CdS nanocomposites exhibited excellent PEC performance for the detection of insulin. The concentrations of insulin could be directly detected based on the decrement of photocurrent that was brought by the increased steric hindrances due to the formation of antigen-antibody immunocomplexes. Under the optimal conditions, the PEC immunosensor had a sensitive response to insulin in a linear range of 0.1pgmL(-1) to 5ngmL(-1) with a detection limit of 0.03pgmL(-1). Meanwhile, good stability and selectivity were achieved as well. The design and fabrication of this PEC immunosensor based on MWCNTs@SnS2@CdS nanocomposites not only provided an ideal platform for the detection of insulin, but also opened up a new avenue for the development of immunosensor for some other biomarkers analysis.

  15. An intraoral miniature x-ray tube based on carbon nanotubes for dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Kim, Hyun Nam; Raza, Hamid Saeed; Park, Han Beom; Cho, Sung Oh [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-06-15

    A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

  16. On the corrosion behavior and biocompatibility of palladium-based dental alloys

    Science.gov (United States)

    Sun, Desheng

    Palladium-based alloys have been used as dental restorative materials for about two decades with good clinical history. But there have been clinical case reports showing possible allergy effects from these alloys. The aim of this study was to characterize the corrosion behavior and mechanisms of several palladium-based dental alloys by potentiodynamic polarization methods, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe force microscopy/atomic force microscopy (SKPFM/AFM), and to evaluate their biocompatibility by a cell culture technique and an animal model. Using SKPFM/AFM and scanning electron microscopy, the Ru-enriched phase from the use of ruthenium as a grain-refining element was identified as being slightly more noble than the palladium solid solution matrix in a high-palladium alloy. Other secondary precipitates that exist in the microstructures of these high-palladium alloys have minimal differences in Volta potential compared to the matrix. For high-palladium alloys, corrosion is generally uniform due to the predominant palladium content in the different phases. Potentiodynamic polarization and EIS have shown that representative palladium-silver alloys have low corrosion tendency and high corrosion resistance, which are equivalent to a well-known high-noble gold-palladium alloy in simulated body fluid and oral environments. The palladium-silver alloys tested are resistant to chloride ion corrosion. Passivation and dealloying have been identified for all of the tested palladium-silver alloys. The great similarity in corrosion behavior among the palladium-silver alloys is attributed to their similar chemical compositions. The variation in microstructures of palladium-silver alloys tested does not cause significant difference in corrosion behavior. The corrosion resistance of these palladium-silver alloys at elevated potentials relevant to oral environment is still satisfactory. The release of elements from representative dental

  17. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review.

    Science.gov (United States)

    Pina, Sandra; Oliveira, Joaquim M; Reis, Rui L

    2015-02-18

    Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.

  18. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental resu

  19. Quantum dot sensitized solar cell based on poly (3-hexyl thiophene)/CdSe nanocomposites

    Science.gov (United States)

    Sehgal, Preeti; Narula, Anudeep kumar

    2015-10-01

    The optoelectronic properties of P3HT-CdSe nanocomposites prepared by insitu chemical oxidative polymerization were studied. CdSe QDs were synthesized by hot injection method using tri octyl phosphine oxide (TOPO) as capping ligand whereas the P3HT polymer was prepared by chemical oxidative polymerization. FTIR studies confirmed the regioregularity of the P3HT and revealed the chemical interaction of P3HT and CdSe in nanocomposite. Absorption studies showed blue shift for the nanocomposites as compare to pristine P3HT, the electron transfer from conducting polymer to the CdSe was detected by the measurements of quenching of photoluminescence from conducting polymer after the addition of semiconductor nano crystals which confirmed that an optimum amount of nanoparticles provide networking in hybrid composites. The optimal result for device prepared by P3HT-CdSe nanocomposites was open circuit voltage (Voc) 0.5, short circuit current density (Jsc) 0.66, Fill factor (FF) 0.6855 and efficiency (η) 0.22%.

  20. A facile fabrication of multifunctional knit polyester fabric based on chitosan and polyaniline polymer nanocomposite

    Science.gov (United States)

    Tang, Xiaoning; Tian, Mingwei; Qu, Lijun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Sun, Kaikai; Hu, Xili; Wang, Yujiao; Xu, Xiaoqi

    2014-10-01

    Knit polyester fabric was successively modified and decorated with chitosan layer and polyaniline polymer nanocomposite layer in this paper. The fabric was firstly treated with chitosan to form a stable layer through the pad-dry-cure process, and then the polyaniline polymer nanocomposite layer was established on the outer layer by in situ chemical polymerization method using ammonium persulfate as oxidant and chlorhydric acid as dopant. The surface morphology of coated fabric was characterized by scanning electron microscopy (SEM), and the co-existence of chitosan layer and granular polyaniline polymer nanocomposite was confirmed and well dispersed on the fabric surface. The resultant fabric was endowed with remarkable electrical conductivity properties and efficient water-repellent capability, which also have been found stable after water laundering. In addition, the photocatalytic decomposition activity for reactive red dye was observed when the multifunctional knit polyester fabric was exposed to the illumination of ultraviolet lamp. These results indicated that chitosan and polyaniline polymer nanocomposite could form ideal multifunctional coatings on the surface of knit polyester fabric.

  1. Enhanced microwave absorption properties in cobalt-zinc ferrite based nanocomposites

    Science.gov (United States)

    Poorbafrani, A.; Kiani, E.

    2016-10-01

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were investigated. Cobalt-zinc ferrite powders, synthesized through PVA sol-gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt-zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co0.6Zn0.4Fe2O4-Paraffin nanocomposites were measured in the frequency range of 1-18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than -10 dB in the whole C-band and 30% of the X-band frequencies.

  2. Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol-gel synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, J; Tercjak, A; Garcia, I; Peponi, L; Mondragon, I [' Materials-Technologies' Group, Departamento Ingenieria Quimica y Medio Ambiente, Escuela Politecnica, Universidad PaIs Vasco/Euskal Herriko Unibertsitatea, Plaza Europa 1, E-20018 Donostia-San Sebastian (Spain)], E-mail: inaki.mondragon@ehu.es

    2008-04-16

    The poly(styrene)-b-poly(ethylene oxide) (SEO) amphiphilic block copolymer, with two different molecular weights, has been used as a structure directing agent for generating nanocomposites of TiO{sub 2}/SEO via the sol-gel process. SEO amphiphilic block copolymers are designed with a hydrophilic PEO-block which can interact with inorganic molecules, as well as a hydrophobic PS-block which builds the matrix. The addition of different amounts of sol-gel provokes strong variations in the self-assembled morphology of TiO{sub 2}/SEO nanocomposites with respect to the neat block copolymer. As confirmed by atomic force microscopy (AFM), TiO{sub 2}/PEO-block micelles get closer, forming well-ordered spherical domains, in which TiO{sub 2} nanoparticles constitute the core surrounded by a corona of PEO-blocks. Moreover, for 20 vol% sol-gel the generated morphology changes to a hexagonally ordered structure for both block copolymers. The cylindrical structure of these nanocomposites has been confirmed by the two-dimensional Fourier transform power spectrum of the corresponding AFM height images. Affinity between titanium dioxide precursor and PEO-block of SEO allows us to generate hybrid inorganic/organic nanocomposites, which retain the optical properties of TiO{sub 2}, as evaluated by UV-vis spectroscopy.

  3. Processing and properties of Cu based micro- and nano-composites

    Indian Academy of Sciences (India)

    S Panda; K Dash; B C Ray

    2014-04-01

    Nano-composites of 1, 3, 5 and 7 vol% Al2O3 (average size < 50 nm) and microcomposites having compositions 5, 10, 15, 20 vol% of Al2O3 (average size ∼ 10 m) reinforced in copper matrix were fabricated by powder metallurgy route. All the specimens were sintered at different sintering temperatures (850, 900 and 1000°C) to study the effect of temperature on the process and progress of sinterability of the reinforced micro- and nanoparticles in the matrix. These micro- and nano-composites were characterized using X-ray diffraction and scanning electron microscopy followed by density, microhardness and wear measurements. The compression and flexural tests were also carried out in order to investigate the mechanical behaviour of the micro- and nano-composites for a fixed optimum sintering temperature. Fractography of the 3-point bend specimens was performed to investigate the fracture behaviour of the micro- and nano-composites. The flexural test results showed that the ultimate flexural strength decreases and flexural modulus increases with the increase in reinforcement content.

  4. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles.

    Science.gov (United States)

    Lin, Chan; Song, Yang; Cao, Lixin; Chen, Shaowei

    2013-06-07

    A unique nanocomposite C-TiO2 was prepared by the growth of TiO2 on carbon nanoparticles using a simple hydrothermal procedure. Transmission electron microscopic (TEM) measurements showed that the nanocomposites exhibited an average core diameter of approximately 5 nm with a rather well-defined lattice space (0.4 nm) that was somewhat larger than that (0.38 nm) of the (100) crystalline planes of anatase TiO2. This lattice expansion was accounted for by the formation of surface defect dipoles of the nanosized TiO2 particles. X-ray photoelectron spectroscopic (XPS) measurements suggested that partial charge transfer occurred from carbon nanoparticles to TiO2 by the interfacial Ti-O-C linkages, which led to effective diminishment of the C-TiO2 photoluminescence as compared to that of pure TiO2 or carbon nanoparticles, suggesting intimate electronic interactions between the carbon and TiO2 components in the nanocomposites. Such unique characteristics were then exploited for the effective photocatalytic degradation of organic pollutants, as exemplified by methylene blue, by C-TiO2 under UV photoirradiation. Experimental measurements showed that the photocatalytic activity of C-TiO2 nanocomposites was about twice that of TiO2 alone, whereas little activity was observed with carbon nanoparticles. This was attributed to the electron-accepting sites on the carbon nanoparticles that facilitated interfacial charge separation.

  5. Synthesis and optical properties of TiO{sub 2}-based magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Scarisoreanu, M.; Morjan, I. [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); Fleaca, C.-T., E-mail: claudiufleaca@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); “Politehnica” University of Bucharest, Physics Department, Independentei 313, Bucharest (Romania); Morjan, I.P.; Niculescu, A.-M.; Dutu, E.; Badoi, A.; Birjega, R.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); Vasile, E. [“Politehnica” University of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Oxide Materials and Nanomaterials, Gh. Polizu 1-7, Bucharest (Romania); Danciu, V. [“Babes-Boyai” University, Faculty of Chemistry and Chemical Engineering, Electrochemical Research Laboratory, 11 Arany Janos Street, Cluj-Napoca 400028 (Romania); Filoti, G. [National Institute for Materials Physics (NIMP), Atomistilor 105bis, PO Box MG7, R-077125 Magurele, Bucharest (Romania)

    2015-05-01

    Highlights: • Magnetic titania@silica nanoparticles were synthesized by the single step laser pyrolysis. • Fe(CO){sub 5}, TiCl{sub 4}, HMDSO and O{sub 2} from air were the precursors and C{sub 2}H{sub 4} was the sensitizer. • Samples present a typical character of diluted magnetic oxide systems. • Samples have a lower bandgap energy (down to E{sub g} = 1.85 eV) than the P25 Degussa. - Abstract: Magnetic titania nanoparticles covered/embedded in SiO{sub 2} shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO{sub 2}/Fe and TiO{sub 2}/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO{sub 2} based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV–vis (ultraviolet–visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe{sub 2}O{sub 3} and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14–34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (E{sub g} = 1.85 eV) as compared with TiO{sub 2} P25 Degussa sample.

  6. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    Science.gov (United States)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  7. Multifunctional nanocomposite based on halloysite nanotubes for efficient luminescent bioimaging and magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Zhou T

    2016-09-01

    Full Text Available Tao Zhou,1 Lei Jia,1 Yi-Feng Luo,2 Jun Xu,1 Ru-Hua Chen,2 Zhi-Jun Ge,2 Tie-Liang Ma,2 Hong Chen,2 Tao-Feng Zhu2 1Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan, 2The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, People’s Republic of China Abstract: A novel multifunctional halloysite nanotube (HNT-based Fe3O4@HNT-polyethyleneimine-Tip-Eu(dibenzoylmethane3 nanocomposite (Fe-HNT-Eu NC with both photoluminescent and magnetic properties was fabricated by a simple one-step hydrothermal process combined with the coupling grafting method, which exhibited high suspension stability and excellent photophysical behavior. The as-prepared multifunctional Fe-HNT-Eu NC was characterized using various techniques. The results of cell viability assay, cell morphological observation, and in vivo toxicity assay indicated that the NC exhibited excellent biocompatibility over the studied concentration range, suggesting that the obtained Fe-HNT-Eu NC was a suitable material for bioimaging and biological applications in human hepatic adenocarcinoma cells. Furthermore, the biocompatible Fe-HNT-Eu NC displayed superparamagnetic behavior with high saturation magnetization and also functioned as a magnetic resonance imaging (MRI contrast agent in vitro and in vivo. The results of the MRI tests indicated that the Fe-HNT-Eu NC can significantly decrease the T2 signal intensity values of the normal liver tissue and thus make the boundary between the normal liver and transplanted cancer more distinct, thus effectively improving the diagnosis effect of cancers. Keywords: halloysite nanotube, lanthanide complex, iron oxide, luminescence, contrast agent

  8. Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Poorbafrani, A., E-mail: a.poorbafrani@gmail.com; Kiani, E.

    2016-10-15

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were investigated. Cobalt–zinc ferrite powders, synthesized through PVA sol–gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt–zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were measured in the frequency range of 1–18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than –10 dB in the whole C-band and 30% of the X-band frequencies. - Highlights: • We enhanced the magnetic properties of cobalt–zinc Ferrite nanocomposites. • The samples showed absorption in the whole C-band and 30% of the X-band frequencies. • We tried to solve the problem of the spinel ferrite utilized as efficient absorber. • We enhanced the microwave reflection loss over extended frequency ranges.

  9. Threshold energies for filamentation and spectral characteristics of supercontinuum generation in THEOS-based nanocomposite organosilicon media

    Energy Technology Data Exchange (ETDEWEB)

    Kul' chin, Yu N; Mayor, A Yu; Proschenko, D Yu; Chekhlenok, A A; Golik, S S [Institute for Automation and Control Processes, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok (Russian Federation); Postnova, I V; Shchipunov, Yu A [Institute of Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok (Russian Federation); Bukin, O A [G.I. Nevelskoi Maritime State University, Vladivostok (Russian Federation)

    2014-08-31

    We have experimentally determined the threshold energy for filamentation in THEOS-based hybrid silicate nanocomposite materials containing polysaccharides and hyperbranched polyglycidols and the conversion efficiency from the 800-nm femtosecond Ti : sapphire laser output to a supercontinuum in the range 420 – 700 nm. The addition of sodium hyaluronate (polysaccharide) and low concentrations of Au nanoparticles or CdS quantum dots with an average diameter of 3 – 5 nm has been shown to considerably reduce the threshold energy for filamentation and improve the laser output to supercontinuum conversion efficiency. (extreme light fields and their applications)

  10. Development of glucose biosensors based on plasma polymerization-assisted nanocomposites of polyaniline, tin oxide, and three-dimensional reduced graphene oxide

    Science.gov (United States)

    Wu, Shide; Su, Fangfang; Dong, Xiaodong; Ma, Chuang; Pang, Long; Peng, Donglai; Wang, Minghua; He, Linghao; Zhang, Zhihong

    2017-04-01

    A biosensor based on the plasma polyaniline (pPANI)-modified tin oxide and 3D reduced graphene oxide (SnO2@3D-rGO) nanocomposite was fabricated to detect glucose. The SnO2@3D-rGO nanocomposite was synthesized by simultaneously reducing 3D graphene oxide (3D-GO) and translating SnCl4 into SnO2, followed by pPANI modification. The content of amino groups in the SnO2@3D-rGO@pPANI nanocomposites depended on the plasma input powers used in plasma deposition. The SnO2@3D-rGO nanocomposite was important in the electrochemical biosensor to detect glucose. The fabricated biosensor exhibited a much higher sensitivity than that formed from individual components, namely, SnO2@3D-rGO and pPANI. This biosensor demonstrated a low detection limit of 0.047 ng mL-1 (0.26 nM) (S/N = 3) within the concentration range of 0.1 ng mL-1 to 5 μg mL-1. The selectivity, stability, and practicality of the SnO2@3D-rGO@pPANI-based biosensor were observed. In conclusion, the plasma surface-modified nanocomposite is a promising candidate as biosensor for glucose detection and biological diagnosis.

