WorldWideScience

Sample records for based cogeneration block

  1. Controlling systems of cogeneration blocks

    International Nuclear Information System (INIS)

    Suriansky, J.; Suriansky, J. Ml.; Puskajler, J.

    2007-01-01

    In this article the main parts of cogeneration unit control system are described. Article is aimed on electric power measurement with electricity protection as with temperature system regulation. In conclusion of the article, the control algorithm with perspective of cogeneration solve is indicated. (authors)

  2. Cogeneration techniques; Les techniques de cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    This dossier about cogeneration techniques comprises 12 parts dealing successively with: the advantages of cogeneration (examples of installations, electrical and thermal efficiency); the combustion turbine (principle, performances, types); the alternative internal combustion engines (principle, types, rotation speed, comparative performances); the different configurations of cogeneration installations based on alternative engines and based on steam turbines (coal, heavy fuel and natural gas-fueled turbines); the environmental constraints of combustion turbines (pollutants, techniques of reduction of pollutant emissions); the environmental constraints of alternative internal combustion engines (gas and diesel engines); cogeneration and energy saving; the techniques of reduction of pollutant emissions (pollutants, unburnt hydrocarbons, primary and secondary (catalytic) techniques, post-combustion); the most-advanced configurations of cogeneration installations for enhanced performances (counter-pressure turbines, massive steam injection cycles, turbo-chargers); comparison between the performances of the different cogeneration techniques; the tri-generation technique (compression and absorption cycles). (J.S.)

  3. Small Nuclear Co-generation Plants Based on Shipbuilding Technology

    International Nuclear Information System (INIS)

    Vasyukov, V. I.; Veshnyakov, K. B.; Goryunov, E. V.; Zalugin, V. I.; Panov, Yu. K.; Polunichev, V. I.

    2002-01-01

    The development of nuclear cogeneration plants and power desalination complexes of relatively small power, using proven shipbuilding technology, becomes more and more attractive for solving the power supply problems of remote districts of the Extreme North and the Far East with small and medium power grids and for removing the shortage of fresh water in different world regions. The idea of transportation of the power unit with high degree of readiness to the place of its location with minimum construction and mounting activities at the site is very attractive. Compactness typical of RP based on shipbuilding technology allows to develop floating or ground-based plants at minimum use of water area and territory. Small construction scope at the site under conditions of minimum anthropogenic loads and high ecological indices are important arguments in favor of floating nuclear cogeneration plant based on ship power units against the alternative fossil sources. At present, the activities on floating nuclear cogeneration plant design, which is developed on the basis of floating power unit with two KLT-40S reactor plant, which is a modified option of standard KLT-40-type ship plant for icebreaker fleet in Russia are the most advanced. To date, a detailed design of reactor plant has been developed and approved, design activities on floating power unit are in the stage of completion, the site for its location has been selected and licensing by GAN, Russia, is in progress. Besides OKBM has developed some designs of nuclear cogeneration plants of different power on the basis of integral reactor plants, using the experience of transport and stationary power plants designing. Nuclear cogeneration plant investment analysis showed acceptable social and economical efficiency of the design that creates conditions for commercial construction of floating power units with KLT-40S reactor plan. At the same time the reduction of the design recovering terms, increase of budget income and

  4. Cogeneration

    International Nuclear Information System (INIS)

    Derbentli, Taner

    2006-01-01

    may be done in universities and industry which may serve this purpose. Some of these studies are discussed below. The feasibility studies for cogeneration plants is a field which should be developed.. The hourly, daily, monthly and yearly power and heat demands should be calculated to decide on the correct capacity of the plant. The capacity of the plant may be decided on the electrical power demand or the heat demand. In general it is more economical to base the plant capacity on the electrical power demand. In order to save as much energy as possible, the plant should operate continuously at full load. A study which will survey the cogeneration plants in service today, to determine the annual average fuel utilization efficiency may be a useful guide in sizing new cogeneration plants. It is important to select and size the equipment forming the cogeneration plant so that the sum of the operating and investment costs are minimized. The methodology used for this purpose is called ex ergo economic analysis which is based on the pioneering works of Tsatsaronis, El Sayed and Valero. The use of cogeneration in conjunction with district heating is widely used in northern and eastern Europe. This may well be applied to newly developing residential areas, university campuses and similar complexes. The main obstacle in the application of combined power and district heating is high initial investment costs.Government policies and subsidies in this area may be well worth because of the national savings resulting from the reduction in fuel imports. Micro cogeneration or spread electric power production is becoming more feasible as the technology developers and costs are reduced. The costs of micro cogeneration technologies, such as micro turbines, fuel cells, Stirling cycle engines are starting to become competitive with conventional technologies which cost approximately 500 US dollars per kw today. Another area where research is needed is the use of fuels other than natural gas

  5. Metamorphoses of cogeneration-based district heating in Romania: A case study

    International Nuclear Information System (INIS)

    Iacobescu, Flavius; Badescu, Viorel

    2011-01-01

    The paper presents the birth and evolution of the cogeneration-based district heating (DH) system in a medium size city in Romania (Targoviste). The evolution of the industrialization degree was the main factor which controlled the population growth and led to a continuous reconfiguration of the DH system. The DH system assisted by cogeneration emerged as a solution in a certain phase of the demographic development of the city. The political and social changes occurring in Romania after 1990 have had important negative consequences on the DH systems in small towns. In Targoviste the DH system survived but in 2001 the solution based on cogeneration became economically inefficient, due to the low technical quality of the existing equipment and the low gas prices, to the procedure of setting the DH tariffs and the service cost at consumer's level and to some bureaucratic problems. Energy policy measures taken at national and local levels in 2003 and 2005 led to the re-establishment of the cogeneration-based district heating in 2005. However, a different technical solution has been adopted. Details about the present (2009) cogeneration-based DH system in Targoviste are presented together with several technical and economical indicators. The main conclusion is that by a proper amendment of the technical solutions, cogeneration could be a viable solution for DH even in case of abrupt social and demographic changes, such as those occurring in Romania after 1990. - Research Highlights: →Birth and evolution of the cogeneration-based district heating system in a medium size city. →The industrialization degree is the main factor which controlled the reconfiguration of the district heating system. →Each stage of the evolution of district heating system has been a technological leap. →Cogeneration is a solution for district heating even in case of abrupt social changes.

  6. Biomass cogeneration: A business assessment

    Science.gov (United States)

    Skelton, J. C.

    1981-11-01

    The biomass cogeneration was reviewed. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

  7. Stirling based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, J.S.; Zutt, J.G.M.; Rabou, L.P.L.M.; Beckers, G.J.J. [ECN Clean Fossil Fuels, Petten (Netherlands); Baijens, C.A.W.; Luttikholt, J.J.M. [ATAG Verwarming, Lichtenvoorde (Netherlands)

    2000-04-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%. Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. 5 refs.

  8. Cogeneration plants in Italy: Licensing aspects

    International Nuclear Information System (INIS)

    Buscaglione, A.

    1991-01-01

    This paper focusses on administrative/bureaucratic problems relative to the licensing of cogeneration plants in Italy. The current stumbling block appears to lie in organizational difficulties relative to the coordination of various Government authorized safety committees responsible for the drafting up of suitable legislation governing cogeneration plant fire safety aspects. The author cites the possible environmental benefits in terms of air pollution abatement that could have been had with the timely start-up of a new 7 MW plant (in Lombardia) still awaiting its go-ahead authorization

  9. Stirling engine based micro co-generation system for single households

    Energy Technology Data Exchange (ETDEWEB)

    Ribberink, H.; Zutt, S.; Rabou, L.; Beckers, G. [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Baijens, K.; Luttikholt, J. [Atag Verwarming BV (Netherlands)

    2000-07-01

    This paper describes the progress made in the ENATEC development program for a free piston Stirling engine based micro co-generation system that serves the supply of up to 1 kW{sub e} and up to 24 kW heat for domestic heating and/or for hot tap water production for single households at overall system efficiencies of 96%: Experiments show that the free piston Stirling engines from Stirling Technology Company run very reliably and controllably, and that the efficiency targets for the 1 kW{sub e} micro co-generation system are feasible. A ceramic foam burner with good heat transfer characteristics and low NOx emissions was developed. A demonstration micro co-generation unit was built and successfully presented. A 1 kW{sub e} free piston Stirling engine for the European market was developed. High efficiencies at full load and at part load, low emissions, low noise, and minimum maintenance make the Stirling engine based micro co-generation system an attractive candidate for the next generation of domestic boilers in Europe. (orig.)

  10. Equipment sizing in a coal-fired municipal heating plant modernisation project with support for renewable energy and cogeneration technologies

    International Nuclear Information System (INIS)

    Kalina, Jacek

    2014-01-01

    Highlights: • Sizing of biomass fired cogeneration block is performed for existing heating plant. • Mathematical model for cogeneration block optimisation is presented. • Impact of financial support mechanisms on optimal solution is discussed. • Influence of short term variations of prices and support intensity is presented. • Different design parameters are suggested by economic and technical quality indices. - Abstract: The paper presents results of design parameters optimisation of a wood chips fired steam boiler based heat and power block in a sample project of coal fired municipal heating plant modernisation. The project assumes the conversion of the heating plant into a dual fuel heat and power plant. The problem that is presented is selection of cogeneration block structure and thermodynamic parameters taking into account financial support mechanisms for cogeneration and renewable energy technologies. There are examined energy conversion and financial performances of the project. The results show that without the financial support the project is not profitable although it generates savings of primary energy of fossil fuels. If an administrative incentives are applied the optimal technical solution is different than suggested by energy conversion efficiency or fossil fuel savings. Financial calculations were performed for Polish marked conditions in the years 2011 and 2014 showing the impact of relatively short term variations of prices and support intensity on optimal plant design parameters

  11. Cogeneration. Energy efficiency - Micro-cogeneration; La Cogeneration. Efficacite Energetique - Micro-cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Boudellal, M.

    2010-07-01

    Depletion of natural resources and of non-renewable energy sources, pollution, greenhouse effect, increasing energy needs: energy efficiency is a major topic implying a better use of the available primary energies. In front of these challenges, cogeneration - i.e. the joint production of electricity and heat, and, at a local or individual scale, micro-cogeneration - can appear as interesting alternatives. This book presents in a detailed manner: the present day and future energy stakes; the different types of micro-cogeneration units (internal combustion engines, Stirling engine, fuel cell..), and the available models or the models at the design stage; the different usable fuels (natural gas, wood, biogas..); the optimization rules of a facility; the costs and amortizations; and some examples of facilities. (J.S.)

  12. Cogeneration and local authorities; Cogeneration et collectivites territoriales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This conference is composed of 15 communications concerning cogeneration systems and applications in local communities. The main themes are: the regulation context and administrative procedures for cogeneration projects in France; legal aspects, risk covering, financing and sellback conditions for cogeneration systems; examples of cogeneration and tri-generation (with refrigeration energy) in different cities, airport, hospitals, campus, combined with the upgrading of district heating systems or municipal waste incineration plants. Impacts on energy savings and air pollution are also discussed

  13. Reductions in energy use and environmental emissions achievable with utility-based cogeneration: Simplified illustrations for Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.

    1998-01-01

    Significant reductions in energy use and environmental emissions are demonstrated to be achievable when electrical utilities use cogeneration. Simplified illustrations of these reductions are presented for the province of Ontario, based on applying cogeneration to the facilities of the main provincial electrical utility. Three cogeneration illustrations are considered: (i) fuel cogeneration is substituted for fuel electrical generation and fuel heating, (ii) nuclear cogeneration is substituted for nuclear electrical generation and fuel heating, and (iii) fuel cogeneration is substituted for fuel electrical generation and electrical heating. The substitution of cogeneration for separate electrical and heat generation processes for all illustrations considered leads to significant reductions in fuel energy consumption (24-61%), which lead to approximately proportional reductions in emissions. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Cogeneration for Brazil

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Almost all the electric power in Brazil comes from large-scale hydroelectric plants: only about 3% comes from cogeneration. But, now that the barriers which discouraged cogeneration are being removed, there will be more and more investment in cogeneration and distributed generation. The circumstances which have brought about these changes are described. It is expected that cogeneration will be responsible for producing 10-15% of Brazil's electricity by 2010 and the demand for cogeneration will reach 11-17 GW. It is concluded that Brazil represents one of the world's most attractive market for cogeneration and distributed generation

  15. Natural gas cogeneration in the residential sector; La cogeneration au gaz naturel en residentiel

    Energy Technology Data Exchange (ETDEWEB)

    Lancelot, C.; Gaudin, S. [Gaz de France, GDF, Dir. de la Recherche, 75 - Paris (France)

    2000-07-01

    The natural gas cogeneration offer is now available and operational in the industrial sector. It is based on technologies of piston engines and gas turbines. Currently, this offer is sufficiently diversified, so much from the point of view of the range of powers available (from 1 MW to more than 40 MW electric) that number of manufacturers. In order to widen the cogeneration market in France to the markets of the commercial and residential sectors, Gaz De France has undertaken a technical economic study to validate the potential of those markets. This study led to work on the assembly of a french die to cogeneration packages of low power (less than 1 MW electric). This step has emerged at the beginning of 1999 with the launching of a commercial offer of cogeneration packages. In margin to this work Gaz De France Research division also initiated a study in order to evaluate the offer of micro cogeneration, products delivering an electric output lower than 10 kW. (authors)

  16. HTGR-steam cycle/cogeneration plant economic potential

    International Nuclear Information System (INIS)

    1981-05-01

    The cogeneration of heat and electricity provides the potential for improved fuel utilization and corresponding reductions in energy costs. In the evaluation of the cogeneration plant product costs, it is advantageous to develop joint-product cost curves for alternative cogeneration plant models. The advantages and incentives for cogeneration are then presented in a form most useful to evaluate the various energy options. The HTGR-Steam Cycle/Cogeneration (SC/C) system is envisioned to have strong cogeneration potential due to its high-quality steam capability, its perceived nuclear siting advantages, and its projected cost advantages relative to coal. The economic information presented is based upon capital costs developed during 1980 and the economic assumptions identified herein

  17. Experimental analysis of micro-cogeneration units based on reciprocating internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Possidente, R.; Sibilio, S. [Seconda Universita di Napoli, Dipartimento di Storia e Processi dell' ambiente Antropizzato (DiSPAMA), Borgo San Lorenzo, Aversa, CE (Italy); Roselli, C.; Sasso, M. [Dipartimento di Ingegneria, Universita degli Studi del Sannio, Benevento (Italy)

    2006-07-01

    The cogeneration, or the combined production of electric and/or mechanical and thermal energy, is a well-established technology now, which has important environmental benefits and has been noted by the European Community as one of the first elements to save primary energy, to avoid network losses and to reduce the greenhouse gas emissions. In particular, our interest will be focused on the micro-cogeneration, MCHP (electric power up to 15 kW), which represents a valid and interesting application of this technology which refers, above all, to residential and light commercial users [M. Dentice d'Accadia, M. Sasso, S. Sibilio, Cogeneration for energy saving in household applications, in: P. Bertoldi, A. Ricci, A. de Almeida (Eds.), Energy Efficiency in Household Appliances and Lighting, Springer, Berlin, 2001, pp. 210-221; Directive 2004/8/EC of the European Parliament and of the Council of the 11 February 2004 on the promotion of cogeneration based on the useful heat demand in the internal energy market and amending Directive 92/42/EEC, Official Journal of the European Union (2004)]. In particular, our work group started a R and D programme on micro-cogeneration in 1995: a laboratory, equipped with the most common appliances (washing-machine, dishwasher, storage water heater, ...), has been built and some MCHP prototypes have been tested too. In this article, the results of an intense experimental activity on three different micro-cogenerators, one of them made in Japan and in a pre-selling phase, are reported. In a previous paper a detailed analysis of the test facility, with the description of the equipment and the data acquisition systems, can be found [M. Dentice d'Accadia, M. Sasso, S. Sibilio, R. Vanoli, Micro-combined heat and power in residential and light commercial applications, Applied Thermal Engineering 23 (2003) 1247-1259]. A typical 3-E (Energetic, Economic and Environmental) approach has been performed to compare the proposed energy system

  18. Assessment of Emerging Renewable Energy-based Cogeneration Systemsfor nZEB Residential Buildings

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads P.

    2016-01-01

    Net Zero Energy Buildings (nZEB) imply reduced consumption by means of good insulation, passive strategies and highly efficient energy supply systems. Among others, micro cogeneration systems are considered as one of the system solutions with the highest potential to enable nZEB.These systems...... entail production of electricity and usable thermal energy (heat and/or cooling) to cover the energy demands of residential buildings, high energy efficiency levels and proximity of the energy source to the building. The concept of cogeneration is not new but the interest in smallscale cogeneration...... technologies based on renewable energy sources has increased tremendously in the last decade. A significant amount of experimental and modelling research has recently been presented on emerging technologies. In this paper, four main technologies are assessed: Fuel Cells (FC), Photovoltaic thermal (PV/T), solar...

  19. Cogeneration in Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E. [International Cogeneration Alliance (United States)

    2000-10-01

    The short article discusses pollution abatement and the potential role of cogeneration in Taiwan. A diagram shows the contributions of various energy sources (coal, oil etc.) from 1979-1999 and the growth of cogeneration between 1979 and 1999. The lack of natural gas or diesel does not help the cause of cogeneration in Taiwan, nor does the structure of the local electricity market. Nevertheless, if the proposed new LNG facilities are built in the North, then the opportunities for cogeneration will be very good.

  20. Mini gas turbines. Study related to energy efficient cogeneration applications for new cogeneration markets. Appendix; Mini gasturbiner. Udredning vedr. energieffektive kraftvarmeapplikationer til nye kraftvarmemarkeder. Appendix

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, J.B.; Weel Hansen, M.; Astrupgaard, N.P.

    2000-12-01

    The aim of the project is to investigate, design and increase the energy efficiency in new cogeneration/cooling systems, which are based on new developed mini gas turbines. Hereby cogeneration can primarily based on natural gas and bio-fuels be spread to new market segments. The appendix presents further details related to gas turbine as burner; cogeneration with recuperation gas turbine; gas turbine for cogeneration/absorption refrigerator; the economic and operational basis used in the study. (EHS)

  1. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  2. Introduction to cogeneration; Introducao a cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luiz Augusto Horta; Martins, Andre Luiz Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1997-07-01

    This work presents a general view of cogeneration. The paper approaches the development of cogeneration, technological aspects, the cogeneration in Brazil, economical aspects, performance of cogeneration systems, viability, costs, cogeneration potentials and technological trends.

  3. CDM potential of bagasse cogeneration in India

    International Nuclear Information System (INIS)

    Purohit, Pallav; Michaelowa, Axel

    2007-01-01

    So far, the cumulative capacity of renewable energy systems such as bagasse cogeneration in India is far below their theoretical potential despite government subsidy programmes. One of the major barriers is the high investment cost of these systems. The Clean Development Mechanism (CDM) provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO 2 emissions at lowest cost that also promotes sustainable development in the host country. Bagasse cogeneration projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development. This study assesses the maximum theoretical as well as the realistically achievable CDM potential of bagasse cogeneration in India. Our estimates indicate that there is a vast theoretical potential of CO 2 mitigation by the use of bagasse for power generation through cogeneration process in India. The preliminary results indicate that the annual gross potential availability of bagasse in India is more than 67 million tonnes (MT). The potential of electricity generation through bagasse cogeneration in India is estimated to be around 34 TWh i.e. about 5575 MW in terms of the plant capacity. The annual CER potential of bagasse cogeneration in India could theoretically reach 28 MT. Under more realistic assumptions about diffusion of bagasse cogeneration based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 20-26 million. The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of bagasse cogeneration for power generation is not likely to reach its maximum estimated potential in another 20 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced

  4. Cogeneration in Australia. Situation and prospects

    International Nuclear Information System (INIS)

    1997-01-01

    This Research Paper is mainly concerned with the status and prospects for cogeneration in Australia. An introductory chapter reviews the fundamentals of cogeneration, covering both technical and institutional aspects. A range of technologies are employed in cogeneration: these technologies and their efficiency and environmental impact effects are discussed in Chapter 2. The economics of cogeneration are a major factor in the profitability of current and potential plants. Potential factors affecting cogeneration economics are discussed .The status of cogeneration in Australia is reviewed for each State and Territory, and includes a number of case studies of existing plants. Government (federal, state, territory) policies that have a significant impact on the attractiveness of cogeneration are reviewed. Finally, the future prospects for cogeneration in Australia, drawing on the preceding chapters and a review of estimated potentials for cogeneration in Australia are presented

  5. Sustainability assessment of cogeneration sector development in Croatia

    International Nuclear Information System (INIS)

    Liposcak, Marko; Afgan, Naim H.; Duic, Neven; Graca Carvalho, Maria da

    2006-01-01

    The effective and rational energy generation and supply is one of the main presumptions of sustainable development. Combined heat and power production, or co-generation, has clear environmental advantages by increasing energy efficiency and decreasing carbon emissions. However, higher investment cost and more complicated design and maintenance sometimes-present disadvantages from the economical viability point of view. As in the case of most of economies in transition in Central and Eastern Europe, Croatia has a strong but not very efficient co-generation sector, delivering 12% of the final energy consumption. District heating systems in the country's capital Zagreb and in city of Osijek represent the large share of the overall co-generation capacity. Besides district heating, co-generation in industry sector is also relatively well developed. The paper presents an attempt to assess the sustainability of Croatian co-generation sector future development. The sustainability assessment requires multi-criteria assessment of specific scenarios to be taken into consideration. In this respect three scenarios of Croatian co-generation sector future development are taken into consideration and for each of them environmental, social and economic sustainability indicators are defined and calculated. The assessment of complex relationships between environmental, social and economic aspects of the system is based on the multi-criteria decision-making procedure. The sustainability assessment is based on the General Sustainability Index rating for different cases reflecting different criteria and their priority. The method of sustainability assessment is applied to the Croatian co-generation sector contributing to the evaluation of different strategies and definition of a foundation for policy related to the sustainable future cogeneration sector development

  6. A novel evaluation of heat-electricity cost allocation in cogenerations based on entropy change method

    International Nuclear Information System (INIS)

    Ye, Xuemin; Li, Chunxi

    2013-01-01

    As one of the most significant measures to improve energy utilization efficiency and save energy, cogeneration or combined heat and power (CHP) has been widely applied and promoted with positive motivations in many countries. A rational cost allocation model should indicate the performance of cogenerations and balance the benefits between electricity generation and heat production. Based on the second law of thermodynamics, the present paper proposes an entropy change method for cost allocation by choosing exhaust steam entropy as a datum point, and the new model works in conjunction with entropy change and irreversibility during energy conversion processes. The allocation ratios of heat cost with the present and existing methods are compared for different types of cogenerations. Results show that the allocation ratios with the entropy change method are more rational and the cost allocation model can make up some limitations involved in other approaches. The future energy policies and innovational directions for cogenerations and heat consumers should be developed. - Highlights: • A rational model of cogeneration cost allocation is established. • Entropy change method integrates the relation of entropy change and exergy losses. • The unity of measuring energy quality and quantity is materialized. • The benefits between electricity generation and heat production are balanced

  7. Global environment and cogeneration

    International Nuclear Information System (INIS)

    Miyahara, Atsushi

    1992-01-01

    The environment problems on global scale have been highlighted in addition to the local problems due to the rapid increase of population, the increase of energy demand and so on. The global environment summit was held in Brazil. Now, global environment problems are the problems for mankind, and their importance seems to increase toward 21st century. In such circumstances, cogeneration can reduce carbon dioxide emission in addition to energy conservation, therefore, attention has been paid as the countermeasure for global environment. The background of global environment problems is explained. As to the effectiveness of cogeneration for global environment, the suitability of city gas to environment, energy conservation, the reduction of carbon dioxide and nitrogen oxides emission are discussed. As for the state of spread of cogeneration, as of March, 1992, those of 2250 MW in terms of power generation capacity have been installed in Japan. It is forecast that cogeneration will increase hereafter. As the future systems of cogeneration, city and industry energy center conception, industrial repowering, multiple house cogeneration and fuel cells are described. (K.I.)

