WorldWideScience

Sample records for based dental nanocomposite

  1. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    Science.gov (United States)

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  2. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  3. Determination of surface roughness and topography of dental resin-based nanocomposites using AFM analysis

    Directory of Open Access Journals (Sweden)

    Tijana Lainović

    2013-02-01

    Full Text Available The aim of this study was to determine surface roughness and topography of polished dental resin-based nanocomposites.Four representative dental resin-based nanocomposites were tested in the study: two nanohybrids (Filtek Z550 and Tetric EvoCeram and two nanofilled (Filtek Ultimate Body and Filtek Ultimate Translucent; and two reference materials: one microfilled (Gradia Direct and one microhybrid (Filtek Z250. Polymerized cylindrical specimens (4 mm x 2 mm were polished with multi-step polishing system-Super Snap. Immediately after the polishing, topography of each specimen was examined by Veeco di CP-II Atomic Force Microscope. Specimen’s surface has been scanned in 6 points in contact mode with CONT20A-CP tips. 1 Hz scan rate and 256 x 256 resolution were used to obtain topography on a 90 μm x 90 μm scanning area. Measured topography data were processed by Image Processing and Data Analysis V2.1.15 software. Following parameters were compared among specimens: average roughness and maximum peak-to-valley distance.All of the tested materials had similar average surface roughness after finishing and polishing procedure. The lowest values occurred in the material Filtek Ultimate Body, and the highest in the Filtek Z550. When interpreting maximum peak-to-valley distance the larger differences in values (up to 100% occurred in Filtek Z550, Filtek Z250 and Filtek Ultimate Body, which is a result of the deep polishing channels and tracks. Type, size, distribution of fillers and filler loading in tested materials, didn’t influence average roughness values, but had an impact on maximum peak-to-valley distance values.

  4. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Science.gov (United States)

    Lu, Xiaoli; Xia, Yang; Liu, Mei; Qian, Yunzhu; Zhou, Xuefeng; Gu, Ning; Zhang, Feimin

    2012-01-01

    To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride)] and anionic [poly(sodium 4-styrenesulfonate)] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia) as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P ceramics are good potential candidates for ceramic-based dental materials. PMID:22619551

  5. Development of a novel resin-based dental material with dual biocidal modes and sustained release of Ag+ ions based on photocurable core-shell AgBr/cationic polymer nanocomposites.

    Science.gov (United States)

    Cao, Weiwei; Zhang, Yu; Wang, Xi; Chen, Yinyan; Li, Qiang; Xing, Xiaodong; Xiao, Yuhong; Peng, Xuefeng; Ye, Zhiwen

    2017-07-01

    Research on the incorporation of cutting-edge nano-antibacterial agent for designing dental materials with potent and long-lasting antibacterial property is demanding and provoking work. In this study, a novel resin-based dental material containing photocurable core-shell AgBr/cationic polymer nanocomposite (AgBr/BHPVP) was designed and developed. The shell of polymerizable cationic polymer not only provided non-releasing antibacterial capability for dental resins, but also had the potential to polymerize with other methacrylate monomers and prevented nanoparticles from aggregating in the resin matrix. As a result, incorporation of AgBr/BHPVP nanocomposites did not adversely affect the flexural strength and modulus but greatly increased the Vicker's hardness of resin disks. By continuing to release Ag + ions without the impact of anaerobic environment, resins containing AgBr/BHPVP nanoparticles are particularly suitable to combat anaerobic cariogenic bacteria. By reason of the combined bactericidal effect of the contact-killing cationic polymers and the releasing-killing Ag + ions, AgBr/BHPVP-containing resin disks had potent bactericidal activity against S. mutans. The long-lasting antibacterial activity was also achieved through the sustained release of Ag + ions due to the core-shell structure of the nanocomposites. The results of macrophage cytotoxicity showed that the cell viability of dental resins loading less than 1.0 wt% AgBr/BHPVP was close to that of neat resins. The AgBr/BHPVP-containing dental resin with dual bactericidal capability and long term antimicrobial effect is a promising material aimed at preventing second caries and prolonging the longevity of resin composite restorations.

  6. Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application.

    Science.gov (United States)

    Panahi, Fatemeh; Rabiee, Sayed Mahmood; Shidpour, Reza

    2017-11-01

    In recent years, cement composites based on calcium silicate have been more generally considered for medical applications. Calcium silicate Cement are among the categories that are used in dental root canal treatment. The aim of this study is to make new calcium silicate cement with dicalcium phosphate and chitosan additives to preserve and strengthen desirable properties of this type of cements. In this study, composite dental cement based on calcium silicate was prepared. Then effect of adding biodegradable and biocompatible polymer such as chitosan on setting properties and its structure were studied. In this study, a combination of calcium silicate, dicalcium phosphate (DCP) and bismuth oxide (Bi 2 O 3 ) as powder phase and 2% solution of the chitosan dissolved in 1% acetic acid solution as liquid phase, was used. As well as control sample was obtained by mixing the powder with distilled water as the liquid phase. Based on the obtained results, setting time of composite cement was changed from 51 to 67 minutes by adding chitosan polymer. Presence of chitosan also reduced the compressive strength a little. The bioactivity of the cement were studied in a solution of simulated body fluid (SBF) for 14 days. The samples were analyzed by SEM to identify the microstructure and by XRD to determine crystal structure. The composition of cement before incubation in SBF was included early phases (phase calcium silicate and calcium phosphate) that after 14 days of immersion in SBF, they were converted to layer-shaped hydroxy apatite and the presence of chitosan had not any influence on the final phase of hydroxy apatite. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Novel dental nanocomposites: Fabrication, and investigation of their ...

    Indian Academy of Sciences (India)

    56

    Novel dental nanocomposites: Fabrication, and investigation of their physicochemical, mechanical and biological properties. Mehdi Jaymand*,1, Mehrdad Lotfi. *, 1,2, Jaleh Barar1,3, Morteza Eskandani1, and Hadi Maleki1. 1. Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, P.O..

  8. Liquid crystalline epoxy nanocomposite material for dental application.

    Science.gov (United States)

    Tai, Yun-Yuan; Hsu, Sheng-Hao; Chen, Rung-Shu; Su, Wei-Fang; Chen, Min-Huey

    2015-01-01

    Novel liquid crystalline epoxy nanocomposites, which exhibit reduced polymerization shrinkage and effectively bond to tooth structures, can be applied in esthetic dentistry, including core and post systems, direct and indirect restorations, and dental brackets. The purposes of this study were to investigate the properties of liquid crystalline epoxy nanocomposites including biocompatibility, microhardness, and frictional forces of bracket-like blocks with different filler contents for further clinical applications. In this study, we evaluated liquid crystalline epoxy nanocomposite materials that exhibited various filler contents, by assessing their cell activity performance using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and their microhardness with or without thermocycling. We also evaluated the frictional force between bracket-like duplicates and commercially available esthetic bracket systems using Instron 5566. The liquid crystalline epoxy nanocomposite materials showed good biocompatibility. The materials having high filler content demonstrated greater microhardness compared with commercially available bracket materials, before and after the thermocycling treatment. Thus, manufacturing processes are important to reduce frictional force experienced by orthodontic brackets. The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment. Copyright © 2014. Published by Elsevier B.V.

  9. Liquid crystalline epoxy nanocomposite material for dental application

    Directory of Open Access Journals (Sweden)

    Yun-Yuan Tai

    2015-01-01

    Conclusion: The microhardness of the bracket-like blocks made by our new material is superior to the commercially available brackets, even after thermocycling. Our results indicate that the evaluated liquid crystalline epoxy nanocomposite materials are of an appropriate quality for application in dental core and post systems and in various restorations. By applying technology to refine manufacturing processes, these new materials could also be used to fabricate esthetic brackets for orthodontic treatment.

  10. Metallocene Based Polyolefin Nanocomposites

    Directory of Open Access Journals (Sweden)

    Walter Kaminsky

    2014-03-01

    Full Text Available One of the most efficient and versatile ways to synthesize polyolefin nanocomposites is the in-situ polymerization of olefins in the presence of nano particles by metallocene catalysts. Metallocene/methylaluminoxane (MAO catalysts are soluble in hydrocarbons and therefore they can be absorbed perfectly in solution onto the surface of particles or fibers and after addition of ethene or propene they can then catalyze a polyolefin film on the surface. Metallocene/MAO and other single site catalysts allow the synthesis of polymers with a precisely defined microstructure, tacticity, and stereoregularity as well as new copolymers with superior properties such as film clarity, high tensile strength and lower content of extractables. The polymer properties can be enlarged by the incorporation of nanofillers. The resulting polyethylene or polypropylene nanocomposites give a tremendous boost to the physical and chemical properties such as dramatically improved stiffness, high gas barrier properties, significant flame retardancy, and high crystallization rates.

  11. Metallocene Based Polyolefin Nanocomposites

    OpenAIRE

    Walter Kaminsky

    2014-01-01

    One of the most efficient and versatile ways to synthesize polyolefin nanocomposites is the in-situ polymerization of olefins in the presence of nano particles by metallocene catalysts. Metallocene/methylaluminoxane (MAO) catalysts are soluble in hydrocarbons and therefore they can be absorbed perfectly in solution onto the surface of particles or fibers and after addition of ethene or propene they can then catalyze a polyolefin film on the surface. Metallocene/MAO and other single site catal...

  12. Synthesis of new dental nanocomposite with glass nanoparticles

    Directory of Open Access Journals (Sweden)

    Marzieh Monfared

    2013-09-01

    Full Text Available Objective(s: The aim of this study was to synthesis new dental nanocomposites reinforced with fabricated glass nanoparticles and compare two methods for fabrication and investigate the effect of this filler on mechanical properties. Materials and Methods : The glass nanoparticles were produced by wet milling process. The particle size and shape was achieved using PSA and SEM. Glass nanoparticles surface was modified with MPTMS silane. The composite was prepared by mixing these silane-treated nanoparticles with monomers. The resin composition was UDMA /TEGDMA (70/30 weight ratio. Three composites were developed with 5, 7.5 and 10 wt% glass fillers in each group. Two preparation methods were used, in dispersion in solvent method (group D glass nanoparticles were sonically dispersed in acetone and the solution was added to resin, then acetone was evaporated. In non-dispersion in solvent method (group N the glass nanoparticles were directly added to resin. Mechanical properties were investigated included flexural strength, flexural modulus and Vickers hardness. Results: Higher volume of glass nanoparticles improves mechanical properties of composite. Group D has batter mechanical properties than group N. Flexural strength of composite with 10%w filler of group D was 75Mpa against 59 Mpa of the composite with the same filler content of group N. The flexural modulus and hardness of group D is more than group N. Conclusion: It can be concluded that dispersion in solvent method is the best way to fabricate nanocomposites and glass nanoparticles is a significant filler to improve mechanical properties of dental nanocomposite.

  13. Study of photo activation reaction of experimental graphene dental nanocomposites through dynamic laser speckle

    Science.gov (United States)

    Salas, Marianne; Yebra, Ana; Pozo, Antonio M.; Lucena, Cristina; Pérez, María. M.

    2017-08-01

    The objective of this study was to characterize the photo activation reaction of experimental graphene dental nanocomposites and to compare this reaction between commercial nanocomposite by dynamic laser speckle patterns. One commercial nanocomposite and two experimental graphene nanocomposites were used. LED curing unit was used to produce the photo activation reaction and the speckle patterns were generated by the incident light from the laser diode. These patterns were captured with the CMOS camera; later the speckle correlation was calculated. The photo activation process originates different speckle patterns between the commercial and the experimental graphene nanocomposites; having this less speckle activity.

  14. Polyamide blend-based nanocomposites: A review

    Directory of Open Access Journals (Sweden)

    W. S. Chow

    2015-03-01

    Full Text Available Polymer blend nanocomposites have been considered as a stimulating route for creating a new type of high performance material that combines the advantages of polymer blends and the merits of polymer nanocomposites. In nanocomposites with multiphase matrices, the concept of using nanofillers to improve select properties (e.g., mechanical, thermal, chemical, etc of a polymer blend, as well as to modify and stabilize the blend morphology has received a great deal of interest. This review reports recent advances in the field of polyamide (PA blend-based nanocomposites. Emphasis is placed on the PA-rich blends produced by blending with other thermoplastics in the presence of nanofillers. The processing and properties of PA blend-based nanocomposites with nanofillers are discussed. In addition, the mechanical properties and morphology changes of PA blends with the incorporation of nanofillers are described. The issues of compatibility and toughening of PA blend nanocomposites are discussed, and current challenges are highlighted.

  15. Fixed Dental Prostheses and Single-Tooth Crowns Based on Ceria-Stabilized Tetragonal Zirconia/Alumina Nanocomposite Frameworks: Outcome After 2 Years in a Clinical Trial.

    Science.gov (United States)

    Hüttig, Fabian; Keitel, Jan P; Prutscher, Andreas; Spintzyk, Sebastian; Klink, Andrea

    This clinical trial tested bilayered restorations based on ceria-stabilized tetragonal zirconia/alumina frameworks veneered with feldspathic ceramic. A total of 67 crowns and 40 fixed dental prostheses (FDPs) were luted in 57 patients with self-etching/self-adhesive composite resin cement. Dental status and integrity of restorations were evaluated at 2 weeks, 6 months, and then annually. A total of 66 crowns and 36 FDPs (88% posterior) survived for success rates of 93.4% for crowns and 89% for FDPs at 2 years. In particular, 11 cohesive ceramic chippings were observed in 5 crowns and 6 FDPs. The material allows excellent marginal adaptation. Susceptibility to veneering failures might be due to framework design and the necessities of esthetics.

  16. Synthesis and biological evaluation of PMMA/MMT nanocomposite as denture base material.

    Science.gov (United States)

    Zheng, Junping; Su, Qiang; Wang, Chen; Cheng, Gang; Zhu, Ran; Shi, Jin; Yao, Kangde

    2011-04-01

    Inorganic-polymer nanocomposites are of significant interest for emerging materials due to their improved properties and unique combination of properties. Poly (methylmethacrylate) (PMMA)/montmorillonite (MMT) nanocomposites were prepared by in situ suspension polymerization with dodecylamine used as MMT-modifier. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the structures of the nanocomposites. Cytotoxicity test, hemolysis test, acute systemic toxicity test, oral mucous membrane irritation test, guinea-pig maximization test and mouse bone-marrow micronucleus test were used to evaluate the biocompatibility of PMMA/MMT nanocomposites. The results indicated that an exfoliated nanocomposite was achieved, and the resulting nanocomposites exhibited excellent biocompatibility as denture base material and had potential application in dental materials.

  17. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms

    Science.gov (United States)

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Antonucci, Joseph M.; Lin, Nancy J.; Lin-Gibson, Sheng; Xu, Sarah M.; Zhou, Xuedong

    2012-01-01

    A dental composite containing amorphous calcium phosphate nanoparticles (NACP) was developed that released calcium (Ca) and phosphate (PO4) ions and possessed acid-neutralization capability. There has been little study on incorporation of antibacterial agents into calcium phosphate composites. The objective of this study was to investigate the effect of silver nanoparticle (NAg) mass fraction in NACP nanocomposite on mechanical properties and dental plaque microcosm biofilm for the first time. NACP nanoparticles of 116 nm were synthesized via a spray-drying technique. NAg nanoparticles were synthesized using Ag 2-ethylhexanoate and 2-(tert-butylamino)ethyl methacrylate, yielding NAg of particle size of 2.7 nm that were well-dispersed in the resin. Five NACP nanocomposites were fabricated with NAg mass fractions of 0, 0.028, 0.042, 0.088, and 0.175%, respectively. Mechanical properties of NACP nanocomposites containing 0–0.042% of NAg matched those of a commercial composite without antibacterial activity. Live/dead assay of dental plaque microcosm biofilms showed complete coverage with live bacteria on commercial composite. However, there were increasingly more dead bacteria with higher NAg content in the NACP nanocomposite. Colony-forming unit (CFU) counts for total microorganisms, total Streptococci, and mutans Streptococci for NACP nanocomposite with 0.042% NAg were about 1/4 those of commercial composite. Lactic acid production on NACP nanocomposite with 0.042% NAg was 1/3 that on commercial composite. In conclusion, novel NACP–NAg nanocomposites were developed which possessed good mechanical properties and potent antibacterial properties, with substantially reduced biofilm viability and lactic acid production. Hence, the NACP–NAg nanocomposites are promising for dental restorations with remineralizing and antibacterial capabilities. PMID:22566464

  18. Polysaccharide-based nanocomposites and their applications

    Science.gov (United States)

    Zheng, Yingying; Monty, Jonathan; Linhardt, Robert J.

    2014-01-01

    Polysaccharide nanocomposites have become increasingly important materials over the past decade. Polysaccharides offer a green alternative to synthetic polymers in the preparation of soft nanomaterials. They have also been used in composites with hard nanomaterials, such as metal nanoparticles and carbon-based nanomaterials. This mini review describes methods for polysaccharide nanocomposite preparation and reviews the various types and diverse applications for these novel materials. PMID:25498200

  19. Surface roughness and morphology of dental nanocomposites polished by four different procedures evaluated by a multifractal approach

    Energy Technology Data Exchange (ETDEWEB)

    Ţălu, Ştefan, E-mail: stefan_ta@yahoo.com [Technical University of Cluj-Napoca, Faculty of Mechanical Engineering, Department of AET, Discipline of Descriptive Geometry and Engineering Graphics, 103-105 B-dul Muncii St., Cluj-Napoca 400641, Cluj (Romania); Stach, Sebastian, E-mail: sebastian.stach@us.edu.pl [University of Silesia, Faculty of Computer Science and Materials Science, Institute of Informatics, Department of Biomedical Computer Systems, Będzińska 39, 41-205 Sosnowiec (Poland); Lainović, Tijana, E-mail: tijana.lainovic@gmail.com [University of Novi Sad, Faculty of Medicine, School of Dentistry, Hajduk Veljkova 3, 21000 Novi Sad (Serbia); Vilotić, Marko, E-mail: markovil@uns.ac.rs [University of Novi Sad, Faculty of Technical Sciences, Department for Production Engineering, Trg Dositeja Obradovića 6, 21000 Novi Sad (Serbia); Blažić, Larisa, E-mail: larisa.blazic@gmail.com [University of Novi Sad, Faculty of Medicine, School of Dentistry, Clinic of Dentistry of Vojvodina, Department of Restorative Dentistry and Endodontics, Hajduk Veljkova 3, 21000 Novi Sad (Serbia); Alb, Sandu Florin, E-mail: albflorin@yahoo.com [“Iuliu Haţieganu” University of Medicine and Pharmacy, Faculty of Dentistry, Department of Periodontology, 8 Victor Babeş St., 400012 Cluj-Napoca (Romania); Kakaš, Damir, E-mail: kakasdam@uns.ac.rs [University of Novi Sad, Faculty of Technical Sciences, Department for Production Engineering, Trg Dositeja Obradovića 6, 21000 Novi Sad (Serbia)

    2015-03-01

    Graphical abstract: - Highlights: • Multifractals are good indicators of polished dental composites 3-D surface structure. • The nanofilled composite had superior 3-D surface properties than the nanohybrid one. • Composite polishing with diamond paste created improved 3-D multifractal structure. • Recommendation: polish the composite with diamond paste if using the one-step tool. • Multifractal analysis could become essential in designing new dental surfaces. - Abstract: The objective of this study was to determine the effect of different dental polishing methods on surface texture parameters of dental nanocomposites. The 3-D surface morphology was investigated by atomic force microscopy (AFM) and multifractal analysis. Two representative dental resin-based nanocomposites were investigated: a nanofilled and a nanohybrid composite. The samples were polished by two dental polishing protocols using multi-step and one-step system. Both protocols were then followed by diamond paste polishing. The 3-D surface roughness of samples was studied by AFM on square areas of topography on the 80 × 80 μm{sup 2} scanning area. The multifractal spectrum theory based on computational algorithms was applied for AFM data and multifractal spectra were calculated. The generalized dimension D{sub q} and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of dental nanocomposites polished by four different dental polishing protocols at nanometer scale. The results showed that the larger the spectrum width Δα (Δα = α{sub max} − α{sub min}) of the multifractal spectra f(α), the more non-uniform was the surface morphology. Also, the 3-D surface topography was described by statistical parameters, according to ISO 25178-2:2012. The 3-D surface of samples had a multifractal nature. Nanofilled composite had lower values of height parameters than nanohybrid composites, due to its composition. Multi-step polishing protocol

  20. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test.

    Science.gov (United States)

    Musa, Marahaini; Ponnuraj, Kannan Thirumulu; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-11

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions.

  1. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test

    Science.gov (United States)

    Musa, Marahaini; Thirumulu Ponnuraj, Kannan; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-01

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions.

  2. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test

    International Nuclear Information System (INIS)

    Musa, Marahaini; Ponnuraj, Kannan Thirumulu; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-01

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions. (paper)

  3. Graphene-Based Polymer Nanocomposites

    Science.gov (United States)

    2015-03-31

    responsible for the low modulus of multilayer graphene in nanocomposites [34] and the reversible loss of Bernal stacking of few-layer graphene under... extrusion or injection moulding to exfoliate the graphene or GO with a strong shear force [76]. It is simple for scale-up production, and can be applied...Lombardo, A.; Ferrari, A. C., The Shear Mode of Multilayer Graphene. Nature Materials 2012, 11, 294-300. 29. Gong, L.; Young, R. J.; Kinloch, I. A

  4. Au Based Nanocomposites Towards Plasmonic Applications

    Science.gov (United States)

    Panniello, A.; Curri, M. L.; Placido, T.; Reboud, V.; Kehagias, N.; Sotomayor Torres, C. M.; Mecerreyes, D.; Agostiano, A.; Striccoli, M.

    2010-06-01

    Incorporation of nano-sized metals in polymers can transfer their unique features to the host matrix, providing nanocomposite materials with improved optical, electric, magnetic and mechanical properties. In this work, colloidal Au nanorods have been incorporated into PMMA based random co-polymer, properly functionalized with amino groups and the optical and morphological properties of the resulting nanocomposite have been investigated by spectroscopic and AFM measurements. Au nanorods have demonstrated to preserve the plasmon absorption and to retain morphological features upon the incorporation, thus making the final metal modified polymer composite exploitable for the fabrication of plasmonic devices. The prepared nanocomposites have been then patterned by Nano Imprint Lithography technique in order to demonstrate the viability of the materials towards optical applications.

  5. Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium

    Science.gov (United States)

    Cheng, Lei; Weir, Michael D.; Zhang, Ke; Wu, Eric; Xu, Sarah M.; Zhou, Xuedong; Xu, Hockin H. K.

    2012-01-01

    Objectives Half of dental restorations fail in 10 years, with secondary caries as the main reason. Calcium phosphate composites could remineralize tooth lesions. The objectives of this study were to: (1) Impart antibacterial activity to a composite with nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate the effect of quaternary ammonium dimethacrylate (QADM) on mechanical and dental plaque microcosm biofilm properties for the first time. Methods The NACP and glass particles were filled into a dental resin that contained bis(2-methacryloyloxy-ethyl) dimethyl-ammonium bromide, the QADM. NACP nanocomposites containing 0%, 7%, 14%, and 17.5% of QADM by mass, respectively, were photo-cured. A commercial composite with no antibacterial activity was used as control. Mechanical properties were measured in three-point flexure. A human saliva microcosm model was used to grow biofilms on composites. Live/dead assay, metabolic activity, colony-forming unit (CFU) counts, and lactic acid production of biofilms on the composites were measured. Results Increasing QADM mass fraction monotonically reduced the biofilm viability, CFU and lactic acid. Biofilms on NACP nanocomposite with 17.5% QADM had metabolic activity that was 30% that on a commercial composite control (pcontrol was 6-fold those on NACP+17.5% QADM nanocomposite. Composite control had long strings of cells with normal short-rod shapes, while some cells on NACP-QADM nanocomposites disintegrated into pieces. Adding QADM to NACP did not decrease the strength and elastic modulus, which matched (p>0.1) those of a commercial composite without Ca-PO4 or antibacterial activity. Significance A dental plaque microcosm model was used to evaluate the novel NACP-QADM nanocomposite. The nanocomposite greatly reduced the biofilm viability, metabolic activity and lactic acid, while its mechanical properties matched those of a commercial composite. NACP-QADM nanocomposite with calcium phosphate fillers, good

  6. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Science.gov (United States)

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  7. Case based dental radiology.

    Science.gov (United States)

    Niemiec, Brook A

    2009-02-01

    Dental radiology is quickly becoming integral to the standard of care in veterinary dentistry. This is not only because it is critical for proper patient care, but also because client expectations have increased. Furthermore, providing dental radiographs as a routine service can create significant practice income. This article details numerous conditions that are indications for dental radiographs. As you will see, dental radiographs are often critical for proper diagnosis and treatment. These conditions should not be viewed as unusual; they are present within all of our practices. When you choose not to radiograph these teeth, you leave behind painful pathology. Utilizing the knowledge gained from dental radiographs will both improve patient care and increase acceptance of treatment recommendations. Consequently, this leads to increased numbers of dental procedures performed at your practice.

  8. Magnetic graphene based nanocomposite for uranium scavenging

    Energy Technology Data Exchange (ETDEWEB)

    El-Maghrabi, Heba H. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Abdelmaged, Shaimaa M. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt); Nada, Amr A. [Egyptian Petroleum Research Institute, 11727, Cairo (Egypt); Zahran, Fouad, E-mail: f.zahran@quim.ucm.es [Faculty of Science, Helwan University, 11795, Cairo (Egypt); El-Wahab, Saad Abd; Yahea, Dena [Faculty of Science, Ain shams University, Cairo (Egypt); Hussein, G.M.; Atrees, M.S. [Nuclear Materials Authority, 6530 P.O. Box Maadi, Cairo (Egypt)

    2017-01-15

    Graphical abstract: Graphical representation of U{sup 6+} adsorption on Magnetic Ferberite-Graphene Nanocomposite. - Highlights: • Synthesis of new magnetic wolframite bimetallic nanostructure on graphene. • A promising adsorption capacity of 455 mg/g was recorded for FG-20 within 60 min at room temperature. • The uranium removal was followed pseudo-second order kinetics and Langmuir isotherm. - Abstract: Magnetic graphene based ferberite nanocomposite was tailored by simple, green, low cost and industrial effective method. The microstructure and morphology of the designed nanomaterials were examined via XRD, Raman, FTIR, TEM, EDX and VSM. The prepared nanocomposites were introduced as a novel adsorbent for uranium ions scavenging from aqueous solution. Different operating conditions of time, pH, initial uranium concentration, adsorbent amount and temperature were investigated. The experimental data shows a promising adsorption capacity. In particular, a maximum value of 455 mg/g was obtained within 60 min at room temperature with adsorption efficiency of 90.5%. The kinetics and isotherms adsorption data were fitted with the pseudo-second order model and Langmuir equation, respectively. Finally, the designed nanocomposites were found to have a great degree of sustainability (above 5 times of profiteering) with a complete maintenance of their parental morphology and adsorption capacity.

  9. Development of multifunctional fluoroelastomers based on nanocomposites

    International Nuclear Information System (INIS)

    Zen, Heloisa Augusto

    2015-01-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  10. Graphitic carbon nitride based nanocomposites: a review

    Science.gov (United States)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  11. [Development and property study of zirconia toughened nano-composite alumina ceramic powder for dental application].

    Science.gov (United States)

    Zhao, Ke; Chao, Yong-lie; Yang, Zheng

    2003-09-01

    To prepare zirconia toughened nano-composite alumina ceramic powder for dental application. Physical and chemical property of the prepared material were tested, and the effect of development technology on composite powder was also studied in this study. Nano-composite alumina powder was prepared by surface-induced precipitation method. The effect of pH value and dispersing agent content on volume of alumina suspension sediment was recorded. The effect of ultrasonic time on agglomeration was measured also. X ray diffraction (XRD) was used to analyze powder phase before and after the stabilizer was added. Scanning electronic microscope (SEM) was applied for characterizing the specimen. The dispersion was better at pH=9 and wt (dispersing agent) = 0.2% approximately 0.3%. Selecting proper ultrasonic time can decrease the agglomeration of powders and lower the average particle size. XRD analysis indicated that the phase composition of the prepared nano-composite ceramic powder was shown as alpha-Al2O3, t-ZrO2 and a small amount of m-ZrO2 after the addition of stabilizer. Through SEM observation, nanometer-sized ZrO2 particles (80 approximately 100 nm) were uniformly located on the surface of submicrometer alumina grains. By choosing appropriate preparation method, weakly agglomerated powders with fine particle size can be obtained. The zirconia part of nano-composite powder was transmitted to partially stabled zirconia after the use of stabilizer.

  12. Biopolymer based nanocomposites reinforced with graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Botta, L.; Scaffaro, R.; Mistretta, M. C.; La Mantia, F. P. [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, UdR INSTM di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2016-05-18

    In this work, biopolymer based nanocomposites filled with graphene nanoplatelets (GnP) were prepared by melt compounding in a batch mixer. The polymer used as matrix was a commercial biodegradable polymer-blend of PLA and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), rheological and mechanical measurements. Moreover, the effect of the GnP amount on the investigated properties was evaluated. The results indicated that the incorporation of GnP increased the stiffness of the biopolymeric matrix.

  13. Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants.

    Science.gov (United States)

    Penkov, Oleksiy V; Pukha, Vladimir E; Starikova, Svetlana L; Khadem, Mahdi; Starikov, Vadym V; Maleev, Maxim V; Kim, Dae-Eun

    2016-09-01

    Diamond-like carbon coatings are increasingly used as wear-protective coatings for dental implants, artificial joints, etc. Despite their advantages, they may have several weak points such as high internal stress, poor adhesive properties or high sensitivity to ambient conditions. These weak points could be overcome in the case of a new carbon nanocomposite coating (CNC) deposited by using a C60 ion beam on a Co/Cr alloy. The structure of the coatings was investigated by Raman and XPS spectroscopy. The wear resistance was assessed by using a reciprocating tribotester under the loads up to 0.4 N in both dry and wet sliding conditions. Biocompatibility of the dental implants was tested in vivo on rabbits. Biocompatibility, bioactivity and mechanical durability of the CNC deposited on a Co/Cr alloy were investigated and compared with those of bulk Co/Cr and Ti alloys. The wear resistance of the CNC was found to be 250-650 fold higher compared to the Co/Cr and Ti alloys. Also, the CNC demonstrated much better biological properties with respect to formation of new tissues and absence of negative morphological parameters such as necrosis and demineralization. Development of the CNC is expected to aid in significant improvement of lifetime and quality of implants for dental applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Deka Harekrishna

    2009-01-01

    Full Text Available Abstract The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  15. Green facile scalable synthesis of titania/carbon nanocomposites: new use of old dental resins.

    Science.gov (United States)

    Xiao, Ying; Wang, Xiaoyan; Xia, Yonggao; Yao, Yuan; Metwalli, Ezzeldin; Zhang, Qian; Liu, Rui; Qiu, Bao; Rasool, Majid; Liu, Zhaoping; Meng, Jian-Qiang; Sun, Ling-Dong; Yan, Chun-Hua; Müller-Buschbaum, Peter; Cheng, Ya-Jun

    2014-01-01

    A green facile scalable method inspired by polymeric dental restorative composite is developed to synthesize TiO2/carbon nanocomposites for manipulation of the intercalation potential of TiO2 as lithium-ion battery anode. Poorly crystallized TiO2 nanoparticles with average sizes of 4-6 nm are homogeneously embedded in carbon matrix with the TiO2 mass content varied between 28 and 65%. Characteristic discharge/charge plateaus of TiO2 are significantly diminished and voltage continues to change along with proceeding discharge/charge process. The tap density, gravimetric and volumetric capacities, and cyclic and rate performance of the TiO2/C composites are effectively improved.

  16. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P. [A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow Russia (Russian Federation)

    2016-05-18

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  17. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    International Nuclear Information System (INIS)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-01-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  18. Effect of nano SiO{sub 2} particles on the morphology and mechanical properties of POSS nanocomposite dental resins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yizhi; Sun, Yi, E-mail: sunyi@hit.edu.cn; Zeng, Fanlin [Harbin Institute of Technology, Department of Astronautic Science and Mechanics (China); Xie, Weili, E-mail: xwl811@126.com [Harbin Medical University, Department of Stomatology (China); Liu, Yang [Harbin Stomatology Hospital (China); Geng, Lin [Harbin Institute of Technology, School of Materials Science and Engineering (China)

    2014-12-15

    Nanocomposite dental resins composed of polyhedral oligomeric silsesquioxane nanocomposite matrix and 0, 0.5,1, 1.5 and 2 wt% nano SiO{sub 2} as filler were prepared by light curing method. The nanocomposite resins were characterized by performing compressive, three-point flexure, nanoindentation and nanoscratch testings as well as optical microscopy and scanning electron microscope analysis. The effects of different nano SiO{sub 2} contents were studied on compressive strength, flexural strength, hardness and resistance of composite resin. From the mechanical results, it was found that nano SiO{sub 2} effectively enhanced the mechanical properties of the composite resins at low content. With the increase of the nano SiO{sub 2} content, the mechanical properties decreased. It was attributed to the content of nano SiO{sub 2} and dispersion of nanoparticles in matrix.

  19. Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications.

    Science.gov (United States)

    Moura, Duarte; Mano, João F; Paiva, Maria C; Alves, Natália M

    2016-01-01

    Chitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications.

  20. Metal–carbon nanocomposites based on pyrolysed polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Irina A. Zaporotskova

    2015-06-01

    Full Text Available The electronic structure and geometry of metal−carbon nanocomposites based on pyrolyzed polyacrylonitrile (PPAN with Cu, Si, Fe, Co and Ni atoms using the DFT method have been theoretically studied. The effect of nitrogen on the stability of PPAN and its conductivity has been determined. The electrophysical properties and structure of metal nanocomposites have been studied using the XFA method. The composites have been produced by IR heating. We suggest that metal−carbon nanocomposites form due to the special processing of the (PAN−MeR samples. Metal nanoparticles are regularly dispersed in the nanocrystalline matrix of PPAN. The conductivity of these metal−carbon nanocomposites has an activation character and varies from 10−1 to 103 Om/cm depending on synthesis temperature (T=600–900 °С. The results of theoretical and experimental research are in a good agreement.

  1. Nanoscratching of nylon 66-based ternary nanocomposites

    International Nuclear Information System (INIS)

    Dasari, Aravind; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The nanoscratch behavior of nylon 66/SEBS-g-MA/clay ternary nanocomposites produced by different blending protocols with contrasting microstructures is studied by using atomic force and transmission electron microscopy. A standard diamond Berkovich indenter is used for scratching and a low load of 1 mN, along with a low sliding velocity of 1 μm s -1 , are employed for this purpose. It is shown that in order to resist penetration it is more important to have exfoliated clay in the continuous nylon matrix during nanoscratching than to have the clay in the dispersed soft rubber domains. The results obtained also explain the preferred usage of ternary nanocomposites compared to binary nanocomposites, particularly nylon 66/exfoliated clay nanocomposites. This research extends current basic knowledge and provides new insights on the nature of nanoscale processes that occur during nanoscratching of polymer nanocomposites. Critical questions are raised on the relationships between the penetration depth and material deformation and damage left behind the moving indenter

  2. PBAT based nanocomposites for medical and industrial applications

    International Nuclear Information System (INIS)

    Fukushima, Kikku; Wu, Meng-Hsiu; Bocchini, Sergio; Rasyida, Amaliya; Yang, Ming-Chien

    2012-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) based nanocomposites were prepared by melt blending PBAT with 5 and 10 wt.% of clay nanoparticles (unmodified and modified montmorillonites, unmodified and modified fluoro-hectorites, and unmodified sepiolites). All nanocomposites showed a good level of clay distribution and dispersion into PBAT, especially nanocomposites with high clay chemical affinity with the polymer matrix. DSC results showed that addition of layered silicates slightly hindered kinetics and extent of crystallization of PBAT; however, sepiolite particles were able to promote polymer crystallization kinetics and the transformation of the PBAT crystal structure to a more ordered form. Similar increases in the thermal stability of PBAT in nitrogen and air were obtained upon addition of all clays, due to a barrier effect of the clays toward polymer decomposition product ablation. Preliminary biocompatibility tests indicated that PBAT based materials with 10% clay content have good biological safety and display almost no cytotoxicity. The addition of all nanofillers increased the hardness of PBAT matrix. The DMA analysis showed that all nanocomposites presented higher E′ values than neat PBAT, indicating that addition of clays improved the mechanical properties of PBAT. For layered silicate nanocomposites, the main influencing factors on the thermo-mechanical properties appeared to be the aspect ratio and dispersion of clay nanoplatelets, rather than polymer/clay chemical affinity. The highest E′ values of sepiolite based nanocomposites make this nanoparticle the most attractive material for tissue engineering and environmental industrial applications. Highlights: ► PBAT nanocomposites with high thermo-mechanical properties were obtained. ► The effects of clay presence on PBAT crystalline structure were elucidated. ► The presence of the clays used in PBAT showed good biological safety. ► Sepiolites brought the higher improvements in PBAT

  3. Properties and applications of polymer nanocomposites clay and carbon based polymer nanocomposites

    CERN Document Server

    Prasad Sahoo, Bibhu

    2017-01-01

    The aim of the present edited book is to furnish scientific information about manufacturing, properties, and application of clay and carbon based polymer nanocomposites. It can be used as handbook for undergraduate and post graduate courses (for example material science and engineering, polymer science and engineering, rubber technology, manufacturing engineering, etc.) as well as as reference book for research fellows and professionals. Polymer nanocomposites have received outstanding importance in the present decade because of their broad range of high-performance applications in various areas of engineering and technology due to their special material properties. A great interest is dedicated to nanofiller based polymeric materials, which exhibit excellent enhancement in macroscopic material properties (mechanical, thermal, dynamic mechanical, electrical and many more) at very low filler contents and can therefore be used for the development of next-generation composite materials.

  4. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  5. Improving access to preventive dental services through a school-based dental sealant program.

    Science.gov (United States)

    Devlin, Dee; Henshaw, Michelle

    2011-01-01

    The lack of access to preventive dental services, such as dental sealants, can be a major barrier to optimal dental health. School-based dental sealant programs can serve as programs to improve access to preventive dental services. This school-based dental sealant program managed by a Boston dental school with collaborating partners in the metro west area of Massachusetts provides free dental sealants to second grade children. The number of second grade children having dental sealants was tracked for 6 school years and compared with the Healthy People 2010 objective of 50% of all children aged 8 years to have at least 1 dental sealant. From school years 2003 to 2004 through 2008 to 2009, 1,609 dental screenings were provided for second grade children. Of those, 1,189 received dental sealants. To determine whether or not the Healthy People 2010 objective was met, the number of children who received dental sealants from the school-based program was added to the number of children who already had their permanent first molars sealed by their own dentist at the time of the dental screening, plus children with sealants per parent report. In total, the aggregate second grade enrollment having sealants during the designated school years was 54%. The specific Healthy People 2010 objective was achieved over the designated time period. School-based dental sealant programs can help to decrease or eliminate barriers for access to preventive dental services by increasing the number of children who receive dental sealants.

  6. Creating a Successful School-Based Mobile Dental Program

    Science.gov (United States)

    Jackson, David M.; Jahnke, Lauren R.; Kerber, Lisa; Nyer, Genie; Siemens, Kammi; Clark, Carol

    2007-01-01

    Background: Dental disease is one of the leading causes of school absenteeism for children. This article describes the creation and evolution of the St. David's Dental Program, a mobile school-based dental program for children. Methods: The dental program is a collaboration of community partners in Central Texas that provides free dental care to…

  7. Development of polymer nanocomposites based on layered double hydroxides

    Directory of Open Access Journals (Sweden)

    Sipusic, J.

    2009-05-01

    Full Text Available Polymeric nanocomposites are commonly considered as systems composed of a polymeric matrix and - usually inorganic - filler. The types of nanofillers are indicated in Fig. 1. Beside wellknown layered silicate fillers, recent attention is attracted to layered double hydroxide fillers (LDH, mainly of synthetic origin. The structure of LDH is based on brucite, or magnesium hydroxide, Mg(OH2 and is illustrated in Fig. 2. The modification of LDHs is commonly done by organic anions, to increase the original interlayer distance and to improve the organophilicity of the filler, keeping in mind their final application as fillers for, usually hydrophobic, polymer matrices. We have used the modified rehydration procedure for preparing organically modified LDH. The stoichiometric quantities of Ca33Al2O6, CaO and benzoic (B (or undecenoic (U acid were mixed with water and some acetone. After long and vigorous shaking, the precipitated fillers were washed, dried and characterized. X-ray diffraction method (XRD has shown the increase of the original interlayer distance for unmodified LDH (OH–-saturated of 0.76 nm to the 1.6 nm in LDH-B or LDH-U fillers (Fig. 3. Infrared spectroscopy method (FTIR has confirmed the incorporation of benzoic anion within the filler layers (Fig. 4. For the preparation of LDH-B and LDH-U composites with polystyrene (PS, poly(methyl methacrylate (PMMA and copolymer (SMMA matrices, a two-step in situ bulk radical polymerization was selected (Table 1 for recipes, azobisisobutyronitrile as initiator, using conventional stirred tank reactor in the first step, and heated mold with the movable wall (Fig. 6 in the second step of polymerization. All the prepared composites with LDH-U fillers were macroscopically phase-separated, as was the PMMA/LDH-B composite.PS/LDH-B and SMMA/LDH-B samples were found to be transparent and were further examined for deduction of their structure (Fig. 5 and thermal properties. FTIR measurements showed that

  8. Moessbauer investigation of maghemite-based glycolic acid nanocomposite

    International Nuclear Information System (INIS)

    Santos, J. G.; Silveira, L. B.; Oliveira, A. C.; Garg, V. K.; Lacava, B. M.; Tedesco, A. C.; Morais, P. C.

    2007-01-01

    Transmission electron microscopy, X-ray diffraction and Moessbauer spectroscopy were used in the characterization of a nanocomposite containing magnetic nanoparticles dispersed in a glycolic acid-based template. Maghemite nanoparticles were identified as the iron oxide phase dispersed in the polymeric template. From the low-temperature Moessbauer data the amount of the iron-based, non-magnetic material at the nanoparticle surface was estimated as roughly one monolayer in thickness.

  9. Rare Earth-Activated Silica-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    C. Armellini

    2007-01-01

    Full Text Available Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

  10. Titania based nanocomposites as a photocatalyst: A review

    Directory of Open Access Journals (Sweden)

    Farha Modi

    2016-08-01

    Full Text Available Titanium dioxide or Titania is a semiconductor compound having remarkable dielectric, electronic and physico-chemical surface properties. It has excellent photocatalytic efficiency in presence of UV light. The curious grey matter of scientists has forced them to focus their attention to make Titania capable of utilizing the whole visible spectrum of light also. The hurdle that they faced was larger band gap of 3 eV and more, for this, efforts were directed towards adding other materials to Titania. The present article reviews the recent advances in the synthesis of different Titanium-based nanocomposite materials and their photocatalytic efficiency so as to apply them for several applications such as removal of dyes, other water pollutants, microbes and metals. A brief explanation of the photocatalytic process and the structural properties of TiO2 are also touched upon. Various past and recent approaches made in these directions of utilizing Titania based nanocomposites for photocatalytic activities are reviewed. It is suggested that there is a need to establish the kinetics of photo-corrosion and thermodynamic part of the photo-corrosion of various composites developed by different group across the globe, so that Titania based nanocomposites could be commercially utilized.

  11. Protein-based green resins and nanocomposites from waste residues

    Science.gov (United States)

    Rahman, Muhammad Maksudur

    The main goal of the present research is to design and fabricate 'green' nanocomposites using eco-friendly and biodegradable polymers, an effort driven towards an alternative of conventional petroleum-derived polymers in structural applications considering environmental and economic concerns. The behavior of structure, composition and property relationships between the novel combinations of these materials has been analyzed and discussed. The materials used in this study, many of them from non-edible sources, are obtained, derived and/or synthesized using various wastes from agricultural and food industries, as much as possible, so as to utilize wastes that are discarded at present. At the same time, the use of waste sources reduces the dependency of edible source-based biopolymers in various structural applications and thus, reduces the cost of materials significantly. Overall, this study opens up new avenues in the fabrication of low-cost 'green' nanocomposite with facile and 'green' methodology using various agricultural and food wastes.

  12. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 µA·cm-2·mM-1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. Keywords: electrochemical deposition, sulfonated graphene oxide, urease

  13. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    Science.gov (United States)

    Das, Gautam; Yoon, Hyon Hee

    2015-01-01

    An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform infrared, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques. The urease enzyme-immobilized sulfonated graphene/polyaniline nanocomposite film showed impressive performance in the electroanalytical detection of urea with a detection limit of 0.050 mM and a sensitivity of 0.85 (μA · cm−2·mM−1. The biosensor achieved a broad linear range of detection (0.12–12.3 mM) with a notable response time of approximately 5 seconds. Moreover, the fabricated biosensor retained 81% of its initial activity (based on sensitivity) after 15 days of storage at 4°C. The ease of fabrication coupled with the low cost and good electrochemical performance of this system holds potential for the development of solid-state biosensors for urea detection. PMID:26346240

  14. Semi-Crystalline Polymer based Single Walled Carbon Nanotube Nanocomposites

    Science.gov (United States)

    Mitchell, Cynthia; Krishnamoorti, Ramanan

    2004-03-01

    The reinforcement of polymers with nanometer scale inorganic materials has stimulated much scientific and technological interest because, when compared to traditional composites, nanocomposites exhibit improved thermal, mechanical and physical properties at much lower particle loading. Development of single walled carbon nanotube (SWNT) based polymer nanocomposites is attractive because of the possibility of combining the extraordinary array of properties of SWNTs with the light-weight character of polymers to develop unique and tailorable materials. Important areas of concern in the development of SWNT composites are ensuring homogeneity of dispersion, good interfacial compatibility with the polymeric matrix and the exfoliation of the ropes and bundles. Several strategies for developing well-dispersed SWNT polymer nanocomposites have been undertaken in the current research and we demonstrate the development of well dispersed SWNT nanocomposites with poly(e-caprolactone) (PCL). PCL is a model, low melting analog of nylon-6, an important commercial material, and additionally is a biocompatible and biodegradable crystalline polymer. Compatibility between PCL and SWNT is anticipated based on the fact that the monomer e-caprolactone disperses SWNTs effectively. Preparation of the composites was accomplished by in-situ polymerization and also by solution blending a model polymer with functionalized or unfunctionalized SWNTs. Composites were characterized extensively utilizing UV- Vis - NearIR spectroscopy, FTIR, DSC, X-ray scattering and diffraction, AFM, melt state rheology and electrical conductivity. Controlling the interactions by covalently linking the polymer to the nanotube or by use of a dispersing aid before the introduction of the polymer and the extensive characterization of the resulting system could lead to the development of structure property relationships that would be beneficial to the tailoring of ultra lightweight materials with exceptional mechanical

  15. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage

    International Nuclear Information System (INIS)

    Konuklu, Yeliz; Ersoy, Orkun

    2016-01-01

    Highlights: • Sepiolite-based phase change material nanocomposites were prepared. • An easy direct impregnation process was used. • This paper is one of the first study about sepiolite-based phase change material nanocomposites. • Influence of PCM type on thermal properties of nanocomposites was reported. - Abstract: This paper is one of the first study about the preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage applications. Sepiolite is an important natural fibrous raw material. Nanoscale fibrous tubular structure of sepiolite becomes important in nanocomposite preparation. In this study, sepiolite/paraffin and sepiolite/decanoic acid nanocomposites were manufactured by the direct impregnation method. By the preparation of nanocomposites, PCM move in tubular channels of sepiolite, phase changing occurs in these tubes and surface area increases like as in microencapsulation. The structure and properties of nanocomposites PCMs (CPCM) have been characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The SEM results prove the successful preparation of phase change material/sepiolite nanocomposites and point out that the fibers of sepiolite is modified with phase change materials in the nanocomposite. The phase change enthalpies of melting and freezing were about 62.08 J/g and −62.05 J/g for sepiolite/paraffin nanocomposites and 35.69 J/g and −34.55 J/g for sepiolite/decanoic acid nanocomposites, respectively. The results show that PCM/sepiolite nanocomposites were prepared successfully and their properties are very suitable for thermal energy storage applications.

  16. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    Science.gov (United States)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  17. Novel amperometric glucose biosensor based on MXene nanocomposite

    KAUST Repository

    Rakhi, R. B.

    2016-11-10

    A biosensor platform based on Au/MXene nanocomposite for sensitive enzymatic glucose detection is reported. The biosensor leverages the unique electrocatalytic properties and synergistic effects between Au nanoparticles and MXene sheets. An amperometric glucose biosensor is fabricated by the immobilization of glucose oxidase (GOx) enzyme on Nafion solubilized Au/ MXene nanocomposite over glassy carbon electrode (GCE). The biomediated Au nanoparticles play a significant role in facilitating the electron exchange between the electroactive center of GOx and the electrode. The GOx/Au/MXene/Nafion/GCE biosensor electrode displayed a linear amperometric response in the glucose concentration range from 0.1 to 18 mM with a relatively high sensitivity of 4.2 μAmM−1 cm−2 and a detection limit of 5.9 μM (S/N = 3). Furthermore, the biosensor exhibited excellent stability, reproducibility and repeatability. Therefore, the Au/MXene nanocomposite reported in this work is a potential candidate as an electrochemical transducer in electrochemical biosensors.

  18. Magnetic Nanocomposite Scaffold-Induced Stimulation of Migration and Odontogenesis of Human Dental Pulp Cells through Integrin Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Hyung-Mun Yun

    Full Text Available Magnetism is an intriguing physical cue that can alter the behaviors of a broad range of cells. Nanocomposite scaffolds that exhibit magnetic properties are thus considered useful 3D matrix for culture of cells and their fate control in repair and regeneration processes. Here we produced magnetic nanocomposite scaffolds made of magnetite nanoparticles (MNPs and polycaprolactone (PCL, and the effects of the scaffolds on the adhesion, growth, migration and odontogenic differentiation of human dental pulp cells (HDPCs were investigated. Furthermore, the associated signaling pathways were examined in order to elucidate the molecular mechanisms in the cellular events. The magnetic scaffolds incorporated with MNPs at varying concentrations (up to 10%wt supported cellular adhesion and multiplication over 2 weeks, showing good viability. The cellular constructs in the nanocomposite scaffolds played significant roles in the stimulation of adhesion, migration and odontogenesis of HDPCs. Cells were shown to adhere to substantially higher number when affected by the magnetic scaffolds. Cell migration tested by in vitro wound closure model was significantly enhanced by the magnetic scaffolds. Furthermore, odontogenic differentiation of HDPCs, as assessed by the alkaline phosphatase activity, mRNA expressions of odontogenic markers (DMP-1, DSPP,osteocalcin, and ostepontin, and alizarin red staining, was significantly stimulated by the magnetic scaffolds. Signal transduction was analyzed by RT-PCR, Western blotting, and confocal microscopy. The magnetic scaffolds upregulated the integrin subunits (α1, α2, β1 and β3 and activated downstream pathways, such as FAK, paxillin, p38, ERK MAPK, and NF-κB. The current study reports for the first time the significant impact of magnetic scaffolds in stimulating HDPC behaviors, including cell migration and odontogenesis, implying the potential usefulness of the magnetic scaffolds for dentin-pulp tissue engineering.

  19. Thermal Behaviour of Nanocomposites based on Glycerol Plasticized Thermoplastic Starch and Cellulose Nanocrystallites

    Science.gov (United States)

    Kaushik, Anupama; Kaur, Ramanpreet

    2011-12-01

    The objective of this study was to study the thermal behaviour of cellulose nanocrystals/TPS based nanocomposites. Nanocrystalline cellulose was isolated from cotton linters using sonochemical method and characterized through WAXRD & TEM. These nanocrystals were then dispersed in glycerol plasticized starch in varying proportions and films were cast. The thermal degradation of thermoplastic starch/cellulose nanocrystallite nanocomposites was studied using TGA under nitrogen atmosphere. Thermal degradation was carried out for nanocomposites at a rate of 10 °C/min and at different rates under nitrogen atmosphere namely 2, 5, 10, 20 and 40 °C/min for nanocomposites containing 10% cellulose nanocrystals. Ozawa and Flynn and Kissinger methods were used to determine the apparent activation energy of these nanocomposites. The addition of cellulose nanocrystallites produced a significant effect on the activation energy for thermal degradation of the composites materials in comparison with the matrix alone. These nanocomposites are potential applicant for food packaging applications.

  20. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 1. Design of nanocomposite film-based plasmonic device for gas sensing ... A theoretical simulation study incorporating the use of admittance loci design methodology in SPR-based sensing device using gold-tungsten trioxide (Au-WO3−) nanocomposite ...

  1. New nanocomposites based on layered aluminosilicate and guanidine containing polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Khashirov, Azamat A.; Zhansitov, Azamat A.; Khashirova, Svetlana Yu. [Kabardino-Balkarian State University a. Kh.M. Berbekov, 173 Chernyshevskogo st., 360004, Nalchik (Russian Federation); Zaikov, Genadiy E. [N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 4, Kosygin St., 119991, Moscow (Russian Federation)

    2014-05-15

    The new functional nanomaterials based on layered aluminosilicate and guanidine containing polyelectrolytes combining high bactericidal activity with an increased ability to bind to heavy metals and organic pollutants were received. To prove the chemical structure of the model compounds (zwitterionic delocalized resonance structures AG/MAG and PAG/PMAG), as well as the presence of such structures in nanocomposites received on their basis and the MMT, IR, {sup 1}H NMR spectroscopy, X-ray diffraction studies and nanoindentation/sclerometry followed by scanning the surface in the area of the indentation were used.

  2. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    A simple Kretschmann–Raether-type prism-based plasmonic device consisting of a glass prism, Au-WO3− nanocomposite film and various gas samples is considered. Complex permittivity for both stoichiometric and non-stoichiometric Au-WO3− nanocomposite films has been used for the simulation of the admittance ...

  3. PVDF-PZT nanocomposite film based self-charging power cell

    Science.gov (United States)

    Zhang, Yan; Zhang, Yujing; Xue, Xinyu; Cui, Chunxiao; He, Bin; Nie, Yuxin; Deng, Ping; Wang, Zhong Lin

    2014-03-01

    A novel PVDF-PZT nanocomposite film has been proposed and used as a piezoseparator in self-charging power cells (SCPCs). The structure, composed of poly(vinylidene fluoride) (PVDF) and lead zirconate titanate (PZT), provides a high piezoelectric output, because PZT in this nanocomposite film can improve the piezopotential compared to the pure PVDF film. The SCPC based on this nanocomposite film can be efficiently charged up by the mechanical deformation in the absence of an external power source. The charge capacity of the PVDF-PZT nanocomposite film based SCPC in 240 s is ˜0.010 μA h, higher than that of a pure PVDF film based SCPC (˜0.004 μA h). This is the first demonstration of using PVDF-PZT nanocomposite film as a piezoseparator for SCPC, and is an important step for the practical applications of SCPC for harvesting and storing mechanical energy.

  4. nanoparticles-decorated activated carbon nanocomposite based ...

    Indian Academy of Sciences (India)

    T K APARNA

    2018-02-07

    Feb 7, 2018 ... W 2016 Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets Microchim. Acta 182 2001. 28. Roychoudhury A, Basu S and Jha S K 2016 Dopamine biosensor based on surface functionalized nanos- trucutred nickel oxide platform ...

  5. nanoparticles-decorated activated carbon nanocomposite based ...

    Indian Academy of Sciences (India)

    T K APARNA

    2018-02-07

    Feb 7, 2018 ... formance. Recently, Chitravathi and Munichandriah. 42 prepared AC based carbon paste electrode for simulta- neous determination of catecholamines. The activation was done by electrochemical method and the sensor showed better response towards detection. Similarly,. Veeramani et al.,43 reported a ...

  6. Polymer Based Nanocomposites for Solar Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Shaheen, S.; Olson, D.; White, M.; Mitchell, W.; Miedaner, A.; Curtis, C.; Rumbles, G.; Gregg, B.; Ginley, D.

    2005-01-01

    Organic semiconductor-based photovoltaic devices offer the promise of low cost photovoltaic technology that can be manufactured via large-scale, roll-to-roll printing techniques. Existing organic photovoltaic devices are currently limited to solar power conversion efficiencies of 3?5%. This is because of poor overlap between the absorption spectrum of the organic chromophores and the solar spectrum, non-ideal band alignment between the donor and acceptor species, and low charge carrier mobilities. To address these issues, we are investigating the development of dendrimeric organic semiconductors that are readily synthesized with high purity. They also benefit from optoelectronic properties, such as band gap and band positions, which can be easily tuned by substituting different chemical groups into the molecule. Additionally, we are developing nanostructured oxide/conjugated polymer composite photovoltaics. These composites take advantage of the high electron mobilities attainable in oxide semiconductors and can be fabricated using low-temperature solution-based growth techniques. Here, we discuss the synthesis and preliminary device results of these novel materials and composites.

  7. Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites

    Science.gov (United States)

    Jayakumar, Sangeetha; Saravanan, T.; Philip, John

    2017-11-01

    In an attempt to develop an alternate to lead-based X-ray shielding material, we describe the X-ray attenuation property of nanocomposites containing Gd2O3 as nanofiller and silicone resin as matrix, prepared by a simple solution-casting technique. Gd2O3 nanoparticles of size 30 and 56 nm are used at concentrations of 25 and 2.5 wt%. The nanoparticles and the nanocomposites are characterized using X-ray diffraction (XRD) studies, small angle X-ray spectroscopy (SAXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The X-ray attenuation property of nanocomposites, studied using an industrial X-ray unit, shows that nanocomposites containing nanoparticles of size 56 nm (G2) exhibit better attenuation than nanocomposites containing nanoparticles of size 30 nm (G1), which is attributed to the greater interfacial interaction between the G2 nanofillers and silicone matrix. In the case of nanocomposites containing G1 nanoparticles, the interfacial interaction between the nanofiller and the matrix is so weak that it results in pulling out of nanofillers, causing voids in the matrix, which act as X-ray transparent region, thereby reducing the overall X-ray attenuation property of G1 nanocomposites. This is further corroborated from the AFM images of the nanocomposites. The weight loss and heat flow curves of pure silicone matrix and the nanocomposites containing Gd2O3 nanoparticles of size 30 and 56 nm show the degradation of silicone resin, due to chain scission, between 403 and 622 °C. The same onset temperature (403 °C) of degradation of matrix with and without nanoparticles shows that the addition of nanofillers to the matrix does not deteriorate the thermal stability of the matrix. This confirms the thermal stability of nanocomposites. Therefore, our study shows that nanocomposites containing G2 nanoparticles are potential candidates for the development of X-ray opaque fabric material.

  8. High strain carbon nanotubes based epoxy matrix nanocomposite

    Science.gov (United States)

    Manocha, L. M.; Basak, Arpana; Bhandari, T.; Baishya, T.; Manocha, S.

    2013-06-01

    Multiwalled carbon nanotubes, synthesized by catalytic chemical vapour deposition using xylene as the carbon precursor and ferrocene as the catalyst source, were used as reinforcements for the preparation of carbon nanotubes based epoxy matrix composites. For higher degree of dispersion in the matrix system, oxygen containing groups (C=O, COOH) were attached to the surface of carbon nanotubes by acid treatment followed by rigorous sonication of reinforcement in the matrix system. FTIR confirms the formation of oxygen containing groups on the surface of the carbon nanotubes. Tensile strength and glass transition temperature of the epoxy resin as well as nanocomposite samples have been determined. Carbon nanotubes reinforced composites exhibited ten times higher elongation than as such epoxy mainly due to the strengthening effect of the dispersed nanotubes and the development of moderate interfacial bonding between the resin and the reinforcing agent. A noticeable increase in the glass transition temperature of ˜20°C in the nanocomposites is attributable to the restricted movement of the polymeric chains on account of addition of carbon nanotubes.

  9. Biocompatible epoxy modified bio-based polyurethane nanocomposites: mechanical property, cytotoxicity and biodegradation.

    Science.gov (United States)

    Dutta, Suvangshu; Karak, Niranjan; Saikia, Jyoti Prasad; Konwar, Bolin Kumar

    2009-12-01

    Epoxy modified Mesua ferrea L. seed oil (MFLSO) based polyurethane nanocomposites with different weight % of clay loadings (1%, 2.5% and 5%) have been evaluated as biocompatible materials. The nanocomposites were prepared by ex situ solution technique under high mechanical shearing and ultrasonication at room temperature. The partially exfoliated nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The mechanical properties such as tensile strength and scratch hardness were improved 2 and 5 times, respectively by nanocomposites formation. Even the impact resistance improved a little. The thermostability of the nanocomposites was enhanced by about 40 degrees C. Biodegradation study confirmed 5-10 fold increase in biodegradation rate for the nanocomposites compared to the pristine polymers. All the nanocomposites showed non-cytotoxicity as evident from RBC hemolysis inhibition observed in anti-hemolytic assay carried over the sterilized films. The study reveals that the epoxy modified MFLSO based polyurethane nanocomposites deserve the potential to be applicable as biomaterials.

  10. Preparation, Characterization, and Electrochromic Properties of Nanocellulose-Based Polyaniline Nanocomposite Films.

    Science.gov (United States)

    Zhang, Sihang; Sun, Gang; He, Yongfeng; Fu, Runfang; Gu, Yingchun; Chen, Sheng

    2017-05-17

    On the basis of nanocellulose obtained by acidic swelling and ultrasonication, rodlike nanocellulose/polyaniline nanocomposites with a core-shell structure have been prepared via in situ polymerization. Compared to pure polyaniline, the nanocomposites show superior film-forming properties, and the prepared nanocomposite films demonstrate excellent electrochemical and electrochromic properties in electrolyte solution. Nanocomposite films, especially the one prepared with 40% polyaniline coated nanocomposite, exhibited faster response time (1.5 s for bleaching and 1.0 s for coloring), higher optical contrast (62.9%), higher coloration efficiency (206.2 cm 2 /C), and more remarkable switching stability (over 500 cycles). These novel nanocellulose-based nanorod network films are promising novel electrochromic materials with excellent properties.

  11. TiO2/polymer nanocomposite based inks

    Science.gov (United States)

    Loffredo, F.; Grimaldi, I. A.; De Girolamo Del Mauro, A.; Villani, F.; D'Amato, R.; Minarini, C.