  11. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  12. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    Science.gov (United States)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  13. Nano-CeO2 decorated graphene based chitosan nanocomposites as enzymatic biosensing platform: fabrication and cellular biocompatibility assessment.

    Science.gov (United States)

    De, Sriparna; Mohanty, Smita; Nayak, Sanjay Kumar

    2015-09-01

    The present study summarizes the designing of a green transducer phase based on nano-cerium oxide (CeO2) decorated reduced graphene oxide (RGO) reinforced chitosan nanocomposites as an effective enzyme immobilizer and bio-sensing matrix for glucose analyte. Also, it scrutinizes the biocompatibility and cell viability of the synthesized nanohybrid with human fibroblastic macrophage cell line. CeO2 nanoparticles (NPs) were successfully grown on graphene nanosheet in the presence of cationic surfactant followed by facile hydrothermal treatment. The eventual growth of synthesized CeO2 nanocrystals on the graphene layer was confirmed from X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman analysis. The biocompatibility of the synthesized nanohybrid was also evident from the MTT assay. Glucose oxidase (GOx) was employed on the green polymer nanocomposites modified FTO electrode to fabricate an enzymatic bioelectrode. The electroanalytical response of the GOx/nano-CeO2/RGO/CS/FTO bioelectrode towards electrooxidation of glucose analyte was investigated by electrochemical impedance (EIS) and cyclic voltammetry (CV) study. The resulting biosensor exhibited a good electrochemical response to glucose within the linear detection range of 0.05-6.5 mM with a low detection limit of 2 μM and a sensitivity of 7.198 μA mM(-1) cm(-2). The bioelectrode also showed good shelf life (~10 weeks) and negligible interfering ability under controlled environment. The obtained results indicate that nano-CeO2/RGO nanohybrid based chitosan nanocomposites achieve a biocompatible biosensing platform for effective enzyme immobilization due to the excellent synergistic effects between the CeO2 nanoparticles and graphene sheet.

  14. Standard operating procedures approach for the implementation of the evidence-based dentistry concept in dental practice.

    Science.gov (United States)

    Faggion, Clóvis M; Tu, Yu-Kang

    2007-09-01

    Evidence-based dentistry is a concept that when applied to clinical practice may improve the quality of dental treatment. However, dentists' reluctance to change their behavior may be a barrier to the implementation of the process. The main purpose of this study was to demonstrate that standard operating procedures (SOPs) may help dentists to apply scientific evidence to their dental practice. SOPs are written instructions on how to execute some specific tasks. A flowchart model demonstrated how an ordinary clinical procedure (composite restoration) can be performed using evidence-based information to support each executed step. Implementing the model into daily practice is straightforward, and the results are accessible to the whole dental team. In addition, the flowchart can be regularly updated with high-quality dental literature such as systematic reviews of randomized controlled trials and randomized controlled trials. This proposed model may help to bridge the gap between research and clinical dental practice by serving as a practical tool to improve the knowledge of dental practitioners and the quality of treatment.

  15. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics.

    Science.gov (United States)

    Saunders, Scott A

    2009-01-01

    First described in 1959 by physicist Richard P Feynman, who saw it as an unavoidable development in the progress of science, nanotechnology has been part of mainstream scientific theory with potential medical and dental applications since the early 1990s. Nanoparticles, nanospheres, nanorods, nanotubes, nanofibers, dendrimers and other nanostructures have been studied for various applications to biologic tissues and systems. While many layers of nanotechnologic capability have been envisioned for oral health in the last decade (eg, oral hygiene maintenance, local anesthesia, even whole-tooth replacement), few of these applications have been developed. Part 1 of a three-part series reviews the current clinical utility of nanotechnology's most tangible contribution to dentistry to date: the restoration of tooth structure with nanocomposites. Characterized by filler-particle sizes of ≤100 nm, these materials can offer esthetic and strength advantages over conventional microfilled and hybrid resin-based composite (RBC) systems, primarily in terms of smoothness, polishability and precision of shade characterization, plus flexural strength and microhardness similar to those of the better-performing posterior RBCs. Available comparative data for nanocomposites and organically-modified ceramic (Ormocer(®)) restoratives are also reviewed. Finally, plausible "next-phase" trends in current nanorestorative research are judiciously examined, including 1) calcium-, phosphate-, and fluoride-ion-releasing nanocomposites for anticaries applications and 2) restorative systems based on biomimetic emulation of the nanomolecular assembly processes inherent in dental enamel formation using nanorods, nanospheres, and recombinant amelogenins.

  16. Sensing of Tooth Microleakage Based on Dental Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Chia-Wei Sun

    2015-01-01

    Full Text Available This study describes microleakage sensing based on swept-source optical coherence tomography (SS-OCT. With a handheld scanning probe, the SS-OCT system can provide portable real-time imaging for clinical diagnosis. Radiography is the traditional clinical imaging instrument used for dentistry; however, it does not provide good contrast images between filling material and the enamel of treated teeth with microleakage. The results of this study show that microleakage can be detected with oral probing using SS-OCT in vivo. The calculated microleakage length was 401 μm and the width is 148 μm, which is consistent with the related histological biopsy measurements. The diagnosis of microleakage in teeth could be useful for prevention of secondary caries in the clinical treatment plans developed in the field of oral medicine.

  17. Improved dental adhesive formulations based on reactive nanogel additives.

    Science.gov (United States)

    Morães, R R; Garcia, J W; Wilson, N D; Lewis, S H; Barros, M D; Yang, B; Pfeifer, C S; Stansbury, J W

    2012-02-01

    Current challenges in adhesive dentistry include over-hydrophilic bonding formulations, which facilitate water percolation through the hybrid layer and result in unreliable bonded interfaces. This study introduces nanogel-modified adhesives as a way to control the material's hydrophobic character without changing the basic monomer formulation (keeping water-chasing capacity and operatory techniques unaltered). Nanogel additives of varied hydrophobicity were synthesized in solution, rendering 10- to 100-nm-sized particles. A model BisGMA/HEMA solvated adhesive was prepared (control), to which reactive nanogels were added. The increase in adhesive viscosity did not impair solvent removal by air-thinning. The degree of conversion in the adhesive was similar between control and nanogel-modified materials, while the bulk dry and, particularly, the wet mechanical properties were significantly improved through nanogel-based network reinforcement and reduced water solubility. As preliminary validation of this approach, short-term micro-tensile bond strengths to acid-etched and primed dentin were significantly enhanced by nanogel inclusion in the adhesive resins.

  18. Reclamation of post-consumer plastics for development of polycarbonate and acrylonitrile butadiene styrene based nanocomposites with nanoclay

    Science.gov (United States)

    Zicans, Janis; Meri, Remo Merijs; Ivanova, Tatjana; Berzina, Rita; Saldabola, Ruuta; Maksimov, Robert

    2016-05-01

    Suitability of recycled acrylonitrile-butadiene-styrene (R-ABS) and recycled polycarbonate (R-PC) for the development of polymer matrix nanocomposites with organically modified nanoclay (OMMT) is evaluated in comparison to virgin polymers (V-ABS and V-PC) based systems. The influence of OMMT content on the structure as well as calorimetric, mechanical and thermal properties of virgin and recycled polymers containing systems is revealed. Increase in stiffness and strength of virgin and recycled polymers based systems is observed along with rising nanoclay content. However, it is observed that reinforcing efficiency of clays on the R-ABS containing systems is reduced to certain extent in comparison to those, based on virgin polymers. It is shown, that in the presence of OMMT approximation of glass transition temperatures of both polymeric components is observed, which can testify about certain improvement of compatibility between PC and ABS. Increment of the modulus of elasticity and yield strength of the nanocomposites is associated with anisodiametric shape of OMMT, as well as with intercalation of polymer within the interlaminar space of the clay nanoparticles. It is also demonstrated that addition of nanoclay improves thermogravimetric behavior of the investigated compositions. Consequently, it is suggested that nanoclays can be used as promising functional additives and replace halogenated flame-retardants, without reducing mechanical properties of the composites.

  19. Dental Therapy Assistant: Attitudes of Army Dentists.

    Science.gov (United States)

    Heid, Theodore H.; Bair, Jeffrey H.

    The U. S. Army Dental Corps has implemented a formal program based on the concept that dental care can be more efficiently and effectively provided with treatment teams composed of one dental officer, two dental therapy assistants, one basic assistant, and the shared support of other auxiliary personnel. Such a team will use three dental treatment…

  20. Nanoquasicrystalline Al-based matrix/γ-Al{sub 2}O{sub 3} nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Galano, M., E-mail: marina.galano@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Marsh, A. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Audebert, F. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Advanced Materials Group, INTECIN, Faculty of Engineering, University of Buenos Aires, Paseo Colón 850, Ciudad de Buenos Aires 1063 (Argentina); Department of Mechanical Engineering and Mathematical Sciences, Oxford Brookes University, Wheatley Campus, OX33 1HX Oxford (United Kingdom); Xu, W. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Ramundo, M. [Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford (United Kingdom); Department of Materials Science and Engineering, Massachusetts Institute of Technology (United States)

    2015-09-15

    Highlights: • Nanoquasicrystalline alloy MCs containing 20–50 nm Al{sub 2}O{sub 3} particles were prepared. • The ball milling process effect on the powders, microstructure and microhardness was studied. • Three different steps during the milling process were observed and explained. • Extruded bars from the ball milled alloy and composite powders were produced. • A remarkable increase in hardness in the composite bar was obtained in comparison to the alloy bar. - Abstract: Quasicrystalline aluminium alloys have been studied in the past years achieving higher strength than commercial Al alloys and retaining high strength at high temperature. In this work a quasicrystalline Al alloy matrix nanocomposite containing nanoceramic particles has been manufactured using ball milling and hot extrusion. For that purpose a nanoquasicrystalline Al–Fe–Cr–Ti alloy was manufactured by powder atomisation. Nanocomposites consisting of a quasicrystalline Al–Fe–Cr–Ti alloy matrix and reinforcement of γ-Al{sub 2}O{sub 3} nano particles were manufactured. The effect of ball milling time on the microstructure and microhardness of the nanocomposite powders was investigated. Bulk materials were produced by consolidation and hot extrusion. The microstructure and microhardness of the extruded materials were characterised. The milling regime behaviour is discussed, and shows three different steps that have a significant effect on the rate of change of uniformity of the reinforcement distribution, matrix microstructure, powder size distribution and its microhardness. No significant decomposition of the quasicrystalline phase occurred over 30 h of milling. Strain increased and the crystallite size of the aluminium phase decreased with milling time, with the Al crystallite size reaching a steady state. Although the quasicrystalline phase decomposed during hot extrusion, the microhardness of the nanocomposite produced is significantly harder (227 ± 3 μHV{sub 500}) than

  1. Mussel inspired preparation of MoS{sub 2} based polymer nanocomposites: The case of polyPEGMA

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Liu, Xinhua; Huang, Qiang; Xu, Dazhuang; Mao, Liucheng; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-30

    Graphical abstract: A facile and universal strategy has been developed for surface modification of MoS{sub 2} nanosheets via combination of mussel inspired chemistry and chain transfer free radical polymerization. - Highlights: • Fabrication of MoS{sub 2}-PDA-PPEGMA polymer nanocomposites through mussel inspired chemistry. • MoS{sub 2}-PDA- PPEGMA polymer nanocomposites showed enhanced stability in water. • The experimental conditions are rather mild. • The strategy described in this work is also useful for fabrication of many other MoS{sub 2} based polymer nanocomposites. - Abstract: In this work, we report a facile strategy to prepare PEGylated MoS{sub 2} nanosheets through the combination of mussel inspired chemistry and Michael addition reaction. The MoS{sub 2} nanosheets were obtained from lithium intercalation and exfoliation method. Meanwhile, the amino-contained poly((polyethylene glycol) methyl ether methacrylate) (PPEGMA) were obtained via chain transfer free radical polymerization using cysteamine hydrochloride as the chain transfer agents and PEGMA as the monomer. To introduce PPEGMA on MoS{sub 2} nanosheets, polydopamine (PDA) thin films were first coated on the surface of MoS{sub 2} nanosheets through self polymerization of dopamine as the ad-layers, which can react with amino-terminated PPEGMA through Michael addition reaction. The structure, morphology and chemical compositions of MoS{sub 2} nanosheets and MoS{sub 2}-PDA-PPEGMA have been characterized by various characterization techniques. The results demonstrated that the amino-terminated PPEGMA can be successfully immobilized on MoS{sub 2} nanosheets via PDA thin films as the ad-layers. More importantly, the strategy described in this work could also be utilized for surface immobilization of various polymers on many other materials and surfaces because of the universal adhesion of PDA and the good monomer applicability of chain transfer free radical polymerization. Taken together, we

  2. A bisphenol A sensor based on novel self-assembly of zinc phthalocyanine tetrasulfonic acid-functionalized graphene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Keyu [Fujian Key Lab of Medical Instrument & Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research for Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350116 (China); Huang, Lei; Qi, Yongbo [Institute of Research for Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350116 (China); Huang, Caixia [Fujian Key Lab of Medical Instrument & Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research for Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350116 (China); Pan, Haibo, E-mail: hbpan@fzu.edu.cn [Fujian Key Lab of Medical Instrument & Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); Institute of Research for Functional Materials, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China); College of Chemistry, Qishan Campus, Fuzhou University, Fuzhou, Fujian 350116 (China); Du, Min [Fujian Key Lab of Medical Instrument & Pharmaceutical Technology, Yishan Campus, Fuzhou University, Fuzhou, Fujian 350002 (China)

    2015-04-01

    In this work, a novel zinc phthalocyanine tetrasulfonic acid (ZnTsPc)-functionalized graphene nanocomposites (f-GN) was synthesized by a simple and efficient electrostatic self-assembly method, where the positive charged GN decorated by (3-aminopropyl) triethoxysilane (APTES) was self-assemblied with ZnTsPc, a two dimensional (2-D) molecules. It not only enhanced its stability for the hybrid structure, but also avoided the reaggregation of ZnTsPc or f-GN themselves. Based on layered ZnTsPc/f-GN nanocomposites modified glassy carbon electrode, a rapid and sensitive sensor was developed for the determination of bisphenol A (BPA). Under the optimal conditions, the oxidation peak current increased linearly with the concentration of BPA in the range of 5.0 × 10{sup −8} to 4.0 × 10{sup −6} M with correlation coefficient 0.998 and limits of detection 2.0 × 10{sup −8} M. Due to high absorption nature for BPA and electron deficiency on ZnTsPc/f-GN, it presented the unique electron pathway arising from π–π stackable interaction during redox process for detecting BPA. The sensor exhibited remarkable long-term stability, good anti-interference and excellent electrocatalytic activity towards BPA detection. - Graphical abstract: 2-D ZnTsPc/f-GN architecture with high BPA absorption efficiency and excellent catalysis of central metal in ZnTsPc was highly promising for BPA sensor. - Highlights: • 2-D ZnTsPc/f-GN architecture was synthesized by electrostatic self-assembly method. • ZnTsPc/f-GN nanocomposites avoided the reaggregation of ZnTsPc and f-GN themselves. • An electrochemical BPA sensor was developed based on ZnTsPc/f-GN nanocomposites. • High absorption for BPA and electron deficiency on the surface of ZnTsPc/f-GN • The proposed sensor could be applied for detection of BPA in real samples.