  8. Biomass based optimal cogeneration system for paper industry

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, S.; Jayaraj, S. [National Inst. of Technology, Calicut (India)

    2008-07-01

    A mathematical model of a biomass supported steam turbine cogeneration system was presented. The multi-time interval non-linear model used genetic algorithms to determine optimal operating costs. The cogeneration system consisted of steam boilers; steam headers at different pressure levels; steam turbines operating at different capacities; and other auxiliary devices. System components were modelled separately to determine constraints and costs. Total costs were obtained by summing up costs corresponding to all equipment. Cost functions were fuel cost; grid electricity cost; grid electricity export revenues; start-up costs; and shut-down costs. The non-linear optimization model was formulated by considering equal intervals of 1-hour intervals. A case study of a typical paper industry plant system was considered using coal, black liquor, and groundnut shells. Results of the study showed that the use of groundnut shells as a fuel resulted in a savings of 11.1 per cent of the total monthly operating costs while delivering 48.6 MWh daily to the electricity grid after meeting the plant's total energy requirements. It was concluded that the model can be used to optimize cogeneration systems in paper plants. 14 refs., 3 tabs., 3 figs.

  9. The California cogeneration success story

    International Nuclear Information System (INIS)

    Neiggemann, M.F.

    1992-01-01

    This chapter describes the involvement of Southern California Gas Company(SoCalGas) in the promotion and demonstration of the benefits of cogeneration in California. The topics covered in this chapter are market strategy, cogeneration program objectives, cogeneration program, incentive cofunding, special gas rate, special service priority, special gas pressure and main options, advertising, promotional brochures and handbooks, technical support, program accomplishments, cogeneration outlook, and reasons for success of the program

  10. Decision making based on data analysis and optimization algorithm applied for cogeneration systems integration into a grid

    Science.gov (United States)

    Asmar, Joseph Al; Lahoud, Chawki; Brouche, Marwan

    2018-05-01

    Cogeneration and trigeneration systems can contribute to the reduction of primary energy consumption and greenhouse gas emissions in residential and tertiary sectors, by reducing fossil fuels demand and grid losses with respect to conventional systems. The cogeneration systems are characterized by a very high energy efficiency (80 to 90%) as well as a less polluting aspect compared to the conventional energy production. The integration of these systems into the energy network must simultaneously take into account their economic and environmental challenges. In this paper, a decision-making strategy will be introduced and is divided into two parts. The first one is a strategy based on a multi-objective optimization tool with data analysis and the second part is based on an optimization algorithm. The power dispatching of the Lebanese electricity grid is then simulated and considered as a case study in order to prove the compatibility of the cogeneration power calculated by our decision-making technique. In addition, the thermal energy produced by the cogeneration systems which capacity is selected by our technique shows compatibility with the thermal demand for district heating.

  11. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Malevski, A L; Stoliarevski, A Ya; Vladimirov, V T; Larin, E A; Lesnykh, V V; Naumov, Yu V; Fedotov, I L

    1990-07-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  12. The choice of equipment mix and parameters for HTGR-based nuclear cogeneration plants

    International Nuclear Information System (INIS)

    Malevski, A.L.; Stoliarevski, A.Ya.; Vladimirov, V.T.; Larin, E.A.; Lesnykh, V.V.; Naumov, Yu.V.; Fedotov, I.L.

    1990-01-01

    Improvement of heat and electricity supply systems based on cogeneration is one of the high-priority problems in energy development of the USSR. Fossil fuel consumption for heat supply exceeds now its use for electricity production and amounts to about 30% of the total demands. District heating provides about 80 million t.c.e. of energy resources conserved annually and meets about 50% of heat consumption of the country, including about 30% due to cogeneration. The share of natural gas and liquid fuel in the fuel consumption for district heating is about 70%. The analysis of heat consumption dynamics in individual regions and industrial-urban agglomerations shows the necessity of constructing cogeneration plants with the total capacity of about 60 million kW till the year 2000. However, their construction causes some serious problems. The most important of them are provision of environmentally clean fuels for cogeneration plants and provision of clear air. The limited reserves of oil and natural gas and the growing expenditures on their production require more intensive introduction of nuclear energy in the national energy balance. Possible use of nuclear energy based on light-water reactors for substitution of deficient hydrocarbon fuels is limited by the physical, technical and economic factors and requirements of safety. Further development of nuclear energy in the USSR can be realized on a new technological base with construction of domestic reactors of increased and ultimate safety. The most promising reactors under design are high-temperature gas-cooled reactors (HTGR) of low and medium capacity with the intrinsic property of safety. HTGR of low (about 200-250 MW(th) in a steel vessel), medium (about 500 MW(th) in a steel-concrete vessel) and high (about 1000-2500 MW(th) in a prestressed concrete vessel) are now designed and studied in the country. At outlet helium temperature of 920-1020 K it is possible to create steam turbine installations producing both

  13. Micro-cogeneration units based on Stirling engine for heating and their real operation

    Science.gov (United States)

    Čierny, Jaroslav; Patsch, Marek

    2014-08-01

    This article was deal with micro-cogeneration units based on Stirling engine. We watched problematic of real working Stirling engine. The article also contain hookup of unit constructed at University of Zilina.

  14. Comparison based on energy and exergy analyses of the potential cogeneration efficiencies for fuel cells and other electricity generation devices

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, M A [Ryerson Polytechnical Inst., Toronto, (CA). Dept. of Mechanical Engineering

    1990-01-01

    Comparisons of the potential cogeneration efficiencies are made, based on energy and exergy analyses, for several devices for electricity generation. The investigation considers several types of fuel cell system (Phosphoric Acid, Alkaline, Solid Polymer Electrolyte, Molten Carbonate and Solid Oxide), and several fossil-fuel and nuclear cogeneration systems based on steam power plants. In the analysis, each system is modelled as a device for which fuel and air enter, and electrical- and thermal-energy products and material and thermal-energy wastes exit. The results for all systems considered indicate that exergy analyses should be used when analysing the cogeneration potential of systems for electricity generation, because they weigh the usefulnesses of heat and electricity on equivalent bases. Energy analyses tend to present overly optimistic views of performance. These findings are particularly significant when large fractions of the heat output from a system are utilized for cogeneration. (author).

  15. Fuel cell-based cogeneration system covering data centers’ energy needs

    International Nuclear Information System (INIS)

    Guizzi, Giuseppe Leo; Manno, Michele

    2012-01-01

    The Information and Communication Technology industry has gone in the recent years through a dramatic expansion, driven by many new online (local and remote) applications and services. Such growth has obviously triggered an equally remarkable growth in energy consumption by data centers, which require huge amounts of power not only for IT devices, but also for power distribution units and for air-conditioning systems needed to cool the IT equipment. This paper is dedicated to the economic and energy performance assessment of a cogeneration system based on a natural gas membrane steam reformer producing a pure hydrogen flow for electric power generation in a polymer electrolyte membrane fuel cell. Heat is recovered from both the reforming unit and the fuel cell in order to supply the needs of an office building located near the data center. In this case, the cooling energy needs of the data center are covered by means of a vapor-compression chiller equipped with a free-cooling unit. Since the fuel cell’s output is direct current rather than alternate current, the possibility of further improving data centers’ energy efficiency adopting DC-powered data center equipment is also discussed. -- Highlights: ► Data centers' energy needs are discussed and possible savings from advanced energy management techniques are estimated. ► The thermal energy requirements of an office building close to the data center are added to the energy scenario. ► Significant energy and cost savings can be obtained by means of free-cooling, high-voltage direct current, and a cogeneration facility. ► The cogeneration system is based on a natural gas membrane reformer and a PEM fuel cell. ► Energy flows in the membrane reformer are analyzed and an optimal value of steam-to-carbon ratio is found in order to minimize the required membrane area.

  16. Evaluating the role of cogeneration for carbon management in Alberta

    International Nuclear Information System (INIS)

    Doluweera, G.H.; Jordaan, S.M.; Moore, M.C.; Keith, D.W.; Bergerson, J.A.

    2011-01-01

    Developing long-term carbon control strategies is important in energy intensive industries such as the oil sands operations in Alberta. We examine the use of cogeneration to satisfy the energy demands of oil sands operations in Alberta in the context of carbon management. This paper evaluates the role of cogeneration in meeting Provincial carbon management goals and discusses the arbitrary characteristics of facility- and product-based carbon emissions control regulations. We model an oil sands operation that operates with and without incorporated cogeneration. We compare CO 2 emissions and associated costs under different carbon emissions control regulations, including the present carbon emissions control regulation of Alberta. The results suggest that incorporating cogeneration into the growing oil sands industry could contribute in the near-term to reducing CO 2 emissions in Alberta. This analysis also shows that the different accounting methods and calculations of electricity offsets could lead to very different levels of incentives for cogeneration. Regulations that attempt to manage emissions on a product and facility basis may become arbitrary and complex as regulators attempt to approximate the effect of an economy-wide carbon price. - Highlights: ► We assess the effectiveness of cogeneration for carbon management in Alberta. ► Cogeneration can offset a significant portion of Alberta's high carbon electricity. ► CO 2 reduction potential of cogeneration may be higher if installed immediately. ► Product based policies should approximate the effect of an economy-wide policy.

  17. Life cycle energy use and GHG emission assessment of coal-based SNG and power cogeneration technology in China

    International Nuclear Information System (INIS)

    Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Life cycle energy use and GHG emissions are assessed for SNG and power cogeneration. • A model based on a Chinese domestic database is developed for evaluation. • Cogeneration shows lower GHG emissions than coal-power pathway. • Cogeneration has lower life cycle energy use than supercritical coal-power pathway. • Cogeneration is a good option to implement China’s clean coal technologies. - Abstract: Life cycle energy use and GHG emissions are assessed for coal-based synthetic natural gas (SNG) and power cogeneration/polygenereation (PG) technology and its competitive alternatives. Four main SNG applications are considered, including electricity generation, steam production, SNG vehicle and battery electric vehicle (BEV). Analyses show that if SNG is produced from a single product plant, the lower limits of its life cycle energy use and GHG emissions can be comparable to the average levels of coal-power and coal-BEV pathways, but are still higher than supercritical and ultra supercritical (USC) coal-power and coal-BEV pathways. If SNG is coproduced from a PG plant, when it is used for power generation, steam production, and driving BEV car, the life cycle energy uses for PG based pathways are typically lower than supercritical coal-power pathways, but are still 1.6–2.4% higher than USC coal-power pathways, and the average life cycle GHG emissions are lower than those of all coal-power pathways including USC units. If SNG is used to drive vehicle car, the life cycle energy use and GHG emissions of PG-SNGV-power pathway are both much higher than all combined coal-BEV and coal-power pathways, due to much higher energy consumption in a SNG driven car than in a BEV car. The coal-based SNG and power cogeneration technology shows comparable or better energy and environmental performances when compared to other coal-based alternatives, and is a good option to implement China’s clean coal technologies.

  18. Upscaling a district heating system based on biogas cogeneration and heat pumps

    NARCIS (Netherlands)

    van Leeuwen, Richard Pieter; Fink, J.; Smit, Gerardus Johannes Maria; de Wit, Jan B.

    2015-01-01

    The energy supply of the Meppel district Nieuwveense landen is based on biogas cogeneration, district heating, and ground source heat pumps. A centrally located combined heat and power engine (CHP) converts biogas from the municipal wastewater treatment facility into electricity for heat pumps and

  19. Cogeneration based on gasified biomass - a comparison of concepts

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, Fredrik

    1999-01-01

    In this report, integration of drying and gasification of biomass into cogeneration power plants, comprising gas turbines, is investigated. The thermodynamic cycles considered are the combined cycle and the humid air turbine cycle. These are combined with either pressurised or near atmospheric gasification, and steam or exhaust gas dryer, in a number of combinations. An effort is made to facilitate a comparison of the different concepts by using, and presenting, similar assumptions and input data for all studied systems. The resulting systems are modelled using the software package ASPEN PLUS{sup TM}, and for each system both the electrical efficiency and the fuel utilisation are calculated. The investigation of integrated gasification combined cycles (IGCC), reveals that systems with pressurised gasification have a potential for electrical efficiencies approaching 45% (LHV). That is 4 - 5 percentage points higher than the corresponding systems with near atmospheric gasification. The type of dryer in the system mainly influences the fuel utilisation, with an advantage of approximately 8 percentage points (LHV) for the steam dryer. The resulting values of fuel utilisation for the IGCC systems are in the range of 78 - 94% (LHV). The results for the integrated gasification humid air turbine systems (IGHAT) indicate that electrical efficiencies close to the IGCC are achievable, provided combustion of the fuel gas in highly humidified air is feasible. Reaching a high fuel utilisation is more difficult for this concept, unless the temperature levels in the district heating network are low. For comparison a conventional cogeneration plant, based on a CFB boiler and a steam turbine (Rankine cycle), is also modelled in ASPEN PLUS{sup TM}. The IGCC and IGHAT show electrical efficiencies in the range of 37 - 45% (LHV), compared with a calculated value of 31% (LHV) for the Rankine cycle cogeneration plant. Apart from the electrical efficiency, also a high value of fuel

  20. Cogeneration plant noise: Environmental impacts and abatement

    International Nuclear Information System (INIS)

    De Renzio, M.; Ciocca, B.

    1991-01-01

    In Italy, ever increasing attention to environmental problems has led to legislation requiring cogeneration plant owners to perform environmental impact assessments in order to determine plant conformity with pollution laws. This paper, based on an in-depth analysis of physics fundamentals relevant to the nature and effects of noise, examines the principal sources of noise in industrial cogeneration plants and the intensity and range of the effects of this noise on the local environment. A review is then made of the different methods of noise pollution abatement (e.g., heat and corrosion resistant silencers for gas turbines, varying types and thicknesses of acoustic insulation placed in specific locations) that can be effectively applied to cogeneration plant equipment and housing

  1. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  2. Cogeneration: A new opportunity for energy production market

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology

  3. Cogeneration at FIAT AVIO (Italy)

    International Nuclear Information System (INIS)

    Cantoni, A.

    1991-01-01

    Brief notes are provided on the FIAT (Italy) - Foster Wheeler joint venture to equip about 20 FIAT manufacturing plants with 50 MW(e) combined cycle cogeneration plants which will make use of a gas turbine whose design is based on that of the successful General Electric aeronautic LM 6000 engine. The paper also discusses solutions, e.g., wet and dry methods, being considered for nitrogen ox des control, and cites the need in Italy for the optimization of Government licensing procedures for small and medium sized manufacturing firms opting for on-site power generation through cogeneration plants

  4. Experiences Applying Cogeneration Policies in Europe

    International Nuclear Information System (INIS)

    Marin Nortes, M.

    1997-01-01

    This paper starts by giving overview of the development of cogeneration in the European Union. The percentage of electricity produced by cogeneration is about 10%. The difference among the countries are however very big, ranging from 40% in Denmark to 2% in France. This is because the development of cogeneration in a country depends on a number of different factors. Political and regulatory factors are of a major importance. This paper tries to show this and to examinate a number of cogeneration policies in some countries in Europe. In each case, the reasons why or why not cogeneration has been successful will be analysed. (author)

  5. Procedure for cogeneration plant evaluation in Italy

    International Nuclear Information System (INIS)

    Bollettini, U.; Savelli, D.

    1992-01-01

    This paper develops a step-by-step approach to the evaluation of cogeneration plants for on-site power generation. The aim is to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation normatives and laws set up by the Italian National Energy Plan. The approach has three principal phases - the verification of the availability of the required human resources able to perform the plant evaluation (engineering, legal and business consultants), an energy/viability audit of any existing energy plant considered for retrofitting and, finally, the identification of the best technical/economic cogeneration alternative. The programmed set of evaluation tasks includes the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid, and the making of comparisons with reference cogeneration systems whose relative design/cost data are stored in existing computerized data bases

  6. Market conditions for wind power and biofuel-based cogeneration

    International Nuclear Information System (INIS)

    1994-07-01

    The aim of this study is to analyze the prerequisites for biofuel-based cogeneration plants and for wind power, with special emphasis on following factors: 1/ The effect on the Swedish energy market of the opening of the power transmission networks for free competition within the electric power supply sector. 2/ A market model for the connection between the prices on fossil fuels, biomass fuels, electric power, and heating on the Swedish market. The analysis is made for three scenarios concerning carbon dioxide/energy taxation and the oil price development. The three scenarios are: A. Constant prices on heating oil and coal., B. An internationally uniform carbon dioxide tax, which successively is raised to SEK 0.40 per kilo carbon dioxide to the year 2010. In the year 2005 this will correspond to a doubling of the present prices on crude oil., C. An unilateral Swedish energy- and carbon dioxide tax of todays model (without exception for electric power generation), with constant import prices on heating oil and coal. The decisive factors for bio-cogeneration are construction- and operation costs, the costs of biofuels, and the sales price on electric power and heat. For wind power it is the construction- and operation costs that settle the conditions. 18 figs, 6 tabs

  7. Cogeneration markets in Ontario

    International Nuclear Information System (INIS)

    Poredos, S.

    1993-01-01

    Cogeneration offers a key strategy which supports global competitiveness for Ontario businesses, encourages energy efficiency and environmental protection, and offers natural gas utilities and producers stable long-term incremental markets. By supporting cogeneration projects, electric utilities will benefit from increased flexibility. Natural gas is the fuel of choice for cogeneration, which can in most cases be easily integrated into existing operations. In Ontario, electric demand grew along with the gross domestic product until 1990, but has decreased with the recent economic recession. The provincial utility Ontario Hydro is resizing itself to stabilize total rate increases of 30% over the last three years and supporting reduction of its high debt load. Rate increases are supposed to be limited but this may be difficult to achieve without further cost-cutting measures. Cogeneration opportunities exist with many institutional and industrial customers who are trying to remain globally competitive by cutting operating costs. In general, cogeneration can save 20% or more of total annual energy costs. Due to excess capacity, Ontario Hydro is not willing to purchase electric power, thus only electric load displacement projects are valid at this time. This will reduce overall savings due to economies of scale. In southwestern Ontario, Union Gas Ltd. has been successful in developing 40 MW of electric displacement projects, providing a total load of 5 billion ft 3 of natural gas (50% of which is incremental). Over 3,000 MW of technical cogeneration potential is estimated to exist in the Union Gas franchise area

  8. Cogenerating a Competency-based HRM Degree: A Model and Some Lessons from Experience.

    Science.gov (United States)

    Wooten, Kevin C.; Elden, Max

    2001-01-01

    A competency-based degree program in human resource management was co-generated by six groups of stakeholders who synthesized competency models using group decision support software. The program focuses on core human resource processes, general business management, strategic decision making and problem solving, change management, and personal…

  9. Dynamics of decentralization: The case of micro cogeneration diffusion in Germany

    International Nuclear Information System (INIS)

    Praetorius, Barbara; Schneider, Lambert

    2005-01-01

    Micro cogeneration is the simultaneous generation of heat and electricity in small units; it is expected to allow for a higher energy efficiency than separate generation. For Germany, the potential of micro cogeneration has been estimated with about 3 GW. Introduced in a larger scale and as part of a general move towards distributed generation, micro cogeneration may contribute to substantial structural changes on electricity and heat markets. We start with an assessment of existing micro cogeneration technologies, including reciprocating engines, Stirling engines and fuel cells, and describe their characteristics and state of development. Based on a model to calculate costs of micro cogeneration operation, we examine their economic feasibility in Germany in a number of typical applications from an operator's and a societal perspective. On this basis, we explore the actual dynamics of its diffusion in Germany. We analyze the interests, attitudes and strategies of actors concerned with implementing micro cogeneration, such as network operators, appliance industry, gas and electricity suppliers, etc. We explore the impacts of their (diverging) interests and strategies and mirror them with the economic potential and institutional setting for micro cogeneration with respect to competition, grid access and transaction costs. We conclude with assessing barriers for and measures to facilitate the diffusion of micro cogeneration in Germany

  10. The cogeneration in France

    International Nuclear Information System (INIS)

    2006-01-01

    Since the years 90 many measures have been decided by the government in favor of the cogeneration, to implement a juridical, fiscal, technical and economical framework. After a presentation of the three main channels and the advantages of the cogeneration, the author presents these measures. (A.L.B.)

  11. Residential cogeneration systems: review of the current technology

    International Nuclear Information System (INIS)

    Onovwiona, H.I.; Ugursal, V.I.

    2006-01-01

    There is a growing potential for the use of micro-cogeneration systems in the residential sector because they have the ability to produce both useful thermal energy and electricity from a single source of fuel such as oil or natural gas. In cogeneration systems, the efficiency of energy conversion increases to over 80% as compared to an average of 30-35% for conventional fossil fuel fired electricity generation systems. This increase in energy efficiency can result in lower costs and reduction in greenhouse gas emissions when compared to the conventional methods of generating heat and electricity separately. Cogeneration systems and equipment suitable for residential and small-scale commercial applications like hospitals, hotels or institutional buildings are available, and many new systems are under development. These products are used or aimed for meeting the electrical and thermal demands of a building for space and domestic hot water heating, and potentially, absorption cooling. The aim of this paper is to provide an up-to-date review of the various cogeneration technologies suitable for residential applications. The paper considers the various technologies available and under development for residential, i.e. single-family ( e ) and multi-family (10-30kW t ) applications, with focus on single-family applications. Technologies suitable for residential cogeneration systems include reciprocating internal combustion engine, micro-turbine, fuel cell, and reciprocating external combustion Stirling engine based cogeneration systems. The paper discusses the state of development and the performance, environmental benefits, and costs of these technologies. (author)

  12. Cogeneration Systems; Sistemas de Cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez M, Manuel F; Huante P, Liborio; Romo M, Cesar A [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2006-07-01

    The present article deals on relevant aspects on the subject of cogeneration within the Mexican territorial limits. In the first place it is presented the role of Mexico in terms of its cogeneration potential, the type of service that has obtained from this predominant modality of cogeneration for self-supplying, the most propitious sectors to develop it, its legislations on the matter, the projects made for the implementation of cogeneration plants, as well as the existing cogeneration schemes for its respective optimization proposals. Without leaving out the analysis on the different types of evaluation on the efficiency of cogeneration systems and the aspects to consider for the election of a generation cycle. [Spanish] El presente articulo trata sobre aspectos relevantes en materia de cogeneracion dentro de los limites territoriales de la nacion mexicana. Se muestra en primer lugar el papel de Mexico en terminos de su potencial de cogeneracion, el tipo de servicio que ha obtenido de esta predominantemente (modalidad de cogeneracion para autoabastecimiento), los sectores mas propicios para desarrollarla, sus legislaciones al respecto, los proyectos realizados para la implementacion de plantas de cogeneracion, asi como los esquemas de cogeneracion existentes con sus respectivas propuestas de optimizacion. Sin dejar de lado el analisis sobre los distintos tipos de evaluacion de la eficiencia de sistemas de cogeneracion y los aspectos a considerar para la eleccion de un ciclo de generacion.