    2010-06-01

    We report the development and characterization of dielectric inks based on dispersions of TiO2 in poly(ethylenimine)/ethanol solutions having physicochemical properties suitable to ink-jet printing process. In order to study the effect of polymer dispersant on the printability and stability of inks, we carried out dynamic light scattering analysis of different inks made with and without polymer. Moreover, we compare the curve of distribution of TiO2 particles size at different aging times. For TiO2polymerwe optimize the inkjet parameters (amplitude and duration of jetting impulse, jetting frequency, substrate velocity) to obtain thin lines based on TiO2/ poly(ethylenimine) nanocomposite on silicon substrate. Finally, the morphology of films was also investigated.

  12. Metallocene-based nanocomposites as cathode materials in lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Raju; Wall, Clemens; Fichtner, Maximilian [Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2010-07-01

    Lithium-ion batteries have been the most utilized batteries in the portable electronic market since many years. But their performance still lies behind the demands of the consumer. New electrode materials with high specific capacities are necessary to meet these demands. Metal fluorides have high theoretical specific capacity based on a novel conversion mechanism, making them promising cathode materials for high performance lithium-ion batteries. However, the metal fluoride cathodes are still hampered by loss of capacity and cyclic instability. Hence, a new approach such as encapsulation of active materials in nanotubes or carbon-coating, etc. is needed in order to improve their performance. Herein, we present a simple method based on the thermal decomposition of a metallocene/LiF mixture to produce inexpensive cathode materials which exhibit a good cyclic stability and reversibility. The detailed structural investigations of the nanocomposites as well as their electrochemical performances are presented.

  13. Sol–gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol–gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia–porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol–gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain. PMID:27478376

  14. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  15. Interphase effects in dental nanocomposites investigated by small-angle neutron scattering.

    Science.gov (United States)

    Wilson, Kristen S; Allen, Andrew J; Washburn, Newell R; Antonucci, Joseph M

    2007-04-01

    Small-angle and ultrasmall-angle neutron scattering (SANS and USANS) were used to characterize silica nanoparticle dispersion morphologies and the interphase in thermoset dimethacrylate polymer nanocomposites. Silica nanoparticle fillers were silanized with varying mass ratios of 3-methacryloxypropyltrimethoxysilane (MPTMS), a silane that interacts with the matrix through covalent and H-bonding, and n-octyltrimethoxysilane (OTMS), a silane that interacts through weak dispersion forces. Interphases with high OTMS mass fractions were found to be fractally rough with fractal dimensions, D(s), between 2.19 and 2.49. This roughness was associated with poor interfacial adhesion and inferior mechanical properties. Mean interparticle distances calculated for composites containing 10 mass % and 25 mass % silica suggest that the nanoparticles treated with more MPTMS than OTMS may be better dispersed than OTMS-rich nanoparticles. The results indicate that the covalent bonding and H-bonding of MPTMS-rich nanoparticles with the matrix are necessary for preparing well-dispersed nanocomposites. In addition, interphases containing equal masses of MPTMS and OTMS may yield composites with overall optimal properties. Finally, the combined SANS/USANS data could distinguish the differences, as a function of silane chemistry, in the nanoparticle/silane and silane/matrix interfaces that affect the overall mechanical properties of the composites. (c) 2006 Wiley Periodicals, Inc.

  16. SYNTHESIS AND CHARACTERIZATION OF BIOACTIVE GLASS/FORSTERITE NANOCOMPOSITES FOR BONE AND DENTAL IMPLANTS

    Directory of Open Access Journals (Sweden)

    REZA KAMALIAN

    2012-12-01

    Full Text Available In this research, bioactive glass (BG of the type CaO–P2O5–SiO2 and nanocrystalline forsterite (NF bioceramic were successfully synthesized via sol–gel processing method. Heat-treatment process was done to obtain phase-pure nanopowders. After characterization of each sample, the nanocomposite samples were prepared by cold pressing method and sintered at 1000°C. The samples were fully characterized by X-ray powder diffraction (XRD, scanning electron microscope (SEM, energy dispersive spectroscopy (EDX, Fourier transform infrared spectroscopy (FTIR analyses. The average nanocrystallite size was determined using the Debye-Scherrer’s formula 19.6 nm. The bioactivity was examined in vitro with respect to the ability of hydroxyapatite (HAp layer to form on the surfaces as a result of contact with simulated body fluid (SBF. According to the obtained results, the prepared nanocomposite enhances the fracture toughness of the BG matrix without deteriorating its intrinsic properties as bioactivity.

  17. Preparation of hydroxyapatite/zirconia bioceramic nanocomposites for orthopaedic and dental prosthesis applications

    Science.gov (United States)

    Sung, Yun-Mo; Shin, Young-Keun; Ryu, Jae-Jun

    2007-02-01

    Homogeneous mixtures of hydroxyapatite (HAp) and yttria-stabilized zirconia (YSZ) nanoparticles were successfully synthesized using chemical co-precipitation and subsequent calcination. For the synthesis of HAp/YSZ nanopowder, the Ca/P atomic ratio was 1.73 to obtain high-content stoichiometric hydroxyapatite phase and to suppress β-tricalcium phosphate (β-TCP) formation. The agglomerated crystalline powders were milled using YSZ ball media to obtain well-separated nanoparticles. The final particle size of the HAp and YSZ was ~50-70 and ~15-30 nm, respectively. The crystallinity and morphological feature of the nanopowder was analysed using x-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses. The ball-milled nanopowder mixture was hot pressed at 1100 °C for 1 h under 20 MPa in vacuum atmosphere. The sintered HAp/YSZ nanocomposites exhibited approximately 99% of the theoretical density, due not only to the fine nanoscale of the particles, but also to the homogeneous distribution of the nanoparticle mixture. They also showed fine grain structures of the HAp phase due to the suppressed grain growth by YSZ particles. The nanocomposites showed improved mechanical properties, flexural strength of ~155 MPa and fracture toughness of ~2.1 MP m1/2, due to the YSZ contribution to the HAp matrix.

  18. Atomistic simulation of graphene-based polymer nanocomposites

    International Nuclear Information System (INIS)

    Rissanou, Anastassia N.; Bačová, Petra; Harmandaris, Vagelis

    2016-01-01

    Polymer/graphene nanostructured systems are hybrid materials which have attracted great attention the last years both for scientific and technological reasons. In the present work atomistic Molecular Dynamics simulations are performed for the study of graphene-based polymer nanocomposites composed of pristine, hydrogenated and carboxylated graphene sheets dispersed in polar (PEO) and nonpolar (PE) short polymer matrices (i.e., matrices containing chains of low molecular weight). Our focus is twofold; the one is the study of the structural and dynamical properties of short polymer chains and the way that they are affected by functionalized graphene sheets while the other is the effect of the polymer matrices on the behavior of graphene sheets.

  19. Nanocomposite-Based Bulk Heterojunction Hybrid Solar Cells

    Directory of Open Access Journals (Sweden)

    Bich Phuong Nguyen

    2014-01-01

    Full Text Available Photovoltaic devices based on nanocomposites composed of conjugated polymers and inorganic nanocrystals show promise for the fabrication of low-cost third-generation thin film photovoltaics. In theory, hybrid solar cells can combine the advantages of the two classes of materials to potentially provide high power conversion efficiencies of up to 10%; however, certain limitations on the current within a hybrid solar cell must be overcome. Current limitations arise from incompatibilities among the various intradevice interfaces and the uncontrolled aggregation of nanocrystals during the step in which the nanocrystals are mixed into the polymer matrix. Both effects can lead to charge transfer and transport inefficiencies. This paper highlights potential strategies for resolving these obstacles and presents an outlook on the future directions of this field.

  20. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Hongwei, E-mail: hqiu@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Stepanov, Victor; Di Stasio, Anthony R. [U.S. Army - Armament Research, Development, and Engineering Center, Picatinny, NJ 07806 (United States); Chou, Tsengming; Lee, Woo Y. [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2011-01-15

    Cyclotrimethylenetrinitramine (RDX)-based nanocomposite microparticles were produced by a simple, yet novel spray drying method. The microparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC), which shows that they consist of small RDX crystals ({approx}0.1-1 {mu}m) uniformly and discretely dispersed in a binder. The microparticles were subsequently pressed to produce dense energetic materials which exhibited a markedly lower shock sensitivity. The low sensitivity was attributed to small crystal size as well as small void size ({approx}250 nm). The method developed in this work may be suitable for the preparation of a wide range of insensitive explosive compositions.

  1. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity

    International Nuclear Information System (INIS)

    Qiu Hongwei; Stepanov, Victor; Di Stasio, Anthony R.; Chou, Tsengming; Lee, Woo Y.

    2011-01-01

    Cyclotrimethylenetrinitramine (RDX)-based nanocomposite microparticles were produced by a simple, yet novel spray drying method. The microparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC), which shows that they consist of small RDX crystals (∼0.1-1 μm) uniformly and discretely dispersed in a binder. The microparticles were subsequently pressed to produce dense energetic materials which exhibited a markedly lower shock sensitivity. The low sensitivity was attributed to small crystal size as well as small void size (∼250 nm). The method developed in this work may be suitable for the preparation of a wide range of insensitive explosive compositions.

  2. RDX-based nanocomposite microparticles for significantly reduced shock sensitivity.

    Science.gov (United States)

    Qiu, Hongwei; Stepanov, Victor; Di Stasio, Anthony R; Chou, Tsengming; Lee, Woo Y

    2011-01-15

    Cyclotrimethylenetrinitramine (RDX)-based nanocomposite microparticles were produced by a simple, yet novel spray drying method. The microparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and high performance liquid chromatography (HPLC), which shows that they consist of small RDX crystals (∼0.1-1 μm) uniformly and discretely dispersed in a binder. The microparticles were subsequently pressed to produce dense energetic materials which exhibited a markedly lower shock sensitivity. The low sensitivity was attributed to small crystal size as well as small void size (∼250 nm). The method developed in this work may be suitable for the preparation of a wide range of insensitive explosive compositions. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Synthesis and characterization of nanocomposites based on PANI and carbon nanostructures prepared by electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Petrovski, Aleksandar; Paunović, Perica [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of); Avolio, Roberto; Errico, Maria E.; Cocca, Mariacristina; Gentile, Gennaro [Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy); Grozdanov, Anita, E-mail: anita.grozdanov@yahoo.com [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of); Avella, Maurizio [Institute for Polymers, Composites and Biomaterials, National Research Council, Via Campi Flegrei 34, 80078, Pozzuoli, Napoli (Italy); Barton, John [Tyndall National Institute, University College Cork, Dyke Parade, T12 R5CP, Cork (Ireland); Dimitrov, Aleksandar [Faculty of Technology and Metallurgy, SS Cyril and Methodius University, Rudjer Bošković, 16, 1000, Skopje (Macedonia, The Former Yugoslav Republic of)

    2017-01-01

    Nanocomposites based on polyaniline (PANI) and carbon nanostructures (CNSs) (graphene (G) and multiwall carbon nanotubes (MWCNTs)) were prepared by in situ electrochemical polymerization. CNSs were inserted into the PANI matrix by dispersing them into the electrolyte before the electropolymerization. Electrochemical characterization by means of cyclic voltammetry and steady state polarization were performed in order to determine conditions for electro-polymerization. Electro-polymerization of the PANI based nanocomposites was carried out at 0.75 V vs. saturated calomel electrode (SCE) for 40 and 60 min. The morphology and structural characteristics of the obtained nanocomposites were studied by scanning electron microscopy (SEM) and Raman spectroscopy, while thermal stability was determined using thermal gravimetric analysis (TGA). According to the morphological and structural study, fibrous and porous structure of PANI based nanocomposites was detected well embedding both G and MWCNTs. Also, strong interaction between quinoidal structure of PANI with carbon nanostructures via π–π stacking was detected by Raman spectroscopy. TGA showed the increased thermal stability of composites reinforced with CNSs, especially those reinforced with graphene. - Highlights: • Nanocomposites of PANI with carbon nanostructures were prepared for sensing application. • By cyclic voltammetry, conductive form of PANI (green colored emeraldine phase) is obtained 0.75 V • Using 4 Probe method, nanocomposite PANI/CNS tablet was tested for sensing application. • Micro-structural properties of nanocomposites were studied by SEM, TGA and Raman analysis.

  4. UHMWPE-based nanocomposite as a material for damaged cartilage replacement

    International Nuclear Information System (INIS)

    Senatov, F.S.; Kopylov, A.N.; Anisimova, N.Yu.; Kiselevsky, M.V.; Maksimkin, A.V.

    2015-01-01

    In the present work dispersion-strengthened nanocomposites based on ultra-high molecular weight polyethylene (UHMWPE) after mechanical activation were studied. Mechanical activation was performed for hardening of the boundaries between the polymer particles, reducing the fusion defects and increasing of wear-resistance. Three types of samples were prepared: UHMWPE, UHMWPE/Al 2 O 3 nanocomposite and UHMWPE/Al 2 O 3 nanocomposite after mechanical activation. UHMWPE/Al 2 O 3 nanocomposites prepared with mechanical activation show the best mechanical properties in compression and higher wear-resistance. UHMWPE/Al 2 O 3 nanocomposites prepared with mechanical activation were chosen for in vivo study by orthotopical transplantation in rats. Animals' activity has been being monitored for 60 days after surgery. No signs of inflammation, cellular infiltration, destruction of material or bone–cartilage defect were found. Implanted sample has not changed its position of implantation, there were no any shifts. Obtained data shows that UHMWPE-based nanocomposite is a promising material for creating bioimplants for cartilage defect replacement. - Highlights: • Mechanical activation of UHMWPE composite leads to changing of fracture mechanism. • Mechanical activation leads to increasing of wear-resistance of UHMWPE composite. • The presence of Al 2 O 3 in grain boundaries of UHMWPE inhibits crack growth. • Complete integration of UHMWPE-based implant in cartilage defect of rat was shown. • UHMWPE/Al 2 O 3 nanocomposite may be recommended for use in cartilage replacement

  5. PET based nanocomposite films for microwave packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Galdi, M. R., E-mail: mrgaldi@unisa.it; Olivieri, R.; Liguori, L.; Albanese, D., E-mail: dalbanese@unisa.it; Di Matteo, M.; Di Maio, L., E-mail: ldimaio@unisa.it [Industrial Engineering Department, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano (Italy)

    2015-12-17

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  6. PET based nanocomposite films for microwave packaging applications

    Science.gov (United States)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-12-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET.

  7. PET based nanocomposite films for microwave packaging applications

    International Nuclear Information System (INIS)

    Galdi, M. R.; Olivieri, R.; Liguori, L.; Albanese, D.; Di Matteo, M.; Di Maio, L.

    2015-01-01

    In recent years, changes in life standards have promoted the diffusion of Ready to Cook (RTC) and Ready to Eat (RTE) products for microwave ovens. However, the main limits in microwave (MW) ovens usage are often related to the proper choice of packaging materials suitable for such technology. In fact, packages for microwaveable RTC and RTE foods should ensure adequate preservation of the product before cooking/heating such as high barriers to gases and aromas and adequate control of water vapor transmission. In addition, microwaveable packaging material must be transparent to MW, thermally stable and resistant to the mechanical stress induced by the accumulation in the head space of volatile substances produced during the cooking. Polymeric materials are good candidates for microwaveable packaging thanks to their transparency to MW. In the last years a great interest is devoted to developing innovative solution based on the use of additives or systems that act as susceptors or heating enhancers for improving the characteristics of polymers in cooking/heating in MW ovens. The present work was focused on the production and characterization of nanocomposite copolyester based films suitable for microwaveable food packaging applications. The matrices selected consist in two PET copolymers modified with carbon black (ULTRA STD) and with titanium oxide (ULTRA NA). Nanocomposite co-extruded multilayer films were produced using different percentages (0%, 2% and 4%wt/wt) of Cloisite 20A (C20A). Films were analyzed for evaluating the effect of nanofiller on the morphology and barrier properties. Moreover, to verify the effectiveness of the designed systems in reducing the cooking times of meat products, MW heating tests were carried out on pork meat hamburgers in MW oven at varying supplied powers. The cooking tests have pointed out that the selected matrices are efficient in reducing cooking times and that even low concentration of C20A acts as heating enhancers of PET

  8. Nanocomposites based on chitosan/silver/clay for durable multi-functional properties of cotton fabrics.

    Science.gov (United States)

    Rehan, Mohamed; El-Naggar, Mehrez E; Mashaly, H M; Wilken, Ralph

    2018-02-15

    The present work addresses an innovative approach for benign development of environmentally synthesis of chitosan-based nanocomposite. The synthesis involves the inclusion via interaction of AgNPs and clay with chitosan (Cs) giving rise to Cs/AgNPs and Cs/AgNPs/clay nanocomposites which when applied independently induce super functionalities. Comparison is made among the two nanocomposites with respect to their intimate association with the in depth cotton fibre-fabric surfaces and the onset of this on the multi-functionalization of cotton fabrics. It is as well to emphasize that Cs/AgNPs/clay nanocomposites prove unequivocally that its use in one-step treatment process for cotton fabrics results in imparting very appreciable good technical properties which, in turn, are reflected on all the gained functionalities of cotton fabrics. Of these functional performance properties, mention is made of cotton fabrics which exhibit high strength, uniform morphology, increased thermal stability, successful deposition of the composite on the surface of cotton fabrics, high water absorption, antimicrobial activity, flame retardant, controlled release of fragrance and UV protection. The obtained data indicate that the treatment for cotton fabrics with these nanocomposite is stable against washing even after 20 washing cycles. Based on encourage data, the environmental benign synthesis of Cs/AgNPs/clay nanocomposites is considered as a promising nanocomposite for the multifunctional finishing textiles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Intercalated Nanocomposites Based on High-Temperature Superconducting Ceramics and Their Properties

    Directory of Open Access Journals (Sweden)

    Sevan Davtyan

    2009-12-01

    Full Text Available High temperature superconducting (SC nanocomposites based on SC ceramics and various polymeric binders were prepared. Regardless of the size of the ceramics’ grains, the increase of their amount leads to an increase of resistance to rupture and modulus and a decrease in limiting deformation, whereas an increase in the average ceramic grain size worsens resistance properties. The SC, thermo-chemical, mechanical and dynamic-mechanical properties of the samples were investigated. Superconducting properties of the polymer ceramic nanocomposites are explained by intercalation of macromolecule fragments into the interstitial layer of the ceramics’ grains. This phenomenon leads to a change in the morphological structure of the superconducting nanocomposites.

  10. The evaluation of prepared microgroove pattern by femtosecond laser on alumina-zirconia nano-composite for endosseous dental implant application.

    Science.gov (United States)

    Aivazi, Moluk; Hossein Fathi, Mohammad; Nejatidanesh, Farahnaz; Mortazavi, Vajihesadat; HashemiBeni, Batoul; Matinlinna, Jukka Pekka; Savabi, Omid

    2016-12-01

    Ceramic dental materials, especially alumina (20 %vol)-yttrium stabilized tetragonal zirconia poly crystal (A-Y-TZP20), have been considered as alternatives to metals for endosseous dental implant application. For increasing the bone-to-implant contact as well as the speed of bone formation, a new surface modification can be effective. The aim of this study was to design microgroove patterns by femtosecond laser on A-Y-TZP20 nano-composite disks for endosseous dental implant application. The phase composition and the morphology of the A-Y-TZP20 nano-composite samples were characterized using X-ray diffraction and Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy techniques. Statistical analysis was submitted to Kolmogorov-Smirnov test and Student's t test for independent variables, with a 5 % significance level. EDAX analysis revealed a significant decrease in the relative content of contaminants like carbon (p < 0.05) in laser surface-treated group as compared to non surface-treated group. X-ray diffraction did not show any change in the crystalline structure induced by laser processing. It was concluded that the femtosecond laser is a clean and safe method for surface modification of A-Y-TZP20.

  11. Reflective learning in community-based dental education.

    Science.gov (United States)

    Deogade, Suryakant C; Naitam, Dinesh

    2016-01-01

    Community-based dental education (CBDE) is the implementation of dental education in a specific social context, which shifts a substantial part of dental clinical education from dental teaching institutional clinics to mainly public health settings. Dental students gain additional value from CBDE when they are guided through a reflective process of learning. We propose some key elements to the existing CBDE program that support meaningful personal learning experiences. Dental rotations of 'externships' in community-based clinical settings (CBCS) are year-long community-based placements and have proven to be strong learning environments where students develop good communication skills and better clinical reasoning and management skills. We look at the characteristics of CBDE and how the social and personal context provided in communities enhances dental education. Meaningfulness is created by the authentic context, which develops over a period of time. Structured reflection assignments and methods are suggested as key elements in the existing CBDE program. Strategies to enrich community-based learning experiences for dental students include: Photographic documentation; written narratives; critical incident reports; and mentored post-experiential small group discussions. A directed process of reflection is suggested as a way to increase the impact of the community learning experiences. We suggest key elements to the existing CBDE module so that the context-rich environment of CBDE allows for meaningful relations and experiences for dental students and enhanced learning.

  12. Nafion-based nanocomposite membranes for fuel cells

    CSIR Research Space (South Africa)

    Cele, NP

    2008-11-01

    Full Text Available , mechanical properties and electrical conductivity of nafion membrane for fuel cell applications. The results showed an improvement on the thermal behaviour of prepared nation nanocomposites compared to pure Nafion with an addition of only 1 wt% MWCNTs....

  13. Surface characteristics and bioactivity of a novel natural HA/zircon nanocomposite coated on dental implants.

    Science.gov (United States)

    Karamian, Ebrahim; Khandan, Amirsalar; Motamedi, Mahmood Reza Kalantar; Mirmohammadi, Hesam

    2014-01-01

    The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel natural hydroxyapatite/zircon (NHA/zircon) nanobiocomposite, coated on 316L stainless steel (SS) soaked in simulated body fluid (SBF). NHA/zircon nanobiocomposite was fabricated with 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon in NHA using ball mill for 20 minutes. The composite mixture was coated on 316L SS using plasma spray method. The results are estimated using the scanning electron microscopy (SEM) observation to evaluate surface morphology, X-ray diffraction (XRD) to analyze phase composition, and transmission electron microscopy (TEM) technique to evaluate the shape and size of prepared NHA. Surfaces roughness tester was performed to characterize the coated nanocomposite samples. The maximum average R a (14.54 μm) was found in the NHA 10 wt.% of zircon coating. In addition, crystallinity (X c ) was measured by XRD data, which indicated the minimum value (X c = 41.1%) for the sample containing 10 wt.% of zircon. Maximum bioactivity occurred in the sample containing 10 wt.% of zircon, which was due to two reasons: first, the maximum roughness and, second, the minimum crystallinity of nanobiocomposite coating.

  14. Bioinspired Graphene-Based Nanocomposites and Their Application in Flexible Energy Devices.

    Science.gov (United States)

    Wan, Sijie; Peng, Jingsong; Jiang, Lei; Cheng, Qunfeng

    2016-09-01

    Graphene is the strongest and stiffest material ever identified and the best electrical conductor known to date, making it an ideal candidate for constructing nanocomposites used in flexible energy devices. However, it remains a great challenge to assemble graphene nanosheets into macro-sized high-performance nanocomposites in practical applications of flexible energy devices using traditional approaches. Nacre, the gold standard for biomimicry, provides an excellent example and guideline for assembling two-dimensional nanosheets into high-performance nanocomposites. This review summarizes recent research on the bioinspired graphene-based nanocomposites (BGBNs), and discusses different bioinspired assembly strategies for constructing integrated high-strength and -toughness graphene-based nanocomposites through various synergistic effects. Fundamental properties of graphene-based nanocomposites, such as strength, toughness, and electrical conductivities, are highlighted. Applications of the BGBNs in flexible energy devices, as well as potential challenges, are addressed. Inspired from the past work done by the community a roadmap for the future of the BGBNs in flexible energy device applications is depicted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    Science.gov (United States)

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Bactericidal dental nanocomposites containing 1,2,3-triazolium-functionalized POSS additive prepared through thiol-ene click polymerization.

    Science.gov (United States)

    Burujeny, Saeed Beigi; Yeganeh, Hamid; Atai, Mohammad; Gholami, Hoshyar; Sorayya, Marziyeh

    2017-01-01

    Deterioration of mechanical strength for the dental composite containing ionic bactericidal compounds restricts the widespread utilization of this class of useful materials. This problem is originated from the reduction of the intermolecular interaction of polymeric network due to plasticization effect of absorbed water molecules penetrated between the chain segments. The main goal of this study is the synthesis of the highly efficient bactericidal additive with low hydrophilicity and consequently the least adverse effect on the final mechanical strength of the dental composite. The bactericidal 1, 2, 3-triazolium functional groups were chemically anchored on the surface of hydrophobic POSS nanoparticles (Triazolium-POSS) and incorporated into a dental restorative system composed of a ternary thiol-allyl ether-methacrylate resin and glass fillers. A similar system was also prepared, in which the POSS additive was replaced with quaternized dimethyl aminoethyl methacrylate monomer (DMAEMA-BC). The chemical structure of POSS derivatives was evaluated by 1 HNMR and FTIR spectra. The water uptake of dental composites was evaluated at days 1 and 14 after immersion into water. The bactericidal activity of composite specimens against Streptococcus mutans (ATCC 35668) was determined based on ASTM E 2180 - 07. The flexural properties of samples were investigated through three-point bending assay and the shrinkage-strain of photo-cured resins was measured using the bonded-disk technique. The degree of conversion (DC %) of methacrylate functions was followed by FTIR spectroscopy. MTT assay was performed to investigate the cytocompatibility of samples. Regardless of the partial increase in water uptake for Triazolium-POSS-containing sample, this parameter was much favor than the composite made from DMAEMA-BC. Therefore, the lower decline in flexural properties was recorded under the wet condition for the former system. Incorporation of Triazolium-POSS had no significant effect

  17. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    International Nuclear Information System (INIS)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris; Kuzhir, Polina; Maksimenko, Sergey; Kuznetsov, Vladimir; Moseenkov, Sergey

    2014-01-01

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix

  18. Graphene-based nanocomposites: synthesis and their theranostic applications.

    Science.gov (United States)

    Madni, Asadullah; Noreen, Sobia; Maqbool, Irsah; Rehman, Faizza; Batool, Amna; Kashif, Prince Muhammad; Rehman, Mubashar; Tahir, Nayab; Khan, Muhammad Imran

    2018-02-26

    Graphene, the mother of all carbon materials, has unlocked a new era of biomedical nanomaterials due to its exceptional biocompatibility, physicochemical and mechanical properties. It is a single atom thick, nanosized, two-dimensional structure and provides high surface area with adjustable surface chemistry to form hybrids. The present article provides a comprehensive review of ever-expanding application of graphene nanomaterials with different inorganic and organic materials in drug delivery and theranostics. Methods of preparation of nanomaterials are elaborated and biological and physicochemical characteristics of biomedical relevance are also discussed. Graphene form nanomaterials with metallic nanoparticles offer multiscale application. First, graphene act as a platform to attach nanoparticles and provide excellent mechanical strength. Second, graphene improves efficacy of metallic nanoparticles in diagnostic, biosensing, therapeutic and drug delivery application. Graphene-based polymeric nanocomposites find wider application in drug delivery with flexibility to incorporate hydrophilic, hydrophobic, sensitive and macromolecules. In addition, grapheme quantum dots and graphene hybrids with inorganic nanocrystal and carbon nanotubes hybrids have shown interesting properties for diagnosis and therapy. Finally, we have pointed out research trends that may be more common in future for graphene-based nanomaterials.

  19. Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

    Directory of Open Access Journals (Sweden)

    Suneel Kumar

    2017-08-01

    Full Text Available In the pursuit towards the use of sunlight as a sustainable source for energy generation and environmental remediation, photocatalytic water splitting and photocatalytic pollutant degradation have recently gained significant importance. Research in this field is aimed at solving the global energy crisis and environmental issues in an ecologically-friendly way by using two of the most abundant natural resources, namely sunlight and water. Over the past few years, carbon-based nanocomposites, particularly graphene and graphitic carbon nitride, have attracted much attention as interesting materials in this field. Due to their unique chemical and physical properties, carbon-based nanocomposites have made a substantial contribution towards the generation of clean, renewable and viable forms of energy from light-based water splitting and pollutant removal. This review article provides a comprehensive overview of the recent research progress in the field of energy generation and environmental remediation using two-dimensional carbon-based nanocomposites. It begins with a brief introduction to the field, basic principles of photocatalytic water splitting for energy generation and environmental remediation, followed by the properties of carbon-based nanocomposites. Then, the development of various graphene-based nanocomposites for the above-mentioned applications is presented, wherein graphene plays different roles, including electron acceptor/transporter, cocatalyst, photocatalyst and photosensitizer. Subsequently, the development of different graphitic carbon nitride-based nanocomposites as photocatalysts for energy and environmental applications is discussed in detail. This review concludes by highlighting the advantages and challenges involved in the use of two-dimensional carbon-based nanocomposites for photocatalysis. Finally, the future perspectives of research in this field are also briefly mentioned.

  20. Development of an antimicrobial material based on a nanocomposite cellulose acetate film for active food packaging.

    Science.gov (United States)

    Rodríguez, Francisco J; Torres, Alejandra; Peñaloza, Ángela; Sepúlveda, Hugo; Galotto, María J; Guarda, Abel; Bruna, Julio

    2014-01-01

    Nanocomposites based on biopolymers have been recognised as potential materials for the development of new ecofriendly food packaging. In addition, if these materials incorporate active substances in their structure, the potential applications are much higher. Therefore, this work was oriented to develop nanocomposites with antimicrobial activity based on cellulose acetate (CA), a commercial organoclay Cloisite30B (C30B), thymol (T) as natural antimicrobial component and tri-ethyl citrate (TEC) as plasticiser. Nanocomposites were prepared by a solvent casting method and consisted of 5% (w/w) of C30B, 5% (w/w) of TEC and variable content of T (0%, 0.5% and 2% w/w). To evaluate the effect of C30B into the CA matrix, CA films without this organoclay but with T were also prepared. All nanocomposites showed the intercalation of CA into the organoclay structure; furthermore this intercalation was favoured when 2% (w/w) of T was added to the nanocomposite. In spite of the observed intercalation, the presence of C30B inside the CA matrices increased the opacity of the films significantly. On the other hand, T showed a plasticiser effect on the thermal properties of CA nanocomposites decreasing glass transition, melting temperature and melting enthalpy. The presence of T in CA nanocomposites also allowed the control de Listeria innocua growth when these materials were placed in contact with this Gram-positive bacterium. Interestingly, antimicrobial activity was increased with the presence of C30B. Finally, studies on T release showed that the clay structure inside the CA matrix did not affect its release rate; however, this nanofiller affected the partition coefficient KP/FS which was higher to CA nanocomposites films than in CA films without organoclay. The results obtained in the present study are really promising to be applied in the manufacture of food packaging materials.

  1. Antimicrobial properties of electrically formed elastomeric polyurethane-copper oxide nanocomposites for medical and dental applications.

    Science.gov (United States)

    Ahmad, Z; Vargas-Reus, M A; Bakhshi, R; Ryan, F; Ren, G G; Oktar, F; Allaker, R P

    2012-01-01

    With the rapidly advancing field of nanotechnology having an impact in several areas interfacing life and physical sciences, the potential applications of nanoparticles as antimicrobial agents have been realized and offer great opportunities in addressing several viral and bacterial outbreak issues. Polyurethanes (PUs) are a diverse class of polymeric materials which also have applications in several areas of biomedical science ranging from blood contact devices to implantable dental technologies. In this report, copper oxide (CuO) nanoparticles (mean size ∼50 nm) are embedded into a PU matrix via two electrical fabrication processes. To elucidate the antimicrobial activity, a range of different loading compositions of CuO within the PU matrix (0%, 1%, 5%, and 10% w/w) are electrospun to form thin porous films (thickness coatings, breathable fabrics, adhesive films (as opposed to sutures), and mechanically supporting structures. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Characterization and human gingival fibroblasts biocompatibility of hydroxyapatite/PMMA nanocomposites for provisional dental implant restoration

    Science.gov (United States)

    Zhang, Jingchao; Liao, Juan; Mo, Anchun; Li, Yubao; Li, Jidong; Wang, Xuejiang

    2008-11-01

    The aim of this study was to determine nHA/PMMA composites (H/P) in an optimal ratio with improved cytocompatibility as well as valid physical properties for provisional dental implant restoration. 20 wt.%, 30 wt.%, 40 wt.% and 50 wt.% H/P were developed and characterized using XPS, bending strength test and SEM. Human gingival fibroblasts cultured in extracts or directly on sample discs were investigated by fluorescent staining and MTT assay. Chemical integration in nHA/PMMA interface was indicated by XPS. Typical fusiform cells with adhesion spots were detected on H/P discs. MTT results also indicated higher cell viability in 30 wt.% and 40 wt.% H/P discs ( P provisional fixed crowns (PFC) is 0.4:1.

  3. Processing, characterization and properties of oxide based nanocomposites

    Science.gov (United States)

    Bhaduri, Sutapa

    The synthesis, characterization and mechanical properties of oxide based nanocomposites are reported in this dissertation. Two binary systems are studied: Alsb2Osb3-MgO and Alsb2Osb3-ZrOsb2. Alsb2Osb3-MgO was chosen because of its relatively large field of solid solubilities at a moderate temperature. On the other hand, Alsb2Osb3-ZrOsb2 was chosen because it shows minimal solid solubility of the constituents. A novel "Auto Ignition" process using suitable fuels and oxidizers was utilized in the synthesis of nanocomposites and solid solutions. Thermodynamic calculations were carried out in predicting end point adiabatic temperatures (Tsbad) for each composition in both systems. Combustion temperatures were experimentally measured by means of a data acquisition system. Characterizations of the powders were carried out by x-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis (EDAX) and differential thermal analysis (DTA). Heat treatment experiments were carried out to study the grain growth behavior. A hot isostatic pressing (HIP) model was developed for the present nanoceramics. Input parameters were carefully chosen for such nanomaterials. The as-synthesized nanocrystalline powders were consolidated to near theoretical density by hot isostatic pressing (HIPing) while retaining fine grain size. The experimental results were compared with the predictions of the model. Mechanical properties, such as room temperature toughness, low temperatures well as high temperature hardness, were determined for both systems. Room temperature hardness values were (2.89-7.79) GPa and fracture toughness was between 2.7 and 5.82 MPa.msp{1/2} for various compositions in the Alsb2Osb3-MgO system. Room temperature hardness values were between 5.33 and 8.71 GPa and fracture toughness values ranged from (5.3-9.62) MPa.msp{1/2} for various compositions in the Alsb2Osb3-ZrOsb2 system. Nanoindentation experiments were carried out to further explore the room

  4. Elastomeric Nanocomposite Based on Exfoliated Graphene Oxide and Its Characteristics without Vulcanization

    Directory of Open Access Journals (Sweden)

    Nasser Abdullah Habib

    2017-01-01

    Full Text Available Rubber nanocomposites have emerged as one of the advanced materials in recent years. The aim of this work was to homogeneously disperse graphene oxide (GO sheets into Nitrile Butadiene Rubber (NBR and investigate the characteristics of GO/NBR nanocomposite without vulcanization. A suitable solvent was found to dissolve dry NBR while GO was exfoliated completely in an aqueous base solution using sonication. GO was dispersed into NBR at different loadings by solution mixing to produce unvulcanized GO/NBR nanocomposites. Scanning Electron Microscopy (SEM, Fourier-Transform Infrared Spectroscopy (FTIR, and X-Ray Diffraction (XRD were used to characterize the samples. Furthermore, mechanical and electrical properties of unvulcanized GO/NBR nanocomposites were carried out to determine the influence of GO on the NBR properties. The results showed that the modulus of GO/NBR nanocomposite at 1 wt% of GO was enhanced by about 238% compared with unfilled NBR. These results provide insight into the properties of unvulcanized GO/NBR nanocomposite for application as coatings or adhesives.

  5. Methods used by Dental Practice-based Research Network (DPBRN) dentists to diagnose dental caries.

    Science.gov (United States)

    Gordan, V V; Riley, J L; Carvalho, R M; Snyder, J; Sanderson, J L; Anderson, M; Gilbert, G H

    2011-01-01

    To (1) identify the methods that dentists in The Dental Practice-Based Research Network (DPBRN) use to diagnose dental caries; (2) quantify their frequency of use and (3) test the hypothesis that certain dentist and dental practice characteristics are significantly associated with their use. A questionnaire about methods used for caries diagnosis was sent to DPBRN dentists who reported doing some restorative dentistry; 522 dentists participated. Questions included the use of dental radiographs, the dental explorer, laser fluorescence, air-drying and fiber-optic devices and magnification as used when diagnosing primary, secondary/recurrent or non-specific caries lesions. Variations on the frequency of their use were tested using multivariate analysis and Bonferroni tests. Overall, the dental explorer was the instrument most commonly used to detect primary occlusal caries and caries at the margins of existing restorations. In contrast, laser fluorescence was rarely used to help diagnose occlusal primary caries. For proximal caries, radiographs were used to help diagnose 75%–100% of lesions by 96% of the DPBRN dentists. Dentists who use radiographs most often to assess proximal surfaces of posterior teeth were significantly more likely to also report providing a higher percentage of patients with individualized caries prevention (p=.040) and seeing a higher percentage of pediatric patients (p=.001). The use of specific diagnostic methods varied substantially. The dental explorer and radiographs are still the most commonly used diagnostic methods..

  6. Methods used by dental practice-based research network dentists to diagnose dental caries.

    Science.gov (United States)

    Gordan, Valerie V; Riley, Joseph L; De Carvalho, Ricardo Marins; Snyder, John; Sanderson, James L; Anderson, Mary; Gilbert, Gregg H

    2013-04-01

    To (1) identify the methods that dentists in The Dental Practice-based Research Network (DPBRN) use to diagnose dental caries; (2) quantify their frequency of use, and (3) test the hypothesis that certain dentist and dental practice characteristics are significantly associated with their use. A questionnaire about methods used for caries diagnosis was sent to DPBRN dentists who reported doing some restorative dentistry; 522 dentists participated. Questions included the use of dental radiographs, the dental explorer, laser fluorescence, air-drying and fiber-optic devices and magnification as used when diagnosing primary, secondary/recurrent or non-specific caries lesions. Variations on the frequency of their use were tested using multivariate analysis and Bonferroni tests. Overall, the dental explorer was the instrument most commonly used to detect primary occlusal caries and caries at the margins of existing restorations. In contrast, laser fluorescence was rarely used to help diagnose occlusal primary caries. For proximal caries, radiographs were used to help diagnose 75%-100% of lesions by 96% of the DPBRN dentists. Dentists who use radiographs most often to assess proximal surfaces of posterior teeth were significantly more likely to also report providing a higher percentage of patients with individualized caries prevention (p = .040) and seeing a higher percentage of pediatric patients (p = .001). The use of specific diagnostic methods varied substantially. The dental explorer and radiographs are still the most commonly used diagnostic methods.

  7. Methods used by Dental Practice-Based Research Network (DPBRN) dentists to diagnose dental caries

    Science.gov (United States)

    Gordan, Valeria V.; Riley, Joseph L; Carvalho, Ricardo M.; Snyder, John; Sanderson, James L; Anderson, Mary; Gilbert, Gregg H.

    2010-01-01

    Objectives To (1) identify the methods that dentists in The Dental Practice-Based Research Network (DPBRN) use to diagnose dental caries; (2) quantify their frequency of use; and (3) test the hypothesis that certain dentist and dental practice characteristics are significantly associated with their use. Methods A questionnaire about methods used for caries diagnosis was sent to DPBRN dentists who reported doing at least some restorative dentistry; 522 dentists participated. Questions included use of dental radiographs, dental explorer, laser fluorescence, air-drying, fiber optic devices, and magnification, as used when diagnosing primary, secondary/recurrent, or non-specific caries lesions. Variations on the frequency of their use were tested using multivariate analysis and Bonferroni tests. Results Overall, the dental explorer was the instrument most commonly used to detect primary occlusal caries as well as to detect caries at the margins of existing restorations. In contrast, laser fluorescence was rarely used to help diagnose occlusal primary caries. For proximal caries, radiographs were used to help diagnose 75-100% of lesions by 96% of the DPBRN dentists. Dentists who use radiographs most often to assess proximal surfaces of posterior teeth, were significantly more likely to also report providing a higher percentage of patients with individualized caries prevention (p = .040) and seeing a higher percentage of pediatric patients (p = .001). Conclusion Use of specific diagnostic methods varied substantially. The dental explorer and radiographs are still the most commonly used diagnostic methods. PMID:21488724

  8. Synthesis and study of physical properties of dental light-cured nanocomposites using different amounts of a urethane dimethacrylate trialkoxysilane coupling agent.

    Science.gov (United States)

    Karabela, Maria M; Sideridou, Irini D

    2011-11-01

    The purpose of this work was the study of the effect of the amount of a urethane dimethacrylate silane (UDMS) coupling agent on physical properties of dental light-cured resin nanocomposites based on Bis-GMA/TEGDMA (50/50 wt/wt) matrix and Aerosil OX50 as filler. Silica nanoparticles (Aerosil OX 50) used as filler were silanized with 5 different amounts of UDMS 1.0, 2.5, 5.0, 7.5 and 10 wt% relative to silica. The silanizated silica nanoparticles were identified by FT-IR spectroscopy and thermogravimetric analysis (TGA). Then the silanized nanoparticles (60 wt%) were mixed with a Bis-GMA/TEGDMA (50/50 wt/wt) matrix. Degree of conversion of light cured composites was determined by FT-IR analysis. The static flexural strength and flexural modulus were measured using a three-point bending set up. The dynamic thermomechanical properties were determined by DMA analyzer. Measurements were taken in samples stored, immediately after curing, in water at 37°C for 24 h. Sorption, solubility and volumetric change were determined after storage of composites in water or ethanol/water of 75 vol% for 30 days. Thermogravimetric analysis of composites was performed in nitrogen atmosphere from 50 to 800°C. Almost all of used amount of silane remained chemically bounded on the surface of silica particles, forming a layer around them, which have dense accumulation of methacrylate groups. No significant statistic difference was found to exist between the degree of conversion values of composites with different silane contents. The composite with the lowest amount of UDMS (1.0 wt%) showed the lower flexural strength value, the higher static and dynamic elastic modulus values and the higher sorbed liquid value and solubility. The optimum concentration of UDMS seems to be that of 2.5 wt%. Higher concentrations of UDMS did not improve the properties of composites. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Synthesis and sensor applications of MoS2-based nanocomposites

    Science.gov (United States)

    Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang; Wei, Gang

    2015-11-01

    Molybdenum disulfide (MoS2) is a typical layered transition-metal dichalcogenide material, which has aroused a great deal of interest in the past few years. Recently, more and more attention has been focused on the synthesis and applications of MoS2-based nanocomposites. In this review, we aimed to present a wider view of the synthesis of various MoS2-based nanocomposites for sensor and biosensor applications. We highlighted the potential methods like self-assembly, hydrothermal reaction, chemical vapour deposition, electrospinning, as well as microwave and laser beam treatments for the successful preparation of MoS2-based nanocomposites. On the other hand, three representative types of detection devices fabricated by the MoS2-based nanocomposites, field-effect transistor, optical, and electrochemical sensors, were introduced in detail and discussed fully. The relationships between the sensing performances and the special nanostructures within the MoS2-based nanocomposites were presented and discussed.

  10. Biochar-based nano-composites for the decontamination of wastewater: A review.

    Science.gov (United States)

    Tan, Xiao-Fei; Liu, Yun-Guo; Gu, Yan-Ling; Xu, Yan; Zeng, Guang-Ming; Hu, Xin-Jiang; Liu, Shao-Bo; Wang, Xin; Liu, Si-Mian; Li, Jiang

    2016-07-01

    Synthesizing biochar-based nano-composites can obtain new composites and combine the advantages of biochar with nano-materials. The resulting composites usually exhibit great improvement in functional groups, pore properties, surface active sites, catalytic degradation ability and easy to separation. These composites have excellent abilities to adsorb a range of contaminants from aqueous solutions. Particularly, catalytic material-coated biochar can exert simultaneous adsorption and catalytic degradation function for organic contaminants removal. Synthesizing biochar-based nano-composites has become an important practice for expanding the environmental applications of biochar and nanotechnology. This paper aims to review and summarize the various synthesis techniques for biochar-based nano-composites and their effects on the decontamination of wastewater. The characteristic and advantages of existing synthesis methods are summarized and discussed. Application of biochar-based nano-composites for different contaminants removal and the underlying mechanisms are reviewed. Furthermore, knowledge gaps that exist in the fabrication and application of biochar-based nano-composites are also identified. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Development of nanocomposites based on EVA/MMT

    International Nuclear Information System (INIS)

    Luvison, Cassio F.; Gehlen, Aline; Francisquetti, Edson; Barbutti Filho, Wilson R.; Fiorio, Rudinei; Zeni, Maza; Zattera, Ademir J.

    2009-01-01

    Nanocomposites used as polymeric matrix EVA containing 28 % of vinil acetate were produced using three type of clays, two organically modified clays (Cloisite 15A e Cloisite 30B) and one non modified clay (Cloisite Na+). Samples have been processed in a co-rotating twin screw extruder with different rotation speeds. The nanocomposites were characterized using mechanical, rheological and x-ray analysis. Results have shown that the organically modified clay with an hydroxyl functional group presented an exfoliated structure, while the modified clay with two alkyl chains presented intercalated structure. The natural clay did not have significant interactions with the polymeric matrix, generating a microcomposite. (author)

  12. UHMWPE-based nanocomposite as a material for damaged cartilage replacement

    Energy Technology Data Exchange (ETDEWEB)

    Senatov, F.S., E-mail: Senatov@misis.ru [National University of Science and Technology “MISIS”, 119049, Leninskiy pr. 4, Moscow (Russian Federation); Kopylov, A.N.; Anisimova, N.Yu.; Kiselevsky, M.V. [N.N. Blokhin Russian Cancer Research Center, 115478, Kashirskoye sh. 23, Moscow (Russian Federation); Maksimkin, A.V. [National University of Science and Technology “MISIS”, 119049, Leninskiy pr. 4, Moscow (Russian Federation)

    2015-03-01

    In the present work dispersion-strengthened nanocomposites based on ultra-high molecular weight polyethylene (UHMWPE) after mechanical activation were studied. Mechanical activation was performed for hardening of the boundaries between the polymer particles, reducing the fusion defects and increasing of wear-resistance. Three types of samples were prepared: UHMWPE, UHMWPE/Al{sub 2}O{sub 3} nanocomposite and UHMWPE/Al{sub 2}O{sub 3} nanocomposite after mechanical activation. UHMWPE/Al{sub 2}O{sub 3} nanocomposites prepared with mechanical activation show the best mechanical properties in compression and higher wear-resistance. UHMWPE/Al{sub 2}O{sub 3} nanocomposites prepared with mechanical activation were chosen for in vivo study by orthotopical transplantation in rats. Animals' activity has been being monitored for 60 days after surgery. No signs of inflammation, cellular infiltration, destruction of material or bone–cartilage defect were found. Implanted sample has not changed its position of implantation, there were no any shifts. Obtained data shows that UHMWPE-based nanocomposite is a promising material for creating bioimplants for cartilage defect replacement. - Highlights: • Mechanical activation of UHMWPE composite leads to changing of fracture mechanism. • Mechanical activation leads to increasing of wear-resistance of UHMWPE composite. • The presence of Al{sub 2}O{sub 3} in grain boundaries of UHMWPE inhibits crack growth. • Complete integration of UHMWPE-based implant in cartilage defect of rat was shown. • UHMWPE/Al{sub 2}O{sub 3} nanocomposite may be recommended for use in cartilage replacement.

  13. Recent Advancement in Cellulose based Nanocomposite for Addressing Environmental Challenges.

    Science.gov (United States)

    Ul-Islam, Mazhar; Wajid Ullah, Muhammad; Khan, Shaukat; Kamal, Tahseen; Ul-Islam, Salman; Shah, Nasrullah; Park, Joong Kon

    2016-01-01

    Cellulose being the most abundant polymer has been widely utilized in multiple applications. Its impressive nanofibril arrangement has provoked its applications in numerous fields. Recent trends have been shifted to produce composites of nanocellulose for numerous applications among which the most important ones are its use in medical and environmental prospective. This review has basically focused the development of nanocellulose composites and its applications in resolving environmental hazards. We have reviewed large number of research and review articles from famous journals using a focused review question. The quality of retrieved papers was assessed through standard tools. The contents from reviewed articles were described in scientific way. We included 85 papers including research and review articles and patents in this review. 18 papers introduced the theme of current review. More than 10 papers were used to describe the approaches used for synthesizing cellullose nanocomposites. Composite synthesis strategies included the in situ addition, ex situ penetration, solution mixing, and solvent casting etc. Around 60 manuscripts including 6 patents were used to demonstrate various applications of nanocellulose composites. Nanocellulose based materials offer several applications in the development of antimicrobial filters, air and water filters, filters for removal of heavy metals, pollutant sensors as well as applications in catalysis and energy sectors. Such products are more efficient, robust, reliable, and environment-friendly. This review gives a comprehensive picture of ongoing research and development on environmental remediation by nanotechnology. We hope that the contents reviewed herein will catch the reader's interest and will provide interesting background to extend future research activities regarding cellulose based materials.

  14. A nanocomposite/crude extract enzyme-based xanthine biosensor.

    Science.gov (United States)

    Sadeghi, Susan; Fooladi, Ebrahim; Malekaneh, Mohammad

    2014-11-01

    A novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core-shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface. The developed biosensor (XOD/CHT/Pt NPs/PANI/Fe3O4/CPE) was employed for determination of xanthine based on amperometric detection of hydrogen peroxide (H2O2) reduction at -0.35V (vs. Ag/AgCl). The biosensor exhibited a fast response time to xanthine within 8s and a linear working concentration range from 0.2 to 36.0μM (R(2)=0.997) with a detection limit of 0.1μM (signal/noise [S/N]=3). The sensitivity of the biosensor was 13.58μAμM(-1)cm(-2). The apparent Michaelis-Menten (Km) value for xanthine was found to be 4.7μM. The fabricated biosensor was successfully applied for measurement of fish and chicken meat freshness, which was in agreement with the standard method at the 95% confidence level. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. HYDROXYETHYL METHACRYLATE BASED NANOCOMPOSITE HYDROGELS WITH TUNABLE PORE ARCHITECTURE

    Directory of Open Access Journals (Sweden)

    Erhan Bat

    2016-10-01

    Full Text Available Hydroxyethyl methacrylate (HEMA based hydrogels have found increasing number of applications in areas such as chromatographic separations, controlled drug release, biosensing, and membrane separations. In all these applications, the pore size and pore interconnectivity are crucial for successful application of these materials as they determine the rate of diffusion through the matrix. 2-Hydroxyethyl methacrylate is a water soluble monomer but its polymer, polyHEMA, is not soluble in water. Therefore, during polymerization of HEMA in aqueous media, a porous structure is obtained as a result of phase separation. Pore size and interconnectivity in these hydrogels is a function of several variables such as monomer concentration, cross-linker concentration, temperature etc. In this study, we investigated the effect of monomer concentration, graphene oxide addition or clay addition on hydrogel pore size, pore interconnectivity, water uptake, and thermal properties. PolyHEMA hydrogels have been prepared by redox initiated free radical polymerization of the monomer using ethylene glycol dimethacrylate as a cross-linker. As a nanofiller, a synthetic hectorite Laponite® XLG and graphene oxide were used. Graphene oxide was prepared by the Tour Method. Pore morphology of the pristine HEMA based hydrogels and nanocomposite hydrogels were studied by scanning electron microscopy. The formed hydrogels were found to be highly elastic and flexible. A dramatic change in the pore structure and size was observed in the range between 22 to 24 wt/vol monomer at 0.5 % of cross-linker. In this range, the hydrogel morphology changes from typical cauliflower architecture to continuous hydrogel with dispersed water droplets forming the pores where the pores are submicron in size and show an interconnected structure. Such controlled pore structure is highly important when these hydrogels are used for solute diffusion or when there’s flow through monolithic hydrogels

  16. Effect of Nanodiamonds on Structure and Durability of Polyethylene Oxide-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rossella Arrigo

    2016-01-01

    Full Text Available Polymer-based nanocomposites containing nanodiamonds (NDs are attractive multifunctional materials with a growing range of applications. In this work, in the frame of developing completely biocompatible systems, nanocomposites based on polyethylene oxide (PEO and different amount of NDs have been formulated through melt mixing and fully characterized. In particular, the reinforcement effect of NDs in PEO has been probed through tensile tests, and the rheological response of PEO-based nanocomposites as a function of the nanoparticles amount has been investigated and discussed. The obtained results show that the presence of well-distributed NDs strengthens the mechanical performance of the nanocomposites and brings about an increase of the PEO crystallinity, suggesting a strong adhesion between NDs and polymer matrix. Furthermore, as a result of NDs adding, alterations of the rheological behaviour of neat PEO can be noticed, as NDs are able to significantly influence the long-range dynamics of PEO chains. Besides, accelerated aging tests demonstrate that NDs show a remarkable protective ability against PEO photodegradation, due to their ability to attenuate efficiently UV radiation. The latter opens up new avenues for the use of NDs as multifunctional nanofillers for polymer-based nanocomposites with enhanced photooxidative resistance.

  17. Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators

    International Nuclear Information System (INIS)

    Raja, Mohan; Shanmugharaj, A.M.; Ryu, Sung Hun; Subha, J.

    2011-01-01

    Highlights: → Polyurethane based on pristine and metal (Ag and Cu) nanoparticle decorated CNTs nanocomposites are prepared through melt blending process. → The electrical, mechanical, dynamic mechanical, thermal conductivity and electro active shape memory properties of the PU nanocomposites were investigated. → The influence of metal nanoparticle decorated CNTs showed significant improvement in their all properties to compare to pristine CNTs. → Electro active shape memory studies of the PU/M-CNTs nanocomposites reveal extraordinary recoverability of its shape at lower applied dc voltages. - Abstract: Polymer nanocomposites based on thermoplastic polyurethane (PU) elastomer and metal nanoparticle (Ag and Cu) decorated multiwall carbon nanotubes (M-CNTs) were prepared through melt mixing process and investigated for its mechanical, dynamic mechanical and electro active shape memory properties. Structural characterization and morphological characterization of the PU nanocomposites were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Morphological characterization revealed better dispersion of M-CNTs in the polyurethane, which is attributed to the improved interaction between the M-CNTs and polyurethane. Loading of the metal nanoparticle coated carbon nanotubes resulted in the significant improvement on the mechanical properties such as tensile strength of the PU composites in comparison to the pristine carbon nanotubes (P-CNTs). Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the polyurethane increases slightly with increasing loading of both pristine and metal nanoparticle functionalized carbon nanotubes. The metal nanoparticles decorated carbon nanotubes also showed significant improvement in the thermal and electrical conductivity of the PU/M-CNTs nanocomposites. Shape memory studies of the PU/M-CNTs nanocomposites exhibit remarkable recoverability of its shape at lower applied dc voltages.

  18. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    Science.gov (United States)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of

  19. Chitosan-Based Nanocomposite Beads for Drinking Water Production

    Science.gov (United States)

    Masheane, ML; Nthunya, LN; Sambaza, SS; Malinga, SP; Nxumalo, EN; Mamba, BB; Mhlanga, SD

    2017-05-01

    Potable drinking water is essential for the good health of humans and it is a critical feedstock in a variety of industries such as food and pharmaceutical industries. For the first time, chitosan-alumina/functionalised multiwalled carbon nanotube (f-MWCNT) nanocomposite beads were developed and investigated for the reduction of various physico-chemical parameters from water samples collected from open wells used for drinking purposes by a rural community in South Africa. The water samples were analysed before and after the reduction of the identified contaminants by the nanocomposite beads. The nanocomposite beads were effective in the removal of nitrate, chromium and other physico-chemical parameters. Although, the water samples contained these contaminants within the WHO and SANS241 limits for no risk, the long-term exposure and accumulation is an environmental and health concern. The reduction of these contaminants was dependent on pH levels. At lower pH, the reduction was significantly higher, up to 99.2% (SPC), 91.0% (DOC), 92.2% (DO), 92.2% (turbidity), 96.5% (nitrate) and 97.7% (chromium). Generally, the chitosan-alumina/f-MWCNT nanocomposite beads offer a promising alternative material for reduction and removal of various physico-chemical parameters for production portable water.

  20. Enhanced thermoelectric properties in bulk nanowire heterostructure-based nanocomposites through minority carrier blocking.

    Science.gov (United States)

    Yang, Haoran; Bahk, Je-Hyeong; Day, Tristan; Mohammed, Amr M S; Snyder, G Jeffrey; Shakouri, Ali; Wu, Yue

    2015-02-11

    To design superior thermoelectric materials the minority carrier blocking effect in which the unwanted bipolar transport is prevented by the interfacial energy barriers in the heterogeneous nanostructures has been theoretically proposed recently. The theory predicts an enhanced power factor and a reduced bipolar thermal conductivity for materials with a relatively low doping level, which could lead to an improvement in the thermoelectric figure of merit (ZT). Here we show the first experimental demonstration of the minority carrier blocking in lead telluride-silver telluride (PbTe-Ag2Te) nanowire heterostructure-based nanocomposites. The nanocomposites are made by sintering PbTe-Ag2Te nanowire heterostructures produced in a highly scalable solution-phase synthesis. Compared with Ag2Te nanowire-based nanocomposite produced in similar method, the PbTe-Ag2Te nanocomposite containing ∼5 atomic % PbTe exhibits enhanced Seebeck coefficient, reduced thermal conductivity, and ∼40% improved ZT, which can be well explained by the theoretical modeling based on the Boltzmann transport equations when energy barriers for both electrons and holes at the heterostructure interfaces are considered in the calculations. For this p-type PbTe-Ag2Te nanocomposite, the barriers for electrons, that is, minority carriers, are primarily responsible for the ZT enhancement. By extending this approach to other nanostructured systems, it represents a key step toward low-cost solution-processable nanomaterials without heavy doping level for high-performance thermoelectric energy harvesting.

  1. Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation

    Science.gov (United States)

    2014-01-01

    In a flexible nanocomposite-based nanogenerator, in which piezoelectric nanostructures are mixed with polymers, important parameters to increase the output power include using long nanowires with high piezoelectricity and decreasing the dielectric constant of the nanocomposite. Here, we report on piezoelectric power generation from a lead-free LiNbO3 nanowire-based nanocomposite. Through ion exchange of ultra-long Na2Nb2O6-H2O nanowires, we synthesized long (approximately 50 μm in length) single-crystalline LiNbO3 nanowires having a high piezoelectric coefficient (d33 approximately 25 pmV-1). By blending LiNbO3 nanowires with poly(dimethylsiloxane) (PDMS) polymer (volume ratio 1:100), we fabricated a flexible nanocomposite nanogenerator having a low dielectric constant (approximately 2.7). The nanogenerator generated stable electric power, even under excessive strain conditions (approximately 105 cycles). The different piezoelectric coefficients of d33 and d31 for LiNbO3 may have resulted in generated voltage and current for the e33 geometry that were 20 and 100 times larger than those for the e31 geometry, respectively. This study suggests the importance of the blending ratio and strain geometry for higher output-power generation in a piezoelectric nanocomposite-based nanogenerator. PACS 77.65.-j; 77.84.-s; 73.21.Hb PMID:24386884

  2. Niobium based coatings for dental implants

    International Nuclear Information System (INIS)

    Ramirez, G.; Rodil, S.E.; Arzate, H.; Muhl, S.; Olaya, J.J.

    2011-01-01

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb 2 O 5 (a-Nb 2 O 5 ), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  3. Preparation and characterization of transparent PMMA-cellulose-based nanocomposites.

    Science.gov (United States)

    Kiziltas, Esra Erbas; Kiziltas, Alper; Bollin, Shannon C; Gardner, Douglas J

    2015-01-01

    Nanocomposites of polymethylmethacrylate (PMMA) and cellulose were made by a solution casting method using acetone as the solvent. The nanofiber networks were prepared using three different types of cellulose nanofibers: (i) nanofibrillated cellulose (NFC), (ii) cellulose nanocrystals (CNC) and (iii) bacterial cellulose from nata de coca (NDC). The loading of cellulose nanofibrils in the PMMA varied between 0.25 and 0.5 wt%. The mechanical properties of the composites were evaluated using a dynamic mechanical thermal analyzer (DMTA). The flexural modulus of the nanocomposites reinforced with NDC at the 0.5 wt% loading level increased 23% compared to that of pure PMMA. The NFC composite also exhibited a slightly increased flexural strength around 60 MPa while PMMA had a flexural strength of 57 MPa. The addition of NDC increased the storage modulus (11%) compared to neat PMMA at room temperature while the storage modulus of PPMA/CNC nanocomposite containing 0.25 and 0.5 wt% cellulose increased about 46% and 260% to that of the pure PMMA at the glass transition temperature, respectively. Thermogravimetric analysis (TGA) indicated that there was no significant change in thermal stability of the composites. The UV-vis transmittance of the CNF nanocomposites decreased by 9% and 27% with the addition of 0.25 wt% CNC and NDC, respectively. This work is intended to spur research and development activity for application of CNF reinforced PMMA nanocomposites in applications such as: packaging, flexible screens, optically transparent films and light-weight transparent materials for ballistic protection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An overview of case-based and problem-based learning methodologies for dental education.

    Science.gov (United States)

    Nadershahi, Nader A; Bender, Daniel J; Beck, Lynn; Lyon, Cindy; Blaseio, Alexander

    2013-10-01

    Dental education has undergone significant curriculum reform in response to the 1995 Institute of Medicine report Dental Education at the Crossroads and the series of white papers from the American Dental Education Association Commission on Change and Innovation in Dental Education (ADEA CCI) first published in the Journal of Dental Education and subsequently collected in a volume titled Beyond the Crossroads: Change and Innovation in Dental Education. An important element of this reform has been the introduction into academic dentistry of active learning strategies such as problem-based and case-based learning. As an aide to broadening understanding of these approaches in order to support their expansion in dental education, this article reviews the major characteristics of each approach, situates each in adult learning theory, and discusses the advantages of case-based learning in the development of a multidisciplinary, integrated predoctoral dental curriculum.