  3. The benefits of evidence-based dentistry for the private dental office.

    Science.gov (United States)

    Gillette, Jane; Matthews, Joseph D; Frantsve-Hawley, Julie; Weyant, Robert J

    2009-01-01

    Dentistry over the last 100 years has been characterized by improved approaches to education and practice. Parallel to trends in the field of medicine as a whole, dentistry is moving toward evidence-based practices. The goal of evidence-based dentistry is the assurance, through reference to high-quality evidence, that care provided is optimal for the patient and that treatment options are presented in a manner that allows for fully informed consent. As we transition toward broad-based use of evidence-based dentistry approaches in clinical practice, many dental offices will benefit from a better understanding of how evidence-based dentistry can improve patient outcomes. This article lists the likely benefits evidence-based dentistry can provide to patients, staff, and dentists when routinely adopted in daily practice.

  4. Correlation between nanostructural and electrical properties of barium titanate-based glass-ceramic nano-composites

    Energy Technology Data Exchange (ETDEWEB)

    Al-Assiri, M.S., E-mail: msassiri@kku.edu.sa [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); El-Desoky, M.M., E-mail: mmdesoky@gmail.com [Department of Physics, King Khaled University, P.O. Box 9003, Abha (Saudi Arabia); Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt)

    2011-09-08

    Highlights: > Glasses have been transformed into nanomaterials by annealing at crystallization temperature. > Glass-ceramic nano-composites are important because of their new physical. > Grain sizes are the most significant structural parameter in electronic nanocrystalline phases. > These phases are very high electrical conductivity. > Hence, glass-ceramic nanocrystals are expected to be used, as gas sensors. - Abstract: Glasses in the system BaTiO{sub 3}-V{sub 2}O{sub 5}-Bi{sub 2}O{sub 3} have been transformed into glass-ceramic nano-composites by annealing at crystallization temperature T{sub cr} determined from DSC thermograms. After annealing they consist of small crystallites embedded in glassy matrix. The crystallization temperature T{sub cr} increases with increasing BaTiO{sub 3} content. XRD and TEM of the glass-ceramic nano-composites show that nanocrystals were embedded in the glassy matrix with an average grain size of 25 nm. The resulting materials exhibit much higher electrical conductivity than the initial glasses. It was postulated that the major role in the conductivity enhancement of these nanomaterials is played by the developed interfacial regions between crystalline and amorphous phases, in which the concentration of V{sup 4+}-V{sup 5+} pairs responsible for electron hopping, has higher than values that inside the glassy matrix. The experimental results were discussed in terms of a model proposed in this work and based on a 'core-shell' concept. From the best fits, reasonable values of various small polaron hopping (SPH) parameters were obtained. The conduction was attributed to non-adiabatic hopping of small polaron.

  5. Social and dental status along the life course and oral health impacts in adolescents: a population-based birth cohort

    Directory of Open Access Journals (Sweden)

    Menezes Ana MB

    2009-11-01

    Full Text Available Abstract Background Harmful social conditions in early life might predispose individuals to dental status which in turn may impact on adolescents' quality of life. Aims To estimate the prevalence of oral health impacts among 12 yr-old Brazilian adolescents (n = 359 and its association with life course socioeconomic variables, dental status and dental services utilization in a population-based birth cohort in Southern Brazil. Methods Exploratory variables were collected at birth, at 6 and 12 yr of age. The Oral Impacts on Daily Performances index (OIDP was collected in adolescence and it was analyzed as a ranked outcome (OIDP from 0 to 9. Unadjusted and adjusted multivariable Poisson regression with robust variance was performed guided by a theoretical determination model. Results The response rate was of 94.4% (n = 339. The prevalence of OIDP = 1 was 30.1% (CI95%25.2;35.0 and OIDP ≥ 2 was 28.0% (CI95%23.2;32.8. The most common daily activity affected was eating (44.8%, follow by cleaning the mouth and smiling (15.6%, and 15.0%, respectively. In the final model mother schooling and mother employment status in early cohort participant's life were associated with OIDP in adolescence. As higher untreated dental caries at age 6 and 12 years, and the presence of dental pain, gingival bleeding and incisal crowing in adolescence as higher the OIDP score. On the other hand, dental fluorosis was associated with low OIDP score. Conclusion Our findings highlight the importance of adolescent's early life social environmental as mother schooling and mother employment status and the early and later dental status on the adolescent's quality of life regardless family income and use of dental services.

  6. Dynamic measurement of local displacements within curing resin-based dental composite using optical coherence elastography

    Science.gov (United States)

    Tomlins, Peter H.; Rahman, Mohammed Wahidur; Donnan, Robert S.

    2016-04-01

    This study aimed to determine the feasibility of using optical coherence elastography to measure internal displacements during the curing phase of a light-activated, resin-based composite material. Displacement vectors were spatially mapped over time within a commercial dental composite. Measurements revealed that the orientation of cure-induced displacement vectors varied spatially in a complex manner; however, each vector showed a systematic evolution with time. Precision of individual displacements was estimated to be ˜1 to 2 μm, enabling submicrometer time-varying displacements to be detected.

  7. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    Science.gov (United States)

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids.

  8. Composition of nanocomposites based on thin layers of tin on porous silicon formed by magnetron sputtering

    Science.gov (United States)

    Lenshin, A. S.; Kashkarov, V. M.; Domashevskaya, E. P.; Seredin, P. V.; Ryabtsev, S. V.; Bel'tyukov, A. N.; Gil'mutdinov, F. Z.

    2017-01-01

    Using scanning electron microscopy and X-ray photoelectron spectroscopy the features of morphology and peculiarities of the surface composition of nanocomposites made of thin tin layers by magnetron sputtering formed on porous silicon with pores size of 50-150 nm. Porous silicon was obtained on n-type conductivity crystalline silicon substrate. The obtained nanocomposites were found differ between themselves by the ratio of the main phases: tin dioxide, sub-oxide and metal tin in a dependence on the thickness of the deposited tin layer. Fraction of the oxidized tin in the phase composition of composites was reduced from the surface to the bulk of the sample. Moreover, it was determined that the deposition of tin nanolayers did not result in a considerable change of the phase composition of porous silicon substrate.

  9. Preparation, characterization and mechanical properties of rare-earth-based nanocomposites

    Directory of Open Access Journals (Sweden)

    Musbah S.S.

    2012-01-01

    Full Text Available This study reports research related to different preparation methods and characterization of polymer nanocomposites for optical applications. The Eu-ion doped Gd2O3 nanophosphor powder with different nanoparticle content was embedded in the matrix of PMMA. Preparation was carried out by mixing molding (bulk, electrospinning (nanofibers and solution casting (thin films with neat particles and particles coated with AMEO silane. Among the pros and cons for proposed methods, the mixing molding enables to avoid solvent use while the best deagglomeration and nanoparticle distribution is gained using the electrospinning method. The results of dynamic mechanical analysis (DMA and nanoindentation revealed that the storage modulus of the composites was higher than that of pure PMMA and increased with nanophosphor content. Surface modification of particles improved the mechanical properties of nanocomposites.

  10. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles

    Science.gov (United States)

    Lin, Chan; Song, Yang; Cao, Lixin; Chen, Shaowei

    2013-05-01

    A unique nanocomposite C-TiO2 was prepared by the growth of TiO2 on carbon nanoparticles using a simple hydrothermal procedure. Transmission electron microscopic (TEM) measurements showed that the nanocomposites exhibited an average core diameter of approximately 5 nm with a rather well-defined lattice space (0.4 nm) that was somewhat larger than that (0.38 nm) of the (100) crystalline planes of anatase TiO2. This lattice expansion was accounted for by the formation of surface defect dipoles of the nanosized TiO2 particles. X-ray photoelectron spectroscopic (XPS) measurements suggested that partial charge transfer occurred from carbon nanoparticles to TiO2 by the interfacial Ti-O-C linkages, which led to effective diminishment of the C-TiO2 photoluminescence as compared to that of pure TiO2 or carbon nanoparticles, suggesting intimate electronic interactions between the carbon and TiO2 components in the nanocomposites. Such unique characteristics were then exploited for the effective photocatalytic degradation of organic pollutants, as exemplified by methylene blue, by C-TiO2 under UV photoirradiation. Experimental measurements showed that the photocatalytic activity of C-TiO2 nanocomposites was about twice that of TiO2 alone, whereas little activity was observed with carbon nanoparticles. This was attributed to the electron-accepting sites on the carbon nanoparticles that facilitated interfacial charge separation.A unique nanocomposite C-TiO2 was prepared by the growth of TiO2 on carbon nanoparticles using a simple hydrothermal procedure. Transmission electron microscopic (TEM) measurements showed that the nanocomposites exhibited an average core diameter of approximately 5 nm with a rather well-defined lattice space (0.4 nm) that was somewhat larger than that (0.38 nm) of the (100) crystalline planes of anatase TiO2. This lattice expansion was accounted for by the formation of surface defect dipoles of the nanosized TiO2 particles. X-ray photoelectron

  11. Magnesium-based nanocomposites synthesized by high-energy ball milling for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, H.; Nakatomi, S.; Tanaka, K.; Hashimoto, Y.; Sakata, Y. [Yamaguchi Univ., Tokiwadai (Japan)

    2010-07-01

    Nanocrystalline MgH{sub 2} obtained by ball milling with cyclohexane or benzene showed excellent properties for hydrogen storage. 1 at% Al-added nanocrystalline magnesium samples obtained by milling of MgH{sub 2} with solutions of Al(C{sub 2}H{sub 5}){sub 3} in benzene showed the reversible hydrogen absorption/desorption cycles even at 0.1 MPa of hydrogen. Moreover, the hydrogen storage properties of magnesium hydride were markedly improved upon nanocomposite formation by ball milling of MgH{sub 2} with Sn or SiC. For MgH{sub 2}/Sn and MgH{sub 2}/SiC nanocomposites, the dissociation temperature at 0.1 MPa of hydrogen was raised, compared to that for MgH{sub 2}. (orig.)

  12. Synthesis and characterization of cobalt oxide nanocomposite based on the Co3O4-zeolite Y

    Science.gov (United States)

    Davar, Fatemeh; Fereshteh, Zeinab; Shoja Razavi, Hadi; Razavi, Reza Shoja; Loghman-Estarki, Mohammad Reza

    2014-02-01

    The Co3O4 nanocomposite was synthesized by an ion-exchange of cobalt ions and Y zeolite in the presence of sodium hydroxide and calcination treatment. The products were characterized by X-ray diffraction (XRD), Raman analysis, scanning electron microscope (SEM), transmission electron microscope (TEM), BET, Energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectroscopy. The sizes of the migrated Co3O4 particles out of Y zeolite super cage were in the range of 29 ± 5 nm. Finally, the magnetic property of as-obtained product was investigated in a vibrating sample magnetometer (VSM). This nanocomposite showed a paramagnetic behavior at room temperature.

  13. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  14. Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography

    Science.gov (United States)

    Lee, Hyosang; Kwon, Donguk; Cho, Haedo; Park, Inkyu; Kim, Jung

    2017-01-01

    The practical utilization of soft nanocomposites as a strain mapping sensor in tactile sensors and artificial skins requires robustness for various contact conditions as well as low-cost fabrication process for large three dimensional surfaces. In this work, we propose a multi-point and multi-directional strain mapping sensor based on multiwall carbon nanotube (MWCNT)-silicone elastomer nanocomposites and anisotropic electrical impedance tomography (aEIT). Based on the anisotropic resistivity of the sensor, aEIT technique can reconstruct anisotropic resistivity distributions using electrodes around the sensor boundary. This strain mapping sensor successfully estimated stretch displacements (error of 0.54 ± 0.53 mm), surface normal forces (error of 0.61 ± 0.62 N), and multi-point contact locations (error of 1.88 ± 0.95 mm in 30 mm × 30 mm area for a planar shaped sensor and error of 4.80 ± 3.05 mm in 40 mm × 110 mm area for a three dimensional contoured sensor). In addition, the direction of lateral stretch was also identified by reconstructing anisotropic distributions of electrical resistivity. Finally, a soft human-machine interface device was demonstrated as a practical application of the developed sensor. PMID:28120886

  15. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 7114 Bucharest (Romania); Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Olaru, Mihaela, E-mail: olaruma@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed.

  16. Nanocomposites Based on Vapor-Grown Carbon Nanofibers and an Epoxy: Functionalization, Preparation and Characterization

    Science.gov (United States)

    2010-01-01

    Tg’s of the CP2 polyimide/VGCNF films increased at low VGCNF contents, and gradually decreased at higher VGCNF con- tents [19a]. In this work, we...Mater Sci Eng B 2006;132:103. [19] (a) Wang DH, Arlen MJ, Baek J-B, Vaia RA, Tan L-S. Nanocomposites derived from a low-color aromatic polyimide ( CP2

  17. Sol–gel-based silver nanoparticles-doped silica – Polydiphenylamine nanocomposite for micro-solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Banihashemi, Solmaz

    2015-07-30

    A nanocomposite of silica-polydiphenylamine doped with silver nanoparticles (Ag–SiO{sub 2}-PDPA) was successfully synthesized by the sol–gel process. For its preparation, PDPA was mixed with butanethiol capped Ag nanoparticles (NPs) and added to the silica sol solution. The Ag NPs were stabilized as a result of their adsorption on the SiO{sub 2} spheres. The surface characteristic of nanocomposite was investigated using scanning electron microscopy (SEM). In this work the Ag–SiO{sub 2}-PDPA nanocomposite was employed as an efficient sorbent for micro-solid-phase extraction (μ-SPE) of some selected pesticides. An amount of 15 mg of the prepared sorbent was used to extract and determine the representatives from organophosphorous, organochlorine and aryloxyphenoxy propionic acids from aqueous samples. After the implementation of extraction process, the analytes were desorbed by methanol and determined using gas chromatography–mass spectrometry (GC–MS). Important parameters influencing the extraction and desorption processes such as pH of sample solution, salting out effect, type and volume of the desorption solvent, the sample loading and eluting flow rates along with the sample volume were experimentally optimized. Limits of detection (LODs) and the limits of quantification (LOQs) were in the range of 0.02–0.05 μg L{sup −1} and 0.1–0.2 μg L{sup −1}, respectively, using time scheduled selected ion monitoring (SIM) mode. The relative standard deviation percent (RSD %) with four replicates was in the range of 6–10%. The applicability of the developed method was examined by analyzing different environmental water samples and the relative recovery (RR %) values for the spiked water samples were found to be in the range of 86–103%. - Highlights: • A sol–gel-based silver nanoparticles doped silica-polydiphenylamine nanocomposite was synthesized. • The sorbent was applied to micro-solid-phase extraction of some selected pesticides in water

  18. The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fabiula Danielli Bastos de; Scuracchio, Carlos Henrique, E-mail: fabiuladesousa@gmail.com [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2014-11-15

    AFM has been recognized as one of the most powerful tools for the analysis of surface morphologies because it creates three-dimensional images at angstrom and nano scale. This technique has been exhaustively used in the analyses of dispersion of nanometric components in nanocomposites and in polymer blends, because of the easiness of sample preparation and lower equipment maintenance costs compared to electron microscopy. In this review, contributions using AFM are described, with emphasis on the dispersion of nanofillers in polymeric matrices. It is aimed to show the importance of technical analysis for nanocomposites and polymer blends based on elastomers. (author)

  19. Optical and dielectric properties of nanocomposites systems based on epoxy resins and reactive polyhedral oligosilsquioxanes

    Science.gov (United States)

    Eed, H.; Hassouneh, O.; Ramadin, Y.; Zihlif, A.; Ragosta, G.; Elimat, Z. M.