  13. Smart intermittency-friendly cogeneration: Techno-economic performance of innovative double storage concept for integrating compression heat pumps in distributed cogeneration

    DEFF Research Database (Denmark)

    Blarke, Morten

    2011-01-01

    cogeneration plants rather than central power plants are giving way for wind power in the electricity mix. Could intermittent renewables be a threat to the system-wide energy, economic and environmental benefits that distributed cogeneration have to offer? This paper investigates how existing cogeneration...... plants may adapt their plant design and operational strategy to improve the co-existence between cogeneration and intermittent renewables. A novel intermittency-friendly and super-efficient concept in cogeneration is presented that involves integrating a high-pressure compression heat pump using heat...

  14. Cogeneration system simulation/optimization

    International Nuclear Information System (INIS)

    Puppa, B.A.; Chandrashekar, M.

    1992-01-01

    Companies are increasingly turning to computer software programs to improve and streamline the analysis o cogeneration systems. This paper introduces a computer program which originated with research at the University of Waterloo. The program can simulate and optimize any type of layout of cogeneration plant. An application of the program to a cogeneration feasibility study for a university campus is described. The Steam and Power Plant Optimization System (SAPPOS) is a PC software package which allows users to model any type of steam/power plant on a component-by-component basis. Individual energy/steam balances can be done quickly to model any scenario. A typical days per month cogeneration simulation can also be carried out to provide a detailed monthly cash flow and energy forecast. This paper reports that SAPPOS can be used for scoping, feasibility, and preliminary design work, along with financial studies, gas contract studies, and optimizing the operation of completed plants. In the feasibility study presented, SAPPOS is used to evaluate both diesel engine and gas turbine combined cycle options

  15. Thermionic cogeneration burner design

    Science.gov (United States)

    Miskolczy, G.; Goodale, D.; Moffat, A. L.; Morgan, D. T.

    Since thermionic converters receive heat at very high temperatures (approximately 1800 K) and reject heat at moderately high temperatures (approximately 800 K), they are useful for cogeneration applications involving high temperature processes. The electric power from thermionic converters is produced as a high amperage, low-voltage direct current. An ideal cogeneration application would be to utilize the reject heat at the collector temperature and the electricity without power conditioning. A cogeneration application in the edible oil industry fulfills both of these requirements since both direct heat and hydrogen gas are required in the hydrogenation of the oils. In this application, the low-voltage direct current would be used in a hydrogen electrolyzer.

  16. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, M., E-mail: m.shaaban@fke.utm.my [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia); Azit, A.H. [Tenaga Nasional Berhad, Wisma TNB, Jalan Timur, 46200 Petaling Jaya, Selangor (Malaysia); Nor, K.M. [Centre of Electrical Energy Systems, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2011-09-15

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: > Mixed-integer nonlinear programming and dynamic programming are used in the design. > Various loading levels are modeled and hourly operation schedule is determined. > Standby electricity charge has a minimal impact on cogeneration feasibility. > Gas and electricity prices are interrelated and affect cogeneration investment. > Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  17. Grid integration policies of gas-fired cogeneration in Peninsular Malaysia: Fallacies and counterexamples

    International Nuclear Information System (INIS)

    Shaaban, M.; Azit, A.H.; Nor, K.M.

    2011-01-01

    Despite the abundance of natural gas reserves in Malaysia coupled with serious government thrusts to promote cogeneration, its (cogeneration) development pace lags far off expectations. There are widespread fallacies among potential cogeneration developers and concerned professionals that cogeneration is uncompetitive in Malaysia due to existing policies of subsidized gas prices and grid-connection charges. This paper exposes these fallacies through counterexamples of practical cogeneration system design and evaluation of some segments of the industrial and service sectors in Peninsular Malaysia. The electrical and thermal characteristics of the cogeneration were modeled based on heat rate characteristics at partial loading patterns. A hierarchical mathematical programming approach that uses mixed-integer nonlinear optimization and dynamic programming principle, if necessary, is employed to determine the optimal size of cogeneration and its related auxiliary equipment as well as the optimal operation schedule. Financial assessment is integrated at a later stage to assess the economic viability of the system. Analyses of the cogeneration potential for several facilities of miscellaneous activities were carried out using various gas and electricity prices. Results obtained consistently rebuff the perpetuated fallacies and confirm that there is no real barrier to cogeneration development in Malaysia under current policies of gas prices and electricity tariffs. - Highlights: → Mixed-integer nonlinear programming and dynamic programming are used in the design. → Various loading levels are modeled and hourly operation schedule is determined. → Standby electricity charge has a minimal impact on cogeneration feasibility. → Gas and electricity prices are interrelated and affect cogeneration investment. → Under existing policies, there is no barrier to cogeneration adoption in Malaysia.

  18. Can Dutch co-generation survive threats of the liberalisation of the energy markets

    International Nuclear Information System (INIS)

    Battjes, J.J.; Rijkers, F.A.M.

    2000-07-01

    The paper presents an analysis of the effects of liberalisation of the Dutch energy markets on the future development of combined heat and power generation (co-generation) in the Netherlands. First, it reviews the historical growth in co-generation in the Netherlands and the supportive policy measures that have contributed to this growth. Second, the liberalisation process of the Dutch electricity market and the Dutch gas market is described. Subsequently, we discuss the impacts of these new market structures on co-generation by using two scenarios for the Dutch energy markets. Our assessment of the impacts is mainly focused on the cost-effectiveness of co-generation projects. We determine the key aspects that influence the cost-effectiveness of a co-generation project and analyse some of the calculations for different small-scale and large-scale co-generation projects. Based on the results, we conclude that investments in new co-generation plants are unlikely in the short term and the existing plants can barely produce with a positive cash flow. As many parties have an interest in reducing the negative effects of a liberalised energy market on co-generation, approaches are sought to improve the cost-effectiveness of co-generation in the Netherlands. We describe several optional supportive measures for co-generation mainly resulting from the determination of the barriers for co-generation. Moreover, Dutch authorities have already responded to these barriers by preparing policy measures such as investment subsidies and exemption from the energy tax. 2 refs

  19. Electricity transport regimes: their impact on cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, Erwan [COGEN, Europe (Belgium)

    2000-12-01

    In many cases the main product of cogeneration is heat and the surplus electricity is sold to the grid. However, the economics of cogeneration can be influenced by transport networks (transmission and distribution): the structure of network pricing is relatively new. In a recent note from COGEN Europe it was recommended that cogenerators who use only the local distribution system should not pay for the transmission system and that tariffs should be structured in sufficient detail for the advantages of decentralisation to be realised. The article is presented under the sub-headings of (i) why is this important? (the omission of the transmission element reduces the overall price of cogeneration); (ii) the advantages of decentralised cogeneration; (iv) the theory - the different systems (the European Directive on electricity market liberalization); (v) the options for transport fees; (vi) current regimes in some EU states (vii) the case of transborder transport; impact of each system on cogeneration; recommendations to policymakers; (viii) the Netherlands and (ix) the UK.

  20. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Yukich, J.M.

    1999-01-01

    A general overview of the Canadian income tax laws under which cogeneration plants will operate was presented. Highlights of some of the more important tax issues associated with cogeneration operations were included. This includes some of the specific rules dealing with the availability of the Manufacturing and Processing tax, credit, capital cost allowance, the Specified Energy Property rules and the tax treatment of Canadian Renewable and Conservation Expenses including the ability of a company to transfer such expenses to shareholders. Since it is expected that future cogeneration plants will have more than one owner, this paper reviewed the various legal structures through which multiple owners can own and run their cogeneration operations. Tax considerations related to the scale of a cogeneration plant were also reviewed

  1. Coal fired air turbine cogeneration

    Science.gov (United States)

    Foster-Pegg, R. W.

    Fuel options and generator configurations for installation of cogenerator equipment are reviewed, noting that the use of oil or gas may be precluded by cost or legislation within the lifetime of any cogeneration equipment yet to be installed. A coal fueled air turbine cogenerator plant is described, which uses external combustion in a limestone bed at atmospheric pressure and in which air tubes are sunk to gain heat for a gas turbine. The limestone in the 26 MW unit absorbs sulfur from the coal, and can be replaced by other sorbents depending on types of coal available and stringency of local environmental regulations. Low temperature combustion reduces NOx formation and release of alkali salts and corrosion. The air heat is exhausted through a heat recovery boiler to produce process steam, then can be refed into the combustion chamber to satisfy preheat requirements. All parts of the cogenerator are designed to withstand full combustion temperature (1500 F) in the event of air flow stoppage. Costs are compared with those of a coal fired boiler and purchased power, and it is shown that the increased capital requirements for cogenerator apparatus will yield a 2.8 year payback. Detailed flow charts, diagrams and costs schedules are included.

  2. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship

    International Nuclear Information System (INIS)

    Liang, Youcai; Shu, Gequn; Tian, Hua; Liang, Xingyu; Wei, Haiqiao; Liu, Lina

    2013-01-01

    Highlights: • A novel electricity–cooling cogeneration system was used to recover waste heat aboard ships. • Performance of such RC–ARS system was investigated theoretically. • Optimal exergy output can be obtained when the vaporization pressure of RC is 300 kPa. • The exergy efficiency of cogeneration system is 5–12% higher than that of basic Rankine cycle only. - Abstract: In this paper, an electricity–cooling cogeneration system based on Rankine–absorption refrigeration combined cycle is proposed to recover the waste heat of the engine coolant and exhaust gas to generate electricity and cooling onboard ships. Water is selected as the working fluid of the Rankine cycle (RC), and a binary solution of ammonia–water is used as the working fluid of the absorption refrigeration cycle. The working fluid of RC is preheated by the engine coolant and then evaporated and superheated by the exhaust gas. The absorption cycle is powered by the heat of steam at the turbine outlet. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions. Results show that the amount of additional cooling output is up to 18 MW. Exergy output reaches the maximum 4.65 MW at the vaporization pressure of 300 kPa. The study reveals that the electricity–cooling cogeneration system has improved the exergy efficiency significantly: 5–12% increase compared with the basic Rankine cycle only. Primary energy ratio (PER) decreases as the vaporization pressure increases, varying from 0.47 to 0.40

  3. Cogeneration development and market potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F.; Levine, M.D.; Naeb, J. [Lawrence Berkeley Lab., CA (United States); Xin, D. [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

    1996-05-01

    China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

  4. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    Science.gov (United States)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  5. Current experience with central-station nuclear cogeneration plants

    International Nuclear Information System (INIS)

    1981-10-01

    In considering the potential of the HTGR for nuclear cogeneration, a logical element for investigation is the recent history of nuclear cogeneration experience. Little is found in recent literature; however, the twin nuclear cogeneration plant at Midland is nearing completion and this milestone will no doubt be the basis for a number of reports on the unique cogeneration facility and operating experiences with it. Less well known in the US is the Bruce Nuclear Power Development in Ontario, Canada. Originally designed to cogenerate steam for heavy water production, the Bruce facility is the focus of a major initiative to create an energy park on the shores of Lake Huron. To obtain an improved understanding of the status and implications of current nuclear cogeneration experience, GCRA representatives visited the Ontario Hydro offices in Toronto and subsequently toured the Midland site near Midland, Michigan. The primary purpose of this report is to summarize the results of those visits and to develop a series of conclusions regarding the implications for HTGR cogeneration concepts

  6. Cogeneration

    International Nuclear Information System (INIS)

    Lock, R.H.J.H.

    1990-01-01

    Cogeneration has dominated generation capacity expansion in the 1980s in many regions in a way that was never envisaged in the 1970s. The author of this paper suspects it will continue to play a major role in the 1990s in providing new power supply, though perhaps as a smaller part of a larger and more diverse market to meet new capacity needs than we have seen in the 1980s. When Congress enacted Section 210 of PURPA in 1978, its central goal was to create, through a series of regulatory protections primarily designed to neutralize the monopsony power of the purchasing utility, a quasi-market for cogeneration and certain other small power technologies. This would provide a truer test of their value in the power supply mix than had traditional regulation. However, Congress envisaged these sources as only a small, though potentially efficient, adjunct to traditional utility capacity additions

  7. Micro-size cogeneration plants and virtual power plants. New energy landscapes; Mikro-KWK und virtuelle Kraftwerke. Neue Energielandschaften

    Energy Technology Data Exchange (ETDEWEB)

    Roon, Serafin von [Forschungsstelle fuer Energiewirtschaft e.V., Muenchen (Germany)

    2009-07-01

    Combined heat and power generation is an established technology. With micro-size cogeneration units, the technology is now available to private single or multiple dwellings and for decentral power supply of residential blocks. With the right political boundary conditions and integrated into virtual power stations, this is an option for enhanced use of renewable energy sources and for decentral, flexible and climate-friendly heat and power generation in buildings. Economic efficiency analyses by experts, high utilisation rates, innovative developments of the manufacturers and a positive public image are all in favour of a great future for micro-size cogeneration units. (orig.)

  8. Performance assessment of a micro-cogeneration system under realistic operating conditions

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio

    2013-01-01

    Highlights: • Performances of a micro-cogeneration system have been experimentally evaluated. • Cogenerator performances have been compared with those of a traditional system. • Measured data have been analyzed from both energy and exergy points of view. - Abstract: The European Parliament stated that high-efficiency cogeneration is a Community priority given the potential benefits of cogeneration with regard to saving primary energy and reducing emissions. According to this position, the performance of many micro-cogeneration systems have been assessed from an energy and environmental point of view. However, in the most part of cases, the assessments have been performed by using technical data from manufacturers and/or experimental results measured during steady-state operation, without considering the inefficiencies related to the transient periods; in addition, few works have been devoted to analyze the system operation from an exergy-based point of view. In this paper the electric load-following operation of an internal combustion engine based micro-cogeneration unit with 6.0 kW as nominal electric output has been experimentally investigated in electric load-following operation during a 24 h dynamic test with the application of a realistic daily load profile representing the Italian domestic non-HVAC electric demand for a multi-family house of five dwellings. The measured data have been compared with those that would be associated with servicing the building with electricity from the central electric grid and heat from a natural gas fired boiler from an energy, exergy and environmental points of view

  9. Mathematical Modelling of a Hybrid Micro-Cogeneration Group Based on a Four Stroke Diesel Engine

    Directory of Open Access Journals (Sweden)

    Apostol Valentin

    2014-06-01

    Full Text Available The paper presents a part of the work conducted in the first stage of a Research Grant called ”Hybrid micro-cogeneration group of high efficiency equipped with an electronically assisted ORC” acronym GRUCOHYB. The hybrid micro-cogeneration group is equipped with a four stroke Diesel engine having a maximum power of 40 kW. A mathematical model of the internal combustion engine is presented. The mathematical model is developed based on the Laws of Thermodynamics and takes into account the real, irreversible processes. Based on the mathematical model a computation program was developed. The results obtained were compared with those provided by the Diesel engine manufacturer. Results show a very high correlation between the manufacturer’s data and the simulation results for an engine running at 100% load. Future developments could involve using an exergetic analysis to show the ability of the ORC to generate electricity from recovered heat

  10. Cogeneration steam turbine plant for district heating of Berovo (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin

    2000-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. A coal dust fraction from B rik' - Berovo coal mine is the main energy resource for cogeneration steam turbine plant. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. All necessary facilities of cogeneration plant is examined and determined. For proposed cogeneration steam turbine power plant for combined heat and electric production it is determined: heat and electric capacity of the plant, annually heat and electrical quantity production and annually coal consumption, the total investment of the plant, the price of both heat and electric energy as well as the pay back period. (Authors)

  11. Cogeneration technologies, optimisation and implementation

    CERN Document Server

    Frangopoulos, Christos A

    2017-01-01

    Cogeneration refers to the use of a power station to deliver two or more useful forms of energy, for example, to generate electricity and heat at the same time. This book provides an integrated treatment of cogeneration, including a tour of the available technologies and their features, and how these systems can be analysed and optimised.

  12. The alarming future for cogeneration

    International Nuclear Information System (INIS)

    Koevoet, H.

    2000-01-01

    Low prices and uncertainty in pricing of energy, higher costs for investment and expensive fuels are the most important reasons why the growth of cogeneration capacity in the Netherlands stagnates. The liberalization of the energy market appears to be the malefactor. A brief overview is given of the ECN (Netherlands Energy Research Foundation) report 'Toekomst warmtekrachtkoppeling' (Future of cogeneration)

  13. Proposed improvements to a model for characterizing the electrical and thermal energy performance of stirling engine micro-cogeneration devices based upon experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, K. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ont. (Canada); Ugursal, V.I. [Dalhousie University, Halifax, NS (Canada); Beausoleil-Morrison, I. [Carleton University, 1125 Colonel By Drive, Ottawa, Ont. (Canada)

    2010-10-15

    Stirling engines (SE) are a market-ready technology suitable for residential cogeneration of heat and electricity to alleviate the increasing demand on central power grids. Advantages of this external combustion engine include high cogeneration efficiency, fuel flexibility, low noise and vibration, and low emissions. To explore and assess the feasibility of using SE based cogeneration systems in the residential sector, there is a need for an accurate and practical simulation model that can be used to conduct sensitivity and what-if analyses. A simulation model for SE based residential scale micro-cogeneration systems was recently developed; however the model is impractical due to its functional form and data requirements. Furthermore, the available experimental data lack adequate diversity to assess the model's suitability. In this paper, first the existing model is briefly presented, followed by a review of the design and implementation of a series of experiments conducted to study the performance and behaviour of the SE system and to develop extensive, and hitherto unavailable, operational data. The empirical observations are contrasted with the functional form of the existing simulation model, and improvements to the structure of the model are proposed based upon these observations. (author)

  14. The co-generation file

    International Nuclear Information System (INIS)

    Signoret, Stephane; Petitot, Pauline; Mary, Olivier; Sredojevic, Alexandre

    2017-01-01

    Whereas co-generation has many benefits (increase of energy efficiency, decrease of greenhouse gas emissions, job creation, integration of renewable energies, local and efficient production of heat and electricity, and so on), as explained in a first article, it has not enough public support in France any longer, notably for installations of more than 1 MW. However, as shown in some examples (a power and heat plant in Aulnay-sous-Bois, a factory in Graulhet), some co-generation installations have been able to take some benefit from the situation in 2015. Besides, some technological development are addressed: new burners to comply with regulations regarding NO_x and CO emissions, new engines able to operate with various gases such as hydrogen or gas produced by biomass gasification. A last article presents a co-generation boiler installed in a medical care home near Roye in the Somme district

  15. Cogeneration: a win-win option for Cadbury Nigeria

    International Nuclear Information System (INIS)

    Dayo, Felix; Bogunjoko, S.B.; Sobanwa, A.C.

    2001-01-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration

  16. Cogeneration: a win-win option for Cadbury Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Dayo, Felix [Triple ' E' Systems Associates Ltd. (Nigeria); Bogunjoko, S.B.; Sobanwa, A.C. [Cadbury Nigeria plc. (Nigeria)

    2001-02-01

    Like most developing countries, Nigeria is looking to cogeneration as a sustainable and reliable means of overcoming its present unreliable supply of energy. The article focuses on the efforts of the food company Cadbury Nigeria which uses cogeneration for all its steam and power requirements within its own factory. The Company recently decided to upgrade further by switching from liquid fossil fuels to natural gas. Diagrams show the existing system as well as the systems for cogeneration with natural gas. Some of the obstacles to be overcome to improve the viability of cogeneration in developing countries are listed. It is hoped that the outcome of the COP6 meeting to be held in April 2001 will offer encouragement for cogeneration.

  17. Reviving manufacturing with a federal cogeneration policy

    International Nuclear Information System (INIS)

    Brown, Marilyn A.; Cox, Matt; Baer, Paul

    2013-01-01

    Improving the energy economics of manufacturing is essential to revitalizing the industrial base of advanced economies. This paper evaluates ex-ante a federal policy option aimed at promoting industrial cogeneration—the production of heat and electricity in a single energy-efficient process. Detailed analysis using the National Energy Modeling System (NEMS) and spreadsheet calculations suggest that industrial cogeneration could meet 18% of U.S. electricity requirements by 2035, compared with its current 8.9% market share. Substituting less efficient utility-scale power plants with cogeneration systems would produce numerous economic and environmental benefits, but would also create an assortment of losers and winners. Multiple perspectives to benefit/cost analysis are therefore valuable. Our results indicate that the federal cogeneration policy would be highly favorable to manufacturers and the public sector, cutting energy bills, generating billions of dollars in electricity sales, making producers more competitive, and reducing pollution. Most traditional utilities, on the other hand, would lose revenues unless their rate recovery procedures are adjusted to prevent the loss of profits due to customer owned generation and the erosion of utility sales. From a public policy perspective, deadweight losses would be introduced by market-distorting federal incentives (ranging annually from $30 to $150 million), but these losses are much smaller than the estimated net social benefits of the federal cogeneration policy. - Highlights: ► Industrial cogeneration could meet 18% of US electricity demand by 2035, vs. 8.9% today. ► The policy would be highly favorable to manufacturers and the public. ► Traditional electric utilities would likely lose revenues. ► Deadweight loss would be introduced by tax incentives. ► The policy’s net social benefits would be much larger.

  18. An investigation of the techno-economic impact of internal combustion engine based cogeneration systems on the energy requirements and greenhouse gas emissions of the Canadian housing stock

    International Nuclear Information System (INIS)

    Asaee, S. Rasoul; Ugursal, V. Ismet; Beausoleil-Morrison, Ian

    2015-01-01

    This study provides a techno-economic evaluation of retrofitting internal combustion engine (ICE) based cogeneration systems in the Canadian housing stock (CHS). The study was conducted using the Canadian Hybrid Residential End-Use Energy and GHG Emissions Model (CHREM). CHREM includes close to 17,000 unique house files that are statistically representative of the Canadian housing stock. The cogeneration system performance was evaluated using a high resolution integrated building performance simulation software. It is assumed that the ICE cogeneration system is retrofitted into all houses that currently use a central space heating system and have a suitable basement or crawl space. The GHG emission intensity factor associated with marginal electricity generation in each province is used to estimate the annual GHG emissions reduction due to the cogeneration system retrofit. The results show that cogeneration retrofit yields 13% energy savings in the CHS. While the annual GHG emissions would increase in some provinces due to cogeneration retrofits, the total GHG emissions of the CHS would be reduced by 35%. The economic analysis indicates that ICE cogeneration system retrofits may provide an economically feasible opportunity to approach net/nearly zero energy status for existing Canadian houses. - Highlights: • Techno-economic evaluation ICE cogeneration systems for Canadian housing is reported. • ICE cogeneration retrofit could yield 13% annual energy savings in Canadian housing. • Annual GHG emissions of Canadian housing could decrease by 35% with ICE cogeneration. • But, in some provinces, GHG emissions would increase as a result of ICE cogeneration

  19. Cogeneration technology for the metal-processing sector

    Energy Technology Data Exchange (ETDEWEB)

    Sala, A. [Accenture, Gran Via 45, 48011 Bilbao (Spain); Flores, I.; Sala, J.M.; Millan, J.A.; Gomez, I. [Department of Thermal Engineering, University of the Basque Country, Alda, Urquijo s/n, 48013 Bilbao (Spain); Lopez, L.M. [Department of Mechanical Engineering, University of La Rioja, C/Luis de Ulloa, 20, E 26004 Logrono (La Rioja) (Spain)

    2008-06-15

    Enclosed are the results of a feasibility study for a cogeneration facility at a company manufacturing large ship and off-shore oil-platform chains. The sizing of the main cogeneration equipment has been based on the assumption that the main energy demand is that needed to keep the quench bath at a temperature of 12{sup o}C, thus compensating for the heat input from the chain proper and furnace gases. The main difficulty of the study has been to assess, with the maximum possible assurance and precision, the quench water-flow rate, which at present is cooled down through the cooling towers and in the future through an absorption cooler driven by the waste-heat present in the exhaust gases of a 1000 kW natural-gas engine. To this end, energy audits for each furnace have been carried out, identifying and quantifying each energy flow. As a technique for energy saving and efficiency improvement, cogeneration has been wide spread across all industrial sectors in Spain. (author)

  20. Gas turbine modular helium reactor in cogeneration

    International Nuclear Information System (INIS)

    Leon de los Santos, G.