  5. Multifunctional antireflection coatings based on novel hollow silica-silica nanocomposites.

    Science.gov (United States)

    Zhang, Xianpeng; Lan, Pinjun; Lu, Yuehui; Li, Jia; Xu, Hua; Zhang, Jing; Lee, YoungPak; Rhee, Joo Yull; Choy, Kwang-Leong; Song, Weijie

    2014-02-12

    Antireflection (AR) coatings that exhibit multifunctional characteristics, including high transparency, robust resistance to moisture, high hardness, and antifogging properties, were developed based on hollow silica-silica nanocomposites. These novel nanocomposite coatings with a closed-pore structure, consisting of hollow silica nanospheres (HSNs) infiltrated with an acid-catalyzed silica sol (ACSS), were fabricated using a low-cost sol-gel dip-coating method. The refractive index of the nanocomposite coatings was tailored by controlling the amount of ACSS infiltrated into the HSNs during synthesis. Photovoltaic transmittance (TPV) values of 96.86-97.34% were obtained over a broad range of wavelengths, from 300 to 1200 nm; these values were close to the theoretical limit for a lossy single-layered AR coating (97.72%). The nanocomposite coatings displayed a stable TPV, with degradation values of less than 4% and 0.1% after highly accelerated temperature and humidity stress tests, and abrasion tests, respectively. In addition, the nanocomposite coatings had a hardness of approximately 1.6 GPa, while the porous silica coatings with an open-pore structure showed more severe degradation and had a lower hardness. The void fraction and surface roughness of the nanocomposite coatings could be controlled, which gave rise to near-superhydrophilic and antifogging characteristics. The promising results obtained in this study suggest that the nanocomposite coatings have the potential to be of benefit for the design, fabrication, and development of multifunctional AR coatings with both omnidirectional broadband transmission and long-term durability that are required for demanding outdoor applications in energy harvesting and optical instrumentation in extreme climates or humid conditions.

  6. Comparison of the mechanical properties between carbon nanotube and nanocrystalline cellulose polypropylene based nano-composites

    International Nuclear Information System (INIS)

    Huang, Jun; Rodrigue, Denis

    2015-01-01

    Highlights: • SWCNT and NCC can effectively improve the mechanical properties of nano-composites. • SWCNT is more effective than NCC to increase modulus and strength. • Longer NCC is more effective to improve the mechanical properties of nano-composites. • It is more economic to use NCC than SWCNT to improve mechanical properties. - Abstract: Using beam and tetrahedron elements to simulate nanocrystalline cellulose (NCC), single wall carbon nanotube (SWCNT) and polypropylene (PP), finite element method (FEM) is used to predict the mechanical properties of nano-composites. The bending, shear and torsion behaviors of nano-composites are especially investigated due to the limited amount of information in the present literature. First, mixed method (MM) and FEM are used to compare the bending stiffness of NCC/PP and SWCNT/PP composites. Second, based on mechanics of materials, the shear moduli of both types of nano-composites are obtained. Finally, fixing the number of fibers and for different volume contents, four NCC lengths are used to determine the mechanical properties of the composites. The bending and shearing performances are also compared between NCC and SWCNT based composites. In all cases, the elastic–plastic analyses are carried out and the stress or strain distributions for specific regions are also investigated. From all the results obtained, an economic analysis shows that NCC is more interesting than SWCNT to reinforce PP

  7. Cellulose-Based WO3 Nanocomposites Prepared by a Sol–Gel Method at Low Temperature

    Science.gov (United States)

    Zhang, Bin; Liu, Rongzhan; Pan, Ying; Wang, Quanquan; Liu, Baojiang

    2018-01-01

    A facile method was developed to prepare cellulose-based WO3 nanocomposites. The preparation was carried out by a sol-gel method by involving treatment of tungsten hexachloride and tri-block nonionic polymer at the temperature as low as 100 °C. The morphology, surface chemical composition, functional groups, and crystal phase of the as- prepared cellulose-based WO3 nanocomposites were investigated by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray powder diffraction, respectively.

  8. Recent Advances in Research on the Synthetic Fiber Based Silica Aerogel Nanocomposites

    Directory of Open Access Journals (Sweden)

    Agnieszka Ślosarczyk

    2017-02-01

    Full Text Available The presented paper contains a brief review on the synthesis and characterization of silica aerogels and its nanocomposites with nanofibers and fibers based on a literature study over the past twenty years and my own research. Particular attention is focused on carbon fiber-based silica aerogel nanocomposites. Silica aerogel is brittle in nature, therefore, it is necessary to improve this drawback, e.g., by polymer modification or fiber additives. Nevertheless, there are very few articles in the literature devoted to the synthesis of silica aerogel/fiber nanocomposites, especially those focusing on carbon fibers and nanofibers. Carbon fibers are very interesting materials, namely due to their special properties: high conductivity, high mechanical properties in relation to very low bulk densities, high thermal stability, and chemical resistance in the silica aerogel matrix, which can help enhance silica aerogel applications in the future.

  9. Optimizing Properties of Aluminum-Based Nanocomposites by Genetic Algorithm Method

    Directory of Open Access Journals (Sweden)

    M.R. Dashtbayazi

    2015-07-01

    Full Text Available Based on molecular dynamics simulation results, a model was developed for determining elastic properties of aluminum nanocomposites reinforced with silicon carbide particles. Also, two models for prediction of density and price of nanocomposites were suggested. Then, optimal volume fraction of reinforcement was obtained by genetic algorithm method for the least density and price, and the highest elastic properties. Based on optimization results, the optimum volume fraction of reinforcement was obtained equal to 0.44. For this optimum volume fraction, optimum Young’s modulus, shear modulus, the price and the density of the nanocomposite were obtained 165.89 GPa, 111.37 GPa, 8.75 $/lb and 2.92 gr/cm3, respectively.

  10. Micromechanical analysis of nanocomposites using 3D voxel based material model

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2012-01-01

    A computational study on the effect of nanocomposite structures on the elastic properties is carried out with the use of the 3D voxel based model of materials and the combined Voigt–Reuss method. A hierarchical voxel based model of a material reinforced by an array of exfoliated and intercalated...... nanoclay platelets surrounded by interphase layers is developed. With this model, the elastic properties of the interphase layer are estimated using the inverse analysis. The effects of aspect ratio, intercalation and orientation of nanoparticles on the elastic properties of the nanocomposites are analyzed....... For modeling the damage in nanocomposites with intercalated structures, “four phase” model is suggested, in which the strength of “intrastack interphase” is lower than that of “outer” interphase around the nanoplatelets. Analyzing the effect of nanoreinforcement in the matrix on the failure probability...

  11. Effects of pHs on properties of bio-nanocomposite based on tilapia skin gelatin and Cloisite Na+.

    Science.gov (United States)

    Nagarajan, Muralidharan; Benjakul, Soottawat; Prodpran, Thummanoon; Songtipya, Ponusa

    2015-04-01

    Effects of various pHs (4-8) of film forming suspensions (FFS) on the properties of nanocomposite film based on tilapia skin gelatin and hydrophilic nanoclay (Cloisite Na(+)) were investigated. Intercalated/exfoliated structure of nanocomposite films was revealed by WAXD analysis. Young's Modulus (YM) and tensile strength (TS) of nanocomposite films increased up to pH 6 (P<0.05). Nevertheless, the further increases in pH levels resulted in the decreases in both YM and TS (P<0.05). The highest water vapour barrier property of the film was observed when the pH of FFS was 6 (P<0.05). Lightness (L*) and yellowness (b*) of nanocomposite films generally increased with increasing pH levels. Transparency of nanocomposite films was affected to some extent by pHs. Homogeneity and smoothness of film surface were obtained for nanocomposite films with pH 6 as confirmed by SEM micrographs. Thermogravimetric (TGA) and differential scanning calorimetric (DSC) analyses indicated that thermal stability of nanocomposite films varied with different pH levels. In general, mechanical and water vapour barrier properties of nanocomposite films were improved when FFS having pH 6 was used. Thus, the pH of FFS directly affected the properties of nanocomposite gelatin films incorporated with hydrophilic nanoclay. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Community-based dental education: history, current status, and future.

    Science.gov (United States)

    Formicola, Allan J; Bailit, Howard L

    2012-01-01

    This article examines the history, current status, and future direction of community-based dental education (CBDE). The key issues addressed include the reasons that dentistry developed a different clinical education model than the other health professions; how government programs, private medical foundations, and early adopter schools influenced the development of CBDE; the societal and financial factors that are leading more schools to increase the time that senior dental students spend in community programs; the impact of CBDE on school finances and faculty and student perceptions; and the reasons that CBDE is likely to become a core part of the clinical education of all dental graduates.

  13. Isothermal curing of polymer layered silicate nanocomposites based upon epoxy resin by means of anionic homopolymerisation

    International Nuclear Information System (INIS)

    Román, Frida; Calventus, Yolanda; Colomer, Pere; Hutchinson, John M.

    2013-01-01

    Highlights: • The nanocomposite with low content of clay displayed improved thermal properties. • The vitrification was observed in the isothermal curing. • Dielectric relaxations outside and inside of the clay galleries were detected. - Abstract: The use of an initiator, 4-(dimethylamino) pyridine (DMAP), to promote an anionic homopolymerisation reaction for the isothermal cure of polymer layered silicate (PLS) nanocomposites based on an epoxy resin, as well as the effect of the nanoclay content, have been studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dielectric relaxation spectroscopy (DRS) and transmission electron microscopy (TEM). The vitrification phenomenon was observed during the isothermal cure process, and it was found that the nanocomposite with a low clay content (2 wt%), denoted EDM2, shows improved thermal properties with respect to the unreinforced resin (denoted ED), while the nanocomposite with a higher clay content (5 wt%), denoted EDM5, displayed inferior properties. The cure kinetics were analysed by different methods, and it was observed that the activation energy and kinetic parameters of EDM2 were lower compared to the other two systems. Examination of the nanostructure of the cured EDM2 nanocomposite showed partial exfoliation, while the EDM5 system retains an intercalated nanostructure. In the DRS studies of the curing process of the EDM2 system, two dielectric relaxations were detected, which are associated with the molecular mobility in the curing reaction which takes place both outside and inside the clay galleries

  14. Dielectric properties of ligand-modified gold nanoparticle/SU-8 photopolymer based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Toor, Anju, E-mail: atoor@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); So, Hongyun, E-mail: hyso@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Pisano, Albert P. [Department of Mechanical Engineering, University of California, Berkeley, CA 94720 (United States); Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093 (United States)

    2017-08-31

    Highlights: • Ligand-modified gold NP/SU-8 nanocomposites were synthesized and demonstrated. • Particle agglomeration and dispersion were characterized with different NPs concentration. • Nanocomposites showed higher average dielectric permittivity compared to SU-8 only. • Relatively lower dielectric loss (average 0.09 at 1 kHz) was achieved with 10 % w/w NPs. - Abstract: This article reports the enhanced dielectric properties of a photodefinable polymer nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of the dielectric permittivity and loss tangent on the particle concentration, and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  15. Long-term aging of a CeO2 based nanocomposite used for wood protection

    International Nuclear Information System (INIS)

    Auffan, Melanie; Masion, Armand; Labille, Jerome; Diot, Marie-Ange; Liu, Wei; Olivi, Luca; Proux, Olivier; Ziarelli, Fabio; Chaurand, Perrine; Geantet, Christophe; Bottero, Jean-Yves; Rose, Jerome

    2014-01-01

    A multi-scale methodology was used to characterize the long-term behavior and chemical stability of a CeO 2 -based nanocomposite used as UV filter in wood stains. ATR-FTIR and 13 C NMR demonstrated that the citrate coated chelates with Ce(IV) through its central carboxyl- and its α-hydroxyl- groups at the surface of the unaged nanocomposite. After 42 days under artificial daylight, the citrate completely disappeared and small amount of degradation products remained attached to the surface even after 112 days. Moreover, the release/desorption of the citrate layer led to a surface reorganization of the nano-sized CeO 2 core observed by XANES (Ce L 3 -edge). Such a surface and structural transformation of the commercialized nanocomposite could have implications in term of fate, transport, and potential impacts towards the environment. - Highlights: • Organic coating of the nano-composite is degradated after 1.5 month. • Structural reorganization of the nano-sized CeO 2 core over aging. • Potential implications in term of exposure and impact towards biological organisms. - The long-term aging of a CeO 2 nanocomposite lead to surface chemistry and structural changes in aquatic environments

  16. Isocyanate functionalized graphene/P3HT based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Obreja, Alexandru Cosmin, E-mail: cosmin.obreja@imt.ro; Cristea, Dana, E-mail: dana.cristea@imt.ro; Gavrila, Raluca; Schiopu, Vasilica; Dinescu, Adrian; Danila, Mihai; Comanescu, Florin

    2013-07-01

    This work presents a method for the preparation of isocyanate functionalized graphene-regioregular poly 3-hexyl tiophene (rr-P3HT) nanocomposites. Graphite oxide prepared by the Hummer’s method and half blocked tetramethyl xylylene isocyanate (Et-TMXDI) are the precursors for the new obtained isocyanate functionalized graphene. Fourier transform infrared spectroscopy, UV–vis spectroscopy, X-ray diffraction, atomic force microscopy, Scaning electron microscopy and Raman spectroscopy were used to characterize the functionalized graphene. The isocyanate functionalized graphene facilitates self-assembling of P3HT polymer in highly oriented nanowires. Thin films of functionalized graphene – rrP3HT nanocomposites obtained by spinning and dip coating processes were investigated and used for organic field effect transistors (OFETs). The doping of P3HT with the new functionalized graphene increases the mobility and also the photoresponse of OFETs in deep UV and UV range.

  17. Niobium based coatings for dental implants

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, G., E-mail: enggiova@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Facultad de Quimica, Departamento de Ingenieria Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. 04510 (Mexico); Rodil, S.E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Arzate, H. [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, Mexico D.F. 04510 (Mexico); Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, CU, Mexico D.F. 04510 (Mexico); Olaya, J.J. [Unidad de Materiales, Departamento de Ingenieria Mecanica y Mecatronica, Universidad Nacional de Colombia, Cra. 30 45-03 Bogota (Colombia)

    2011-01-15

    Niobium based thin films were deposited on stainless steel (SS) substrates to evaluate them as possible biocompatible surfaces that might improve the biocompatibility and extend the life time of stainless steel dental implants. Niobium nitride and niobium oxide thin films were deposited by reactive unbalanced magnetron sputtering under standard deposition conditions without substrate bias or heating. The biocompatibility of the surfaces was evaluated by testing the cellular adhesion and viability/proliferation of human cementoblasts during different culture times, up to 7 days. The response of the films was compared to the bare substrate and pieces of Ti6Al4V; the most commonly used implant material for orthopedics and osteo-synthesis applications. The physicochemical properties of the films were evaluated by different means; X-ray diffraction, Rutherford backscattering spectroscopy and contact angle measurements. The results suggested that the niobium oxide films were amorphous and of stoichiometric Nb{sub 2}O{sub 5} (a-Nb{sub 2}O{sub 5}), while the niobium nitride films were crystalline in the FCC phase (c-NbN) and were also stoichiometric with an Nb to N ratio of one. The biological evaluation showed that the biocompatibility of the SS could be improved by any of the two films, but neither was better than the Ti6Al4V alloy. On the other hand, comparing the two films, the c-NbN seemed to be a better surface than the oxide in terms of the adhesion and proliferation of human cemetoblasts.

  18. Flexible energy storage devices based on nanocomposite paper

    OpenAIRE

    Pushparaj, Victor L.; Shaijumon, Manikoth M.; Kumar, Ashavani; Murugesan, Saravanababu; Ci, Lijie; Vajtai, Robert; Linhardt, Robert J.; Nalamasu, Omkaram; Ajayan, Pulickel M.

    2007-01-01

    There is strong recent interest in ultrathin, flexible, safe energy storage devices to meet the various design and power needs of modern gadgets. To build such fully flexible and robust electrochemical devices, multiple components with specific electrochemical and interfacial properties need to be integrated into single units. Here we show that these basic components, the electrode, separator, and electrolyte, can all be integrated into single contiguous nanocomposite units that can serve as ...

  19. Nanocomposites based on titanium dioxide and polythiophene: structure and properties

    Czech Academy of Sciences Publication Activity Database

    Vu, Q. T.; Pavlík, Martin; Hebestreit, N.; Rammelt, U.; Plieth, W.; Pfleger, Jiří

    2005-01-01

    Roč. 65, 1-2 (2005), s. 69-77 ISSN 1381-5148. [International Conference on Polymers and Organic Chemistry /11./. Prague, 18.06.2004-23.06.2004] R&D Projects: GA AV ČR IAA4050406 Grant - others:European Graduate School: Advanced Polymeric Materials(XE) IGK720 Institutional research plan: CEZ:AV0Z40500505 Keywords : polythiophene * titanium dioxide * nanocomposites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.565, year: 2005

  20. Preparation and characterization of magnetite-based silica nanocomposite

    Directory of Open Access Journals (Sweden)

    Popovici Mihaela

    2004-01-01

    Full Text Available Sol-gel method and successive thermal treatments in vacuum and nitrogen atmosphere were employed to synthesize magnetite nanoparticles isolate them with the aid of amorphous silica. Thermogravimetric and differential thermal analyses coupled with mass spectrometry, X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy and vibrating sample magnetometry measurements were performed on the obtained nanocomposites. The effect of atmosphere on the formation of magnetite phase was remarkable.

  1. Flexible energy storage devices based on nanocomposite paper.

    Science.gov (United States)

    Pushparaj, Victor L; Shaijumon, Manikoth M; Kumar, Ashavani; Murugesan, Saravanababu; Ci, Lijie; Vajtai, Robert; Linhardt, Robert J; Nalamasu, Omkaram; Ajayan, Pulickel M

    2007-08-21

    There is strong recent interest in ultrathin, flexible, safe energy storage devices to meet the various design and power needs of modern gadgets. To build such fully flexible and robust electrochemical devices, multiple components with specific electrochemical and interfacial properties need to be integrated into single units. Here we show that these basic components, the electrode, separator, and electrolyte, can all be integrated into single contiguous nanocomposite units that can serve as building blocks for a variety of thin mechanically flexible energy storage devices. Nanoporous cellulose paper embedded with aligned carbon nanotube electrode and electrolyte constitutes the basic unit. The units are used to build various flexible supercapacitor, battery, hybrid, and dual-storage battery-in-supercapacitor devices. The thin freestanding nanocomposite paper devices offer complete mechanical flexibility during operation. The supercapacitors operate with electrolytes including aqueous solvents, room temperature ionic liquids, and bioelectrolytes and over record temperature ranges. These easy-to-assemble integrated nanocomposite energy-storage systems could provide unprecedented design ingenuity for a variety of devices operating over a wide range of temperature and environmental conditions.

  2. Epoxy nanocomposites based on high temperature pyridinium-modified clays.

    Science.gov (United States)

    Zhang, Qingxin; Naito, Kimiyoshi; Qi, Ben; Kagawa, Yutaka

    2009-01-01

    Polymer/clay nanocomposites are generally fabricated by thermal curing or melt compounding at elevated temperatures, however the thermal stability of common alkyl ammonium treated clays is poor and decomposition occurs inevitably during high temperature processing. In this study, we modified clays with an aromatic pyridinium salt. Thermogravimetric analysis (TGA) showed that the onset degradation temperature (Td(onset)) and maximum decomposition temperature (Td(max)) of the pyridinium treatment clays was up to 310 and 457 degrees C respectively implying high thermal stability. The thermal decomposition behaviour of the pyridinium modified clays was discussed. A series of epoxy/clay nanocomposites were synthesized using a diglycidyl ether of bisphenol A (DGEBA) epoxy and diethyltoluene diamine (DETDA). The morphology of epoxy/clay nanocomposites was characterized with wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM), and intercalated structures were observed. The storage modulus of epoxy was increased but glass transition temperature was decreased with clay incorporation. The effects of clays on glass transition temperature (Tg) of epoxy were also discussed.

  3. Polymer waveguide couplers based on metal nanoparticle–polymer nanocomposites

    International Nuclear Information System (INIS)

    Signoretto, M; Suárez, I; Chirvony, V S; Martínez-Pastor, J; Abargues, R; Rodríguez-Cantó, P J

    2015-01-01

    In this work Au nanoparticles (AuNPs) are incorporated into poly(methyl methacrylate) (PMMA) waveguides to develop optical couplers that are compatible with planar organic polymer photonics. A method for growing AuNPs (of 10 to 100 nm in size) inside the commercially available Novolak resist is proposed with the intention of tuning the plasmon resonance and the absorption/scattering efficiencies inside the patterned structures. The refractive index of the MNP–Novolak nanocomposite (MNPs: noble metal nanoparticles) is carefully analysed both experimentally and numerically in order to find the appropriate fabrication conditions (filling factor and growth time) to optimize the scattering cross section at a desired wavelength. Then the nanocomposite is patterned inside a PMMA waveguide to exploit its scattering properties to couple and guide a normal incident laser light beam along the polymer. In this way, light coupling is experimentally demonstrated in a broad wavelength range (404–780 nm). Due to the elliptical shape of the MNPs the nanocomposite demonstrates a birefringence, which enhances the coupling to the TE mode up to efficiencies of around 1%. (paper)

  4. Characterization of polymer based nanocomposites with carbon nanotubes.

    Science.gov (United States)

    Ciecierska, Ewelina; Boczkowska, Anna; Kurzydłowski, Krzysztof J

    2014-04-01

    The paper concerns investigation of the processing methods influence on the electrical, thermal and mechanical properties of the polymer matrix nanocomposites with carbon nanotubes (CNTs) as a filler. The focus is put on the relation between microstructure and properties dependently on the parameters of mixing, epoxy matrix curing parameters, neat epoxy resin viscosity, carbon nanotubes modified with different functional groups, as well as carbon nanotubes weight fraction. Nanocomposites with the CNTs varied from 0.05 to 5 wt.% were obtained by dispersion methods such as: mechanical stirring, ultrasonication and combination both of them, as well as calendaring. Three epoxy resin systems were tested, varied in viscosity and curing temperature. Also CNTs nonmodified and modified with amino, carboxyl and hydroxyl groups were used. The choice of the best epoxy resin system and kind of CNTs for fabrication of conductive nanocomposites was done. The lower neat epoxy resin viscosity the better dispersion of CNTs can be achieved. The distribution of CNTs in the epoxy matrix was evaluated using high resolution scanning electron microscopy, supported by image analysis. Electrical conductivity, as well as thermal stability and thermodynamic properties of polymers filled with CNTs were determined. Activation energy of decomposition process was calculated from thermogravimetric curves by Flynn-Wall-Ozawa method. The deterioration of thermal stability was obtained, while mechanical properties increase with the CNTs weight fraction growth up to 0.1%. Calendaring was found as the best method of CNTs dispersion in the polymer matrix.

  5. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films.

    Science.gov (United States)

    Chen, Fanhong; Wan, Pengbo; Xu, Haijun; Sun, Xiaoming

    2017-05-31

    Flexible transparent electronic devices have recently gained immense popularity in smart wearable electronics and touch screen devices, which accelerates the development of the portable power sources with reliable flexibility, robust transparency and integration to couple these electronic devices. For potentially coupled as energy storage modules in various flexible, transparent and portable electronics, the flexible transparent supercapacitors are developed and assembled from hierarchical nanocomposite films of reduced graphene oxide (rGO) and aligned polyaniline (PANI) nanoarrays upon their synergistic advantages. The nanocomposite films are fabricated from in situ PANI nanoarrays preparation in a blended solution of aniline monomers and rGO onto the flexible, transparent, and stably conducting film (FTCF) substrate, which is obtained by coating silver nanowires (Ag NWs) layer with Meyer rod and then coating of rGO layer on polyethylene terephthalate (PET) substrate. Optimization of the transparency, the specific capacitance, and the flexibility resulted in the obtained all-solid state nanocomposite supercapacitors exhibiting enhanced capacitance performance, good cycling stability, excellent flexibility, and superior transparency. It provides promising application prospects for exploiting flexible, low-cost, transparent, and high-performance energy storage devices to be coupled into various flexible, transparent, and wearable electronic devices.

  6. Semiconducting properties of layered cadmium sulphide-based hybrid nanocomposites

    Directory of Open Access Journals (Sweden)

    Sotomayor Torres Clivia

    2011-01-01

    Full Text Available Abstract A series of hybrid cadmium salt/cationic surfactant layered nanocomposites containing different concentrations of cadmium sulphide was prepared by exchanging chloride by sulphide ions in the layered precursor CdX x (OH y (CnTA z in a solid phase/gas reaction, resulting in a series of layered species exhibiting stoichiometries corresponding to CdS v X x (OH y (CnTA z , constituted by two-dimensional CdCl2/CdS ultra-thin sheets sandwiched between two self-assembled surfactant layers. The electronic structure of CdS in the nanocomposite is similar to that of bulk, but showing the expected features of two-dimensional confinement of the semiconductor. The nanocomposite band gap is found to depend in a non-linear manner on both the length of the hydrocarbon chain of the surfactant and the concentration of the sulphide in the inorganic sheet. The products show photocatalytic activity at least similar and usually better than that of "bulk" CdS in a factor of two.

  7. Electrochromic nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Milliron, Delia; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2018-04-10

    The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.

  8. Dielectric properties of ligand-modified gold nanoparticles/SU-8 photopolymer based nanocomposites

    KAUST Repository

    Toor, Anju

    2017-04-15

    This article reports the enhanced dielectric properties of a photodefinable nanocomposite material containing sub–10 nm coated metal nanoparticles (NPs). The surface morphology of the synthesized dodecanethiol-functionalized gold NPs was characterized using the transmission electron microscopy (TEM). We investigated the particle agglomeration and dispersion during the various stages of the nanocomposite synthesis using TEM. Physical properties such as dielectric permittivity and dielectric loss were measured experimentally. The dependence of dielectric permittivity and loss tangent on particle concentration and frequency was studied. Nanocomposite films showed an approximately three times enhancement in average dielectric constant over the polymer base value and an average dielectric loss of 0.09 at 1 kHz, at a filler loading of 10% w/w.

  9. Poly(lactic acid) (PLA) based nanocomposites-a novel way of drug-releasing

    International Nuclear Information System (INIS)

    Chen Chen; Lv Gang; Pan Chao; Song Min; Wu Chunhui; Guo Dadong; Wang Xuemei; Chen Baoan; Gu Zhongze

    2007-01-01

    In this communication, poly(lactic acid) nanofibers have been fabricated by electrospinning and then poly(lactic acid) (PLA) based nanocomposites have been prepared by accumulating anticancer drug daunorubicin on PLA nanofibers combined with TiO 2 nanoparticles. Our atomic force microscopy (AFM) and laser-scanning confocal microscope (LSCM) studies demonstrate that the respective drug molecules could be readily self-assembled on the surface of the blends of nano-TiO 2 with PLA polymer nanocomposites, which could further efficiently facilitate the drug permeation and accumulation on the target leukemia K562 cells. Besides, the respective new nanocomposites have good biocompatibility, ease of surface chemistry modification and very high surface area, which may afford the possibility for their promising application in pharmacology and biomedical engineering areas. (communication)

  10. Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Nuvoli, Daniele; Alzari, Valeria; Sanna, Roberta; Scognamillo, Sergio [Universita di Sassari, Local INSTM Unit, Dipartimento di Chimica e Farmacia (Italy); Alongi, Jenny; Malucelli, Giulio, E-mail: giulio.malucelli@polito.it [Politecnico di Torino, sede di Alessandria, Local INSTM Unit, Dipartimento di Scienza Applicata e Tecnologia (Italy); Mariani, Alberto, E-mail: mariani@uniss.it [Universita di Sassari, Local INSTM Unit, Dipartimento di Chimica e Farmacia (Italy)

    2013-03-15

    In the present study, graphene-based nanocomposites containing different amounts of nanofiller dispersed into Bis-GMA/tetraethyleneglycol diacrylate (Bis-GMA/TEGDA) polymer matrix have been prepared. In particular, the graphene dispersions, produced at high concentration (up to 6 mg/ml) by simple sonication of graphite in TEGDA monomer, have been used for the direct preparation of nanocomposite copolymers with Bis-GMA. The morphology of the obtained nanocomposites has been investigated as well as their thermal and mechanical properties. SEM analyses have clearly shown that graphene deeply interacts with the polymer matrix, thus resulting in a reinforcing effect on the material as proved by compression and hardness tests; at variance, graphene does not seem to affect the glass transition temperature of the obtained polymer networks.

  11. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    Science.gov (United States)

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  12. Evaluating a Team-Based Learning Method for Detecting Dental Caries in Dental Students

    Science.gov (United States)

    Park, Sang E.; Kim, Junhyck; Anderson, Nina

    2014-01-01

    The purpose of the study was to investigate whether the team-based learning environment facilitated the competency of third year dental students in caries detection and activity assessment. Corresponding data were achieved using digital radiographs to determine the carious lesions in three clinical cases. The distribution of the caries evaluations…

  13. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite.

    Science.gov (United States)

    Chen, Jing; Xu, Feng; Wu, Jun; Qasim, Khan; Zhou, Yidan; Lei, Wei; Sun, Li-Tao; Zhang, Yan

    2012-01-21

    We have fabricated the flexible photoelectrode by loading graphene sheets modified with CdSe QDs. A power conversion efficiency of ∼0.6% and an incident photon to current conversion efficiency of 17% have been achieved for this flexible photovoltaic cell based on a graphene-CdSe nanocomposite.

  14. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium

    NARCIS (Netherlands)

    Kubacka, A.; Suarez Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Martins Dos Santos, V.A.P.; Fernández-García, M.; Ferrer, M.

    2014-01-01

    Titania (TiO2)-based nanocomposites subjected to light excitation are remarkably effective in eliciting microbial death. However, the mechanism by which these materials induce microbial death and the effects that they have on microbes are poorly understood. Here, we assess the low dose

  15. Pulsed DC sputtered DLC based nanocomposite films : controlling growth dynamics, microstructure and frictional properties

    NARCIS (Netherlands)

    Shaha, K.P.; Pei, Y.T.; Chen, C.Q.; Hosson, J.Th.M. de

    Surface smoothness of diamond-like carbon based thin films becomes a crucial property for developing nearly frictionless protective coatings. Surface roughness and the dynamic growth behaviour of TiC/a-C nanocomposite films, deposited by non-reactive pulsed DC (p-DC) sputtering of graphite targets,

  16. Evaluation of workplace based assessment tools in dental foundation training.

    Science.gov (United States)

    Grieveson, B; Kirton, J A; Palmer, N O A; Balmer, M C

    2011-08-26

    The aims of this survey were to evaluate the effectiveness of workplace based assessments (WPAs) in dental foundation training (formerly vocational training [VT]). Two online questionnaire surveys were sent to 53 foundation dental practitioners (FDPs) and their 51 trainers in the Mersey Deanery at month four and month nine of the one year of dental foundation training. The questionnaires investigated the effectiveness of and trainers' and trainees' satisfaction with the WPAs used in foundation training, namely dental evaluation of performance (D-EPs), case-based discussions (DcBD) and patients' assessment questionnaires (PAQs). The questionnaires also investigated the perceived impact of reflection and feedback associated with WPAs on clinical practise and improving patient care. A total of 41 (7.4%) FDPs and 44 (86.3%) trainers responded. Of the 41 FDPs, the majority found that feedback from WPAs had a positive effect on their training, giving them insight into their development needs. Overall 84.1% of the FDPs felt the WPAs helped them improve patient care and 82.5% of trainers agreed with that outcome. The findings from this study demonstrate the value of WPAs in dental foundation training by the use of feedback and reflection in directing the learning of foundation dental practitioners and that this can lead to improved clinical practise and patient care.

  17. Elastomer Nanocomposites Based on Organoclay/IIR/EPDM: Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Laleh Basiri

    2013-01-01

    Full Text Available Nanocomposite samples based on elastomer blends of butyl rubber (IIR and ethylene propylene diene monomer (EPDM were prepared using a laboratory scale two-roll mill in order to study the effect of Cloisite 15A organoclay content (i.e., 1, 3, 5 and 7 wt% on the mechanical and morphological properties  of  IIR/EPDM/Cloisite  15A  nanocomposites  compared  to  the  unflled EPDM/IIR blends. Rheometer (RPA, X-ray diffraction (XRD and scanning electron microscope (SEM were utilized for relevant characterization of cure behavior and microstructural properties of the prepared samples. Cure characteristics of the prepared compounds including optimum cure time (t90 and scorch time (t5, depicted a decrease in these two parameters with increasing nanoclay content; where the cure time was prolonged with EPDM increasing content. In fact, nanoclay not only acts as a reinforcing agent in nanocomposites but also accelerates the cure process of IIR/EPDM elastomer compounds. Intercalation of elastomer chains into the organoclay silicate layers was determined by d-spacing values calculated according to the results of X-ray diffraction patterns. XRD results of all the nanocomposites samples prepared here showed a leftward shift towards lower diffraction angles in the organoclay characteristic peak, indicating an increase in the d-spacing values compared to the pure organoclay which emphasizes the intercalation of elastomer chains into the clay galleries. This phenomenon was also confrmed according  to  the direct observation of the cryogenically fracture surfaces of the samples by SEM micrographs depicting a combination of intercalated and exfoliated microstructures. However, there appeared incrementally slowed down rate in higher clay contents. With addition of nanoclay, mechanical properties of the nanocomposite samples including hardness, fatigue strength, tensile modulus and tensile strength were observed to be improved. Elongation-at-break and

  18. Polylactide based nanocomposites: Processing, structure and performance relationship

    Science.gov (United States)

    Karami, Shahir

    The application of biodegradable polymers has been offered to the packing industry wishing to overcome the environmental consequence of employing the petroleum-based polymers. Furthermore, the unstable oil market urged the industry to look for the substitution of the renewable resources. Polylactide is known as the most popular biodegradable polymer developed on a large scale. Nevertheless, the growing contribution of polylactide to packing industry is somewhat restricted owing to its inherent brittleness and weak barrier properties. Therefore, the main objective of this thesis was defined to build a fundamental relationship between processing parameters and solid-state microstructure to improve the performance of polylactide. Polylactide nanocomposites were prepared through a multi-step melt compounding process. Dispersion of organically modified layered nanoparticles was detected by the WAXS and TEM characterizations, demonstrating the formation of intercalated nanocomposites. Relaxation spectrum exhibited the restricted dynamics of fraction of amorphous phase confined in polymer-particle interphase through dynamic rheological measurements. The fraction of rigid amorphous chains was estimated using TMDSC and DMA. This increased with nanoparticle content, levelling off upon the aggregation of nanoparticles. The annealing-induced molecular ordering was detected by FR-IR, increasing the rigid amorphous fraction. Cold crystallization was investigated during non-isothermal process using TMDSC. Crystallization kinetic was studied through the evaluation of Avrami parameters in isothermal process at the temperature range of Tg+30°C to Tg+70°C. The crystallization rate depressed with the nanoparticle content due to the enhanced fraction of rigid amorphous chains, as well as, the topological constraints derived from the formation of network structure. Nevertheless, the nanoparticles acted as heterogeneous nucleating sites upon devitrification of the rigid amorphous

  19. Evidence-based Update of Pediatric Dental Restorative Procedures: Dental Materials.

    Science.gov (United States)

    Dhar, V; Hsu, K L; Coll, J A; Ginsberg, E; Ball, B M; Chhibber, S; Johnson, M; Kim, M; Modaresi, N; Tinanoff, N

    2015-01-01

    The science of dental materials and restorative care in children and adolescent is constantly evolving, and the ongoing search for ideal restorative materials has led to plethora of research. To provide an evidence base to assist dental practitioners choose appropriate restorative care for children and adolescents. This evidence-based review appraises this literature, primarily between the years 1995-2013, for efficacy of dental amalgam, composites, glass ionomer cements, compomers, preformed metal crowns and anterior esthetic restorations. The assessment of evidence for each dental material was based on a strong evidence, evidence in favor, expert opinion, and evidence against by consensus of the authors. There is varying level of evidence for the use of restorative materials like amalgam, composites, glass ionomers, resin-modified glass-ionomers, compomers, stainless steel crowns and anterior crowns for both primary and permanent teeth. A substantial amount data is available on restorative materials used in pediatric dentistry; however, there exists substantial evidence from systematic reviews and randomized clinical trials and clinicians need to examine and understand the available literature evidence carefully to aid them in clinical decision making.

  20. Simplified preparation and characterization of magnetic hydroxyapatite-based nanocomposites.

    Science.gov (United States)

    Scialla, Stefania; Palazzo, Barbara; Barca, Amilcare; Carbone, Luigi; Fiore, Angela; Monteduro, Anna Grazia; Maruccio, Giuseppe; Sannino, Alessandro; Gervaso, Francesca

    2017-07-01

    Authors aimed to provide a magnetic responsiveness to bone-mimicking nano-hydroxyapatite (n-HA). For this purpose, dextran-grafted iron oxide nanoarchitectures (DM) were synthesized by a green-friendly and scalable alkaline co-precipitation method at room temperature and used to functionalize n-HA crystals. Different amounts of DM hybrid structures were added into the nanocomposites (DM/n-HA 1:1, 2:1 and 3:1weight ratio) which were investigated through extensive physicochemical (XRD, ICP, TGA and Zeta-potential), microstructural (TEM and DLS), magnetic (VSM) and biological analyses (MTT proliferation assay). X-ray diffraction patterns have confirmed the n-HA formation in the presence of DM as a co-reagent. Furthermore, the addition of DM during the synthesis does not affect the primary crystallite domains of DM/n-HA nanocomposites. DM/n-HAs have shown a rising of the magnetic moment values by increasing DM content up to 2:1 ratio. However, the magnetic moment value recorded in the DM/n-HA 3:1 do not further increase showing a saturation behaviour. The cytocompatibility of the DM/n-HA was evaluated with respect to the MG63 osteoblast-like cell line. Proliferation assays revealed that viability, carried out in the absence of external magnetic field, was not affected by the amount of DM employed. Interestingly, assays also suggested that the DM/n-HA nanocomposites exhibit a possible shielding effect with respect to the anti-proliferative activity induced by the DM particles alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.

    Science.gov (United States)

    Salarian, Mehrnaz; Xu, William Z; Wang, Zhiqiang; Sham, Tsun-Kong; Charpentier, Paul A

    2014-10-08

    Calcium phosphate-based nanocomposites offer a unique solution toward producing scaffolds for orthopedic and dental implants. However, despite attractive bioactivity and biocompatibility, hydroxyapatite (HAp) has been limited in heavy load-bearing applications due to its intrinsically low mechanical strength. In this work, to improve the mechanical properties of HAp, we grew HAp nanoplates from the surface of one-dimensional titania nanorod structures by combining a coprecipitation and sol-gel methodology using supercritical fluid processing with carbon dioxide (scCO2). The effects of metal alkoxide concentration (1.1-1.5 mol/L), reaction temperature (60-80 °C), and pressure (6000-8000 psi) on the morphology, crystallinity, and surface area of the resulting nanostructured composites were examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and Brunauer-Emmet-Teller (BET) method. Chemical composition of the products was characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption near-edge structure (XANES) analyses. HAp nanoplates and HAp-TiO2 nanocomposites were homogeneously mixed within poly(ε-caprolactone) (PCL) to develop scaffolds with enhanced physical and mechanical properties for bone regeneration. Mechanical behavior analysis demonstrated that the Young's and flexural moduli of the PCL/HAp-TiO2 composites were substantially higher than the PCL/HAp composites. Therefore, this new synthesis methodology in scCO2 holds promise for bone tissue engineering with improved mechanical properties.

  2. Caries treatment in a dental practice-based research network

    DEFF Research Database (Denmark)

    Gilbert, Gregg H; Gordan, Valeria V; Funkhouser, Ellen M

    2012-01-01

    OBJECTIVES: Practice-based research networks (PBRNs) provide a venue to foster evidence-based care. We tested the hypothesis that a higher level of participation in a dental PBRN is associated with greater stated change toward evidence-based practice. METHODS: A total of 565 dental PBRN...... practitioner-investigators completed a baseline questionnaire entitled 'Assessment of Caries Diagnosis and Treatment'; 405 of these also completed a follow-up questionnaire about treatment of caries and existing restorations. Certain questions (six treatment scenarios) were repeated at follow-up a mean (SD...

  3. Hydrogen Gas Sensing Using Palladium-Graphene Nanocomposite Material Based on Surface Acoustic Wave

    Directory of Open Access Journals (Sweden)

    Nguyen Hai Ha

    2017-01-01

    Full Text Available We report the fabrication and characterization of surface acoustic wave (SAW hydrogen sensors using palladium-graphene (Pd-Gr nanocomposite as sensing material. The Pd-Gr nanocomposite as sensing layer was deposited onto SAW delay line sensor-based interdigitated electrodes (IDTs/aluminum nitride (AlN/silicon (Si structure. The Pd-Gr nanocomposite was synthesized by a chemical route and deposited onto SAW sensors by air-brush spraying. The SAW H2 sensor using Pd-Gr nanocomposite as a sensing layer shows a frequency shift of 25 kHz in 0.5% H2 concentration at room temperature with good repeatability and stability. Moreover, the sensor showed good linearity and fast response/recovery within ten seconds with various H2 concentrations from 0.25 to 1%. The specific interaction between graphene and SAW transfer inside AlN/Si structures yields a high sensitivity and fast response/recovery of SAW H2 sensor based on Pd-Gr/AlN/Si structure.

  4. Functional energy nanocomposites surfaces based on mesoscopic microspheres, polymers and graphene flakes

    Science.gov (United States)

    Alekseev, S. A.; Dmitriev, A. S.; Dmitriev, A. A.; Makarov, P. G.; Mikhailova, I. A.

    2017-11-01

    In recent years, there has been a great interest in the development and creation of new functional energy materials, including for improving the energy efficiency of power equipment and for effectively removing heat from energy devices, microelectronics and optoelectronics (power micro electronics, supercapacitors, cooling of processors, servers and Data centers). In this paper, the technology of obtaining a new nanocomposite based on mesoscopic microspheres, polymers and graphene flakes is considered. The methods of sequential production of functional materials from graphite flakes of different volumetric concentration using polymers based on epoxy resins and polyimide, as well as the addition of a mesoscopic medium in the form of monodisperse microspheres are described. The data of optical and electron microscopy of such nanocomposites are presented, the main problems in the appearance of defects in such materials are described, the possibilities of their elimination by the selection of different concentrations and sizes of the components. Data are given on the measurement of the hysteresis of the contact angle and the evaporation of droplets on similar substrates. The results of studying the mechanical, electrophysical and thermal properties of such nanocomposites are presented. Particular attention is paid to the investigation of the thermal conductivity of these nanocomposites with respect to the creation of thermal interface materials for cooling devices of electronics, optoelectronics and power engineering.

  5. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods

    OpenAIRE

    Rouhi, Jalal; Mahmud, Shahrom; Naderi, Nima; Ooi, CH Raymond; Mahmood, Mohamad Rusop

    2013-01-01

    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the...

  6. Carboxymethyl chitosan based nanocomposites containing chemically bonded quantum dots and magnetic nanoparticles

    Science.gov (United States)

    Ding, Yongling; Yin, Hong; Chen, Rui; Bai, Ru; Chen, Chunying; Hao, Xiaojuan; Shen, Shirley; Sun, Kangning; Liu, Futian

    2018-03-01

    A biocompatible nanocomposite consisting of fluorescent quantum dots (QDs) and magnetic nanoparticles (MNPs) has been constructed via carboxymethyl chitosan (CMCS), resulting in magnetic-fluorescent nanoparticles (MFNPs). In these MFNPs, QDs and MNPs are successfully conjugated via covalent bonds onto the surface of CMCS. The composite retains favorable magnetic and fluorescent properties and shows a good colloidal stability in physiological environments. Folate (FA) as a specific targeting ligand was further incorporated into the nanocomposites to form a delivery vehicle with a targeting function. The therapeutic activity was achieved by loading chemotherapeutic drug doxorubicin (DOX) through electrostatic and hydrophobic interactions. The cumulative DOX release profile shows pH-sensitive. Both flow cytometry analysis and confocal laser scanning microscopic observation suggested that these nanocomposites were uptaken by cancer cells via FA receptor-mediated endocytosis pathway. In summary, the CMCS based nanocomposites developed in this work have a great potential for effective cancer-targeting and drug delivery, as well as in situ cellular imaging.

  7. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  8. Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites

    Science.gov (United States)

    Xia, Xiaodong; Hao, Jia; Wang, Yang; Zhong, Zheng; Weng, George J.

    2017-05-01

    Highly aligned graphene-based nanocomposites are of great interest due to their excellent electrical properties along the aligned direction. Graphene fillers in these composites are not necessarily perfectly aligned, but their orientations are highly confined to a certain angle, θ, with 90° giving rise to the randomly oriented state and 0° to the perfectly aligned one. Recent experiments have shown that electrical conductivity and dielectric permittivity of highly aligned graphene-polymer nanocomposites are strongly dependent on this distribution angle, but at present no theory seems to exist to address this issue. In this work we present a new effective-medium theory that is derived from the underlying physical process including the effects of graphene orientation, filler loading, aspect ratio, percolation threshold, interfacial tunneling, and Maxwell-Wagner-Sillars polarization, to determine these two properties. The theory is formulated in the context of preferred orientational average. We highlight this new theory with an application to rGO/epoxy nanocomposites, and demonstrate that the calculated in-plane and out-of-plane conductivity and permittivity are in agreement with the experimental data as the range of graphene orientations changes from the randomly oriented to the highly aligned state. We also show that the percolation thresholds of highly aligned graphene nanocomposites are in general different along the planar and the normal directions, but they converge into a single one when the statistical distribution of graphene fillers is spherically symmetric.

  9. Development of multifunctional fluoroelastomers based on nanocomposites; Desenvolvimento de elastomeros fluorados multifuncionais baseados em nanocompositos

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Heloisa Augusto

    2015-07-01

    The fluoropolymers are known for their great mechanical properties, high thermal stability and resistance to aggressive chemical environment, and because of those properties they are widely used in industries, such as automobile, petroleum, chemistry, manufacturing, among others. To improve the thermal properties and gases barrier of the polymeric matrix, the incorporation of nanoparticle is used, this process permits the polymer to maintain their own characteristics and acquire new properties of nanoparticle. Because of those properties, the structural and morphological modification of fluoropolymers are very hard to be obtained through traditional techniques, in order to surmount this difficulty, the ionizing radiation is a well-known and effective method to modify fluoropolymers structures. In this thesis a nanocomposite polymeric based on fluoroelastomer (FKM) was developed and incorporated with four different configurations of nanoparticles: clay Cloisite 15A, POSS 1159, POSS 1160 and POSS 1163. After the nanocomposites films were obtained, a radiation induced grafting process was carried out, followed by sulfonation in order to obtain a ionic exchanged membrane. The effect of nanoparticle incorporation and the ionizing radiation onto films were characterized by X-ray diffraction, thermal and mechanical analysis, scanning electron microscopy and swelling; and the membranes were evaluated by degree of grafting, ionic exchange capacity and swelling. After the films were characterized, the crosslinking effect was observed to be predominant for the nanocomposites irradiated before the vulcanization, whereas the degradation was the predominant effect in the nanocomposites irradiated after vulcanization. (author)

  10. Accelerated weathering of PP based nanocomposites: Effect of the presence of maleic anhydryde grafted polypropylene

    Directory of Open Access Journals (Sweden)

    N. Tz. Dintcheva

    2013-08-01

    Full Text Available Polymer nanocomposites are currently a topic of great interest. The increasing importance they are gaining also in the standpoint of industrial applications, is giving concerns regarding their environmental stability and, in general, their behaviour in outdoor applications, under direct solar irradiation. Papers available in the literature have highlighted the different influences of different nanosized fillers, in particular clay-based nanofillers; however, few data are available regarding other nanosized fillers. Furthermore, the research on polymer nanocomposites has clearly pointed out that the use of compatibilizers is required to improve the mechanical performance and the dispersion of polar fillers inside apolar polymer matrices, especially when complex mechanisms such as intercalation and exfoliation, typical of clay-filled nanocomposites, are involved. In this work, the photo-oxidation behaviour of polypropylene/clay and polypropylene/calcium carbonate nanocomposites containing different amounts of maleic anhydride grafted polypropylene (PPgMA and subjected to accelerated weathering, was investigated. The results showed significant differences between the two nanofillers and different degradation behaviours in presence of the compatibilizer. In particular, PPgMA modified the dispersion of the nanofillers but, on the other hand, higher amounts proved to lead to the formation of some heterogeneities. Furthermore, PPgMA proved to positively affect the photo-oxidation behaviour by decreasing the rate of formation of the degradation products.

  11. Alginate-based nanocomposites for efficient removal of heavy metal ions.

    Science.gov (United States)

    Esmat, Mohamed; Farghali, Ahmed A; Khedr, Mohamed H; El-Sherbiny, Ibrahim M

    2017-09-01

    Cobalt ferrite nanoparticles (CF), titanate nanotubes (T), alginate (G) and their nanocomposite microparticles (CF/G and T/G) were prepared and used for efficient removal of Cu 2+ , Fe 3+ and As 3+ ions from water. The nanocomposites were characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), FTIR and vibrating sample magnetometer (VSM). In addition, the effects of pH, contact time, adsorbent weight and heavy metal ion concentration on the removal efficiency were investigated. Our results revealed a successful preparation of the nanocomposite particles. The optimized batch experiment conditions were found to be pH of 6.5, contact time of 2h and adsorbent weight of 0.15g. The removal efficiencies for Cu 2+ using G, CF, T, CF/G and T/G were found to be 91%, 100%, 99.9%, 95% and 98%, respectively. While that of Fe 3+ removal was 60%, 100%, 100%, 60% and 82%, respectively. Efficient removal of As 3+ ions was also attained (98% upon using T nanoadsorbents). The current study demonstrated that the developed nanomaterials (CF and T) and their corresponding alginate-based nanocomposite microparticles could be further tailored and used as efficient adsorbents for the uptake of different heavy metal ions from wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Nanocomposites Based on Luminescent Colloidal Nanocrystals and Polymeric Ionic Liquids towards Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Annamaria Panniello

    2014-01-01

    Full Text Available Polymeric ionic liquids (PILs are an interesting class of polyelectrolytes, merging peculiar physical-chemical features of ionic liquids with the flexibility, mechanical stability and processability typical of polymers. The combination of PILs with colloidal semiconducting nanocrystals leads to novel nanocomposite materials with high potential for batteries and solar cells. We report the synthesis and properties of a hybrid nanocomposite made of colloidal luminescent CdSe nanocrystals incorporated in a novel ex situ synthesized imidazolium-based PIL, namely, either a poly(N-vinyl-3-butylimidazolium hexafluorophosphate or a homologous PIL functionalized with a thiol end-group exhibiting a chemical affinity with the nanocrystal surface. A capping exchange procedure has been implemented for replacing the pristine organic capping molecules of the colloidal CdSe nanocrystals with inorganic chalcogenide ions, aiming to disperse the nano-objects in the PILs, by using a common polar solvent. The as-prepared nanocomposites have been studied by TEM investigation, UV-Vis, steady-state and time resolved photoluminescence spectroscopy for elucidating the effects of the PIL functionalization on the morphological and optical properties of the nanocomposites.

  13. An Insilico Design of Nanoclay Based Nanocomposites and Scaffolds in Bone Tissue Engineering

    Science.gov (United States)

    Sharma, Anurag

    A multiscale in silico approach to design polymer nanocomposites and scaffolds for bone tissue engineering applications is described in this study. This study focuses on the role of biomaterials design and selection, structural integrity and mechanical properties evolution during degradation and tissue regeneration in the successful design of polymer nanocomposite scaffolds. Polymer nanocomposite scaffolds are synthesized using aminoacid modified montmorillonite nanoclay with biomineralized hydroxyapatite and polycaprolactone (PCL/in situ HAPclay). Representative molecular models of polymer nanocomposite system are systematically developed using molecular dynamics (MD) technique and successfully validated using material characterization techniques. The constant force steered molecular dynamics (fSMD) simulation results indicate a two-phase nanomechanical behavior of the polymer nanocomposite. The MD and fSMD simulations results provide quantitative contributions of molecular interactions between different constituents of representative models and their effect on nanomechanical responses of nanoclay based polymer nanocomposite system. A finite element (FE) model of PCL/in situ HAPclay scaffold is built using micro-computed tomography images and bridging the nanomechanical properties obtained from fSMD simulations into the FE model. A new reduction factor, K is introduced into modeling results to consider the effect of wall porosity of the polymer scaffold. The effect of accelerated degradation under alkaline conditions and human osteoblast cells culture on the evolution of mechanical properties of scaffolds are studied and the damage mechanics based analytical models are developed. Finally, the novel multiscale models are developed that incorporate the complex molecular and microstructural properties, mechanical properties at nanoscale and structural levels and mechanical properties evolution during degradation and tissue formation in the polymer nanocomposite

  14. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    International Nuclear Information System (INIS)

    Maio, A.; Fucarino, R.; Khatibi, R.; Botta, L.; Scaffaro, R.; Rosselli, S.; Bruno, M.

    2014-01-01

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H 2 SO 4 /H 3 PO 4 and KMnO 4 based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors

  15. Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Maio, A. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo, Italy and STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans (Italy); Fucarino, R.; Khatibi, R. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Botta, L.; Scaffaro, R. [Department of Civil, Environmental, Aerospace, Materials Engineering, University of Palermo, Viale delle Scienze, Ed. 6, 90128, Palermo (Italy); Rosselli, S.; Bruno, M. [STEBICEF, Section of Biology and Chemistry, University of Palermo, Viale delle Scienze, Parco d' Orleans II, 90128 Palermo (Italy)

    2014-05-15

    Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H{sub 2}SO{sub 4}/H{sub 3}PO{sub 4} and KMnO{sub 4} based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) analyses. All these techniques demonstrated the effectiveness of the graphite modification, since the results put into evidence that, after the acid treatment, interlayer distance, oxygen content and defects increased. SEM micrographs carried out on the nanocomposites, showed GO layers totally surrounded by polyamide-6, this feature is likely due to the strong interaction between the hydrophilic moieties located both on GO and on PA6. On the contrary, no interactions were observed when graphite was used as filler. Mechanical characterization, carried out by tensile and dynamic-mechanical tests, marked an improvement of the mechanical properties observed. Photoluminescence and EPR measurements were carried out onto nanoparticles and nanocomposites to study the nature of the interactions and to assess the possibility to use this class of materials as semiconductors or optical sensors.

  16. Carbon Nanotube and Graphene Based Polyamide Electrospun Nanocomposites: A Review

    Directory of Open Access Journals (Sweden)

    Fabiola Navarro-Pardo

    2016-01-01

    Full Text Available Electrospinning is a unique and versatile technique to produce nanofibres; the facility to incorporate fillers has expanded its range of applications. This review gives a brief description of the process and the different polymers employed for obtaining nanofibres. Owing to the ability of fibrillation of polyamides, these polymers have resulted in a wide variety of interesting results obtained when using this technique; therefore these features are summarised. Additionally, because of the feasibility of incorporating carbon nanotubes and graphene in these nanofibres and the growing interest on these nanomaterials, this review focuses in the most common methods employed for their incorporation in electrospun polyamides. Several equipment setups used for the electrospinning of the nanofibres are explained. The outstanding electrical, optical, crystallinity, and mechanical properties obtained by a number of research groups are discussed. The potential applications of the resulting nanocomposites have also been explored.

  17. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N{sub 3}) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98 MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400–800 nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. - Highlights: • IPN hydrogel nanocomposites were prepared by a one-pot strategy. • The maximum compressive and tensile strengths reached 24.8 and 1.98 MPa. • IPN hydrogels displayed excellent antibacterial activity and cytocompatibility. • This study provided a facile method for preparing IPN hydrogel nanocomposites.

  18. Modeling the oxygen diffusion of nanocomposite-based food packaging films.

    Science.gov (United States)

    Bhunia, Kanishka; Dhawan, Sumeet; Sablani, Shyam S

    2012-07-01

    Polymer-layered silicate nanocomposites have been shown to improve the gas barrier properties of food packaging polymers. This study developed a computer simulation model using the commercial software, COMSOL Multiphysics to analyze changes in oxygen barrier properties in terms of relative diffusivity, as influenced by configuration and structural parameters that include volume fraction (φ), aspect ratio (α), intercalation width (W), and orientation angle (θ) of nanoparticles. The simulation was performed at different φ (1%, 3%, 5%, and 7%), α (50, 100, 500, and 1000), and W (1, 3, 5, and 7 nm). The θ value was varied from 0° to 85°. Results show that diffusivity decreases with increasing volume fraction, but beyond φ = 5% and α = 500, diffusivity remained almost constant at W values of 1 and 3 nm. Higher relative diffusivity coincided with increasing W and decreasing α value for the same volume fraction of nanoparticles. Diffusivity increased as the rotational angle increased, gradually diminishing the influence of nanoparticles. Diffusivity increased drastically as θ changed from 15° to 30° (relative increment in relative diffusivity was almost 3.5 times). Nanoparticles with exfoliation configuration exhibited better oxygen barrier properties compared to intercalation. The finite element model developed in this study provides insight into oxygen barrier properties for nanocomposite with a wide range of structural parameters. This model can be used to design and manufacture an ideal nanocomposite-based food packaging film with improved gas barrier properties for industrial applications. The model will assist in designing nanocomposite polymeric structures of desired gas barrier properties for food packaging applications. In addition, this study will be helpful in formulating a combination of nanoparticle structural parameters for designing nanocomposite membranes with selective permeability for the industrial applications including membrane

  19. BisGMA-polyvinylpyrrolidone blend based nanocomposites reinforced with chitosan grafted f-multiwalled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A. Praharaj

    2015-01-01

    Full Text Available In this work, initially a non-destroyable surface grafting of acid functionalized multiwalled carbon nanotubes (f-MWCNTs with biopolymer chitosan (CS was carried out using glutaraldehyde as a cross-linking agent via the controlled covalent deposition method which was characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. Then, BisGMA (bisphenol-A glycidyldimethacrylate-polyvinylpyrrolidone (PVP blend was prepared (50:50 wt% by a simple sonication method. The CS grafted f-MWCNTs (CS/f-MWCNTs were finally dispersed in BisGMA-PVP blend (BGP50 system in different compositions i.e. 0, 2, 5 and 7 wt% and pressed into molds for the fabrication of reinforced nanocomposites which were characterized by SEM. Nanocomposites reinforced with 2 wt% raw MWCNTs and acid f-MWCNTs were also fabricated and their properties were studied in detail. The results of comparative study report lower values of the investigated properties in nanocomposites with 2 wt% raw and f-MWCNTs than the one with 2 wt% CS/f-MWCNTs proving it to be a better reinforcing nanofiller. Further, the mechanical behavior of the nanocomposites with various CS/f-MWCNTs content showed a dramatic increase in Young’s Modulus, tensile strength, impact strength and hardness along with improved dynamic mechanical, thermal and electrical properties at 5 wt% content of CS/f-MWCNTs. The addition of CS/f-MWCNTs also resulted in reduced corrosion and swelling properties. Thus, the fabricated nanocomposites with optimum nanofiller content could serve as low cost and light weight structural, thermal and electrical materials compatible in various corrosive and solvent based environments.

  20. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  1. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    Pakula, Christina; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz; Zargarani, Dordaneh; Herges, Rainer

    2010-01-01

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  2. Sepiolite-based epoxy nanocomposites: relation between processing, rheology, and morphology.

    Science.gov (United States)

    Franchini, Elsa; Galy, Jocelyne; Gérard, Jean-François

    2009-01-01

    Rheology of sepiolite-based epoxy suspensions as well as morphology and dynamic mechanical properties of the corresponding nanocomposites are discussed in this paper. The influence of the type of sepiolite used, i.e. non-modified, aminosilane and glycidylsilane surface modified, and of the process developed to prepare the epoxy suspensions were investigated. Except for low amount of filler, a shear thinning behavior was observed in the others sepiolite-based epoxy suspensions. The interactions developed between the sepiolite and the epoxy matrix are responsible for the magnitude of the shear thinning effect and are related to the morphology of the nanocomposites. The best dispersion of sepiolite was achieved using either an emulsion process or a glycidyl functionalized sepiolite.

  3. Real time polymer nanocomposites-based physical nanosensors: theory and modeling

    Science.gov (United States)

    Bellucci, Stefano; Shunin, Yuri; Gopeyenko, Victor; Lobanova-Shunina, Tamara; Burlutskaya, Nataly; Zhukovskii, Yuri

    2017-09-01

    Functionalized carbon nanotubes and graphene nanoribbons nanostructures, serving as the basis for the creation of physical pressure and temperature nanosensors, are considered as tools for ecological monitoring and medical applications. Fragments of nanocarbon inclusions with different morphologies, presenting a disordered system, are regarded as models for nanocomposite materials based on carbon nanoсluster suspension in dielectric polymer environments (e.g., epoxy resins). We have formulated the approach of conductivity calculations for carbon-based polymer nanocomposites using the effective media cluster approach, disordered systems theory and conductivity mechanisms analysis, and obtained the calibration dependences. Providing a proper description of electric responses in nanosensoring systems, we demonstrate the implementation of advanced simulation models suitable for real time control nanosystems. We also consider the prospects and prototypes of the proposed physical nanosensor models providing the comparisons with experimental calibration dependences.

  4. Antimicrobial nanocomposites based on natural modified materials: a review of carbons and clays.

    Science.gov (United States)

    Martynková, Grazyna Simha; Valásková, Marta

    2014-01-01

    The review is focused on the recent research and development of antimicrobial nanocomposites based on selected carbon nanomaterials and natural nanoclay minerals. The nanocomposites comprised of two or several components, where at least one presents antimicrobial properties, are discussed. Yet the most popular agent remains silver as nanoparticle or in ionic form. Second, broadly studied group, are organics as additives or polymeric matrices. Both carbons and clays in certain forms possess antimicrobial properties. A lot of interest is put on to research graphene oxide. The low-environmental impact technologies-based on sustainable biopolymers have been studied. Testing of antimicrobial properties of nanomaterials is performed most frequently on E. coli and S. aureus bacterias.

  5. Hydrogel-based nanocomposites and mesenchymal stem cells: a promising synergistic strategy for neurodegenerative disorders therapy.