    2013-01-01

    An epoxy network structure made of diglycidylether of bisphenol-A and diamino diphenylsulfone was modified by adding various amounts of an epoxy functionalized polyhedral oligomeric silsesquioxane. The obtained nanocomposites were characterized in terms of optical and dielectric properties. The UV-absorption spectra were collected in the wavelength range of 400-800 nm. The optical data were analyzed in terms of absorption formula for non-crystalline materials. The optical energy gap and other basic constants, such as energy tails, dielectric constants, refractive index and optical conductivity, were determined and showed a clear dependence on the POSS concentration. It was found that the optical energy gap for the neat epoxy resin is less than for nanocomposites, and it decreases with increase in the POSS content. The refractive index of nanocomposites was determined from the calculated values of absorption and reflectance. It was found that the refractive index and the dielectric constants increased with increase in the POSS concentration. The optical conductivity, which is a measure of the optical absorption, increased with the POSS content. Furthermore, it was found that the glass transition temperature and the optical energy gap correlate well with the POSS filler concentration.

  20. Experimental and theoretical analyses on the ultrasonic cavitation processing of Al-based alloys and nanocomposites

    Science.gov (United States)

    Jia, Shian

    Strong evidence is showing that microstructure and mechanical properties of a casting component can be significantly improved if nanoparticles are used as reinforcement to form metal-matrix-nano-composite (MMNC). In this paper, 6061/A356 nanocomposite castings are fabricated using the ultrasonic stirring technology (UST). The 6061/A356 alloy and Al2O3/SiC nanoparticles are used as the matrix alloy and the reinforcement, respectively. Nanoparticles are injected into the molten metal and dispersed by ultrasonic cavitation and acoustic streaming. The applied UST parameters in the current experiments are used to validate a recently developed multiphase Computational Fluid Dynamics (CFD) model, which is used to model the nanoparticle dispersion during UST processing. The CFD model accounts for turbulent fluid flow, heat transfer and the complex interaction between the molten alloy and nanoparticles using the ANSYS Fluent Dense Discrete Phase Model (DDPM). The modeling study includes the effects of ultrasonic probe location and the initial location where the nanoparticles are injected into the molten alloy. The microstructure, mechanical behavior and mechanical properties of the nanocomposite castings have been also investigated in detail. The current experimental results show that the tensile strength and elongation of the as-cast nanocomposite samples (6061/A356 alloy reinforced by Al2O 3 or SiC nanoparticles) are improved. The addition of the Al2O 3 or SiC nanoparticles in 6061/A356 alloy matrix changes the fracture mechanism from brittle dominated to ductile dominated.

  1. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites.

    Science.gov (United States)

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.

  2. Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8 based polymer nanocomposite membranes

    Directory of Open Access Journals (Sweden)

    Nay Win Khun

    2014-12-01

    Full Text Available We combined zeolitic imidazolate framework nanoparticles (ZIF-8: ˜150 nm diameter with Matrimid® 5218 polymer to form permeable mixed matrix membranes, featuring different weight fractions of nanoparticles (up to 30 wt. % loading. We used ball-on-disc micro-tribological method to measure the frictional coefficient of the nanocomposite membranes, as a function of nanoparticle loading and annealing heat treatment. The tribological results reveal that the friction and wear of the unannealed samples rise steadily with greater nanoparticle loading because ZIF-8 is relatively harder than the matrix, thus promoting abrasive wear mechanism. After annealing, however, we discover that the nanocomposites display an appreciably lower friction and wear damage compared with the unannealed counterparts. Evidence shows that the major improvement in tribological performance is associated with the greater amounts of wear debris derived from the annealed nanocomposite membranes. We propose that detached Matrimid-encapsulated ZIF-8 nanoparticles could function as “spacers,” which are capable of not only reducing direct contact between two rubbing surfaces but also enhancing free-rolling under the action of lateral forces.

  3. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Fawad Inam

    2010-01-01

    Full Text Available Amino-modified double wall carbon nanotube (DWCNT-NH2/carbon fiber (CF/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt% to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

  4. Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases

    Directory of Open Access Journals (Sweden)

    Aleksandr L. Simonian

    2002-03-01

    Full Text Available Mass transfer in nanocomposite hydrogel thin films consisting of alternating layers of an organometallic redox polymer (RP and oxidoreductase enzymes was investigated. Multilayer nanostructures were fabricated on gold surfaces by the deposition of an anionic self-assembled monolayer of 11-mercaptoundecanoic acid, followed by the electrostatic binding of a cationic redox polymer, poly[vinylpyridine Os(bis-bipyridine2Clco-allylamine], and an anionic oxidoreductase. Surface plasmon resonance spectroscopy, Fourier transform infrared external reflection spectroscopy (FTIR-ERS, ellipsometry and electrochemistry were employed to characterize the assembly of these nanocomposite films. Simultaneous SPR/electrochemistry enabled real time observation of the assembly of sensing components, changes in film structure with electrode potential, and the immediate, in situ electrochemical verification of substrate-dependent current upon the addition of enzyme to the multilayer structure. SPR and FTIR-ERS studies also showed no desorption of polymer or enzyme from the nanocomposite structure when stored in aqueous environment occurred over the period of three weeks, suggesting that decreasing in substrate sensitivity were due to loss of enzymatic activity rather than loss of film compounds from the nanostructure.

  5. Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Goudouri, O.M., E-mail: menti.goudouri@ww.uni-erlangen.de [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Theodosoglou, E. [School of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kontonasaki, E. [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Will, J. [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany); Chrissafis, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Koidis, P. [Department of Fixed Prosthodontics, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Paraskevopoulos, K.M. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Boccaccini, A.R. [Institute for Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen (Germany)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis of an Mg-based glass-ceramic via the sol–gel technique. • The heat treatment of the glass-ceramic promoted the crystallization of akermanite. • Akermanite scaffolds coated with gelatin were successfully fabricated. • An HCAp layer was developed on the surface of all scaffolds after 9 days in SBF. - Abstract: Various scaffolding materials, ceramics and especially Mg-based ceramic materials, including akermanite (Ca{sub 2}MgSi{sub 2}O{sub 7}) and diopside (CaMgSi{sub 2}O{sub 6}), have attracted interest for dental tissue regeneration because of their improved mechanical properties and controllable biodegradation. The aim of the present work was the synthesis of an Mg-based glass-ceramic, which would be used for the construction of workable akermanite scaffolds. The characterization of the synthesized material was performed by Fourier Transform Infrared Spectroscopy (FTIR) X-Ray Diffractometry (XRD) and Scanning Electron Microscopy (SEM). Finally, the apatite forming ability of the scaffolds was assessed by immersion in simulated body fluid. The scaffolds were fabricated by the foam replica technique and were subsequently coated with gelatin to provide a functional surface for increased cell attachment. Finally, SEM microphotographs and FTIR spectra of the scaffolds after immersion in SBF solution indicated the inorganic bioactive character of the scaffolds suitable for the intended applications in dental tissue engineering.

  6. Dental Emergencies

    OpenAIRE

    Domb, Ivor

    1982-01-01

    Emergency dental problems can result from trauma, dental pathology, or from dental treatment itself. While the physician can treat many instances of dental trauma, the patient should see a dentist as soon as possible so that teeth can be saved. Emergency treatment of dental pathology usually involves relief of pain and/or swelling. Bleeding is the most frequent post-treatment emergency. The physician should be able to make the patient comfortable until definitive dental treatment can be avail...

  7. Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects.

    Science.gov (United States)

    Padovani, Gislaine C; Feitosa, Victor P; Sauro, Salvatore; Tay, Franklin R; Durán, Gabriela; Paula, Amauri J; Durán, Nelson

    2015-11-01

    Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed.

  8. A novel nonenzymatic biosensor for evaluation of oxidative stress based on nanocomposites of graphene blended with CuI.

    Science.gov (United States)

    Li, Changhui; Liu, Xiaoli; Zhang, Yuanyuan; Chen, Yun; Du, Tianyu; Jiang, Hui; Wang, Xuemei

    2016-08-24

    A high-sensitive nonenzymatic hydrogen peroxide (H2O2) biosensor based on cuprous iodide and graphene (CuI/Gr) composites has been explored for the detection of H2O2 released by living cells and monitoring the oxidative stress of cells under excellular stimulation. The biosensor properties were evaluated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), amperometric i-t curve, and the redox-competition mode of scanning electrochemical microscopy (SECM). Our observations demonstrate that the CuI/Gr nanocomposites modified glassy carbon electrode (GCE) exhibits excellent catalytic activity for H2O2 with relatively low detection limit and a wide linear range from 0.5 μM to 3 mM. Moreover, the redox-competition mode of SECM imaging study further illustrates the improved electrochemical catalytic capability for H2O2 reduction with CuI/Gr nanocomposites deposited on graphite electrode. Hence, the as-prepared nonenzymatic H2O2 biosensor could be used to detect H2O2 release from different kinds of living cells under stimulation while eliminating the interference of ascorbic acid.

  9. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Science.gov (United States)

    Mahdieh, Athar; Mahdavian, Ali Reza; Salehi-Mobarakeh, Hamid

    2017-03-01

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe3O4 nanoparticles with polymerizable groups is presented here. After synthesis of Fe3O4 nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe3O4 are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe3O4 nanoparticles (0-10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles.

  10. Preparation and Properties of 1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazocane-based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Xiaofeng Shi

    2015-04-01

    Full Text Available A new insensitive explosive based on octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX was prepared by spray drying using Viton A as a binder. The HMX sample without binder (HMX-1 was obtained by the same spray drying process also. The samples were characterised by Scanning Electron Microscope, and X-ray diffraction. The Differential Scanning Calorimetry and the impact sensitivity of HMX-1 and nanocomposites were also being tested. The nanocomposite morphology was found to be microspherical (1 μm to 7 μm diameter and composed of many tiny particles, 100 nm to 200 nm in size. The crystal type of HMX-1 and HMX/Viton A agrees with raw HMX. The activation energy of raw HMX, HMX-1 and HMX/Viton A is 523.16 kJ mol-1, 435.74 kJ mol-1 and 482.72 kJ mol-1, respectively. The self-ignition temperatures of raw HMX, HMX-1 and HMX/Viton A is 279.01 °C, 277.63 °C, and 279.34 °C, respectively. The impact sensitivity order of samples is HMX/Viton A < HMX-1 < raw HMX from low to high.Defence Science Journal, Vol. 65, No. 2, March 2015, pp.131-134, DOI:http://dx.doi.org/10.14429/dsj.65.7843

  11. Microstructure Investigation of Cu-Ni Base Al2O3 Nanocomposites: From Nanoparticles Synthesis to Consolidation

    Science.gov (United States)

    Ramos, M. I.; Suguihiro, N. M.; Brocchi, E. A.; Navarro, R.; Solorzano, I. G.

    2017-02-01

    Different compositions of Cu-Ni/Al2O3 nanocomposites were prepared by a chemical-based synthesis of co-formed oxides (CuO-NiO-Al2O3) nanoparticles followed by selective hydrogen reduction of the Cu and Ni oxides and finally by consolidation into pellets. The synthesized composites with both phases (metallic and oxide) containing nanoparticles in the 5 to 60 nm range have been systematically produced. Micro- and nanoscale characterization techniques were extensively employed in all stages of the process. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses have shown a heterogeneous distribution of chemical elements resulting in the formation of Cu- and Ni-rich nanoparticles containing Al2O3 phase in a controlled low volume fraction, which later mostly dispersed between the metallic particle and, to a lesser extent, within metallic particles. After consolidation, under uniaxial pressure followed by sintering, the compacted nanocomposite observed in the transmission electron microscope (TEM) revealed that the Al2O3 have been more homogeneously distributed as such: the majority of it at the newly formed grain boundaries of the consolidated pellet and a small part of it within the metallic Cu-Ni matrix. Microhardness measurements demonstrate that dispersion of Al2O3 was successfully achieved as reinforcement phase, yielding up to 100 pct increase in hardness.

  12. Development of a Highly Biocompatible Antituberculosis Nanodelivery Formulation Based on Para-Aminosalicylic Acid—Zinc Layered Hydroxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Bullo Saifullah

    2014-01-01

    Full Text Available Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies.

  13. Trichloroethylene sensing in water based on SERS with multifunctional Au/TiO2 core-shell nanocomposites.

    Science.gov (United States)

    Ren, Wen; Zhou, Zhongwu; Irudayaraj, Joseph M K

    2015-10-07

    Herein we report on a rapid and highly sensitive scheme to detect trichloroethylene (TCE), an environmental contaminant, by surface enhanced Raman scattering (SERS) with multifunctional Au/TiO2 core-shell nanocomposites as SERS substrates. A facile approach to fabricate TiO2 shell around gold core nanocomposites is proposed as sensors for TCE detection by SERS. During detection, TCE was first oxidized due to the photocatalytic activity of the TiO2 shell and the increase in SERS intensity due to the product of TCE photooxidation can be used to determine the concentration of TCE. It should be noted that the SERS of the Raman label, 4-mercaptopyridine (4-MPy) modified onto the gold nanoparticle (GNP) core is in proportion to the product of TCE photooxidation. After optimizing the sample pH, enrichment of the analyte, and the UV exposure time, the methodology developed accomplishes an excellent limit of detection (LOD) (0.038 μM, i.e.∼5 ppb) for TCE in water. Our unique approach based on the synthesized SERS composite to detect TCE, a chlorinated environmental contaminant directly in water could pave the way for the development of a multifunctional nanosensor platform to monitor TCE and the catalytic reactions in a multiplex format.

  14. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I.; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-08-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases.

  15. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite.

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H

    2016-08-19

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO's unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases.