    2009-10-01

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  1. Thermoeconomic analysis of a power/water cogeneration plant

    International Nuclear Information System (INIS)

    Hamed, Osman A.; Al-Washmi, Hamed A.; Al-Otaibi, Holayil A.

    2006-01-01

    Cogeneration plants for simultaneous production of water and electricity are widely used in the Arabian Gulf region. They have proven to be more thermodynamically efficient and economically feasible than single purpose power generation and water production plants. Yet, there is no standard or universally applied methodology for determining unit cost of electric power generation and desalinated water production by dual purpose plants. A comprehensive literature survey to critically assess and evaluate different methods for cost application in power/water cogeneration plants is reported in this paper. Based on this analysis, an in-depth thermoeconomic study is carried out on a selected power/water cogeneration plant that employs a regenerative Rankine cycle. The system incorporates a boiler, back pressure turbine (supplying steam to two MSF distillers), a deaerator and two feed water heaters. The turbine generation is rated at 118 MW, while MSF distiller is rated at 7.7 MIGD at a top brine temperature of 105 deg. C. An appropriate costing procedure based on the available energy accounting method which divides benefits of the cogeneration configuration equitably between electricity generation and water production is used to determine the unit costs of electricity and water. Capital charges of common equipment such as the boiler, deaerator and feed water heaters as well as boiler fuel costs are distributed between power generated and desalinated water according to available energy consumption of the major subsystems. A detailed sensitivity analysis was performed to examine the impact of the variation of fuel cost, load and availability factors in addition to capital recovery factor on electricity and water production costs

  2. Gaz de France and cogeneration: a story which goes on; Gaz de France et la cogeneration: une histoire qui se poursuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-15

    This document presents the principle of natural gas cogeneration (gas turbine and gas engine) and gives a general overview of the cogeneration market in France since 1991 and up to 2001 (development factors, results). The perspectives and opportunities of cogeneration are analyzed with respect to the development of new technologies like fuel cells (principle, advantages and future) and to the future energy markets. Follows a compilation and an analysis of French regulation texts about cogeneration systems, their connection to the power grid, and the tariffs of electricity re-purchase by Electricite de France (EdF). (J.S.)

  3. Development of cogeneration in Spain and financing methods

    International Nuclear Information System (INIS)

    Garcia, G.R.

    1994-01-01

    From 1980 there is in force in Spain a proper legal framework that could be considered a sound support to further cogeneration development. Despite this cogeneration law, a very few schemes were built. In 1986 IDAE, a state company attached to the Spanish Ministry of Industry and Energy, began a Cogeneration Programme focussed to a higher cogeneration utilisation. This programme has three main foundations: Technology dissemination; Technical support; Investment financing. As a result of these activities more than 1000 MW additional power schemes have been ordered all over the country and, as a consequence, cogenerated electricity will be multiplied by three in respect with the previous situation. A 20% of this new capacity has been developed directly by IDAE, that has invested approximately 90 million US Dollar through third party financing technics. The National Energy Plan 1991-2000 established the energy policy actuations in Spain for the present decade, giving importance to cogeneration development. This paper explains the way this development has been achieved, outlining IDAE's engagement to finance combined heat and power schemes through its comprehensive way of performing third party financing systems. (au)

  4. Electronic data base for the project of cogeneration power plants; Planilha eletronica para projeto de centrais de cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Paulo Renato Galveias; Balestieri, Jose Antonio Perrella [UNESP, Guaratingueta, SP (Brazil)

    1997-12-31

    In the cogeneration system design some basic characteristics of the proposed scheme must be technical and economically evaluated in comparison with other possible schemes that equally fits the thermal and electrical energy demands. The presented model for helping the cogeneration systems design process is based on electronic data base and is characterized by its easy of using and including technical and economic new variables, the availability in personal computers and the possibility of being connected to graphical software s that allow visualizing the schemes proposed turning it very useful both to the beginners as well as the professional accustomed to this procedure. In this paper it is present the results obtained in the development of the model highlighting specially its technical characteristics. (author) 9 refs., 7 figs.; e-mail: perrella at feg.unesp.br

  5. Advanced cogeneration and absorption chillers potential for service to Navy bases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Butcher, T.A.; Leigh, R.W.; McDonald, R.J.; Pierce, B.L.

    1996-04-01

    The US military uses millions of Btu`s of thermal energy to heat, cool and deliver process thermal energy to buildings on military bases, much of which is transmitted through a pipeline system incorporating thousands of miles of pipe. Much of this pipeline system is in disrepair and is nearing the end of its useful life, and the boilers which supply it are old and often inefficient. In 1993, Brookhaven National Laboratory (BNL) proposed to SERDP a three-year effort to develop advanced systems of coupled diesel cogenerators and absorption chillers which would be particularly useful in providing a continuation of the services now provided by increasingly antiquated district systems. In mid-February, 1995, BNL learned that all subsequent funding for our program had been canceled. BNL staff continued to develop the Program Plan and to adhere to the requirements of the Execution Plan, but began to look for ways in which the work could be made relevant to Navy and DoD energy needs even without the extensive development plan formerly envisioned. The entire program was therefore re-oriented to look for ways in which small scale cogeneration and absorption chilling technologies, available through procurement rather than development, could provide some solutions to the problem of deteriorated district heating systems. The result is, we believe, a striking new approach to the provision of building services on military bases: in many cases, serious study should be made of the possibility that the old district heating system should be removed or abandoned, and small-scale cogenerators and absorption chillers should be installed in each building. In the remainder of this Summary, we develop the rationale behind this concept and summarize our findings concerning the conditions under which this course of action would be advisable and the economic benefits which will accrue if it is followed. The details are developed in the succeeding sections of the report.

  6. Thermo-economic analysis of a micro-cogeneration system based on a rotary steam engine (RSE)

    International Nuclear Information System (INIS)

    Alanne, Kari; Saari, Kari; Kuosa, Maunu; Jokisalo, Juha; Martin, Andrew R.

    2012-01-01

    A rotary steam engine (RSE) is a simple, small, quiet and lubricant-free option for micro-cogeneration. It is capable of exploiting versatile thermal sources and steam temperatures of 150–180 °C, which allow operational pressures less than 10 bar for electrical power ranges of 1–20 kW e . An RSE can be easily integrated in commercially available biomass-fired household boilers. In this paper, we characterize the boiler-integrated RSE micro-cogeneration system and specify a two-control-volume thermodynamic model to conduct performance analyses in residential applications. Our computational analysis suggests that an RSE integrated with a 17 kW th pellet-fueled boiler can obtain an electrical output of 1.925 kW e, in the design temperature of 150 °C, the electrical efficiency being 9% (based on the lower heating value of the fuel, LHV) and the thermal efficiency 77% (LHV). In a single-family house in Finland, the above system would operate up to 1274 h/y, meeting 31% of the house's electrical demand. The amount of electricity delivered into the grid is 989 kW h/y. An economic analysis suggests that incremental costs not exceeding € 1500 are justifiable at payback periods less than five years, when compared to standard boilers. - Highlights: ► We characterize and model a micro-cogeneration system based on a rotary steam engine. ► We assess the performance of the above system in a residential building in Finland. ► The above system is capable of meeting 31% of the building's annual electrical demand. ► The above system may cost at most € 1500 more than a standard boiler system.

  7. Cogeneration in the former Soviet Union

    International Nuclear Information System (INIS)

    Horak, W.C.

    1997-01-01

    The former Soviet Union made a major commitment to Cogeneration. The scale and nature of this commitment created a system conceptually different from Cogeneration in the west. The differences were both in scale, in political commitment, and in socio economic impact. This paper addresses some of the largest scale Cogeneration programs, the technology, and the residual impact of these programs. The integration of the Cogeneration and nuclear programs is a key focus of the paper. Soviet designed nuclear power plants were designed to produce both electricity and heat for residential and industrial uses. Energy systems used to implement this design approach are discussed. The significant dependence on these units for heat created an urgent need for continued operation during the winter. Electricity and heat are also produced in nuclear weapons production facilities, as well as power plants. The Soviets also had designed, and initiated construction of a number of nuclear power plants open-quotes ATETsclose quotes optimized for production of heat as well as electricity. These were canceled

  8. Tax issues in structuring effective cogeneration vehicles

    International Nuclear Information System (INIS)

    Ebel, S.R.

    1999-01-01

    An overview of the Canadian income tax laws that apply to cogeneration projects was presented. Certain tax considerations could be taken into account in deciding upon ownership and financing structures for cogeneration projects, particularly those that qualify for class 43.1 capital cost allowance treatment. The tax treatment of project revenues and expenses were described. The paper also reviewed the 1999 federal budget proposals regarding the manufacturing and processing tax credit, the capital cost allowance system applicable to cogeneration assets and the treatment of the Canadian renewable conservation expense

  9. Thermodynamic and economic studies of two new high efficient power-cooling cogeneration systems based on Kalina and absorption refrigeration cycles

    International Nuclear Information System (INIS)

    Rashidi, Jouan; Ifaei, Pouya; Esfahani, Iman Janghorban; Ataei, Abtin; Yoo, Chang Kyoo

    2016-01-01

    Highlights: • Proposing two new power and cooling cogeneration systems based on absorption chillers and Kalina cycles. • Model-based comparison through thermodynamic and economic standpoints. • Investigating sensitivity of system performance and costs to the key parameters. • Reducing total annual costs of the base system up to 8% by cogeneration. • Increasing thermal efficiency up to 4.9% despite of cooling generation. - Abstract: Two new power and cooling cogeneration systems based on Kalina cycle (KC) and absorption refrigeration cycle (AC) are proposed and studied from thermodynamic and economic viewpoints. The first proposed system, Kalina power-cooling cycle (KPCC), combines the refrigerant loop of the water-ammonia absorption chiller, consisting of an evaporator and two throttling valves with the KC. A portion of the KC mass flow enters the evaporator to generate cooling after being condensed in the KPCC system. KPCC is a flexible system adapting power and cooling cogeneration to the demand. The second proposed system, Kalina lithium bromide absorption chiller cycle (KLACC), consists of the KC and a single effect lithium bromide-water absorption chiller (AC_L_i_B_r_-_w_a_t_e_r). The KC subsystem discharges heat to the AC_L_i_B_r_-_w_a_t_e_r desorber before condensing in the condenser. The performance and economic aspects of both proposed systems are analyzed and compared with the stand alone KC. A parametric analysis is conducted to evaluate the sensitivity of efficiencies and the generated power and cooling quantities to the key operating variables. The results showed that, thermal efficiency and total annual costs decreased by 5.6% and 8% for KPCC system but increased 4.9% and 58% for KLACC system, respectively. Since the power-cooling efficiency of KLACC is 42% higher than KPCC it can be applied where the aim is cooling generation without considering economic aspects.

  10. Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine

    International Nuclear Information System (INIS)

    Hosseinpour, Javad; Sadeghi, Mohsen; Chitsaz, Ata; Ranjbar, Faramarz; Rosen, Marc A.

    2017-01-01

    Highlights: • A novel cogeneration system driven by a SOFC and Stirling engine is proposed. • Energy and exergy assessments are reported of a novel cogeneration system. • The energy efficiency of the combined system can be achieved 75.88%. • The highest exergy destruction occurs in the air heat exchanger. - Abstract: A cogeneration system based on a methane-fed solid oxide fuel cell (SOFC) integrated with a Stirling engine is analyzed from the viewpoints of energy and exergy. The effects on the system performance are investigated of varying four key system parameters: current density, SOFC inlet temperature, compression ratio and regenerator effectiveness. The energy efficiency of the combined system is found to be 76.32% which is about 24.61% more than that of a stand-alone SOFC plant under the same conditions. Considering exergy efficiency as the only objective function, it is found that, as the SOFC inlet temperature increases, the exergy efficiency of the cogeneration system rises to an optimal value of 56.44% and then decreases. The second law analysis also shows that the air heat exchanger has the greatest exergy destruction rate of all system components. The cooling water of the engine also can supply the heating needs for a small home.

  11. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    Science.gov (United States)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  12. Cogeneration for small SAGD projects

    Energy Technology Data Exchange (ETDEWEB)

    Albion, Stuart [AMEC BDR Limited (United Kingdom)

    2011-07-01

    As many SAGD projects are being developed in remote locations, the supply of a steady source of power to them becomes an important question. Connecting these remote facilities to a grid can often be difficult and costly. This presentation, by AMEC BDR Limited, promotes the use of cogeneration in small SAGD projects. Cogeneration is the generation of two forms of energy from one fuel source. In this particular case, the energy forms would be electricity and heat. In many SAGD projects, a gas turbine system is used to generate the electricity, while a heat recovery system is utilized to generate steam. The use of cogeneration systems in SAGD projects, as opposed to using separate heat and electricity systems, has the potential to significantly reduce the amount of energy lost, the amount of emissions and power costs, in addition to ensuring that there is a reliable supply of steam and electricity.

  13. A new dynamism for the cogeneration of 2000 - from the medium to the mini-cogeneration; Une nouvelle dynamique pour la cogeneration en l'an 2000 - de la moyenne vers le mini-cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In the framework of the Eco-Industries 2000 meeting, the ATEE organized a colloquium on the medium and mini-cogeneration market. This book presents the fourteen papers proposed at this colloquium bringing information on the cogeneration technology for the medium and mini-systems. The state of the art concerning the turbines and examples of dual systems (heating and warm water) are provided. Some economical aspects are also presented with the international and national market, the contracts management with EDF and the investments. (A.L.B.)

  14. Cogeneration using small sized series connected units: Feasibility study

    International Nuclear Information System (INIS)

    Tondelli, F.; Bergamini, G.

    1992-01-01

    This paper evidences the technical/economic feasibility of the use of methane fuelled modular cogeneration systems based on small series connected Otto or Diesel cycle engines delivering from 20 to 90 kW of power. Ample reference is made to the successful application of modular cogeneration systems to supply low temperature thermal energy to hospitals, hotels, food processing firms, etc., in Italy. The cost benefit analysis covers many aspects: design, manufacturing, operation, performance, maintenance and safety. Suggestions are also made as to optimum contractual arrangements for equipment service and maintenance, as well as, for the exchange of power with local utilities

  15. Calibration and validation of a model for simulating thermal and electric performance of an internal combustion engine-based micro-cogeneration device

    International Nuclear Information System (INIS)

    Rosato, A.; Sibilio, S.

    2012-01-01

    The growing worldwide demand for more efficient and less polluting forms of energy production has led to a renewed interest in the use of micro-cogeneration technologies in the residential. Among the others technologies, internal combustion engine-based micro-cogeneration devices are a market-ready technology gaining an increasing appeal thanks to their high efficiency, fuel flexibility, low emissions, low noise and vibration. In order to explore and assess the feasibility of using internal combustion engine-based cogeneration systems in the residential sector, an accurate and practical simulation model that can be used to conduct sensitivity and what-if analyses is needed. A residential cogeneration device model has been developed within IEA/ECBCS Annex 42 and implemented into a number of building simulation programs. This model is potentially able to accurately predict the thermal and electrical outputs of the residential cogeneration devices, but it relies almost entirely on empirical data because the model specification uses experimental measurements contained within a performance map to represent the device specific performance characteristics coupled with thermally massive elements to characterize the device's dynamic thermal performance. At the Built Environment Control Laboratory of Seconda Università degli studi di Napoli, an AISIN SEIKI micro-cogeneration device based on natural gas fuelled reciprocating internal combustion engine is available. This unit has been intensively tested in order to calibrate and validate the Annex 42 model. This paper shows in detail the series of experiments conducted for the calibration activity and examines the validity of this model by contrasting simulation predictions to measurements derived by operating the system in electric load following control strategy. The statistical comparison was made both for the whole database and the segregated data by system mode operation. The good agreement found in the predictions of

  16. District heating/cogeneration application studies for the Minneapolis-St Paul area. Executive summary; overall feasibility and economic viability for a district heating/new cogeneration system in Minneapolis-St. Paul

    Energy Technology Data Exchange (ETDEWEB)

    Margen, P.; Larsson, K.; Cronholm, L.A.; Marklund, J.E.

    1979-08-01

    A study was undertaken to determine the feasibility of introducing a large-scale, hot-water, district-heating system for the Minneapolis-St. Paul area. The analysis was based on modern European hot-water district-heating concepts in which cogeneration power plants supply the base-load thermal energy. Heat would be supplied from converted turbines of existing coal-fired power plants in Minneapolis and St. Paul. Toward the end of the 20-year development period, one or two new cogeneration units would be required. Thus, the district-heating system could use low-grade heat from either coal-fired or nuclear cogeneration power stations to replace the space-heating fuels currently used - natural gas and distillate oil. The following conclusions can be drawn: the concept is technically feasible, it has great value for fuel conservation, and with appropriate financing the system is economically viable.

  17. The cogeneration potential of the sugar industry in Vietnam

    International Nuclear Information System (INIS)

    Bhattacharyya, S.C.; Thang, D.N.Q.

    2004-01-01

    Vietnam produces about 15 million tons of sugarcane per year and about five mt of bagasse. There is the potential for cogeneration using bagasse, which can also help overcome power shortages in the country. This paper analyses the potential for cogeneration from the sugar industry in Vietnam under three different scenarios and finds that between 100 and 300 megawatts of power-generating capacity could be supported by the bagasse generated from sugar mills, depending on the technology considered for sugar mills and cogeneration and the possibility of renovation of the existing mills. The paper also assesses the expense of cogeneration and finds it to be a cost-effective option for all types of sugar mill. It is found that the cost savings from cogeneration would more than offset the cost of introducing cogeneration in sugar mills with inefficient cane processing technologies. Sugar mills with modern technologies would have a significant amount of excess power and most of these plants would break-even if they sold excess power at around 4.5 cents per kilowatt hour. The break-even cost and the average production cost are sensitive to the investment cost assumptions. The paper thus suggests that cogeneration from the sugar industry is an attractive option for investors in existing mills or new sugar mills alike. (Author)

  18. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    Science.gov (United States)

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. © The Author(s) 2015.

  19. Optimal planning of gas turbine cogeneration system based on linear programming. Paper no. IGEC-1-ID09

    International Nuclear Information System (INIS)

    Oh, S.-D.; Kwak, H.-Y.

    2005-01-01

    An optimal planning for gas turbine cogeneration system has been studied. The planning problem considered in this study is to determine the optimal configuration of the system equipments and optimal operational policy of the system when the annual energy demands of electric power, heat and cooling are given a priori. The main benefit of the optimal planning is to minimize operational costs and to save energy by efficient energy utilization. A mixed-integer linear programming and the branch and bound algorithm have been adopted to obtain the optimal solution. Both the optimal configuration of the system equipments and the optimal operation policy has been obtained based on annual cost method. The planning method employed here may be applied to the planning problem of the cogeneration plant to any specific building or hotel. (author)

  20. Cogeneration offers promise - politics permitting

    Energy Technology Data Exchange (ETDEWEB)

    Koprowski, Gene

    1996-12-01

    India`s Prime Minister H D Deve Gowda and the environmental activist Maneka Gandhi clashed recently over a US1.06 billion cogeneration power plant. Gandhi accused Gowda of moving too fast in giving the plant environmental clearance two days after assuming office. The argument, which delayed the start of a new thermal power plant by US-based Cogenetrix, illustrates the hazards of building such projects in Asia. (author)

  1. Technical overview of cogeneration: the hardware, the industries, the potential development

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Because the by-product heat from a power-conversion process is captured for productive use in a cogeneration system, instead of exhausted to the environment as it is in a conventional power plant, cogeneration represents an important energy-conservation technique. By cogenerating, an industrial plant can save the fuel that would have been needed to produce the amount of heat captured. Recognizing the significant energy-savings potential offered by cogeneration, DOE has undertaken a major R, D, and D program to investigate and promote cogeneration in industry. Resource Planning Associates, Inc. (RPA), has been working to accomplish four of the program's objectives: (1) survey current, near state-of-the-art, and future cogeneration equipment, and identify any gaps or deficiencies; (2) characterize the energy requirements of the manufacturing sectors of five of the country's most energy-intensive industries - chemical, petroleum refining, paper and pulp, textiles, and food; (3) identify principal targets for, and barriers to, the increased market development of cogeneration systems; and (4) estimate the potential maximum and the probable energy savings that could be achieved in the five selected industries through cogeneration. In investigating cogeneration hardware, three specific technologies - steam turbines, gas turbines, and diesel engines - were emphasized. It is estimated that the widespread application of cogeneration technology in the five industries studied could result in a maximum potential savings of 2.4 million barrels of oil equivalent per day (or a maximum incremental capacity of 140,000 MWe) by 1985.

  2. An HTR cogeneration system for industrial application

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Van Heek, A.I.; Kikstra, J.F.

    1999-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of that study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220C. The economic characteristics of this installation turned out to be much more favourable using modern cost data. 15 refs

  3. Natural gas cogeneration plants: considerations on energy efficiency

    International Nuclear Information System (INIS)

    Arcuri, P.; Florio, G.; Fragiacomo, P.

    1996-01-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user tipology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained

  4. The role of cogeneration systems in sustainability of energy

    International Nuclear Information System (INIS)

    Çakir, Uğur; Çomakli, Kemal; Yüksel, Fikret

    2012-01-01

    Highlights: ► Energy source on the world is tending to run out day by day while the energy need of humanity is increasing simultaneously. ► There are two ways to overcome this problem; one of them is renewable energy sources like solar or wind energy systems. ► The other way is like cogeneration systems. ► Cogeneration system is one of the ways to save the energy and use the energy efficiently. ► A case study is made for a hospital to present the sustainability aspects of cogeneration systems. - Abstract: Cogeneration system (CHP) is one of the ways to save the energy and use the energy efficiently. When compared to separate fossil-fired generation of heat and electricity, CHP may result in a consistent energy conservation (usually ranging from 10% to 30%) while the avoided CO 2 emissions are, as a first approximation, similar to the amount of energy saving. In terms of sustainability, one of the primary considerations is energy efficiency. Sustainable energy is considered as a kind of energy which is renewable and continuous, meaning that the use of such energy can potentially be kept up well into the future without causing harmful repercussions for future generations. In this study, environmental benefits and sustainability aspects of cogeneration systems and importance of those systems to the use of sustainable energy are underlined. To support this idea, first we have referred some scientific studies previously made on cogeneration systems and then we have used our own case study. The case study made on gas engined cogeneration system was applied for a hospital to show the sustainability aspects of cogeneration systems.