    Science.gov (United States)

    Albani, Diego; Gloria, Antonio; Giordano, Carmen; Rodilossi, Serena; Russo, Teresa; D'Amora, Ugo; Tunesi, Marta; Cigada, Alberto; Ambrosio, Luigi; Forloni, Gianluigi

    2013-01-01

    Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS) neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs), to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs) that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  6. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Directory of Open Access Journals (Sweden)

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  7. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  8. GRAPHENE BASED METAL AND METAL OXIDE NANOCOMPOSITES: SYNTHESIS, PROPERTIES AND THEIR APPLICATIONS

    KAUST Repository

    Khan, Mujeeb

    2015-06-11

    Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials have increased exponentially. Particularly the easy preparation of graphene like materials, such as, highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of various functional nanomaterials for a variety of applications. In this review, we discuss the current development of graphene based metal and metal oxide nanocomposites, with a detailed account of their synthesis and properties. Specifically, much attention has been given to their wide range of applications in various fields, including, electronics, electrochemical and electrical fields. Overall, by the inclusion of various references, this review covers in detail aspects of the graphene-based inorganic nanocomposites.

  9. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties

    OpenAIRE

    Ehsan Naderi Kalali; Xin Wanga; De-Yi Wang

    2015-01-01

    Functionalized layered double hydroxides (LDHs) based on a multi-modifier system composed of hydroxypropyl-sulfobutyl-beta-cyclodextrin sodium (sCD), dodecylbenzenesulfonate (DBS) and taurine (T) have been designed and fabricated in this paper, aiming at developing high performance fire retardant epoxy nanocomposites. In this multi-modifier system, sCD was utilized to improve the char yield, DBS was used to enlarge the inter-layer distance of LDH and T was used to enhance the interaction betw...

  10. Nanocomposites Based on Technical Polymers and Sterically Functionalized Soft Magnetic Magnetite Nanoparticles: Synthesis, Processing, and Characterization

    OpenAIRE

    Kirchberg, S.; Rudolph, M.; Ziegmann, G.; Peuker, U. A.

    2012-01-01

    This experimental study deals with the synthesis, processing, and characterization of highly filled nanocomposites based on polyvinyl butyral/magnetite (PVB/Fe3O4) and polymethylmethacrylate/magnetite (PMMA/Fe3O4). The nanoparticles are synthesized in an aqueous coprecipitation reaction and show a single particle diameter of approximately 15 nm. The particles are sterically functionalized and covered by PVB and PMMA in a spray drying process. The synthesized compound particles are further pro...

  11. Preparation and Properties of 1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazocane-based Nanocomposites

    OpenAIRE

    Xiaofeng Shi; Jingyu Wang; Xiaodong Li; Chongwei An; Jiang Wang; Wei Ji

    2015-01-01

    A new insensitive explosive based on octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) was prepared by spray drying using Viton A as a binder. The HMX sample without binder (HMX-1) was obtained by the same spray drying process also. The samples were characterised by Scanning Electron Microscope, and X-ray diffraction. The Differential Scanning Calorimetry and the impact sensitivity of HMX-1 and nanocomposites were also being tested. The nanocomposite morphology was found to be micr...

  12. Multifunctional Electroactive Nanocomposites Based on Piezoelectric Boron Nitride Nanotubes

    Science.gov (United States)

    Kang, Jin Ho; Sauti, Godfrey; Park, Cheol; Yamakov, Vesselin I.; Wise, Kristopher E.; Lowther, Sharon E.; Fay, Catharine C.; Thibeault, Sheila A.; Bryant, Robert G.

    2015-01-01

    Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buck-paper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions. utilizing the unique characteristics of BNNTs.

  13. A dental public health approach based on computational mathematics: Monte Carlo simulation of childhood dental decay.

    Science.gov (United States)

    Tennant, Marc; Kruger, Estie

    2013-02-01

    This study developed a Monte Carlo simulation approach to examining the prevalence and incidence of dental decay using Australian children as a test environment. Monte Carlo simulation has been used for a half a century in particle physics (and elsewhere); put simply, it is the probability for various population-level outcomes seeded randomly to drive the production of individual level data. A total of five runs of the simulation model for all 275,000 12-year-olds in Australia were completed based on 2005-2006 data. Measured on average decayed/missing/filled teeth (DMFT) and DMFT of highest 10% of sample (Sic10) the runs did not differ from each other by more than 2% and the outcome was within 5% of the reported sampled population data. The simulations rested on the population probabilities that are known to be strongly linked to dental decay, namely, socio-economic status and Indigenous heritage. Testing the simulated population found DMFT of all cases where DMFT0 was 2.3 (n = 128,609) and DMFT for Indigenous cases only was 1.9 (n = 13,749). In the simulation population the Sic25 was 3.3 (n = 68,750). Monte Carlo simulations were created in particle physics as a computational mathematical approach to unknown individual-level effects by resting a simulation on known population-level probabilities. In this study a Monte Carlo simulation approach to childhood dental decay was built, tested and validated. © 2013 FDI World Dental Federation.

  14. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-T.; Jin, Z Q; Chakka, Vamsi M; Liu, J P [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2005-11-21

    A systematic study of heat treatments and magnetic hardening of NdFeB-based melt-spun nanocomposite ribbons have been carried out. Comparison was made between samples treated by rapid thermal annealing and by conventional furnace annealing. Heating rates up to 200 K s{sup -1} were adopted in the rapid thermal processing. It was observed that magnetic hardening can be realized in an annealing time as short as 1 s. Coercivity of 10.2 kOe in the nanocomposites has been obtained by rapid thermal annealing for 1 s, and prolonged annealing did not give any increase in coercivity. Detailed results on the effects of annealing time, temperature and heating rate have been obtained. The dependence of magnetic properties on the annealing parameters has been investigated. Structural characterization revealed that there is a close correlation between magnetic hardening and nanostructured morphology. The coercivity mechanism was also studied by analysing the magnetization minor loops.

  15. Synthesis of nanocomposites based on carbon nanotube/smart copolymer with nonlinear optical properties

    Science.gov (United States)

    Sousani, Abbas; Motiei, Hamideh; Najafimoghadam, Peyman; Hasanzade, Reza

    2017-05-01

    In this study new nanocompoites based on polyglycidylmethacrylate grafted 4-[(4-methoxyphenyl) diazenyl] phenol (Azo-PGMA) and Carboxylicacid functionalized multi-walled carbon nanotubes (MWCNT-COOH) were prepared. The nanocomposites structure was characterized by FT-IR, TGA and SEM. The Z-scan technique was applied for measuring the nonlinear parameters of nanocomposites. The samples after solving in AWM solution (equal ratio of acetone, deionized water and methanol) were investigated by using closed aperture Z-scan technique and a diode-pumped laser at the line 532 nm. All the nonlinear refractive index of the samples at three concentrations of carbon nanotubes in three different intensities of the laser beam were investigated and the nonlinear optical response of them are compared under the same condition. Because of high order of nonlinear refractive coefficient and good nonlinearity, these compounds are suitable candidate for optical switching, optical limiting and electro-optical devices.

  16. Preparation and characterization of polymer nanocomposites based on chitosan and clay minerals

    International Nuclear Information System (INIS)

    Fiori, Ana Paula Santos de Melo; Gabiraba, Victor Parizio; Praxedes, Ana Paula Perdigao; Nunes, Marcelo Ramon da Silva; Balliano, Tatiane L.; Silva, Rosanny Christhinny da; Tonholo, Josealdo; Ribeiro, Adriana Santos

    2014-01-01

    In this work nanocomposites based on chitosan and different clays were prepared using polyethyleneglycol (PEG) as plasticizer. The samples obtained were characterized by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), thermogravimetric analysis (TGA/DTG) and by mechanical characterization (tensile test) with the aim of investigating the interactions between chitosan and clay. The nanocomposite films prepared using sodium bentonite (Ben) showed an increase of 81.2% in the maximum tensile stress values and a decrease of 16.0% in the Young’s modulus when compared to the chitosan with PEG (QuiPEG) films, evidencing that the introduction of the clay into the polymer matrix provided a more flexible and resistant film, whose elongation at break was 93.6% higher than for the QuiPEG film. (author)

  17. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes

    Directory of Open Access Journals (Sweden)

    Mohammed Naffakh

    2014-06-01

    Full Text Available Using inorganic fullerene-like (IF nanoparticles and inorganic nanotubes (INT in organic-inorganic hybrid composite, materials provide the potential for improving thermal, mechanical, and tribological properties of conventional composites. The processing of such high-performance hybrid thermoplastic polymer nanocomposites is achieved via melt-blending without the aid of any modifier or compatibilizing agent. The incorporation of small quantities (0.1–4 wt.% of IF/INTs (tungsten disulfide, IF-WS2 or molybdenum disulfide, MoS2 generates notable performance enhancements through reinforcement effects and excellent lubricating ability in comparison with promising carbon nanotubes or other inorganic nanoscale fillers. It was shown that these IF/INT nanocomposites can provide an effective balance between performance, cost effectiveness, and processability, which is of significant importance for extending the practical applications of diverse hierarchical thermoplastic-based composites.

  18. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru [Federal State Budget Educational Institution of Higher Education “Moscow Technological University” (Russian Federation); Klechkovskaya, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Orekhov, A. S.; Zubavichus, Ya. V. [National Research Centre “Kurchatov Institute” (Russian Federation); Domoroshchina, E. N.; Shegay, A. V. [Federal State Budget Educational Institution of Higher Education “Moscow Technological University” (Russian Federation)

    2016-03-15

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  19. Fabrication and Characterization of Magnetoresponsive Electrospun Nanocomposite Membranes Based on Methacrylic Random Copolymers and Magnetite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ioanna Savva

    2012-01-01

    Full Text Available Magnetoresponsive polymer-based fibrous nanocomposites belonging to the broad category of stimuli-responsive materials, is a relatively new class of “soft” composite materials, consisting of magnetic nanoparticles embedded within a polymeric fibrous matrix. The presence of an externally applied magnetic field influences the properties of these materials rendering them useful in numerous technological and biomedical applications including sensing, magnetic separation, catalysis and magnetic drug delivery. This study deals with the fabrication and characterization of magnetoresponsive nanocomposite fibrous membranes consisting of methacrylic random copolymers based on methyl methacrylate (MMA and 2-(acetoacetoxyethyl methacrylate (AEMA (MMA-co-AEMA and oleic acid-coated magnetite (OA·Fe3O4 nanoparticles. The AEMA moieties containing β-ketoester side-chain functionalities were introduced for the first time in this type of materials, because of their inherent ability to bind effectively onto inorganic surfaces providing an improved stabilization. For membrane fabrication the electrospinning technique was employed and a series of nanocomposite membranes was prepared in which the polymer content was kept constant and only the inorganic (OA·Fe3O4 content varied. Further to the characterization of these materials in regards to their morphology, composition and thermal properties, assessment of their magnetic characteristics disclosed tunable superparamagnetic behaviour at ambient temperature.

  20. Temperature Effect on Electrical Treeing and Partial Discharge Characteristics of Silicone Rubber-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Mohd Hafizi Ahmad

    2015-01-01

    Full Text Available This study investigated electrical treeing and its associated phase-resolved partial discharge (PD activities in room-temperature, vulcanized silicone rubber/organomontmorillonite nanocomposite sample materials over a range of temperatures in order to assess the effect of temperature on different filler concentrations under AC voltage. The samples were prepared with three levels of nanofiller content: 0% by weight (wt, 1% by wt, and 3% by wt. The electrical treeing and PD activities of these samples were investigated at temperatures of 20°C, 40°C, and 60°C. The results show that the characteristics of the electrical tree changed with increasing temperature. The tree inception times decreased at 20°C due to space charge dynamics, and the tree growth time increased at 40°C due to the increase in the number of cross-link network structures caused by the vulcanization process. At 60°C, more enhanced and reinforced properties of the silicone rubber-based nanocomposite samples occurred. This led to an increase in electrical tree inception time and electrical tree growth time. However, the PD characteristics, particularly the mean phase angle of occurrence of the positive and negative discharge distributions, were insensitive to variations in temperature. This reflects an enhanced stability in the nanocomposite electrical properties compared with the base polymer.

  1. Application of Ce-TZP/Al2O3 nanocomposite to the framework of an implant-fixed complete dental prosthesis and a complete denture.

    Science.gov (United States)

    Hagiwara, Yoshiyuki; Nakajima, Kiyoshi

    2016-10-01

    A 69-year-old Japanese male visited Nihon University Dental Hospital for refabrication of his mandibular implant-supported complete fixed prosthesis (ISCFPD) and maxillary complete denture, which had been fabricated 15 years previously. In this case, Ce-TZP/Al 2 O 3 nanocomposite (Ce-TZP/A) was applied to the framework of the mandibular ISCFPD and maxillary complete denture. Three years after deliver of the framework, no particularly notable biological or prosthetic complications were observed, and a high level of patient satisfaction had been achieved. Conventional ISCFPD frameworks were fabricated by casting gold alloys; however, with the recent advancement of CAD/CAM technology, titanium (Ti) or yttria tetragonal zirconia polycrystal (Y-TZP) frameworks have become more common. In contrast, the main fabrication method for Ti or Co-Cr frameworks of removable dental prostheses has shifted from the conventional casting method to CAD/CAM fabrication. Ce-TZP/A, which was chosen as the framework material this time, shows higher strength and greater toughness than Y-TZP. However, since it has a low light-transmitting property and exhibits an opaque white color, the range of its application in fixed prostheses, particularly in the esthetic area, is limited. We described a case in which Ce-TZP/A was applied to the frameworks of a mandibular ISCFPD and a maxillary complete denture. No particularly notable biological or prosthetic complications were observed in the mandibular ISCFPD or the maxillary complete denture, and a high level of patient satisfaction was achieved. Medium- and long-term observations with a greater number of cases are essential to obtain information concerning various phenomena related to this procedure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. [Chronological age estimation based on dental panoramic radiography].

    Science.gov (United States)

    Tóth, Zsuzsanna Olga; Udvar, Orsolya; Angyal, János

    2014-09-01

    Determination of the dental age is a valuable tool in planning of orthodontic treatment and could be used to estimate the chronological age of unidentified human beings. Among the various age estimation methods one of the most accepted one is the Demirjian method, which has already been modified to selected Hungarian population. In this study we have evaluated the association between the dental age determined by panoramic radiography and the chronological age. 199 panoramic radiographs taken from persons between the ages of 2,8 and 20,3 years were selected to the study. The dental ages of persons were estimated either with the Demirjian or the modified Demirjian method adapted to Hungarian population and the results were compared to the chronological ages in selected age groups. Furthermore the angle of the mandible was registered on both sides with an image analysing software. Statistical analysis of data was performed using SPSS software. Our results show that mean values of mandibular angles exhibited a decreasing trend with age. The two age determination methods resulted in different values. Between 3 and 9 years and the age group between 15 and 17,3 years the adapted Hungarian method proved to be more accurate than the Demirjian method. We have established a mathematical function between the two methods. We could conclude that the panoramic radiography based dental age calculation is a reliable method to estimate the chronological age, but the utility of gonial angle has not been proved.

  3. Elastomer Nanocomposites Based on Butadiene Rubber, Nanoclay and Epoxy-Polyester Hybrid: Microstructure and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Sepideh Zoghi

    2013-08-01

    Full Text Available Nanocomposites based on butadiene rubber (BR, (0, 3, 5 and 7 phr organoclay (Cloisite 15A and (0, 10, 20, 30, 40 phr powder coating wastes, i.e., epoxypolyester hybrid (EPH were prepared using a laboratory-scale internal mixer in order to study the effect of organoclay and EPH content on the mechanical and morphological properties of the nanocomposite samples. Cure characteristics of the prepared compounds including optimum cure time (t90 and scorch time (t5 depicted a decrease in both mentioned factors with increasing nanoclay content and EPH loading.Intercalation of elastomer chains into the silicate layers was determined by d-spacing values calculated according to the results of X-ray diffraction (XRD patterns. X-ray diffraction (XRD results reveal the intercalation of elastomer chains into the clay galleries. This phenomenon was also confirmed according to the scanning electron microscopy (SEM micrographs and mechanical properties of the nanocomposite samples which were observed to be improved with addition of nanoclay and EPH content.

  4. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    International Nuclear Information System (INIS)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly

    2011-01-01

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  5. Microwave absorption behaviour of MWCNT based nanocomposites in X-band region

    Directory of Open Access Journals (Sweden)

    C. K. Das

    2013-03-01

    Full Text Available Multiwall carbon nanotube (MWCNT based nanocomposites were prepared by a two-step process. Firstly, titanium dioxide (TiO2 coated MWCNT was prepared via sol-gel technique. In the second step, the acid modified MWCNTs were dispersed in the thermoplastic polyurethane matrix by solution blending process. Characterizations of the nanocomposites were done by X-ray diffraction analysis, X-ray photoelectron spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Microwave absorption studies of the nanocomposites were carried out in X-band region. The microwave absorption result was discussed with the help of complex permittivity and permeability of the prepared radar absorbing material (RAM. The result showed superior microwave absorption property of the composite containing both TiO2 coated MWCNT and magnetite (Fe3O4. This result is due to the effective absorption of both electrical and magnetic components of the microwave. RAM-MW, RAM-Ti, RAM-Ti@MW and RAMTi@ MW/Fe and showed the maximum reflection loss of –16.03 dB at 10.99 GHz, –8.4 dB at 12.4 GHz, –36.44 dB at 12.05 GHz and –42.53 dB at 10.98 GHz respectively. Incorporation of MWCNT enhanced the thermal stability of the composite which has been confirmed by thermogravimetric analysis.

  6. Dielectric properties of polyhedral oligomeric silsesquioxane (POSS)-based nanocomposites at 77k

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ming-Jen; Gorzkowski, Edward; McAllister, Kelly, E-mail: pan@anvil.nrl.navy.mi [Multifunctional Materials Branch, Code 6350 U.S. Naval Research Laboratory 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2011-10-29

    The goal of this study is to develop dielectric nanocomposites for high energy density applications at liquid nitrogen temperature by utilizing a unique nano-material polyhedral oligomeric silsesquioxanes (POSS). A POSS molecule is consisted of a silica cage core with 8 silicon and 12 oxygen atoms and organic functional groups attached to the corners of the cage. In this study, we utilize POSS for the fabrication of nanocomposites both as a silica nanoparticle filler to enhance the breakdown strength and as a surfactant for effective dispersion of high permittivity ceramic nanoparticles in a polymer matrix. The matrix materials selected for the study are polyvinylidene fluoride (PVDF) and poly(methyl methacrylate) (PMMA). The ceramic nanoparticles are barium strontium titanate (BST 50/50) and strontium titanate. The dielectric properties of the solution-cast nanocomposites films were correlated to the composition and processing conditions. We determined that the addition of POSS did not provide enhanced dielectric performance in PVDF- and PMMA-based materials at either room temperature or 77K. In addition, we found that the dielectric breakdown strength of PMMA is lower at 77K than at room temperature, contradicting literature data.

  7. Structure and properties of organically modified poly(butylene adipate-co-terephthalate) based nanocomposites

    Science.gov (United States)

    Rasyida, A.; Fukushima, K.; Yang, M.-C.

    2017-07-01

    Poly (butylene adipate-co-terephthalate (PBAT) nanocomposites were prepared by melt blending PBAT with 5 wt.% of modified or unmodified montmorillonites (MMT). The effect of the presence of organic modifiers in MMT on the morphological, crystalline, thermal, and mechanical properties of PBAT nanocomposites was evaluated. The dispersion and distribution of the clays were studied by using wide angle X-ray analysis (WAXS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. Materials characterization techniques included: contact angle measurements, differential scanning calorimetry (DSC), thermogravimetry (TGA) and surface hardness analysis. As general results, nanocomposites exhibited different level of clay dispersion depending on the clay/organic modifier’s chemical affinity with the polymer. Contact angle measurements show increases in the hydrophobicity level of PBAT based CLO30B, this could depict its high potential for packaging applications. In addition, Thermal analysis showed that clays partially hindered kinetics and extent of PBAT crystallization on cooling. In general, thermal properties of PBAT were improved by addition of clays, for a barrier effect of the nanoparticle towards polymer decomposition products ablation. In parallel, addition of clays led to enhancements in polymer hardness. These properties were found to be apparently influenced by clay dispersion level and chemical compatibility between the organic modifier and polymer matrix.

  8. The difference nanocomposite hardness level using LED photoactivation based on curing period variations

    Directory of Open Access Journals (Sweden)

    Hasiana Tatian

    2011-03-01

    Full Text Available Polimerizatian is the critical stage to determine the quality of composites resin, this involves isolated monomer carbon double bonds being converted to an extended network of single bonds. Physical and mechanical properties of composites are influenced by the level of conversion attained during polymerization. An adequate light intensity and light curing time are important to obtain the degree of polymerization. The objective of this study is to evaluate the difference of the hardness nanocomposites which activated by LED LCU based on the variation of curing times. This study is a true experimental research. The samples were made from nanocomposites material with cylinder form of 4 mm in depth, 6 mm in diameter. This samples divided into 3 groups of curing times. Group, I was cured for 20's curing time as a control due to manufactory recommended; Group II was cured for 30's, and Group III was cured for 40's and the hardness (Rebound hardness tester was determined using Rebound scale (RS and converted by Mohs scale (MS. There was a very significant level of hardness rate from each group using ANOVA test. The result of the study concludes that there were the differences on the nanocomposites hardness level cured under different curing times 20, 30 and 40 sec. The longer of curing times, the higher level of hardness.

  9. FePt/Co core/shell nanoparticle-based anisotropic nanocomposites and their exchange spring behavior.

    Science.gov (United States)

    Li, Deyao; Wang, Hui; Ma, Zhenhui; Liu, Xin; Dong, Ying; Liu, Zhiqi; Zhang, Tianli; Jiang, Chengbao

    2018-02-22

    Anisotropic exchange-coupled nanocomposites provide us a salient candidate for the new generation of permanent magnets owing to their huge predicted maximum energy product. However, previous research basically focused on thin films or bulk materials and the impact of easy-axis alignment on the exchange coupling behavior is not clear. Herein, strongly coupled FePt/Co core/shell nanoparticles with single-phase-like hysteresis loops were synthesized by the seed mediated method. Then, these nanoparticles were successfully aligned by the external magnetic field and fixed in an acrylic binder, so that FePt/Co core/shell nanoparticle-based anisotropic nanocomposites were obtained. The nanocomposites exhibited high degree of orientation as indicated by the increased remanence ratio from 0.62 for isotropic nanoparticles to 0.78 for anisotropic nanocomposites. However, a visible kink in the demagnetization curve was observed around the zero field, implying the exchange spring behavior. This result suggests that the aligned FePt cores impose a stronger overall dipolar field in Co shells and finally, force the Co shells to reverse at a low field before the switch of FePt cores. Our research extends the preparation methods of anisotropic hard/soft-phase nanocomposites and might be helpful for the design of high-performance anisotropic exchange-coupled nanocomposites.

  10. Magnetic nanocomposite sensor

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-06

    A magnetic nanocomposite device is described herein for a wide range of sensing applications. The device utilizes the permanent magnetic behavior of the nanowires to allow operation without the application of an additional magnetic field to magnetize the nanowires, which simplifies miniaturization and integration into microsystems. In5 addition, the nanocomposite benefits from the high elasticity and easy patterning of the polymer-based material, leading to a corrosion-resistant, flexible material that can be used to realize extreme sensitivity. In combination with magnetic sensor elements patterned underneath the nanocomposite, the nanocomposite device realizes highly sensitive and power efficient flexible artificial cilia sensors for flow measurement or tactile sensing.

  11. The Maine Sealant Manual for School-Based and School-Linked Dental Sealant Programs.

    Science.gov (United States)

    Hayward, Kneka, Ed.

    This manual is designed for use by school personnel and dental personnel to aid in the development and maintenance of school-based or school-linked dental sealant programs. The sections include (1) "Introduction"; (2) "Guidelines" (school selection, school contacts, dental providers, target grades, and tooth selection…

  12. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Mistry, Amit S; Cheng, Stacy H; Yeh, Tiffany; Christenson, Elizabeth; Jansen, John A; Mikos, Antonios G

    2009-04-01

    In this work, the fabrication and in vitro degradation of porous fumarate-based/alumoxane nanocomposites were evaluated for their potential as bone tissue engineering scaffolds. The biodegradable polymer poly (propylene fumarate)/propylene fumarate-diacrylate (PPF/PF-DA), a macrocomposite composed of PPF/PF-DA and boehmite microparticles, and a nanocomposite composed of PPF/PF-DA and surface-modified alumoxane nanoparticles were used to fabricate porous scaffolds by photo-crosslinking and salt-leaching. Scaffolds then underwent 12 weeks of in vitro degradation in phosphate buffered saline at 37 degrees C. The presence of boehmite microparticles and alumoxane nanoparticles in the polymer inhibited scaffold shrinkage during crosslinking. Furthermore, the incorporation of alumoxane nanoparticles into the polymer limited salt-leaching, perhaps due to tighter crosslinking within the nanocomposite. Analysis of crosslinking revealed that the acrylate and overall double bond conversions in the nanocomposite were higher than in the PPF/PF-DA polymer alone, though these differences were not significant. During 12 weeks of in vitro degradation, the nanocomposite lost 5.3% +/- 2.4% of its mass but maintained its compressive mechanical properties and porous architecture. The addition of alumoxane nanoparticles into the fumarate-based polymer did not significantly affect the degradation of the nanocomposite compared with the other materials in terms of mass loss, compressive properties, and porous structure. These results demonstrate the feasibility of fabricating degradable nanocomposite scaffolds for bone tissue engineering by photo-crosslinking and salt-leaching mixtures of fumarate-based polymers, alumoxane nanoparticles, and salt microparticles. Copyright 2008 Wiley Periodicals, Inc.

  13. Synthesis and utilization of poly (methylmethacrylate) nanocomposites based on modified montmorillonite

    OpenAIRE

    Youssef, Ahmed M.; Malhat, F.M.; Abdel Hakim, A.A.; Dekany, Imre

    2015-01-01

    Poly (methylmethacrylate) nanocomposite was prepared via in-situ emulsion polymerization (PMMA/Mt-CTA). The modified montmorillonite (Mt-CTA) is used as hosts for the preparation of poly (methylmethacrylate) nanocomposites with basal distance 1.95 nm. Moreover, exfoliated nanocomposite was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The fashioned nanocomposites exhibited bett...

  14. Lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles: Structural, thermal and mechanical characterization and EMI shielding capability

    Energy Technology Data Exchange (ETDEWEB)

    Arranz-Andrés, J., E-mail: jarranz@ictp.csic.es [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); Pulido-González, N. [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); Fonseca, C. [POLCA, Departamento de Química Industrial y Polímeros, E. T. de Ingenieros Industriales, Universidad Politécnica de Madrid, Ronda de Valencia, 3, 28012 Madrid (Spain); Pérez, E.; Cerrada, M.L. [Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)

    2013-11-01

    Novel (nano)composites based on PVDF and different content of Al nanoparticles have been prepared in order to learn about their electromagnetic interference shielding capability. Very promising results are obtained, with an excellent balance between shielding and sample weight, so that these materials are potentially good alternatives to replace neat metals for that application. Moreover, a complete structural and morphological characterization, as well as an evaluation of their thermal and mechanical behavior, has been also performed. - Graphical abstract: EMI shielding capability in lightweight nanocomposites based on poly(vinylidene fluoride) and Al nanoparticles. - Highlights: • Novel hybrids based on PVDF and different contents of Al nanoparticles have been prepared. • A complete characterization of the nanocomposites has been performed. • Interactions between PVDF matrix and Al nanoparticles are deduced from FTIR. • Attenuation of the electromagnetic radiation increases spectacularly with the Al content.

  15. Metal-carbon C/Co nanocomposites based on activated pyrolyzed polyacrylonitrile and cobalt particles

    Science.gov (United States)

    Efimov, M. N.; Vasilev, A. A.; Muratov, D. G.; Zemtsov, L. M.; Karpacheva, G. P.

    2017-09-01

    A new way of synthesizing metal-carbon nanocomposites via simultaneous pyrolysis and the chemical activation of a precursor based on polyacrylonitrile and cobalt carbonate under IR radiation is proposed. Structural characteristics of samples synthesized both without alkali and in the activation process are compared. The effect the metal has on the structure of the carbon and the size of its specific surface area is shown. The specific surface area of the sample synthesized with the simultaneous formation of the carbon matrix, its activation, and the reduction of the metal is 1232 m2/g. Cobalt nanoparticles are found to have cubic face-centered and hexagonal close-packed lattices.

  16. Nanocomposites for Machining Tools

    DEFF Research Database (Denmark)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon

    2017-01-01

    . A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools......, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance....

  17. Synthesis and Characterization of Novel Polycarbonate Based Polyurethane/Polymer Wrapped Hydroxyapatite Nanocomposites: Mechanical Properties, Osteoconductivity and Biocompatibility.

    Science.gov (United States)

    Selvakumar, M; Jaganathan, Saravana Kumar; Nando, Golok B; Chattopadhyay, Santanu

    2015-02-01

    The present investigation reports the preparation of two types of 2D rod-like nano-hydroxyapatite (nHA) (unmodified and Polypropylene glycol (PPG) wrapped) of varying high-aspect ratios, by modified co-precipitation methods, without any templates. These nHA were successfully introduced into novel synthesized Thermoplastic Polyurethane (TPU) matrices based on polycarbonate soft segments, by both in-situ and ex-situ techniques. Physico-mechanical properties of the in-situ prepared TPU/nHA nanocomposites were found to be superior compared to the ex-situ counterparts, and pristine nHA reinforced TPU. Improved biocompatibility of the prepared nanocomposites was confirmed by MTT assays using osteoblast-like MG63 cells. Cell proliferation was evident over an extended period. Osteoconductivity of the nanocomposites was observed by successful formation of an apatite layer on the surface of the samples, after immersion into simulated body fluid (SBF). Prothrombin time (PT) and activated partial thromboplastin time (APTT), as calculated from coagulation assays, displayed an increase in the clotting time, particularly for the PPG-wrapped nHA nanocomposites, prepared through the in-situ technique. Only 0.3% of hemolysis was observed for the in-situ prepared nanocomposites, which establishes the antithrombotic property of the material. The key parameters for enhancing the technical properties and biocompatibility of the nanocomposites are: the interfacial adhesion parameter (B(σy)), the polymer-filler affinity, the aspect ratio of filler and non-covalent modifications, and the state of dispersion. Thus, the novel TPU/polymer wrapped nHA nanocomposites have great potential for biomedical applications, in particular for vascular prostheses, cardiovascular implants, scaffolds, and soft and hard tissues implants.

  18. Synthesis of Collagen-Based Hydrogel Nanocomposites Using Montmorillonite and Study of Adsorption Behavior of Cd from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Gholam Bagheri Marandi

    2013-04-01

    Full Text Available Novel collagen-based hydrogel nanocomposites were synthesized by graft copolymerization of acrylamide and maleic anhydrid in the presence of different amounts of montmorillonite, using methylenebisacrylamide (MBAand ammonium persulfate (APS as crosslinker and initiator, respectively. The optimum amount of clay on the swelling properties of the samples was studied. It was found that the hydrogel nanocomposites exhibited improved swelling capacity compared with the clay-free hydrogel. Gel content was also studied and the resultsindicated that the inclusion of montmorillonite causes an increase in gel content. The sorption behavior of heavy metal ion from aqueous solutions was investigated by its relationship with pH, contact time, initial concentration of metal ion and also, montmorillonite content of the nanocomposites. The experimental data showed thatCd2+ ion adsorption increases with increasing initial concentration of Cd2+ ion in solution and the clay content. Also, the results indicated that more than 88% of the maximum adsorption capacities toward Cd2+ ion were achieved within the initial 10 minute. Functional groups of the prepared hydrogels have shown complexation abilitywith metal ions and improving hydrogels' adsorption properties. It was concluded that the nanocomposites could be used as fast-responsive, and high capacity sorbent materials in Cd2+ ion removing processes. The prepared hydrogel nanocomposites were characerized by means of XRD patterns, TGA thermal methods and FTIRspectroscopy. The XRD patterns of nanocomposites showed that the interlayer distance of montmorillonite was changed and the clay sheets were exfoliated. Furthermore, the results showed that by increasing the montmorillonite content, thermal stability of the nanocomposites was clearly improved.

  19. In vivo characterization of polymer based dental cements

    Directory of Open Access Journals (Sweden)

    Widiyanti P

    2011-12-01

    Full Text Available Background: In vivo studies investigating the characterization of dental cements have been demonstrated. As few in vitro studies on this cement system have been performed. Previous researches in dental material has been standardized dental cement which fulfilled the physical and mechanical characteristic such as shear strength but were on in vitro condition, the animal model and clinical study of dental cement from laboratory has not been done yet. This research examined physical and mechanical characteristic in vivo using rabbit by making the caries (class III in anterior teeth especially in mesial or distal incisive, fulfilled the cavity by dental cement and analyzed the compressive strength, tensile strength, and microstructure using scanning electron microscope (SEM. Purpose: This study is aimed to describe the in vivo characterization of dental cements based on polymer (zinc phosphate cement, polycarboxylate, glass ionomer cement and zinc oxide eugenol. Methods: First, preparation was done on animal model’s teeth (6 rabbits, male, 5 months old. The cavity was made which involved the dentin. Then the cavity was filled with dental cement. After the filling procedure, the animal model should be kept until 21 days and than the compressive test, tensile test and microstructure was characterized. Compressive test and tensile test was analyzed using samples from extracted tooth and was measured with autograph. The microstructure test was measured using SEM. Results: The best compressive strength value was belongs to zinc phosphate cement which was 101.888 Mpa and the best tensile strength value was belongs to glass ionomer cement which was 6.555 Mpa. Conclusion: In conclusion, comparing with 3 others type of dental cements which are zinc phosphate, polycarboxylate and glass ionomer cement, zinc oxide eugenol cement has the worst for both physical and mechanical properties.Latar belakang: Studi in vivo meneliti karakterisasi secara in vivo dari

  20. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Seyfi, Javad [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Jafari, Seyed Hassan, E-mail: shjafari@ut.ac.ir [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany); Sadeghi, Gity Mir Mohamad [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Zohuri, Gholamhossein [Polymer Group, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Simon, Frank [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-08-30

    Highlights: • Superhydrophobic coatings were prepared from an intrinsically hydrophilic polymer. • The superhydrophobicity remained intact at elevated temperatures. • Polyurethane plays a key role in improving the mechanical robustness of the coatings. • A complete surface coverage of nanosilica is necessary for superhydrophobicity. - Abstract: In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  1. Flexible photovoltaic cells based on a graphene-CdSe quantum dot nanocomposite

    Science.gov (United States)

    Chen, Jing; Xu, Feng; Wu, Jun; Qasim, Khan; Zhou, Yidan; Lei, Wei; Sun, Li-Tao; Zhang, Yan

    2012-01-01

    We have fabricated the flexible photoelectrode by loading graphene sheets modified with CdSe QDs. A power conversion efficiency of ~0.6% and an incident photon to current conversion efficiency of 17% have been achieved for this flexible photovoltaic cell based on a graphene-CdSe nanocomposite.We have fabricated the flexible photoelectrode by loading graphene sheets modified with CdSe QDs. A power conversion efficiency of ~0.6% and an incident photon to current conversion efficiency of 17% have been achieved for this flexible photovoltaic cell based on a graphene-CdSe nanocomposite. Electronic supplementary information (ESI) available: Experimental procedure, Raman spectra of graphene, CdSe QD and G-CdSe film, AFM images of graphene, PDDA modified graphene and G-CdSe film, electron transfer rate constant analysis for films based on 2.7 nm, 3.3 nm and 4.1 nm CdSe QDs. See DOI: 10.1039/c2nr11656a

  2. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles

    Science.gov (United States)

    Seyfi, Javad; Jafari, Seyed Hassan; Khonakdar, Hossein Ali; Sadeghi, Gity Mir Mohamad; Zohuri, Gholamhossein; Hejazi, Iman; Simon, Frank

    2015-08-01

    In this paper, superhydrophobic nanocomposite coatings based on thermoplastic polyurethane (TPU) and modified nanosilica were fabricated using a simple solution-based method. The main challenge was to impart superhydrophobicity to an intrinsically hydrophilic polymer substrate. The prepared nanocomposite coatings were characterized by means of scanning electron microscopy, confocal microscopy and X-ray photoelectron spectroscopy. Based on the obtained results, it was proved that in order to achieve superhydrophobicity, no TPU macromolecule should be present on the coating's top layer, thus a complete coverage of coating's top layer by nanosilica particles was necessary for achieving ultra water repellent coatings. Mechanical and thermal resistance of the coatings, which are the main challenges in commercializing superhydrophobic surfaces, were also studied by drop impact and thermal annealing tests, respectively. It was proved that using TPU as a sublayer results in improving mechanical resistance of the coatings as compared with the pure silica nanocoating. Moreover, the samples showed an excellent resistance against elevated temperatures (150 °C) and remained superhydrophobic; however, further increment of the annealing temperatures to 200 °C caused the TPU macromolecules to migrate onto the top layer of the coatings significantly reducing the water repellency, which was visually proved by SEM.

  3. Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering.

    NARCIS (Netherlands)

    Mistry, A.S.; Mikos, A.G.; Jansen, J.A.

    2007-01-01

    In this work, we evaluated the in vitro cytotoxicity and in vivo biocompatibility of a novel poly(propylene fumarate) (PPF)-based/alumoxane nanocomposite for bone tissue engineering applications. The incorporation of functionalized alumoxane nanoparticles into the PPF-based polymer was previously

  4. Influence of Magnetite Nanoparticles on the Dielectric Properties of Metal Oxide/Polymer Nanocomposites Based on Polypropylene

    Science.gov (United States)

    Maharramov, A. A.; Ramazanov, M. A.; Di Palma, Luca; Shirinova, H. A.; Hajiyeva, F. V.

    2018-01-01

    Structure and dielectric properties of polymer nanocomposites based on isotactic polypropylene and iron oxide (Fe3O4) nanoparticles are studied. Distribution of magnetite nanoparticles in a polymer matrix was studied by scanning electron microscopy (SEM, Carl Zeiss). Dielectric properties of nanocomposites were examined by means of E7-21 impedance spectrometer in the frequency range of 102-106 Hz and temperature interval of 298-433 K. The frequency and temperature dependences of the dielectric permittivity ɛ, as well as the temperature dependence of log (ρ) were constructed. It is shown that introduction of the magnetite (Fe3O4) nanoparticles into a polypropylene matrix increases the dielectric permittivity of nanocomposites. An increase in the dielectric permittivity is explained by the increase in the polarization ability of nanocomposites. It is found that a decrease in the specific resistance with increasing temperature up to 318 K is associated with an increase in the ionic conductivity of nanocomposites. An increase in the resistance at temperatures higher than 358 K is due to the destruction of the crystalline phase of the polymer, as a result of which the distance between the Fe3O4 nanoparticles increases.

  5. Study Structure and Properties of Nanocomposite Material Based on Unsaturated Polyester with Clay Modified by Poly(ethylene oxide

    Directory of Open Access Journals (Sweden)

    Tran Duy Thanh

    2012-01-01

    Full Text Available In recent years, polymer clay nanocomposites have been attracting considerable interests in polymers science because of their advantages. There are many scientists who researched about this kind of material and demonstrated that when polymer matrix was added to little weight of clay, properties were enhanced considerably. Because clay is a hydrophilic substance so it is difficult to use as filler in polymer matrix having hydrophobic nature, so clay needs to be modified to become compatible with polymer. In this study, poly(ethylene oxide was used as a new modifier for clay to replace some traditional ionic surfactants such as primary, secondary, tertiary, and quaternary alkyl ammonium or alkylphosphonium cations having the following disadvantages: disintegrate at high temperature, catalyze polymer degradation, and make nanoproducts colorific, and so forth. In order to evaluate modifying effect of poly(ethylene oxide, modified clay products were characterize d by X-ray spectrum. Then organoclay was used to prepare nanocomposite based on unsaturated polyester. Morphology and properties of nanocomposites were measure d by X-ray diffraction, transmission electron microscopy, tensile strength, and thermal stability. The results showed that clay galleries changed to intercalated state in the nanocomposites. Properties of nanocomposites were improved a lot when the loading of the organoclay was used at 1 phr.

  6. Functionalized Multiwalled Carbon Nanotubes-Reinforced Vinylester/Epoxy Blend Based Nanocomposites: Enhanced Mechanical, Thermal, and Electrical Properties

    Directory of Open Access Journals (Sweden)

    Ankita Pritam Praharaj

    2015-01-01

    Full Text Available This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nanocomposites consisting of Vinylester resin/epoxy (VER/EP blend (40 : 60 w/w reinforced with amine functionalized multiwalled carbon nanotubes (f-MWCNTs. Five different sets of VER/EP nanocomposites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nanocomposites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nanocomposites with nanofiller (f-MWCNTs addition compared to the virgin blend (0 wt. nanofiller loading. The properties are best observed in case of 5 wt.% nanofiller loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nanofiller particles. Thus the above nanocomposites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  7. Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag

    Directory of Open Access Journals (Sweden)

    Mansour Ghaffari-Moghaddam

    2014-11-01

    Full Text Available In this study, a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag (PANI/PVA/Ag has been successfully synthesized. The chemical reduction method was used to produce Ag nanoparticle colloidal solution from Ag+ ions. The polymerization of aniline occurred in situ for the preparation of polyaniline (PANI in the presence of ammonium persulfate. With exposure to Ag nanoparticles on the PANI/PVA composite, a new nanocomposite was obtained. The morphology and particle size of the novel nanocomposite was studied by scanning electron microscopy (SEM, X-ray diffraction (XRD, and Fourier transform infrared (FT-IR analyses. According to XRD analysis, the size of nanoparticles was found to be in the range of 10–17 nm. SEM images showed the favored shape of nanoparticles as triangle which is a benign shape for antibacterial analysis. The antibacterial activity of the obtained nanocomposite was also evaluated against Gram positive bacteria Staphylococcus aureus (Staph. aureus and Gram negative Escherichia coli (E. coli using the paper disk diffusion method. The antibacterial study showed that the PANI/PVA composite did not have a very good antibacterial activity but PANI/PVA/Ag nanocomposites were found to be effective against two bacteria.

  8. Preparation and characterization of polymer nanocomposites based on PVDF/PVC doped with graphene nanoparticles

    Directory of Open Access Journals (Sweden)

    I.S. Elashmawi

    Full Text Available Novel nanocomposites based on PVDF/PVC blend containing graphene oxide nanoparticles (GO were prepare using sonicator. IR analysis revealed that the addition of GO prompts a crystal transformation of α-phase of PVDF. The change of the structural before and after adding GO to PVDF/PVC were studied by X-ray diffraction. A decrease in activation energy gap from UV data was observed with increasing GO content, implying a variation of reactivity as a result of reaction extent. The variation of ε′ with frequency is nearly the same as that of ε″. At higher frequencies, the decrease of both ε′ and ε″ becomes nearly constant. The dispersion at lower frequencies ε′ of ε′ polarization is of Maxwell–Wagner interfacial polarization but at higher frequencies, it levels off. The behavior of conductivity (σAC tends to acquire constant values approaching it DC values. The values of σAC was increased after doped GO with exponential increase after the critical value of frequency. All nanocomposites behaved the same fashion revealing that a higher number of polarons were getting added to conducting pool in composites as graphene content was increased. Conduction mechanism appeared to be getting expedited with increasing frequency due to fact that increase in frequency enhances polaron hopping frequency. Keywords: Nanocomposites, Graphene oxide, FT-IR, X-ray, AC conductivity

  9. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane.

    Science.gov (United States)

    Raghunath, Joanne; Georgiou, George; Armitage, David; Nazhat, Showan N; Sales, Kevin M; Butler, Peter E; Seifalian, Alexander M

    2009-12-01

    The development of biocompatible polymers has greatly advanced the field of tissue engineering. Some tissues can be propagated on a nondegradable scaffold. Tissue such as cartilage, however, is a complex tissue in which the chondrocytes require their own synthesized extracellular matrix (ECM) to function. Suitable scaffolds for tissue engineering cartilage should provide mechanical strength and degrade at a similar rate to that of cell growth and ECM production. We have developed a biodegradable nanocomposite based on polycaprolactone and polycarbonate polyurethane (PCU) with an incorporated polyhedral oligomeric silsesquioxane (POSS) (POSS modified Poly(caprolactone/carbonate) urethane/urea). Previous work on POSS incorporated into PCU (POSS-PCU) has been shown to possess good mechanical strength, elasticity and resistance to degradation. This series of experiments involved exposing this polymer to a selection of accelerated degradative solutions for up to 8 weeks. The samples were analyzed by infra-red spectroscopy, scanning electron microscopy, X-ray microanalysis, contact angle analysis, and stress-strain mechanical analysis. Degradation of hard and soft segments of the nanocomposite was evident by infra-red spectroscopy in all conditioned samples. POSS nanocage degradation was evident in some oxidative/peroxidative systems accompanied by gross changes in surface topography and significant changes in mechanical properties. The hydrophobic polymer became more hydrophilic in all conditions. This biodegradable nanocomposite demonstrated steady degradation with protection of mechanical properties when exposed to hydrolytic enzymes and plasma protein fractions and exhibited more dramatic degradation by oxidation.This pattern may be potentially employed in tissue engineering scaffolds where controlled degradation and retained structural stability of the scaffold is required. Copyright 2008 Wiley Periodicals, Inc.

  10. Tunable green graphene-silk biomaterials: Mechanism of protein-based nanocomposites.

    Science.gov (United States)

    Wang, Fang; Jyothirmayee Aravind, S S; Wu, Hao; Forys, Joseph; Venkataraman, Venkat; Ramanujachary, Kandalam; Hu, Xiao

    2017-10-01

    Green graphene materials prepared by photoreduction of graphite oxide were first time blended with aqueous-based silk fibroin proteins to improve the mechanical and thermal properties of silk biomaterials, and their nanocomposite interaction mechanism was illustrated. Powder X-ray diffraction (XRD) analysis confirmed the complete exfoliation of graphite oxide to graphene in presence of focused pulses of solar radiation. By varying the concentration of graphene (0.1wt% to 10wt%), a series of free standing graphene-silk films were prepared and were systematically characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and nanoindentation measurements. The homogeneity of graphene in silk as well as the thermal stability of the composite films was demonstrated by thermal gravimetric analysis (TGA) and temperature-modulated differential scanning calorimetry (TMDSC). Surprisingly, silk composite film containing only 0.5wt% of graphene gives the highest Young's modulus of 1.65GPa (about 5.8 times higher than the pure silk's modulus), indicating a nano-composite to micro-composite transition of silk-graphene structure occurred around this mixing ratio. This finding provided an easy approach to improve the elastic modulus and other physical properties of silk materials by adding a tiny amount of graphene sheets. Fibroblast cells studies also proved that these graphene-silk materials can significantly improve cell adhesion, growth and proliferation. This protein nanocomposite study provided a useful model to understand how to manipulate the hydrophobic-hydrophobic and polar-polar interactions between high-surface-area inorganic nanomaterials and amphiphilic protein materials, which has many emerging applications in the material science and engineering, such as bio-device fabrication, drug storage and release, and tissue regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Information-Seeking Behaviors of Dental Practitioners in Three Practice-Based Research Networks

    Science.gov (United States)

    Botello-Harbaum, Maria T.; Demko, Catherine A.; Curro, Frederick A.; Rindal, D. Brad; Collie, Damon; Gilbert, Gregg H.; Hilton, Thomas J.; Craig, Ronald G.; Wu, Juliann; Funkhouser, Ellen; Lehman, Maryann; McBride, Ruth; Thompson, Van; Lindblad, Anne

    2013-01-01

    Research on the information-seeking behaviors of dental practitioners is scarce. Knowledge of dentists’ information-seeking behaviors should advance the translational gap between clinical dental research and dental practice. A cross-sectional survey was conducted to examine the self-reported information-seeking behaviors of dentists in three dental practice-based research networks (PBRNs). A total of 950 dentists (65 percent response rate) completed the survey. Dental journals and continuing dental education (CDE) sources used and their influence on practice guidance were assessed. PBRN participation level and years since dental degree were measured. Full-participant dentists reported reading the Journal of the American Dental Association and General Dentistry more frequently than did their reference counterparts. Printed journals were preferred by most dentists. A lower proportion of full participants obtained their CDE credits at dental meetings compared to partial participants. Experienced dentists read other dental information sources more frequently than did less experienced dentists. Practitioners involved in a PBRN differed in their approaches to accessing information sources. Peer-reviewed sources were more frequently used by full participants and dentists with fifteen years of experience or more. Dental PBRNs potentially play a significant role in the dissemination of evidence-based information. This study found that specific educational sources might increase and disseminate knowledge among dentists. PMID:23382524

  12. Influence of S. mutans on base-metal dental casting alloy toxicity.

    Science.gov (United States)

    McGinley, E L; Dowling, A H; Moran, G P; Fleming, G J P

    2013-01-01

    We have highlighted that exposure of base-metal dental casting alloys to the acidogenic bacterium Streptococcus mutans significantly increases cellular toxicity following exposure to immortalized human TR146 oral keratinocytes. With Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), S. mutans-treated nickel-based (Ni-based) and cobalt-chromium-based (Co-Cr-based) dental casting alloys were shown to leach elevated levels of metal ions compared with untreated dental casting alloys. We targeted several biological parameters: cell morphology, viable cell counts, cell metabolic activity, cell toxicity, and inflammatory cytokine expression. S. mutans-treated dental casting alloys disrupted cell morphology, elicited significantly decreased viable cell counts (p dental casting alloys induced elevated levels of cellular toxicity compared with S. mutans-treated Co-Cr-based dental casting alloys. While our findings indicated that the exacerbated release of metal ions from S. mutans-treated base-metal dental casting alloys was the likely result of the pH reduction during S. mutans growth, the exact nature of mechanisms leading to accelerated dissolution of alloy-discs is not yet fully understood. Given the predominance of S. mutans oral carriage and the exacerbated cytotoxicity observed in TR146 cells following exposure to S. mutans-treated base-metal dental casting alloys, the implications for the long-term stability of base-metal dental restorations in the oral cavity are a cause for concern.

  13. Fullerene and dendrimer based nano-composite gas separation membranes

    NARCIS (Netherlands)

    Sterescu, D.M.

    2007-01-01

    This thesis describes the development of new materials for membrane based gas separation processes. Long-term stable, loosely packed (high free volume) amorphous polymer films were prepared by introduction of super-molecular pendant groups, which possess hardsphere properties to avoid dense

  14. Synthesis and Examination of Nanocomposites Based on Poly(2-hydroxyethyl methacrylate for Medicinal Use

    Directory of Open Access Journals (Sweden)

    Olena S. Kukolevska

    2017-02-01

    Full Text Available Abstract Preparation of poly(2-hydroxyethyl methacrylate (PHEMA based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1 directly, or (2 with a solution of colloidal silica, or (3 through immobilization on silica (sol-densil. Morphology of prepared materials was investigated by laser scanning microscopy and low-vacuum scanning electron microscopy. In vacuum freeze-drying, prior imaging was proposed for improving visualization of the porous structure of composites. The interaction between PHEMA matrix and silica filler was investigated by IR spectroscopy. Adsorption of 2-hydroxyethyl methacrylate and BAC from aqueous solution on the silica surface was also examined. Phase composition and thermal stability of composites were studied by the differential thermogravimetry/differential thermal analysis. Release of BAC into water medium from prepared composites were shown to depend on the synthetic method and differed significantly. Obtained PHEMA-base materials which are characterized by controlled release of BAC have a strong potential for application in manufacturing of different surgical devices like implants, catheters and drainages.

  15. Synthesis and Examination of Nanocomposites Based on Poly(2-hydroxyethyl methacrylate) for Medicinal Use

    Science.gov (United States)

    Kukolevska, Olena S.; Gerashchenko, Igor I.; Borysenko, Mykola V.; Pakhlov, Evgenii M.; Machovsky, Michal; Yushchenko, Tetyana I.

    2017-02-01

    Preparation of poly(2-hydroxyethyl methacrylate) (PHEMA) based nanocomposites using different approaches such as synthesis with water as the porogen, filling of polymer matrix by silica and formation of interpenetrating polymer networks with polyurethane was demonstrated. Incorporation of various biologically active compounds (BAC) such as metronidazole, decamethoxin, zinc sulphate, silver nitrate or amino acids glycine and tryptophan into nanocomposites was achieved. BAC were introduced into the polymer matrix either (1) directly, or (2) with a solution of colloidal silica, or (3) through immobilization on silica (sol-densil). Morphology of prepared materials was investigated by laser scanning microscopy and low-vacuum scanning electron microscopy. In vacuum freeze-drying, prior imaging was proposed for improving visualization of the porous structure of composites. The interaction between PHEMA matrix and silica filler was investigated by IR spectroscopy. Adsorption of 2-hydroxyethyl methacrylate and BAC from aqueous solution on the silica surface was also examined. Phase composition and thermal stability of composites were studied by the differential thermogravimetry/differential thermal analysis. Release of BAC into water medium from prepared composites were shown to depend on the synthetic method and differed significantly. Obtained PHEMA-base materials which are characterized by controlled release of BAC have a strong potential for application in manufacturing of different surgical devices like implants, catheters and drainages.

  16. Waste to Want: Polymer nanocomposites using nanoclays extracted from Oil based drilling mud waste

    International Nuclear Information System (INIS)

    Adegbotolu, Urenna V; Njuguna, James; Pollard, Pat; Yates, Kyari

    2014-01-01

    Due to the European Union (EU) waste frame work directive (WFD), legislations have been endorsed in EU member states such as UK for the Recycling of wastes with a vision to prevent and reduce landfilling of waste. Spent oil based drilling mud (drilling fluid) is a waste from the Oil and Gas industry with great potentials for recycling after appropriate clean-up and treatment processes. This research is the novel application of nanoclays extracted from spent oil based drilling mud (drilling fluid) clean-up as nanofiller in the manufacture of nanocomposite materials. Research and initial experiments have been undertaken which investigate the suitability of Polyamide 6 (PA6) as potential polymer of interest. SEM and EDAX were used to ascertain morphological and elemental characteristics of the nanofiller. ICPOES has been used to ascertain the metal concentration of the untreated nanofiller to be treated (by oil and heavy metal extraction) before the production of nanocomposite materials. The challenges faced and future works are also discussed

  17. Poly(ethylene oxide) Crystallization in Single Walled Carbon Nanotube Based Nanocomposites: Kinetics and Structural Consequences

    Energy Technology Data Exchange (ETDEWEB)

    T Chatterjee; A Lorenzo; R Krishnamoorti

    2011-12-31

    The overall isothermal crystallization behavior of poly(ethylene oxide) (PEO) in single walled carbon nanotube (SWNT) based nanocomposites is studied with a focus on growth kinetics and morphological evolution of PEO using differential scanning calorimetry and in-situ small angle x-ray scattering measurements respectively. The characteristic time for crystallization of PEO increases due to the presence of lithium dodecyl sulfate (LDS) stabilized carbon nanotubes. Further, analysis of crystallization data using the Lauritzen-Hoffman regime theory of crystal growth shows the PEO chains stiffen in presence of LDS with an increased energy barrier associated with the nucleation and crystal growth, and the nanotubes further act as a barrier to chain transport or enhance the efficacy of the LDS action. The energy penalty and diffusional barrier to chain transport in the nanocomposites disrupt the crystalline PEO helical conformation. This destabilization leads to preferential growth of local nuclei resulting in formation of thinner crystal lamellae and suggests that the crystallization kinetics is strongly affected by the nucleation and crystal growth events. This study is particularly interesting considering the suppression of the PEO crystallinity in presence of small fraction of Lithium ion based surfactant and carbon nanotubes.

  18. Physical characteristics of nanoparticles emitted during drilling of silica based polyamide 6 nanocomposites

    International Nuclear Information System (INIS)

    Sachse, Sophia; Silva, Francesco; Njuguna, James; Irfan, Adeel; Zhu Huijun; Pielichowski, Krzysztof; Leszczynska, Agnieszka; Blazquez, Maria; Kazmina, Olga; Kuzmenko, Oleksandr

    2012-01-01

    During the past decade, polymer nanocomposites have emerged as a novel and rapidly developing class of materials and attracted considerable investment in research and development worldwide. However, there is currently a lack of information available in the literature on the emission rates of particles from these material. In this study, real-time characterization of the size distribution and number concentration of sub-micrometer-sized particles (5.6-512 nm) emitted from polyamide 6 nanocomposites during mechanical drilling was made. For the first time, four different silica based filler of commonly use were assessed. Further, the respective emission rates were determined based on the particle population and the time. The measurements showed that the particle emission rates ranged from 1.16E+07 (min −1 ) to 1.03E+09 (min −1 ) and that the peak diameters varied from 29.6 to 75.1 nm. Airborne particles in the nanometer range (11.1-46.8 nm), in the ultrafine range (51.3-101.1 nm) and in the accumulation mode range (111.9-521 nm) accounted for 34.1% to 76.6%, 8.3% to 47% and 4.1% to 24.2% of the total emission rates, respectively, depending on the type of filler. Additionally, deposited particles were sampled and characterized, to explore any possible correlation between deposited and airborne particles. The result clearly showed that with increasing airborne particle concentration the deposit particle concentration decreased and vice verse.

  19. Pentacene-Based Thin Film Transistor with Inkjet-Printed Nanocomposite High-K Dielectrics

    Directory of Open Access Journals (Sweden)

    Chao-Te Liu

    2012-01-01

    Full Text Available The nanocomposite gate insulating film of a pentacene-based thin film transistor was deposited by inkjet printing. In this study, utilizing the pearl miller to crumble the agglomerations and the dispersant to well stabilize the dispersion of nano-TiO2 particles in the polymer matrix of the ink increases the dose concentration for pico-jetting, which could be as the gate dielectric film made by inkjet printing without the photography process. Finally, we realized top contact pentacene-TFTs and successfully accomplished the purpose of directly patternability and increase the performance of the device based on the nanocomposite by inkjet printing. These devices exhibited p-channel TFT characteristics with a high field-effect mobility (a saturation mobility of ̃0.58 cm2 V−1 s−1, a large current ratio (>103 and a low operation voltage (<6 V. Furthermore, we accorded the deposited mechanisms which caused the interface difference between of inkjet printing and spin coating. And we used XRD, SEM, Raman spectroscopy to help us analyze the transfer characteristics of pentacene films and the performance of OTFTs.

  20. A novel tyrosinase biosensor based on hydroxyapatite-chitosan nanocomposite for the detection of phenolic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lu Limin; Zhang Li [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Zhang Xiaobing, E-mail: xbzhang@hnu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China); Huan Shuangyan; Shen Guoli; Yu Ruqin [State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 158 Zhongshan Road, Dalian 116012 (China)

    2010-04-30

    A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at -0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 {mu}M, with a high sensitivity of 2.11 x 10{sup 3} {mu}A mM{sup -1} cm{sup -2}, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 {mu}M for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.

  1. Polymer-Based Nanocomposites: An Internship Program for Deaf and Hard of Hearing Students

    Science.gov (United States)

    Cebe, Peggy; Cherdack, Daniel; Seyhan Ince-Gunduz, B.; Guertin, Robert; Haas, Terry; Valluzzi, Regina

    2007-03-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  2. An Internship Program for Deaf and Hard of Hearing Students in Polymer-Based Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Cebe,P.; Cherdack, D.; Guertin, R.; Haas, T.; S. Ince, B.; Valluzzi, R.

    2006-01-01

    We report on our summer internship program in Polymer-Based Nanocomposites, for deaf and hard of hearing undergraduates who engage in classroom and laboratory research work in polymer physics. The unique attributes of this program are its emphasis on: 1. Teamwork; 2. Performance of a start-to-finish research project; 3. Physics of materials approach; and 4. Diversity. Students of all disability levels have participated in this program, including students who neither hear nor voice. The classroom and laboratory components address the materials chemistry and physics of polymer-based nanocomposites, crystallization and melting of polymers, the interaction of X-rays and light with polymers, mechanical properties of polymers, and the connection between thermal processing, structure, and ultimate properties of polymers. A set of Best Practices is developed for accommodating deaf and hard of hearing students into the laboratory setting. The goal is to bring deaf and hard of hearing students into the larger scientific community as professionals, by providing positive scientific experiences at a formative time in their educational lives.

  3. CRYSTALLIZATION KINETICS OF POLYMERIC NANOCOMPOSITES BASED ON POLYAMIDE 12 MODIFIED BY Cr2O3 NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    E. S. Shapoval

    2014-09-01

    Full Text Available In situ polymerization method is used for obtaining polymeric composites based on polyamide12 matrix (PA 12, filled with Cr2O3 nanoparticles. The carried out researches result in synthesis method development for polymeric nanocomposites based on PA 12 matrix filled with nano-sized Cr2O3magnetic particles providing uniform embedding of the filler into polymeric matrix without formation of nanoparticles agglomerates. Mechanical tests on samples compression are carried out. It is shown that mechanical properties of polymeric composites (Young’s modulus, durability limit are decreased for 20-30 % as compared with not modified PA 12 synthesized by means of the chosen method. The influence of the filler on crystallization morphology and kinetics of polymeric nanocomposites is determined by electron microscopy and differential scanning calorimetry. The values of crystallization degree, crystallization rate constant for different supercooling intervals and parameters of Avrami equation are obtained. The initial nucleation is shown to be going on according to non-thermal mechanism, and nanoparticles are not the germs of crystallization. It is stated that nanoparticles are embedded into polymeric matrix and uniformly allocated in crystallites. Research results can find their application at creation of electric and magnetic fields, micro-sized mechanical devices, and at development of new materials for 3D printers.

  4. Evaluation of thermal properties of nanocomposites based on Ecobras matrix and vermiculite modified with alkyl phosphonium salt

    International Nuclear Information System (INIS)

    Oliveira, Marcelo F.L. de; Leite, Marcia C.A.M.; Braga, Fernanda C.F.; Oliveira, Marcia G.