  16. Dental Procedures.

    Science.gov (United States)

    Ramponi, Denise R

    2016-01-01

    Dental problems are a common complaint in emergency departments in the United States. There are a wide variety of dental issues addressed in emergency department visits such as dental caries, loose teeth, dental trauma, gingival infections, and dry socket syndrome. Review of the most common dental blocks and dental procedures will allow the practitioner the opportunity to make the patient more comfortable and reduce the amount of analgesia the patient will need upon discharge. Familiarity with the dental equipment, tooth, and mouth anatomy will help prepare the practitioner for to perform these dental procedures.

  17. Dentists' dietary perception and practice patterns in a dental practice-based research network.

    Directory of Open Access Journals (Sweden)

    Yoko Yokoyama

    Full Text Available Dental caries are largely preventable, and epidemiological evidence for a relationship between diet and oral health is abundant. To date, however, dentists' perceptions about the role of diet and dentists' practice patterns regarding diet counseling have not been clarified.THE PURPOSES OF THIS STUDY WERE TO: (1 examine discordance between dentists' perception of the importance of diet in caries treatment planning and their actual provision of diet counseling to patients, and (2 identify dentists' characteristics associated with their provision of diet counseling.The study used a cross-sectional study design consisting of a questionnaire survey in Japan.The study queried dentists working in outpatient dental practices who were affiliated with the Dental Practice-Based Research Network Japan (JDPBRN, which aims to allow dentists to investigate research questions and share experiences and expertise (n = 282.Dentists were asked about their perceptions on the importance of diet and their practice patterns regarding diet counseling, as well as patient, practice, and dentist background data.The majority of participants (n = 116, 63% recognized that diet is "more important" to oral health. However, among participants who think diet is "more important" (n = 116, only 48% (n = 56 provide diet counseling to more than 20% of their patients. Multiple logistic regression analysis suggested that several variables were associated with providing diet counseling; dentist gender, practice busyness, percentage of patients interested in caries prevention, caries risk assessment, and percentage of patients who receive blood pressure screening.Some discordance exists between dentists' perception of the importance of diet in caries treatment planning and their actual practice pattern regarding diet counseling to patients. Reducing this discordance may require additional dentist education, including nutritional and systemic disease concepts; patient

  18. Polymer-phyllosilicate nanocomposites and their preparation

    Science.gov (United States)

    Chaiko, David J.

    2007-01-09

    Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.

  19. Nanocomposite organomineral hybrid materials. Part I

    OpenAIRE

    KUDRYAVTSEV Pavel Gennadievich; FIGOVSKY Oleg Lvovich

    2016-01-01

    The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility t...

  20. Nanocomposite organomineral hybrid materials. Part 2

    OpenAIRE

    KUDRYAVTSEV Pavel Gennadievich; FIGOVSKY Oleg Lvovich

    2016-01-01

    The paper addresses the issues of alkoxide method of sol-gel synthesis and non-hydrolytic method of sol-gel synthesis and colloidal method of sol-gel synthesis. The authors also consider an alternative approach based on the use of soluble silicates as precursors in the sol-gel technology, of nanocomposites. It was shown that nanocomposites can be produced through aerogels. The paper also analyzes the mixing technologies of nanocomposites preparation. It has been demonstrated the possibility t...

  1. [Dental education for college students based on WeChat public platform].

    Science.gov (United States)

    Chen, Chuan-Jun; Sun, Tan

    2016-06-01

    The authors proposed a model for dental education based on WeChat public platform. In this model, teachers send various kinds of digital teaching information such as PPT,word and video to the WeChat public platform and students share the information for preview before class and differentiate the key-point knowledge from those information for in-depth learning in class. Teachers also send reference materials for expansive learning after class. Questionaire through the WeChat public platform is used to evaluate teaching effect of teachers and improvement may be taken based on the feedback questionnaire. A discussion and interaction based on WeCchat between students and teacher can be aroused on a specific topic to reach a proper solution. With technique development of mobile terminal, mobile class will come true in near future.

  2. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-09-01

    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well

  3. Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles

    Directory of Open Access Journals (Sweden)

    A.Z. Noah

    2017-03-01

    Full Text Available Zinc oxide nanoparticles (ZnO-NPs and modified calcium carbonate (nano-CaCO3 nanoparticles were successfully prepared and added to polystyrene-butadiene rubber copolymer (PSBR matrix to prepare PSBR nanocomposites. The prepared nanomaterials (ZnO-NPs & nano-CaCO3 were characterized using scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction (XRD. Furthermore, the prepared polymer nanocomposites and oil base mud were used for drilling in high pressure high temperature (HPHT wells. The consequence of using polymer nanocomposites based on different loading of ZnO-NPs and nano-CaCO3 on the rheological properties of oil base mud was evaluated and enhanced the yield point at high pressure high temperature wells (HPHT. The using of the polymer with different percentage from (0.5 in all percent the obtained results is very promising; this means that the increase of polymer is reasonable for the increase of apparent viscosity, plastic viscosity and yield point at high temperature. Correspondingly, polymer nanocomposites displayed rise of apparent viscosity, plastic viscosity, and yield point, decreased in fluid loss and increased in electrical stability at high pressure high temperature wells.

  4. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the "one-pot" synthetic approach of single-electron-transfer living radical polymerization

    Science.gov (United States)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie; Wang, Ke; Xu, Dazhuang; Liu, Liangji; Zhang, Xiaoyong; Wei, Yen

    2016-08-01

    Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient "one-pot" strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  5. Metal Nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2014-01-01

    We have made SU-8 gold nanoparticle composites in two ways, ex situ and in situ, and found that in both methods nanoparticles embedded in the polymer retained their plasmonic properties. The in situ method has also been used to fabricate a silver nanocomposite which is electrically conductive...

  6. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics

    Directory of Open Access Journals (Sweden)

    Scott A Saunders

    2009-11-01

    Full Text Available Scott A SaundersMirrorMonitor Creativity, Royersford, PA USAAbstract: First described in 1959 by physicist Richard P Feynman, who saw it as an unavoidable development in the progress of science, nanotechnology has been part of mainstream scientific theory with potential medical and dental applications since the early 1990s. Nanoparticles, nanospheres, nanorods, nanotubes, nanofibers, dendrimers and other nanostructures have been studied for various applications to biologic tissues and systems. While many layers of nanotechnologic capability have been envisioned for oral health in the last decade (eg, oral hygiene maintenance, local anesthesia, even whole-tooth replacement, few of these applications have been developed. Part 1 of a three-part series reviews the current clinical utility of nanotechnology’s most tangible contribution to dentistry to date: the restoration of tooth structure with nanocomposites. Characterized by filler-particle sizes of ≤100 nm, these materials can offer esthetic and strength advantages over conventional microfilled and hybrid resin-based composite (RBC systems, primarily in terms of smoothness, polishability and precision of shade characterization, plus flexural strength and microhardness similar to those of the better-performing posterior RBCs. Available comparative data for nanocomposites and organically-modified ceramic (Ormocer® restoratives are also reviewed. Finally, plausible “next-phase” trends in current nanorestorative research are judiciously examined, including 1 calcium-, phosphate-, and fluoride-ion-releasing nanocomposites for anticaries applications and 2 restorative systems based on biomimetic emulation of the nanomolecular assembly processes inherent in dental enamel formation using nanorods, nanospheres, and recombinant amelogenins.Keywords: nanostructure, dental restorative, resin-based composite, biomimetic, amelogenin

  7. Dental Therapy Assistant: Quality of Restorations Placed and Finished.

    Science.gov (United States)

    Heid, Theodore H.; Bair, Jeffrey H.

    The U.S. Army Dental Corps has implemented a new concept of dental care delivery, formally identified as the Improved Dental Care Delivery System. The concept is based on the conservation of professional manpower resources through the use of dental treatment teams employing expanded duty dental assistants. Dental Therapy Assistant (DTA) is the…

  8. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong; Wang, Jun; Kang, Xinhuang; Wang, Chong M.; Wang, Donghai; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  9. Nanocomposites based on opal matrixes with 3D-structure formed by mangnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Rinkevich A. B.

    2008-08-01

    Full Text Available Interaction of electromagnetic waves with nanocomposites of materials obtained by doping of opal matrixes with nickel-zinc and manganese-zinc ferrite has been studied. The opal matrixes contain of SiO2 nanospheres with diameter about 250 nm with ferrite nanoparticles in the nanosphere voids. The measurements are carried out in frequency range from 26 to 38 GHz in magnetic fields up to 30 kOe. It was shown that magnetic resonance in the doped matrix is the main reason for microwave variations.

  10. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  11. Dental hygiene in Slovakia.

    Science.gov (United States)

    Luciak-Donsberger, C; Krizanová, M

    2004-08-01

    This article reports on the development of the dental hygiene profession in Slovakia from a global perspective. The aim is to inform about current developments and to examine, how access to qualified dental hygiene care might be improved and how professional challenges might be met. For an international study on dental hygiene, secondary source data were obtained from members of the House of Delegates of the International Federation of Dental Hygienists (IFDH) or by fax and e-mail from experts involved in the national professional and educational organization of dental hygiene in non-IFDH member countries, such as Slovakia. Responses were followed-up by interviews, e-mail correspondence, visits to international universities, and a review of supporting studies and reference literature. Results show that the introduction of dental hygiene in Slovakia in 1992 was inspired by the delivery of preventive care in Switzerland. Initiating local dentists and dental hygienists strive to attain a high educational level, equitable to that of countries in which dental hygiene has an established tradition of high quality care. Low access to qualified dental hygiene care may be a result of insufficient funding for preventive services, social and cultural lack of awareness of the benefits of preventive care, and of limitations inherent in the legal constraints preventing unsupervised dental hygiene practice. These may be a result of gender politics affecting a female-dominated profession and of a perception that dental hygiene is auxiliary to dental care. International comparison show that of all Eastern European countries, the dental hygiene profession appears most advanced in Slovakia. This is expressed in high evidence-based academic goals, in extensive work with international consultants from the Netherlands and Switzerland, in annual congresses of high professional quality, and in the establishment of a profession, which has not been introduced in all Western EU countries.

  12. Mechanochemically synthesized kalsilite based bioactive glass-ceramic composite for dental vaneering

    Science.gov (United States)

    Kumar, Pattem Hemanth; Singh, Vinay Kumar; Kumar, Pradeep

    2015-08-01

    Kalsilite glass-ceramic composites have been prepared by a mechanochemical synthesis process for dental veneering application. The aim of the present study is to prepare bioactive kalsilite composite material for application in tissue attachment and sealing of the marginal gap between fixed prosthesis and tooth. Mechanochemical synthesis is used for the preparation of microfine kalsilite glass-ceramic. Low temperature frit and bioglass have been prepared using the traditional quench method. Thermal, microstructural and bioactive properties of the composite material have been examined. The feasibility of the kalsilite to be coated on the base commercial opaque as well as the bioactive behavior of the coated specimen has been confirmed. This study indicates that the prepared kalsilite-based composites show similar structural, morphological and bioactive behavior to that of commercial VITA VMK95 Dentin 1M2.

  13. A survey assessing the impact of a hospital-based general practice residency program on dentists and dental practice.

    Science.gov (United States)

    Tejani, Asif; Epstein, Joel B; Gibson, Gary; Le, Nhu

    2002-01-01

    The purpose of this survey was to evaluate the outcome of completing a general practice hospital-based dental residency program. A survey was mailed to all individuals who had completed a general practice residency program (resident) between 1980 and 1996 and to dentists who had not completed a hospital program (undergraduate). The responses were evaluated by Fisher's exact test. Seventy-four percent of the resident group and 68% from the undergraduate sample group returned the questionnaire. Approximately half the residents were in general dental practice. Twenty-six percent were involved in specialty dentistry, 7% in hospital dentistry, and 20% in teaching at a dental school. Of the undergraduate dentists, more than three-quarters were in general practice, 5% were entered into specialty programs, 1% were involved in hospital dentistry, and 15% taught at a dental school. Half of the residents held staff privileges in a hospital or ambulatory setting, compared with 16% of undergraduates. Forty-three percent of the residents provided consultation in a hospital or long-term-care facility, compared with 21% of the undergraduates. Practice characteristics suggested enhanced clinical skills in oral surgery, periodontics, emergency dental care, and oral medicine/pathology in those completing the hospital program. The findings of this study confirm that the outcome of completing a hospital program is a change in practice profile, site of practice, services for complex patients, and continuing involvement in teaching.

  14. Porous vitalium-base nano-composite for bone replacement: Fabrication, mechanical, and in vitro biological properties.

    Science.gov (United States)

    Dehaghani, Majid Taghian; Ahmadian, Mehdi

    2016-04-01

    Porous nano-composites were successfully prepared on addition of 58S bioactive glass to Co-base alloy with porosities of 37.2-58.8% by the combination of milling, space-holder and powder metallurgy techniques. The results of X-ray diffraction analysis showed that induced strain during milling of the Co-base alloy powder and also isothermal heat treatment during sintering process led to HCP↔FCC phase transformation which affected mechanical properties of the samples during compression test. Field emission scanning electron microscopy images showed that despite the remaining 58S powder in nanometer size in the composite, there were micro-particles due to sintering at high temperature which led to two different apatite morphologies after immersion in simulated body fluid. Calculated elastic modulus and 0.2% proof strength from stress-strain curves of compression tests were in the range of 2.2-8.3GPa and 34-198MPa, respectively. In particular, the mechanical properties of sample with 37.2% were found to be similar to those of human cortical bone. Apatite formation which was identified by scanning electron microscopy (SEM), pH meter and Fourier-transform infrared spectroscopy (FTIR) analysis showed that it could successfully convert bioinert Co-base alloy to bioactive type by adding 58S bioglass nano-particles. SEM images of cell cultured on the porous nano-composite with 37.2% porosity showed that cells properly grew on the surface and inside the micro and macro-pores.

  15. [Determinants of dental services utilization by adults: a population-based study in Florianópolis, Santa Catarina State, Brazil].

    Science.gov (United States)

    Miranda, Camila Dal-Bó Coradini; Peres, Marco Aurélio

    2013-11-01

    This study aimed to estimate the prevalence of dental services utilization by adults and to identify associated socioeconomic, demographic, behavioral, and self-awareness factors. A cross-sectional population-based study was conducted with adults living in the urban area of Florianópolis, Santa Catarina State, Brazil, in 2009. Associations were tested between use of dental services and predisposing, enabling, and needs-based variables. Multivariate analysis was conducted using Poisson regression with estimates of prevalence ratios and was stratified by place of last dental appointment. Prevalence of dental services utilization was 66% (95%CI: 62.9-70.7). Dental visits were 20% more frequent among women and 72% more frequent among individuals with more schooling (the latter in both public and private dental services). Individuals with private dental plans used dental services 13% more than those without. Schooling was the most important variable in predicting utilization. The study's results show the importance of monitoring associated factors in order to promote more equitable use of dental services.

  16. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide

    Science.gov (United States)

    Shukla, Arun Kumar; Alam, Javed; Alhoshan, Mansour; Dass, Lawrence Arockiasamy; Muthumareeswaran, M. R.