  5. Modular cogeneration for commercial light industrial sector

    Energy Technology Data Exchange (ETDEWEB)

    Sakhuja, R.

    1984-01-01

    An analysis of gas utilities' efforts to market small cogeneration systems could be helpful to entrepreneurs now venturing into this area. Orders have been placed with Thermo Electron, USA for 15 Tecogen modular cogeneration units. Applications range from an airline catering kitchen to a university swimming pool. 5 figures, 1 table.

  6. Cogeneration and taxation in a liberalised Nordic power market

    International Nuclear Information System (INIS)

    Jess Olsen, O.; Munksgaard, J.

    1997-01-01

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO 2 -tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs

  7. Cogeneration and taxation in a liberalised Nordic power market

    Energy Technology Data Exchange (ETDEWEB)

    Jess Olsen, O.; Munksgaard, J.

    1997-12-31

    This report is about the impact of the liberalisation of the Nordic power market on cogeneration of heat and power. Special attention is given to the effects on competition of the entirely different tax regimes in the Nordic countries. Some of the main questions answered in this study are: Which cogeneration technologies are able to compete on a liberalised power market? What are the consequences of different tax structures in the four countries for cross-border competition? Which principles should be applied if a common Nordic tax structure is to be developed? The following countries are included in the study: Denmark, Finland, Norway and Sweden. Today, cogeneration provides a larger contribution to the energy supply in the Nordic countries than elsewhere in the world. Our analysis demonstrates that most cogeneration technologies can compete with the power-only technologies. This is the case with respect to both long- and short-term marginal costs. The main exception is the very expensive straw-fired cogeneration technology. The analysis is extended to include the effects of the existing tax regimes (in 1996) in Denmark, Finland and Sweden as well as of the combines energy/CO{sub 2}-tax that was proposed in 1992 by the European Commission. Each of the four tax regimes preserve the competitiveness of cogeneration within its own regime, i.e. if a given cogeneration technology is competitive without taxes it will remain so in a closed market when either Danish, Finnish, Swedish or European taxes are added. The implication of this is that the same cogeneration technology will be exposed to very different conditions in an open power market with cross-border competition, if the present tax regimes in the Nordic countries are allowed to continue. (EG) Also published in Danish. 15 refs.

  8. The prospects of development of the market of cogeneration in Europe; Les perspectives de developpement du marche de la cogeneration eu Europe

    Energy Technology Data Exchange (ETDEWEB)

    Cotard, E. [Association Europeenne de Promotion de la Cogeneration, COGEN Europe (Country unknown/Code not available)

    1999-01-01

    Cogeneration or Combined Heat and Power has a high overall efficiency and brings about important environmental advantages in particular in terms of CO{sub 2} emissions. This win-win position is crucial at a time of widespread liberalization in energy markets. However, as shown by the various development rates within the EU, cogeneration is not equally treated across Europe. These differences are not only due to local climates - the development difference can ba as high as over 30% for example between France and The Netherlands. Nevertheless some recent European legislation such as the Gas and the Electricity Directives attempt to harmonize through liberalization. Liberalization should have positive aspects for cogeneration, in particular industrial cogeneration, provided that it is well designed and implemented. (authors)

  9. New purchasing conditions for the electricity produced by cogeneration; Nouvelles conditions d`achat de l`electricite produite par cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch

    1999-12-31

    This short note summarizes the new conditions of electricity purchase as stipulated in the contracts passed between Electricite de France (EdF) and the independent companies exploiting cogeneration units. These new conditions should allow the continuation of the development of cogeneration units in a power market progressively opened to competition. (J.S.)

  10. New purchasing conditions for the electricity produced by cogeneration; Nouvelles conditions d`achat de l`electricite produite par cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, Ch.

    1998-12-31

    This short note summarizes the new conditions of electricity purchase as stipulated in the contracts passed between Electricite de France (EdF) and the independent companies exploiting cogeneration units. These new conditions should allow the continuation of the development of cogeneration units in a power market progressively opened to competition. (J.S.)

  11. Cogeneration: One way to use biomass efficiently

    International Nuclear Information System (INIS)

    Gustavsson, L.; Johansson, B.

    1993-01-01

    Cogeneration in district heating systems is the most energy-efficient way to convert biomass into heat and electricity with current or nearly commercial technologies. Methanol produced from biomass and used in vehicles instead of petrol or diesel could reduce carbon dioxide emissions nearly as much per unit of biomass as if the biomass were used to replace natural gas for cogeneration, but at some higher cost per unit of carbon dioxide reduction. The most energy-efficient way to use biomass for cogeneration appears to be combined cycle technology, and the world's first demonstration plant is now being built. Potentially, this technology can be used for electricity production in Swedish district heating systems to provide nearly 20% of current Swedish electricity production, while simultaneously reducing carbon dioxide emissions from the district heating systems by some 55%. The heat costs from cogeneration with biomass are higher than the heat costs from fossil fuel plants at current fuel prices. Biomass can only compete with fossil fuel if other advantages, for example a lower environmental impact are considered. (au) (35 refs.)

  12. Exergoeconomic analysis of small-scale biomass steam cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sotomonte, Cesar Adolfo; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba, MG (Brazil)], e-mails: c.rodriguez32@unifei.edu.br, electo@unifei.edu.br; Venturini, Osvaldo Jose; Escobar, Jose Carlos [Universidad Federal de Itajuba, MG (Brazil)], e-mail: osvaldo@unifei.edu.br

    2010-07-01

    The principal objective of this work is to develop a calculation process, based on the second law of thermodynamics, for evaluating the thermoeconomic potential of a small steam cogeneration plant using waste from pulp processing and/or sawmills as fuel. Four different configurations are presented and assessed. The exergetic efficiency of the cycles that use condensing turbines is found to be around 11%, which has almost 3 percent higher efficiency than cycles with back pressure turbines. The thermoeconomic equations used in this paper estimated the production costs varying the fuel price. The main results show that present cost of technologies in a small-scale steam cycle cogeneration do not justify the implementation of more efficient systems for biomass prices less than 100 R$/t. (author)

  13. Cogeneration trends in Europe history -- State of the art - Outlook

    International Nuclear Information System (INIS)

    Hunschofsky, H.

    1998-01-01

    Cogeneration, the utilization of heat created while producing electricity from fossil fuels, is by no means a new technology. In 1926, 71 years ago, a brochure from MAN in Germany showed a heat recovery system for diesel engines. Despite the fact that cogeneration has existed for a long time, it took half a century and the first so called ''oil crisis'' in the 1970's for societies to become aware of limited energy resources. Environmental groups gave cogeneration an additional boost in the 1980's. Additionally, governments in the Western European Nations attracted cogeneration investors by not only providing subsidies and tax breaks but also regulating electricity prices. Although there has been much growth in the cogeneration market in the past years, the industry has still not reached its peak in Europe. A variety of studies have shown that there is still significant growth potential in the future: WWF (World Wildlife Fund) published a study in 1996 suggesting a target of 330 Twh of generation will be produced through cogeneration by the year 2005, a tripling of current generation. Due to the EU's belief that cogeneration is an optimal form of generation, it has developed a cogeneration strategy. As part of this strategy, the EC is promoting cogeneration so that it accounts for 20% of all European generation by the year 2010. These factors would give a variety of companies such as equipment suppliers, investment companies, utilities, consultants and energy brokers a wide range of opportunities in Europe. Detailed information and some hints will be given as to how to participate in this fast growing industry. Ways to overcome obstacles in those markets will be shown as well as the pros and cons of different entry strategies

  14. Electric power plants in cogeneration: a promising potential even in France

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Implantation of cogeneration power plants has increased in France since two years but stays below other countries such as northern Europe. Technical, economical, legal and financial aspects of cogeneration have been debated during the ''Euroforum'' seminar (June 14-16, 1995). The european association Cogen Europe, created in 1993 with the financial support of the SAVE european program, has analysed the barriers that restrain cogeneration development and their solutions. Advantages of cogeneration are undeniable at any scale (from small engines to huge industrial systems) if efficiency of energy used reaches 85%. Opinions of representatives from different industries implied in cogeneration technology are reported. (J.S.). 1 photo

  15. An estimation of cogeneration potential by using refinery residuals in Mexico

    International Nuclear Information System (INIS)

    Marin-Sanchez, J.E.; Rodriguez-Toral, M.A.

    2007-01-01

    Electric power generation in Mexico is mainly based on fossil fuels, specifically heavy fuel oil, although the use of natural gas combined cycles (NGCC) is becoming increasingly important. This is the main destination that has promoted growing imports of natural gas, currently accounting for about 20% of the total national annual consumption. Available crude oil is becoming heavier; thus refineries should be able to process it, and to handle greater quantities of refinery residuals. If all refinery residuals are used in cogeneration plants serving petroleum refineries, the high heat/power ratio of refinery needs, leads to the availability of appreciable quantities of electricity that can be exported to the public utility. Thus, in a global perspective, Mexican imports of natural gas may be reduced by cogeneration using refinery residuals. This is not the authors' idea; in fact, PEMEX, the national oil company, has been entitled by the Mexican congress to sell its power leftovers to The Federal Electricity Commission (CFE) in order to use cogeneration in the way described for the years to come. A systematic way of determining the cogeneration potential by using refinery residuals from Mexican refineries is presented here, taking into account residual quantities and composition, from a national perspective, considering expected scenarios for Maya crude content going to local refineries in the years to come. Among different available technologies for cogeneration using refinery residuals, it is believed that the integrated gasification combined cycle (IGCC) would be the best option. Thus, considering IGCC plants supplying heat and power to refineries where it is projected to have refinery residuals for cogeneration, the expected electric power that can be sent to the public utility is quantified, along with the natural gas imports mitigation that may be attained. This in turn would contribute to a necessary fuel diversification policy balancing energy, economy and

  16. The Optimal Operation Criteria for a Gas Turbine Cogeneration System

    Directory of Open Access Journals (Sweden)

    Atsushi Akisawa

    2009-04-01

    Full Text Available The study demonstrated the optimal operation criteria of a gas turbine cogeneration system based on the analytical solution of a linear programming model. The optimal operation criteria gave the combination of equipment to supply electricity and steam with the minimum energy cost using the energy prices and the performance of equipment. By the comparison with a detailed optimization result of an existing cogeneration plant, it was shown that the optimal operation criteria successfully provided a direction for the system operation under the condition where the electric power output of the gas turbine was less than the capacity

  17. Process heat cogeneration using a high temperature reactor

    International Nuclear Information System (INIS)

    Alonso, Gustavo; Ramirez, Ramon; Valle, Edmundo del; Castillo, Rogelio

    2014-01-01

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU

  18. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  19. Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion

    International Nuclear Information System (INIS)

    Faber, Albert; Valente, Marco; Janssen, Peter

    2010-01-01

    Micro-cogeneration (micro-CHP) is a new technology at the household level, producing electricity in cogeneration with domestic heating, thereby increasing the overall efficiency of domestic energy production. We have developed a prototypical agent-based simulation model for energy technologies competing for demand at the consumer level. The model is specifically geared towards the competition between micro-CHP and incumbent condensing boilers. In the model, both technologies compete on purchase price and costs of usage, to which various (types of) consumers decide on the installation of either technology. Simulations with various gas and electricity prices show that micro-CHP diffusion could be seriously inhibited if demand for natural gas decreases, e.g. due to insulation measures. Further simulations explore various subsidy schemes. A subsidy for purchase is only found to be effective within a limited range of Euro 1400-3250. A subsidy based on decreasing price difference between the competing technologies is much more cost effective than fixed purchase subsidies. Simulations of a subsidy scheme for usage show that a fast market penetration can be reached, but this does not yet take full advantage of technological progress in terms of decreasing CO 2 emissions. Selection of the most effective scheme thus depends on the policy criteria assumed.

  20. The Mexican electricity industry - cogeneration potential

    International Nuclear Information System (INIS)

    Monroy, I.L.

    2000-01-01

    A brief history of Mexico's electric power industry is given. Diagrams show (i) the increase in primary energy production from 1990-1998; (ii) energy consumption by sector and (iii) the change in capacity between 1990 and 1998. The projected energy development for 1998-2007 is discussed. The Mexican government has chosen cogeneration to be an important contributor to future energy-efficient power production. Data on installed cogeneration capacity for years 2000 and 2001 are given according to sector

  1. Aeroderivative gas turbines for cogeneration

    International Nuclear Information System (INIS)

    Horner, M.W.; Thames, J.M.

    1988-01-01

    Aircraft jet engine derivative gas turbines have gained acceptance for cogeneration applications through impressive advances in technology and especially in maintainability and reliability. The best advantages of heavy industrial turbines and of reliable commercial airline jet engines have been successfully joined to meet the requirements for industrial cogeneration service. The next generation is under development and offers improved thermal efficiencies, alternate fuel capabilities, low environmental emissions, flexibility of operation and improved competitive system economics. This paper summarizes the current aero-derivative engine features and advantages with various systems, and discusses advanced features under consideration at this time

  2. Demystifying the use of cogeneration in mine cooling applications

    Energy Technology Data Exchange (ETDEWEB)

    Del Castillo, D.O. [Hatch, Johannesburg (South Africa)

    2010-07-01

    A study was conducted in 2009 to determine the feasibility of having cogeneration in South African mines using diesel generators for large cooling installations. The study included a cost comparison between a conventional mechanical vapour-compression system and the proposed cogeneration system under different fuel prices and electric power cost scenarios. Both capital and operating costs were considered and the use of gas turbines was also examined. The cogeneration system consisted of four 3.75 MW diesel generators. The exhaust gases and the water from the jacket-coolers were used to drive 4 single-effect LiBr-water absorption refrigeration machines having a cooling capacity of 3.75 MW(R). The study showed that in most cases, cogeneration would not be economically feasible if specifically installed to produce cooling. Cogeneration would only be economically viable if both the power costs were to increase significantly and fuel prices were to drop considerably. The environmental issues associated with the exhaust gases were not addressed in this study. 3 refs., 4 tabs., 4 figs.

  3. Extra cogeneration step seen boosting output 20%

    Energy Technology Data Exchange (ETDEWEB)

    Burton, P.

    1984-10-08

    Cogenerators can now buy a prototype 6.5 MW, pre-packaged cogeneration system that incorporates an added step to its cycle to reduce fuel use by 21%. Larger, custom-designed systems will be on the market in 1985. Fayette Manufacturing Co. will offer the Kalina Cycle system at a discount price of $8.2 million (1200/kW) until the systems are competitive with conventional units. The system varies from conventional cogeneration systems by adding a distillation step, which permits the use of two fluids for the turbine steam and operates at a higher thermodynamic efficiency, with boiling occuring at high temperature and low pressure. Although theoretically correct, DOE will withhold judgment on the system's efficiency until the first installation is operating.

  4. Cogeneration plants: SNAM (Italy) initiatives and incentives

    International Nuclear Information System (INIS)

    Pipparelli, M.

    1991-01-01

    First, an overall picture is presented of the extension of the use of cogeneration by the Italian brick industry. The particular suitability and usefulness of this form of energy to the brick industry are pointed out. Then a look is given at the legal and financial incentives which have been built into the National Energy Plan to encourage on-site production by Italian industries. Finally, a review is made of initiatives made by SNAM (the Italian National Methane Distribution Society) to develop a favourable tariff structure for on-site power producers using methane as their energy source, as well as, of the Society's efforts to set up a cogeneration equipment consulting service which would provide advice on cogeneration plant design, operation and maintenance

  5. Industrial cogeneration optimization program. Final report, September 1979

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Jerry; McWhinney, Jr., Robert T.

    1980-01-01

    This study program is part of the DOE Integrated Industry Cogeneration Program to optimize, evaluate, and demonstrate cogeneration systems, with direct participation of the industries most affected. One objective is to characterize five major energy-intensive industries with respect to their energy-use profiles. The industries are: petroleum refining and related industries, textile mill products, paper and allied products, chemicals and allied products, and food and kindred products. Another objective is to select optimum cogeneration systems for site-specific reference case plants in terms of maximum energy savings subject to given return on investment hurdle rates. Analyses were made that define the range of optimal cogeneration systems for each reference-case plant considering technology applicability, economic factors, and energy savings by type of fuel. This study also provides guidance to other parts of the program through information developed with regard to component development requirements, institutional and regulatory barriers, as well as fuel use and environmental considerations. (MCW)

  6. Global and local emission impact assessment of distributed cogeneration systems with partial-load models

    International Nuclear Information System (INIS)

    Mancarella, Pierluigi; Chicco, Gianfranco

    2009-01-01

    Small-scale distributed cogeneration technologies represent a key resource to increase generation efficiency and reduce greenhouse gas emissions with respect to conventional separate production means. However, the diffusion of distributed cogeneration within urban areas, where air quality standards are quite stringent, brings about environmental concerns on a local level. In addition, partial-load emission worsening is often overlooked, which could lead to biased evaluations of the energy system environmental performance. In this paper, a comprehensive emission assessment framework suitable for addressing distributed cogeneration systems is formulated. Local and global emission impact models are presented to identify upper and lower boundary values of the environmental pressure from pollutants that would be emitted from reference technologies, to be compared to the actual emissions from distributed cogeneration. This provides synthetic information on the relative environmental impact from small-scale CHP sources, useful for general indicative and non-site-specific studies. The emission models are formulated according to an electrical output-based emission factor approach, through which off-design operation and relevant performance are easily accounted for. In particular, in order to address the issues that could arise under off-design operation, an equivalent load model is incorporated within the proposed framework, by exploiting the duration curve of the cogenerator loading and the emissions associated to each loading level. In this way, it is possible to quantify the contribution to the emissions from cogeneration systems that might operate at partial loads for a significant portion of their operation time, as for instance in load-tracking applications. Suitability of the proposed methodology is discussed with respect to hazardous air pollutants such as NO x and CO, as well as to greenhouse gases such as CO 2 . Two case study applications based on the emission

  7. Cogeneration plant environmental impacts, Menaggio, Italy. February 21-22, 1991

    International Nuclear Information System (INIS)

    Piancastelli, E.

    1991-01-01

    Separate abstracts were prepared for 28 papers given at the FIRE (Italian Federation for the Rational use of Energy), February, 1991, convention on cogeneration plant environmental impacts. The topics included: Italian and international normatives giving guidelines on methods to evaluate dual-purpose power plant environmental impacts; gas turbine CO, NOx and suspended particulates emission limits; noise pollution limits and abatement measures; ENEL (Italian National Electricity Board) rate structure for auto-producing industries ceding power to the national grid; international research programs on cogeneration; the use of renewable energy sources for cogeneration systems; the function and role of energy managers; and commercialization of compact cogeneration plants for industry

  8. Analysis of long-time operation of micro-cogeneration unit with fuel cell

    Directory of Open Access Journals (Sweden)

    Patsch Marek

    2015-01-01

    Full Text Available Micro-cogeneration is cogeneration with small performance, with maximal electric power up to 50 kWe. On the present, there are available small micro-cogeneration units with small electric performance, about 1 kWe, which are usable also in single family houses or flats. These micro-cogeneration units operate on principle of conventional combustion engine, Stirling engine, steam engine or fuel cell. Micro-cogeneration units with fuel cells are new progressive developing type of units for single family houses. Fuel cell is electrochemical device which by oxidation-reduction reaction turn directly chemical energy of fuel to electric power, secondary products are pure water and thermal energy. The aim of paper is measuring and evaluation of operation parameters of micro-cogeneration unit with fuel cell which uses natural gas as a fuel.

  9. Gas cogeneration system in Sapporo Therme

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Michihiko

    1988-06-01

    Sapporo Therme is a multi-purpose resort including a hot-water jumbo swimming pool having an area of about 130,000m/sup 2/ and a circumference of 800 m, 13 additional swimming pools with additional sizes, a hot-water slider, 16 types of saunas, an artificial sunbathing system, an athletic system, a restaurant, a cinema, tennis courts, and other outdoor facilities. Sapporo Therme uses a cogeneration system consisting of using LP gas(95% or more propane gas) to drive a 1,200 PS gas engine and supply motive power and lightening. At the same time, the cogeneration system collects gas engine waste heat and combines this heat with that from hot-water and steam boilers to supply hot water to swimming pools, roads, and room heaters. The ratio of waste heat collection rate to power generation efficiency is about 5.0. Sapporo Therme is thus the optimal facilities for cogeneration. (1 figs, 3 photos)

  10. Report on the installations of cogeneration under obligation to buy; Rapport sur les installations de cogeneration sous obligation d'achat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    Facing the problem of the climatic change and the increase of the fossil energies prices, the government policy of the cogeneration development follows many objectives. Among these objectives it is necessary of implement a new tariff of obligation to buy of the electricity from cogeneration and allow the existing installations to reaffirm their obligation to buy contract. The first part of this report defines the necessary conditions to better use the ecological and economical interest of the natural gas cogeneration and shows that these conditions are not favorable in France. The second part preconizes to modify the actual tariff device in order to maintain the existing park to 2015 in acceptable economical and ecological conditions. (A.L.B.)

  11. Modelling of a chemisorption refrigeration and power cogeneration system

    International Nuclear Information System (INIS)

    Bao, Huashan; Wang, Yaodong; Roskilly, Anthony Paul

    2014-01-01

    Highlights: • An adsorption cogeneration was proposed and simulated for cooling and electricity. • A dynamic model was built and studied to demonstrate the variability of the system. • A dynamic model included the complex coupling of thermodynamic and chemical kinetic. • Mutual constrains between main components and optimisation methods were discussed. • The highest theoretical COP and exergy efficiency of cogeneration is 0.57 and 0.62. - Abstract: The present work for the first time explores the possibility of a small-scale cogeneration unit by combining solid–gas chemisorption refrigeration cycle and a scroll expander. The innovation in this work is the capability of producing refrigeration and electricity continuously and simultaneously without aggravating the energy scarcity and environmental impact. Individual modelling for each component, which has been validated by experimental data, was firstly investigated in order to identify the proper operation condition for the cogeneration mode achieving 1000 W power output. Subsequently, with the integrated modelling of two components the cogeneration performance was studied to demonstrate the viability of this concept. However, because of the mutual constraint between the chemisorption and the expansion when they link in series, the power output of the cogeneration mode was only around one third of the original expectation under the same condition identified in the individual modelling. Methods of improving the global performance including the selection of reactive mediums were also discussed and would be of referable value for the future practical investigation

  12. Utility-cogenerator game for pricing power sales and wheeling fees

    International Nuclear Information System (INIS)

    Kuwahata, Akeo; Asano, Hiroshi

    1994-01-01

    The authors studied an extensive game model of an electricity market where a cogenerator sells excess electricity to an electric utility or to an end user. They found that a buy-back system (the utility purchases cogenerated power) is as efficient as a cogenerator-customer wheeling system and that these two systems are more desirable than a monopoly system for the regulator. The buy-back rate should be equal to (LP bargaining solution) or less than (Nash bargaining solution) the marginal cost of the electric utility. They also conducted an analysis of a two-period electricity market in which they found that the cogenerator that can supply excess power during peak period obtains the market advantage

  13. Biomass cogeneration: industry response for energy security and environmental consideration

    International Nuclear Information System (INIS)

    Bacareza-Pacudan, L.; Lacrosse, L.; Pennington, M.; Dale Gonzales, A.