    2015-01-01

    The use of biodegradable polymers for producing nanocomposites with mineral fillers fetch the production of new materials with low cost and reduced environmental impact, combined with improvements in the mechanical and thermal properties. Nanocomposites based on Ecobras and vermiculite (VMT) modified with hexadecyl tributyl phosphonium bromide (Ph-VMT) were prepared by melt intercalation. The intercalation of Ph-VMT in Ecobras was characterized by X-ray diffraction (XRD). The thermal properties of Ecobras and their compositions were characterized by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The addition of VMT and Ph- VMT in Ecobras increases the crystallization temperature (Tc) and crystalline melting (Tm), as observed by DSC analysis. The result of the thermogravimetric analysis showed that the addition of Ph-VMT in Ecobras improved thermal stability of the nanocomposite. (author)

  5. S-Layer-Based Nanocomposites for Industrial Applications.

    Science.gov (United States)

    Raff, Johannes; Matys, Sabine; Suhr, Matthias; Vogel, Manja; Günther, Tobias; Pollmann, Katrin

    2016-01-01

    This chapter covers the fundamental aspects of bacterial S-layers: what are S-layers, what is known about them, and what are their main features that makes them so interesting for the production of nanostructures. After a detailed introduction of the paracrystalline protein lattices formed by S-layer systems in nature the chapter explores the engineering of S-layer-based materials. How can S-layers be used to produce "industry-ready" nanoscale bio-composite materials, and which kinds of nanomaterials are possible (e.g., nanoparticle synthesis, nanoparticle immobilization, and multifunctional coatings)? What are the advantages and disadvantages of S-layer-based composite materials? Finally, the chapter highlights the potential of these innovative bacterial biomolecules for future technologies in the fields of metal filtration, catalysis, and bio-functionalization.

  6. Polysiloxane-Based Organoclay Nanocomposites as Flame Retardants

    Science.gov (United States)

    2013-01-01

    Polysiloxanes INTRODUCTION Halogen -based flame - retardant (FR) polymers and additives have been a cost-effective solution for FR appli- cations. However, there...D ec em be r 20 13 non- halogenated flame retardant polymers. Green Chem. 2011, 13 (3), 659–665. 7. Lewicki, J.P.; Liggat, J.J.; Patel, M. The...blended through several techniques with organoclays Cloisite 30B, 10A and Naþ ranging from 1 to 5 wt.%. Thermal and flame - retardant analysis

  7. New dental implant selection criterion based on implant design

    OpenAIRE

    El-Anwar, Mohamed I.; El-Zawahry, Mohamed M.; Ibraheem, Eman M.; Nassani, Mohammad Zakaria; ElGabry, Hisham

    2017-01-01

    Objective: A comparative study between threaded and plain dental implant designs was performed to find out a new criterion for dental implant selection. Materials and Methods: Several dental implant designs with a systematic increase in diameter and length were positioned in a cylindrical-shaped bone section and analyzed using finite element method. Four loading types were tested on different dental implant designs; tension of 50 N, compression of 100 N, bending of 20 N, and torque of 2 Nm, t...

  8. Development of nanocomposites based on potato starch; Desenvolvimento de nanocompositos a base de amido de batata

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Luciana Macedo; Tavares, Maria Ines Bruno, E-mail: mibt@ima.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-07-01

    Nanocomposites of potato starch were prepared by the solution intercalation method with the addition of organically modified montmorillonite clay (Viscogel B and unmodified sodic clay (NT25) as well as modified and unmodified silica (R972 and A200, respectively), using water as the solvent. The nanocomposites were characterized by conventional techniques of X-ray diffraction and thermogravimetric analysis. They were also characterized using the non-conventional low-field nuclear magnetic resonance, which is an effective alternative technique for characterizing nanocomposites. This technique allows one to investigate dispersion of nanofillers by the degree of intercalation and/or exfoliation, in addition to determine the distribution of nanoparticles in the polymer matrix and modifications of the molecular mobility of these fillers. The nanostructured materials obtained with the clays presented good dispersion and formation of mixed nanomaterials, with different degrees of intercalation and exfoliation. The mobility of the material decreased upon adding silica in the starch matrix, which applied to both types of silica. From the TGA technique, a slight increase in thermal stability of the nanocomposite was noted in relation to the starch matrix. (author)

  9. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    Muris, J.; Scheper, R.J.; Kleverlaan, C.J.; Rustemeyer, T.; van Hoogstraten, I.M.W.; von Blomberg, M.E.; Feilzer, A.J.

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and

  10. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakar, Nirmal, E-mail: nirmalprabhakar@gmail.com; Thakur, Himkusha; Bharti, Anu; Kaur, Navpreet

    2016-10-05

    An electrochemical aptasensor based on chitosan-iron oxide nanocomposite (CHIT-IO) film deposited on fluorine tin Oxide (FTO) was developed for the detection of malathion. Iron oxide nanoparticles were prepared by co-precipitation method and characterized by Transmission electron microscopy and UV–Visible spectroscopy. The biotinylated DNA aptamer sequence specific to the malathion was immobilized onto the iron oxide doped-chitosan/FTO electrode by using streptavidin as linking molecule. Various characterization studies like Field Emission-Scanning Electron Microscopy (FE-SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and Electrochemical studies were performed to attest the successful fabrication of bioelectrodes. Experimental parameters like aptamer concentration, response time, stability of electrode and reusability studies were optimized. Aptamer immobilized chitosan-iron oxide nanocomposite (APT/SA/CHIT-IO/FTO) bioelectrodes exhibited LOD of about 0.001 ng/mL within 15 min and spike-in studies revealed about 80–92% recovery of malathion from the lettuce leaves and soil sample. - Highlights: • An electrochemical aptasensor for the detection of Malathion has been developed. • Chitosan-iron oxide NP deposited FTO sheets provides platform for aptamer immobilization. • Aptasensor has efficiency to detect malathion upto 0.001 ng/mL within 15 min.

  11. Ternary and quaternary nanocomposites based on polystyrene, SBS, organically modified clay and silicone-polyether

    International Nuclear Information System (INIS)

    Kaneko, Manuela L.Q.A.; Lourenco, Emerson; Paiva, Raphael E.F.; Felisberti, Maria I.; Yoshida, Inez V.P.

    2009-01-01

    This work aims the study of toughened nanocomposites based on polystyrene (PS), poly(styrene-b-butadiene-b-styrene) (SBS), organically modified clay (C20A) and silicone-polyether, PDMS-POE. The intercalation of the copolymer PDMS-POE into the clay galleries increased the interlamellar distance, improving the exfoliation of the clay during the extrusion process of the materials. C20A/PDMS-POE nanocomposite, MC20A, was prepared by mechanical mixture using 1:1 wt% ratio. MC20A was incorporated into PS and PS/SBS blends using an extruder. The materials were characterized by X-ray diffraction and stress-strain mechanical tests. MC20A/PS/SBS, prepared by extrusion, showed an increase in the interlamellar distance, suggesting the intercalation of PS or SBS into the clay galleries. The PDMSPOE acted as a 'plasticizer' for PS and PS/SBS blend. However, this effect was not reverted by the clay addition. On the contrary, the 'plasticizer' effect was intensified by the clay maybe due to the slip characteristics of PDMS-POE associated with the lamella orientation. (author)

  12. Active sensing and damage detection using piezoelectric zinc oxide-based nanocomposites.

    Science.gov (United States)

    Meyers, Frederick N; Loh, Kenneth J; Dodds, John S; Baltazar, Arturo

    2013-05-10

    This study investigated the design and performance of piezoelectric nanocomposite-based interdigitated transducers (IDTs) for active sensing and damage detection. First, thin films that are highly piezoelectric and mechanically flexible were designed by embedding zinc oxide (ZnO) nanoparticles in a poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) piezo-polymer matrix. Second, the suspended nanoparticle solutions were then spin coated onto patterned comb electrodes to fabricate the IDTs. The films were then poled to align their electric domains and to increase their permanent piezoelectricity. Upon IDT fabrication, its sensing and actuation of Lamb waves on an aluminum pipe was validated. These results were also compared to data obtained from commercial Macro Fiber Composite IDT transducers. In the last phase of this work, damage detection was demonstrated by mounting these nanocomposite sensors and actuators (using a pitch-catch setup) onto an aluminum pipe and plate. Damage was simulated by tightening a band clamp around the pipe and by drilling holes in the plate. A damage index calculation was used to compare results corresponding to different levels of damage applied to the plate (i.e., different drilled hole depths), and good correlation was observed. Thus, ZnO/PVDF-TrFE transducers were shown to have the potential for use as piezoelectric transducers for structural health monitoring and damage detection.

  13. Novel electrochemical xanthine biosensor based on chitosan-polypyrrole-gold nanoparticles hybrid bio-nanocomposite platform.

    Science.gov (United States)

    Dervisevic, Muamer; Dervisevic, Esma; Çevik, Emre; Şenel, Mehmet

    2017-07-01

    The aim of this study was the electrochemical detection of the adenosine-3-phosphate degradation product, xanthine, using a new xanthine biosensor based on a hybrid bio-nanocomposite platform which has been successfully employed in the evaluation of meat freshness. In the design of the amperometric xanthine biosensor, chitosan-polypyrrole-gold nanoparticles fabricated by an in situ chemical synthesis method on a glassy carbon electrode surface was used to enhance electron transfer and to provide good enzyme affinity. Electrochemical studies were carried out by the modified electrode with immobilized xanthine oxidase on it, after which the biosensor was tested to ascertain the optimization parameters. The Biosensor exhibited a very good linear range of 1-200 μM, low detection limit of 0.25 μM, average response time of 8 seconds, and was not prone to significant interference from uric acid, ascorbic acid, glucose, and sodium benzoate. The resulting bio-nanocomposite xanthine biosensor was tested with fish, beef, and chicken real-sample measurements. Copyright © 2017. Published by Elsevier B.V.

  14. Integrated nanophotonic hubs based on ZnO-Tb(OH3/SiO2 nanocomposites

    Directory of Open Access Journals (Sweden)

    Lin Yu

    2011-01-01

    Full Text Available Abstract Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly designed nanocomposite based on ZnO semiconductor nanowires and Tb(OH3/SiO2 core/shell nanospheres has been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH3/SiO2 nanoparticles therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a Tb(OH3/SiO2 photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced lasing emissions in ZnO-Tb(OH3/SiO2 as well as SnO2-Tb(OH3/SiO2 nanocomposites, we demonstrate that our approach is extremely beneficial for the creation of low threshold and high-power nanolaser.

  15. Integrated nanophotonic hubs based on ZnO-Tb(OH)3/SiO2 nanocomposites

    Science.gov (United States)

    Lin, Hsia Yu; Cheng, Chung Liang; Lin, Yu Shen; Hung, Yann; Mou, Chung Yuan; Chen, Yang Fang

    2011-08-01

    Optical integration is essential for practical application, but it remains unexplored for nanoscale devices. A newly designed nanocomposite based on ZnO semiconductor nanowires and Tb(OH)3/SiO2 core/shell nanospheres has been synthesized and studied. The unique sea urchin-type morphology, bright and sharply visible emission bands of lanthanide, and large aspect ratio of ZnO crystalline nanotips make this novel composite an excellent signal receiver, waveguide, and emitter. The multifunctional composite of ZnO nanotips and Tb(OH)3/SiO2 nanoparticles therefore can serve as an integrated nanophotonics hub. Moreover, the composite of ZnO nanotips deposited on a Tb(OH)3/SiO2 photonic crystal can act as a directional light fountain, in which the confined radiation from Tb ions inside the photonic crystal can be well guided and escape through the ZnO nanotips. Therefore, the output emission arising from Tb ions is truly directional, and its intensity can be greatly enhanced. With highly enhanced lasing emissions in ZnO-Tb(OH)3/SiO2 as well as SnO2-Tb(OH)3/SiO2 nanocomposites, we demonstrate that our approach is extremely beneficial for the creation of low threshold and high-power nanolaser.

  16. Novel electrochemical xanthine biosensor based on chitosan–polypyrrole–gold nanoparticles hybrid bio-nanocomposite platform

    Directory of Open Access Journals (Sweden)

    Muamer Dervisevic

    2017-07-01

    Full Text Available The aim of this study was the electrochemical detection of the adenosine-3-phosphate degradation product, xanthine, using a new xanthine biosensor based on a hybrid bio-nanocomposite platform which has been successfully employed in the evaluation of meat freshness. In the design of the amperometric xanthine biosensor, chitosan–polypyrrole–gold nanoparticles fabricated by an in situ chemical synthesis method on a glassy carbon electrode surface was used to enhance electron transfer and to provide good enzyme affinity. Electrochemical studies were carried out by the modified electrode with immobilized xanthine oxidase on it, after which the biosensor was tested to ascertain the optimization parameters. The Biosensor exhibited a very good linear range of 1–200 μM, low detection limit of 0.25 μM, average response time of 8 seconds, and was not prone to significant interference from uric acid, ascorbic acid, glucose, and sodium benzoate. The resulting bio-nanocomposite xanthine biosensor was tested with fish, beef, and chicken real-sample measurements.

  17. 3D printable highly conductive and mechanically strong thermoplastic-based nanocomposites

    Science.gov (United States)

    Tabiai, Ilyass; Therriault, Daniel

    Highly conductive 3D printable inks can be used to design electrical devices with various functionalities and geometries. We use the solvent evaporation assisted 3D-printing method to create high resolution structures made of poly(lactid) acid (PLA) reinforced with multi-walled carbon nanotube (MWCNTs). We characterize fibers with diameters ranging between 100 μm to 330 μm and reinforced with MWCNTs from 0.5 up to 40wt% here. Tensile test, shrinkage ratio, density and electrical conductivity measurements of the printed nanocomposite are presented. The material's electrical conductivity is strongly improved by adding MWCNTs (up to 3000S/m), this value was found to be higher than any 3D-printable carbon based material available in the literature. It is observed that MWCNTs significantly increase the material's strength and stiffness while reducing its ductility. The ink's density was also higher while still being in the range of polymers' densities. The presented nanocomposite is light weight, highly conductive, has good mechanical properties and can be printed in a freeform fashion at the micro scale. A myriad of low power consumption with less resistive heating sensors and devices can potentially be designed using it and integrated into other 3D printable products.

  18. Dental pulp vitality measurement based on multiwavelength photoplethysmography

    Science.gov (United States)

    Sarkela, Ville; Kopola, Harri K.; Oikarinen, Kyosti; Herrala, Esko

    1995-01-01

    Observation of the intradental blood supply is important in cases of dental trauma, but difficult. As the methods used by dentists to measure pulp vitality are not very reliable, a dental pulp vitalometer based on fiberoptic reflectance measurement and measurement of the absorption of blood has been designed and built. In addition to the fiber optic probe and reflectance sensor electronics, the vitalometer includes a data acquisition card, a PC and data processing programs. The thick dentin and enamel layers and the small amount of blood in a tooth are major problems for optical measurement of its vitality, and scattered light from the enamel and the dentin surrounding the pulpa also causes a problem in measurements based on reflectance. These problems are assessed here by means of theoretical models and calculations. The advantage of reflectance measurement is that only one probe is used, which is easy to put against the tooth. Thus measurements are simple to make. Three wavelengths (560 nm, 650 nm, 850 nm) are used to measure photoplethysmographic signals, and these should allow the oxygen saturation of the blood in a tooth to be measured as well in the future. Series of measurements have been performed on vital and non-vital teeth by recording photoplethysmographic signals, using the vitalometer and using a commercial laser-Doppler instrument. Verifications of the laser-Doppler and vitalometer results are presented and deduced here.

  19. The Pulse Thermal Processing of NdFeB-Based Nanocomposite Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z. Q. [University of Texas; Wang, Z. L. [Georgia Institute of Technology; Liu, J. P. [University of Texas; Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

    2006-01-01

    Pulse-thermal processing (PTP) based on high-density plasma arc lamp technology has been utilized to crystallize melt-spun NdFeB-based amorphous ribbons to form magnetic nanocomposites consisting of Nd{sub 2}Fe{sub 14}B and {alpha}-Fe phases. After applying suitable pulses, the NdFeB-based ribbons were developed with hard magnetic properties. The highest coercivity can be obtained for ribbons with a thickness of 40 {micro}m after PTP treatments consisting of a 400 A pulse for 0.25 s for ten times. The correlation between PTP parameters and magnetic properties indicates that PTP is an effective approach to control the structure and properties of nanostructured magnetic materials.

  20. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

    NARCIS (Netherlands)

    Mistry, A.S.; Cheng, S.H.; Yeh, T.; Christenson, E.; Jansen, J.A.; Mikos, A.G.

    2009-01-01

    In this work, the fabrication and in vitro degradation of porous fumarate-based/alumoxane nanocomposites were evaluated for their potential as bone tissue engineering scaffolds. The biodegradable polymer poly (propylene fumarate)/propylene fumarate-diacrylate (PPF/PF-DA), a macrocomposite composed

  1. Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel

    CSIR Research Space (South Africa)

    Mittal, H

    2016-08-01

    Full Text Available This research paper reports the utilization of gum xanthan-grafted-polyacrylic acid and Fe(sub3)O(sub4) magnetic nanoparticles based nanocomposite hydrogel (NCH) for the highly effective adsorption of methyl violet (MV) from aqueous solution...

  2. Base metal alloys used for dental restorations and implants.

    Science.gov (United States)

    Roach, Michael

    2007-07-01

    One of the primary reasons for the development of base metal alloys for dental applications has been the escalating cost of gold throughout the 20th century. In addition to providing lower cost alternatives, these nonprecious alloys were also found to provide better mechanical properties and aesthetics for some oral applications. Additionally, certain base metal alloy systems are preferred because of their superior mechanical properties, lower density, and in some cases, their capability to osseo-integrate. The base metal alloy systems most commonly used in dentistry today include stainless steels, nickel-chromium, cobalt-chromium, titanium, and nickel-titanium alloys. Combined, these alloy systems provide a wide range of available properties to choose the correct material for both temporary and long-term restoration and implant applications.

  3. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    Science.gov (United States)

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  5. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    International Nuclear Information System (INIS)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng

    2015-01-01

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC 0–6h values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes

  6. Effect of different blue light-curing systems on the polymerization of nanocomposite resins.

    Science.gov (United States)

    Jang, Chang-Min; Seol, Hyo-Joung; Kim, Hyung-Ii; Kwon, Yong Hoon

    2009-12-01

    To examine the degree of polymerization of nanocomposite resins to test the possibility of using a diode-pumped solid state (DPSS) laser as a light-curing source on behalf of the argon laser. DPSS lasers emitting light at 473 nm have many advantages over argon lasers on account of their compactness, efficiency, and price. A 473-nm DPSS laser (LAS) was used with three other light-curing units (a quartz-tungsten-halogen lamp-based unit, a light emitting diode-based unit, and a xenon lamp-based plasma arc unit) to polymerize dental nanocomposite resins. The degree of polymerization was determined by measuring the microhardness, maximum polymerization shrinkage, and increase in temperature during and after light curing. The results were analyzed statistically. The specimens light cured with LAS showed a microhardness that was similar or superior to the values obtained from the specimens cured with the other light-curing units and maximum polymerization shrinkage values. The maximum increase in temperature by LAS was much lower than that induced by the other light-curing units. LAS effectively polymerizes dental nanocomposite resins to an extent similar to that of recently available light-curing units. The results suggest that LAS has good potential as a light source for light curing of dental nanocomposite resins.

  7. Rheological and Mechanical Characterization of Renewable Resource Based High Molecular Weight PLA Nanocomposites

    Directory of Open Access Journals (Sweden)

    P. J. Jandas

    2013-01-01

    Full Text Available The present study discusses structural aspects of nanocomposites and the ability of layered nanosilicates to alter the flow behaviour of poly(lactic acid (PLA melts. In addition, dynamic and static mechanical properties of PLA nanocomposites prepared from melt mixing method have been also discussed. A comparative study of nanocomposite properties has been conducted using two different nanoclays, natural montmorillonite modified with alkyl ammonium surfactant (OMMT, and commercially available organosilicate, Cloisite 30B, as reinforcements within the PLA matrix. Since OMMT has undergone better intercalation within the matrix, the corresponding nanocomposite showed superior mechanical and rheological characteristics than its C30B counterpart.

  8. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods.

    Science.gov (United States)

    Rouhi, Jalal; Mahmud, Shahrom; Naderi, Nima; Ooi, Ch Raymond; Mahmood, Mohamad Rusop

    2013-08-27

    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the addition of a small amount of ZnO NRs in the biopolymer matrix. X-ray diffraction showed an increase in the intensity of the crystal facets of (10ī1) and (0002) with the addition of ZnO NRs in the biocomposite matrix. The surface topography of the fish gelatin films indicated an increase in surface roughness with increasing ZnO NR concentrations. The conductivity of the films also significantly increased with the addition of ZnO NRs. These results indicated that bio-nanocomposites based on ZnO NRs had great potentials for applications in packaging technology, food preservation, and UV-shielding systems.

  9. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods

    Science.gov (United States)

    Rouhi, Jalal; Mahmud, Shahrom; Naderi, Nima; Ooi, CH Raymond; Mahmood, Mohamad Rusop

    2013-08-01

    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the addition of a small amount of ZnO NRs in the biopolymer matrix. X-ray diffraction showed an increase in the intensity of the crystal facets of (10ī1) and (0002) with the addition of ZnO NRs in the biocomposite matrix. The surface topography of the fish gelatin films indicated an increase in surface roughness with increasing ZnO NR concentrations. The conductivity of the films also significantly increased with the addition of ZnO NRs. These results indicated that bio-nanocomposites based on ZnO NRs had great potentials for applications in packaging technology, food preservation, and UV-shielding systems.

  10. Natural radioactivity in zirconia-based dental ceramics

    International Nuclear Information System (INIS)

    Giussani, Augusto; Gerstmann, Udo; La Porta, Caterina; Cantone, Marie C.; Veronese, Ivan

    2008-01-01

    Zirconia-based ceramics are being increasingly used in dental prosthetics in substitution of metal cores, which are known to induce local toxic reactions and delayed allergic responses in the oral tissues. Some concerns have been however raised about the use of zirconia, since it is known that unpurified zirconia materials may contain non negligible levels of natural radionuclides of the U/Th series. Combined measurements of alpha and gamma spectrometry as well as beta dosimetry were conducted on zirconia samples used for dental applications. Samples were available in form of powder and/or solid blocks. The results showed that the beta dose rate in zirconia ceramics was on average only slightly higher than the levels measured in natural teeth, and generally lower than the values measured in feldspatic and glass ceramics. These materials are indeed known to deliver a beta dose significantly higher than that measured from natural teeth, due to the relatively high levels of 40 K (between 2 and 3 kBq·kg -1 ). The content of radionuclides of the U/Th series in the zirconia sample was estimated to be lower than 15 Bq·kg -1 , i.e. doubtlessly below the exclusion level of 1 kBq·kg -1 recommended by IAEA in the Safety Standard Series. Beta dosimetry measurements, however, gave indications of possible inhomogeneous clusters of radioactivity, which might give rise to local doses above the background. (author)

  11. Synthesis of nanocomposite coating based on TiO2/ZnAl layer double hydroxides

    International Nuclear Information System (INIS)

    Jovanov, V.; Rudic, O.; Ranogajec, J.; Fidanchevska, E.

    2017-01-01

    The aim of this investigation was the synthesis of nanocomposite coatings based on Zn-Al layered double hydroxides (Zn-Al LDH) and TiO2. The Zn-Al LDH material, which acted as the catalyst support of the active TiO2 component (in the content of 3 and 10 wt. %), was synthesized by a low super saturation co-precipitation method. The interaction between the Zn-Al LDH and the active TiO2 component was accomplished by using vacuum evaporation prior to the mechanical activation and only by mechanical activation. The final suspension based on Zn-Al LDH and 10wt. % TiO2, impregnated only by mechanical activation, showed the optimal characteristics from the aspect of particle size distribution and XRD analysis. These properties had a positive effect on the functional properties of the coatings (photocatalytic activity and self-cleaning efficiency) after the water rinsing procedure. [es

  12. The American Dental Association's Center for Evidence-Based Dentistry: a critical resource for 21st century dental practice.

    Science.gov (United States)

    Frantsve-Hawley, Julie; Jeske, Arthur

    2011-02-01

    Through its website (http:// www.ada.org/prof/resources/ebd/index.asp), the American Dental Association's Center for Evidence-Based Dentistry offers dental health professionals access to systematic reviews of oral health-related research findings, as well as Clinical Recommendations, which summarize large bodies of scientific evidence in the form of practice recommendations, e.g., the use of professionally-applied topical fluoride and pit-and-fissure sealants. Another feature of the site of great practical importance to the practicing dentist is the Critical Summary, which is a concise review of an individual systematic review's methodology and findings, as well as the importance and context of the outcomes, and the strengths and weaknesses of the systematic review and its implications for dental practice.

  13. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite-modified Poly-methyl methacrylate-based dental resin.

    Science.gov (United States)

    Zhang, Yu; Chen, Yin-Yan; Huang, Li; Chai, Zhi-Guo; Shen, Li-Juan; Xiao, Yu-Hong

    2017-05-08

    Poly-methyl methacrylate (PMMA)-based dental resins with strong and long-lasting antifungal properties are critical for the prevention of denture stomatitis. This study evaluated the antifungal effects on Candida albicans ATCC90028, the cytotoxicity toward human dental pulp cells (HDPCs), and the mechanical properties of a silver bromide/cationic polymer nano-composite (AgBr/NPVP)-modified PMMA-based dental resin. AgBr/NPVP was added to the PMMA resin at 0.1, 0.2, and 0.3 wt%, and PMMA resin without AgBr/NPVP served as the control. Fungal growth was inhibited on the AgBr/NPVP-modified PMMA resin compared to the control (P  0.05) between the experimental and control groups. These data indicate that the incorporation of AgBr/NPVP conferred strong and long-lasting antifungal effects against Candida albicans to the PMMA resin, and it has low toxicity toward HDPCs, and its mechanical properties were not significantly affected.

  14. Polymer-Ceramic Nanocomposites Based on New Concepts for Embedded Capacitor

    Science.gov (United States)

    Takahashi, Akio; Kakimoto, Masa-Aki; Tsurumi, Taka-Aki; Hao, Jianjun; Li, Li; Kikuchi, Ryohei; Miwa, Takao; Ohno, Toshiyuki; Yamada, Shinji; Takezawa, Yoshitaka

    A rapid growth of mixed-signal integrated circuits is driving the needs of multifunction and miniaturization of the component in electronics applications. Polymer-ceramic composites have been of great interest as embedded capacitor materials because they enabled companies to combine the processability of polymers with the high dielectric constant of ceramics. Polymer-ceramic nanocomposites based on new concepts were developed for embedded capacitor applications. The dielectric constant was above 80 at 1 MHz and the specific capacitance was successfully achieved 8 nF/cm2. By use of this nanocomposites, multilayer printed wiring boards with embedded passive components were fabricated for prototypes. The following technologies are reported in this paper. Firstly, based on the investigation of barium titanium oxide (BaTiO3) crystallites, various particles with the sizes from 17 nm to 100 nm were prepared by the 2-step thermal decomposition method from barium titanyl oxalate (BaTiO(C2O4)2·4H2O). It was clarified that BaTiO3 particles with a size of around 70 nm exhibited a maximum dielectric constant of over 15,000 by FEM analysis from the measured dielectric constants of BaTiO3 suspensions. Secondary, the BaTiO3 surface modification based on a new concept was applied to improve the affinity between BaTiO3 particles and polymer matrix. Thirdly, the blend polymer of an aromatic polyamide (PA) and an aromatic bismaleimide (BMI) was employed as the matrix from a view-point of both the processabilty during fabricating the substrates with embedded passive components and the thermal stability during assembling LSI chips. Finally, these technologies were combined and optimized for embedded capacitor materials.

  15. Design Improvement of Dental Implant-Based on Bone Remodelling

    OpenAIRE

    Solehuddin Shuib; Koay Boon Aik; Zainul Ahmad Rajion

    2016-01-01

    There are many types of mechanical failure on the dental implant. In this project, the failure that needs to take into consideration is the bone resorption on the dental implant. Human bone has its ability to remodel after the implantation. As the dental implant is installed into the bone, the bone will detect and change the bone structure to achieve new biomechanical environment. This phenomenon is known as bone remodeling. The objective of the project is to improve the ...

  16. A novel and green biomaterial based silver nanocomposite hydrogel: synthesis, characterization and antibacterial effect.

    Science.gov (United States)

    Bardajee, Ghasem R; Hooshyar, Zari; Rezanezhad, Habib

    2012-12-01

    In the present study, we report a facile and eco-friendly method for the preparation of a novel silver nanocomposite hydrogel (SNH) based on poly(acrylic acid) (PAA) grafted onto salep as a water soluble polysaccharide backbone. The presence of inorganic silver nanoparticles (nano-Ag) in the hydrogel was confirmed by thermo-gravimetric (TG) analysis. The TEM images illustrated the presence of embedded nano-Ag throughout the hydrogel matrix. In addition, the transmission electron microscopy (TEM) images showed that the formed nano-Ag had an average particle size of 5-10 nm. The potential of obtained SNH was examined for Tetracycline hydrochloride (TH) release in simulated colon conditions. Lastly, the in vitro antibacterial properties of the obtained optimum sample were successfully evaluated against gram-negative and gram-positive bacteria. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Punitha, N., E-mail: punithasan@gmail.com [Department of Physics, St. Joseph’s College of Engineering, Chennai 600119 (India); Saravanan, P. [Department of Chemistry, St. Joseph’s College of Engineering, Chennai 600119 (India); Mohan, R. [Department of Physics, Surya College of Engineering and Technology, Villupuram (India); Ramesh, P.S. [Department of Physics (DDE), Annamalai University, Annamalai Nagar 608002 (India)

    2017-01-15

    Highlights: • Simple, novel and cost effective. • Functionalized Ag nanocomposites exhibit enhanced biological activity. • The SNCs were crystalline nature and shows good stability. - Abstract: Self-polishing polymer composites which release metal biocide in a controlled rate have been widely used in the design of antimicrobial agents and antifouling coatings. The present work focuses on the environmental friendly green synthesis of PEG based SNCs and their application to biocidal activity including marine biofouling. Biocompatible polymer β-CD and adhesive resistance polymer PEG were used to functionalize the SNPs and the as synthesized SNCs exhibit excellent micro fouling activities. The structural and optical properties were confirmed by XRD and UV–visible techniques respectively. The particle surface and cross sectional characteristics were examined by SEM-EDS, HR-TEM, AFM and FTIR. The surface potential was evaluated using ZP analysis and assessment of antibiofouling property was investigated using static immersion method.

  18. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules

    KAUST Repository

    Qi, Genggeng

    2011-01-01

    A novel high efficiency nanocomposite sorbent for CO2 capture has been developed based on oligomeric amine (polyethylenimine, PEI, and tetraethylenepentamine, TEPA) functionalized mesoporous silica capsules. The newly synthesized sorbents exhibit extraordinary capture capacity up to 7.9 mmol g-1 under simulated flue gas conditions (pre-humidified 10% CO 2). The CO2 capture kinetics were found to be fast and reached 90% of the total capacities within the first few minutes. The effects of the mesoporous capsule features such as particle size and shell thickness on CO2 capture capacity were investigated. Larger particle size, higher interior void volume and thinner mesoporous shell thickness all improved the CO2 capacity of the sorbents. PEI impregnated sorbents showed good reversibility and stability during cyclic adsorption-regeneration tests (50 cycles). © 2011 The Royal Society of Chemistry.

  19. New bio-nanocomposites based on iron oxides and polysaccharides applied to oxidation and alkylation reactions

    Directory of Open Access Journals (Sweden)

    Daily Rodríguez-Padrón

    2017-09-01

    Full Text Available Polysaccharides from natural sources and iron precursors were applied to develop new bio-nanocomposites by mechanochemical milling processes. The proposed methodology was demonstrated to be advantageous in comparison with other protocols for the synthesis of iron oxide based nanostructures. Additionally, mechanochemistry has enormous potential from an environmental point-of-view since it is able to reduce solvent issues in chemical syntheses. The catalytic activity of the obtained nanocatalysts was investigated in both the oxidation of benzyl alcohol to benzaldehyde and in the alkylation of toluene with benzyl chloride. The microwave-assisted oxidation of benzyl alcohol reached 45% conversion after 10 min. The conversion of the alkylation of toluene in both microwave-assisted and conventional heating methods was higher than 99% after 3 min and 30 min, respectively. The transformation of benzyl alcohol and toluene into valuable product in both the oxidation and alkylation reaction reveals a potential method for the valorization of lignocellulosic biomass.

  20. Organophilic bentonites based on Argentinean and Brazilian bentonites: part 2: potential evaluation to obtain nanocomposites

    Directory of Open Access Journals (Sweden)

    L. B. Paiva

    2012-12-01

    Full Text Available This work describes the preparation of composites of polypropylene and organophilic bentonites based on Brazilian and Argentinean bentonites. During the processing of the samples in a twin screw microextruder, torque and pressures of the extruder were accompanied and the viscosity values were calculated. No significant changes in the torque, pressure and viscosity were found for composites prepared with different bentonites. The samples were characterized by XRD and TEM to evaluate the structure and dispersion of the organophilic bentonites. Composites with exfoliated, partially exfoliated and intercalated structures were obtained and correlations between the intrinsic properties of the sodium clays and organophilic bentonites and their influence on the composites were studied. The cation exchange capacity of the sodium bentonites and the swelling capacity of the organophilic bentonites were the most important properties to obtain exfoliated structures in composites. All bentonites showed the potential to obtain polymer nanocomposites, but the ones from Argentina displayed the best results.

  1. Dynamic Buckling of Embedded Laminated Nanocomposite Plates Based on Sinusoidal Shear Deformation Theory

    Directory of Open Access Journals (Sweden)

    Mohammd Sharif Zarei

    2016-12-01

    Full Text Available In this study, the dynamic buckling of the embedded laminated nanocomposite plates is investigated. The plates are reinforced with the single-walled carbon nanotubes (SWCNTs, and the Mori-Tanaka model is applied to obtain the equivalent material properties of them. Based on the sinusoidal shear deformation theory (SSDT, the motion equations are derived using the energy method and Hamilton's principle. The Navier’s method is used in conjunction with the Bolotin's method for obtaining the dynamic instability region (DIR of the structure. The effects of different parameters such as the volume percentage of SWCNTs, the number and orientation angle of the layers, the elastic medium, and the geometrical parameters of the plates are shown on DIR of the structure. Results indicate that by increasing the volume percentage of SWCNTs the resonance frequency increases, and DIR shifts to right. Moreover, it is found that the present results are in good agreement with the previous researches.

  2. Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

    Directory of Open Access Journals (Sweden)

    Roberto Scaffaro

    2016-05-01

    Full Text Available In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs as fillers and an antibiotic, i.e., ciprofloxacin (CFX, as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid (PLA and a copolyester (BioFlex®. The prepared materials were characterized by scanning electron microscopy (SEM, and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the tuning of the release of CFX without hindering the antimicrobial activity of the obtained materials.

  3. High oxygen nanocomposite barrier films based on xylan and nanocrystalline cellulose

    Science.gov (United States)

    Amit Saxena; Thomas J. Elder; Jeffrey Kenvin; Arthur J. Ragauskas

    2010-01-01

    The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more...

  4. Hybrid Ag-based inks for nanocomposite inkjet printed lines: RF properties

    International Nuclear Information System (INIS)

    Chiolerio, Alessandro; Camarchia, Vittorio; Quaglia, Roberto; Pirola, Marco; Pandolfi, Paolo; Pirri, Candido Fabrizio

    2014-01-01

    Highlights: • Polymer–silver nanocomposite conductive ink for RF fast prototyping. • Reduction of the sintering temperature. • Improved printing resolution. • State-of-the-art electrical conductivity. • Good RF performances. - Abstract: The development of highly conductive Ag nanoparticle (NP)-based inkjet printed (IP) connections is a fundamental process for the success of next-generation digitally printed electronics. This is true both at low frequency and at RF, considering the increasing integration of heterogeneous technologies and the use of flexible substrates. Ink-based technologies provide and form at liquid state the functional material that is then delivered to solid via a sintering process to achieve NP coalescence and electrical percolation. Sintering must be performed at very low temperatures (depending on the substrate choice) to be compatible with previous process steps, to preserve the geometry and fulfill the requirements in term of electrical conductivity, as well as to reduce production costs. While IP, as additive technology, is now well settled for DC or low frequency applications, few results on electrical characterization at RF or microwave frequencies are present due to low conductivity, poor geometry definition and low reproducibility. Hence, a good setup of ink formulation and technological realization is fundamental to enable system performance assessment in the high frequency regime. In this paper we propose a breakthrough: we present a nanocomposite ink, whose thermal and DC electrical properties are extremely interesting and competitive with pure-metallic ink systems. Introducing a copolymer in the formulation, we obtained a reduction of the overall sintering temperature, if compared to the pristine NP suspension, along with improved printing resolution together with very good electrical conductivity. The RF characterization has been performed in the range 1–6 GHz on geometries printed on sintered alumina and on a power

  5. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)

    Science.gov (United States)

    Faraji, Sheida; Danesh, Ehsan; Tate, Daniel J.; Turner, Michael L.; Majewski, Leszek A.

    2016-05-01

    Low voltage organic field-effect transistors (OFETs) using solution-processed cyanoethyl cellulose (CEC) and CEC-based nanocomposites as the gate dielectric are demonstrated. Barium strontium titanate (BST) nanoparticles are homogeneously dispersed in CEC to form the high-k (18.0  ±  0.2 at 1 kHz) nanocomposite insulator layer. The optimised p-channel DPPTTT OFETs with BST-CEC nanocomposite as the gate dielectric operate with minimal hysteresis, display field-effect mobilities in excess of 1 cm2 V-1 s-1 at 3 V, possess low subthreshold swings (132  ±  8 mV dec-1), and have on/off ratios greater than 103. Addition of a 40-50 nm layer of cross-linked poly(vinyl phenol) (PVP) on the surface of the nanocomposite layer significantly decreases the gate leakage current (OFETs at 1.5 V. The presented bilayer BST-CEC/PVP dielectrics are a promising alternative for the fabrication of low voltage, solution-processed OFETs that are suitable for use in low power, portable electronics.

  6. Fire and Gas Barrier Properties of Poly(styrene-co-acrylonitrile Nanocomposites Using Polycaprolactone/Clay Nanohybrid Based-Masterbatch

    Directory of Open Access Journals (Sweden)

    S. Benali

    2008-01-01

    Full Text Available Exfoliated nanocomposites are prepared by dispersion of poly(ε-caprolactone (PCL grafted montmorillonite nanohybrids used as masterbatches in poly(styrene-co-acrylonitrile (SAN. The PCL-grafted clay nanohybrids with high inorganic content are synthesized by in situ intercalative ring-opening polymerization of ε-caprolactone between silicate layers organomodified by alkylammonium cations bearing two hydroxyl functions. The polymerization is initiated by tin alcoholate species derived from the exchange reaction of tin(II bis(2-ethylhexanoate with the hydroxyl groups borne by the ammonium cations that organomodified the clay. These highly filled PCL nanocomposites (25 wt% in inorganics are dispersed as masterbatches in commercial poly(styrene-co-acrylonitrile by melt blending. SAN-based nanocomposites containing 3 wt% of inorganics are accordingly prepared. The direct blend of SAN/organomodified clay is also prepared for sake of comparison. The clay dispersion is characterized by wide-angle X-ray diffraction (WAXD, atomic force microscopy (AFM, and solid state NMR spectroscopy measurements. The thermal properties are studied by thermogravimetric analysis. The flame retardancy and gas barrier resistance properties of nanocomposites are discussed both as a function of the clay dispersion and of the matrix/clay interaction.

  7. Sensors on Textile Fibres Based on Ag/a-C:H:O Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Martin Drabik

    2013-08-01

    Full Text Available In this contribution we present a study of the vacuum deposition process of metal/plasma polymer nanocomposite thin films monitored using plasma diagnostics (optical emission spectroscopy. We investigate\tthe\telectrical\tproperties\tof\tthe nanocomposite structures suitable for their application as\thumidity\tsensors.\tFurthermore,\tthe\tfilm microstructure is characterized by transmission electron microscopy and electron diffraction analysis. The amount of silver in the nanocomposite is evaluated using inductively coupled plasma optical emission spectrometry and the morphology of the structured\tsystem\tof\tmetal\telectrodes\tand nanocomposite films on monofilament textile fibres is visualized using scanning electron microscopy. Ageing of nanocomposite coatings and the influence of an aqueous environment on their internal structure and properties are discussed.

  8. Fabrication of a novel glucose biosensor based on a highly electroactive polystyrene/polyaniline/Au nanocomposite.

    Science.gov (United States)

    Liu, Yuge; Feng, Xiaomiao; Shen, Jianmin; Zhu, Jun-Jie; Hou, Wenhua

    2008-07-31

    A novel nanocomposite with a core-shell structure containing polystyrene (PS), polyaniline (PANI), and Au nanoparticles (NPs) was synthesized. The nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). Cyclic voltammetric experiments indicated that the nanocomposite had excellent redox ability in a wide range of pH values. The existence of Au NPs resulted in a higher electrical conductivity of the nanocomposite. As a model, glucose oxidase (GOD) was entrapped onto the nanocomposite-modified glassy carbon electrode (GCE) and applied to construct a sensor. The immobilized GOD showed a pair of well-defined redox peaks and high catalytic activity for the oxidation of glucose.

  9. Solution processable high dielectric constant nanocomposites based on ZrO2 nanoparticles for flexible organic transistors.

    Science.gov (United States)

    Beaulieu, Michael R; Baral, Jayanta K; Hendricks, Nicholas R; Tang, Yuying; Briseño, Alejandro L; Watkins, James J

    2013-12-26

    A solution-based strategy for fabrication of high dielectric constant (κ) nanocomposites for flexible organic field effect transistors (OFETs) has been developed. The nanocomposite was composed of a high-κ polymer, cyanoethyl pullulan (CYELP), and a high-κ nanoparticle, zirconium dioxide (ZrO2). Organic field effect transistors (OFETs) based on neat CYELP exhibited anomalous behavior during device operation, such as large hysteresis and variable threshold voltages, which yielded inconsistent devices and poor electrical characteristics. To improve the stability of the OFET, we introduced ZrO2 nanoparticles that bind with residual functional groups on the high-κ polymer, which reduces the number of charge trapping sites. The nanoparticles, which serve as physical cross-links, reduce the hysteresis without decreasing the dielectric constant. The dielectric constant of the nanocomposites was tuned over the range of 15.6-21 by varying the ratio of the two components in the composite dielectrics, resulting in a high areal capacitance between 51 and 74 nF cm(-2) at 100 kHz and good insulating properties of a low leakage current of 1.8 × 10(-6) A cm(-2) at an applied voltage of -3.5 V (0.25 MV cm(-1)). Bottom-gate, top-contact (BGTC) low operating voltage p-channel OFETs using these solution processable high-κ nanocomposites were fabricated by a contact film transfer (CFT) technique with poly(3-hexylthiophene) (P3HT) as the charge transport layer. Field effect mobilities as high as 0.08 cm(2) V(-1) s(-1) and on/off current ratio of 1.2 × 10(3) for P3HT were measured for devices using the high-κ dielectric ZrO2 nanocomposite. These materials are promising for generating solution coatable dielectrics for low cost, large area, low operating voltage flexible transistors.

  10. Are advertisements in dental journals supported by an appropriate evidence-base?

    Science.gov (United States)

    Chestnutt, Ivor G; Hardy, Robert

    2013-09-01

    Dental professionals are constantly exposed to advertisements in the dental literature. These promote products, either for use in the operatory or to recommend to patients. In an era of evidence-based practice, what references are provided to support claims made by the advertisers? This study aimed to determine if advertisements in four major dental journals, whose target audience is general dental practitioners, were supported by an appropriate evidence-base, readily accessible to readers. The 2010 printed volumes of the Australian Dental Journal, British Dental Journal, Dental Update and the Journal of the American Dental Association were hand searched to identify advertisements which made a claim of clinical benefit or superiority to competing products. Advertisements were categorized according to type of product being promoted and the availability, nature and number of any supporting references was recorded. Repeated advertisements were analyzed only once. A total of 390 advertisements were identified and 369 made a claim of benefit or superiority. When the 222 duplicates of the same advertisement were removed, 147 unique advertisements remained. Of these: 54 (37%) were advertisements related to dental devices for in-surgery use; 44 (30%) for dental materials, and 27 (18%) for dentifrices/medicaments. 113 (76.9%) advertisements offered no evidential support for claims made. Of the 34 advertisements that provided evidential support, only 20 provided a complete reference that could readily be sourced by an interested reader: 15 articles in refereed journals; 5 data on file; 3 in-house studies and combinations thereof. Four references were not accessible due to incomplete referencing. Two advertisements provided evidence that was not relevant to the product being advertised. The majority of advertisements in the dental literature do not provide an adequate evidence-base, readily available to readers, to support the claims being made. If evidence-based practice is

  11. Developing the continuum of dental education: including dental foundation trainers in the delivery of a community-based clinical teaching programme.

    Science.gov (United States)

    Lynch, C D; Ash, P J; Chadwick, B L; Herbert, R A; Cowpe, J G

    2012-11-01

    Despite advances in evidence-based dental school educational programmes, the charge is sometimes made that dental students are 'no longer as good as they used to be'. Recent modifications have meant that dental education is now a 'life-long experience', of which dental school is the initial, albeit very important, component. Contemporary dental students will normally enter dental foundation (DF) training on completion of dental school. As such there may be value in including DF trainers in dental school teaching programmes. The aim of this paper is to report the experiences, feedback and opinions of these DF trainers following their first-hand experience of the community-based clinical teaching programme at Cardiff, and assess if their perspectives of contemporary dental student education changed following this. DF trainers were invited to attend the community-based clinical teaching programme at Cardiff on an observer basis. Twenty-four DF trainers attended, following which evaluation questionnaires were completed. Information sought included opinions and attitudes to the teaching programme, the physical environment in which the teaching programme took place, knowledge and attitudes towards community-based clinical teaching and modifications that DF trainers would make to the teaching programme to further improve the knowledge, skills and attributes of dental school graduates for DF training. Responses were received from 20 DF trainers (response rate = 83%). All 20 respondents felt that the teaching provided within the community-based clinical teaching programme was appropriate, with one respondent noting that it was like 'a day in the life of a dental practice', 'where anything could present'. Sixteen respondents were satisfied with the scope and content of the community-based clinical teaching programme, with a small number recommending inclusion of teaching in relation to inlays/onlays (n = 2), simple orthodontics (n = 1) and splinting (n = 1). Eighteen

  12. Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrices

    Science.gov (United States)

    Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.

    2006-11-01

    An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.

  13. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.r [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2011-07-15

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ({sup 1}H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu{sup 2+}) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: {yields} Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. {yields} Quenching effects by acids, Cu{sup 2+} and nitrobenzene in solution/film were evidenced. {yields} A fluorescence dequenching was observed for the composite with silsesquixane units. {yields} A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  14. Microcomputed tomography-based assessment of retrieved dental implants

    NARCIS (Netherlands)

    Narra, N.; Antalainen, A.K.; Zipprich, H.; Sándor, G.K.; Wolff, J.

    2015-01-01

    Purpose: The aim of this study was to demonstrate the potential of microcomputed tomography (micro-CT) technology in the assessment of retrieved dental implants. Cases are presented to illustrate the value of micro-CT imaging techniques in determining possible mechanical causes for dental implant

  15. Optimization of compressive strength of zirconia based dental ...

    Indian Academy of Sciences (India)

    Dental composites are tooth-coloured restorative material used by dentists for various applications. Restoration of a lost tooth structure requires a material having mechanical as well as aesthetic properties similar to that of tooth. This poses challenges to engineers and the dentist alike. Dental composites consist of a matrix ...

  16. Optimization of compressive strength of zirconia based dental ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Dental composites are tooth-coloured restorative material used by dentists for various applica- tions. Restoration of a lost tooth structure requires a material having mechanical as well as aesthetic proper- ties similar to that of tooth. This poses challenges to engineers and the dentist alike. Dental composites consist.

  17. Microcomputed Tomography-Based Assessment of Retrieved Dental Implants

    NARCIS (Netherlands)

    Narra, N.; Antalainen, A.K.; Zipprich, H.; Sandor, G.K.; Wolff, J.

    2015-01-01

    PURPOSE: The aim of this study was to demonstrate the potential of microcomputed tomography (micro-CT) technology in the assessment of retrieved dental implants. Cases are presented to illustrate the value of micro-CT imaging techniques in determining possible mechanical causes for dental implant

  18. New dental implant selection criterion based on implant design.

    Science.gov (United States)

    El-Anwar, Mohamed I; El-Zawahry, Mohamed M; Ibraheem, Eman M; Nassani, Mohammad Zakaria; ElGabry, Hisham

    2017-01-01

    A comparative study between threaded and plain dental implant designs was performed to find out a new criterion for dental implant selection. Several dental implant designs with a systematic increase in diameter and length were positioned in a cylindrical-shaped bone section and analyzed using finite element method. Four loading types were tested on different dental implant designs; tension of 50 N, compression of 100 N, bending of 20 N, and torque of 2 Nm, to derive design curves. Better stress distribution on both spongy and cortical bone was noted with an increase in dental implant diameter and length. With the increase in dental implant side area, a stress reduction in the surrounding bones was observed, where threaded dental implants showed better behavior over the plain ones. Increasing value of ratio between dental implant side area and its cross-sectional area reduces stresses transferred to cortical and spongy bones. The use of implants with higher ratio of side area to cross-section area, especially with weak jaw bone, is recommended.

  19. Clinical Fit of Partial Removable Dental Prostheses Based on Alginate or Polyvinyl Siloxane Impressions.

    NARCIS (Netherlands)

    Fokkinga, W.A.; Witter, D.J.; Bronkhorst, E.M.; Creugers, N.H.J.

    2017-01-01

    PURPOSE: The aim of this study was to analyze the clinical fit of metal-frame partial removable dental prostheses (PRDPs) based on custom trays used with alginate or polyvinyl siloxane impression material. MATERIALS AND METHODS: Fifth-year students of the Nijmegen Dental School made 25 correct

  20. Virtual Reality-Based Technologies in Dental Medicine: Knowledge, Attitudes and Practice among Students and Practitioners

    Science.gov (United States)

    Sabalic, Maja; Schoener, Jason D.

    2017-01-01

    Virtual reality-based technologies have been used in dentistry for almost two decades. Dental simulators, planning software and CAD/CAM (computer-aided design/computer-aided manufacturing) systems have significantly developed over the years and changed both dental education and clinical practice. This study aimed to assess the knowledge, attitudes…

  1. Organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Science.gov (United States)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng

    2015-12-01

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan-glutathione (CG) and pre-activated chitosan-glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH-PCL (Lh-LDH-PCL), larger spherical LDH-PCL (Ls-LDH-PCL), smaller hexagonal LDH-PCL (Sh-LDH-PCL), CG hybrid LDH-PCL (LDH-PCL-CG), and CG-2MNA hybrid LDH-PCL (LDH-PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2-274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC0-6h values of Lh-LDH-PCL, Ls-LDH-PCL, Sh-LDH-PCL, LDH-PCL-CG, and LDH-PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.

  2. Tribology of Nanocomposites

    CERN Document Server

    2013-01-01

    This book provides recent information on nanocomposites tribology. Chapter 1 provides information on tribology of bulk polymer nanocomposites and nanocomposite coatings. Chapter 2 is dedicated to nano and micro PTFE for surface lubrication of carbon fabric reinforced polyethersulphone composites. Chapter 3 describes Tribology of MoS2 -based nanocomposites. Chapter 4 contains information on friction and wear of Al2O2 -based composites with dispersed and agglomerated nanoparticles. Finally, chapter 5 is dedicated to wear of multi-scale phase reinforced composites. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels. It is a useful reference for academics, materials and physics researchers, materials, mechanical and manufacturing engineers, both as final undergraduate and postgraduate levels.

  3. Titanium nano-composites synthesis by laser pyrolysis; Synthese de nanocomposites a base de titane par pyrolyse laser

    Energy Technology Data Exchange (ETDEWEB)

    Maskrot, H. [CEA Saclay, Service des Photons, Atomes et Molecules, Lab. Francis Perrin (CEA-CNRS URA 2453), 91 - Gif-sur-Yvette (France)

    2004-07-01

    In this work, Ti/C/O nano-powders have been obtained by using a titanium iso-prop-oxide aerosol as precursor and a hydrocarbon gas as a sensitizer. A production velocity in the range of 10-20 g/h and a titanium yield superior to 80% have been obtained. The main TiO{sub 2} crystalline phase was always the anatase. The measured specific surface areas are in the range 65-115 m{sup 2}/g with grain sizes of 12 to 40 nm. These sizes are inferior to those of the Degussa powder P25 (45 m{sup 2}/g) which is often cited as reference in catalysis. According to the sensitizer concentration and the laser power, the colours of the powders have changed from light grey to black, corresponding to the different free carbon amounts (3{>=}C{>=}12 % weight). Metal/Ti/C/O nano-composites have been obtained in adding a metal precursor (for instance platinum acetylacetonate) in the liquid precursor. The preliminary catalytic tests lead to an encouraging catalytic activity. Ti/Si/C/O nano-particles have been prepared too with a production rate near 20 g/h. The Si/Ti ratio in the powder (0.1{<=}Si/Ti{<=}0.9) is controlled in adjusting the mixture of the precursors. A substoichiometric secondary phase of titanium oxide leading to SiO{sub 2}/TiO{sub 2-x} composites has been identified in these powders. In conclusion, the laser pyrolysis allows to synthesize titanium nano-powders with production rates and sizes at least also attracting than those found in the literature. A quantification of the catalytic activity of the different obtained materials is in study. (O.M.)

  4. Synergistic effects of alkylated graphene oxide on the properties of polypropylene-based carbon nanocomposites.

    Science.gov (United States)

    Yun, Young Soo; Pyo, Hye-Ri; Lee, Jae Yun; Chin, In-Joo; Jin, Hyoung-Joon

    2013-10-01

    Polypropylene (PP)/carbon black (CB)-alkylated graphene oxide (AGO) hybrid nanocomposites were prepared via solution process and the synergistic effects of AGO on the properties of the PP/CB nanocomposites were investigated. AGO at a content of only 0.2 wt% formed an overlapped network structure in the PP matrix and affected the electrical, thermal and mechanical properties of the PP/CB nanocomposites. Specifically, PP/CB (5 wt%)-AGO (0.2 wt%) nanocomposites exhibited an electrical percolation threshold at lower CB contents than the PP/CB nanocomposites did, and the sheet resistance was decreased to 2.3 x 10(7) omega/sq. The thermal degradation temperature and recrystallization temperature of the PP/CB (10 wt%) nanocomposites were increased by 11.3 and 1.6 degrees C, respectively, by the addition of 0.2 wt% AGO. In addition, the Young's modulus of the PP/CB (10 wt%) nanocomposite was increased from 438.1 to 540.1 MPa.

  5. Synthesis and utilization of poly (methylmethacrylate nanocomposites based on modified montmorillonite

    Directory of Open Access Journals (Sweden)

    Ahmed M. Youssef

    2017-07-01

    Full Text Available Poly (methylmethacrylate nanocomposite was prepared via in-situ emulsion polymerization (PMMA/Mt-CTA. The modified montmorillonite (Mt-CTA is used as hosts for the preparation of poly (methylmethacrylate nanocomposites with basal distance 1.95 nm. Moreover, exfoliated nanocomposite was characterized by X-ray diffraction (XRD, transmission electron microscope (TEM, thermal gravimetric analysis (TGA, and differential scanning calorimetry (DSC. The fashioned nanocomposites exhibited better thermal stability than pristine PMMA which make it suitable for packaging applications. Furthermore, this nanocomposite reveals tremendous affinity for removing pesticides from aquatic solutions. The data obtained from GC/ECD gas liquid chromatography illustrated that the removal efficiency of PMMA/Mt-CTA nanocomposites for organochlorine pesticides (OCPs varied from 73.65% to 99.36% that make it as a new method for water treatment. Also, the antimicrobial activity of the Mt-CTA and PMMA/Mt-CTA nanocomposites was evaluated by the inhibitory zone tests and revealed good activity against Escherichia coli and Staphylococcus aureus, which makes it suitable materials for packaging applications.

  6. Processing and characterization of polystyrene nanocomposites based on CoAl layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Kelothu Suresh

    2016-09-01

    Full Text Available The present work deals with the development of polystyrene (PS nanocomposites through solvent blending technique with diverse contents of modified CoAl layered double hydroxide (LDH. The prepared PS as well as PS/CoAl LDH (1–7 wt.% nanocomposites were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, rheological analysis, thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. The XRD results suggested the formation of exfoliated structure, while TEM images clearly indicated the intercalated morphology of PS nanocomposites at higher loading. The presence of various functional groups in the CoAl LDH and PS/CoAl LDH nanocomposites was verified by FTIR analysis. TGA data confirmed that the thermal stability of PS composites was enhanced significantly as compared to pristine PS. While considering 15% weight loss as a reference point, it was found that the thermal degradation (Td temperature increased up to 28.5 °C for PS nanocomposites prepared with 7 wt.% CoAl LDH loading over pristine PS. All the nanocomposite samples displayed superior glass transition temperature (Tg, in which PS nanocomposites containing 7 wt.% LDH showed about 5.5 °C higher Tg over pristine PS. In addition, the kinetics for thermal degradation of the composites was studied using Coats-Redfern method. The Criado method was ultimately used to evaluate the decomposition reaction mechanism of the nanocomposites. The complex viscosity and rheological muduli of nanocomposites were found to be higher than that of pristine PS when the frequency increased from 0.01 to 100 s−1.

  7. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    Science.gov (United States)

    Rashed, M. Nageeb; Eltaher, M. A.; Abdou, A. N. A.

    2017-12-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction.

  8. Clinical and Community-Based Education in U.S. Dental Schools.

    Science.gov (United States)

    Licari, Frank W; Evans, Caswell A

    2017-08-01

    This review of U.S. dental schools' clinical curricula suggests that the basic structure of clinical education has not changed significantly in the past 60 years, although important developments include the introduction of competency-based education and community-based clinical education. Most dental schools still have a two-year preclinical curriculum and a two-year clinical curriculum, and most schools still operate a large clinical facility where students receive the bulk of their clinical education and assessment for graduation. In those clinics, dental students are the main providers of patient treatment, with faculty serving in supervisory roles. In addition, a major portion of the entire dental curriculum continues to be dedicated to student education on the restoration of a single tooth or replacement of teeth. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  9. Reasons for placement of restorations on previously unrestored tooth surfaces by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Nascimento, Marcelle M; Gordan, Valeria V; Qvist, Vibeke

    2010-01-01

    The authors conducted a study to identify and quantify the reasons used by dentists in The Dental Practice-Based Research Network (DPBRN) for placing restorations on unrestored permanent tooth surfaces and the dental materials they used in doing so....

  10. UV shielding with visible transparency based properties of poly (styrene-co-acrylonitrile)/Ag doped ZnO nanocomposite

    Science.gov (United States)

    Singh, Rajender; Verma, Karan; Singh, Tejbir; Barman, P. B.; Sharma, Dheeraj

    2018-02-01

    Development of ultraviolet (UV) shielding with visible transparency based thermoplastic polymer nanocomposite (PNs) presents an important requisite in terms of their efficiency and cost. Present study contributed for the same approach by dispersion of Ag doped ZnO nanoparticles upto 10 wt% in poly (styrene-co-acrylonitrile) matrix by insitu emulsion polymerization method. The crystal and chemical structure of PNs has been analyzed by x-ray diffraction (XRD) and fourier infrared spectrometer (FTIR) techniques. The morphological and elemental information of synthesized nanomaterial has been studied by field emission scanning electron microscope (FESEM) and energy dispersive spectroscopy (EDS) technique. The optical properties of PNs has been studied by UV-visible spectroscopy technique. The incorporation of nanoparticles in polymer matrix absorb the complete UV light with visible transparency. The present reported polymer nanocomposite (PNs) have tuned refractive index with UV blocking and visible transparency based properties which can serve as a viable alternative as compared to related conventional materials.

  11. Influence of radiation on the thermal and mechanical properties of BISGMA / TEGDMA based nanocomposites using pre-irradiated MMT nanoparticles as filler

    International Nuclear Information System (INIS)

    Santos, Tamiris M.R.; Campos, Luiza M.P.; Santos, Mariana de J.; Parra, Duclerc F.; Boaro, Leticia C.

    2017-01-01

    In the present study was observed the influence of gamma radiation in thermal and mechanical properties of the experimental dental composites based on BISGMA/TEGDMA filled with pre-irradiated MMT nanoparticles (Cloisite® 20A). MMT nanoparticle was pre-irradiated at doses of 10, 15 and 70 kGy. As a control group MMT nanoparticle was added in the polymeric matrix without pre-irradiation. Four formulations of experimental nanocomposites were studied all with 50% wt of filler. The characterization of the experimental composites was performed by means of the following techniques: Thermogravimetry Analysis (TGA), Elastic Modulus and Flexural Strength. It was observed that the group filled with pre-irradiated nanoparticles at dose of 70 kGy showed a delay in the decomposition temperature when compared to the control group. For elastic modulus the results showed a proportional increase related to the dose of radiation applied in the MMT nanoparticle. Regarding flexural strength, the groups filled with pre–irradiated nanoparticles and the control group presented similar results. (author)

  12. Influence of radiation on the thermal and mechanical properties of BISGMA / TEGDMA based nanocomposites using pre-irradiated MMT nanoparticles as filler

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Tamiris M.R.; Campos, Luiza M.P.; Santos, Mariana de J.; Parra, Duclerc F., E-mail: tamiris.martins@usp.br [Instituto de Pesquisas Energéticas e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Boaro, Leticia C. [Universidade de Santo Amaro (UNISA), Santo Amaro, SP (Brazil). Departamento de Biomateriais

    2017-07-01

    In the present study was observed the influence of gamma radiation in thermal and mechanical properties of the experimental dental composites based on BISGMA/TEGDMA filled with pre-irradiated MMT nanoparticles (Cloisite® 20A). MMT nanoparticle was pre-irradiated at doses of 10, 15 and 70 kGy. As a control group MMT nanoparticle was added in the polymeric matrix without pre-irradiation. Four formulations of experimental nanocomposites were studied all with 50% wt of filler. The characterization of the experimental composites was performed by means of the following techniques: Thermogravimetry Analysis (TGA), Elastic Modulus and Flexural Strength. It was observed that the group filled with pre-irradiated nanoparticles at dose of 70 kGy showed a delay in the decomposition temperature when compared to the control group. For elastic modulus the results showed a proportional increase related to the dose of radiation applied in the MMT nanoparticle. Regarding flexural strength, the groups filled with pre–irradiated nanoparticles and the control group presented similar results. (author)

  13. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin, E-mail: liusq@seu.edu.cn

    2015-06-02

    Highlights: • We review the innovative advances in polymer-based signal amplification. • Conceptual connectivity between different amplified methodologies is illustrated. • Examples explain the mechanisms of polymers/polymerizations-based amplification. • Several elegant applications are summarized that illustrate underlying concept. - Abstract: Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted.