    2017-02-01

    In the present study, graphene oxide (GO) was incorporated as a nanoadditive into a polyphenylsulfone (PPSU) to develop a PPSU/GO nanocomposite membrane with enhanced antifouling properties. A series of membranes containing different concentrations (0.2, 0.5 and 1.0 wt.%) of GO were fabricated via the phase inversion method, using N-methyl pyrrolidone (NMP) as the solvent, deionized water as the non-solvent, and polyvinylpyrrolidone (PVP) as a pore forming agent. The prepared nanocomposite membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and were also characterized with respect to contact angle, zeta potential and porosity, mean pore radius, tortuosity and molecular weight cut-off (MWCO). Thermogravimetric analysis (TGA) and tensile testing were used to measure thermal and mechanical properties. The membrane performance was evaluated by volumetric flux and rejection of proteins, and antifouling properties. According to the results, the optimum addition of 0.5 wt% GO resulted in a membrane with an increased flux of 171 ± 3 Lm‑2h‑1 with a MWCO of ~40 kDa. In addition, the GO incorporation efficiently inhibited the interaction between proteins and the membrane surface, thereby improving the fouling resistance ability by approximately 58 ± 3%. Also, the resulting membranes showed a significant improvement in mechanical and thermal properties.

  17. Development of a nanocomposite ultrafiltration membrane based on polyphenylsulfone blended with graphene oxide

    Science.gov (United States)

    Shukla, Arun Kumar; Alam, Javed; Alhoshan, Mansour; Dass, Lawrence Arockiasamy; Muthumareeswaran, M. R.

    2017-01-01

    In the present study, graphene oxide (GO) was incorporated as a nanoadditive into a polyphenylsulfone (PPSU) to develop a PPSU/GO nanocomposite membrane with enhanced antifouling properties. A series of membranes containing different concentrations (0.2, 0.5 and 1.0 wt.%) of GO were fabricated via the phase inversion method, using N-methyl pyrrolidone (NMP) as the solvent, deionized water as the non-solvent, and polyvinylpyrrolidone (PVP) as a pore forming agent. The prepared nanocomposite membranes were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM), and were also characterized with respect to contact angle, zeta potential and porosity, mean pore radius, tortuosity and molecular weight cut-off (MWCO). Thermogravimetric analysis (TGA) and tensile testing were used to measure thermal and mechanical properties. The membrane performance was evaluated by volumetric flux and rejection of proteins, and antifouling properties. According to the results, the optimum addition of 0.5 wt% GO resulted in a membrane with an increased flux of 171 ± 3 Lm−2h−1 with a MWCO of ~40 kDa. In addition, the GO incorporation efficiently inhibited the interaction between proteins and the membrane surface, thereby improving the fouling resistance ability by approximately 58 ± 3%. Also, the resulting membranes showed a significant improvement in mechanical and thermal properties. PMID:28155882

  18. Cobalt oxide magnetic nanoparticles-chitosan nanocomposite based electrochemical urea biosensor

    Science.gov (United States)

    Ali, A.; Israr-Qadir, M.; Wazir, Z.; Tufail, M.; Ibupoto, Z. H.; Jamil-Rana, S.; Atif, M.; Khan, S. A.; Willander, M.

    2015-04-01

    In this study, a potentiometric urea biosensor has been fabricated on glass filter paper through the immobilization of urease enzyme onto chitosan/cobalt oxide (CS/Co3O4) nanocomposite. A copper wire with diameter of 500 µm is attached with nanoparticles to extract the voltage output signal. The shape and dimensions of Co3O4 magnetic nanoparticles are investigated by scanning electron microscopy and the average diameter is approximately 80-100 nm. Structural quality of Co3O4 nanoparticles is confirmed from X-ray powder diffraction measurements, while the Raman spectroscopy has been used to understand the chemical bonding between different atoms. The magnetic measurement has confirmed that Co3O4 nanoparticles show ferromagnetic behavior, which could be attributed to the uncompensated surface spins and/or finite size effects. The ferromagnetic order of Co3O4 nanoparticles is raised with increasing the decomposition temperature. A physical adsorption method is adopted to immobilize the surface of CS/Co3O4 nanocomposite. Potentiometric sensitivity curve has been measured over the concentration range between 1 × 10-4 and 8 × 10-2 M of urea electrolyte solution revealing that the fabricated biosensor holds good sensing ability with a linear slope curve of 45 mV/decade. In addition, the presented biosensor shows good reusability, selectivity, reproducibility and resistance against interferers along with the stable output response of 12 s.

  19. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    Science.gov (United States)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  20. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Serena Coiai

    2015-06-01

    Full Text Available Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix, but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  1. Flexible micro supercapacitors based on laser-scribed graphene/ZnO nanocomposite

    Science.gov (United States)

    Amiri, Morteza Hassanpour; Namdar, Naser; Mashayekhi, Alireza; Ghasemi, Foad; Sanaee, Zeinab; Mohajerzadeh, Shams

    2016-08-01

    We report on the fabrication of graphene/Zno nanocomposite supercapacitor electrodes. Laser-scribing process was implemented in order to reduce the graphene oxide (GO)/ZnO mixture on a DVD disk. With reduced graphene oxide (rGO)/ZnO composite prepared by a mass ratio of 1:25 of Zn(NO3)2·6H2O to GO constituents, nanoparticles of ZnO with sizes ranging from 20 to 50 nm are obtained. Consequently, 12 times improvement in the specific capacitance was achieved at a current density of 0.1 mA/cm2 compared with pristine rGO electrodes. In addition, flexible microsupercapacitor was fabricated by spin coating of the gel electrolyte, showing high stack capacitance of 9 F/cm3 at a current density of 150 mA/cm2. This microsupercapacitor delivers power density of 70 mW/cm3 and energy density of 1.2 mWh/cm3. Furthermore, the performance of device was investigated at different bending angles. The resulted characteristics demonstrate that LSG/ZnO nanocomposite is a promising electrode material for high-performance supercapacitors.

  2. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    Science.gov (United States)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  3. Comparative studies on Ag{sub 3}PO{sub 4}/BiPO{sub 4}–metal-organic framework–graphene-based nanocomposites for photocatalysis application

    Energy Technology Data Exchange (ETDEWEB)

    Mohaghegh, N. [Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of); Tasviri, M., E-mail: m_tasviri@sbu.ac.ir [Department of Chemistry, Shahid Beheshti University, Evin, P.O. Box 19839-63113, Tehran (Iran, Islamic Republic of); Rahimi, E. [Department of Mining Engineering, Islamic Azad University, South Tehran Branch, Tehran (Iran, Islamic Republic of); Gholami, M.R., E-mail: gholami@sharif.edu [Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran (Iran, Islamic Republic of)

    2015-10-01

    Graphical abstract: - Highlights: • Novel Ag{sub 3}PO{sub 4}/BiPO{sub 4} (AB)–graphene-based photocatalysts were reported. • Photocatalytic degradation mechanism of Atrazine herbicide was investigated. • It was divulged that the photodegradation is increased by AB supporting. • Enhanced photodegradation has been obtained by the AB/Cu(tpa).GR nanocomposite. • The unique heterojunction formed by coupling Cu(tpa) with GR caused high activity. - Abstract: For the first time, we report novel Ag{sub 3}PO{sub 4}/BiPO{sub 4} (AB)–graphene-based photocatalysts. The fabricated nanocomposites were characterized by various techniques. The photocatalytic properties of the prepared catalysts were evaluated by the photodegradation of Atrazine herbicide under both visible and UV light irradiation. Atrazine concentration was determined using the spectrophotometric method according to the Konig's reaction by monitoring the absorbance at 470 nm wavelength during the photodegradation process. Both degradation rate and efficiency using graphene (GR)-based nanocomposites are found to be much better than using pure AB. Atrazine photodegradation displayed that the AB supporting is an important point to become a great photocatalyst for this reaction. Enhanced photodegradation has been obtained by the AB/Cu(tpa).GR nanocomposite. The results showed that the novel synthesized AB/Cu(tpa).GR nanocomposite exhibits a dramatic separation of photogenerated electron/hole pairs. This was accounted for by the improved efficiency of an interfacial charge separation, thanks to the unique heterojunction formed by coupling Cu(tpa) with GR. Chemical oxygen demand of herbicide solution was measured and it posed a good idea about Atrazine herbicide degradation.

  4. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  5. Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel.

    Science.gov (United States)

    Mittal, H; Kumar, Vaneet; Saruchi; Ray, Suprakas Sinha

    2016-08-01

    This research paper reports the utilization of gum xanthan-grafted-polyacrylic acid and Fe3O4 magnetic nanoparticles based nanocomposite hydrogel (NCH) for the highly effective adsorption of methyl violet (MV) from aqueous solution. Synthesized NCH was characterized using various techniques, such as FTIR, XRD, SEM-EDS, TEM and BET. Adsorption behavior of NCH was studied for the adsorption of MV and it was found to remove 99% dye from the solution. Adsorption process followed Langmuir isotherm model (qe=642mg/g) and pseudo-second-order kinetics model. Thermodynamic studies suggested that the adsorption process was endothermic and spontaneous. Moreover, the adsorbent was successfully utilized for successive five cycles of adsorption-desorption.

  6. Complementary characterization data in support of uniaxially aligned electrospun nanocomposites based on a model PVOH-epoxy system

    Directory of Open Access Journals (Sweden)

    Samaneh Karimi

    2016-06-01

    Full Text Available This paper presents complementary data corresponding to characterization tests done for our research article entitled “Uniaxially aligned electrospun fibers for advanced nanocomposites based on a model PVOH-epoxy system” (Karimi et al., 2016 [1]. Poly(vinyl alcohol and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A novel electrospinning technology for production of uniaxially aligned nanofiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning–electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. For discussion of obtained results please refer to the research paper (Karimi et al., 2016 [1].

  7. Complementary characterization data in support of uniaxially aligned electrospun nanocomposites based on a model PVOH-epoxy system

    Science.gov (United States)

    Karimi, Samaneh; Staiger, Mark P.; Buunk, Neil; Fessard, Alison; Tucker, Nick

    2016-01-01

    This paper presents complementary data corresponding to characterization tests done for our research article entitled “Uniaxially aligned electrospun fibers for advanced nanocomposites based on a model PVOH-epoxy system” (Karimi et al., 2016) [1]. Poly(vinyl alcohol) and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A novel electrospinning technology for production of uniaxially aligned nanofiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning–electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. For discussion of obtained results please refer to the research paper (Karimi et al., 2016) [1]. PMID:26977430

  8. Complementary characterization data in support of uniaxially aligned electrospun nanocomposites based on a model PVOH-epoxy system.

    Science.gov (United States)

    Karimi, Samaneh; Staiger, Mark P; Buunk, Neil; Fessard, Alison; Tucker, Nick

    2016-06-01

    This paper presents complementary data corresponding to characterization tests done for our research article entitled "Uniaxially aligned electrospun fibers for advanced nanocomposites based on a model PVOH-epoxy system" (Karimi et al., 2016) [1]. Poly(vinyl alcohol) and epoxy resin were selected as a model system and the effect of electrospun fiber loading on polymer properties was examined in conjunction with two manufacturing methods. A novel electrospinning technology for production of uniaxially aligned nanofiber arrays was used. A conventional wet lay-up fabrication method is compared against a novel, hybrid electrospinning-electrospraying approach. The structure and thermomechanical properties of resulting composite materials were examined using scanning electron microscopy, dynamic mechanical analysis, thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile testing. For discussion of obtained results please refer to the research paper (Karimi et al., 2016) [1].

  9. Effectiveness of web-based teaching modules: test-enhanced learning in dental education.

    Science.gov (United States)

    Jackson, Tate H; Hannum, Wallace H; Koroluk, Lorne; Proffit, William R

    2011-06-01

    The purpose of our study was to evaluate the effectiveness of self-tests as a component of web-based self-instruction in predoctoral orthodontics and pediatric dentistry. To this end, the usage patterns of online teaching modules and self-tests by students enrolled in three courses at the University of North Carolina at Chapel Hill School of Dentistry were monitored and correlated to final exam grade and course average. We recorded the frequency of access to thirty relevant teaching modules and twenty-nine relevant self-tests for 157 second- and third-year D.D.S. students during the course of our data collection. There was a statistically significant positive correlation between frequency of accessing self-tests and course performance in one course that was totally based on self-instruction with seminars and multiple-choice examination (Level IV): Spearman correlation between frequency of self-test access and final exam grade, rho=0.23, p=0.044; correlation between frequency of self-test access and course average: rho=0.39, p=0.0004. In the other two courses we monitored, which included content beyond self-instruction with self-tests, the correlations were positive but not statistically significant. The students' use of online learning resources varied significantly from one course (Level I) to the next (Level II): Wilcoxon matched pairs signed-rank tests, S=-515.5, p=.0057 and S=1086, pweb-based self-tests may be correlated with more effective learning in predoctoral dental education by virtue of the testing effect and that dental students' usage of resources for learning changes significantly over the course of their education.

  10. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    Energy Technology Data Exchange (ETDEWEB)

    Meng Na; Zhou Ninglin; Shen Jian [Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing Normal University, Nanjing 210046 (China); Zhang Shuangquan, E-mail: zhouninglin@njnu.edu.cn, E-mail: jshen@njnu.edu.cn, E-mail: shuangquanz@yahoo.com [Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing 210046 (China)

    2010-05-07

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  11. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    Science.gov (United States)

    Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian

    2010-05-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  12. An interdisciplinary, team-based design for an oral and maxillofacial radiology course for postdoctoral dental students.

    Science.gov (United States)

    Ramesh, Aruna; Ganguly, Rumpa; Qualters, Donna M

    2014-09-01

    This article describes the transition of an oral and maxillofacial radiology course from a traditional lecture format to an interactive case-based, team-based, interdisciplinary, and intraprofessional learning model in advanced dental education. Forty-four postdoctoral dental students were enrolled in the course over a twelve-week period in the fall semester 2012. The class consisted of U.S.- and foreign-trained dentists enrolled in advanced education programs in various dental disciplines. The course faculty preassigned interdisciplinary teams with four or five students in each. The class met once a week for an hour. Ten of the twelve sessions consisted of a team presentation, individual quiz, team quiz, and case discussion. Each member of a team completed peer evaluation of other team members during weeks six and twelve of the course. The final course grade was a composite of individual and team quiz grades, team presentation, and peer evaluation grades. The overall class average was 90.43. Ninety-five percent of the class (42/44) had total team grades equal to or greater than total individual quiz grades. The objective of creating a new case-based, team-based, interdisciplinary, intraprofessional learning model in advanced dental education was achieved, and the initial student perception of the new format was positive.

  13. Dentists' use of caries risk assessment in children: findings from the Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Riley, Joseph L; Qvist, Vebeke; Fellows, Jeffrey L

    2010-01-01

    This study surveyed Dental Practice-Based Research Network (DPBRN) member dentists (from four regions in the U.S. and Scandinavia) who perform restorative dentistry in their practices. The survey asked a range of questions about caries risk assessment in patients aged 6 to 18. Among respondents, 73...