    1999-01-01

    Biomass occurs in abundance in the highly agricultural-based countries of South-East Asia. If these are processed in the wood and agro-processing industries, large volumes of residues are generated. The residue are potential sources of energy which the industries can tap through the use of cogeneration systems, in order to meet their own thermal and electrical requirements. This will reduce the industry's dependence on power from the grid and thus increase their own self-sufficiency in terms of energy. Biomass cogeneration brings the environmental, as well as economic benefits to the industries. It makes use of clean and energy-efficient technologies and utilises biomass as fuels which cause less environment al pollution and the greenhouse effect, as against the use of fossil fuels. A particular mill that embarks on biomass cogeneration is also able to realise, among others, income from the export of excess electricity to the grid. Biomass residue if not used for other purposes have negative values as they need to be disposed of. They can, however, be profit-generating as well. (Author)

  14. Impact of support schemes and barriers in Europe on the evolution of cogeneration

    International Nuclear Information System (INIS)

    Moya, José Antonio

    2013-01-01

    This paper analyses the effectiveness of different support measures to promote cogeneration in the European Union. The analysis looks into the average progress of cogeneration between two different periods. The economic effect of the support measures in each country is quantified with the help of a cost–benefit analysis carried out by the Cogeneration Observatory and Dissemination Europe (CODE) project. The scope of this study is necessarily affected by the need to limit the number of projects and support measures. However, there is no evidence of a relationship between the economic advantage offered by support measures and the deployment of cogeneration in the Member States. The study considers the effect of different barriers (reported by the Member States) on the promotion of cogeneration. The individual analyses of the barriers differ widely in quality and depth. When some barriers are reported, there is an increase of the variability of the penetration of cogeneration. This counter-intuitive fact leads us to conclude that there is a lack of consistency in the barriers reported, and a clear need for consistent reporting on barriers. The possible effect of competition between measures supporting combined heat and power and renewable energy sources is also analysed. - Highlights: • Support measures to promote cogeneration are analysed. • The growth of cogeneration in European countries is not aligned with the measures in place. • None of the reported barriers for cogeneration can be considered a clear show-stopper. • The variation in the development of cogeneration when some barriers are reported raises questions about the reporting. • Countries with a high share of cogeneration are sensitive to the continuity or discontinuity of support

  15. The merit of cogeneration: Measuring and rewarding performance

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2008-01-01

    Cogeneration or combined heat and power (CHP) is a thermal power generation cycle with the merit of recovering part or all of the heat that is fatally discarded by such cycles. This merit of higher efficiency is subject of rewarding by public authorities. When the EU enacts CHP promotion in a Directive (1997-2004), crucial measurement and qualification issues remain unsolved. CEN (coordinator of the European Bureaus of Standards) contributes in clarifying the measurement of CHP activities, but shortfalls remain, while CEN bypasses the debate on qualifying CHP performance. This article offers appropriate methods for measuring CHP activities based on design characteristics of the plants. The co-generated electric output is a necessary and sufficient indicator of CHP merit and performance. Regulators can extend this indicator, but should avoid the perverse effects of biased external benchmarking as the EU Directive entails

  16. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system

    International Nuclear Information System (INIS)

    Guo, T.; Wang, H.X.; Zhang, S.J.

    2011-01-01

    Highlights: → Performances of a novel cogeneration system using low-temperature geothermal sources under disturbance conditions were investigated. → It aimed at identifying appropriate fluids yielding high PPR and QQR values. → Fluids group presenting higher normal boiling point values showed averagely 7.7% higher PPR with a larger variation than QQR values under disturbance conditions. → Smaller T P value, higher η t value, higher geothermal source parameters and lower heating supply parameters led to higher PPR values but lower QQR values. -- Abstract: A novel cogeneration system driven by low-temperature geothermal sources was investigated in this study. This system consists of a low-temperature geothermally-powered organic Rankine cycle (ORC) subsystem, an intermediate heat exchanger and a commercial R134a-based heat pump subsystem. The main purpose is to identify appropriate fluids which may yield high PPR (the ratio of power produced by the power generation subsystem to power consumed by the heat pump subsystem) value and QQR (the ratio of heat supplied to the user to heat produced by the geothermal source) value. Performances of the novel cogeneration system under disturbance conditions have also been studied. Results indicate that fluids group presenting higher normal boiling point values shows averagely 7.7% higher PPR values and R236ea and R245ca outstand among the group. ΔT P (pinch temperature difference in heat exchangers) and η t (turbine efficiency) values play more important roles on the variation of PPR values. QQR values change slightly with various ΔT P , η t and η rp (refrigerant pump efficiency) values while the variation range is larger under various geothermal source and heating supply parameters. Smaller ΔT P value, higher η t value, higher geothermal source parameters and lower heating supply parameters lead to higher PPR values but lower QQR values.

  17. Efficient Use of Cogeneration and Fuel Diversification

    Science.gov (United States)

    Kunickis, M.; Balodis, M.; Sarma, U.; Cers, A.; Linkevics, O.

    2015-12-01

    Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand. In this paper, the authors attempt to assess the potential conflicts between policy political objectives to increase the share of high-efficiency co-generation and renewable energy sources (RES), based on the example of Riga district heating system (DHS). If a new heat source using biomass is built on the right bank of Riga DHS to increase the share of RES, the society could overpay for additional heat production capacities, such as a decrease in the loading of existing generating units, thereby contributing to an inefficient use of existing capacity. As a result, the following negative consequences may arise: 1) a decrease in primary energy savings (PES) from high-efficiency cogeneration in Riga DHS, 2) an increase in greenhouse gas (GHG) emissions in the Baltic region, 3) the worsening security situation of electricity supply in the Latvian power system, 4) an increase in the electricity market price in the Lithuanian and Latvian price areas of Nord Pool power exchange. Within the framework of the research, calculations of PES and GHG emission volumes have been performed for the existing situation and for the situation with heat source, using biomass. The effect of construction of biomass heat source on power capacity balances and Nord Pool electricity prices has been evaluated.

  18. Report on the installations of cogeneration under obligation to buy; Rapport sur les installations de cogeneration sous obligation d'achat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    Facing the problem of the climatic change and the increase of the fossil energies prices, the government policy of the cogeneration development follows many objectives. Among these objectives it is necessary of implement a new tariff of obligation to buy of the electricity from cogeneration and allow the existing installations to reaffirm their obligation to buy contract. The first part of this report defines the necessary conditions to better use the ecological and economical interest of the natural gas cogeneration and shows that these conditions are not favorable in France. The second part preconizes to modify the actual tariff device in order to maintain the existing park to 2015 in acceptable economical and ecological conditions. (A.L.B.)

  19. Cogeneration and beyond: The need and opportunity for high efficiency, renewable community energy systems

    International Nuclear Information System (INIS)

    Gleason, T.C.J.

    1992-06-01

    The justification, strategies, and technology options for implementing advanced district heating and cooling systems in the United States are presented. The need for such systems is discussed in terms of global warming, ozone depletion, and the need for a sustainable energy policy. Strategies for implementation are presented in the context of the Public Utilities Regulatory Policies Act and proposed new institutional arrangements. Technology opportunities are highlighted in the areas of advanced block-scale cogeneration, CFC-free chiller technologies, and renewable sources of heating and cooling that are particularly applicable to district systems

  20. Cogeneration of electric energy: The case of pulp and paper mills

    International Nuclear Information System (INIS)

    Harberger, A.C.

    1993-01-01

    Applied welfare economics are utilized to analyze the phenomenon of cogeneration of electricity in the pulp and paper sector. Optimum levels of energy use (and of cogeneration) are defined, and the efficiency costs of various possible deviations from the optimum are shown. An economic analysis is presented of the effects of cost of electricity for the pulp and paper industry, and the impact that cogeneration can have on these costs. The social welfare impacts of cogeneration and electricity subsidies are discussed, together with the issue of crosshauling. It is shown that in Canada a policy focusing on cogeneration without crosshauling leads to optimal results. An added argument against crosshauling involves the implicit transfers involved. These transfers generate benefits for the pulp and paper mills at the expense of the electricity utility and its paying customers or taxpaying public. A strong argument is proposed against allowing of crosshauling

  1. Bio based cogeneration plants in Sweden; Biobaserte kraftvarmeverk i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Cogeneration plants using bio fuel need a certificate in the Swedish electricity certificate system. Since the initiation of the system in 2003 the plants have taken advantage of the possibility of switching from fossil, to bio fuel. However, there is a potential for additional bio power production, provided that there is a market for the produced heating. The certificate system may contribute to an acceleration of investments in new capacities, and the facilitation of increased bio power production.

  2. A preliminary examination of the economics of cogeneration with fusion plants

    International Nuclear Information System (INIS)

    Hazelrigg, G.A.; Coleman, D.E.

    1983-01-01

    Cogeneration, the process of using reject heat from electric energy generation plants, offers substantial savings in energy consumption and thus is likely to see increased implementation, especially in the form of district heating, over the next few decades. The use of fusion plants for cogeneration offers added advantages of potentially low marginal costs and reduced siting restrictions compared to nuclear and coal plants, and freedom from use of limited fossil fuels. Fusion can thus provide increased economic incentive to the implementation of cogeneration systems. Conversely, cogeneration improves the economics of fusion and thus provides both added incentive for its development and reduced economic requirements on commercial fusion technologies

  3. Efficiency Assessment of Support Mechanisms for Wood-Fired Cogeneration Development in Estonia

    Science.gov (United States)

    Volkova, Anna; Siirde, Andres

    2010-01-01

    There are various support mechanisms for wood-fired cogeneration plants, which include both support for cogeneration development and stimulation for increasing consumption of renewable energy sources. The efficiency of these mechanisms is analysed in the paper. Overview of cogeneration development in Estonia is given with the focus on wood-fired cogeneration. Legislation acts and amendments, related to cogeneration support schemes, were described. For evaluating the efficiency of support mechanisms an indicator - fuel cost factor was defined. This indicator includes the costs related to the chosen fuel influence on the final electricity generation costs without any support mechanisms. The wood fuel cost factors were compared with the fuel cost factors for peat and oil shale. For calculating the fuel cost factors, various data sources were used. The fuel prices data were based on the average cost of fuels in Estonia for the period from 2000 till 2008. The data about operating and maintenance costs, related to the fuel type in the case of comparing wood fuel and oil shale fuel were taken from the CHP Balti and Eesti reports. The data about operating and maintenance costs used for peat and wood fuel comparison were taken from the Tallinn Elektrijaam reports. As a result, the diagrams were built for comparing wood and its competitive fuels. The decision boundary lines were constructed on the diagram for the situation, when no support was provided for wood fuels and for the situations, when various support mechanisms were provided during the last 12 years.

  4. Solar Cogeneration of Electricity and Hot Water at DoD Installations

    Science.gov (United States)

    2014-05-01

    the cogeneration system displaces more energy (the impact is not 4-5X because the GHG intensity factors for offsetting electricity generation and...visibility to Army energy managers. Additional benefits of Cogenra’s solar cogeneration system are the engineering and design jobs at Cogenra’s...certification. Solar cogeneration can help earn LEED points in three areas: Optimizing Energy Efficiency Performance, On-Site Renewable Energy , and

  5. Potable water cogeneration using nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico); Ramirez, J.R. [Instituto Nacional de Investigaciones Nucleares, Estado de Mexico (Mexico); Valle, E. del [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, D.F. (Mexico)

    2014-07-01

    Mexico is a country with a diversity of conditions; the Peninsula of Baja California is a semi-arid region with a demand of potable water and electricity where small nuclear power can be used. This part of the country has a low density population, a high pressure over the water resources in the region, and their needs of electricity are small. The SMART reactor will be assessed as co-generator for this region; where five different scenarios of cogeneration of electricity and potable water production are considered, the levelized cost of electricity and potable water are obtained to assess their competitiveness. (author)

  6. Thermal-economic analysis of cogeneration systems

    International Nuclear Information System (INIS)

    Walter, A.C.S.; Bajay, S.V.

    1992-01-01

    Approximately 80 countries produce sugar, and fortuitously alcohol, from sugar cane. In all these countries the cogeneration technology of steam turbines is utilized, although almost always inefficient. The greater potential of cogeneration in Brazil is in sugar and alcohol sector, because of the use of sugar cane bagasse as combustible. This work applies the techniques of simulation and economic analysis to different configuration of plants, to determine power generation and associated costs of each alternative. The application of the same procedure at operating condition of several configurations in transient system permits the determination of production profile of exceeding during one day. (C.M.)

  7. Evaluation of different hedging strategies for commodity price risks of industrial cogeneration plants

    International Nuclear Information System (INIS)

    Palzer, Andreas; Westner, Günther; Madlener, Reinhard

    2013-01-01

    In this paper, we design and evaluate eight different strategies for hedging commodity price risks of industrial cogeneration plants. Price developments are parameterized based on EEX data from 2008 to 2011. The probability distributions derived are used to determine the value-at-risk (VaR) of the individual strategies, which are in a final step combined in a mean-variance portfolio analysis for determining the most efficient hedging strategy. We find that the strategy adopted can have a marked influence on the remaining price risk. Quarter futures are found to be particularly well suited for reducing market price risk. In contrast, spot trading of CO 2 certificates is found to be preferable compared to forward market trading. Finally, portfolio optimization shows that a mix of various hedging strategies can further improve the profitability of a heat-based cogeneration plant. - Highlights: • Evaluation of commodity price risk hedging strategies for industrial cogeneration. • Value-at-risk analysis of eight different hedging strategies. • Mean-variance portfolio analysis for determining the optimal hedging strategy mix. • A mix of hedging strategies further improves profitability of heat-based CHP

  8. Micro cogeneration in residential scale; Bancada de sistema de cogeracao de pequeno porte

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Primo, Ana Rosa Mendes; Magnani, Fabio Santana; Henriquez, Jorge R. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Moura, Newton Reis de; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zimmerle, Sergio Ricardo T.S. [Companhia Pernambucana de Gas (COPERGAS), Recife, PE (Brazil)

    2004-07-01

    Cogeneration is very important to spread the use of natural gas in Brazil. Most of the existing cogeneration plants are of considerable size, as used in industries or commercial centers. Places with low demand on electrical or thermal energy (e.g. small industries, blocs of houses, etc.) could also benefit of cogeneration, but there is no available data about micro-cogeneration in Brazil. In order to verify the technical and economical viability of small size systems of cogeneration, FINEP/PETROBRAS/COPERGAS financed a project of micro-cogeneration at the Federal University of Pernambuco (UFPE), involving experiments on a micro turbine and a generator group, both with 30 kW power. The laboratory is also composed by two heat exchangers to regenerate the heat from the micro-turbine and generator group, a single effect absorption chiller, with 10 TR capacity, two thermal storage tanks (for hot and cold water) and a compression split of 5 TR. Data to build performance curves of the equipment will be stored and analyzed, in order to build their performance curves, allowing the overall cogeneration efficiency to be found. Most probable situations of thermal and electric power demands will be simulated. The aim of the simulations is to achieve the optimal situation for micro-cogeneration, which will offer the best efficiency, the lowest cost for buying the equipment and the lowest operational cost. A software was also developed, which optimizes micro-cogeneration systems. (author)

  9. Regional characteristics relevant to advanced technology cogeneration development. [industrial energy

    Science.gov (United States)

    Manvi, R.

    1981-01-01

    To assist DOE in establishing research and development funding priorities in the area of advanced energy conversion technoloy, researchers at the Jet Propulsion Laboratory studied those specific factors within various regions of the country that may influence cogeneration with advanced energy conversion systems. Regional characteristics of advanced technology cogeneration possibilities are discussed, with primary emphasis given to coal derived fuels. Factors considered for the study were regional industry concentration, purchased fuel and electricity prices, environmental constraints, and other data of interest to industrial cogeneration.

  10. Exergy analysis of a circulating fluidized bed boiler cogeneration power plant

    International Nuclear Information System (INIS)

    Gürtürk, Mert; Oztop, Hakan F.

    2016-01-01

    Highlights: • Analysis of energy and exergy for a cogeneration power plant have been performed. • This plant has circulating fluidized bed boiler. • Energy and exergy efficiencies of the boiler are obtained as 84.65% and 29.43%, respectively. • Exergy efficiency of the plant was calculated as 20%. - Abstract: In this study, energy and exergy analysis of a cogeneration power plant have been performed. The steam which is produced by the cogeneration power plant is used for salt production and most important part of the cogeneration power plant is the circulation fluidized bed boiler. Energy and exergy efficiency of the circulation fluidized bed boiler were found as 84.65% and 29.43%, respectively. Exergy destruction of the circulation fluidized bed boiler was calculated as 21789.39 kW and 85.89% of exergy destruction in the plant. The automation system of the cogeneration power plant is insufficient. Exergy efficiency of the plant was calculated as 20%. Also, some design parameters increasing energy losses were determined.

  11. Survey on construction of the database for new energy technology development. Cogeneration; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the activity promoting use of new energy, the data related to cogeneration were systematically compiled. For new energy technology, such various policies for introducing new energy are in promotion with a progress of technological development as preparation of subsidy systems, field test business, and support advisory business for introducing new energy. For further effective promotion, integral systematic compilation of various data, and arrangement as basic data are necessary. Such latest announced data in a cogeneration field were collected and compiled as outline of new energy systems, concrete applications, subsidy systems, and approaches to new energy of various countries. Main data items are as follows: trend of cogeneration, outline of system, domestic and foreign concrete applications, prediction data on the use of new energy, overview of domestic and foreign policies for cogeneration, basic terminology, and tables of main related enterprises and organizations. This database is useful for the present activities promoting use of new energy, and preparation of the future vision. 29 figs., 33 tabs.

  12. Methodology study: Co-generation feasibility at sawmills

    International Nuclear Information System (INIS)

    Host, J.

    1991-01-01

    This report discussed the various factors that should be studied and evaluated before establishing a cogeneration plant. The results of three case studies and a survey of energy needs in smaller and medium size sawmills are also presented. In general, cogeneration is feasible for supplying electric energy required for processing logs using fuelbark and other residues from the manufacturing process. A rebuilt turbine-generator unit is an initial cost saving alternative that is advantageous throughout the life of the operation

  13. Cogeneration: Key feasibility analysis parameters

    International Nuclear Information System (INIS)

    Coslovi, S.; Zulian, A.

    1992-01-01

    This paper first reviews the essential requirements, in terms of scope, objectives and methods, of technical/economic feasibility analyses applied to cogeneration systems proposed for industrial plants in Italy. Attention is given to the influence on overall feasibility of the following factors: electric power and fuel costs, equipment coefficients of performance, operating schedules, maintenance costs, Italian Government taxes and financial and legal incentives. Through an examination of several feasibility studies that were done on cogeneration proposals relative to different industrial sectors, a sensitivity analysis is performed on the effects of varying the weights of different cost benefit analysis parameters. With the use of statistical analyses, standard deviations are then determined for key analysis parameters, and guidelines are suggested for analysis simplifications

  14. The performance of residential micro-cogeneration coupled with thermal and electrical storage

    Science.gov (United States)

    Kopf, John

    Over 80% of residential secondary energy consumption in Canada and Ontario is used for space and water heating. The peak electricity demands resulting from residential energy consumption increase the reliance on fossil-fuel generation stations. Distributed energy resources can help to decrease the reliance on central generation stations. Presently, distributed energy resources such as solar photovoltaic, wind and bio-mass generation are subsidized in Ontario. Micro-cogeneration is an emerging technology that can be implemented as a distributed energy resource within residential or commercial buildings. Micro-cogeneration has the potential to reduce a building's energy consumption by simultaneously generating thermal and electrical power on-site. The coupling of a micro-cogeneration device with electrical storage can improve the system's ability to reduce peak electricity demands. The performance potential of micro-cogeneration devices has yet to be fully realized. This research addresses the performance of a residential micro-cogeneration device and it's ability to meet peak occupant electrical loads when coupled with electrical storage. An integrated building energy model was developed of a residential micro-cogeneration system: the house, the micro-cogeneration device, all balance of plant and space heating components, a thermal storage device, an electrical storage device, as well as the occupant electrical and hot water demands. This model simulated the performance of a micro-cogeneration device coupled to an electrical storage system within a Canadian household. A customized controller was created in ESP-r to examine the impact of various system control strategies. The economic performance of the system was assessed from the perspective of a local energy distribution company and an end-user under hypothetical electricity export purchase price scenarios. It was found that with certain control strategies the micro-cogeneration system was able to improve the

  15. Texasgulf solar cogeneration program. Mid-term topical report

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The status of technical activities of the Texasgulf Solar Cogeneration Program at the Comanche Creek Sulfur Mine is described. The program efforts reported focus on preparation of a system specification, selection of a site-specific configuration, conceptual design, and facility performance. Trade-off studies performed to select the site-specific cogeneration facility configuration that would be the basis for the conceptual design efforts are described. Study areas included solar system size, thermal energy storage, and field piping. The conceptual design status is described for the various subsystems of the Comanche Creek cogeneration facility. The subsystems include the collector, receiver, master control, fossil energy, energy storage, superheat boiler, electric power generation, and process heat subsystems. Computer models for insolation and performance are also briefly discussed. Appended is the system specification. (LEW)

  16. Tetra-combined cogeneration system. Exergy and thermoeconomic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    The description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam is presented. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller.The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  17. Evaluation of potential for cogeneration of electricity and process heat in North Carolina. Final report, June 1, 1978-May 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    The objective of this study was to enable North Carolina to more efficiently utilize available energy than would be possible without additional cogeneration. Effective use of cogeneration can ease the requirement for utility capital and power plant sites and, by reducing fuel usage, can lead to less environmental damage. The study used the National Emissions Data System data bank and the North Carolina Boiler Registry to identify potential candidates for cogeneration and to then ascertain the magnitude of the potential in existing, new, and expanded facilities as a function of cogeneration impediment elimination. The survey uncovered 372 MW of operable cogeneration capacity in North Carolina in 15 plants. An estimate of the potential for expansion of cogeneration by firms presently operating in North Carolina amounted to 130 MW. This estimate was based on current conditions of fuel costs, electricity rates, standby charges, and investment tax credit. Much information is provided concerning industry and utilities in North Carolina, fuel usage by industry, and barriers to cogeneration. Recommendations are summarized.