  14. Volumetric composition of nanocomposites

    DEFF Research Database (Denmark)

    Madsen, Bo; Lilholt, Hans; Mannila, Juha

    2015-01-01

    . An analytical model, previously established for conventional fibre composites, is used for the analysis of the volumetric composition. For the aluminosilicate/polylactate nanocomposites, based on the established linear relationship between the porosity content and the fibre volume content, the fibre correlated...... porosity factor is determined to be 0.18. Geometrical considerations of the packing of parallel nanofibres in a square array are used to make the assumption that the maximum obtainable fibre volume content in the nanocomposites will not exceed 6 % due to the small fibre spacing that restricts full matrix...... significant figures. The plotting of the measured nanocomposite density as a function of the nanofibre weight content is shown to be a first good approach of assessing the porosity content of the materials. The known gravimetric composition of the nanocomposites is converted into a volumetric composition...

  15. Reasons for placement of restorations on previously unrestored tooth surfaces by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Nascimento, Marcelle M; Gordan, Valeria V; Qvist, Vibeke

    2010-01-01

    The authors conducted a study to identify and quantify the reasons used by dentists in The Dental Practice-Based Research Network (DPBRN) for placing restorations on unrestored permanent tooth surfaces and the dental materials they used in doing so.......The authors conducted a study to identify and quantify the reasons used by dentists in The Dental Practice-Based Research Network (DPBRN) for placing restorations on unrestored permanent tooth surfaces and the dental materials they used in doing so....

  16. Preparation of polymer nanocomposite materials based on unsaturated polyester resin and nanosilica A200. Part II - Structural and properties of polymer nanocomposite materials based on unsaturated polyester resin and nanosilica A200 with coupling agent

    International Nuclear Information System (INIS)

    Trinh Minh Dat; Bui Chuong; Bach Trong Phuc; Dinh Van Kai; Luu Van Khue

    2012-01-01

    Effects of coupling agent on the structures and properties of nanocomposite materials based on unsaturated polyester resin and A200 silica nanoparticles were investigated. The viscosity of the resin/A200 silica mixtures increased with increasing coupling agent content because of forming core-shell structures and the mechanical properties of polymer nanocomposites generally were better than those without coupling agent and appeared a maximum in mechanical properties at 4.0 wt% coupling agent content. IR analyze indicated that the coupling agent had reacted with unsaturated polyester resin and A200 silica nanoparticles. SEM, Fe-SEM and TG-SDC demonstrated more homogeneous dispersion of A200 silica nanoparticles in the polymer matrix and accompanied by lower glass transition temperature and melt temperature. Furthermore, it was also found that the best dispersion route involved a methanol dispersion technique. (author)

  17. A Microfluidic DNA Sensor Based on Three-Dimensional (3D Hierarchical MoS2/Carbon Nanotube Nanocomposites

    Directory of Open Access Journals (Sweden)

    Dahou Yang

    2016-11-01

    Full Text Available In this work, we present a novel microfluidic biosensor for sensitive fluorescence detection of DNA based on 3D architectural MoS2/multi-walled carbon nanotube (MWCNT nanocomposites. The proposed platform exhibits a high sensitivity, selectivity, and stability with a visible manner and operation simplicity. The excellent fluorescence quenching stability of a MoS2/MWCNT aqueous solution coupled with microfluidics will greatly simplify experimental steps and reduce time for large-scale DNA detection.

  18. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental

  19. Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex

    CSIR Research Space (South Africa)

    Abraham, E

    2012-11-01

    Full Text Available films. The effect of CNF loading on the mechanical and dynamic mechanical (DMA) properties of NR/CNF nanocomposite was studied. The morphological, crystallographic and spectroscopic changes were also analyzed. Significant improvement of Young’s modulus...

  20. P(3HB) based magnetic nanocomposites: smart materials for bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Akaraonye, E.; Filip, J.; Šafaříková, Miroslava; Salih, V.; Keshavarz, T.; Knowles, J.C.; Roy, I.

    -, č. 2016 (2016), č. článku 3897592. ISSN 1687-4110 Institutional support: RVO:60077344 Keywords : composite films * dispersions * elastic moduli * intelligent materials * nanocomposites Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.871, year: 2016

  1. Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Ozel, T.; Mutlugun, E.

    2014-01-01

    We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers......, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic...

  2. Design of nanocomposite film-based plasmonic device for gas sensing

    Indian Academy of Sciences (India)

    dnc(n2 nc − k2 nc − n2 p sin2 θi − 2inncknc)1/2,. (2) where nnc and knc are respectively the real and imaginary parts of the complex refractive index of the nanocomposite film, governed by eq. (1) and λ is the wavelength of the incident light. The characteristic matrix of the nanocomposite film is given by. [. B. C. ] = [ cos δnc.

  3. Influence of using nanoobjects as filler on functionality-based energy use of nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Roes, A. L., E-mail: a.l.roes@uu.nl; Tabak, L. B.; Shen, L.; Nieuwlaar, E.; Patel, M. K. [Utrecht University, Copernicus Institute, Department of Science, Technology and Society (Netherlands)

    2010-08-15

    The goal of our study was to investigate the potential benefits of reinforcing polymer matrices with nanoobjects for structural applications by looking at both the mechanical properties and environmental impacts. For determining the mechanical properties, we applied the material indices defined by Ashby for stiffness and strength. For the calculation of environmental impacts, we applied the life cycle assessment methodology, focusing on non-renewable energy use (NREU). NREU has shown to be a good indicator also for other environmental impacts. We then divided the NREU by the appropriate Ashby index to obtain the 'functionality-based NREU'. We studied 23 different nanocomposites, based on thermoplastic and thermosetting polymer matrices and organophilic montmorillonite, silica, carbon nanotubes (single-walled and multiwalled) and calcium carbonate as filler. For 17 of these, we saw a decrease of the functionality-based NREU with increasing filler content. We draw the conclusion that the use of nanoobjects as filler can have benefits from both an environmental point of view and with respect to mechanical properties.

  4. A School-Based Dental Program Evaluation: Comparison to the Massachusetts Statewide Survey.

    Science.gov (United States)

    Culler, Corinna S; Kotelchuck, Milton; Declercq, Eugene; Kuhlthau, Karen; Jones, Kari; Yoder, Karen M

    2017-10-01

    School-based dental programs target high-risk communities and reduce barriers to obtaining dental services by delivering care to students in their schools. We describe the evaluation of a school-based dental program operating in Chelsea, a city north of Boston, with a low-income and largely minority population, by comparing participants' oral health to a Massachusetts oral health assessment. Standardized dental screenings were conducted for students in kindergarten, third, and sixth grades. Outcomes were compared in bivariate analysis, stratified by grade and income levels. A greater percentage of Chelsea students had untreated decay and severe treatment need than students statewide. Yet, fewer Chelsea third graders had severe treatment need, and more had dental sealants. There was no significant difference in the percentage of Chelsea students having severe treatment need or dental sealants by income level. Students participating in our program do not have lower decay levels than students statewide. However, they do have lower levels of severe treatment need, likely due to treatment referrals. Our results confirm that school-based prevention programs can lead to increased prevalence of dental sealants among high-risk populations. Results provide support for the establishment of full-service school-based programs in similar communities. © 2017, American School Health Association.

  5. Thermoset nanocomposites from waterborne bio-based epoxy resin and cellulose nanowhiskers.

    Science.gov (United States)

    Wu, Guo-min; Liu, Di; Liu, Gui-feng; Chen, Jian; Huo, Shu-ping; Kong, Zhen-wu

    2015-01-01

    Thermoset nanocomposites were prepared from a waterborne terpene-maleic ester type epoxy resin (WTME) and cellulose nanowhiskers (CNWs). The curing behaviors of WTME/CNWs nanocomposites were measured with rotational rheometer. The results show that the storage modulus (G') of WTME/CNWs nanocomposites increased with the increase of CNWs content. Observations by scanning electron microscopy (SEM) demonstrate that the incorporation of CNWs in WTME matrix caused microphase separation and destroyed the compactness of the matrix. This effect leads to the glass transition temperatures (Tg) of WTME/CNWs nanocomposites slightly decrease with the increase of CNWs content, which were confirmed by both DSC and DMA tests. The mechanical properties of WTME/CNWs nanocomposites were investigated by tensile testing. The Yong's modulus (E) and tensile strength (σb) of the nanocomposites were significantly reinforced by the addition of CNWs. These results indicate that CNWs exhibit excellent reinforcement effect on WTME matrix, due to the formation and increase of interfacial interaction by hydrogen bonds between CNWs nano-filler and the WTME matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes

    International Nuclear Information System (INIS)

    Hess, A E; Zorman, C A; Capadona, J R; Tyler, D J; Shanmuganathan, K; Hsu, L; Rowan, S J; Weder, C

    2011-01-01

    This paper reports the development of micromachining processes and mechanical evaluation of a stimuli-responsive, mechanically dynamic polymer nanocomposite for biomedical microsystems. This nanocomposite consists of a cellulose nanofiber network encased in a polyvinyl acetate matrix. Micromachined tensile testing structures fabricated from the nanocomposite displayed a reversible and switchable stiffness comparable to bulk samples, with a Young's modulus of 3420 MPa when dry, reducing to ∼20 MPa when wet, and a stiff-to-flexible transition time of ∼300 s. This mechanically dynamic behavior is particularly attractive for the development of adaptive intracortical probes that are sufficiently stiff to insert into the brain without buckling, but become highly compliant upon insertion. Along these lines, a micromachined neural probe incorporating parylene insulating/moisture barrier layers and Ti/Au electrodes was fabricated from the nanocomposite using a fabrication process designed specifically for this chemical- and temperature-sensitive material. It was found that the parylene layers only slightly increased the stiffness of the probe in the wet state in spite of its much higher Young's modulus. Furthermore, the Ti/Au electrodes exhibited impedance comparable to Au electrodes on conventional substrates. Swelling of the nanocomposite was highly anisotropic favoring the thickness dimension by a factor of 8 to 12, leading to excellent adhesion between the nanocomposite and parylene layers and no discernable deformation of the probes when deployed in deionized water

  7. Synthesis and evaluation of gas sensing properties of PANI based graphene oxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Ganesh [Department of Chemical Engineering, University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India); Patil, Pritam [SVMIT, College of Engineering, Bharuch 392001, Gujarat (India); Patil, Devidas [Bulk and Nanomaterials Research Laboratory, Rani Laxmibai Mahavidyalaya Parola, Jalgaon 425111, Maharashtra (India); Naik, Jitendra, E-mail: jbnaik@nmu.ac.in [Department of Chemical Engineering, University Institute of Chemical Technology, North Maharashtra University, Jalgaon 425001, Maharashtra (India)

    2017-04-15

    Highlights: • Developed GO, ZnO, PANI nanocomposites. • Evaluated for effect of GO addition on gas sensing performance. • Performed ammonia gas sensing at room temperature. • Obtained excellent recovery time of gas sensor. - Abstract: Polyaniline (PANI) nanofibers and Polyaniline/Graphene Oxide (PANI/GO), Polyaniline/Graphene Oxide/Zinc Oxide (PANI/GO/ZnO) nanocomposites were successfully prepared by nanoemulsion method. The synthesized nanofibers and nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Field emission scanning electron microscope (FE-SEM), has showed the evidence of interaction between PANI nanofibers, GO nanosheets and ZnO nanoparticles, respectively. PANI nanofibers and nanocomposites were used for the sensing of NH{sub 3,} LPG, CO{sub 2} and H{sub 2}S gases respectively at room temperature. It was observed that the PANI nanofibers and PANI/GO, PANI/GO/ZnO nanocomposites with different weight ratios of ZnO and GO had better selectivity and sensitivity towards NH{sub 3} at room temperature. Best performance was shown by PANI/GO/ZnO nanocomposite response of 5.706 (10.3 times better response than PANI sensor) for 1000 ppm NH{sub 3} at 80 ± 1 °C with the recovery time of 1 min 30 s only.

  8. High pressure synthesis of novel, zeolite based nano-composite materials

    Science.gov (United States)

    Santoro, Mario

    2013-06-01

    Meso/micro-porous solids such as zeolites are complex materials exhibiting an impressive range of applications, including molecular sieve, gas storage, catalysis, electronics and photonics. We used these materials, particularly non catalytic zeolites in an entirely different fashion. In fact, we performed high pressure (0.5-30 GPa) chemical reactions of simple molecules on a sub-nanometer scale in the channels of a pure SiO2 zeolite, silicalite to obtain unique nano-composite materials with drastically modified physical and chemical properties. Our material investigations are based on a combination of X-ray diffraction and optical spectroscopy techniques in the diamond anvil cell. I will first briefly show how silicalite can be easily filled by simple molecules such as Ar, CO2 and C2H4 among others from the fluid phase at high pressures, and how this efficient filling removes the well known pressure induced amorphization of the silica framework (Haines et al., JACS 2010). I will then present on a silicon carbonate crystalline phase synthesized by reacting silicalite and molecular CO2 that fills the nano-pores, at 18-26 GPa and 600-980 K; after the synthesis the compound is temperature quenched and it results to be slightly metastable at room conditions (Santoro et al., PNAS 2011). On the other hand, a stable at room condition spectacular crystalline nano-composite is obtained by photo-polymerizing ethylene at 0.5-1.5 GPa under UV (351-364 nm) irradiation in the channels of silicalite (Santoro et al., Nat. Commun, in press 2013). For this composite we obtained a structure with single polyethylene chains adapting very well to the confining channels, which results in significant increases in bulk modulus and density, and the thermal expansion coefficient changes sign from negative to positive with respect to the original silicalite host. Mechanical properties may thus be tuned by varying the amount of polymerized ethylene. We then think our findings could allow the

  9. Restoration of noncarious tooth defects by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Nascimento, Marcelle M; Gordan, Valeria V; Qvist, Vibeke

    2011-01-01

    The authors conducted a study to quantify the reasons for restoring noncarious tooth defects (NCTDs) by dentists in The Dental Practice-Based Research Network (DPBRN) and to assess the tooth, patient and dentist characteristics associated with those reasons....

  10. Theoretical investigation on multilayer nanocomposite-based fiber optic SPR sensor

    Science.gov (United States)

    Shojaie, Ehsan; Madanipour, Khosro; Gharibzadeh, Azadeh; Abbasi, Shabnam

    2017-06-01

    In this work, a multilayer nanocomposite based fiber optic SPR sensor is considered and especially designed for CO2 gas detection. This proposed fiber sensor consists of fiber core, gold-silver alloy and the absorber layers. The investigation is based on the evaluation of the transmitted-power derived under the transfer matrix method and the multiple-reflection in the sensing area. In terms of sensitivity, the sensor performance is studied theoretically under various conditions related to the metal layer and its gold and silver nanoparticles to form a single alloy film. Effect of additional parameters such as the ratio of the alloy composition and the thickness of the alloy film on the performance of the SPR sensor is studied, as well. Finally, a four-layer structure is introduced to detect carbon dioxide gas. It contains core fiber, gold-silver alloy layer, an absorbent layer of carbon dioxide gas (KOH) and measurement environment. Lower price and size are the main advantages of using such a sensor in compare with commercial (NDIR) gas sensor. Theoretical results show by increasing the metal layer thickness the sensitivity of sensor is increased, and by increasing the ratio of the gold in alloy the sensitivity is decreased.

  11. Sensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites.

    Science.gov (United States)

    Liu, Zhonggang; Forsyth, Heidi; Khaper, Neelam; Chen, Aicheng

    2016-06-20

    Since nitric oxide (NO) plays a critical role in many biological processes, its precise detection is essential toward an understanding of its specific functions. Here we report on a facile and environmentally compatible strategy for the construction of an electrochemical sensor based on reduced graphene oxide (rGO) and AuPt bimetallic nanoparticles. The prepared nanocomposites were further employed for the electroanalysis of NO using differential pulse voltammetry (DPV) and amperometric methods. The dependence of AuPt molar ratios on the electrochemical performance was investigated. Through the combination of the advantages of the high conductivity from rGO and highly electrocatalytic activity from AuPt bimetallic nanoparticles, the AuPt-rGO based NO sensor exhibited a high sensitivity of 7.35 μA μM(-1) and a low detection limit of 2.88 nM. Additionally, negligible interference from common ions or organic molecules was observed, and the AuPt-rGO modified electrode demonstrated excellent stability. Moreover, this optimized electrochemical sensor was practicable for efficiently monitoring the NO released from rat cardiac cells, which were stimulated by l-arginine (l-arg), showing that stressed cells generated over 10 times more NO than normal cells. The novel sensor developed in this study may have significant medical diagnostic applications for the prevention and monitoring of disease.

  12. Poly(methyl methacrylate) nanocomposites based on TiO{sub 2} nanocrystals: Tailoring material properties towards sensing

    Energy Technology Data Exchange (ETDEWEB)

    Convertino, A., E-mail: annalisa.convertino@ismn.cnr.i [ISMN-CNR Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km. 29.300, 00016 Roma (Italy); Tamborra, M., E-mail: m.tamborra@ba.ipcf.cnr.i [IPCF-CNR Istituto per i Processi Chimici e Fisici, Bari Division, Via Orabona 4, 70126 Bari (Italy); Striccoli, M., E-mail: m.striccoli@ba.ipcf.cnr.i [IPCF-CNR Istituto per i Processi Chimici e Fisici, Bari Division, Via Orabona 4, 70126 Bari (Italy); Leo, G., E-mail: gabriella.leo@ismn.cnr.i [ISMN-CNR Istituto per lo Studio dei Materiali Nanostrutturati, Via Salaria km. 29.300, 00016 Roma (Italy); Agostiano, A., E-mail: a.agostiano@ba.ipcf.cnr.i [IPCF-CNR Istituto per i Processi Chimici e Fisici, Bari Division, Via Orabona 4, 70126 Bari (Italy); Dipartimento di Chimica., Universita di Bari, Via Orabona 4, 70126 Bari (Italy); Curri, M.L., E-mail: lucia.curri@ba.ipcf.cnr.i [IPCF-CNR Istituto per i Processi Chimici e Fisici, Bari Division, Via Orabona 4, 70126 Bari (Italy)

    2011-03-31

    Nanocomposite materials have been obtained by dispersing organic capped TiO{sub 2} nanocrystals (NCs) with different shape and surface chemistry in poly(methyl methacrylate) (PMMA) as a host medium. Films of the prepared nanocomposites based on TiO{sub 2} NCs have been fabricated by spin coating and morphologically characterized as a function of the preparative conditions. The organic vapor absorption ability of the PMMA/TiO{sub 2} NC based nanocomposites has been then investigated both for spherical and rod-like NCs, and the chemical nature of the coordinating organic molecules has been also varied. The results of the investigation have demonstrated that NC geometry and surface chemistry can modulate the specific absorption characteristics of the modified PMMA in order to absorb different solvent molecules (i.e. acetone, ethanol, propan-2-ol and water). Such features, due to specific interactions between the potential analyte vapors and the functionalized surface of NCs, can effectively be addressed in a controlled and reproducible way, thus offering original opportunities for designing innovative chemical sensors.

  13. Synthesis and characterization of poly (lactic acid)/chitosan nanocomposites based on renewable resources as biobased-material

    Science.gov (United States)

    Suryani; Agusnar, H.; Wirjosentono, B.; Rihayat, T.; Salisah, Z.

    2018-01-01

    Biobased becomes one of the new breakthrough in the smart engineering, especially in biomedical applications, such as tissue engineering that serves as a supporting physical structure to trigger the growth of skin tissue. From various studies which had been done, it was known that the optimal Biobased healed wounds or injuries in a relatively short time. In this study, a Biobased natural polymer based e.g Poly(Lactic Acid) (PLA)/Chitosan Nanocomposites was made. PLA was synthesized from saba banana (Musa acuminata) as raw material using Ring-Opening Polymerization (ROP) method. PLA was mixed with Chitosan with Chitosan concentration variations of 1%, 3%, and 5% to form a nanocomposites. The analysis result showed that Chitosan concentration in PLA/Chitosan Nanocomposites sample affected the value of tensile strength. The highest value of tensile strength was obtained on a sample of 100 ml volume with a concentration of 3%, which was 120.396 MPa. The highest percentage of elongation was obtained in 100 ml volume sample with 5% concentration, which was 26.3686%. In the hydrophilicity test, the highest percentage of water absorption was obtained in a 200 ml volume sample with 5% concentration, which was 44.615%. The addition of Chitosan to the sample affected the functional group bonding, where there was a functional group of NH2 at the wave number of 2923.92 cm-1. The sample characteristics based on water absorption indicated that the sample was potentially to be used as Biobased construction material.

  14. In situ formation of a MoS2 -based inorganic-organic nanocomposite by directed thermal decomposition.

    Science.gov (United States)

    Djamil, John; Segler, Stefan A W; Bensch, Wolfgang; Schürmann, Ulrich; Deng, Mao; Kienle, Lorenz; Hansen, Sven; Beweries, Torsten; von Wüllen, Leo; Rosenfeldt, Sabine; Förster, Stephan; Reinsch, Helge

    2015-06-08

    Nanocomposites based on molybdenum disulfide (MoS2 ) and different carbon modifications are intensively investigated in several areas of applications due to their intriguing optical and electrical properties. Addition of a third element may enhance the functionality and application areas of such nanocomposites. Herein, we present a facile synthetic approach based on directed thermal decomposition of (Ph4 P)2 MoS4 generating MoS2 nanocomposites containing carbon and phosphorous. Decomposition at 250 °C yields a composite material with significantly enlarged MoS2 interlayer distances caused by in situ formation of Ph3 PS bonded to the MoS2 slabs through MoS bonds and (Ph4 P)2 S molecules in the van der Waals gap, as was evidenced by (31) P solid-state NMR spectroscopy. Visible-light-driven hydrogen generation demonstrates a high catalytic performance of the materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.

    Science.gov (United States)

    Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing

    2015-06-17

    In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.

  16. Restoration of noncarious tooth defects by dentists in The Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Nascimento, Marcelle M; Gordan, Valeria V; Qvist, Vibeke

    2011-01-01

    The authors conducted a study to quantify the reasons for restoring noncarious tooth defects (NCTDs) by dentists in The Dental Practice-Based Research Network (DPBRN) and to assess the tooth, patient and dentist characteristics associated with those reasons.......The authors conducted a study to quantify the reasons for restoring noncarious tooth defects (NCTDs) by dentists in The Dental Practice-Based Research Network (DPBRN) and to assess the tooth, patient and dentist characteristics associated with those reasons....

  17. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function

    OpenAIRE

    Øilo, Marit; Hardang, Anne Dybdahl; Ulsund, Amanda Hembre; Gjerdet, Nils Roar

    2014-01-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based res...

  18. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    Science.gov (United States)

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  19. A nanocomposite-based electrochemical sensor for non-enzymatic detection of hydrogen peroxide.

    Science.gov (United States)

    Du, Xin; Chen, Yuan; Dong, Wenhao; Han, Bingkai; Liu, Min; Chen, Qiang; Zhou, Jun

    2017-02-21

    Hydrogen peroxide (H2O2) plays important signaling roles in normal physiology and disease. However, analyzing the actions of H2O2 is often impeded by the difficulty in detecting this molecule. Herein, we report a novel nanocomposite-based electrochemical sensor for non-enzymatic detection of H2O2. Graphene oxide (GO) was selected as the dopant for the synthesis of polyaniline (PANI), leading to the successful fabrication of a water-soluble and stable GO-PANI composite. GO-PANI was subsequently subject to cyclic voltammetry to generate reduced GO-PANI (rGO-PANI), enhancing the conductivity of the material. Platinum nanoparticles (PtNPs) were then electrodeposited on the surface of the rGO-PANI-modified glassy carbon electrode (GCE) to form an electrochemical H2O2 sensor. Compared to previously reported sensors, the rGO-PANI-PtNP/GCE exhibited an expanded linear range, higher sensitivity, and lower detection limit in the quantification of H2O2. In addition, the sensor displayed outstanding reproducibility and selectivity in real-sample examination. Our study suggests that the rGO-PANI-PtNP/GCE may have broad utility in H2O2 detection under physiological and pathological conditions.

  20. Validity of Preoperative Clinical Findings to Identify Dental Pulp Status: A National Dental Practice-Based Research Network Study.

    Science.gov (United States)

    Pigg, Maria; Nixdorf, Donald R; Nguyen, Ruby H N; Law, Alan S

    2016-06-01

    Endodontic diagnostic tests are often used clinically to assess pulp status as a basis for the diagnosis and determination of whether root canal treatment (RCT) is indicated. Response to cold and pain on percussion are 2 common tests, yet their validity in identifying nonvital pulp in regular dental practice has not been reported. We assessed the validity of cold and percussion tests to identify nonvital pulp in teeth requiring RCT in a dental practice setting performed by 46 general dentists and 16 endodontists in the National Dental Practice-Based Research Network. The influence of patient-, tooth-, and dentist-related characteristics was investigated. Observed bleeding from the pulp chamber was the clinical reference. Sensitivity (SN), specificity (SP), overall test accuracy (TA), positive (PPV) and negative (NPV) predictive values, and likelihood and diagnostic odds ratios (LR+, LR-, dORs) were calculated for each single test and the combined cold and percussion tests. Seven hundred eight patient teeth were included. Cold test showed high validity to identify a nonvital pulp status (SN = 89%, SP = 80%, TA = 84%, PPV = 81%, NPV = 88%, LR+ = 4.35, LR- = 0.14, dOR = 31.4), whereas pain on percussion had lower validity (SN = 72%, SP = 41%, TA = 56%, PPV = 54%, NPV = 60%, LR+ = 1.22, LR- = 0.69, dOR = 1.78). Combining the 2 tests did not increase validity, whereas preoperative pain, medication intake, patient age and sex, and dentist training level affected test validity significantly. In regular dental practice, the cold test exhibits higher validity to discriminate between vital and nonvital pulp than the tooth percussion test. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Polymer Nanocomposites

    Indian Academy of Sciences (India)

    polymer nanocompo- sites are used as advanced toner materials for high quality colour copiers and printers and as contrast agents in NMR analysis, memory devices. .... tions on polymer nanocomposite can thus pay rich dividends. Suggested Reading. [1] Metal-Polymer Nanocomposites Nicolais, Luigi(ed.) ; Carotenuto,.

  2. Synergic catalytic effect of Ti hydride and Nb nanoparticles for improving hydrogenation and dehydrogenation kinetics of Mg-based nanocomposite

    Directory of Open Access Journals (Sweden)

    Xiujuan Ma

    2017-02-01

    Full Text Available The Mg-9.3 wt% (TiH1.971-TiH−0.7 wt% Nb nanocomposite has been synthesized by hydrogen plasma-metal reaction (HPMR approach to enhance the hydrogen sorption kinetics of Mg at moderate temperatures by providing nanosizing effect of increasing H “diffusion channels” and adding transition metallic catalysts. The Mg nanoparticles (NPs were in hexagonal shape range from 50 to 350 nm and the average size of the NPs was 177 nm. The small spherical TiH1.971, TiH and Nb NPs of about 25 nm uniformly decorated on the surface of the big Mg NPs. The Mg-TiH1.971-TiH-Nb nanocomposite could quickly absorb 5.6 wt% H2 within 5 min at 573 K and 4.5 wt% H2 within 5 min at 523 K, whereas the pure Mg prepared by HPMR could only absorb 4 and 1.5 wt% H2 at the same temperatures. TiH1.971, TiH and Nb NPs transformed into TiH2 and NbH during hydrogenation and recovered after dehydrogenation process. The apparent activation energies of the nanocomposite for hydrogenation and dehydrogenation were 45.0 and 50.7 kJ mol−1, which are much smaller than those of pure Mg NPs, 123.8 and 127.7 kJ mol−1. The improved sorption kinetics of the Mg-based nanocomposite at moderate temperatures and the small activation energy can be interpreted by the nanostructure of Mg and the synergic catalytic effects of Ti hydrides and Nb NPs.

  3. Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation

    Science.gov (United States)

    Santaniello, Tommaso; Migliorini, Lorenzo; Locatelli, Erica; Monaco, Ilaria; Yan, Yunsong; Lenardi, Cristina; Comes Franchini, Mauro; Milani, Paolo

    2017-08-01

    We report the synthesis, fabrication and characterization of a hybrid hydrogel/cellulose nanocomposite, which exhibits high-performance electro-mechanical underwater actuation and high sensitivity in response to electrical stimuli below the standard potential of water electrolysis. The macromolecular structure of the material is constituted by an electroactive hydrogel, obtained through a photo-polymerization reaction with the use of three vinylic co-monomers: Na-4-vinylbenzenesulfonate, 2-hydroxyethylmethacrylate, and acrylonitrile. Different amounts (from 0.1% to 1.4% w/w) of biodegradable cellulose nanocrystals (CNCs) with sulfonate surface groups, obtained through the acidic hydrolysis of sulphite pulp lapsheets, are physically incorporated into the gel matrix during the synthesis step. Freestanding thin films of the nanocomposites are molded, and their swelling, mechanical and responsive properties are fully characterized. We observed that the embedding of the CNCs enhanced both the material Young’s modulus and its sensitivity to the applied electric field in the sub-volt regime (down to 5 mV cm-1). A demonstrator integrating multiple actuators that cooperatively bend together, mimicking the motion of an electro-valve, is also prototyped and tested. The presented nanocomposite is suitable for the development of soft smart components for bio-robotic applications and cells-based and bio-hybrid fluidic devices fabrication.

  4. Enhanced photovoltaic properties in graphitic carbon nanospheres networked TiO{sub 2} nanocomposite based dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Radhe [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Sahoo, Satyaprakash, E-mail: satya504@gmail.com [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Chitturi, Venkateswara Rao [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Williams, Joseph D. [Department of Biomedical and Chemical Engineering, Syracuse University, L.C. Smith College of Engineering and Computer Science, Syracuse, NY (United States); Resto, Oscar [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States); Katiyar, Ram S., E-mail: rkatiyar@hpcf.uprrp.edu [Department of Physics and Institute for Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00931 (United States)

    2015-08-25

    Highlights: • Nano size graphitic carbon nanospheres were prepared from MWCNTs. • TiO{sub 2}/GCNS composite was used as the photoanode in dye-sensitized solar cell. • An improved photovoltaic performance with GCNS–TiO{sub 2} composite was noticed. - Abstract: In this work, we report a novel carbon based TiO{sub 2} nanocomposite electron injection layer (photoanode) toward the improved performance of DSSCs. Graphitic carbon nanospheres (GCNSs) were synthesized by a unique acidic treatment of multi-wall carbon nanotubes. GCNS–TiO{sub 2} nanocomposites with different concentrations of GCNSs (ranging from 5 to 20 μL) were prepared to use as photoanodes in DSSCs. Structural and morphological properties of GCNS–TiO{sub 2} nanocomposites were analyzed by Raman spectroscopy and ultra-high resolution transmission electron microscopy techniques, respectively. A systematic increment in the short circuit current density (J{sub SC}) and open circuit voltage (V{sub OC}) of DSSC was observed by increasing GCNS concentration up to an optimal value, possibly due to the combined effect of slight rise in quasi-Fermi level and higher carrier transport rate in the resultant composite. Thus, a significant enhancement of ∼47% in the efficiency of DSSC containing GCNS–TiO{sub 2} photoanode was observed as compare to DSSC with pure TiO{sub 2} photoanode.

  5. Change in stated clinical practice associated with participation in the Dental Practice-Based Research Network

    DEFF Research Database (Denmark)

    Gilbert, Gregg H; Richman, Joshua S; Qvist, Vibeke

    2010-01-01

    the Dental Practice-Based Research Network (DPBRN) completed a detailed questionnaire about how they diagnose and treat dental caries. Next, they received a customized report that compared their answers to those from all other practitioner-investigators. Then, 126 of them attended the DPBRN's first network......-wide meeting of practitioner-investigators from all five of its regions. During that meeting, certain questions were repeated and new ones were asked about the dentist's intention to change the way that he or she diagnosed or treated dental caries. Less than one-third of practitioner-investigators intended...

  6. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses.

    Science.gov (United States)

    Muris, Joris; Scheper, Rik J; Kleverlaan, Cornelis J; Rustemeyer, Thomas; van Hoogstraten, Ingrid M W; von Blomberg, Mary E; Feilzer, Albert J

    2014-08-01

    Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitro immune responses. The investigated population consisted of three groups: 26 non-metal-allergic volunteers, 25 metal-allergic patients, and 20 oral disease patients. Medical histories were taken, oral examinations were carried out, and compositions of all dental alloys were determined. Then, Au and Pd patch tests and in vitro assays were performed, revealing cytokine production by peripheral blood mononuclear cells [T helper (Th)1, interferon-γ; Th2, interleukin (IL)-5 and IL-13] and lymphocyte proliferation (LTT-MELISA(®) ). Non-plaque-related gingivitis was associated with the presence of Pd-based dental alloys, and Pd-positive patch tests and in vitro assays. Collectively, participants with Pd-based dental alloys showed increased Pd patch test reactivity (p alloys (p dental alloys. However, most oral disease patients did not show positive patch test results or in vitro signs of specific immunoreactivity, suggesting local toxic reactions or the involvement of innate immune responses. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Silk fibroin/gold nanocrystals: a new example of biopolymer-based nanocomposites

    Science.gov (United States)

    Noinville, S.; Garnier, A.; Courty, A.

    2017-05-01

    The dispersion of nanoparticles in ordered polymer nanostructures can provide control over particle location and orientation, and pave the way for tailored nanomaterials that have enhanced mechanical, electrical, or optical properties. Here we used silk fibroin, a natural biopolymer, to embed gold nanocrystals (NCs), so as to obtain well-ordered structures such as nanowires and self-assembled triangular nanocomposites. Monodisperse gold NCs synthesized in organic media are mixed to silk fibroin and the obtained nanocomposites are characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and Infrared spectroscopy. The optical properties study of gold NCs and silk-gold nanocomposites shows that the Surface Plasmon band is blue shifted compared to gold NCs. The size and shape of NCs gold superlattices can be well controlled by the presence of silk fibroin giving nanowires and also self-assembled triangular nanocomposites as characterized by TEM, FE-SEM and AFM. The strong interaction between gold NCs and silk fibroin is also revealed by the conformation change of silk protein in presence of gold NCs, as shown by FTIR analysis. The formation of such ordered nanocomposites (gold NCs/silk fibroin) will provide new nanoplasmonic devices.

  8. Removal of bisphenol A in canned liquid food by enzyme-based nanocomposites

    Science.gov (United States)

    Tapia-Orozco, Natalia; Meléndez-Saavedra, Fanny; Figueroa, Mario; Gimeno, Miquel; García-Arrazola, Roeb

    2018-02-01

    Laccase from Trametes versicolor was immobilized on TiO2 nanoparticles; the nanocomposites obtained were used for the removal of bisphenol A (BPA) in a liquid food matrix. To achieve a high enzymatic stability over a wide pH range and at temperatures above 50 °C, the nanocomposite structures were prepared by both physical adsorption and covalent linking of the enzyme onto the nanometric support. All the nanocomposite structures retained 40% of their enzymatic activity after 60 days of storage. Proof-of-concept experiments in aqueous media using the nanocomposites resulted on a > 60% BPA removal after 48 h and showed that BPA was depleted within 5 days. The nanocomposites were tested in canned liquid food samples; the removal reached 93.3% within 24 h using the physically adsorbed laccase. For the covalently linked enzyme, maximum BPA removal was 91.3%. The formation of BPA dimers and trimers was observed in all the assays. Food samples with sugar and protein contents above 3 and 4 mg mL-1 showed an inhibitory effect on the enzymatic activity.

  9. Electrospun Polycaprolactone/lignin-based Nanocomposite as a Novel Tissue Scaffold for Biomedical Applications.

    Science.gov (United States)

    Salami, Mohammad Ali; Kaveian, Faranak; Rafienia, Mohammad; Saber-Samandari, Saeed; Khandan, Amirsalar; Naeimi, Mitra

    2017-01-01

    Biopolymer scaffolds have received great interest in academic and industrial environment because of their supreme characteristics like biological, mechanical, chemical, and cost saving in the biomedical science. There are various attempts for incorporation of biopolymers with cheap natural micro- or nanoparticles like lignin (Lig), alginate, and gums to prepare new materials with enhanced properties. In this work, the electrospinning (ELS) technique as a promising cost-effective method for producing polymeric scaffold fibers was used, which mimics extracellular matrix structure for soft tissue engineering applications. Nanocomposites of Lig and polycaprolactone (PCL) scaffold produced with ELS technique. Nanocomposite containings (0, 5, 10, and 15 wt.%) of Lig were prepared with addition of Lig powder into the PCL solution while stirring at the room temperature. The bioactivity, swelling properties, morphological and mechanical tests were conducted for all the samples to investigate the nanocomposite scaffold features. The results showed that scaffold with 10 wt.% Lig have appropriate porosity, biodegradation, minimum fiber diameter, optimum pore size as well as enhanced tensile strength, and young modulus compared with pure PCL. Degradation test performed through immersion of samples in the phosphate-buffer saline showed that degradation of PCL nanocomposites could accelerate up to 10% due to the addition of Lig. Electrospun PCL-Lig scaffold enhanced the biological response of the cells with the mechanical signals. The prepared nanocomposite scaffold can choose for potential candidate in the biomedical science.

  10. Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material.

    Science.gov (United States)

    Dey, Abhijit; Hadavale, Sayali; Khan, Md Abdul Shafeeuulla; More, Priyesh; Khanna, Pawan K; Sikder, Arun Kanti; Chattopadhyay, Santanu

    2015-11-28

    An ecofriendly procedure for the synthesis of graphene-titanium dioxide nanocomposites (GTNC) has been developed by dispersing nano-titanium dioxide (TiO2) and graphene nanosheets (GNSs) in ethanol via ultrasonication followed by microwave irradiation. Such nanohybrids were characterized by X-Ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy. We have also demonstrated the synthesis of highly conductive composites like poly(3,4-ethylenedioxythiophene)polystyrene sulphonate ( PSS)-GTNC, polyvinyl acetate (PVAc)-GTNC, PEDOT:PSS-graphene, and PVAc-graphene by ultrasonication followed by hot compaction towards their thermoelectric application. The filler (graphene, GTNC) concentration and polymer matrix were judiciously varied and optimized for the sake of high electrical conductivity and Seebeck coefficient which leads to a higher power factor (PF). The PVAc based composite with a composition of PVAc (20%) and GTNC (80%) was found to be the most promising material with an electrical conductivity of 2.6 × 10(4) S m(-1) and a Seebeck coefficient of -42 μV K(-1) at room temperature (RT). As a result, the PF reaches 47 μW m(-1) K(-2) at RT which is approximately 37 times, 5 times and 3 times higher than that for the PVAc-graphene based composite, the PSS-GTNC based composite and the PSS-graphene based composite respectively. The origin of the thermoelectric performance of the GTNC composite seems to be from the synergistic effect of graphene nanosheets and TiO2 nanoparticles. The composite shows a large power factor value without using any conducting polymer.

  11. Effect of type and content of modified montmorillonite on the structure and properties of bio-nanocomposite films based on soy protein isolate and montmorillonite.

    Science.gov (United States)

    Kumar, P; Sandeep, K P; Alavi, S; Truong, V D; Gorga, R E

    2010-06-01

    The nonbiodegradable and nonrenewable nature of plastic packaging has led to a renewed interest in packaging materials based on bio-nanocomposites (biopolymer matrix reinforced with nanoparticles such as layered silicates). Bio-nanocomposite films based on soy protein isolate (SPI) and modified montmorillonite (MMT) were prepared using melt extrusion. The effect of different type (Cloisite 20A and Cloisite 30B) and content (0% to 15%) of modified MMT on the structure (degree of intercalation and exfoliation) and properties (color, mechanical, dynamic mechanical, thermal stability, and water vapor permeability) of SPI-MMT bio-nanocomposite films were investigated. Extrusion of SPI and modified MMTs resulted in bio-nanocomposites with exfoliated structures at lower MMT content (5%). At higher MMT content (15%), the structure of bio-nanocomposites ranged from intercalated for Cloisite 20A to disordered intercalated for Cloisite 30B. At an MMT content of 5%, bio-nanocomposite films based on modified MMTs (Cloisite 20A and Cloisite 30B) had better mechanical (tensile strength and percent elongation at break), dynamic mechanical (glass transition temperature and storage modulus), and water barrier properties as compared to those based on natural MMT (Cloisite Na(+)). Bio-nanocomposite films based on 10% Cloisite 30B had mechanical properties comparable to those of some of the plastics that are currently used in food packaging applications. However, much higher WVP values of these films as compared to those of existing plastics might limit the application of these films to packaging of high moisture foods such as fresh fruits and vegetables.

  12. An Automatic Detection Method of Nanocomposite Film Element Based on GLCM and Adaboost M1

    Directory of Open Access Journals (Sweden)

    Hai Guo

    2015-01-01

    Full Text Available An automatic detection model adopting pattern recognition technology is proposed in this paper; it can realize the measurement to the element of nanocomposite film. The features of gray level cooccurrence matrix (GLCM can be extracted from different types of surface morphology images of film; after that, the dimension reduction of film can be handled by principal component analysis (PCA. So it is possible to identify the element of film according to the Adaboost M1 algorithm of a strong classifier with ten decision tree classifiers. The experimental result shows that this model is superior to the ones of SVM (support vector machine, NN and BayesNet. The method proposed can be widely applied to the automatic detection of not only nanocomposite film element but also other nanocomposite material elements.

  13. Hybrid nanocomposite based on cellulose and tin oxide: growth, structure, tensile and electrical characteristics

    International Nuclear Information System (INIS)

    Mahadeva, Suresha K; Kim, Jaehwan

    2011-01-01

    A highly flexible nanocomposite was developed by coating a regenerated cellulose film with a thin layer of tin oxide (SnO 2 ) by liquid-phase deposition. Tin oxide was crystallized in solution and formed nanocrystal coatings on regenerated cellulose. The nanocrystalline layers did not exfoliate from cellulose. Transmission electron microscopy and energy dispersive x-ray spectroscopy suggest that SnO 2 was not only deposited over the cellulose surface, but also nucleated and grew inside the cellulose film. Current-voltage characteristics of the nanocomposite revealed that its electrical resistivity decreases with deposition time, with the lowest value obtained for 24 h of deposition. The cellulose-SnO 2 hybrid nanocomposite can be used for biodegradable and disposable chemical, humidity and biosensors.

  14. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios

    2010-01-01

    Structure-properties relationships in poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, clay nanocomposites are reported for the first time. Addition of organically modified clays to PVDF-HFP promotes an α to β transformation of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure compared to the neat copolymer. In addition, their dielectric permittivity is higher over a wide temperature range. Their mechanical and dielectric properties scale similar to the amount of the β phase present in the nanocomposites. © 2009 Elsevier Ltd. All rights reserved.

  15. Synthesis, characterization and optical properties of polymer-based ZnS nanocomposites.

    Science.gov (United States)

    Tiwari, A; Khan, S A; Kher, R S; Dhoble, S J; Chandel, A L S

    2016-03-01

    Nanostructured polymer-semiconductor hybrid materials such as ZnS-poly(vinyl alcohol) (ZnS-PVA), ZnS-starch and ZnS-hydroxypropylmethyl cellulose (Zns-HPMC) are synthesized by a facile aqueous route. The obtained nanocomposites are characterized using various techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV/vis spectroscopy and photoluminescence (PL). XRD studies confirm the zinc blende phase of the nanocomposites and indicate the high purity of the samples. SEM studies indicate small nanoparticles clinging to the surface of a bigger particle. The Energy Dispersive Analysis by X-rays (EDAX) spectrum reveals that the elemental composition of the nanocomposites consists primarily of Zn:S. FTIR studies indicate that the polymer matrix is closely associated with ZnS nanoparticles. The large number of hydroxyl groups in the polymer matrix facilitates the complexation of metal ions. The absorption spectra of the specimens show a blue shift in the absorption edge. The spectrum reveals an absorption edge at 320, 310 and 325 nm, respectively. PL of nanocomposites shows broad peaks in the violet-blue region (420-450 nm). The emission intensity changes with the nature of capping agent. The PL intensity of ZnS-HPMC nanocomposites is found to be highest among the studied nanocomposites. The results clearly indicate that hydroxyl-functionalized HPMC is much more effective at nucleating and stabilizing colloidal ZnS nanoparticles in aqueous suspensions compared with PVA and starch. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Innovative Models of Dental Care Delivery and Coverage: Patient-Centric Dental Benefits Based on Digital Oral Health Risk Assessment.

    Science.gov (United States)

    Martin, John; Mills, Shannon; Foley, Mary E

    2018-04-01

    Innovative models of dental care delivery and coverage are emerging across oral health care systems causing changes to treatment and benefit plans. A novel addition to these models is digital risk assessment, which offers a promising new approach that incorporates the use of a cloud-based technology platform to assess an individual patient's risk for oral disease. Risk assessment changes treatment by including risk as a modifier of treatment and as a determinant of preventive services. Benefit plans are being developed to use risk assessment to predetermine preventive benefits for patients identified at elevated risk for oral disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Office-based preventive dental program and statewide trends in dental caries.

    Science.gov (United States)

    Achembong, Leo N; Kranz, Ashley M; Rozier, R Gary

    2014-04-01

    To evaluate the impact of a North Carolina Medicaid preventive dentistry program in primary care medical offices (Into the Mouths of Babes Program [IMBP]) on decayed, missing, and filled teeth (dmft) of kindergarten students statewide and in schools with a large proportion of students from low-income families. An ecologic study using panel data of 920,505 kindergarten students with 11,694 school-year observations examined the effect of the IMBP on dmft scores from 1998 to 2009. Ordinary least squares regression with fixed effects determined the association between IMBP visits per child 0 to 4 years of age per county and mean dmft scores per kindergarten student per school, controlling for school-level poverty and ethnicity, county-level Medicaid enrollment, and supply of dentists and physicians. Mean dmft per kindergarten student per school increased from 1.53 in 1998 to 1.84 in 2004, then decreased to 1.59 in 2009. The mean number of IMBP visits per child 0 to 4 years of age per county increased from 0.01 in 2000 to 0.22 in 2009. A 1-unit increase in IMBP visits per county was associated with a 0.248 (95% confidence interval, -0.40 to -0.10) decrease in dmft per kindergarten student per school. For schools with more students at high risk for dental disease, a 1-unit increase in IMBP visits was associated with a 0.320 (95% confidence interval, -0.55 to -0.09) decrease in dmft. IMBP reduced dental caries among targeted vulnerable children, which helped reduce oral health disparities among preschool-aged children in North Carolina.

  18. Polymerisation efficiency and shrinkage effects in resin based dental restoratives

    Science.gov (United States)

    Al-Hindi, Abdusalam M.

    The aim of this study was to investigate the polymerisation efficiency and shrinkage effects in resin based dental restorative materials. The study highlights factors affecting the polymerisation efficiency, but the efficiency of the light curing units was first measured. The output light intensity and the temperature rise produced by two units were measured using a radiometer with a flat-response characteristic. The units were the Elipar Highlight (Espe Dental AG) and XL3000 (3M Co). The former unit has a dual-intensity mode of operation: 10 slow plus 30 s high (termed "soft-start") and a Ml-intensity mode: 40 s high. Its "high" intensity was significantly greater than the XL3000 Unit, and produced correspondingly greater temperature rises. One of the hypotheses to be tested was whether any useful network-conversion (polymerisation) was attained by application of the 10 slow-intensity phase of the "soft-start" mode. To address this question, the polymerisation efficiency of three representative resin-based restorative materials was studied by measuring depth-of-cure, exotherm, surface hardness and degree of conversion. The Elipar Unit was used principally m these studies, with four modes of radiation: "full" and "soft- start", as above, and either 10 s or 40 s of low intensity light. Most measurements were performed at 23°C, but some specimen groups were also pre-conditioned at 37°C. Depth-of-cure values obtained by "soft-start" were as great as with "full" radiation. Low- intensity irradiation alone gave significantly reduced, but non-zero cure-depths. The exotherm of the specimens cured by "soft-start" was lower than those cured by "full" light-intensity. This pattern was also apparent when the lower-intensity (XL3000) Unit was deployed. Surface hardness was measured on upper and lower surfaces of specimens radiated by different modes. The hardness was greater at upper, relative to lower surfaces with "full" intensity. The lower-surface hardness with low

  19. Knowledge of evidence-based dentistry among academic dental practitioners of Bhopal, India: a preliminary survey

    Directory of Open Access Journals (Sweden)

    Aishwarya Singh

    2015-06-01

    Full Text Available This study aimed to characterize the knowledge of evidence-based dentistry (EBD among dental faculty members in the city of Bhopal in central India. A cross-sectional questionnaire was administered at two dental colleges in Bhopal City. All dental faculty members who were present on the day of the study and who agreed to participate were included in the study. A total of 50 dental faculty members returned the questionnaire. Six Likert-type questions were asked, and the percentages of various responses were used for analysis. Sixteen faculty members (32.0% strongly agreed that EBD is a process of making decisions based on scientifically proven evidence. Fifteen faculty members (30.0% strongly disagreed or disagreed with the item stating that the best and quickest way to find evidence is by reading textbooks or asking experienced colleagues. Thirteen faculty members (26.0% strongly agreed that EBD allows dentists to improve their scientific knowledge and clinical skills. It is recommended that EBD be included in undergraduate and postgraduate curricula and in intensive continuing dental education programs that are conducted for dental faculty members.

  20. Going Global: Toward Competency-Based Best Practices for Global Health in Dental Education.

    Science.gov (United States)

    Seymour, Brittany; Shick, Elizabeth; Chaffee, Benjamin W; Benzian, Habib

    2017-06-01

    The Global Oral Health Interest Group of the Consortium of Universities for Global Health (GOHIG-CUGH) published recommended competencies to support development of competency-based global health education in dental schools. However, there has been no comprehensive, systematically derived, or broadly accepted framework for creating and delivering competency-based global health education to dental students. This article describes the results of a collaborative workshop held at the 2016 American Dental Education Association (ADEA) Annual Session & Exhibition designed to build on the GOHIG-CUGH competencies and start to develop systematic approaches for their practical application. Workshop organizers developed a preliminary theoretical framework for guiding the development of global health in dental education, grounded in published research. Collectively, workshop participants developed detailed outcomes for the theoretical framework with a focus on three educational practices: didactic, experiential, and research learning and how each can meet the competencies. Participants discussed learning objectives, keys to implementation, ethical considerations, challenges, and examples of success. Outcomes demonstrated that no educational practice on its own meets all 33 recommended competencies for dental students; however, the three educational practices combined may potentially cover all 33. Participants emphasized the significance of sustainable approaches to student learning for both students and communities, with identified partners in the communities to collaborate on the development, implementation, evaluation, and long-term maintenance of any student global health activity. These findings may represent early steps toward professional consensus and best practices for global health in dental education in the United States.

  1. Comparison of conventional and synchrotron-radiation-based microtomography of bone around dental implants

    Science.gov (United States)

    Cattaneo, Paolo M.; Dalstra, Michel; Beckmann, Felix; Donath, Tilman; Melsen, Birte

    2004-10-01

    This study explores the application of conventional micro tomography (μCT) and synchrotron radiation (SR) based μCT to evaluate the bone around titanium dental implants. The SR experiment was performed at beamline W2 of HASYLAB at DESY using a monochromatic X-ray beam of 50 keV. The testing material consisted of undecalcified bone segments harvested from the upper jaw of a macaca fascicularis monkey each containing a titanium dental implant. The results from the two different techniques were qualitatively compared with conventional histological sections examined under light microscopy. The SR-based μCT produced images that, especially at the bone-implant interface, are less noisy and sharper than the ones obtained with conventional μCT. For the proper evaluation of the implant-bone interface, only the SR-based μCT technique is able to display the areas of bony contact and visualize the true 3D structure of bone around dental implants correctly. This investigation shows that both conventional and SR-based μCT scanning techniques are non-destructive methods, which provide detailed images of bone. However with SR-based μCT it is possible to obtain an improved image quality of the bone surrounding dental implants, which display a level of detail comparable to histological sections. Therefore, SR-based μCT scanning could represent a valid, unbiased three-dimensional alternative to evaluate osseointegration of dental implants

  2. Magnetic nanocomposites based on phosphorus-containing polymers—structural characterization and thermal analysis

    Science.gov (United States)

    Alosmanov, R. M.; Szuwarzyński, M.; Schnelle-Kreis, J.; Matuschek, G.; Magerramov, A. M.; Azizov, A. A.; Zimmermann, R.; Zapotoczny, S.

    2018-04-01

    Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).

  3. Magnetic nanocomposites based on phosphorus-containing polymers-structural characterization and thermal analysis.

    Science.gov (United States)

    Alosmanov, R M; Szuwarzyński, M; Schnelle-Kreis, J; Matuschek, G; Magerramov, A M; Azizov, A A; Zimmermann, R; Zapotoczny, S

    2018-04-03

    Fabrication of magnetic nanocomposites containing iron oxide nanoparticles formed in situ within a phosphorus-containing polymer matrix as well as its structural characterization and its thermal degradation is reported here. Comparative structural studies of the parent polymer and nanocomposites were performed using FTIR spectroscopy, x-ray diffraction, and atomic force microscopy. The results confirmed the presence of dispersed iron oxide magnetic nanoparticles in the polymer matrix. The formed composite combines the properties of porous polymer carriers and magnetic particles enabling easy separation and reapplication of such polymeric carriers used in, for example, catalysis or environmental remediation. Studies on thermal degradation of the composites revealed that the process proceeds in three stages while a significant influence of the embedded magnetic particles on that process was observed in the first two stages. Magnetic force microscopy studies revealed that nanocomposites and its calcinated form have strong magnetic properties. The obtained results provide a comprehensive characterization of magnetic nanocomposites and the products of their calcination that are important for their possible applications as sorbents (regeneration conditions, processing temperature, disposal, etc).

  4. Processing and properties of Cu based micro- and nano-composites

    Indian Academy of Sciences (India)

    cosity of Cu matrix at higher sintering temperature which results in efficient pore filling. In case of nano-composites as the interfacial area is more, the detrimental effect of inter- facial phenomenon (decohesion, void formation) are more likely to prevail at high sintering temperature as compared to lower sintering temperature.

  5. Formation of Ni/C based polyacrylonitrile nanocomposites under IR-radiation

    Directory of Open Access Journals (Sweden)

    Dmitriy G. Muratov

    2016-09-01

    By calculating the total Gibbs energy of possible reduction reactions of nickel chloride and oxide pyrolysis PAN products we have shown the possibility of the formation of nanocomposites comprising nickel oxide nanoparticles which can be reduced to zero-valence state at higher temperature IR heating (more than 5000 °C.

  6. Tin-based "super-POSS" building blocks in epoxy nanocomposites with highly improved oxidation resistance

    Czech Academy of Sciences Publication Activity Database

    Strachota, Adam; Rodzen, Krzysztof; Ribot, F.; Perchacz, Magdalena; Trchová, Miroslava; Steinhart, Miloš; Starovoytova, Larisa; Šlouf, Miroslav; Strachota, Beata

    2014-01-01

    Roč. 55, č. 16 (2014), s. 3498-3515 ISSN 0032-3861 R&D Projects: GA ČR GAP108/11/2151 Institutional support: RVO:61389013 Keywords : nanocomposite * POSS * stannoxane Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.562, year: 2014

  7. Epoxy-based organic-inorganic nanocomposite coatings and films prepared by sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Špírková, Milena; Brus, Jiří; Matějka, Libor

    2004-01-01

    Roč. 6, 3-4 (2004), s. 7-15 R&D Projects: GA ČR GA203/01/0735; GA AV ČR IAA4050008; GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : sol-gel process * nanocomposites * solid-state NMR Subject RIV: CD - Macromolecular Chemistry

  8. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. Mechanical, thermal, and gas transport properties

    Czech Academy of Sciences Publication Activity Database

    Poreba, Rafal; Špírková, Milena; Brožová, Libuše; Lazić, N.; Pavličevič, Jelena; Strachota, Adam

    2013-01-01

    Roč. 127, č. 1 (2013), s. 329-341 ISSN 0021-8995 R&D Projects: GA ČR GAP108/10/0195 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyurethane elastomer * nanocomposite * polycarbonate diol Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.640, year: 2013

  9. Processing and properties of Cu based micro- and nano-composites

    Indian Academy of Sciences (India)

    also carried out in order to investigate the mechanical behaviour of the micro- and nano-composites for a fixed opti- mum sintering temperature. ... decreases and flexural modulus increases with the increase in reinforcement content. Keywords. ... sity as a result of which the service performance increases. The decrease in ...

  10. Processing and properties of Cu based micro-and nano-composites

    Indian Academy of Sciences (India)

    Nano-composites of 1, 3, 5 and 7 vol% Al2O3 (average size < 50 nm) and microcomposites having compositions 5, 10, 15, 20 vol% of Al2O3 (average size ∼ 10 m) reinforced in copper matrix were fabricated by powder metallurgy route. All the specimens were sintered at different sintering temperatures (850, 900 and ...

  11. Bioinspired nanocomposite structures for bone tissue regeneration based on collagen, gelatin, polyamide and hydroxyapatite

    Czech Academy of Sciences Publication Activity Database

    Suchý, Tomáš; Balík, Karel; Šupová, Monika; Hrušková, Daniela; Sucharda, Zbyněk; Černý, Martin; Sedláček, R.

    2009-01-01

    Roč. 12, 89-91 (2009), s. 13-15 ISSN 1429-7248 R&D Projects: GA ČR GA106/09/1000 Institutional research plan: CEZ:AV0Z30460519 Keywords : nanocomposite * bone regeneration * collagen Subject RIV: JI - Composite Materials

  12. Properties of solid solutions, doped film, and nanocomposite structures based on zinc oxide

    Science.gov (United States)

    Lashkarev, G. V.; Shtepliuk, I. I.; Ievtushenko, A. I.; Khyzhun, O. Y.; Kartuzov, V. V.; Ovsiannikova, L. I.; Karpyna, V. A.; Myroniuk, D. V.; Khomyak, V. V.; Tkach, V. N.; Timofeeva, I. I.; Popovich, V. I.; Dranchuk, N. V.; Khranovskyy, V. D.; Demydiuk, P. V.

    2015-02-01

    A study of the properties of materials based on the wide bandgap zinc oxide semiconductor, which are promising for application in optoelectronics, photovoltaics and nanoplasmonics. The structural and optical properties of solid solution Zn1-xCdxO films with different cadmium content, are studied. The samples are grown using magnetron sputtering on sapphire backing. Low-temperature photoluminescence spectra revealed emission peaks associated with radiative recombination processes in those areas of the film that have varying amounts of cadmium. X-ray phase analysis showed the presence of a cadmium oxide cubic phase in these films. Theoretical studies of the solid solution thermodynamic properties allowed for a qualitative interpretation of the observed experimental phenomena. It is established that the growth of the homogeneous solid solution film is possible only at high temperatures, whereas regions of inhomogeneous composition can be narrowed through elastic deformation, caused by the mismatch of the film-backing lattice constants. The driving forces of the spinodal decomposition of the Zn1-xCdxO system are identified. Fullerene-like clusters of Znn-xCdxOn are used to calculate the bandgap and the cohesive energy of ZnCdO solid solutions. The properties of transparent conductive ZnO films, doped with Group III donor impurities (Al, Ga, In), are examined. It is shown that oxygen vacancies are responsible for the hole trap centers in the zinc oxide photoconductivity process. We also examine the photoluminescence properties of metal-ZnO nanocomposite structures, caused by surface plasmons.

  13. An Indigo Carmine-Based Hybrid Nanocomposite with Supramolecular Control of Dye Aggregation and Photobehavior.

    Science.gov (United States)

    Costa, Ana L; Gomes, Ana C; Pillinger, Martyn; Gonçalves, Isabel S; de Melo, J Sérgio Seixas

    2015-08-17

    Zn-Al layered double hydroxides (LDHs) containing solely indigo carmine (IC) or 1-hexanesulfonate (HS) anions, or a mixture of the two with different HS/IC molar ratios, were prepared by the direct synthesis method and characterized by various techniques. Hydrotalcite-type phases were obtained with basal spacings of 17.6 Å for the LDH intercalated by IC (IC-LDH) and 18.2-18.3 Å for the other materials containing HS. From the basal spacing for IC-LDH and UV/Vis spectroscopic data, it is proposed that the dye molecules assemble within the interlayer galleries to form a J-type stacking arrangement. A comprehensive electronic spectral and photophysical study was undertaken for IC in solution and all materials, aiming to obtain a detailed characterization of the host-guest and guest-guest interactions. In solution (the solvent surrounded "isolated" molecule), IC presents a fast excited state proton transfer with rate constants of ∼1.2-1.4×10(11)  s(-1) , which is linked to the very efficient radiationless deactivation channel. In the solid state it is shown that incorporation of IC within the LDH decreases the level of aggregation, and that further addition of HS induces the appearance of isolated IC units within the LDH galleries. The indigo carmine-based nanocomposites reported constitute a step forward in the design of hybrid materials with tunable properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field

    International Nuclear Information System (INIS)

    Karličić, Danilo; Cajić, Milan; Murmu, Tony; Kozić, Predrag; Adhikari, Sondipon

    2014-01-01

    Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelastically coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form

  15. Synthesis and optical properties of TiO{sub 2}-based magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Scarisoreanu, M.; Morjan, I. [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); Fleaca, C.-T., E-mail: claudiufleaca@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); “Politehnica” University of Bucharest, Physics Department, Independentei 313, Bucharest (Romania); Morjan, I.P.; Niculescu, A.-M.; Dutu, E.; Badoi, A.; Birjega, R.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics (NILPRP), Atomistilor 409, PO Box MG-36, Magurele, Bucharest 077125 (Romania); Vasile, E. [“Politehnica” University of Bucharest, Faculty of Applied Chemistry and Materials Science, Department of Oxide Materials and Nanomaterials, Gh. Polizu 1-7, Bucharest (Romania); Danciu, V. [“Babes-Boyai” University, Faculty of Chemistry and Chemical Engineering, Electrochemical Research Laboratory, 11 Arany Janos Street, Cluj-Napoca 400028 (Romania); Filoti, G. [National Institute for Materials Physics (NIMP), Atomistilor 105bis, PO Box MG7, R-077125 Magurele, Bucharest (Romania)

    2015-05-01

    Highlights: • Magnetic titania@silica nanoparticles were synthesized by the single step laser pyrolysis. • Fe(CO){sub 5}, TiCl{sub 4}, HMDSO and O{sub 2} from air were the precursors and C{sub 2}H{sub 4} was the sensitizer. • Samples present a typical character of diluted magnetic oxide systems. • Samples have a lower bandgap energy (down to E{sub g} = 1.85 eV) than the P25 Degussa. - Abstract: Magnetic titania nanoparticles covered/embedded in SiO{sub 2} shell/matrix were simultaneously manufactured by the single-step laser pyrolysis. The present study is a continuation of our previous investigations on the TiO{sub 2}/Fe and TiO{sub 2}/HMDSO (hexamethyldisiloxane) derived-systems. The aim of this work is to study the synthesis by IR (Infrared) laser pyrolysis of magnetic TiO{sub 2} based nanocomposites which implies many concurrent processes induced in the gas phase by the laser radiation. The dependence between characteristic properties and the synthesis parameters was determined by many analytical and complementary methods: XRD (X-ray diffraction) structural analysis, UV–vis (ultraviolet–visible) and EDAX (energy-dispersive X-ray) spectroscopy, TEM and HRTEM (transmission electron microscopy at low and high resolution) analysis and magnetic measurements. The results of analysis indicate the presence of disordered silica, Fe, α-Fe{sub 2}O{sub 3} and mixtures of anatase and rutile phases with mean crystallite dimensions (in the 14–34 nm range) with typical character of diluted magnetic oxide systems and a lower bandgap energy (E{sub g} = 1.85 eV) as compared with TiO{sub 2} P25 Degussa sample.