  14. Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study

    Science.gov (United States)

    Goumri, Meryem; Lucas, Bruno; Ratier, Bernard; Baitoul, Mimouna

    2016-10-01

    Graphene and multi-walled carbon nanotubes have attracted interest for a number of potential applications. One of the most actively pursued applications uses graphene and carbon nanotubes as a transparent conducting electrode in solar cells, displays or touch screens. In this work, in situ reduced graphene oxide/Poly (vinyl alcohol) and multi-walled carbon nanotubes/Sodium Dodecyl Sulfate/Poly (vinyl alcohol) composites were prepared by water dispersion and different reduction treatments. Comparative studies were conducted to explore the electrical and optical properties of nanocomposites based on graphene and multi-walled carbon nanotubes. A thermal reduction of graphene oxide was more effective, producing films with sheet resistances as low as 102-103 Ω/square with 80% transmittance for 550 nm light. The percolation threshold of the thermally reduced graphene oxide composites (0.35 vol%) was much lower than that of the chemically reduced graphene oxide composites (0.57 vol%), and than that of the carbon nanotubes composites (0.47 vol%). The Seebeck coefficient of graphene oxide films changes from about 40 μV/K to -30 μV/K after an annealing of three hours at 200 °C. The optical absorption of the nanocomposites showed a high absorbance in near UV regions and the photoluminescence enhancement was achieved at 1 wt% graphene loading, while the carbon nanotubes based composite presents a significant emission at 0.7 wt% followed with a photoluminescence quenching at higher fraction of the nanofillers 1.6 wt% TRGO and 1 wt% MWCNTs.

  15. Thermal, Mechanical and Rheological Behaviors of Nanocomposites Based on UHMWPE/Paraffin Oil/Carbon Nanofiller Obtained by Using Different Dispersion Techniques

    Science.gov (United States)

    Visco, Annamaria; Yousef, Samy; Galtieri, Giovanna; Nocita, Davide; Pistone, Alessandro; Njuguna, James

    2016-04-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a very attractive polymer employed as a high performance material. For its high viscosity, dispersion of fillers is considered a critical point in UHMWPE nanocomposites preparation process. Currently, paraffin oil (PO) is used extensively to overcome this issue in an assisted melt-mixing process. In this work, we have prepared nanocomposites based on UHMWPE, carbon nanofiller (CNF) and PO mixed by different mixing methods: magnetic stirring, ball milling (BM), ultrasonic and Mini-Lab extruder (EX). The aim of this work was to check the effect of the dispersion method on the mechanical and thermal features of UHMWPE/CNF nano composites in order to obtain a material with improved mechanical and physical properties. The samples were characterized by calorimetric, density, mechanical tensile and rheological analyses. Experimental results highlighted that the nanocomposites produced by EX and BM exhibits the best dispersion, good filler matrix interaction and had significantly improved mechanical properties compared to pure UHMWPE. For instance, for the BM method, the yield strength improved to 18.6 MPa (+96%), the yield strain improved by 60%, while stress at break improved by 13%. In summary, the EX improved the stiffness while the BM produced better ductility, melting temperature and the crystalline degree of the nanocomposites.

  16. Synthesis of a novel supermagnetic iron oxide nanocomposite hydrogel based on graft copolymerization of poly((2-dimethylamino)ethyl methacrylate) onto salep for controlled release of drug

    Energy Technology Data Exchange (ETDEWEB)

    Bardajee, Ghasem Rezanejade, E-mail: rezanejad@pnu.ac.ir; Hooshyar, Zari; Asli, Maryam Jahanbakhsh; Shahidi, Fatemeh Emamjome; Dianatnejad, Nastaran

    2014-03-01

    In this research, a novel supermagnetic iron oxide nanocomposite hydrogel was prepared using simultaneous in situ formation of iron oxide nanoparticles (IONs) and three-dimensional cross-linked polymer networks based on graft copolymerization of poly((2-dimethylamino)ethyl methacrylate) (PDMA) onto salep (PDMA-g-salep). The prepared ION–PDMA-g-salep hydrogel was systematically characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy dispersive X-ray analysis (SEM–EDAX), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). In addition, the ION–PDMA-g-salep hydrogel exhibits favorable swelling properties that are sensitive to temperature, pH, and external magnetic field (EMF). The drug release behavior of the prepared hydrogel under EMF, different temperatures and pHs was also studied for the evaluation of the release mechanism and determination of diffusion coefficients. Finally, the antibacterial activity and cytotoxicity studies of the prepared hydrogel were examined. These results suggested that the ION–PDMA-g-salep hydrogel could be a promising candidate for biological dressing applications. - Highlights: • We introduce a novel biocompatible magnetic iron oxide nanocomposite hydrogel for controlled drug release. • We use a facile method to biocompatible magnetic iron oxide nanocomposite hydrogel. • We prepare magnetic iron oxide nanocomposite hydrogel with high pH, temperature, and magnetic field-sensitivity.

  17. Dental students--dental advocates.

    Science.gov (United States)

    Bensch, Brittany

    2010-01-01

    Student advocacy and involvement in the political process is built into the structure of the American Student Dental Association (ASDA), especially in its Legislative Grassroots Network and an internal communication network among students to ensure political awareness. Students are concerned with such issues as a universally accepted, non-patient-based licensure process, mid-level providers, loan availability and tax deductibility, financial support for schools, and service early in one's professional career (giving forward rather than giving back). Through collaboration with the American Dental Education Association and with many state associations, students participate in lobbying, awareness campaigns, and behind the scenes as legislative aids. Although students share the same love for the profession that animates established practitioners, they are perceived by legislators as being different. Students are involved in the legislative process because it represents their future.

  18. A self-cleaning coating based on commercial grade polyacrylic latex modified by TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Nosrati, Rahimeh, E-mail: ra.nosrati@gmail.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Olad, Ali, E-mail: a.olad@yahoo.com [Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Nofouzi, Katayoon, E-mail: nofouzi@tabrizu.ac.ir [Faculty of Veterinary Medicine, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-08-15

    Graphical abstract: - Highlights: • A novel nanocomposite coating based on polyacrylic was prepared. • Nanostructured TiO{sub 2}/Ag-exchanged-zeolite-A composite material was prepared. • Prepared nanocomposite used as additive for modification of polyacrylic latex. • Modified coatings show self-cleaning and antibacterial properties. • Modified coatings show better stability in water in versus of unmodified polymer. - Abstract: The commercial grade polyacrylic latex was modified in order to prepare a self-cleaning coating. TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite was prepared and used as additive in the matrix of polyacrylic latex to achieve a hydrophilic and photocatalytic coating. FTIR and UV–visible spectroscopy, X-ray diffraction patterns and FESEM were used to characterize the composition and structure of the nanocomposites and coatings. The acrylic coatings, were prepared by using of TiO{sub 2}/Ag-exchanged-zeolite-A additive, had better UV and visible light absorption, hydrophilic, degradation of organic pollutants, stability in water and antimicrobial properties than pristine commercial grade polyacrylic latex coating. According to the results, the modified polyacrylic based coating containing 0.5 wt% of TiO{sub 2}/Ag-exchanged-zeolite-A nanocomposite additive with TiO{sub 2} to Ag-exchanged-zeolite-A ratio of 1:2 was the best coating considering most of useful properties such as small band gap and low water contact angle. The water contact angle for unmodified polyacrylic latex coating was 68° which was decreased to less than 10° in modified coating after 24 h LED lamp illumination.

  19. Interdisciplinary, web-based, self-study, interactive programs in the dental undergraduate program: a pilot.

    Science.gov (United States)

    Cohen, Howard B; Walker, Stephanie R; Tenenbaum, Howard C; Spero, Lawrence

    2003-06-01

    The goal of this project was to encourage interdisciplinary, integrative health teaching and research in dental education through the development of web-accessible programs, collectively called the "StudyWeb." The specific objective of the project was the construction and integration of a series of prototypes of self-study modules. Four pilot modules were developed using existing teaching materials in histology, pharmacology, prosthodontics, and oral radiology and utilizing a variety of widely available software programs, including FrontPage and Photoshop. Low-end technological choices were made in order to facilitate compatibility with a wide range of hardware, software, and types of Internet access. Modules were tested for functionality, usability, and ease of navigation. The scope of the initial project was limited to development and functionality testing of the original modules. The next phase of this project will involve testing of the effectiveness of these web-based self-instruction tools.

  20. Light-Curing Volumetric Shrinkage in Dimethacrylate-Based Dental Composites by Nanoindentation and PAL Study

    Science.gov (United States)

    Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina

    2017-01-01

    Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.

  1. Physicochemical characterization of three fiber-reinforced epoxide-based composites for dental applications.

    Science.gov (United States)

    Bonon, Anderson J; Weck, Marcus; Bonfante, Estevam A; Coelho, Paulo G

    2016-12-01

    Fiber-reinforced composite (FRC) biomedical materials are in contact with living tissues arising biocompatibility questions regarding their chemical composition. The hazards of materials such as Bisphenol A (BPA), phthalate and other monomers and composites present in FRC have been rationalized due to its potential toxicity since its detection in food, blood, and saliva. This study characterized the physicochemical properties and degradation profiles of three different epoxide-based materials intended for restorative dental applications. Characterization was accomplished by several methods including FTIR, Raman, Brunauer-Emmett-Teller (BET) Analysis, X-ray fluorescence spectroscopy, and degradation experiments. Physicochemical characterization revealed that although materials presented similar chemical composition, variations between them were more largely accounted by the different phase distribution than chemical composition.

  2. Evaluation of poly (vinyl alcohol) based cryogel–zinc oxide nanocomposites for possible applications as wound dressing materials

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Archana [Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur (India); Bajpai, Anil K., E-mail: akbmrl@yahoo.co.in [Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur (India); Bajpai, Jaya [Bose Memorial Research Laboratory, Department of Chemistry, Government Autonomous Science College Jabalpur (India); Singh, Sunil K. [Department of Chemistry, Guru Ghasidas University, Bilaspur, CG (India)

    2016-08-01

    In this investigation cryogels composed of poly (vinyl alcohol) (PVA) were prepared by repeated freeze thaw method followed by in situ precipitation of zinc oxide nanoparticles within the cryogel networks. Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX) were used to characterize the nanocomposites. The morphologies of native PVA cryogels and PVA cryogel-ZnO nanocomposites were observed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) techniques. The SEM analysis suggested that cryogels show a well-defined porous morphology whereas TEM micrographs revealed the presence of nearly spherical and well separated zinc oxide nanoparticles with diameter < 100 nm. XRD results showed all relevant Bragg's reflections for crystal structure of zinc oxide nanoparticles. Thermo gravimetric-differential thermal analysis (TG-DTA) was conducted to evaluate thermal stability of the nanocomposites. Mechanical properties of nanocomposites were determined in terms of tensile strength and percent elongation. Biocompatible nature was ascertained by anti-haemolytic activity, bovine serum albumin (blood protein) adsorption and in vitro cytotoxicity tests. The prepared nanocomposites were also investigated for swelling and deswelling behaviours. The results revealed that both the swelling and deswelling process depend on the chemical composition of the nanocomposites, number of freeze-thaw cycles, pH and temperature of the swelling medium. The developed biocompatible PVA cryogel-ZnO nanocomposites were also tested for antibacterial activities against both Gram-negative and Gram-positive bacteria. - Highlights: • PVA–zinc oxide nanocomposites have been prepared with no chemical crosslinking. • The nanocomposites are completely biocompatible. • They also show antibacterial property. • The nanocomposites

  3. Sliding Wear and Fretting Wear of DLC-Based, Functionally Graded Nanocomposite Coatings

    Science.gov (United States)

    Miyoshi, K.; Pohlchuck, B.; Street, Kenneth W.; Zabinski, J. S.; Sanders, J. H.; Voevodin, A. a.; Wu, R. L. C.

    1999-01-01

    Improving the tribological functionality of diamondlike carbon (DLC) films--developing, good wear resistance, low friction, and high load-carrying capacity-was the aim of this investigation. Nanocomposite coatings consisting of an amorphous DLC (a-DLC) top layer and a functionally graded titanium-titanium carbon-diamondlike carbon (Ti-Ti(sub x) C(sub y)-DLC) underlayer were produced on AISI 440C stainless steel substrates by the hybrid technique of magnetron sputtering and pulsed-laser deposition. The resultant DLC films were characterized by Raman spectroscopy, scanning electron microscopy, and surface profilometry. Two types of wear experiment were conducted in this investioation: sliding friction experiments and fretting wear experiments. Unidirectional ball-on-disk sliding friction experiments were conducted to examine the wear behavior of an a-DLC/Ti-Ti(sub x) C(sub y)-DLC-coated AISI 440C stainless steel disk in sliding contact with a 6-mm-diameter AISI 440C stainless steel ball in ultrahigh vacuum, dry nitrogen, and humid air. Although the wear rates for both the coating and ball were low in all three environments, the humid air and dry nitrogen caused mild wear with burnishing, in the a-DLC top layer, and the ultrahigh vacuum caused relatively severe wear with brittle fracture in both the a-DLC top layer and the Ti-Ti(sub x) C(sub y)-DLC underlayer. For reference, amorphous hydrogenated carbon (H-DLC) films produced on a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coatings by using an ion beam were also examined in the same manner. The H-DLC films markedly reduced friction even in ultrahigh vacuum without sacrificing wear resistance. The H-DLC films behaved much like the a-DLC/Ti-Ti(sub x) C(sub y)-DLC nanocomposite coating in dry nitrogen and humid air, presenting low friction and low wear. Fretting wear experiments were conducted in humid air (approximately 50% relative humidity) at a frequency of 80 Hz and an amplitude of 75 micron on an a

  4. Dental Implant Systems

    Directory of Open Access Journals (Sweden)

    Yoshiki Oshida

    2010-04-01

    Full Text Available Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities.

  5. Dental operatory design and equipment.

    Science.gov (United States)

    Floyd, M

    1993-08-01

    Improving and expanding the dental services of a practice can involve purchasing new equipment and even modifying or expanding the physical plant. Operatory design is important to the efficiency with which dental procedures can be performed. Equipment purchases to outfit the dental operatory should be made based on the specific needs and functions of a practice.

  6. Dental Hygiene Realpolitik Affecting Education.

    Science.gov (United States)

    Bader, James D.