  18. Distributed cogeneration for commercial buildings: Can we make the economics work?

    International Nuclear Information System (INIS)

    Siler-Evans, Kyle; Morgan, M. Granger; Azevedo, Inês Lima

    2012-01-01

    Although the benefits of distributed cogeneration are widely cited, adoption has been slow in the United States. Adoption could be encouraged by making cogeneration more economically attractive, either by increasing the expected returns or decreasing the risks of such investments. We evaluate the expected returns from demand response, capacity markets, regulation markets, accelerated depreciation, pricing CO 2 emissions, and net metering. We find that (1) there is an incentive to overcommit in the capacity market due to lenient non-response penalties, (2) there is significant revenue potential in the regulation market, though demand-side resources are yet to participate, (3) a price on CO 2 emissions will make cogeneration more attractive relative to conventional, utility-supplied energy, and (4) accelerated depreciation is an easy and effective mechanism for improving the economics of cogeneration. We go on to argue that uncertainty in fuel and electricity prices present a significant risk to cogeneration projects, and we evaluate the effectiveness of feed-in tariffs at mitigating these risks. We find that guaranteeing a fixed electricity payment is not effective. A two-part feed-in tariff, with an annual capacity payment and an energy payment that adjusts with fuel costs, can eliminate energy-price risks. - Highlights: ► A case study is used to evaluate strategies for improving the economics of cogeneration. ► Strategies include demand response, capacity and regulation markets, net metering. ► Volatile energy prices present a significant risk to cogeneration projects. ► We explore mitigating energy-price risks with feed-in tariffs.

  19. Experience feedback from nuclear cogeneration - 15369

    International Nuclear Information System (INIS)

    Auriault, C.; Fuetterer, M.A.; Baudrand, O.

    2015-01-01

    A consortium of 20 companies currently runs the NC2I-R (Nuclear Cogeneration Industrial Initiative - Research) project as part of the European Union's 7. Framework Programme. The project supports the development of an industrial initiative to demonstrate nuclear cogeneration of heat and power as an effective low-carbon technology for industrial market applications. As part of this project, operational feedback was collected from previous, existing and planned nuclear cogeneration projects in a number of countries with the aim of identifying a most complete set of boundary conditions which led to successful projects in the past. Stakeholders consulted include in particular utilities and end users. The scope encompassed technical and non-technical information (organizational structure, financial aspects, public relations, etc.) and specifically experience in licensing gained from these projects. The information was collected by a questionnaire and additional face-to-face interviews. The questionnaire was formulated to cover 9 categories of in total 56 questions for 36 identified projects: Motivation and initiative, Role of key players, Organizational structure, Technical aspects, Safety and licensing, Financial aspects, Timing, Public relations, General experience feedback. From the 36 identified projects worldwide, 23 from 10 countries have provided feedback on a variety of applications such as district heating, seawater desalination, paper and pulp industry, petrochemical industry, coal gasification or salt processing. This is a surprisingly positive response considering that several of these projects date back to the 1980's and many of them were performed outside Europe. This paper summarizes and analyzes the received information and deduces from there which boundary conditions are favorable for the construction of new nuclear cogeneration projects. (authors)

  20. GE will finance 614-MW cogeneration plant

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The General Electric Power Funding Corporation, a unit of GE Capital, will provide up to $870 million in construction and permanent financing, and letters of credit to Cogen Technologies of Houston, Texas. The agreement will fund the construction of a 614-megawatt (MW), combined-cycle cogeneration plant to be built in Linden, New Jersey, and for the purchase of gas properties. The plant will be owned by Cogen Technologies. The financing is one of the largest packages ever for a cogeneration plant, GE said

  1. Steam process cogeneration using nuclear energy

    International Nuclear Information System (INIS)

    Alonso, G.; Ramirez, R.

    2010-10-01

    Use of energy in a sustainable manner is to make processes more efficient. Oil industry requires of electricity and steam for refinery and petrochemical processes, nuclear energy can be a clean energy alternative. Cogeneration is an option to be assessed by Mexico to provide additional value to electricity generation. Mexico is a country with oil resources that requires process heat for gasoline production among other things. With the concern about the climate change and sustain ability policies it is adequate to use cogeneration as a way to optimize energy resources. Currently there is a national program that considers cogeneration for several Mexican refineries, and the first choices are combined cycle plants and thermo power plants using residual oil. This is long term program. The pebble bed modular reactor (PBMR) is a next generation reactors that works with very high temperatures that can be used to produce steam process along with electricity, in this work two different couplings are assessed for the PBMR reactor to produce steam process, the two couplings are compared for using in the Mexican refineries and some conclusions are given. (Author)

  2. Optimization Design Method and Experimental Validation of a Solar PVT Cogeneration System Based on Building Energy Demand

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    2017-08-01

    Full Text Available Photovoltaic-thermal (PVT technology refers to the integration of a photovoltaic (PV and a conventional solar thermal collector, representing the deep exploitation and utilization of solar energy. In this paper, we evaluate the performance of a solar PVT cogeneration system based on specific building energy demand using theoretical modeling and experimental study. Through calculation and simulation, the dynamic heating load and electricity load is obtained as the basis of the system design. An analytical expression for the connection of PVT collector array is derived by using basic energy balance equations and thermal models. Based on analytical results, an optimized design method was carried out for the system. In addition, the fuzzy control method of frequency conversion circulating water pumps and pipeline switching by electromagnetic valves is introduced in this paper to maintain the system at an optimal working point. Meanwhile, an experimental setup is established, which includes 36 PVT collectors with every 6 PVT collectors connected in series. The thermal energy generation, thermal efficiency, power generation and photovoltaic efficiency have been given in this paper. The results demonstrate that the demonstration solar PVT cogeneration system can meet the building energy demand in the daytime in the heating season.

  3. Performance and operational economics estimates for a coal gasification combined-cycle cogeneration powerplant

    Science.gov (United States)

    Nainiger, J. J.; Burns, R. K.; Easley, A. J.

    1982-01-01

    A performance and operational economics analysis is presented for an integrated-gasifier, combined-cycle (IGCC) system to meet the steam and baseload electrical requirements. The effect of time variations in steam and electrial requirements is included. The amount and timing of electricity purchases from sales to the electric utility are determined. The resulting expenses for purchased electricity and revenues from electricity sales are estimated by using an assumed utility rate structure model. Cogeneration results for a range of potential IGCC cogeneration system sizes are compared with the fuel consumption and costs of natural gas and electricity to meet requirements without cogeneration. The results indicate that an IGCC cogeneration system could save about 10 percent of the total fuel energy presently required to supply steam and electrical requirements without cogeneration. Also for the assumed future fuel and electricity prices, an annual operating cost savings of 21 percent to 26 percent could be achieved with such a cogeneration system. An analysis of the effects of electricity price, fuel price, and system availability indicates that the IGCC cogeneration system has a good potential for economical operation over a wide range in these assumptions.

  4. INCOGEN: Nuclear cogeneration in the Netherlands

    International Nuclear Information System (INIS)

    Heek, A.I. van

    1997-01-01

    A small heat and power cogeneration plant with a pebble bed high temperature reactor (HTR) is discussed. Cogeneration could be a new market for nuclear power and the HTR could be very suitable. The 40 MWth INCOGEN system is presented. Philosophy, layout, characteristics and performance are described. The lower power level, advanced component technologies and inherent safety features are used to obtain a maximally simplified system. Static and dynamic cycle analyses of the energy conversion system are discussed, as well as the behaviour of the reactor cavity cooling system. Although the cost study has not been finished yet, cost reduction trends are indicated. (author)

  5. First and second law analysis of diesel engine powered cogeneration systems

    International Nuclear Information System (INIS)

    Abusoglu, Aysegul; Kanoglu, Mehmet

    2008-01-01

    In this article, the thermodynamic analysis of the existing diesel engine cogeneration system is performed. All necessary data are obtained from the actual diesel engine cogeneration plant located at Gaziantep, Turkey. The exergy analysis is aimed to evaluate the exergy destruction in each component as well as the exergetic efficiencies. The thermodynamic performance of a 25.32 MW electricity and 8.1 tons/h steam capacity diesel engine cogeneration system at full load conditions is analyzed. The thermal efficiency of the overall plant is found to be 44.2% and the exergetic efficiency is 40.7%. The exergy balance equations developed in this paper may also be utilized in the exergoeconomic analysis to estimate the production costs depending on various input costs in a diesel cogeneration system

  6. Examination on small-sized cogeneration HTGR for developing countries

    International Nuclear Information System (INIS)

    Sakaba, Nariaki; Tachibana, Yukio; Shimakawa, Satoshi; Ohashi, Hirofumi; Sato, Hiroyuki; Yan, Xing; Murakami, Tomoyuki; Ohashi, Kazutaka; Nakagawa, Shigeaki; Goto, Minoru; Ueta, Shohei; Mozumi, Yasuhiro; Imai, Yoshiyuki; Tanaka, Nobuyuki; Okuda, Hiroyuki; Iwatsuki, Jin; Kubo, Shinji; Takada, Shoji; Nishihara, Tetsuo; Kunitomi, Kazuhiko

    2008-03-01

    The small-sized and safe cogeneration High Temperature Gas-cooled Reactor (HTGR) that can be used not only for electric power generation but also for hydrogen production and district heating is considered one of the most promising nuclear reactors for developing countries where sufficient infrastructure such as power grids is not provided. Thus, the small-sized cogeneration HTGR, named High Temperature Reactor 50-Cogeneration (HTR50C), was studied assuming that it should be constructed in developing countries. Specification, equipment configuration, etc. of the HTR50C were determined, and economical evaluation was made. As a result, it was shown that the HTR50C is economically competitive with small-sized light water reactors. (author)

  7. Cogeneration feasibility study in the Gulf States Utilities service area

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    Sites in the Gulf States Utilities service are considered for cogeneration feasibility studies. The sources of steam considered for the Orange, Texas and Geismar, Lake Charles, and North Baton Rouge, Louisiana sites include oil, coal, HTGR steamers, consolidated nuclear steam system, atmospheric fluidized-bed coal combustion, and coal gasification. Concepts concerning cogeneration fuel systems were categorized by technical applicability as: current technology (pulverized coal-fired boilers and fuel oil-fired boilers), advanced technology under development (HTGR steamers and the CNSS), and advanced technology for future development (atmospheric fluidized-bed boilers and coal gasification). In addition to providing data on cogeneration plant generally useful in the US, the study determined the technical and economic feasibility of steam and electric power cogeneration using coal and nuclear fuels for localized industrial complexes. Details on site selection, plant descriptions, cost estimates, economic analysis, and plant schedule and implementation. (MCW)

  8. Development of a proton exchange membrane fuel cell cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jenn Jiang; Zou, Meng Lin [Department of Greenergy, National University of Tainan, Tainan 700 (China)

    2010-05-01

    A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power. (author)

  9. Cogeneration an opportunity for industrial energy saving

    International Nuclear Information System (INIS)

    Pasha, R.A.; Butt, Z.S.

    2011-01-01

    This paper is about the cogeneration from industrial energy savings opportunities perspective. The energy crisis in these days forces industry to find ways to cope with critical situation. There are several energy savings options which if properly planned and implemented would be beneficial both for industry and community. One way of energy saving is Cogeneration i.e. Combined Heat and Power. The paper will review the basic methods, types and then discuss the suitability of these options for specific industry. It has been identified that generally process industry can get benefits of energy savings. (author)

  10. Cogenerators stretch the capital markets

    International Nuclear Information System (INIS)

    Robinson, Danielle.

    1993-01-01

    Independent power generation projects are being planned worldwide. But to finance them, the developers are starting to look increasingly for non-bank sources of funds. Key cogeneration finance deals are discussed in this article. (Author)

  11. Biogas cooperation for cogeneration plants; Biogaskooperation fuer Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Deeg, Thomas [Stadtwerke Schwaebisch Hall GmbH, Schwaebisch Hall (Germany)

    2011-03-15

    Since autumn 2010, via a 7 kilometre long biogas conduit an agricultural biogas plant supplies a cogeneration plant in the residential area Teurershof in Schwaebisch Hall. This enables a conversion of biogas with the highest possible efficiency in thermal energy and electricity. This is due to the attachment of the cogeneration plant in Teurershof to the district heating grid of the city Schwaebisch Hall so that the developing thermal energy completely can be used.

  12. Cogeneration feasibility: Otis Elevator Company and Polychrome Corporation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    The purpose of this study was to assess the feasibility of cogeneration at Otis Elevator Company and Polychrome Corporation located in Westchester County, New York. Each plant and its associated thermal and electrical load is reviewed. Three basic cycles for the cogeneration are investigated: power only, power generation with waste heat recovery, and combined cycle. Each case was assessed economically, beginning with a screening method to suggest those configurations most likely to be implemented and continuing through an assessment of the regulatory environment for cogeneration and an analysis of rate structures for buy back power, displaced power, and supplementing service. It is concluded that: for a plant designed to supply the combined loads of the two corporations, interconnection costs coupled to the coincidence of load result in unfavorable economics; for separate cogeneration plants, owned and operated by each individual corporation, energy consumption patterns and the current regulatory environment, in particular the existing and proposed cogeneration system rate structures, do not permit viable economics for the proposed plants; but if the proposed cycle were owned and operated by a new entity (neither Otis/Polychrome nor the utility), an economic scheme with marginal financial benefits can be developed and may be worthy of further study. (LEW)

  13. An HTR cogeneration system for industrial applications

    International Nuclear Information System (INIS)

    Haverkate, B.R.W.; Heek, A.I. van; Kikstra, J.F.

    2001-01-01

    Because of its favourable characteristics of safety and simplicity the high-temperature reactor (HTR) could become a competitive heat source for a cogeneration unit. The Netherlands is a world leading country in the field of cogeneration. As nuclear energy remains an option for the medium and long term in this country, systems for nuclear cogeneration should be explored and developed. Hence, ECN Nuclear Research is developing a conceptual design of an HTR for Combined generation of Heat and Power (CHP) for the industry in and outside the Netherlands. The design of this small CHP-unit for industrial applications is mainly based on a pre-feasibility study in 1996, performed by a joint working group of five Dutch organisations, in which technical feasibility was shown. The concept that was subject of this study, INCOGEN, used a 40 MW thermal pebble bed HTR and produced a maximum amount of electricity plus low temperature heat. The system has been improved to produce industrial quality heat, and has been renamed ACACIA. The output of this installation is 14 MW electricity and 17 tonnes of steam per hour, with a pressure of 10 bar and a temperature of 220 deg. C. The economic characteristics of this installation turned out to be much more favourable using modern data. The research work for this installation is embedded in a programme that has links to the major HTR projects in the world. Accordingly ECN participates in several IAEA Co-ordinated Research Programmes (CRPs). Besides this, ECN is involved in the South African PBMR-project. Finally, ECN participates in the European Concerted Action on Innovative HTR. (author)

  14. AMBIENT CONDITIONS EFFECTS ON PERFORMANCE OF GAS TURBINE COGENERATION POWER PLANTS

    OpenAIRE

    Necmi Ozdemir*

    2016-01-01

    In this study, the performances of a simple and an air preheated cogeneration cycles in ambient conditions are compared with each other. A computer program written by the author in FORTRAN codes is used for the calculation of the enthalpy and entropy values of the streams, Exergy analysis is done and compared for the simple and the air preheated cogeneration cycles for different ambient conditions. The two cogeneration cycles are evaluated in terms of heat powers and electric, electrical to h...

  15. Co-generation potentials of municipal solid waste landfills in Serbia

    Directory of Open Access Journals (Sweden)

    Bošković Goran B.

    2016-01-01

    Full Text Available Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55% and carbon dioxide (40-45% (both GHGs, has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine economic and environmental benefits from such energy production. For that purpose, the database of cogeneration potentials (CP of 51 landfills in the Republic of Serbia (RS was created. Amount of landfill gas generated at each municipal landfill was calculated by applying a first order decay equation which requires the data about solid waste production and composition and about some landfill characteristics. For all landfills, which have over 100,000 m3 each, a techno-economic analysis about building a CHP plant was conducted. The results have shown, that the total investment in 14 CHP plants with payback period of less than 7 years amounts € 11,721,288. The total nominal power of these plants is 7 MW of electrical power and 7.9 MW of thermal power, and an average payback period is about 61 months. In addition, using landfill biogas as energy source in proposed plants would reduce methane emission for 161,000 tons of CO2 equivalent per year. [Projekat Ministarstva nauke Republike Srbije, br. III 42013: Research of cogeneration potential of municipal and industrial energy power plant in Republic of Serbia and opportunities for rehabilitation of existing and construction of new cogeneration plants

  16. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  17. Tetra-combined cogeneration system. Exergy and thermo economic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

    2000-07-01

    This paper presents the description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller. The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

  18. Qualifying cogeneration in Texas and Louisiana

    International Nuclear Information System (INIS)

    Jenkins, S.C.; Cabe, R.; Stauffaeher, J.J.

    1992-01-01

    This paper reports that cogeneration of electricity and useful thermal energy by industrials along the Gulf Coast grew significantly more rapidly than in other parts of the country during and immediately following World War II as a result of the concentration of chemical and plastics processing facilities there. In 1982, Texas passed its version of PURPA, the Public Utility Regulatory Act (PURA) and designated those non-utility generators from which public utilities must purchase electricity as Qualifying Cogenerators. In 1991, there were nearly 7,500 MW of QF power generated for inside-the-fence use or firm capacity sale to utilities, with the two largest utilities in Texas purchasing over half that amount

  19. Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo; Iora, Paolo; Ghoniem, Ahmed F.

    2014-01-01

    A general method for the allocation of resources and products in multi-resource/multi-product facilities is developed with particular reference to the important two-resource/two-product case of hybrid fossil and solar/heat and power cogeneration. For a realistic case study, we show how the method allows to assess what fractions of the power and heat should be considered as produced from the solar resource and hence identified as renewable. In the present scenario where the hybridization of fossil power plants by solar-integration is gaining increasing attention, such assessment is of great importance in the fair and balanced development of local energy policies based on granting incentives to renewables resources. The paper extends to the case of two-resource/two-product hybrid cogeneration, as well as to general multi-resource/multi-generation, three of the allocation methods already available for single-resource/two-product cogeneration and for two-resource/single-product hybrid facilities, namely, the ExRR (Exergy-based Reversible-Reference) method, the SRSPR (Single Resource Separate Production Reference) method, and the STALPR (Self-Tuned-Average-Local-Productions-Reference) method. For the case study considered we show that, unless the SRSPR reference efficiencies are constantly updated, the differences between the STALPR and SRSPR methods become important as hybrid and cogeneration plants take up large shares of the local energy production portfolio. - Highlights: • How much of the heat and power in hybrid solar-fossil cogeneration are renewable? • We define and compare three allocation methods for hybrid cogeneration. • Classical and exergy allocation are based on prescribed reference efficiencies. • Adaptive allocation is based on the actual average efficiencies in the local area. • Differences among methods grow as hybrid CHP (heat and power cogeneration) gains large market fractions

  20. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    International Nuclear Information System (INIS)

    Nordin, Adzuieen; Amin, M; Majid, A

    2013-01-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO 2 to the environment. This study analyzes the amount of CO 2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO 2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants

  1. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    Science.gov (United States)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  2. Efficient Use of Cogeneration and Fuel Diversification

    Directory of Open Access Journals (Sweden)

    Kunickis M.

    2015-12-01

    Full Text Available Energy policy of the European Community is implemented by setting various goals in directives and developing support mechanisms to achieve them. However, very often these policies and legislation come into contradiction with each other, for example Directive 2009/28/EC on the promotion of the use of energy from renewable sources and Directive 2012/27/EU on energy efficiency, repealing Directive 2004/8/EC on the promotion of cogeneration based on a useful heat demand.

  3. Energy performance of a micro-cogeneration device during transient and steady-state operation: Experiments and simulations

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio

    2013-01-01

    Micro-cogeneration is a well-established technology and its deployment has been considered by the European Community as one of the most effective measure to save primary energy and to reduce greenhouse gas emissions. As a consequence, the estimation of the potential impact of micro-cogeneration devices is necessary to design policy and to energetically, ecologically and economically rank these systems among other potential energy saving and CO 2 -reducing measures. Even if transient behaviour can be very important when the engine is frequently started and stopped and allowed to cool-down in between, for the sake of simplicity mainly static and simplified methods are used for assessing the performance of cogeneration devices, completely neglecting the dynamic response of the units themselves. In the first part of this paper a series of experiments is illustrated and discussed in detail in order to highlight and compare the transient and stationary operation of a natural gas fuelled reciprocating internal combustion engine based cogeneration unit with 6.0 kW as nominal electric output and 11.7 kW as nominal thermal output. The measured performance of the cogeneration device is also compared with the performance of the system calculated on the basis of the efficiency values suggested by the manufacturer in order to highlight and quantify the discrepancy between the two approaches in evaluating the unit operation. Finally the experimental data are also compared with those predicted by a simulation model developed within IEA/ECBCS Annex 42 and experimentally calibrated by the authors in order to assess the model reliability for studying and predicting the performance of the system under different operating scenarios. -- Highlights: ► Transient operation of a cogeneration system has been experimentally investigated. ► Steady-state operation of a cogeneration device has been experimentally evaluated. ► Measured data have been compared with those predicted by a

  4. Co-Generation and Renewables: Solutions for a Low-Carbon Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Co-generation and renewables: solutions for a low-carbon energy future shows that powerful synergies exist when co-generation and renewables work together. The report documents, for the first time, some of the little-known complementary aspects of the two technologies. It also re-emphasises the stand-alone benefits of each technology. Thus, decision makers can use the report as a 'one-stop shop' when they need credible information on co-generation, renewables and the possible synergies between the two. It also provides answers to policy makers' questions about the potential energy and environmental benefits of an increased policy commitment to both co-generation and renewables. Secure, reliable, affordable and clean energy supplies are fundamental to economic and social stability and development. Energy and environmental decision-makers are faced with major challenges that require action now in order to ensure a more sustainable future. More efficient use of, and cleaner primary energy sources can help to achieve this goal. Co-generation -- also known as combined heat and power (CHP) -- represents a proven, cost-effective and energy-efficient solution for delivering electricity and heat. Renewable sources provide clean and secure fuels for producing electricity and heat.

  5. Survey for making a data book related to the development of new energy technology. Cogeneration; 1999 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa hokokusho. Cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This is a report of 'A data book on cogeneration' surveyed by Japan Cogeneration Center under consignment from NEDO. Together with the advance of technology development, policies of new energy technology are being developed toward the introductory promotion in terms of preparation of subsidy system, field test project, advisory project for support of new energy introduction, etc. To promote the project for introducing/promoting new energy more effectively, it is necessary to arrange various data on new energy comprehensively/systematically and to prepare it as the basic data. Out of the technical fields of new energy, this report deals with the cogeneration field and collected/arranged the most up-to-date published data in terms mainly of a list of system, actual samples of introduction, subsidy system, situation of tackling it in each country, etc. The main items of data included in this report are shown below: (1) trend of cogeneration; (2) outline of system; (3) samples of introduction in Japan and abroad; (4) forecast of introduction; (5) policies on cogeneration in Japan; (6) basic technical terms. (NEDO)

  6. Optimization of a gas turbine cogeneration plant

    International Nuclear Information System (INIS)

    Wallin, J.; Wessman, M.

    1991-11-01

    This work describes an analytical method of optimizing a cogeneration with a gas turbine as prime mover. The method is based on an analytical function. The function describes the total costs of the heat production, described by the heat load duration curve. The total costs consist of the prime costs and fixed costs of the gas turbine and the other heating plants. The parameters of interest at optimization are the heat efficiency produced by the gas turbine and the utilization time of the gas turbine. With todays prices for electricity, fuel and heating as well as maintenance- personnel and investment costs, extremely good conditions are needed to make the gas turbine profitable. Either a raise of the price for the electricity with about 33% is needed or that the ratio of electricity and fuel increases to approx 2.5. High investment subsidies for the gas turbines could make a gas turbine profitable, even with todays electricity- and fuel prices. Besides being a good help when projecting cogeneration plants with a gas turbine as prime mover, the method gives a possibility to optimize the annual operating time for a certain gas turbine when changing the operating conditions. 6 refs

  7. Design features of Beijing Shijingshan 3 x 200 MW cogeneration plant

    International Nuclear Information System (INIS)

    Li, T.X.; Ou, Y.Z.