  16. Sn-Based Nanocomposite for Li-Ion Battery Anode with High Energy Density, Rate Capability, and Reversibility.

    Science.gov (United States)

    Park, Min-Gu; Lee, Dong-Hun; Jung, Heechul; Choi, Jeong-Hee; Park, Cheol-Min

    2018-03-27

    To design an easily manufactured, large energy density, highly reversible, and fast rate-capable Li-ion battery (LIB) anode, Co-Sn intermetallics (CoSn 2 , CoSn, and Co 3 Sn 2 ) were synthesized, and their potential as anode materials for LIBs was investigated. Based on their electrochemical performances, CoSn 2 was selected, and its C-modified nanocomposite (CoSn 2 /C) as well as Ti- and C-modified nanocomposite (CoSn 2 / a-TiC/C) was straightforwardly prepared. Interestingly, the CoSn 2 , CoSn 2 /C, and CoSn 2 / a-TiC/C showed conversion/nonrecombination, conversion/partial recombination, and conversion/full recombination during Li insertion/extraction, respectively, which were thoroughly investigated using ex situ X-ray diffraction and extended X-ray absorption fine structure analyses. As a result of the interesting conversion/full recombination mechanism, the easily manufactured CoSn 2 / a-TiC/C nanocomposite for the Sn-based Li-ion battery anode showed large energy density (first reversible capacity of 1399 mAh cm -3 ), high reversibility (first Coulombic efficiency of 83.2%), long cycling behavior (100% capacity retention after 180 cycles), and fast rate capability (appoximately 1110 mAh cm -3 at 3 C rate). In addition, degradation/enhancement mechanisms for high-capacity and high-performance Li-alloy-based anode materials for next-generation LIBs were also suggested.

  17. Potato Starch/Montmorillonite-Based Nanocomposites: Water Sensitivity, Mechanical and Thermal Properties and XRD Profile Study

    Directory of Open Access Journals (Sweden)

    Ronak Gholami

    2013-06-01

    Full Text Available Studies were carried out on the effect of adding different percentages of montmorillonite (3, 5, 7 and 9% of starch weight on the physical properties of potato starch-MMT nanocomposites. Heat resistance and mechanical properties of films were measured by differential scanning calorimetry (DSC and tensile test. Nanoparticles distribution in polymer matrix was investigated using X-ray diffraction test (XRD. For investigation of water vapor resistance of film samples, moisture sorption and water vapor permeability (WVP were measured. The results showed that the distribution of nanoparticles in the polymer matrix was exfoliated. WVP in pure starch films was 2.62×10-7 g/mhPa and with the addition of 9% MMT it was reduced to 1.43×10-7 g/mhPa. With the addition of nanoclay from zero to 9%, the ultimate tensile strength of nanocomposite samples was increased from 5.9 to 6.63 MPa and strain-to-break was decreased from 34.82 to 26.83%. But the rising trend was not significant for nanocomposite samples containing low concentrations of nanoclay (0-7%. The main reasons for the enhancement of mechanical properties due to the addition of nanoclay were to establish hydrogen bonding between polymer chains and clay layers, filling the empty spaces and increase the crystalline domains. Investigation of thermal resistance of nanocomposite samples showed that they have higher thermal resistance and melting point in comparison with pure starch films. With the addition of nanoclay from zero to 9%, the melting point of film samples was increased from 218 to 232.1°C. With the addition of nanoclay, probably the mobility of amylopectin chains decreased and crystalline domains increased. Also, with increasing nanoclay content, the glass transition temperature of nanocomposite samples was increased. This result corresponded to shrinkage in free volume and thus reduction in the polymer chains mobility in amorphous regions.

  18. Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Poorbafrani, A., E-mail: a.poorbafrani@gmail.com; Kiani, E.

    2016-10-15

    In an attempt to find a solution to the problem of the traditional spinel ferrite used as the microwave absorber, the Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were investigated. Cobalt–zinc ferrite powders, synthesized through PVA sol–gel method, were combined with differing concentrations of Paraffin wax. The nanocomposite samples were characterized employing various experimental techniques including X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Alternating Gradient Force Magnetometer (AGFM), and Vector Network Analyzer (VNA). The saturation magnetization and coercivity were enhanced utilizing appropriate stoichiometry, coordinate agent, and sintering temperature required for the preparation of cobalt–zinc ferrite. The complex permittivity and permeability spectra, and Reflection Loss (RL) of Co{sub 0.6}Zn{sub 0.4}Fe{sub 2}O{sub 4}–Paraffin nanocomposites were measured in the frequency range of 1–18 GHz. The microwave absorption properties of nanocomposites indicated that the absorbing composite containing 20 wt% of paraffin manifests the strongest microwave attenuation ability. The composite exhibited the reflection loss less than –10 dB in the whole C-band and 30% of the X-band frequencies. - Highlights: • We enhanced the magnetic properties of cobalt–zinc Ferrite nanocomposites. • The samples showed absorption in the whole C-band and 30% of the X-band frequencies. • We tried to solve the problem of the spinel ferrite utilized as efficient absorber. • We enhanced the microwave reflection loss over extended frequency ranges.

  19. Components of patient satisfaction with a dental restorative visit: results from The Dental Practice- Based Research Network

    Science.gov (United States)

    Riley, Joseph L.; Rindal, D. Brad; Fellows, Jeffrey L.; Qvist, Vibeke; Patel, Sagar; Foy, Pat; Williams, O. Dale; Gilbert, Gregg H.

    2011-01-01

    Objectives Identify components of patient satisfaction with a dental restorative visit; and test the hypothesis that certain dentist, patient, and procedural factors are associated with patient satisfaction. Methods 197 practices in The Dental Practice-Based Research Network (DPBRN) recruited consecutive patients with defective restorations that were replaced or repaired in permanent teeth. At the end of the treatment visit, each subject was asked to complete a satisfaction survey and mail it directly to the DPBRN Regional Coordinators. Results Analysis of 5,879 satisfaction surveys revealed three satisfaction components which were interpersonal relationship-comfort attributes; material choice-value factors; and sensory-evaluative features. Satisfaction was highest among patients who received care in a private practice model; when the restoration was repaired rather than replaced; or when the restored tooth was not a molar. Conclusion These data suggest that a patient’s judgments of dentist’s skills and quality of care are based on personal interactions with the dentist, the level of comfort, and post-treatment sensitivity. These conclusions have direct implications for patient management before, during and after the procedure. Practice implications When taking a patient-centered approach, dentists should seek to understand how patients evaluate and rate the service provided, facilitating a focus on what each patient values most. PMID:22942147

  20. Community-Based Dental Education Models: An Analysis of Current Practices at U.S. Dental Schools.

    Science.gov (United States)

    Mays, Keith A

    2016-10-01

    Community-based dental education (CBDE) enhances students' clinical expertise, improves their cultural competence, increases access to care, and fosters community engagement. As emphasis on CBDE has increased over the last decades, the aim of this survey study was to determine how CBDE is currently being implemented in U.S. dental schools. The study used a 20-item, author-designed survey emailed in April to August 2015 to 60 of the 65 U.S. dental schools, excluding those that had been recently established. Of the 60 schools, representatives of 33 responded, resulting in a 55% response rate: 70% public and 30% private. These respondents reported that the extramural sites being used the most were community clinics (90.9%), Federally Qualified Health Clinics (66.7%), public health clinics (54.5%), and Indian Health Service clinics (42.4%). The majority of responding schools (63.6%) had ten or more sites available for rotations, and the rotation lengths were 1-2 weeks (29%), 2-4 weeks (25%), 4-6 weeks (29%), 6-8 weeks (3.2%), and 8-10 weeks (12.9%). Most of the respondents (78.8%) reported that their students were unable to be assessed for clinical competencies at external clinical sites, but roughly half allowed students to receive clinical credit. After students completed their rotations, the majority of the respondents (81.8%) reported that students were required to produce a reflection, and 87.9% reported that students completed a post-rotation survey. Considering the benefits of CBDE for students' education and for improving access to oral health care, it is encouraging that over 45% of the responding schools required their students to spend four weeks or longer on external rotations.

  1. Adsorption and photocatalysis for methyl orange and Cd removal from wastewater using TiO2/sewage sludge-based activated carbon nanocomposites

    Science.gov (United States)

    Eltaher, M. A.; Abdou, A. N. A.

    2017-01-01

    Nanocomposite TiO2/ASS (TiO2 nanoparticle coated sewage sludge-based activated carbon) was synthesized by the sol-gel method. The changes in surface properties of the TiO2/ASS nanocomposite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence. The prepared TiO2/ASS nanocomposite was applied for simultaneous removal of methyl orange dye (MO) and Cd2+ from bi-pollutant solution. The factors influencing photocatalysis (TiO2 : ASS ratios, initial pollutant concentrations, solution pH, nanocomposite dosage and UV irradiation time) were investigated. The results revealed that high removal efficiency of methyl orange dye (MO) and Cd2+ from bi-pollutant solution was achieved with TiO2/ASS at a ratio (1 : 2). The obtained results revealed that degradation of MO dye on the TiO2/ASS nanocomposite was facilitated by surface adsorption and photocatalytic processes. The coupled photocatalysis and adsorption shown by TiO2/ASS nanocomposite resulted in faster and higher degradation of MO as compared to MO removal by ASS adsorbent. The removal efficiency of MO by ASS adsorbent and TiO2/ASS (1 : 2) nanocomposite at optimum pH value 7 were 74.14 and 94.28%, respectively, while for Cd2+ it was more than 90%. The experimental results fitted well with the second-order kinetic reaction. PMID:29308227

  2. Synthesis of bio-based nanocomposites for controlled release of antimicrobial agents in food packaging

    Science.gov (United States)

    DeGruson, Min Liu

    The utilization of bio-based polymers as packaging materials has attracted great attention in both scientific and industrial areas due to the non-renewable and nondegradable nature of synthetic plastic packaging. Polyhydroxyalkanoate (PHA) is a biobased polymer with excellent film-forming and coating properties, but exhibits brittleness, insufficient gas barrier properties, and poor thermal stability. The overall goal of the project was to develop the polyhydroxyalkanoate-based bio-nanocomposite films modified by antimicrobial agents with improved mechanical and gas barrier properties, along with a controlled release rate of antimicrobial agents for the inhibition of foodborne pathogens and fungi in food. The ability for antimicrobial agents to intercalate into layered double hydroxides depended on the nature of the antimicrobial agents, such as size, spatial structure, and polarity, etc. Benzoate and gallate anions were successfully intercalated into LDH in the present study and different amounts of benzoate anion were loaded into LDH under different reaction conditions. Incorporation of nanoparticles showed no significant effect on mechanical properties of polyhydroxybutyrate (PHB) films, however, significantly increased the tensile strength and elongation at break of polyhydroxybutyrate-co-valerate (PHBV) films. The effects of type and concentration of LDH nanoparticles (unmodified LDH and LDH modified by sodium benzoate and sodium gallate) on structure and properties of PHBV films were then studied. The arrangement of LDH in the bio-nanocomposite matrices ranged from exfoliated to phase-separated depending on the type and concentration of LDH nanoparticles. Intercalated or partially exfoliated structures were obtained using modified LDH, however, only phase-separated structures were formed using unmodified LDH. The mechanical (tensile strength and elongation at break) and thermo-mechanical (storage modulus) properties were significantly improved with low

  3. Magnetic nanocomposites

    OpenAIRE

    Kulkarni, Amit

    2012-01-01

    Composite materials result from combination of two or more materials benefiting from the favorable properties of each constituent. Especially when the filler material is in nanometer size, it offers extra degrees of freedom with which physical properties can be manipulated to obtain new functionalities. Such materials are known as nanocomposites. For instance the electrical conductivity of nanocomposite film depends on the inter particle separation and can be varied from insulating to metalli...

  4. Experimental analysis of graphene nanocomposite on Kevlar

    Science.gov (United States)

    Manigandan, S.; Gunasekar, P.; Nithya, S.; Durga Revanth, G.; Anudeep, A. V. S. C.

    2017-08-01

    Graphene nanocomposite is a two dimensional structure which has intense role in material science. This paper investigates the topological property of the graphene nanocomposite doped in Kevlar fiber by direct mixing process. The Kevlar fiber by direct mixing process. The Kevlar fiber taken as the specimen which is fabricated by vacuum bag moulding process. Epoxy used as resin and HY951 as hardener. Three different specimens are fabricated based on the percentage of graphene nanocomposite 2%, 5%, 10% and 20% respectively. We witnessed the strength of the Kevlar fiber is increased when it is treated with nanocomposite. The percentage of the nanocomposite increase the strength of the fiber is increased. However as the nanocomposite beyond 5% the strength of fiber is dropped. In addition, we also seen the interfacial property of the fiber is dropped when the nanocomposite is added beyond threshold limit.

  5. Hierarchical multifunctional nanocomposites

    Science.gov (United States)

    Ghasemi-Nejhad, Mehrdad N.

    2014-03-01

    Nanocomposites; including nano-materials such as nano-particles, nanoclays, nanofibers, nanotubes, and nanosheets; are of significant importance in the rapidly developing field of nanotechnology. Due to the nanometer size of these inclusions, their physicochemical characteristics differ significantly from those of micron size and bulk materials. The field of nanocomposites involves the study of multiphase materials where at least one of the constituent phases has one dimension less than 100 nm. This is the range where the phenomena associated with the atomic and molecular interaction strongly influence the macroscopic properties of materials. Since the building blocks of nanocomposites are at nanoscale, they have an enormous surface area with numerous interfaces between the two intermix phases. The special properties of the nano-composite arise from the interaction of its phases at the interface and/or interphase regions. By contrast, in a conventional composite based on micrometer sized filler such as carbon fibers, the interfaces between the filler and matrix constitutes have a much smaller surface-to-volume fraction of the bulk materials, and hence influence the properties of the host structure to a much smaller extent. The optimum amount of nanomaterials in the nanocomposites depends on the filler size, shape, homogeneity of particles distribution, and the interfacial bonding properties between the fillers and matrix. The promise of nanocomposites lies in their multifunctionality, i.e., the possibility of realizing unique combination of properties unachievable with traditional materials. The challenges in reaching this promise are tremendous. They include control over the distribution in size and dispersion of the nanosize constituents, and tailoring and understanding the role of interfaces between structurally or chemically dissimilar phases on bulk properties. While the properties of the matrix can be improved by the inclusions of nanomaterials, the

  6. Sandwich-format ECL immunosensor based on Au star@BSA-Luminol nanocomposites for determination of human chorionic gonadotropin.

    Science.gov (United States)

    Zhang, Amin; Guo, Weiwei; Ke, Hong; Zhang, Xin; Zhang, Huan; Huang, Chusen; Yang, Dapeng; Jia, Nengqin; Cui, Daxiang

    2018-03-15

    A sandwich-configuration electrochemiluminescence (ECL) immunosensor based on Au star@BSA-Luminol nanocomposites for ultrasensitive determination of human chorionic gonadotropin (HCG) has been developed. In this work, nanostructured Polyaniline hydrogels (Pani) decorated with Pt nanoparticles (Pani/Pt) were utilized to construct the base of this immunosensor, greatly increasing the amount of loaded capture antibodies (Ab 1 ) via linkage reagent glutaraldehyde (GA). The used conducting Pani/Pt nanocomposites possessed the unique features, such as large surface area, high electron transfer speed and favorable electrocatalytic activities of hydrogen peroxide, which offered a prominent platform for this sandwich-sensor and acted as efficient ECL signal amplifier also. Furthermore, we employed horseradish peroxidase (HRP) to block the nonspecific binding sites instead of commonly used bovine serum albumin (BSA), which further amplified the signal of luminol in the present of hydrogen peroxide (H 2 O 2 ). In addition, Au star@BSA nanocomposites with excellent water solubility, low-toxicity and great biocompatibility were prepared and used to immobilize HCG detection antibodies (Ab 2 ) and luminescent material luminol. Then, the above-synthetized Luminol-Au star@BSA-Ab 2 complex was attached to the modified sensor by sandwiched immunoreactions. Under the optimized conditions, the proposed immunosensor exhibited a sensitive detection of HCG in a wide linear range from 0.001 to 500mIUmL -1 with a detection limit of 0.0003mIU/mL (S/N = 3). All the results indicated that such a sandwiched HCG immunosensor exhibited favorable ECL analytical performance. This developed method may be potentially used to recognize other clinical protein and display a novel ideal to construct an immunosensor. Copyright © 2017. Published by Elsevier B.V.

  7. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Lingamdinne, Lakshmi Prasanna; Choi, Yu-Lim [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Kim, Im-Soon [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Yang, Jae-Kyu [Ingenium College of Liberal Arts, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Koduru, Janardhan Reddy, E-mail: reddyjchem@gmail.com [Graduate School of Environmental Studies, Kwangwoon University, Seoul, 139-701 (Korea, Republic of); Chang, Yoon-Young, E-mail: yychang@kw.ac.kr [Department of Environmental Engineering, Kwangwoon University, Seoul, 139-701 (Korea, Republic of)

    2017-03-15

    Highlights: • Novel porous Ferromagnetic, GONF and Superparamagnetic, rGONF preparation. • The nanosize particles GONF (41.14 nm) and rGONF (32.16 nm) preparation. • Adsorption mechanism and modeling developments for radionuclides. • Zeta potential and surface site density of nanocomposites for comparison. - Abstract: For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41 nm and 32.16 nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333 ± 2 K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity.

  8. A sensitive electrochemical chlorophenols sensor based on nanocomposite of ZnSe quantum dots and cetyltrimethylammonium bromide

    International Nuclear Information System (INIS)

    Li, Jianjun; Li, Xiao; Yang, Ran; Qu, Lingbo; Harrington, Peter de B.

    2013-01-01

    Graphical abstract: A very sensitive and simple electrochemical sensor for chlorophenols (CPs) based on nanocomposite of cetyltrimethylammonium bromide (CTAB) and ZnSe quantum dots (ZnSe–CTAB) through electrostatic self-assembly technology was built for the first time. The nanocomposite of ZnSe–CTAB introduced a favorable access for the electron transfer and showed excellent electrocatalytic activity for the oxidation of CPs. -- Highlights: •Nanocomposite based ZnSe QDs and CTAB was prepared and characterized. •A novel electrochemical sensor for the determination of CPs was built. •The proposed sensor was more sensitive, simple and environment-friendly. -- Abstract: In this work, a very sensitive and simple electrochemical sensor for chlorophenols (CPs) based on a nanocomposite of cetyltrimethylammonium bromide (CTAB) and ZnSe quantum dots (ZnSe–CTAB) through electrostatic self-assembly technology was built for the first time. The composite of ZnSe–CTAB introduced a favorable access for the electron transfer and gave superior electrocatalytic activity for the oxidation of CPs than ZnSe QDs and CTAB alone. Differential pulse voltammetry (DPV) was used for the quantitative determination of the CPs including 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP). Under the optimum conditions, the peak currents of the CPs were proportional to their concentrations in the range from 0.02 to 10.0 μM for 2-CP, 0.006 to 9.0 μM for 2,4-DCP, and 0.06 to 8.0 for PCP. The detection limits were 0.008 μM for 2-CP, 0.002 μM for 2,4-DCP, and 0.01 μM for PCP, respectively. The method was successfully applied for the determination of CPs in waste water with satisfactory recoveries. This ZnSe–CTAB electrode system provides operational access to design environment-friendly CPs sensors

  9. Nanocomposites for Machining Tools

    Directory of Open Access Journals (Sweden)

    Daria Sidorenko

    2017-10-01

    Full Text Available Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  10. Nanocomposites for Machining Tools.

    Science.gov (United States)

    Sidorenko, Daria; Loginov, Pavel; Mishnaevsky, Leon; Levashov, Evgeny

    2017-10-13

    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance.

  11. Impact of Community-Based Clinical Training on Dental Students' Confidence in Treating Pediatric Patients.

    Science.gov (United States)

    Coe, Julie M; Brickhouse, Tegwyn H; Bhatti, Bushra A; Best, Al M

    2018-01-01

    With a significant need for more general dentists to provide care for pediatric patients, previous studies have found that community-based clinical training experience with children increased dental students' willingness to provide care to pediatric patients after graduation. The aim of our study was to determine the impact of community-based clinical training with pediatric patients on dental students' self-perceived confidence in treating pediatric patients, both overall and related to specific procedures. Of the total 105 fourth-year dental students at one U.S. dental school invited to participate in the study in academic year 2011-12, 76 completed the survey about their community-based dental education (CBDE), for a 72% response rate. Over half of the respondents (55%) reported feeling more confident in treating pediatric patients after their rotations. The increase in confidence was not associated with demographics. The placement of sealants (p=0.0022) and experience in giving local anesthesia (p=0.0008) were the two procedures most strongly associated with the increase in confidence. Also, these students received more experience in pulp therapy, extractions, and treating children up to three years of age during their community-based rotations than in the school-based clinic. In this study, greater exposure to pediatric dental clinical experiences during CBDE increased the students' confidence in treating pediatric patients. These results suggest that community-based experiences are useful in supplementing the school-based pediatric clinical experience, including increasing entry-level dentists' confidence in treating pediatric patients.

  12. Differences chronological age and dental age using Demirjian method based upon a study radiology using radiography panoramic at the Hasanuddin University Dental Hospital

    Directory of Open Access Journals (Sweden)

    Barunawaty Yunus

    2016-06-01

    Full Text Available Choronological age is assessed by the date, month, and year of birth. Several researches suggested that chronological age may not be able to provide sufficient information regarding on human growth precisely. Chronological age, on the other hand, could not be used to assess  maturity development rate of a patient, so it is necessary to assess the dental age. Dental age is age assessment method by measuring human growth and development. Age estimation has important role in health field, particularly in dentistry as it will be beneficial in making appropriate diagnosis, treatment plan, and prognosis. Tooth eruption estimation according to Demirjian method conducted by assessing growth and development process of tooth using panoramic radiography. The purpose of this study is to determine the difference between chronological age and dental age using Demirjian method based on radiology analysis of panoramic radiography. This study was an observational analytic using cross-sectional study, all data are observed once at the time. In this study, the amount of sample reviewed were 30 samples, consisted of 4 – 9 years old children. Panoramic radiography were collected based on target population which fulfill sample criteria from reconciled patient of radiology department Hasanuddin University Dental Hospital. The results were obtained by estimating the score of  dental age using Demirjian method. After that, the dental age and chronological age were analayzed to obtain the mean difference. Based on wilcoxon test, mean value was obtain p:0.011 (p<0.05, this result shows that there is significant difference between chronological age and dental age. Chronological age and dental age can be assessed by reviewing the panoramic radiography using Demirjian method.

  13. The effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base material.

    Science.gov (United States)

    Yodmongkol, Sirasa; Chantarachindawong, Rojcharin; Thaweboon, Sroisiri; Thaweboon, Boonyanit; Amornsakchai, Taweechai; Srikhirin, Toemsak

    2014-12-01

    Polysiloxane has been used as a coupling material in restorative dental materials for several decades. However, few studies are available on the application of polysiloxane in other dental prosthesis functions. The purpose of this study was to investigate the effects of silane-SiO2 nanocomposite films on Candida albicans adhesion and the surface and physical properties of acrylic resin denture base materials. Specimens were separated into 2 groups, uncoated and coated. They were coated with a film by using the dip-coating method. Specimens were incubated with Candida albicans 10(7) cells/mL for 1 hour, and the adherent cells were counted under an optical microscope. The following surface properties were measured: surface chemical composition with Fourier-transform infrared spectrometry, surface roughness with a surface profiler, surface energy with the sessile drop method, and surface hardness with a microhardness tester. The physical properties, including water sorption, water solubility, ultimate flexural strength, and flexural modulus, were evaluated according to International Organization for Standardization 20795-1 requirements. The adhesion of Candida albicans and the surface properties of the specimens were investigated after cleaning with effervescent tablets and brushing. An MTT assay was used to evaluate the coated specimens. The results were statistically analyzed with the Mann-Whitney U test (α=.05). A significant reduction in Candida albicans adhesion (P=.002) was observed before cleaning. In addition, the surface energy was comparable (P=.100), the surface hardness increased significantly (P=.008), and the surface roughness remained unchanged (P=.310). After cleaning with effervescent tablets, a significant decrease in Candida albicans adhesion (P=.002) and in surface roughness (P=.008) was observed; however, similar surface energies were measured (P=.100). After cleaning with a toothbrush, the adhesion of Candida albicans was significantly higher on

  14. Mussel inspired preparation of MoS{sub 2} based polymer nanocomposites: The case of polyPEGMA

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Liu, Xinhua; Huang, Qiang; Xu, Dazhuang; Mao, Liucheng; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-30

    Graphical abstract: A facile and universal strategy has been developed for surface modification of MoS{sub 2} nanosheets via combination of mussel inspired chemistry and chain transfer free radical polymerization. - Highlights: • Fabrication of MoS{sub 2}-PDA-PPEGMA polymer nanocomposites through mussel inspired chemistry. • MoS{sub 2}-PDA- PPEGMA polymer nanocomposites showed enhanced stability in water. • The experimental conditions are rather mild. • The strategy described in this work is also useful for fabrication of many other MoS{sub 2} based polymer nanocomposites. - Abstract: In this work, we report a facile strategy to prepare PEGylated MoS{sub 2} nanosheets through the combination of mussel inspired chemistry and Michael addition reaction. The MoS{sub 2} nanosheets were obtained from lithium intercalation and exfoliation method. Meanwhile, the amino-contained poly((polyethylene glycol) methyl ether methacrylate) (PPEGMA) were obtained via chain transfer free radical polymerization using cysteamine hydrochloride as the chain transfer agents and PEGMA as the monomer. To introduce PPEGMA on MoS{sub 2} nanosheets, polydopamine (PDA) thin films were first coated on the surface of MoS{sub 2} nanosheets through self polymerization of dopamine as the ad-layers, which can react with amino-terminated PPEGMA through Michael addition reaction. The structure, morphology and chemical compositions of MoS{sub 2} nanosheets and MoS{sub 2}-PDA-PPEGMA have been characterized by various characterization techniques. The results demonstrated that the amino-terminated PPEGMA can be successfully immobilized on MoS{sub 2} nanosheets via PDA thin films as the ad-layers. More importantly, the strategy described in this work could also be utilized for surface immobilization of various polymers on many other materials and surfaces because of the universal adhesion of PDA and the good monomer applicability of chain transfer free radical polymerization. Taken together, we

  15. Nanocomposite thin films of gold nanoparticles embedded in yttria-stabilized zirconia for plasmonic-based harsh environment gas detection

    Science.gov (United States)

    Rogers, Phillip H.

    Increased health concerns due to the emission of gases linked to the production of tropospheric ozone by petroleum based fuel burning engines has resulted in the codification of more stringent emissions regulations domestically. Emissions regulations on commercial jetliners are one of the areas to be met with stricter standards. Currently there is not a sensing technology that can detect the emissions gases in the exhaust stream of a jet turbine engine with lower detection limits that meet these standards. The localized surface plasmon resonance (LSPR) of noble metal nanoparticles embedded in dielectric matrices is an optical response that can be extremely sensitive to many environmental parameters. Nanocomposites of Au nanoparticles embedded in yttria-stabilized zirconia (Au-YSZ) are an ideal case study for these plasmonic materials. Using a metal oxide matrix with oxygen ion vacancies, such as YSZ, allows one to finely tune the local environmental charge of the embedded metal nanoparticles upon varying the oxygen and hydrogen content of the gas exposure mixture. After gas exposure data is collected in the form of optical absorption spectra, the LSPR spectra due to the Au nanoparticles embedded in the YSZ matrix undergo automated Lorentzian and Drude model fitting for calculating fundamental charge exchange and plasmonic dampening effects versus gas exposure concentration. These titration experiments have been performed for Au-YSZ nanocomposites exposed to O2, H2, NO 2, and CO in N2 backgrounds at 500°C and equilibrium data has been acquired for both the average charge per Au nanoparticle and the scattering frequency of the plasmons over a variety of exposure conditions. One paramount result made possible by this plasmonic based gas detection by Au-YSZ nanocomposite thin films was a repeatable 5 ppm lower detection limit towards NO2 in air at 500°C. In comparing the charge exchange observed using both the fitted exposure data and an electrochemical model

  16. Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering

    International Nuclear Information System (INIS)

    Thomson, K.E.; Jiang, D.; Yao, W.; Ritchie, R.O.; Mukherjee, A.K.

    2012-01-01

    Alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes (CNT) were fabricated by advanced powder processing techniques and consolidated by spark plasma sintering. Raman spectroscopy revealed that single-walled carbon nanotubes (SWCNT) begin to break down at sintering temperatures >1150 °C. Nuclear magnetic resonance showed that, although thermodynamically unlikely, no Al 4 C 3 formed in the CNT–alumina nanocomposites, such that the nanocomposite can be considered as purely a physical mixture with no chemical bond formed between the nanotubes and ceramic matrix. In addition, in situ single-edge notched bend tests were conducted on niobium and/or CNT-reinforced alumina nanocomposites to assess their toughness. Despite the absence of subcritical crack growth, average fracture toughness values of 6.1 and 3.3 MPa m 1/2 were measured for 10 vol.% Nb and 10 vol.% Nb–5 vol.% SWCNT–alumina, respectively. Corresponding tests for the alumina nanocomposites containing 5 vol.% SWCNT, 10 vol.% SWCNT, 5 vol.% double-walled-CNT and 10 vol.% Nb yielded average fracture toughnesses of 3.0, 2.8, 3.3 and 4.0 MPa m 1/2 , respectively. It appears that the reason for not observing improvement in fracture toughness of CNT-reinforced samples is because of either damage to CNTs or possibly non-optimal interfacial bonding between CNT-alumina.

  17. Effect of Few-Layered Graphene-Based CdO Nanocomposite-Enhanced Power Conversion Efficiency of Dye-Sensitized Solar Cell

    Science.gov (United States)

    Bykkam, Satish; Kalagadda, Bikshalu; Kalagadda, Venkateswara Rao; Ahmadipour, Mohsen; Chakra, Ch. Shilpa; Rajendar, V.

    2018-01-01

    A few-layered graphene (FLG)/cadmium oxide (CdO) nanocomposite was sucessfully prepared through ultrasonic-assisted synthesis. The morphology of FLG (1.0 wt.%, 2.0 wt.%, and 3.0 wt.%)/CdO nanocomposites were characterized using high-resolution transmission electron microscopy and field emission scanning electron microscopy techniques. The optical properties were studied with the help of UV-Vis diffuse reflectance spectroscopy and Raman spectroscopy, while the crystalline phases were analyzed using x-ray diffraction. The doctor blade method was used to deposit FLG/CdO nanocomposites on fluorine-doped tin oxide conductive glass substrates. The effect of FLG weight percentage (1.0 wt.%, 2.0 wt.%, and 3.0 wt.%) was studied on the power conversion efficiency of dye-sensitized solar cell applications. The photovoltaic characteristics, current density-voltage curves were measured with ruthenium (II)-based dye under air mass condition 1.5G, 100 m W m-2 of a solar simulator. The results showed that higher power conversion efficiency of 3.54% was achieved at the appropriate weight percentage of FLG (1.0 wt.%)/CdO nanocomposite, compared to the CdO and other nanocomposite working electrodes FLG (2.0 wt.%, and 3.0 wt.%)/CdO.

  18. Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: Experimental and Density functional theory study

    Science.gov (United States)

    Hamed Mashhadzadeh, A.; Fereidoon, Ab.; Ghorbanzadeh Ahangari, M.

    2017-10-01

    In current study we combined theoretical and experimental studies to evaluate the effect of functionalization and silanization on mechanical behavior of polymer-based/CNT nanocomposites. Epoxy was selected as thermoset polymer, polypropylene and poly vinyl chloride were selected as thermoplastic polymers. The whole procedure is divided to two sections . At first we applied density functional theory (DFT) to analyze the effect of functionalization on equilibrium distance and adsorption energy of unmodified, functionalized by sbnd OH group and silanized epoxy/CNT, PP/CNT and PVC/CNT nanocomposites and the results showed that functionalization increased adsorption energy and reduced the equilibrium distance in all studied nanocomposites and silanization had higher effect comparing to OH functionalizing. Then we prepared experimental samples of all mentioned nanocomposites and tested their tensile and flexural strength properties. The obtained results showed that functionalization increased the studied mechanical properties in all evaluated nanocomposites. Finally we compared the results of experimental and theoretical sections with each other and estimated a suitable agreement between these parts.

  19. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Mahdieh, Athar; Mahdavian, Ali Reza, E-mail: a.mahdavian@ippi.ac.ir; Salehi-Mobarakeh, Hamid

    2017-03-15

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe{sub 3}O{sub 4} nanoparticles with polymerizable groups is presented here. After synthesis of Fe{sub 3}O{sub 4} nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe{sub 3}O{sub 4} are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe{sub 3}O{sub 4} nanoparticles (0–10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles. - Highlights: • Chemical modification of magnetite nanoparticles. • Encapsulation of modified magnetite with acrylic copolymer. • Superparamagnetic Fe3O4/polyacrylic nanocomposite particles.

  20. Costs of a school-based dental mobile service in South Africa.

    Science.gov (United States)

    Molete, M P; Chola, L; Hofman, K J

    2016-10-19

    The burden of untreated tooth decay remains high and oral healthcare utilisation is low for the majority of children in South Africa. There is need for alternative methods of improving access to low cost oral healthcare. The mobile dental unit of the University of the Witwatersrand (Wits) has been operational for over 25 years, providing alternative oral healthcare to children and adults who otherwise would not have access. The aim of this study was to conduct a cost-analysis of a school based oral healthcare program in the Wits mobile dental unit. The objectives were to estimate the general costs of the school based program, costs of oral healthcare per patient and the economic implications of providing services at scale. In 2012, the Wits mobile dental unit embarked on a 5 month project to provide oral healthcare in four schools located around Johannesburg. Cost and service use data were retrospectively collected from the program records for the cost analysis, which was undertaken from a provider perspective. The costs considered included both financial and economic costs. Capital costs were annualised and discounted at 6 %. One way sensitivity tests were conducted for uncertain parameters. The total economic costs were R813.701 (US$76,048). The cost of screening and treatment per patient were R331 (US$31) and R743 (US$69) respectively. Furthermore, fissure sealants cost the least out of the treatments provided. The sensitivity analysis indicated that the Wits mobile dental unit was cost efficient at 25 % allocation of staff time and that a Dental Therapy led service could save costs by 9.1 %. Expanding the services to a wider population of children and utilising Dental Therapists as key personnel could improve the efficiency of mobile dental healthcare provision.

  1. Knowledge and attitude of dental faculty members towards evidence-based dentistry in Iran.

    Science.gov (United States)

    Sabounchi, S S; Nouri, M; Erfani, N; Houshmand, B; Khoshnevisan, M H

    2013-08-01

    Educating dental practitioners is a major component in obtaining evidence-based approach to oral health care, but there is no evidence about knowledge and attitude of dental faculty members towards evidence-based dentistry (EBD) in Iran. A cross-sectional study was conducted using self-administered questionnaires on dental school faculties in Iran to assess their knowledge and attitude towards basic principles and methods of EBD. A total of eight dental schools were randomly selected of 17 public and two existing private schools. Validated questionnaire with an appropriate reliability (Cronbach's alpha 0.67 - 0.87) was conducted on (n = 505) available dental instructors. The covered dimensions were perceived knowledge on critical appraisal, actual knowledge of EBD concepts, evidence-accessing methods and attitudes about EBD. Correlations were assessed between background characteristics and four main parts of the questionnaire, and multiple linear regression analysis was also used. A total of 377 of 505 dental instructors returned completed questionnaires (response rate 74.65%). The mean perceived knowledge score was 15.32 ± 4.69 on a range of 6-36, and mean actual knowledge was 7.98 ± 2.0 on a range of 0-11 for all respondents with an overall positive attitude towards EBD. This study suggests that the level of actual knowledge of dental faculties about basic principles of EBD was moderate in Iran. However, faculties' overall interest and positive attitude towards learning EBD is encouraging. Therefore, it is highly recommended that degree/certificate continuing educational programmes be planned by the organising committees. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. A silanol-based nanocomposite coating for protection of AA-2024 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, E.; Pavez, J.; Azocar, I.; Zagal, J.H. [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Zhou, X. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Melo, F. [Departamento de Fisica, Facultad de Ciencias, Universidad de Santiago de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Santiago (Chile); Thompson, G.E. [Corrosion and Protection Centre, School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Paez, M.A., E-mail: maritza.paez@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile)

    2011-09-01

    Highlights: {center_dot} A new silanol-based hybrid coating has been synthesized. {center_dot} The incorporation of CeO{sub 2} and ZrO{sub 2} nanoparticles into the coating greatly improves the corrosion resistance of the coated aluminium alloy. {center_dot} The effectiveness of the coating is increasingly evident for long term exposure to the sodium chloride solution. {center_dot} The silanol-based nanocomposite coatings have self-healing ability. - Abstract: A new hybrid sol-gel type film, composed of tetraethylorthosilicate (TEOS) and tetraocthylorthosilicate (TEOCS), and modified with different nanoparticle systems, has been investigated as a coating for protection of AA-2024-T3 aluminium alloy. The nanoparticle systems considered were either ZrO{sub 2} or CeO{sub 2} or their combination{sub .} The zirconia nanoparticles were prepared from a Zr (IV) propoxide sol (TPOZ), using an organic stabilizer, and the CeO{sub 2} nanoparticles were developed spontaneously after adding cerium nitrate solution to the hybrid sol. The chemical composition and the structure of the hybrid sol-gel films were examined by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The corrosion resistance of the coated AA-2024 alloy was examined by potentiodynamic polarization. The results revealed that, for short exposure times in the electrolyte, incorporation of ZrO{sub 2} or CeO{sub 2} nanoparticles in the hybrid film does not provide an increase in the corrosion resistance of the coated AA-2024 alloy. Further, the resistance was significantly reduced by increasing the nanoparticle content. Conversely, by incorporating both nanoparticles (ZrO{sub 2} and CeO{sub 2}), the corrosion resistance of the resulting hybrid films increased slightly. The behavior changed significantly when the coated alloy was exposed to the electrolyte for 5 days. The corrosion resistance of the coatings, unmodified and modified with CeO{sub 2} or Zr

  3. Evidence-Based Dental Practice: Part II. Levels And Quality of ...

    African Journals Online (AJOL)

    For questions related to diagnosis, prognosis or causation, other study designs such as longitudinal studies, cohort studies or case-control studies are more appropriate. The present article discusses the levels and quality of evidence, and basic concepts of clinical research design in evidence-based dental practice based ...

  4. Preparation, characterization and mechanical properties of rare-earth-based nanocomposites

    Directory of Open Access Journals (Sweden)

    Musbah S.S.

    2012-01-01

    Full Text Available This study reports research related to different preparation methods and characterization of polymer nanocomposites for optical applications. The Eu-ion doped Gd2O3 nanophosphor powder with different nanoparticle content was embedded in the matrix of PMMA. Preparation was carried out by mixing molding (bulk, electrospinning (nanofibers and solution casting (thin films with neat particles and particles coated with AMEO silane. Among the pros and cons for proposed methods, the mixing molding enables to avoid solvent use while the best deagglomeration and nanoparticle distribution is gained using the electrospinning method. The results of dynamic mechanical analysis (DMA and nanoindentation revealed that the storage modulus of the composites was higher than that of pure PMMA and increased with nanophosphor content. Surface modification of particles improved the mechanical properties of nanocomposites.

  5. The crystal morphology and mechanical properties based on poly(l-lactic acid)/silica nanocomposites

    Science.gov (United States)

    Cai, Y. H.

    2017-06-01

    Nano silica (SiO2) was introduced into Poly(L-lactic acid) (PLLA) matrix to prepare PLLA/SiO2 nanocomposites, and the crystal morphology, crystallization behavior and mechanical performance were investigated. The XRD experimental data indicated that nano SiO2 could improve the crystallization of PLLA, and PLLA/SiO2 nanocomposites exhibited sharp diffraction peak after isothermal crystallization. In addition, through the POM analysis, PLLA/SiO2 sample had the typical spherulite structure, and the size of the spherulite became larger with the increase of crystallization temperature. The tensile testing showed that a small amount of SiO2 could improve and retain the mechanical performance of PLLA

  6. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    Science.gov (United States)

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  7. How effective the problem-based learning (PBL) in dental education. A critical review.

    Science.gov (United States)

    Alrahlah, Ali

    2016-10-01

    The purpose of this critical review is to explore the research supporting the effectiveness of problem-based learning (PBL) as a teaching method in dental education. PBL was developed more than 40 years ago in reaction to the problems and limitations of traditional teaching approaches. Here, aspects of the PBL teaching approach are reviewed, and the reasons for the substantial effect of this approach on dental education are discussed. Evidence shows that students in PBL-based courses exhibit superior professional skills and effective learning compared with those instructed using traditional approaches.

  8. Biofunctionalized gold nanoparticle-conducting polymer nanocomposite based bioelectrode for CRP detection.

    Science.gov (United States)

    Mishra, Sujeet K; Sharma, Vikash; Kumar, Devendra; Rajesh

    2014-10-01

    An electrochemical impedance immunosensing method for the detection and quantification of C-reactive protein (αCRP) in phosphate buffered saline (PBS) is demonstrated. The protein antibody, Ab-αCRP, has been covalently immobilized on a platform comprising of electrochemically deposited 3-mercaptopropionic acid-capped gold nanoparticles Au(MPA)-polypyrrole (PPy) nanocomposite film of controlled thickness onto an indium tin oxide-coated glass plate. The free carboxyl groups present on the nanocomposite film have been used to site-specifically immobilize the Ab-αCRP biomolecules through a stable acyl amino ester intermediate generated by N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride and N-hydroxysuccinimide. The nanocomposite film was characterized by atomic force microscopy, high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, and electrochemical techniques. The bioelectrode was electrochemically analyzed using modified Randles circuit in terms of constant phase element (CPE), electron transfer resistance (R et), and Warburg impedance (Z w). The value of n, a CPE exponent used as a gauge of heterogeneity, for the Au-PPy nanocomposite film was found to be 0.56 which is indicative of a rather rough morphology and porous structure. A linear relationship between the increased ∆R et values and the logarithmic value of protein antigen, Ag-αCRP, concentrations was found in the range of 10 ng to 10 μg mL(-1) with a R et sensitivity of 46.27 Ω cm(2)/decade of [Ag-αCRP] in PBS (pH 7.4).

  9. Polymer based nanocomposites for the removal of Cr(VI) from water

    CSIR Research Space (South Africa)

    Setshedi, K

    2012-10-10

    Full Text Available nanocomposites for the removal of Cr(VI) from water Emerging Researcher Symposium Katlego Setshedi 10 October 2012 Outline ? CSIR 2012 Slide 2 ? Background ? Problem statement ? Health impacts ? Remedies ? Objectives ? Experimental procedure... ?Chemical (metals, fluoride, nitrate and other chemicals) and biological contamination ?Acid mine drainage ?Little/disregard for the environmental consequences of INDUSTRIAL activity Alloy manufacturingElectroplating Effluent Cr, Ni, Cu, Pb, Hg, Cd...

  10. Teaching Cell Biology to Dental Students with a Project-Based Learning Approach.

    Science.gov (United States)

    Costa-Silva, Daniela; Côrtes, Juliana A; Bachinski, Rober F; Spiegel, Carolina N; Alves, Gutemberg G

    2018-03-01

    Although the discipline of cell biology (CB) is part of the curricula of predoctoral dental schools, students often fail to recognize its practical relevance. The aim of this study was to assess the effectiveness of a practical-theoretical project-based course in closing the gaps among CB, scientific research, and dentistry for dental students. A project-based learning course was developed with nine sequential lessons to evaluate 108 undergraduate dental students enrolled in CB classes of a Brazilian school of dentistry during 2013-16. To highlight the relevance of in vitro studies in the preclinical evaluation of dental materials at the cellular level, the students were challenged to complete the process of drafting a protocol and performing a cytocompatibility assay for a bone substitute used in dentistry. Class activities included small group discussions, scientific database search and article presentations, protocol development, lab experimentation, and writing of a final scientific report. A control group of 31 students attended only one laboratory class on the same theme, and the final reports were compared between the two groups. The results showed that the project-based learning students had superior outcomes in acknowledging the relevance of in vitro methods during biocompatibility testing. Moreover, they produced scientifically sound reports with more content on methodological issues, the relationship with dentistry, and the scientific literature than the control group (p<0.05). The project-based learning students also recognized a higher relevance of scientific research and CB to dental practice. These results suggest that a project-based approach can help contextualize scientific research in dental curricula.

  11. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  12. Label-free electrochemical immunosensor based on Nile blue A-reduced graphene oxide nanocomposites for carcinoembryonic antigen detection.

    Science.gov (United States)

    Gao, Yan-Sha; Zhu, Xiao-Fei; Xu, Jing-Kun; Lu, Li-Min; Wang, Wen-Min; Yang, Tao-Tao; Xing, Hua-Kun; Yu, Yong-Fang

    2016-05-01

    In this article, a novel, label-free, and inherent electroactive redox immunosensor for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and Nile blue A (NB) hybridized electrochemically reduced graphene oxide (NB-ERGO) is proposed. The composite of NB-graphene oxide (NB-GO) was prepared by π-π stacking interaction. Then, chronoamperometry was adopted to simultaneously reduce HAuCl4 and nanocomposites of NB-GO for synthesizing AuNPs/NB-ERGO. The immunosensor was fabricated by capturing CEA antibody (anti-CEA) at this nanocomposite modified electrode. The immunosensor determination was based on the fact that, due to the formation of antigen-antibody immunocomplex, the decreased response currents of NB were directly proportional to the concentrations of CEA. Under optimal conditions, the linear range of the proposed immunosensor was estimated to be from 0.001 to 40 ng ml(-1) and the detection limit was estimated to be 0.00045 ng ml(-1). The proposed immunosensor was used to determine CEA in clinical serum samples with satisfactory results. The proposed method may provide promising potential application in clinical immunoassays with the properties of facile procedure, stability, high sensitivity, and selectivity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides.

    Science.gov (United States)

    Lingamdinne, Lakshmi Prasanna; Choi, Yu-Lim; Kim, Im-Soon; Yang, Jae-Kyu; Koduru, Janardhan Reddy; Chang, Yoon-Young

    2017-03-15

    For the removal of uranium(VI) (U(VI)) and thorium(IV) (Th(IV)), graphene oxide based inverse spinel nickel ferrite (GONF) nanocomposite and reduced graphene oxide based inverse spinel nickel ferrite (rGONF) nanocomposite were prepared by co-precipitation of GO with nickel and iron salts in one pot. The spectral characterization analyses revealed that GONF and rGONF have a porous surface morphology with an average particle size of 41.41nm and 32.16nm, respectively. The magnetic property measurement system (MPMS) studies confirmed the formation of ferromagnetic GONF and superparamagnetic rGONF. The adsorption kinetics studies found that the pseudo-second-order kinetics was well tune to the U(VI) and Th(IV) adsorption. The results of adsorption isotherms showed that the adsorption of U(VI) and Th(IV) were due to the monolayer on homogeneous surface of the GONF and rGONF. The adsorptions of both U(VI) and Th(IV) were increased with increasing system temperature from 293 to 333±2K. The thermodynamic studies reveal that the U(VI) and Th(IV) adsorption onto GONF and rGONF was endothermic. GONF and rGONF, which could be separated by external magnetic field, were recycled and re-used for up to five cycles without any significant loss of adsorption capacity. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Crystallization and Morphology of Nanocomposites Based on Poly(lactic acid/Graphene Nanoplatelets: Effect of Nanoparticle Functionalization

    Directory of Open Access Journals (Sweden)

    Pedram Manafi

    2014-12-01

    Full Text Available Crystallization behavior of nanocomposite based on semicrystalline polymers and graphene nanoplatelets (GNp has been considered due to its critical effect on the performance of the final product. In this study, nanocomposite based on poly(lactic acid/graphene nanoplatelets (PLA/GNp, 0.5 and 1 wt % was prepared via solution method using dimethylformamide as a solvent. PLA has the largest contribution in the current biopolymer research. To present time, it is well accepted that nanoparticles would be recognized as efficient heterogeneous nucleating agents for various semicrystalline polymers. To improve the dispersion of graphene in the matrix, functionalization using acid treatment and acylation reaction was accomplished. Characterization of functionalization reaction and grafting reaction between PLA and functionalized graphene (FGNp was tracked by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetry analysis. Scanning electron microscopy results demonstrated that a relatively fine dispersion of FGNp is achieved in the PLLA matrix. Non-isothermal and isothermal crystallization behavior was studied using differential scanning calorimetry. The isothermal tests were conducted at test temperatures 130°C, 125°C, 120°C and 115°C. The results indicated that crystallization percentage for the samples containing FGNp nanoparticles were higher than those of pristine-containing samples. With increase of temperature in isothermal test onset time for crystallization decreased due to higher mobility of polymeric chains in the samples. It seems that the presence of functionalized nanoparticles facilitated formation of β format of crystals.

  15. Magnetic nanoparticles based nano-composites: synthesis, contribution of the fillers dispersion and the chains conformation on the reinforcement properties

    International Nuclear Information System (INIS)

    Robbes, Anne-Sophie

    2011-01-01

    The mechanical properties of polymeric nano-composite films can be considerably enhanced by the inclusion of inorganic nanoparticles due to two main effects: (i) the local structure of fillers dispersion and (ii) the potential modification of the chains conformation and dynamics in the vicinity of the filler/polymer interface. However, the precise mechanisms which permit to correlate these contributions at nano-metric scale to the macroscopic mechanical properties of the materials are actually poorly described. In such a context, we have synthesized model nano-composites based on magnetic nanoparticles of maghemite γ-Fe 2 O 3 (naked or grafted with a polystyrene (PS) corona by radical controlled polymerization) dispersed in a PS matrix, that we have characterized by combining small angle scattering (X-Ray and neutron) and transmission electronic microscopy. By playing on different parameters such as the particle size, the concentration, or the size ratio between the grafted chains and the ones of the matrix in the case of the grafted fillers, we have obtained nano-composite films a large panel of controlled and reproducible controlled filler structures, going from individual nanoparticles or fractal aggregates up to the formation of a connected network of fillers. By applying an external magnetic field during the film processing, we succeeded in aligning the different structures along the direction of the field and we obtained materials with remarkable anisotropic reinforcement properties. The conformation of the chains of the matrix, experimentally determined thanks to the specific properties of neutron contrast of the system, is not affected by the presence of the fillers, whatever their confinement, the dispersion the fillers or their chemical state surface. The alignment of the fillers along the magnetic field has allowed us to describe precisely the evolution of the reinforcement modulus of the materials with the structural reorganization of the fillers and

  16. Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8 based polymer nanocomposite membranes

    Directory of Open Access Journals (Sweden)

    Nay Win Khun

    2014-12-01

    Full Text Available We combined zeolitic imidazolate framework nanoparticles (ZIF-8: ˜150 nm diameter with Matrimid® 5218 polymer to form permeable mixed matrix membranes, featuring different weight fractions of nanoparticles (up to 30 wt. % loading. We used ball-on-disc micro-tribological method to measure the frictional coefficient of the nanocomposite membranes, as a function of nanoparticle loading and annealing heat treatment. The tribological results reveal that the friction and wear of the unannealed samples rise steadily with greater nanoparticle loading because ZIF-8 is relatively harder than the matrix, thus promoting abrasive wear mechanism. After annealing, however, we discover that the nanocomposites display an appreciably lower friction and wear damage compared with the unannealed counterparts. Evidence shows that the major improvement in tribological performance is associated with the greater amounts of wear debris derived from the annealed nanocomposite membranes. We propose that detached Matrimid-encapsulated ZIF-8 nanoparticles could function as “spacers,” which are capable of not only reducing direct contact between two rubbing surfaces but also enhancing free-rolling under the action of lateral forces.

  17. A molecular model for epsilon-caprolactam-based intercalated polymer clay nanocomposite: Integrating modeling and experiments.

    Science.gov (United States)

    Sikdar, Debashis; Katti, Dinesh R; Katti, Kalpana S

    2006-08-29

    In studying the morphology, molecular interactions, and physical properties of organically modified montmorillonite (OMMT) and polymer clay nanocomposites (PCNs) through molecular dynamics (MD), the construction of the molecular model of OMMT and PCN is important. Better understanding of interaction between various constituents of PCN will improve the design of polymer clay nanocomposite systems. MD is an excellent tool to study interactions, which require accurate modeling of PCN under consideration. Previously, the PCN models were constructed by different researchers on the basis of specific criteria such as minimum energy configuration, density of the polymer clay nanocomposite, and so forth. However, in this article we describe the development of models combining experimental and conventional molecular modeling to develop models, which are more representative of true intercalated PCN systems. The models were used for studying the morphological interactions and physical properties. These studies gave useful information regarding orientation of organic modifiers, area of coverage of organic modifiers over the interlayer clay surface, interaction of organic modifiers with clay in OMMT, interaction among different constituents of PCN, conformational and density change, and actual proportion of mixing of polymer with clay in PCN. We have X-ray diffraction and photoacoustic Fourier transform infrared spectroscopy to verify the model.

  18. Use of agroindustrial waste in the preparation of nanocomposites based on bacterial cellulose and hydroxyapatite

    International Nuclear Information System (INIS)

    Duarte, Eden B.; Chagas, Bruna S. das; Feitosa, Judith P.A.; Andrade, Fabia K.; Borges, Maria F.; Muniz, Celli R.; Souza Filho, Men de Sa M.; Rosa, Morsyleide F.; Brigida, Ana I.; Morais, Joao P.S.

    2015-01-01

    Environmental issues have supported the interest in renewable sources and agroindustrial residues became a significant resource for the production of new materials. The present work presents the use of agroindustrial residues to obtain bacterial cellulose (BC) for further elaboration of nanocomposites with hydroxyapatite (HA). The production of BC membranes occurred in Hestrin & Schramm medium, cashew juice and sisal liquid waste cultivated under static conditions. After the incubation period, the BC membranes were purified and nanocomposites prepared by successive immersion of the purified membranes in solutions of Calcium Chloride (CaCl 2 ), and Sodium Phosphate (Na 2 HPO 4 ), followed by drying and subsequent characterization. The materials obtained were characterized by Thermogravimetric Analysis (TGA) and X-ray Diffraction (XRD). Additionally, in vitro tests were performed for nanocomposites. The results showed the production of cellulose from the three substrates studied, without the need for further supplementation or pH change. In all characterizations, structure and typical behavior of bacterial cellulose were found. The composites showed bioactivity and the adsorption capacity of proteins, which lead to potential biocompatibility of these materials. (author)

  19. Effect of injection molding parameters on nanofillers dispersion in masterbatch based PP-clay nanocomposites

    Directory of Open Access Journals (Sweden)

    J. Soulestin

    2012-03-01

    Full Text Available The effect of injection molding parameters (screw rotational speed, back pressure, injec-tion flow rate and holding pressure on the nanofiller dispersion of melt-mixed PP/clay nanocomposites was investigated. The nanocomposites containing 4 wt% clay were obtained by dilution of a PP/clay masterbatch into a PP matrix. The evaluation of the dispersion degree was obtained from dynamic rheological measurements. The storage modulus and complex viscosity exhibit significant dependence on the injection molding parameters. PP/clay nanocomposite molded using more severe injection parameters (high shear and long residence time displays the highest storage modulus and complex viscosity, which illustrates the improved dispersion of clay platelets. This better dispersion leads to better mechanical properties particularly higher Young modulus, tensile strength and unnotched impact strength. A Taguchi analysis was used to identify the influence of individual process parameters. The major individual parameter is the injection flow rate, whose increase improves nanoclay dispersion. The combination of high back pressure and high screw rotational speed is also necessary to optimize the dispersion of clay nanoplatelets.

  20. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

    Directory of Open Access Journals (Sweden)

    Fawad Inam

    2010-01-01

    Full Text Available Amino-modified double wall carbon nanotube (DWCNT-NH2/carbon fiber (CF/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt% to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

  1. Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones

    Energy Technology Data Exchange (ETDEWEB)

    Aflori, Magdalena [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Simionescu, Bogdana [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); “Costin D. Nenitescu” Centre of Organic Chemistry, 202B Splaiul Independentei, 7114 Bucharest (Romania); Bordianu, Irina-Elena; Sacarescu, Liviu; Varganici, Cristian-Dragos; Doroftei, Florica; Nicolescu, Alina [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Olaru, Mihaela, E-mail: olaruma@icmpp.ro [“Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2013-11-20

    Highlights: • Synthesis of nanocomposites with noble metals having high antibacterial efficiency. • Silver nanoparticles antibacterial activity for monumental stone conservation. • A high antibacterial activity while assuring good stone protection. -- Abstract: The present paper reports on the evaluation of two silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles aimed as antibacterial coatings for monumental stones. Sol–gel reaction of titanium isopropoxide and/or 3-(trimethoxysilyl)propyl methacrylate, in the presence of silver nitrate and a primary amine surfactant, yielded new types of hybrid nanocomposites with high antibacterial/antifungal efficacy. Different polymer behaviours regarding a frequently used monumental stone originating from Romania were evidenced through Fourier-transform infrared (FTIR) spectroscopy and powder X-ray diffraction (PXRD) technique. Conclusions regarding the stones acid-resistant character and lower influence of salt weathering on its durability, as well as a better protective coating containing titania units were revealed.

  2. A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue.

    Science.gov (United States)

    Ferroni, Letizia; Gardin, Chiara; Sivolella, Stefano; Brunello, Giulia; Berengo, Mario; Piattelli, Adriano; Bressan, Eriberto; Zavan, Barbara

    2015-03-02

    Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D) hyaluronan scaffold and human dental pulp stem cells (DPSCs) to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF) staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  3. A Hyaluronan-Based Scaffold for the in Vitro Construction of Dental Pulp-Like Tissue

    Directory of Open Access Journals (Sweden)

    Letizia Ferroni

    2015-03-01

    Full Text Available Dental pulp tissue supports the vitality of the tooth, but it is particularly vulnerable to external insults, such as mechanical trauma, chemical irritation or microbial invasion, which can lead to tissue necrosis. In the present work, we present an endodontic regeneration method based on the use of a tridimensional (3D hyaluronan scaffold and human dental pulp stem cells (DPSCs to produce a functional dental pulp-like tissue in vitro. An enriched population of DPSCs was seeded onto hyaluronan-based non-woven meshes in the presence of differentiation factors to induce the commitment of stem cells to neuronal, glial, endothelial and osteogenic phenotypes. In vitro experiments, among which were gene expression profiling and immunofluorescence (IF staining, proved the commitment of DPSCs to the main components of dental pulp tissue. In particular, the hyaluronan-DPSCs construct showed a dental pulp-like morphology consisting of several specialized cells growing inside the hyaluronan fibers. Furthermore, these constructs were implanted into rat calvarial critical-size defects. Histological analyses and gene expression profiling performed on hyaluronan-DPSCs grafts showed the regeneration of osteodentin-like tissue. Altogether, these data suggest the regenerative potential of the hyaluronan-DPSC engineered tissue.

  4. The use of atomic force microscopy as an important technique to analyze the dispersion of nanometric fillers and morphology in nanocomposites and polymer blends based on elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fabiula Danielli Bastos de; Scuracchio, Carlos Henrique, E-mail: fabiuladesousa@gmail.com [Universidade Federal do ABC (CECS/UFABC), Santo Andre, SP (Brazil). Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas

    2014-11-15

    AFM has been recognized as one of the most powerful tools for the analysis of surface morphologies because it creates three-dimensional images at angstrom and nano scale. This technique has been exhaustively used in the analyses of dispersion of nanometric components in nanocomposites and in polymer blends, because of the easiness of sample preparation and lower equipment maintenance costs compared to electron microscopy. In this review, contributions using AFM are described, with emphasis on the dispersion of nanofillers in polymeric matrices. It is aimed to show the importance of technical analysis for nanocomposites and polymer blends based on elastomers. (author)

  5. The use of prophylactic antibiotics prior to dental procedures in patients with prosthetic joints: Evidence-based clinical practice guideline for dental practitioners--a report of the American Dental Association Council on Scientific Affairs.