    1991-01-01

    Current conditions in dental hygiene influencing professional education are discussed. Workplace/practice issues include dental hygiene care as a component of dental practice, content, effects, and quality of care, hygienist supply and demand, and job satisfaction. Professional issues include the knowledge base, definitions of practice, and…

  7. Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Reichl, Franz-Xaver [Walther-Straub-Institute of Pharmacology and Toxicology, Munich (Germany); Ludwig-Maximilians-University, Department of Operative Dentistry and Periodontology, Munich (Germany); Esters, Magali; Simon, Sabine; Seiss, Mario [Walther-Straub-Institute of Pharmacology and Toxicology, Munich (Germany); Kehe, Kai [Bundeswehr Institute of Pharmacology and Toxicology, Munich (Germany); Kleinsasser, Norbert [University of Regensburg, Head and Neck Surgery, Department of Otolaryngology, Regensburg (Germany); Folwaczny, Matthias; Glas, Juergen; Hickel, Reinhard [Ludwig-Maximilians-University, Department of Operative Dentistry and Periodontology, Munich (Germany)

    2006-06-15

    In order to test the hypothesis that released dental restorative materials can reach toxic levels in human oral tissues, the cytotoxicities of the resin-based dental (co)monomers hydroxyethylmethacrylate (HEMA), triethyleneglycoldimethacrylate (TEGDMA), urethanedimethacrylate (UDMA), and bisglycidylmethacrylate (BisGMA) compared with methyl mercury chloride (MeHgCl) and the amalgam component mercuric chloride (HgCl{sub 2}) were investigated on human gingival fibroblasts (HGF) using two different test systems: (1) the modified XTT-test and (2) the modified H 33342 staining assay. The HGF were exposed to various concentrations of the test-substances in all test systems for 24 h. All tested (co)monomers and mercury compounds significantly (P<0.05) decreased the formazan formation in the XTT-test. EC{sub 50} values in the XTT assay were obtained as half-maximum-effect concentrations from fitted curves. Following EC{sub 50} values were found (mean [mmol/l]; s.e.m. in parentheses; n=12; * significantly different to HEMA): HEMA 11.530 (0.600); TEGDMA* 3.460 (0.200); UDMA* 0.106 (0.005); BisGMA* 0.087 (0.001); HgCl{sub 2}* 0.013 (0.001); MeHgCl* 0.005 (0.001). Following relative toxicities were found: HEMA 1; TEGDMA 3; UDMA 109; BisGMA 133; HgCl{sub 2} 887; MeHgCl 2306. A significant (P<0.05) increase of the toxicity of (co)monomers and mercurials was found in the XTT-test in the following order: HEMA < TEGDMA < UDMA < BisGMA < HgCl{sub 2} < MeHgCl. TEGDMA and MeHgCl induced mainly apoptotic cell death. HEMA, UDMA, BisGMA, and HgCl{sub 2} induced mainly necrotic cell death. The results of this study indicate that resin composite components have a lower toxicity than mercury from amalgam in HGF. HEMA, BisGMA, UDMA, and HgCl{sub 2} induced mainly necrosis, but it is rather unlikely that eluted substances (solely) can reach concentrations, which might induce necrotic cell death in the human physiological situation, indicating that other (additional) factors may be involved in

  8. Nanocrystal-polymer nanocomposite electrochromic device

    Science.gov (United States)

    Milliron, Delia; Runnerstrom, Evan; Helms, Brett; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2015-12-08

    Described is an electrochromic nanocomposite film comprising a solid matrix of an oxide based material, the solid matrix comprising a plurality of transparent conducting oxide (TCO) nanostructures dispersed in the solid matrix and a lithium salt dispersed in the solid matrix. Also described is a near infrared nanostructured electrochromic device having a functional layer comprising the electrochromic nanocomposite film.

  9. Synthesis of Graphene-Based Nanocomposite and Investigations of Its Thermal and Electrical Properties

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Pati

    2016-01-01

    Full Text Available We describe the synthesis of acid functionalized graphene (GE which is grafted to chitosan (CH by first reacting the oxidized GE with thionyl chloride to form acyl-chlorinated GE. This product is subsequently dispersed in chitosan and covalently grafted to form GE-chitosan. GE-chitosan is further grafted onto polymetanitroaniline (PMNA by free radical polymerization conditions to yield GE-CH-PMNA. We have characterized the structure of synthesized GE-CH-PMNA composites by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, scanning electron microscopy, and conductivity measurements. XRD data suggest the strongly crystalline character of the prepared specimen. Our measurement shows that the dielectric constants of these nanocomposites are remarkably enhanced due to interfacial polarization effect. This study demonstrates that functionalized graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values.

  10. Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, M.; Meenakshisundaram, N.; Rajendran, V., E-mail: veerajendran@gmail.com

    2011-05-15

    In this study, a novel method was used to produce a nanostructured composite consisting of hydroxyapatite and sodium alginate by varying the composition of sodium alginate. The structure, morphology, simulated body fluid response and mechanical properties of the synthesised nanocomposites were characterised. From X-ray diffraction analysis, an increase in crystallite size and degree of crystallinity with an increase in the composition of sodium alginate up to 1.5 wt.% was observed. Further, it was found to decrease with an increase in the composition of sodium alginate. A notable peak shift from 1635 to 1607 cm{sup -1} and 1456 to 1418 cm{sup -1} in the Fourier transform infrared spectra of the nanocomposite was observed towards the lower wave number side when compared with pure hydroxyapatite. It reveals a strong interaction between the positively charged calcium (Ca{sup 2+}) and the negatively charged carboxyl group (COO{sup -}) in sodium alginate. Transmission electron microscopy images of pure hydroxyapatite showed a short nanorod-like morphology with an average particle size of 13 nm. Bioresorbability of the samples was observed by immersing them in simulated body fluid medium for 14 days to evaluate the changes in pH and Ca{sup 2+} ion strength. Microhardness shows an increasing trend with an increase in the composition of sodium alginate from 1.5 to 3.0 wt.%, which is similar to that in the density. - Research Highlights: {yields} We have prepared nanohydroxyapatite/sodium alginate as a composite. {yields} Effect of sodium alginate on the properties of nanohydrroxyapatite has been studied. {yields} The sodium alginate ranges from 0 to 3.75 wt.% has been used. {yields} Composites show improved biological and mechanical properties.

  11. Immunosensor based on nanocomposite of nanostructured zirconium oxide and gelatin-A.

    Science.gov (United States)

    Bagbi, Yana; Sharma, Anshu; Bohidar, H B; Solanki, Pratima R

    2016-01-01

    We have reported the studies related to the fabrication of a nanocomposite, comprising of sol-gel derived inorganic zirconium oxide nanoparticles (ZrO2 NPs) and organic biopolymer gelatin-A (GA), deposited on indium-tin-oxide (ITO) coated glass substrate by drop casting method. The GA-ZrO2/ITO electrode was used for immobilization of monoclonal antibodies (Ab) specific to antigen Vibrio cholerae (Vc) followed by bovine serum albumin (BSA) for antigen Vc detection using electrochemical techniques. The structural and morphological behaviour of these ZrO2 NPs, GA-ZrO2/ITO electrode and BSA/Ab/GA-ZrO2/ITO immunosensor was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy techniques. The transmission electron microscopy study exhibited a spherical shape ZrO2 NPs. The average crystalline size of ZrO2 NPs was obtained as 10.3 ± 1 nm from X-ray diffraction measurement and 72 nm hydrodynamic radius measured by dynamic light scattering. GA-ZrO2 nanocomposite provides a porous structure which assists to higher loading of Ab on the matrix surface that improved the biosensing properties. The electrochemical response studies of the fabricated BSA/Ab/GA-ZrO2/ITO immunosensor exhibited good linearity in the range of 50-400 ng mL(-1), low limit of detection of 0.74 ng/mL, sensitivity as 0.03 Ω ng(-1)mL(-1)cm(-2) and reproducibility more than 10 times.

  12. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions

    Science.gov (United States)

    Mittal, Hemant; Maity, Arjun; Ray, Suprakas Sinha

    2016-02-01

    Biodegradable hydrogel nanocomposites (HNC) of gum karaya (GK) grafted with poly(acrylic acid) (PAA) incorporated silicon carbide nanoparticles (SiC NPs) were synthesized using the in situ graft copolymerization method and tested for the adsorption of cationic dyes from aqueous solution. The structure and morphology of the HNC were characterized using different spectroscopic and microscopic techniques. The results showed that the surface area and porosity of the hydrogel polymer significantly increased after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose of 0.5 and 0.6 g l-1 in neutral medium, respectively. The adsorption process was found to be highly pH dependent and followed the pseudo-second-order rate model. The adsorption isotherm data fitted well with the Langmuir adsorption isotherm with a maximum adsorption capacity of 757.57 and 497.51 mg g-1 for MG and RhB, respectively. Furthermore, the HNC was demonstrated as a versatile adsorbent for the removal of both cationic and anionic dyes from the simulated wastewater. The HNC showed excellent regeneration capacity and was successfully used for the three cycles of adsorption-desorption. In summary, the HNC has shown its potential as an environment friendly and efficient adsorbent for the adsorption of cationic dyes from contaminated water.

  13. Consensus statement by hospital based dentists providing dental treatment for patients with inherited bleeding disorders

    NARCIS (Netherlands)

    Hewson, I. D.; Daly, J.; Hallett, K. B.; Liberali, S. A.; Scott, C. L. M.; Spaile, G.; Widmer, R.; Winters, J.

    2011-01-01

    Avoidance of dental care and neglect of oral health may occur in patients with inherited bleeding disorders because of concerns about perioperative and postoperative bleeding, but this is likely to result in the need for crisis care, and more complex and high-risk procedures. Most routine dental car

  14. Polymeric vs hydroxyapatite-based scaffolds on dental pulp stem cell proliferation and differentiation

    Institute of Scientific and Technical Information of China (English)

    Arash; Khojasteh; Saeed; Reza; Motamedian; Maryam; Rezai; Rad; Mehrnoosh; Hasan; Shahriari; Nasser; Nadjmi

    2015-01-01

    AIM: To evaluate adhesion, proliferation and differentiation of human dental pulp stem cells(h DPSCs) on four commercially available scaffold biomaterials. METHODS: hD PSCs were isolated from human dental pulp tissues of extracted wisdom teeth and established in stem cell growth medium. h DPSCs at passage 3-5 were seeded on four commercially available scaffold biomaterials, SureO ss(Allograft), Cerabone(Xenograft), PLLA(Synthetic), and OSTEON Ⅱ Collagen(Composite), for 7 and 14 d in osteogenic medium. Cell adhesion and morphology to the scaffolds were evaluated by scanning electron microscopy(SEM). Cell proliferation and differentiation into osteogenic lineage were evaluated using DNA counting and alkaline phosphatase(ALP) activity assay, respectively. RESULTS: All scaffold biomaterials except Sure Oss(Allograft) supported h DPSC adhesion, proliferation and differentiation. hD PSCs seeded on PLLA(Synthetic) scaffold showed the highest cell proliferation and attachment as indicated with both SEM and DNA counting assay. Evaluating the osteogenic differentiation capability of hD PSCs on different scaffold biomaterials with ALP activity assay showed high level of ALP activity on cells cultured on PLLA(Synthetic) and OSTEON ⅡCollagen(Composite) scaffolds. SEM micrographs also showed that in the presence of Cerabone(Xenograft) and OSTEON Ⅱ Collagen(Composite) scaffolds, the h DPSCs demonstrated the fibroblastic phenotype with several cytoplasmic extension, while the cells on PLLA scaffold showed the osteoblastic-like morphology, round-like shape. CONCLUSION: PLLA scaffold supports adhesion, proliferation and osteogenic differentiation of hD PSCs. Hence, it may be useful in combination with hD PSCs for cell-based reconstructive therapy.

  15. Nanohydroxyapatite Silicate-Based Cement Improves the Primary Stability of Dental Implants: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Hooman Khorshidi

    2017-01-01

    Full Text Available Objectives. Insufficient cortical bone volume when placing implants can lead to lack of primary stability. The use of cement as a bone fill material in bone defects around dental implant could result in better clinical outcome. HA has shown excellent biological properties in implant dentistry. The purpose of this study was to evaluate the effect of nanohydroxyapatite powder (Nano-HA in combination with accelerated Portland cement (APC on implant primary stability in surgically created circumferential bone defects in a bovine rib in vitro model. Materials and Methods. Sixteen bovine rib bones and thirty-six implants of same type and size (4 mm × 10 mm were used. Implants were divided into six groups: no circumferential bone defect, defect and no grafting, bone chips grafting, Nano-HA grafting, APC grafting, and Nano-HA mixed to APC grafting (Nano-HA-APC. Circumferential defects around the implants were prepared. The implant stability quotient (ISQ values were measured before and after the grafting. Results. APC exhibited the highest ISQ values. A significant increase of ISQ values following the grafting of Nano-HA-APC (18.08±5.82 and APC alone (9.50±4.12 was achieved. Increase of ISQ values after 72 hours was 24.16±5.01 and 17.58±4.89, respectively. Nano-HA grafting alone exhibited the least rise in ISQ values. Conclusions. Nanohydroxyapatite silicate-based cement could improve the primary stability of dental implants in circumferential bone defect around implants.

  16. A cone-beam CT based technique to augment the 3D virtual skull model with a detailed dental surface.

    Science.gov (United States)

    Swennen, G R J; Mommaerts, M Y; Abeloos, J; De Clercq, C; Lamoral, P; Neyt, N; Casselman, J; Schutyser, F

    2009-01-01

    Cone-beam computed tomography (CBCT) is used for maxillofacial imaging. 3D virtual planning of orthognathic and facial orthomorphic surgery requires detailed visualisation of the interocclusal relationship. This study aimed to introduce and evaluate the use of a double CBCT scan procedure with a modified wax bite wafer to augment the 3D virtual skull model with a detailed dental surface. The impressions of the dental arches and the wax bite wafer were scanned for ten patient separately using a high resolution standardized CBCT scanning protocol. Surface-based rigid registration using ICP (iterative closest points) was used to fit the virtual models on the wax bite wafer. Automatic rigid point-based registration of the wax bite wafer on the patient scan was performed to implement the digital virtual dental arches into the patient's skull model. Probability error histograms showed errors of wax bite wafer to set-up a 3D virtual augmented model of the skull with detailed dental surface.

  17. History of dental hygiene research.

    Science.gov (United States)

    Bowen, Denise M

    2013-01-01

    Dental hygiene is defined as the science and practice of the recognition, treatment and prevention of oral diseases. The history of dental hygiene research is considered in the context of the development of the discipline and an emerging infrastructure. Research-related events supporting the growth and maturation of the profession are considered from the early years to the most recent. The benefits of preventive oral health services provided by dental hygienists have been supported by research, and the practice of dental hygiene has expanded as a result of research findings since its inception 100 years ago. Dental hygienists' engagement in research, however, did not begin until the 1960s as research associates or administrators, primarily with dental researchers as primary investigators. The Journal of Dental Hygiene (JDH) has provided information for dental hygiene practice since 1927, and has been the primary venue for dissemination of dental hygiene research since 1945. Graduate education in dental hygiene at the master's degree level and the work of early dental hygiene researchers led to the first conference on dental hygiene research in 1982. Over 30 years later, dental hygiene has established a meta-paradigm and defined conceptual models, built an initial infrastructure to support research endeavors and contributed much to the development of dental hygiene as a unique discipline. A doctoral degree in the discipline, continued theory-based research, initiatives to foster collaborations between dental hygiene and other researchers and enhanced capabilities to attract funding to support large scale studies are goals that must be attained through the efforts of future researchers to address the needs for additional development in the discipline of dental hygiene. Dental hygiene research supports the growing discipline and its value to society.

  18. Preparation and characterization of nanocomposites based on COOH functionalized multi-walled carbon nanotubes and on poly(trimethylene terephthalate

    Directory of Open Access Journals (Sweden)

    2011-11-01

    Full Text Available Poly(trimethylene terephthalate nanocomposites containing COOH functionalized multi-walled nanotubes were synthesized with in situ polymerization method. The microstructure of the nanocomposites was studied by SEM, in terms of the dispersion state of the nanotubes and the polymer–nanotube interface. The thermal behaviour, mechanical properties and conductivity of these resultant PTT/MWCNTs nanocomposites were studied. The effect of the presence of MWCNTs on cold crystallization of PTT was monitored by dielectric spectroscopy. From thermal analysis study, it is found that the melting temperature and glass transition temperature are not significantly affected by the addition of MWCNTs. The crystallization temperature of PTT matrix is affected by the presence of CNTs. Nanocomposites have slightly higher degree of crystallinit