    Science.gov (United States)

    Sollecito, Thomas P; Abt, Elliot; Lockhart, Peter B; Truelove, Edmond; Paumier, Thomas M; Tracy, Sharon L; Tampi, Malavika; Beltrán-Aguilar, Eugenio D; Frantsve-Hawley, Julie

    2015-01-01

    A panel of experts (the 2014 Panel) convened by the American Dental Association Council on Scientific Affairs developed an evidence-based clinical practice guideline (CPG) on the use of prophylactic antibiotics in patients with prosthetic joints who are undergoing dental procedures. This CPG is intended to clarify the "Prevention of Orthopaedic Implant Infection in Patients Undergoing Dental Procedures: Evidence-based Guideline and Evidence Report," which was developed and published by the American Academy of Orthopaedic Surgeons and the American Dental Association (the 2012 Panel). The 2014 Panel based the current CPG on literature search results and direct evidence contained in the comprehensive systematic review published by the 2012 Panel, as well as the results from an updated literature search. The 2014 Panel identified 4 case-control studies. The 2014 Panel judged that the current best evidence failed to demonstrate an association between dental procedures and prosthetic joint infection (PJI). The 2014 Panel also presented information about antibiotic resistance, adverse drug reactions, and costs associated with prescribing antibiotics for PJI prophylaxis. The 2014 Panel made the following clinical recommendation: In general, for patients with prosthetic joint implants, prophylactic antibiotics are not recommended prior to dental procedures to prevent prosthetic joint infection. The practitioner and patient should consider possible clinical circumstances that may suggest the presence of a significant medical risk in providing dental care without antibiotic prophylaxis, as well as the known risks of frequent or widespread antibiotic use. As part of the evidence-based approach to care, this clinical recommendation should be integrated with the practitioner's professional judgment and the patient's needs and preferences. Copyright © 2015 American Dental Association. Published by Elsevier Inc. All rights reserved.

  6. Competency in managing cardiac arrest: A scenario-based evaluation of dental students.

    Science.gov (United States)

    Breuer, Georg; Knipfer, Christian; Huber, Tobias; Huettl, Stephan; Shams, Nima; Knipfer, Kristin; Neukam, Friedrich Wilhelm; Schuettler, Juergen; Stelzle, Florian

    2016-01-01

    Advanced Cardiovascular Life Support (ACLS) in life-threatening situations is perceived as a basic skill for dental professionals. However, medical emergency training in dental schools is often not standardized. The dental students' knowledge transfer to an ACLS setting thus remains questionable. The aim of the study was to evaluate dental pre-doctorate students' practical competence in ACLS in a standardized manner to enable the curriculum to be adapted to meet their particular needs. Thirty dental students (age 25.47 ± 1.81; 16 male/14 female) in their last year of dental studies were randomly assigned to 15 teams. Students' ability to successfully manage ACLS was assessed by a scenario-based approach (training module: Laerdal® ALS Skillmaster). Competence was assessed by means of (a) an observation chart, (b) video analysis and (c) training module analysis (Laerdal HeartSim®4000; Version 1.4). The evaluation was conducted by a trained anesthesiologist with regard to the 2010 guidelines of the European Resuscitation Council (ERC). Only five teams (33.3%) checked for all three vital functions (response, breathing and circulation). All teams initiated cardiopulmonary resuscitation (CPR). Only 54.12% of the compressions performed during CPR were sufficient. Four teams stopped the CPR after initiation. In total, 93% of the teams used the equipment for bag-valve-mask ventilation and 53.3% used the AED (Automated external defibrillator). ACLS training on a regular basis is necessary and, consistent with a close link between dentistry and medicine, should be a standardized part of the medical emergency curriculum for dental students with a specific focus on the deficiencies revealed in this study.

  7. Awareness, knowledge, and attitude of patients toward dental implants - A questionnaire-based prospective study.

    Science.gov (United States)

    Hosadurga, Rajesh; Shanti, Tenneti; Hegde, Shashikanth; Kashyap, Rajesh Shankar; Arunkumar, Suryanarayan Maiya

    2017-01-01

    In developing nations like India awareness and education about dental implants as a treatment modality is still scanty. The study was conducted to determine the awareness, knowledge, and attitude of patients toward dental implants as a treatment modality among the general population and to assess the influence of personality characteristics on accepting dental implants as a treatment modality in general and as well as treatment group. A structured questionnaire-based survey was conducted on 500 randomly selected participants attending the outpatient department. The study was conducted in 2 parts. In the first part of the study, level of awareness, knowledge, and attitude was assessed. In the second part of the study, interactive educational sessions using audiovisual aids were conducted following which a retest was conducted. The participants who agreed to undergo implant treatment were followed up to assess their change in attitude towards dental implants posttreatment. Thus pain, anxiety, functional, and esthetic benefits were measured using visual analog scale. They were further followed up for 1 year to reassess awareness, knowledge, and attitude towards dental implants. A total of 450 individuals completed the questionnaires. Only 106 individuals agreed to participate in the educational sessions and 83 individuals took the retest. Out of these, only 39 individuals chose implants as a treatment option. A significant improvement in the level of information, subjective and objective need for information, was noted after 1 year. In this study, a severe deficit in level of information, subjective and objective need for information towards, dental implants as a treatment modality was noted. In the treatment group, a significant improvement in perception of dental implant as a treatment modality suggests that professionally imparted knowledge can bring about a change in the attitude.

  8. Awareness, knowledge, and attitude of patients toward dental implants – A questionnaire-based prospective study

    Directory of Open Access Journals (Sweden)

    Rajesh Hosadurga

    2017-01-01

    Full Text Available Background: In developing nations like India awareness and education about dental implants as a treatment modality is still scanty. Aim: The study was conducted to determine the awareness, knowledge, and attitude of patients toward dental implants as a treatment modality among the general population and to assess the influence of personality characteristics on accepting dental implants as a treatment modality in general and as well as treatment group. Materials and Methods: A structured questionnaire-based survey was conducted on 500 randomly selected participants attending the outpatient department. The study was conducted in 2 parts. In the first part of the study, level of awareness, knowledge, and attitude was assessed. In the second part of the study, interactive educational sessions using audiovisual aids were conducted following which a retest was conducted. The participants who agreed to undergo implant treatment were followed up to assess their change in attitude towards dental implants posttreatment. Thus pain, anxiety, functional, and esthetic benefits were measured using visual analog scale. They were further followed up for 1 year to reassess awareness, knowledge, and attitude towards dental implants. Results: A total of 450 individuals completed the questionnaires. Only 106 individuals agreed to participate in the educational sessions and 83 individuals took the retest. Out of these, only 39 individuals chose implants as a treatment option. A significant improvement in the level of information, subjective and objective need for information, was noted after 1 year. Conclusion: In this study, a severe deficit in level of information, subjective and objective need for information towards, dental implants as a treatment modality was noted. In the treatment group, a significant improvement in perception of dental implant as a treatment modality suggests that professionally imparted knowledge can bring about a change in the attitude.

  9. Improvement of Food Packaging-Related Properties of Whey Protein Isolate-Based Nanocomposite Films and Coatings by Addition of Montmorillonite Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2017-11-01

    Full Text Available In this study, the effects of the addition of montmorillonite (MMT nanoplatelets on whey protein isolate (WPI-based nanocomposite films and coatings were investigated. The main objective was the development of WPI-based MMT nanocomposites with enhanced barrier and mechanical properties. WPI-based nanocomposite cast films and coatings were prepared by dispersing 0% (reference sample, 3, 6, 9% (w/w protein MMT, or, depending on the protein concentration, also 12 and 15% (w/w protein MMT into native WPI-based dispersions, followed by subsequent denaturation during the drying and curing process. The natural MMT nanofillers could be randomly dispersed into film-forming WPI-based nanodispersions, displaying good compatibility with the hydrophilic biopolymer matrix. As a result, by addition of 15% (w/w protein MMT into 10% (w/w dispersion WPI-based cast films or coatings, the oxygen permeability (OP was reduced by 91% for glycerol-plasticized and 84% for sorbitol-plasticized coatings, water vapor transmission rate was reduced by 58% for sorbitol-plasticized cast films. Due to the addition of MMT nanofillers, the Young’s modulus and tensile strength improved by 315 and 129%, respectively, whereas elongation at break declined by 77% for glycerol-plasticized cast films. In addition, comparison of plasticizer type revealed that sorbitol-plasticized cast films were generally stiffer and stronger, but less flexible compared glycerol-plasticized cast films. Viscosity measurements demonstrated good processability and suitability for up-scaled industrial processes of native WPI-based nanocomposite dispersions, even at high-nanofiller loadings. These results suggest that the addition of natural MMT nanofillers into native WPI-based matrices to form nanocomposite films and coatings holds great potential to replace well-established, fossil-based packaging materials for at least certain applications such as oxygen barriers as part of multilayer flexible packaging

  10. Restored viability and function of dental pulp cells on poly-methylmethacrylate (PMMA)-based dental resin supplemented with N-acetyl cysteine (NAC).

    Science.gov (United States)

    Kojima, N; Yamada, M; Paranjpe, A; Tsukimura, N; Kubo, K; Jewett, A; Ogawa, T

    2008-12-01

    This study examines cytotoxicity of poly-methylmethacrylate (PMMA)-based dental temporary filling resin to dental pulp cells, and the potential amelioration of the toxicity with an anti-oxidant amino-acid, N-acetyl cysteine (NAC). Dental pulp cells extracted from rat maxillary incisors were cultured on the resin material with or without NAC incorporation, or on the polystyrene. The cultures were supplied with osteoblastic media, containing dexamethasone. Forty five percent of cells on the PMMA dental resin were necrotic at 24h after seeding. However, this percentage was reduced to 27% by incorporating NAC in the resin, which was the level equivalent to that in the culture on polystyrene. The culture on the untreated resin was found to be negative for alkaline phosphate (ALP) activity at days 5 and 10 or von Kossa mineralized nodule formation at day 20. In contrast, some areas of the cultures on NAC-incorporated resin substrates were ALP and von Kossa positive. Collagen I and dentin sialoprotein genes were barely expressed in day 7 culture on the untreated resin. However, those genes were expressed in the culture on the resin with NAC. These results suggest that the decreased cell viability and the nearly completely suppressed odontoblast-like cell phenotype of dental pulp cells cultured on PMMA dental resin can be salvaged to a biologically significant degree by the incorporation of NAC in the resin.

  11. Improvement in Functional Properties of Soy Protein Isolate-Based Film by Cellulose Nanocrystal–Graphene Artificial Nacre Nanocomposite

    Directory of Open Access Journals (Sweden)

    Kuang Li

    2017-07-01

    Full Text Available A facile, inexpensive, and green approach for the production of stable graphene dispersion was proposed in this study. We fabricated soy protein isolate (SPI-based nanocomposite films with the combination of 2D negative charged graphene and 1D positive charged polyethyleneimine (PEI-modified cellulose nanocrystals (CNC via a layer-by-layer assembly method. The morphologies and surface charges of graphene sheets and CNC segments were characterized by atomic force microscopy and Zeta potential measurements. The hydrogen bonds and multiple interface interactions between the filler and SPI matrix were analyzed by Attenuated Total Reflectance–Fourier Transform Infrared spectra and X-ray diffraction patterns. Scanning electron microscopy demonstrated the cross-linked and laminated structures in the fracture surface of the films. In comparison with the unmodified SPI film, the tensile strength and surface contact angles of the SPI/graphene/PEI-CNC film were significantly improved, by 99.73% and 37.13% respectively. The UV–visible light barrier ability, water resistance, and thermal stability were also obviously enhanced. With these improved functional properties, this novel bio-nanocomposite film showed considerable potential for application for food packaging materials.

  12. Synthesis of Ag@Fe2O3nanocomposite based on O-carboxymethylchitosan with antimicrobial activity.

    Science.gov (United States)

    Demarchi, Carla Albetina; Bella Cruz, Alexandre; Ślawska-Waniewska, Anna; Nedelko, Natalia; Dłużewski, Piotr; Kaleta, Anna; Trzciński, Jerzy; Magro, Jacir Dal; Scapinello, Jaqueline; Rodrigues, Clovis Antonio

    2018-02-01

    In this paper, nano-hybrid particles of Ag@Fe 2 O 3 based on O-carboxymethylchitosan were successfully synthesized using different reducing agents (NaBH 4 , sucrose) and without reducing agent. The smallest silver nanoparticles were those prepared without reducing agent (∼5±3nm). The average size of silver particles prepared with NaBH 4 is around 5-15nm, and for samples prepared with sucrose, the average particle size is 10-25nm. The magnetization curves are roughly reversible, indicating that γ-Fe 2 O 3 nanoparticles transit to a superparamagnetic state. Nanocomposites subjected to antimicrobial tests showed great antimicrobial activity against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria, and good activity against the yeast Candida albicans and resistant strains of Staphylococcus aureus. The antibacterial behavior as a function of time was investigated in microbial growth kinetics, and the best nanocomposite was the one without reducing agent, which completely inhibited microbial growth for 48h. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    Science.gov (United States)

    Mahdieh, Athar; Mahdavian, Ali Reza; Salehi-Mobarakeh, Hamid

    2017-03-01

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe3O4 nanoparticles with polymerizable groups is presented here. After synthesis of Fe3O4 nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe3O4 are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe3O4 nanoparticles (0-10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles.

  14. A novel CuO-N-doped graphene nanocomposite-based hybrid electrode for the electrochemical detection of glucose

    Science.gov (United States)

    Felix, Sathiyanathan; Kollu, Pratap; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2017-10-01

    We report a catalyst of N-doped graphene CuO nanocomposite, for the non-enzymatic electrocatalytic oxidation of glucose. The hybrid nanocomposite was synthesized by copper sulfate, cetyl ammonium bromide and graphite as starting materials. The synthesized composites were characterized with the techniques like X-ray diffraction, field emission scanning electron microscopy, transmission electron microscope to study the crystalline phase and morphological structure. Based on this composite, a non-enzymatic glucose sensor was constructed. Cyclic voltammetry and chronoamperometry methods were done to investigate the electrocatalytic properties of glucose in alkaline medium. For glucose detection, the fabricated sensor showed a linear response over a wide range of concentration from 3 to 1000 µM, with sensitivity of 2365.7 µA mM-1 cm-2 and a fast response time of 5 s. The designed sensor exhibited negligible current response to the normal concentration of common interferents in the presence of glucose. All these favorable advantages of the fabricated glucose sensor suggest that it may have good potential application in biological samples, food and other related areas.

  15. Amalgamation based optical and colorimetric sensing of mercury(II) ions with silver graphene oxide nanocomposite materials

    International Nuclear Information System (INIS)

    Kamali, Khosro Zangeneh; Pandikumar, Alagarsamy; Jayabal, Subramaniam; Huang, Nay Ming; Ramaraj, Ramasamy; Lim, Hong Ngee; Ong, Boon Hoong; Bien, Chia Sheng Daniel; Kee, Yeh Yee

    2016-01-01

    The article describes a facile method for the preparation of a conjugate composed of silver nanoparticles and graphene oxide (Ag GO) via chemical reduction of silver precursors in the presence of graphene oxide (GO) while sonicating the solution. The Ag GO was characterized by X-ray photoelectron spectroscopy, X-ray powder diffraction, and energy-dispersive X-ray spectroscopy. The nanocomposite undergoes a color change from yellow to colorless in presence of Hg(II), and this effect is based on the disappearance of the localized surface plasmon resonance absorption of the AgNPs due to the formation of silver-mercury amalgam. The presence of GO, on the other hand, prevents the agglomeration of the AgNPs and enhances the stability of the nanocomposite material in solution. Hence, the probe represents a viable optical probe for the determination of mercury(II) ions in that it can be used to visually detect Hg(II) concentrations as low as 100 μM. The instrumental LOD is 338 nM. (author)

  16. [Preliminary study of bonding strength between diatomite-based dental ceramic and veneering porcelains].

    Science.gov (United States)

    Lu, Xiao-li; Gao, Mei-qin; Cheng, Yu-ye; Zhang, Fei-min

    2015-04-01

    In order to choose the best veneering porcelain for diatomite-based dental ceramic substrate, the bonding strength between diatomite-based dental ceramics and veneering porcelains was measured, and the microstructure and elements distribution of interface were analyzed. The coefficient of thermal expansion (CTE) of diatomite-based dental ceramics was detected by dilatometry. Three veneering porcelain materials were selected with the best CTE matching including alumina veneering porcelain (group A), titanium porcelain veneering porcelain (group B), and E-max veneering porcelain (group C). Shear bonding strength was detected. SEM and EDS were used to observe the interface microstructure and element distribution. Statistical analysis was performed using SPSS 17.0 software package. The CTE of diatomite-based dental ceramics at 25-500 degrees centigrade was 8.85×10-6K-1. The diatomite-based substrate ceramics combined best with group C. Shear bonding strength between group A and C and group B and C both showed significant differences(Pveneer.

  17. Optical waveguide modeling of refractive index mediated pH responses in silica nanocomposite thin film based fiber optic sensors

    Science.gov (United States)

    Ohodnicki, P. R.; Wang, C.

    2016-02-01

    Recent experiments have demonstrated a pH-dependent optical transmission of silica based nanocomposite thin film enabled evanescent wave absorption spectroscopy based fiber optic sensors in aqueous solutions. Although the response was observed to linearly correlate with the pH-dependent surface charge density of the silica matrix, the responsible mechanism was not fully clarified. In this manuscript, an optical waveguide model is applied to describe observed responses through a modified effective refractive index of the silica matrix layer as a function of the solution phase pH. The refractive index dependence results from a surface charge dependent ionic adsorption, resulting in concentration of ionic species at charged surfaces. The resultant effective index modification to porous silica is estimated through effective medium theories and applied to an optical waveguide model of a multi-mode fiber optic based sensor response capable of reproducing all experimental observations reported to date.

  18. Graphene oxide-enhanced sol-gel transition sensitivity and drug release performance of an amphiphilic copolymer-based nanocomposite

    Science.gov (United States)

    Hu, Huawen; Wang, Xiaowen; Lee, Ka I; Ma, Kaikai; Hu, Hong; Xin, John H.

    2016-01-01

    We report the fabrication of a highly sensitive amphiphilic copolymer-based nanocomposite incorporating with graphene oxide (GO), which exhibited a low-intensity UV light-triggered sol-gel transition. Non-cytotoxicity was observed for the composite gels after the GO incorporation. Of particular interest were the microchannels that were formed spontaneously within the GO-incorporated UV-gel, which expedited sustained drug release. Therefore, the present highly UV-sensitive, non-cytotoxic amphiphilic copolymer-based composites is expected to provide enhanced photothermal therapy and chemotherapy by means of GO’s unique photothermal properties, as well as through efficient passive targeting resulting from the sol-gel transition characteristic of the copolymer-based system with improved sensitivity, which thus promises the enhanced treatment of patients with cancer and other diseases. PMID:27539298

  19. Urinary levels of nickel and chromium associated with dental restoration by nickel-chromium based alloys.

    Science.gov (United States)

    Chen, Bo; Xia, Gang; Cao, Xin-Ming; Wang, Jue; Xu, Bi-Yao; Huang, Pu; Chen, Yue; Jiang, Qing-Wu

    2013-03-01

    This paper aims to investigate if the dental restoration of nickel-chromium based alloy (Ni-Cr) leads to the enhanced excretions of Ni and Cr in urine. Seven hundred and ninety-five patients in a dental hospital had single or multiple Ni-Cr alloy restoration recently and 198 controls were recruited to collect information on dental restoration by questionnaire and clinical examination. Urinary concentrations of Ni and Cr from each subject were measure by graphite furnace atomic absorption spectrometry. Compared to the control group, the urinary level of Ni was significantly higher in the patient group of dental alloys or a higher index of metal crown not covered with the porcelain. Urinary levels of Cr were significantly higher in the three patient groups of metal crown exposure index. Linear curve estimations showed better relationships between urinary Ni and Cr in patients within 6-month groups. Our data suggested significant increased excretions of urinary Ni and Cr after dental restoration. Potential short- and long-term effects of Ni-Cr alloy restoration need to be investigated.

  20. Differences chronological age and dental age using Demirjian method based upon a study radiology using radiography panoramic at the Dental Hospital Hasanuddin University

    Directory of Open Access Journals (Sweden)

    Barunawaty Yunus

    2016-08-01

    Full Text Available Background.Choronological age is assessed by the date, month, and year of birth. Several researches suggested that Chronological age may not be able to provide sufficient information regarding on human growth precisely. Chronological age, on the other hand, could not be used to assess  Maturity development rate of a patient, so it is necessary to assess the dental age. Dental age is age assessment method  by measuring human growth and development. Age estimation has important role in health field, Particularly  in dentistry as it will be beneficial in making appropriate diagnosis, Treatment plan, and prognosis. Tooth eruption estimation according to Demirjian Method conducted by assessing growth and development process of tooth using panoramic  radiography. Purpose. Determine the difference between Chronological Age and Dental Age Using Demirjian Method Based on Radiology Analysis of Panoramic Radiography. Method. This study was an observational analytic using Cross-sectional study, all data are observed once at the time. In this study,  the amount of sample reviewed were 30 samples, consisted of 4 – 9 years old children. Panoramic radiography were collected based on target population which fulfill Sample Criteria from reconciled patient of radiology department RSGM Unhas. The results were obtained by estimating the score of  dental age using Demirjian Method. After that, the Dental age and chronological age were analayzed to obtain the mean difference. Result. Based on wilcoxon test, mean value was obtain p:0.011 (p<0.05, this result shows that there is significant difference between chronological age and dental age. Conclusion.Chronological age and dental age can be assessed by reviewing the panoramic radiography using Demirjian Method

  1. Dual-energy-based metal segmentation for metal artifact reduction in dental computed tomography.

    Science.gov (United States)

    Hegazy, Mohamed A A; Eldib, Mohamed Elsayed; Hernandez, Daniel; Cho, Myung Hye; Cho, Min Hyoung; Lee, Soo Yeol

    2018-02-01

    In a dental CT scan, the presence of dental fillings or dental implants generates severe metal artifacts that often compromise readability of the CT images. Many metal artifact reduction (MAR) techniques have been introduced, but dental CT scans still suffer from severe metal artifacts particularly when multiple dental fillings or implants exist around the region of interest. The high attenuation coefficient of teeth often causes erroneous metal segmentation, compromising the MAR performance. We propose a metal segmentation method for a dental CT that is based on dual-energy imaging with a narrow energy gap. Unlike a conventional dual-energy CT, we acquire two projection data sets at two close tube voltages (80 and 90 kV p ), and then, we compute the difference image between the two projection images with an optimized weighting factor so as to maximize the contrast of the metal regions. We reconstruct CT images from the weighted difference image to identify the metal region with global thresholding. We forward project the identified metal region to designate metal trace on the projection image. We substitute the pixel values on the metal trace with the ones computed by the region filling method. The region filling in the metal trace removes high-intensity data made by the metallic objects from the projection image. We reconstruct final CT images from the region-filled projection image with the fusion-based approach. We have done imaging experiments on a dental phantom and a human skull phantom using a lab-built micro-CT and a commercial dental CT system. We have corrected the projection images of a dental phantom and a human skull phantom using the single-energy and dual-energy-based metal segmentation methods. The single-energy-based method often failed in correcting the metal artifacts on the slices on which tooth enamel exists. The dual-energy-based method showed better MAR performances in all cases regardless of the presence of tooth enamel on the slice of

  2. Benign Paroxysmal Positional Vertigo after Dental Procedures: A Population-Based Case-Control Study.

    Directory of Open Access Journals (Sweden)

    Tzu-Pu Chang

    Full Text Available Benign paroxysmal positional vertigo (BPPV, the most common type of vertigo in the general population, is thought to be caused by dislodgement of otoliths from otolithic organs into the semicircular canals. In most cases, however, the cause behind the otolith dislodgement is unknown. Dental procedures, one of the most common medical treatments, are considered to be a possible cause of BPPV, although this has yet to be proven. This study is the first nationwide population-based case-control study conducted to investigate the correlation between BPPV and dental manipulation.Patients diagnosed with BPPV between January 1, 2007 and December 31, 2012 were recruited from the National Health Insurance Research Database in Taiwan. We further identified those who had undergone dental procedures within 1 month and within 3 months before the first diagnosis date of BPPV. We also identified the comorbidities of the patients with BPPV, including head trauma, osteoporosis, migraine, hypertension, diabetes, hyperlipidemia and stroke. These variables were then compared to those in age- and gender-matched controls.In total, 768 patients with BPPV and 1536 age- and gender-matched controls were recruited. In the BPPV group, 9.2% of the patients had undergone dental procedures within 1 month before the diagnosis of BPPV. In contrast, only 5.5% of the controls had undergone dental treatment within 1 month before the date at which they were identified (P = 0.001. After adjustments for demographic factors and comorbidities, recent exposure to dental procedures was positively associated with BPPV (adjusted odds ratio 1.77; 95% confidence interval 1.27-2.47. This association was still significant if we expanded the time period from 1 month to 3 months (adjusted odds ratio 1.77; 95% confidence interval 1.39-2.26.Our results demonstrated a correlation between dental procedures and BPPV. The specialists who treat patients with BPPV should consider dental procedures to be a

  3. Benign Paroxysmal Positional Vertigo after Dental Procedures: A Population-Based Case-Control Study.

    Science.gov (United States)

    Chang, Tzu-Pu; Lin, Yueh-Wen; Sung, Pi-Yu; Chuang, Hsun-Yang; Chung, Hsien-Yang; Liao, Wen-Ling

    2016-01-01

    Benign paroxysmal positional vertigo (BPPV), the most common type of vertigo in the general population, is thought to be caused by dislodgement of otoliths from otolithic organs into the semicircular canals. In most cases, however, the cause behind the otolith dislodgement is unknown. Dental procedures, one of the most common medical treatments, are considered to be a possible cause of BPPV, although this has yet to be proven. This study is the first nationwide population-based case-control study conducted to investigate the correlation between BPPV and dental manipulation. Patients diagnosed with BPPV between January 1, 2007 and December 31, 2012 were recruited from the National Health Insurance Research Database in Taiwan. We further identified those who had undergone dental procedures within 1 month and within 3 months before the first diagnosis date of BPPV. We also identified the comorbidities of the patients with BPPV, including head trauma, osteoporosis, migraine, hypertension, diabetes, hyperlipidemia and stroke. These variables were then compared to those in age- and gender-matched controls. In total, 768 patients with BPPV and 1536 age- and gender-matched controls were recruited. In the BPPV group, 9.2% of the patients had undergone dental procedures within 1 month before the diagnosis of BPPV. In contrast, only 5.5% of the controls had undergone dental treatment within 1 month before the date at which they were identified (P = 0.001). After adjustments for demographic factors and comorbidities, recent exposure to dental procedures was positively associated with BPPV (adjusted odds ratio 1.77; 95% confidence interval 1.27-2.47). This association was still significant if we expanded the time period from 1 month to 3 months (adjusted odds ratio 1.77; 95% confidence interval 1.39-2.26). Our results demonstrated a correlation between dental procedures and BPPV. The specialists who treat patients with BPPV should consider dental procedures to be a risk factor

  4. Benign Paroxysmal Positional Vertigo after Dental Procedures: A Population-Based Case-Control Study

    Science.gov (United States)

    Lin, Yueh-Wen; Sung, Pi-Yu; Chuang, Hsun-Yang; Liao, Wen-Ling

    2016-01-01

    Background Benign paroxysmal positional vertigo (BPPV), the most common type of vertigo in the general population, is thought to be caused by dislodgement of otoliths from otolithic organs into the semicircular canals. In most cases, however, the cause behind the otolith dislodgement is unknown. Dental procedures, one of the most common medical treatments, are considered to be a possible cause of BPPV, although this has yet to be proven. This study is the first nationwide population-based case-control study conducted to investigate the correlation between BPPV and dental manipulation. Methods Patients diagnosed with BPPV between January 1, 2007 and December 31, 2012 were recruited from the National Health Insurance Research Database in Taiwan. We further identified those who had undergone dental procedures within 1 month and within 3 months before the first diagnosis date of BPPV. We also identified the comorbidities of the patients with BPPV, including head trauma, osteoporosis, migraine, hypertension, diabetes, hyperlipidemia and stroke. These variables were then compared to those in age- and gender-matched controls. Results In total, 768 patients with BPPV and 1536 age- and gender-matched controls were recruited. In the BPPV group, 9.2% of the patients had undergone dental procedures within 1 month before the diagnosis of BPPV. In contrast, only 5.5% of the controls had undergone dental treatment within 1 month before the date at which they were identified (P = 0.001). After adjustments for demographic factors and comorbidities, recent exposure to dental procedures was positively associated with BPPV (adjusted odds ratio 1.77; 95% confidence interval 1.27–2.47). This association was still significant if we expanded the time period from 1 month to 3 months (adjusted odds ratio 1.77; 95% confidence interval 1.39–2.26). Conclusions Our results demonstrated a correlation between dental procedures and BPPV. The specialists who treat patients with BPPV should

  5. Dental fluorosis in the primary dentition and intake of manufactured soy-based foods with fluoride.

    Science.gov (United States)

    de Carvalho, Cristiane Alves Paz; Zanlorenzi Nicodemo, César Augusto; Ferreira Mercadante, Daniela Cristiane; de Carvalho, Fábio Silva; Buzalaf, Marília Afonso Rabelo; de Carvalho Sales-Peres, Sílvia Helena

    2013-06-01

    To identify manufactured soy-based products more recommended by pediatricians and nutritionists; to determine fluoride concentrations in these products; to evaluate children concerning fluorosis in primary teeth and its association with the consumption of soy-based products. Pediatricians and Nutritionists answered a questionnaire about soy-based products they most recommended to children. Fluoride concentrations of the 10 products more cited were analyzed with the ion-specific electrode. Dental fluorosis exams were performed in 315 4-6-year-old children. Dean's Index was used to assess fluorosis. Among the children examined, 26 had lactose intolerance. Their parents answered a questionnaire about children's and family's profile, besides permitting the identification of soy-based products use. Chi-squared and Multivariable Logistic Regression tests were used (p Dental fluorosis was detected in 11% of the children, with very mild and mild degrees. Dental fluorosis in primary teeth was associated with lactose intolerance (p children do not offer risk of dental fluorosis in primary teeth, which had a low prevalence and severity. Copyright © 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Long-term performance of resin based fissure sealants placed in a general dental practice.

    NARCIS (Netherlands)

    Hevinga, M.A.; Opdam, N.J.M.; Bronkhorst, E.M.; Truin, G.J.; Huysmans, M.C.D.N.J.M.

    2010-01-01

    OBJECTIVES: The aim of the present retrospective study was to evaluate the long-term performance of resin based fissure sealants applied in a general dental practice. METHODS: Regularly attending patients visiting the practice between July 2006 until November 2007 and who had received sealants

  7. Dental Faculty Members' Pedagogic Beliefs and Curriculum Aims in Problem-Based Learning: An Exploratory Study.

    Science.gov (United States)

    von Bergmann, HsingChi; Walker, Judith; Dalrymple, Kirsten R; Shuler, Charles F

    2017-08-01

    The aims of this exploratory study were to explore dental faculty members' views and beliefs regarding knowledge, the dental profession, and teaching and learning and to determine how these views related to their problem-based learning (PBL) instructional practices. Prior to a PBL in dental education conference held in 2011, all attendees were invited to complete a survey focused on their pedagogical beliefs and practices in PBL. Out of a possible 55 participants, 28 responded. Additionally, during the conference, a forum was held in which preliminary survey findings were shared and participants contributed to focus group data collection. The forum results served to validate and bring deeper understanding to the survey findings. The conference participants who joined the forum (N=32) likely included some or many of the anonymous respondents to the survey, along with additional participants interested in dental educators' beliefs. The findings of the survey and follow-up forum indicated a disconnect between dental educators' reported views of knowledge and their pedagogical practices in a PBL environment. The results suggested that the degree of participants' tolerance of uncertainty in knowledge and the discrepancy between their epistemological and ontological beliefs about PBL pedagogy influenced their pedagogical choices. These findings support the idea that learner-centered, inquiry-based pedagogical approaches such as PBL may create dissonance between beliefs about knowledge and pedagogical practice that require the building of a shared understanding of and commitment to curricular goals prior to implementation to ensure success. The methods used in this study can be useful tools for faculty development in PBL programs in dental education.

  8. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the "one-pot" synthetic approach of single-electron-transfer living radical polymerization

    Science.gov (United States)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie; Wang, Ke; Xu, Dazhuang; Liu, Liangji; Zhang, Xiaoyong; Wei, Yen

    2016-08-01

    Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient ;one-pot; strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  9. Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles

    Directory of Open Access Journals (Sweden)

    A.Z. Noah

    2017-03-01

    Full Text Available Zinc oxide nanoparticles (ZnO-NPs and modified calcium carbonate (nano-CaCO3 nanoparticles were successfully prepared and added to polystyrene-butadiene rubber copolymer (PSBR matrix to prepare PSBR nanocomposites. The prepared nanomaterials (ZnO-NPs & nano-CaCO3 were characterized using scanning electron microscope (SEM, transmission electron microscope (TEM and X-ray diffraction (XRD. Furthermore, the prepared polymer nanocomposites and oil base mud were used for drilling in high pressure high temperature (HPHT wells. The consequence of using polymer nanocomposites based on different loading of ZnO-NPs and nano-CaCO3 on the rheological properties of oil base mud was evaluated and enhanced the yield point at high pressure high temperature wells (HPHT. The using of the polymer with different percentage from (0.5 in all percent the obtained results is very promising; this means that the increase of polymer is reasonable for the increase of apparent viscosity, plastic viscosity and yield point at high temperature. Correspondingly, polymer nanocomposites displayed rise of apparent viscosity, plastic viscosity, and yield point, decreased in fluid loss and increased in electrical stability at high pressure high temperature wells.

  10. Preparation of Gas Sensor Based on Polymer Nanocomposite for Qualitative Detection of Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Elaheh Ghazizadeh

    2016-11-01

    Full Text Available Hydrogen sulfide (H2S, a by-product often produced in petrochemical processes, is well known as a dangerous and highly toxic gas to living organisms. The smell of H2S concentration of higher than 100 ppm can cause severe biological condition. Therefore, the detection of this gas is a crucial issue. In this work, nanocomposite porous films of polyurethane/silver (PU/Ag and poly(vinylchloride/silver (PVC/Ag consisting of 7 wt% nanoparticles were fabricated by phase inversion method and studied its qualitative detection capacity for H2S. The results indicated that after exposure to 50 ppm H2S, black points appeared on the surface of the test films within 10 min. However, the color completely disappeared when the films were left in the air for 20 min. Structural characteristics of the nanocomposites were studied by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, X-ray diffractometry (XRD and thermal gravimetric analysis (TGA to confirm possible interactions which may have formed between the polymers and nanoparticles. According to the results, Ag nanoparticles were well dispersed in PU and PVC matrices giving particle sizes of less than 62 and 76 nm, respectively. The observations revealed that two recommended nanocomposites (PU/Ag and PVC/Ag could be used for detection of hydrogen sulfide at low level concentration. The response of Ag-embedded polymer films toward H2S vapour showed a better detection by PU/Ag compared to PVC/Ag. Therefore, the suggested silver nanoparticle-loaded PU and PVC sensor films are easily portable, simple to use and cost-less compared with other types of hydrogen sulfide sensors.

  11. Green cellulose-based nanocomposite catalyst: Design and facile performance in aqueous synthesis of pyranopyrimidines and pyrazolopyranopyrimidines.

    Science.gov (United States)

    Maleki, Ali; Jafari, Abbas Ali; Yousefi, Somayeh

    2017-11-01

    A cellulose-based nanobiocomposite decorated with Fe 3 O 4 nanoparticles was prepared, characterized and applied as an easily recoverable and reusable green nanocatalyst in the synthesis of pyrano[2,3-d]pyrimidine derivatives in water at room temperature. The characterization was performed by using a variety of conventional analytical instruments such as Fourier transform infrared spectra (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), vibrating sample magnetometer (VSM), thermal analysis (TGA/DTA) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses. Two series of pyranopyrimidine and pyrazolopyranopyrimidines derivatives were synthesized by using the present cellulose-based nanocomposite. This protocol has valuable features like high yield of the products, short reaction times, mild conditions and easy work-up procedure. In addition, the catalyst can be prepared easily with cheap and green starting materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    International Nuclear Information System (INIS)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Hussain, Syed Tajammul; Ahmad, Shahid Nisar

    2013-01-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (∼ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  13. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites

    International Nuclear Information System (INIS)

    Ahmad, Shahid Nisar; Hakeem, Saira; Alvi, Rashid Ahmed; Farooq, Khawar; Farooq, Naveed; Yasmin, Farida; Saeed, Sadaf

    2013-01-01

    Multi-walled carbon nanotubes (MWCNTs) were synthesized by catalytic decomposition of hydrocarbon gas using chemical vapor deposition method. Synthesis was done at different growth temperatures and catalyst ratios. These MWCNTs were dispersed in epoxy resin (E-51) and their effect on mechanical strength of epoxy nanocomposites was studied. Increase in the mechanical strength of epoxy was observed with the addition of CNTs. The surface characterization was done by using optical microscope and scanning electron microscope (SEM). Mechanical properties were determined by the general tensile strength testing method.

  14. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    Science.gov (United States)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Tajammul Hussain, Syed; Nisar Ahmad, Shahid

    2013-06-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (~ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  15. Method to produce catalytically active nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2017-12-19

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  16. Method to produce catalytically active nanocomposite coatings

    Science.gov (United States)

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  17. Biocompatibility and bioactivity of calcium silicate-based endodontic sealers in human dental pulp cells

    OpenAIRE

    MESTIERI,Leticia Boldrin; GOMES-CORNÉLIO,Ana Lívia; RODRIGUES,Elisandra Márcia; SALLES,Loise Pedrosa; BOSSO-MARTELO,Roberta; GUERREIRO-TANOMARU,Juliane Maria; TANOMARU-FILHO,Mário

    2015-01-01

    Mineral Trioxide Aggregate (MTA) is a calcium silicate-based material. New sealers have been developed based on calcium silicate as MTA Fillapex and MTA Plus. Objective The aim of this study was to evaluate biocompatibility and bioactivity of these two calcium silicate-based sealers in culture of human dental pulp cells (hDPCs). Material and Methods The cells were isolated from third molars extracted from a 16-year-old patient. Pulp tissue was sectioned into fragments with approximately 1...

  18. Information retrieval, critical appraisal and knowledge of evidence-based dentistry among Finnish dental students.

    Science.gov (United States)

    Nieminen, P; Virtanen, J I

    2017-11-01

    One of the core skills of competent dentist is the ability to search and analyse high-quality evidence. Problems in understanding the basic aspects of knowledge-based information may impede its implementation into clinical practice. We examined how Finnish dental students acquire scientific information and how familiar they are with methods for evaluating scientific evidence related to clinical questions. All fifth-year dental students (n = 120) at the three universities in Finland received a self-administered questionnaire. The three most commonly used sources of information were colleagues, the commercial Health Gate Portal for dental practitioners and personal lecture notes. Although students rarely read scientific journals, they did find that they possess at least passable or even good skills in literature retrieval. Three questions related to the appraisal of evidence in dentistry revealed that students' knowledge of evidence-based dentistry was inadequate to critically evaluate clinical research findings. Most students seem to lack knowledge of key methodological evidence-based terms. The present curricula in dental schools fail to encourage the students to search and acquire knowledge wider than their patients themselves do. Universities have the responsibility to teach dentists various methods of critical appraisal to cope with scientific information. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. IDIOS: An innovative index for evaluating dental imaging-based osteoporosis screening indices

    Energy Technology Data Exchange (ETDEWEB)

    Barngkgei, Imad; Al Haffar, Iyad; Khattab, Razan [Faculty of Dentistry, Damascus University, Damascus (Syrian Arab Republic); Halboub, Esam; Almashraqi, Abeer Abdulkareem [Dept. of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan (Saudi Arabia)

    2016-09-15

    The goal of this study was to develop a new index as an objective reference for evaluating current and newly developed indices used for osteoporosis screening based on dental images. Its name; IDIOS, stands for Index of Dental-imaging Indices of Osteoporosis Screening. A comprehensive PubMed search was conducted to retrieve studies on dental imaging-based indices for osteoporosis screening. The results of the eligible studies, along with other relevant criteria, were used to develop IDIOS, which has scores ranging from 0 (0%) to 15 (100%). The indices presented in the studies we included were then evaluated using IDIOS. The 104 studies that were included utilized 24, 4, and 9 indices derived from panoramic, periapical, and computed tomographic/cone-beam computed tomographic techniques, respectively. The IDIOS scores for these indices ranged from 0 (0%) to 11.75 (78.32%). IDIOS is a valuable reference index that facilitates the evaluation of other dental imaging-based osteoporosis screening indices. Furthermore, IDIOS can be utilized to evaluate the accuracy of newly developed indices.

  20. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    International Nuclear Information System (INIS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-01-01

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10 −14 to 1.0 × 10 −8 M), with a detection limit of 3.5 × 10 −15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to

  1. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  2. Magnetoelectric Nanocomposites for Flexible Electronics

    KAUST Repository

    Al-Nassar, Mohammed Y.

    2015-09-01

    Flexibility, low cost, versatility, miniaturization and multi-functionality are key aspects driving research and innovation in many branches of the electronics industry. With many anticipated emerging applications, like wearable, transparent and biocompatible devices, interest among the research community in pursuit for novel multifunctional miniaturized materials have been amplified. In this context, multiferroic polymer-based nanocomposites, possessing both ferroelectricity and ferromagnetism, are highly appealing. Most importantly, these nanocomposites possess tunable ferroelectric and ferromagnetic properties based on the parameters of their constituent materials as well as the magnetoelectric effect, which is the coupling between electric and magnetic properties. This tunability and interaction is a fascinating fundamental research field promising tremendous potential applications in sensors, actuators, data storage and energy harvesting. This dissertation work is devoted to the investigation of a new class of multiferroic polymer-based flexible nanocomposites, which exhibits excellent ferromagnetism and ferroelectricity simultaneously at room temperature, with the goal of understanding and optimizing the origin of their magnetoelectric coupling. The nanocomposites consist of high aspect ratio ferromagnetic nanowires (NWs) embedded inside a ferroelectric co-polymer, poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE) matrix. First, electrochemical deposition of ferromagnetic NWs inside anodic aluminum oxide membranes is discussed. Characterization of electrodeposited iron, nickel and highly magnetostrictive iron-gallium alloy NWs was done using XRD, electron and magnetic force microscopy. Second, different nanocomposite films have been fabricated by means of spin coating and drop casting techniques. The effect of incorporation of NWs inside the ferroelectric polymer on its electroactive phase is discussed. The remanent and saturation polarization as well

  3. Users' dissatisfaction with dental care: a population-based household study.

    Science.gov (United States)

    Martins, Andréa Maria Eleutério de Barros Lima; Ferreira, Raquel Conceição; Santos-Neto, Pedro Eleutério dos; Carreiro, Danilo Lima; Souza, João Gabriel Silva; Ferreira, Efigênia Ferreira e

    2015-01-01

    OBJECTIVE To examine whether demographic, socioeconomic conditions, oral health subjectivity and characterization of dental care are associated with users' dissatisfaction with such are. METHODS Cross-sectional study of 781 people who required dental care in Montes Claros, MG, Southeastern Brazil, in 2012, a city with of medium-sized population situated in the North of Minas Gerais. Household interviews were conducted to assess the users' dissatisfaction with dental care (dependent variable), demographic, socioeconomic conditions, oral health subjectivity and characterization of dental care (independent variables). Sample calculation was used for the finite population, with estimates made for proportions of dissatisfaction in 50.0% of the population, a 5.0% error margin, a non-response rate of 5.0% and a 2.0% design effect. Logistic regression was used, and the odds ratio was calculated with a 5% significance level and 95% confidence intervals. RESULTS Of the interviewed individuals, 9.0% (7.9%, with correction for design effect) were dissatisfied with the care provided. These were associated with lower educational level; negative self-assessment of oral health; perception that the care provider was unable to give dental care; negative evaluation of the way the patient was treated, the cleanliness of the rooms, based on the examination rooms and the toilets, and the size of the waiting and examination rooms. CONCLUSIONS The rate of dissatisfaction with dental care was low. This dissatisfaction was associated with socioeconomic conditions, subjectivity of oral health, skill of the health professionals relating to the professional-patient relationship and facility infrastructure. Educational interventions are suggested that aim at improving the quality of care among professionals by responsible agencies as is improving the infrastructure of the care units.

  4. Users’ dissatisfaction with dental care: a population-based household study

    Directory of Open Access Journals (Sweden)

    Andréa Maria Eleutério de Barros Lima Martins

    2015-01-01

    Full Text Available OBJECTIVE To examine whether demographic, socioeconomic conditions, oral health subjectivity and characterization of dental care are associated with users’ dissatisfaction with such are.METHODS Cross-sectional study of 781 people who required dental care in Montes Claros, MG, Southeastern Brazil, in 2012, a city with of medium-sized population situated in the North of Minas Gerais. Household interviews were conducted to assess the users’ dissatisfaction with dental care (dependent variable, demographic, socioeconomic conditions, oral health subjectivity and characterization of dental care (independent variables. Sample calculation was used for the finite population, with estimates made for proportions of dissatisfaction in 50.0% of the population, a 5.0% error margin, a non-response rate of 5.0% and a 2.0% design effect. Logistic regression was used, and the odds ratio was calculated with a 5% significance level and 95% confidence intervals.RESULTS Of the interviewed individuals, 9.0% (7.9%, with correction for design effect were dissatisfied with the care provided. These were associated with lower educational level; negative self-assessment of oral health; perception that the care provider was unable to give dental care; negative evaluation of the way the patient was treated, the cleanliness of the rooms, based on the examination rooms and the toilets, and the size of the waiting and examination rooms.CONCLUSIONS The rate of dissatisfaction with dental care was low. This dissatisfaction was associated with socioeconomic conditions, subjectivity of oral health, skill of the health professionals relating to the professional-patient relationship and facility infrastructure. Educational interventions are suggested that aim at improving the quality of care among professionals by responsible agencies as is improving the infrastructure of the care units.

  5. Students' perception of multiple dental visits for root canal treatment: Questionnaire-based study

    Directory of Open Access Journals (Sweden)

    Reem Siraj Alsulaimani

    2016-01-01

    Full Text Available Introduction: Root canal treatment (RCT is a meticulous procedure that requires focus and precision while working in a confined space such as the root canal system of the tooth. Hence, it is a challenging practice for dental students a questionnaire-based study was conducted to evaluate senior dental students' perception toward single- and multiple-visit RCT while considering tooth type and patient cooperation, and to identify the most common reasons for multiple-visit RCT. Materials and Methods: This cross-sectional study included 267 senior year dental students from three universities and one private college in Saudi Arabia. A self-administered questionnaire was distributed between May and October 2014. The questionnaire was divided into four main sections, which evaluated student perception regarding single- and multiple-visit treatment, patient cooperation, and the nontherapeutic reasons for multiple-visits treatment. The collected data were analyzed using SAS 9.3. Results: Two hundred and seventeen questionnaires were returned (response rate, 81%. Dental students perceive multiple-visit RCT for anterior and premolar teeth as a significantly more stressful event than multiple-visit RCT for molars (P < 0.0001; Bowker's test. Tooth type and patient medical status were the highest ranked reasons for multiple-visit RCT. The majority of the responders (90% considered single-visit RCT for single-rooted teeth a positive practice. Conclusions: Multiple-visit RCT is a stressful event for dental students, especially if the treated tooth was a single-rooted tooth. Dental students are aware of the negative effect of multiple-visit treatment on patient compliance. Clinical training should consider single-visit treatment for single rooted teeth.

  6. Users’ dissatisfaction with dental care: a population-based household study

    Science.gov (United States)

    Martins, Andréa Maria Eleutério de Barros Lima; Ferreira, Raquel Conceição; dos Santos, Pedro Eleutério; Carreiro, Danilo Lima; Souza, João Gabriel Silva; Ferreira e Ferreira, Efigênia

    2015-01-01

    OBJECTIVE To examine whether demographic, socioeconomic conditions, oral health subjectivity and characterization of dental care are associated with users’ dissatisfaction with such are. METHODS Cross-sectional study of 781 people who required dental care in Montes Claros, MG, Southeastern Brazil, in 2012, a city with of medium-sized population situated in the North of Minas Gerais. Household interviews were conducted to assess the users’ dissatisfaction with dental care (dependent variable), demographic, socioeconomic conditions, oral health subjectivity and characterization of dental care (independent variables). Sample calculation was used for the finite population, with estimates made for proportions of dissatisfaction in 50.0% of the population, a 5.0% error margin, a non-response rate of 5.0% and a 2.0% design effect. Logistic regression was used, and the odds ratio was calculated with a 5% significance level and 95% confidence intervals. RESULTS Of the interviewed individuals, 9.0% (7.9%, with correction for design effect) were dissatisfied with the care provided. These were associated with lower educational level; negative self-assessment of oral health; perception that the care provider was unable to give dental care; negative evaluation of the way the patient was treated, the cleanliness of the rooms, based on the examination rooms and the toilets, and the size of the waiting and examination rooms. CONCLUSIONS The rate of dissatisfaction with dental care was low. This dissatisfaction was associated with socioeconomic conditions, subjectivity of oral health, skill of the health professionals relating to the professional-patient relationship and facility infrastructure. Educational interventions are suggested that aim at improving the quality of care among professionals by responsible agencies as is improving the infrastructure of the care units. PMID:26270017

  7. Nanocomposites based on graphene oxide and mesoporous silica nanoparticles: Preparation, characterization and nanobiointeractions with red blood cells and human plasma proteins

    Science.gov (United States)

    Fonseca, Leandro C.; de Araújo, Maciel M.; de Moraes, Ana Carolina M.; da Silva, Douglas S.; Ferreira, Ariane G.; Franqui, Lidiane S.; Martinez, Diego Stéfani T.; Alves, Oswaldo L.

    2018-04-01

    The current work refers to the development of a novel nanocomposite based on graphene oxide (GO) and mesoporous amino silica nanoparticles (H2N-MSNs) and its biological interaction with red blood cells (RBCs) and human blood plasma toward the investigation of nanobiointeractions. Silica nanoparticles and several graphene oxide-based materials are, separately, known for their high hemolytic potential and strong interaction with human plasma proteins. In this context, the GO-MSN interaction and its influence in minimizing the reported effects were investigated. The materials were synthesized by covalently attaching H2N-MSNs onto the surface of GO through an amidation reaction. GO-MSN nanocomposites were obtained by varying the mass of H2N-MSNs and were characterized by FTIR, NMR, XRD, TGA, zeta potential and TEM. The characterization results confirm that nanocomposites were obtained, suggest covalent bond attachment mostly by amine-epoxy reactions and evidence an unexpected reduction reaction of GO by H2N-MSNs, whose mechanism is proposed. Biological assays showed a decrease of hemolysis (RBC lysis) and a minimization of the interaction with human plasma proteins (protein corona formation). These are important findings toward achieving in vivo biocompatibility and understanding the nanobiointeractions. Finally, this work opens possibilities for new nanomedicine applications of GO-MSN nanocomposites, such as drug delivery system.

  8. Metal Nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2014-01-01

    We have made SU-8 gold nanoparticle composites in two ways, ex situ and in situ, and found that in both methods nanoparticles embedded in the polymer retained their plasmonic properties. The in situ method has also been used to fabricate a silver nanocomposite which is electrically conductive...

  9. clay nanocomposites

    Indian Academy of Sciences (India)

    The present work deals with the synthesis of specialty elastomer [fluoroelastomer and poly (styrene--ethylene-co-butylene--styrene (SEBS)]–clay nanocomposites and their structure–property relationship as elucidated from morphology studies by atomic force microscopy, transmission electron microscopy and X-ray ...

  10. Metal Nanocomposites

    DEFF Research Database (Denmark)

    Fischer, Søren Vang; Uthuppu, Basil; Jakobsen, Mogens Havsteen

    2014-01-01

    We have made SU-8 gold nanoparticle composites in two ways, ex situ and in situ, and found that in both methods nanoparticles embedded in the polymer retained their plasmonic properties. The in situ method has also been used to fabricate a silver nanocomposite which is electrically conductive. Th...

  11. Population-centered Risk- and Evidence-based Dental Interprofessional Care Team (PREDICT): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Cunha-Cruz, Joana; Milgrom, Peter; Shirtcliff, R Michael; Bailit, Howard L; Huebner, Colleen E; Conrad, Douglas; Ludwig, Sharity; Mitchell, Melissa; Dysert, Jeanne; Allen, Gary; Scott, JoAnna; Mancl, Lloyd

    2015-06-20

    To improve the oral health of low-income children, innovations in dental delivery systems are needed, including community-based care, the use of expanded duty auxiliary dental personnel, capitation payments, and global budgets. This paper describes the protocol for PREDICT (Population-centered Risk- and Evidence-based Dental Interprofessional Care Team), an evaluation project to test the effectiveness of new delivery and payment systems for improving dental care and oral health. This is a parallel-group cluster randomized controlled trial. Fourteen rural Oregon counties with a publicly insured (Medicaid) population of 82,000 children (0 to 21 years old) and pregnant women served by a managed dental care organization are randomized into test and control counties. In the test intervention (PREDICT), allied dental personnel provide screening and preventive services in community settings and case managers serve as patient navigators to arrange referrals of children who need dentist services. The delivery system intervention is paired with a compensation system for high performance (pay-for-performance) with efficient performance monitoring. PREDICT focuses on the following: 1) identifying eligible children and gaining caregiver consent for services in community settings (for example, schools); 2) providing risk-based preventive and caries stabilization services efficiently at these settings; 3) providing curative care in dental clinics; and 4) incentivizing local delivery teams to meet performance benchmarks. In the control intervention, care is delivered in dental offices without performance incentives. The primary outcome is the prevalence of untreated dental caries. Other outcomes are related to process, structure and cost. Data are collected through patient and staff surveys, clinical examinations, and the review of health and administrative records. If effective, PREDICT is expected to substantially reduce disparities in dental care and oral health. PREDICT can be

  12. The Effects of Strain-Annealing on Tuning Permeability and Lowering Losses in Fe-Ni-Based Metal Amorphous Nanocomposites

    Science.gov (United States)

    Aronhime, Natan; DeGeorge, Vincent; Keylin, Vladimir; Ohodnicki, Paul; McHenry, Michael E.

    2017-11-01

    Fe-Ni-based metal amorphous nanocomposites with a range of compositions (Fe100- x Ni x )80Nb4Si2B14 (30 ≤ x ≤ 70) are investigated for motor and transformer applications, where it is beneficial to have tunable permeability. It is shown that strain annealing offers an effective method for tuning permeability in these alloys. For an Fe-rich alloy, permeability increased from 4000 to 16,000 with a positive magnetostriction. In a Ni-rich alloy, permeability decreased from 290 to 40 with a negative magnetostriction. Significant elongations (above 60%) are observed during strain annealing at high stress. Crystallization products have been determined in all alloys heated to 480°C. γ-FeNi is formed in all alloys, while (Fe30Ni70)80Nb4Si2B14 also undergoes secondary crystallization at temperatures of approximately 480°C to form a phase with the Cr23C6-type structure and a likely composition of Fe21Nb2B6. Toroidal losses have been measured for (Fe70Ni30)80Nb4Si y B16- y (0 ≤ y ≤ 3) at various annealing temperatures. At an induction of 1 T and frequency of 400 Hz and 1 kHz, the toroidal losses obtained are W1.0T, 400 Hz = 0.9 W/kg and W1.0T, 1 kHz = 2.3 W/kg, respectively. These losses are lower than losses recently reported for state of the art 3.0% and 6.5% silicon steels, a Metglas Fe-based amorphous alloy, and some Fe-based nanocomposites.

  13. Flexible micro supercapacitors based on laser-scribed graphene/ZnO nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Morteza Hassanpour; Namdar, Naser [University of Tehran, Thin Film and Nano-electronic Laboratory, School of Electrical and Computer Engineering (Iran, Islamic Republic of); Mashayekhi, Alireza [University of Tehran, Nano-fabricated Energy Devices Laboratory, School of Electrical and Computer Engineering (Iran, Islamic Republic of); Ghasemi, Foad [University of Tehran, Thin Film and Nano-electronic Laboratory, School of Electrical and Computer Engineering (Iran, Islamic Republic of); Sanaee, Zeinab [University of Tehran, Nano-fabricated Energy Devices Laboratory, School of Electrical and Computer Engineering (Iran, Islamic Republic of); Mohajerzadeh, Shams, E-mail: mohajer@ut.ac.ir [University of Tehran, Thin Film and Nano-electronic Laboratory, School of Electrical and Computer Engineering (Iran, Islamic Republic of)

    2016-08-15

    We report on the fabrication of graphene/Zno nanocomposite supercapacitor electrodes. Laser-scribing process was implemented in order to reduce the graphene oxide (GO)/ZnO mixture on a DVD disk. With reduced graphene oxide (rGO)/ZnO composite prepared by a mass ratio of 1:25 of Zn(NO{sub 3}){sub 2}·6H{sub 2}O to GO constituents, nanoparticles of ZnO with sizes ranging from 20 to 50 nm are obtained. Consequently, 12 times improvement in the specific capacitance was achieved at a current density of 0.1 mA/cm{sup 2} compared with pristine rGO electrodes. In addition, flexible microsupercapacitor was fabricated by spin coating of the gel electrolyte, showing high stack capacitance of 9 F/cm{sup 3} at a current density of 150 mA/cm{sup 2}. This microsupercapacitor delivers power density of 70 mW/cm{sup 3} and energy density of 1.2 mWh/cm{sup 3}. Furthermore, the performance of device was investigated at different bending angles. The resulted characteristics demonstrate that LSG/ZnO nanocomposite is a promising electrode material for high-performance supercapacitors.Graphical Abstract.

  14. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Science.gov (United States)

    Coiai, Serena; Passaglia, Elisa; Pucci, Andrea; Ruggeri, Giacomo

    2015-01-01

    Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix), but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  15. Nonenzymatic Glucose Sensor Based on In Situ Reduction of Ni/NiO-Graphene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhang

    2016-10-01

    Full Text Available Ni/NiO nanoflower modified reduced graphene oxide (rGO nanocomposite (Ni/NiO-rGO was introduced to screen printed electrode (SPE for the construction of a nonenzymatic electrochemical glucose biosensor. The Ni/NiO-rGO nanocomposite was synthesized by an in situ reduction process. Graphene oxide (GO hybrid Nafion sheets first chemical adsorbed Ni ions and assembled on the SPE. Subsequently, GO and Ni ions were reduced by hydrazine hydrate. The electrochemical properties of such a Ni/NiO-rGO modified SPE were carefully investigated. It showed a high activity for electrocatalytic oxidation of glucose in alkaline medium. The proposed nonenzymatic sensor can be utilized for quantification of glucose with a wide linear range from 29.9 μM to 6.44 mM (R = 0.9937 with a low detection limit of 1.8 μM (S/N = 3 and a high sensitivity of 1997 μA/mM∙cm−2. It also exhibited good reproducibility as well as high selectivity.

  16. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    Science.gov (United States)

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Cobalt oxide magnetic nanoparticles-chitosan nanocomposite based electrochemical urea biosensor

    Science.gov (United States)

    Ali, A.; Israr-Qadir, M.; Wazir, Z.; Tufail, M.; Ibupoto, Z. H.; Jamil-Rana, S.; Atif, M.; Khan, S. A.; Willander, M.

    2015-04-01

    In this study, a potentiometric urea biosensor has been fabricated on glass filter paper through the immobilization of urease enzyme onto chitosan/cobalt oxide (CS/Co3O4) nanocomposite. A copper wire with diameter of 500 µm is attached with nanoparticles to extract the voltage output signal. The shape and dimensions of Co3O4 magnetic nanoparticles are investigated by scanning electron microscopy and the average diameter is approximately 80-100 nm. Structural quality of Co3O4 nanoparticles is confirmed from X-ray powder diffraction measurements, while the Raman spectroscopy has been used to understand the chemical bonding between different atoms. The magnetic measurement has confirmed that Co3O4 nanoparticles show ferromagnetic behavior, which could be attributed to the uncompensated surface spins and/or finite size effects. The ferromagnetic order of Co3O4 nanoparticles is raised with increasing the decomposition temperature. A physical adsorption method is adopted to immobilize the surface of CS/Co3O4 nanocomposite. Potentiometric sensitivity curve has been measured over the concentration range between 1 × 10-4 and 8 × 10-2 M of urea electrolyte solution revealing that the fabricated biosensor holds good sensing ability with a linear slope curve of 45 mV/decade. In addition, the presented biosensor shows good reusability, selectivity, reproducibility and resistance against interferers along with the stable output response of 12 s.

  18. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    Science.gov (United States)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  19. Nanocomposites Based on Thermoplastic Polymers and Functional Nanofiller for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Serena Coiai

    2015-06-01

    Full Text Available Thermoplastic polymers like polyolefins, polyesters, polyamide, and styrene polymers are the most representative commodity plastics thanks to their cost-efficient manufacturing processes, excellent thermomechanical properties and their good environmental compatibility, including easy recycling. In the last few decades much effort has been devoted worldwide to extend the applications of such materials by conferring on them new properties through mixing and blending with different additives. In this latter context, nanocomposites have recently offered new exciting possibilities. This review discusses the successful use of nanostructured dispersed substrates in designing new stimuli-responsive nanocomposites; in particular, it provides an updated description of the synthetic routes to prepare nanostructured systems having the typical properties of thermoplastic polymers (continuous matrix, but showing enhanced optical, conductive, and thermal features dependent on the dispersion topology. The controlled nanodispersion of functional labeled clays, noble metal nanoparticles and carbon nanotubes is here evidenced to play a key role in producing hybrid thermoplastic materials that have been used in the design of devices, such as NLO devices, chemiresistors, temperature and deformation sensors.

  20. The magnetic graphene-based nanocomposite: An efficient anticancer delivery system

    Science.gov (United States)

    Jafarizad, Abbas; Jaymand, Mehdi; Taghizadehghalehjougi, Ali; Mohammadi-Nasr, Saeed; Jabbari, Amir Mohammad

    2018-01-01

    The aim of this study is the development of an efficient anticancer drug delivery nanosystem using PEGylated graphene oxide/magnetite nanoparticles (PEG-GO/Fe3O4). The nanosystem was loaded with mitoxantrone (MTX) as a universal anticancer drug. The cytotoxicity effect of the MTX-loaded GO-PEG/Fe3O4 nanocomposite was studied against U87 MG cell line using MTT cell viablity assay. The mechanism of action, the genes contributed in apoptosis (Casp 9, and Casp 3) and survival (BcL-2, BAX) have been investigated using quantitative real time-PCR. As the results of biological assays, controlled drug release behavior of the developed nanosystem as well as the inherent physicochemical and biological characteristics of both magnetit nanoparticles and graphene nanomaterials, we envision that the GO-PEG/Fe3O4 nanocomposite may be applied as enhanced drug delivery system for various cancer therapies (e.g., brain cancer) using both chemo- and photothermal therapy methods.