    1991-01-01

    This paper describes the design feature of Beijing Shijingshan 3 x 200 MW Cogeneration Plant. The design optimized the scheme and system of 200 MW units for heating. The cogeneration plant has achieved comprehensive economic benefit in energy saving and environmental pollution reduction

  8. Evaluation of a Cogeneration Plant with Integrated Fuel Factory; Integrerad braenslefabrik med kraftvaermeanlaeggning - en utvaerdering

    Energy Technology Data Exchange (ETDEWEB)

    Atterhem, Lars

    2002-12-01

    A feasibility study was carried out in 1993 by Skellefteaa Kraft AB, to analyse the technical and economical possibilities to build a new baseload district heating production plant. The conclusion from the study was that, as a first step, a new cogeneration plant, based on a circulating fluidised bed boiler, should be built. The commissioning of the cogeneration plant took place in autumn 1996. The plant was prepared for a future integration with a biofuel drying process for pellets production. During spring 1996 an investment decision was taken and the fuel factory was erected in may 1997. Vaermeforsk Service AB has financed this research project and the Swedish state energy program (Fabel) has contributed with 33,7 Million SEK to the financing of the recovery electric power generation part of the fuel factory. The aim with this research project has been to evaluate and compare the integrated cogeneration plant fuel factory concept with a conventional co-generation plant, specially when it comes to increased power generation. The fuel factory comprises of fuel feeding system, fuel dryer, steam converter from fuel moisture to low pressure process steam, low pressure condensing turbine, cooling water system, fuel pellets production and storage with ship loading plant in the harbour of Skellefteaa. The steam to the fuel factory is extracted from the cogeneration turbine at a pressure level between 12-26 bar and the extraction flow has then already generated power in the cogeneration turbine. Power is also generated in the low pressure condensing turbine of the fuel factory. The low pressure steam is generated with fuel moisture in the steam converter. During the first years of operation there has been both conventional commissioning problems but also technical problems related to the new process concept. The last are for example corrosion and erosion problems, fouling problems of heat exchangers, capacity and leakage problems. The performance goals of the fuel

  9. High-temperature gas-cooled reactor steam cycle/cogeneration application study update

    International Nuclear Information System (INIS)

    1981-09-01

    Since publication of a report on the application of a High Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration (HTGR-SC/C) plant in December of 1980, progress has continued on application related activities. In particular, a reference plant and an application identification effort has been performed, a variable cogeneration cycle balance-of-plant design was developed and an updated economic analysis was prepared. A reference HTGR-SC/C plant size of 2240 MW(t) was selected, primarily on the basis of 2240 MW(t) being in the mid-range of anticipated application needs and the availability of the design data from the 2240 MW(t) Steam Cycle/Electric generation plant design. A variable cogeneration cycle plant design was developed having the capability of operating at a range of process steam loads between the reference design load (full cogeneration) and the no process steam load condition

  10. Cogeneration – development and prospect in Polish energy sector

    Directory of Open Access Journals (Sweden)

    Matuszewska Dominika

    2017-01-01

    Full Text Available Next 10-15 years are crucial for condition of Polish energy sector in light of challenges arising mainly from increasing demand for electric energy, need of reducing greenhouse gases emissions and shutdowns of old units. In this situation cogeneration can be one of the most rational way to meet those circumstances. This paper analyzes present development of cogeneration in Poland and its prospect for future.

  11. Performance evaluation of cogeneration power plants

    International Nuclear Information System (INIS)

    Bacone, M.

    2001-01-01

    The free market has changed the criteria for measuring the cogeneration plant performances. Further at the technical-economic parameters, are considered other connected at the profits of the power plant [it

  12. EXERGETIC ANALYSIS OF A COGENERATION POWER PLANT

    Directory of Open Access Journals (Sweden)

    Osvaldo Manuel Nuñez Bosch

    2016-07-01

    Full Text Available Cogeneration power plants connected to industrial processes have a direct impact on the overall efficiency of the plant and therefore on the economic results. Any modification to the thermal outline of these plants must first include an exergetic analysis to compare the benefits it can bring the new proposal. This research is performed to a cogeneration plant in operation with an installed electrical capacity of 24 MW and process heat demand of 190 MW, it shows a study made from the Second Law of Thermodynamics. Exergetic evaluation of each component of the plant was applied and similarly modified cogeneration scheme was evaluated. The results illustrate that the exergy losses and irreversibilities are completely different from one subsystem to another. In general, the total exergy destruction represented 70,7% from the primary fuel exergy. Steam generator was the subsystem with the highest irreversibility of the plant with 54%. It was demonstrated that the increase of the steam parameters lead to reduce exergy destruction and exergy efficiency elevation. The suppression of the reduction system and the adding of an extraction-condensing steam turbine produce the same effect and contribute to drop off the electrical consumption from the grid.

  13. An analysis of the legal and market framework for the cogeneration sector in Croatia

    International Nuclear Information System (INIS)

    Loncar, D.; Duic, N.; Bogdan, Z.

    2009-01-01

    Following a strategic orientation towards sustainable development, the Government of the Republic of Croatia has changed its energy legislation and has put forward a framework for the systematic development and increased use of renewable energy sources and cogeneration. This paper focuses on changes in the regulatory context relevant to the cogeneration sector and also analyses the impact of energy market transition on cogeneration viability in municipal district heating, industry, services and the residential sector. Particular attention has been paid to the expected changes of heat, electricity and gas prices. We present a simple model for quantitative prediction of the cogeneration system profitability at different power levels under given national circumstances. Our findings support a need for a strong institutional support for initial penetration of the micro-cogeneration technologies into the Croatian energy system. (author)

  14. 'BACO' code: Cogeneration cycles heat balance

    International Nuclear Information System (INIS)

    Huelamo Martinez, E.; Conesa Lopez, P.; Garcia Kilroy, P.

    1993-01-01

    This paper presents a code, developed by Empresarios Agrupados, sponsored by OCIDE, CSE and ENHER, that, with Electrical Utilities as final users, allows to make combined and cogeneration cycles technical-economical studies. (author)

  15. Cogeneration handbook for the textile industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Garrett-Price, B.A.; Fassbender, L.L.; Moore, N.L.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the textile industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  16. Evaluation of high temperature gas reactor for demanding cogeneration load follow

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Tachibana, Yukio; Kunitomi, Kazuhiko; Hino, Ryutaro

    2012-01-01

    Modular nuclear reactor systems are being developed around the world for new missions among which is cogeneration for industries and remote areas. Like existing fossil energy counterpart in these markets, a nuclear plant would need to demonstrate the feasibility of load follow including (1) the reliability to generate power and heat simultaneously and alone and (2) the flexibility to vary cogeneration rates concurrent to demand changes. This article reports the results of JAEA's evaluation on the high temperature gas reactor (HTGR) to perform these duties. The evaluation results in a plant design based on the materials and design codes developed with JAEA's operating test reactor and from additional equipment validation programs. The 600 MWt-HTGR plant generates electricity efficiently by gas turbine and 900degC heat by a topping heater. The heater couples via a heat transport loop to industrial facility that consumes the high temperature heat to yield heat product such as hydrogen fuel, steel, or chemical. Original control methods are proposed to automate transition between the load duties. Equipment challenges are addressed for severe operation conditions. Performance limits of cogeneration load following are quantified from the plant system simulation to a range of bounding events including a loss of either load and a rapid peaking of electricity. (author)

  17. DDACE cogeneration systems : 10 case studies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    DDACE Power Systems are experts in green energy power generation and provide solutions that deal with waste and industrial by-products. The company develops practical energy solutions that address environmental and financial concerns facing both industrial and municipal customers. The following 10 case studies are examples of the installations that DDACE Power Systems have completed in recent years: (1) a combined heat and emergency power installation on the roof of a 19 storey apartment building on Bloor Street in Toronto, Ontario. The cogeneration package provides electricity and heat to the entire building, replacing an old diesel generator, (2) a combined heat and emergency power installation at the Villa Colombo extended care facility in Vaughan, Ontario. The cogeneration system provides heat and power to the building, as well as emergency power, (3) emergency standby power with demand response capabilities at Sobeys Distribution Warehouse in Vaughan, Ontario. The primary purpose of the 2.4 MW low emission, natural gas fuelled emergency standby generator is to provide emergency power to the building in the event of a grid failure, (4) a dual fuel combined heat and power installation at the Queensway Carleton Hospital in Ottawa, Ontario that provides electricity, hot water and steam to all areas of the hospital, (5) a tri-generation installation at the Ontario Police College in Aylmer, Ontario which provides power and heat to the building as well as emergency power in the event of a grid failure. An absorption chiller provides cooling in the summer and an exhaust emission control system reduces NOx emissions, (6) a biomass gasification installation at Nexterra Energy in Kamloops, British Columbia. The 239 kW generator is fueled by synthesis gas, (7) biogas utilization at Fepro Farms in Cobden, Ontario for treatment of the facility's waste products. The biogas plant uses cow manure, as well as fats, oil and grease from restaurants to produce electricity and

  18. Development of Residential SOFC Cogeneration System

    International Nuclear Information System (INIS)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-01-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the 'Demonstrative Research on Solid Oxide Fuel Cells' Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  19. Development of Residential SOFC Cogeneration System

    Science.gov (United States)

    Ono, Takashi; Miyachi, Itaru; Suzuki, Minoru; Higaki, Katsuki

    2011-06-01

    Since 2001 Kyocera has been developing 1kW class Solid Oxide Fuel Cell (SOFC) for power generation system. We have developed a cell, stack, module and system. Since 2004, Kyocera and Osaka Gas Co., Ltd. have been developed SOFC residential co-generation system. From 2007, we took part in the "Demonstrative Research on Solid Oxide Fuel Cells" Project conducted by New Energy Foundation (NEF). Total 57 units of 0.7kW class SOFC cogeneration systems had been installed at residential houses. In spite of residential small power demand, the actual electric efficiency was about 40%(netAC,LHV), and high CO2 reduction performance was achieved by these systems. Hereafter, new joint development, Osaka Gas, Toyota Motors, Kyocera and Aisin Seiki, aims early commercialization of residential SOFC CHP system.

  20. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  1. Techno-economic assessment and optimization of stirling engine micro-cogeneration systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai [Dept. of Energy Technology, Helsinki University of Technology, P.O. Box 4100, 02015 TKK (Finland); Beausoleil-Morrison, Ian [Dept. of Mechanical and Aerospace Engineering, Carleton University, Ottawa (Canada)

    2010-12-15

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO{sub 2} emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO{sub 2} emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 EUR kW h{sup -1}. As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate. (author)

  2. Techno-economic assessment and optimization of Stirling engine micro-cogeneration systems in residential buildings

    International Nuclear Information System (INIS)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai; Beausoleil-Morrison, Ian

    2010-01-01

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO 2 emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO 2 emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 Euro kW h -1 . As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate.

  3. Cogeneration: A new opportunity for energy production market; La cogenerazione: Una nuova opportunita` per il mercato della produzione di energia

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology.

  4. Electric power supply: the viability of natural gas cogeneration

    International Nuclear Information System (INIS)

    Paula, C.P. de; Ennes, S.A.W.

    1991-01-01

    The technical and economical aspects of Natural Gas conversion into electricity through cogeneration, analysing the potentials and costs of the power systems connections to downstream processes is related. The insertion impacts of these cogeneration potentials into the Electrical Network are also analysed, with special emphasis on the supply deficit risk reduction. The generation conditions for both auto-sufficiency and exceeding supply to network are determined, regarding the purposes of attendance efficiency improvement and the necessary new service stimulus. (author)

  5. Performance analysis of a stationary fuel cell thermoelectric cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, J.K.; Hwang, J.J.; Lin, C.H. [Department of Greenergy, National University of Tainan, Tainan, 70005 (China)

    2012-12-15

    The main purpose of our study was to use an experimental method and system dynamic simulation technology to examine a proton exchange membrane fuel cell thermoelectric cogeneration system that provides both high-quality electric power and heated water. In the second part of our study, we experimentally verified the development of key components of the fuel cell and conducted a comprehensive analysis of the subsystems, including the fuel cell module, hydrogen supply subsystem, air supply subsystem, humidifier subsystem, and heat recovery subsystem. Finally, we integrated all of the subsystems into a PEM fuel cell thermoelectric cogeneration system and performed efficiency tests and analysis of power generation, heat recovery, and thermoelectric cogeneration. After comparing this system's efficiency results using simulation and experimentation, we determined that the accuracy of the simulation values when compared to the experimental values was >95%, showing that this system's simulation nearly approached the efficiency of the actual experiment, including more than 53% for power generation efficiency, more than 39% for heat recovery efficiency, and more than 93% for thermoelectric cogeneration combined efficiency. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Co-generation: Increasing energy efficiency in Bosnia and Herzegovina

    Directory of Open Access Journals (Sweden)

    Lekić Alija

    2007-01-01

    Full Text Available The main sources for power generation in Bosnia and Herzegovina are domestic coals, mainly lignite and brown coals, which are relatively characterized with a high content of sulphur (3-5% and incombustibles (˜30%. From the 70’s, use of this type of fuels was not allowed in the city of Sarajevo due to very unfavorable emissions to the atmosphere, during the heating period, and since then Sarajevo has been supplied with natural gas. All the heating installations in the city were reconstructed and adapted. The district heating system Toplane Sarajevo is supplied with electrical energy from the Public electrical distribution network (Elektrodistribucija Sarajevo at low voltage (0.4 kV. The boiler-house Dobrinja III-2 (KDIII-2, from the district heating system of Sarajevo Suburb Dobrinja, which was not in use after the war 1992-1995, had a lot of advantages for the reconstruction into the co-generation plant. The Government of Canton Sarajevo financially supported this proposal. An analysis of co-generations for the district heating system and a selection of most appropriate co-generation systems were made. In the proposed conceptual design, the co-generation KDIII-2 was located in the existing boiler-house KDIII-2, connected with the heating system in Dobrinja. The operating costs of production of electricity and heat were evaluated in the study and compared with the costs of conventional energy supply to the district heating system. This analysis resulted in economic indicators, which showed that this investment was economically viable, and it also determined the payback period of the investment. In this paper results of the mentioned study and an overview of co-generation in Bosnia and Herzegovina are presented.

  7. Modeling of a Cogeneration System with a Micro Gas Turbine Operating at Partial Load Conditions

    Directory of Open Access Journals (Sweden)

    José Carlos Dutra

    2017-06-01

    Full Text Available The integration of absorption chillers in micro-cogeneration systems based on micro-gas turbines can be useful as an appropriate strategy to increase the total system energy efficiency. Since it is an area intensive in technology, it is necessary to develop and use models of simulation, which can predict the behavior of the whole system and of each component individually, at different operating conditions. This work is part of a research project in high efficiency cogeneration systems, whose purpose at this stage is to model a micro-cogeneration system, which is composed of a micro gas turbine, Capstone C30, a compact cross flow finned tube heat exchanger and an absorption chiller. The entire model is composed of specifically interconnected models, developed and validated for each component. The simulation of the microturbine used a thermodynamic analytic model, which contains a procedure used to obtain the micro turbine characteristic performance curves, which is closed with the thermodynamic Brayton cycle model. In the cogeneration system discussed in this paper, the compact heat exchanger was used to heat thermal oil, which drives an absorption chiller. It was designed, characterized and installed in a cogeneration system installed at the Centre d'Innovació Tecnològica en Revalorització Energètica i Refrigeració, Universtat Rovira i Virgili. Its design led to the heat exchanger model, which was coupled with the micro turbine model. Presented in this work is a comparison between the data from the model and the experiments, demonstrating good agreement between both results.

  8. Status report on compact gasifier cogeneration units in Germany. Applications of the cogeneration gasifier technology; Stand kleintechnischer Vergaser-BHKW-Anlagen in Deutschland. Einsatz der BHKW-Vergasertechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Zschunke, Tobias; Schuessler, Ingmar; Salomo, Bert [Hochschule Zittau/Goerlitz (Germany); Braekow, Dieter [Foerdergesellschaft Erneuerbare Energien e.V., Berlin (Germany); Treppe, Konrad [Technische Univ. Dresden (Germany). Inst. fuer Verfahrenstechnik und Umwelttechnik

    2010-07-01

    In contrast to biogas, the use of solid biomass with low water content in cogeneration units is lagging several years of development behind. A promising variant is a wood gas engine cogeneration unit. Different energy sources can be combined, e.g. in an Otto engine and a Stirling engine. The authors describe the technology for compact systems. (orig.)

  9. Comparative economic evaluation of environmental impact of different cogeneration technologies

    International Nuclear Information System (INIS)

    Patrascu, Roxana; Athanasovici, Victor; Raducanu, Cristian; Minciuc, Eduard; Bitir-Istrate, Ioan

    2004-01-01

    Cogeneration is one of the most powerful technologies for reduction of environmental pollution along with renewable energies. At the Kyoto Conference cogeneration has been identified as being the most important measure for reducing emissions of greenhouse effect gases. It has also been mentioned that cogeneration has a potential of reducing pollution with about 180 million tones per year. In order to promote new cogeneration technologies and evaluate the existing ones it is necessary to know and to be able to quantify in economical terms the environmental issues. When comparing different cogeneration technologies: steam turbine (TA), gas turbine (TG), internal combustion engine (MT), in order to choose the best one, the final decision implies an economic factor, which is even more important if it includes the environmental issues. The environmental impact of different cogeneration technologies is quantified using different criteria: depletion of non-renewable natural resources, eutrofisation, greenhouse effect, acidification etc. Environmental analysis using these criteria can be made using the 'impact with impact' methodology or the global one. The results of such an analysis cannot be quantified economically directly. Therefore there is a need of internalisation of ecological effects within the costs of produced energy: electricity and heat. In the energy production sector the externalizations represent the indirect effects on the environment. They can be materialised within different types of environmental impact: - Different buildings of mines, power plants etc; - Fuel losses during transportation and processing; - Effect of emissions in the air, water and soil. Introduction of the environmental impact costs in the energy price is called internalisation and it can be made using the direct and indirect methods. The paper discusses aspects regarding the emissions of cogeneration systems, the eco-taxes - method of 'internalisation' of environmental

  10. Twin cities institutional issues study cogenerated hot water district heating

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, R. E.; Leas, R.; Kolb, J. O.

    1979-01-01

    Community district heating, utilizing hot water produced through electrical/thermal cogeneration, is seen as an integral part of Minnesota's Energy Policy and Conservation Plan. Several studies have been conducted which consider the technical and institutional issues affecting implementation of cogenerated district heating in the Minneapolis and St. Paul Metropolitan Area. The state of the technical art of cogenerated hot water district heating is assumed to be transferable from European experience. Institutional questions relating to such factors as the form of ownership, financing, operation, regulation, and product marketability cannot be transferred from the European experience, and have been the subject of an extensive investigation. The form and function of the Institutional Issues Study, and some of the preliminary conclusions and recommendations resulting from the study are discussed.

  11. Comments on derivation of an index for evaluating economics of cogeneration systems and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, R [Indian Inst. of Tech., Bombay (India). Dept. of Mechanical Engineering

    1990-04-01

    Industrial cogeneration systems usually must satisfy a power load and heat loads at different temperatures. The limitations of the economic index proposed by Pak and Suzuki for such cogeneration systems is discussed in this paper. The importance of a rational exergetic basis for evaluation of different grades of energy is emphasised. Thermodynamic criteria, e.g. the exergetic efficiency, relative fuel savings and fuel chargeable to power, are shown to provide useful information regarding cogeneration options. Any assessment scheme for cogeneration schemes must incorporate thermodynamic criteria in addition to economic criteria. (author).

  12. Incentives for cogeneration in Italy: Logic and implementation

    International Nuclear Information System (INIS)

    Tomassetti, G.

    1992-01-01

    Within the framework of legal and financial incentives made possible through Italian legislation on cogeneration plants for on-site power generation, this paper reviews the planning criteria that went into the formulation of the incentives and the response obtained from small, medium and large industrial firms. The discussion takes into account the following aspects: the optimal timing of retrofits, national energy conservation and environmental policy objectives, energy surcharges, benefits to consumers as compared with those for energy producers, benefits from incentives as a function of cogeneration plant size, and the technical complexity of application requirements for prospective applicants

  13. Mini/micro cogeneration, basis for installation. Dimensioning, accounting and potential. Project report 1; Mini/mikrokraftvarme, forudsaetninger for installation. Dimensionering, afregningsforhold og potentiale. Projektrapport 1

    Energy Technology Data Exchange (ETDEWEB)

    Wit, J. de; Iskov, H.

    2005-11-15

    Cogeneration is quite spread in Denmark. Approx. 50 % of the power supply and 80 % of the district heating supply come from cogeneration. Combined heat and power is produced on both centralized (large) plants and decentralized plants. Decentralized combined heat and power plants (typically based on natural gas) use gas motors or gas turbines for power and heat production. Cogeneration of heat and power saves primary fuels and a directly derived effect from cogeneration is CO{sub 2} emission reduction. If fuels with higher specific CO{sub 2} emission than natural gas (e.g. coal, oil) are substituted, additional CO{sub 2} reduction can be reached. (BA)

  14. Feasibility studies on cogeneration from industrial wood-processing residues in Ghana

    International Nuclear Information System (INIS)

    Brew-Hammond, A.; Atakora, S.B.

    1999-01-01

    Several feasibility studies have been undertaken on cogeneration from wood-processing industrial residues in Ghana; practically all concluded that it was not economically viable because of the low tariffs for electricity in Ghana (around 3.5 US cents per kWh) at the time. Tariffs have more than doubled since September 1998 and average tariffs for industrial consumers are now around 7-8 US cents/kWh. This paper reviews earlier studies and undertakes a sensitivity analysis to determine effects of the new tariff regime and the investment costs for co-generation projects. More detailed technical and economic feasibility studies are needed to prepare the ground for an investment programme in cogeneration from wood residues. (author)

  15. Energetic analysis of a novel vehicle power and cooling/heating cogeneration energy system using cascade cycles

    International Nuclear Information System (INIS)

    Yue, Chen; Han, Dong; Pu, Wenhao; He, Weifeng

    2015-01-01

    This study proposes and investigates a novel VCES (Vehicle power and cooling/heating Cogeneration Energy System), including a topping vehicle engine subsystem, and a bottoming waste-heat recovery subsystem which uses the zeotropic working fluid. The various grade exhaust and coolant waste-heat of the topping subsystem are cascade recovered by the bottoming subsystem, and slide-temperature thermal match in waste heat recovery heat exchangers and the condenser is considered also, obtaining power output and cooling/heating capacity. Based on the experimental data from an actual vehicle's energy demands and its waste-heat characteristics, the proposed VCES (vehicle cogeneration energy system) model is built and verified. Using ammonia-water as working fluid of the bottoming subsystem, integrated thermodynamic performances of the VCES are discussed through introducing three variables: an ambient temperature, the vehicle's velocity and the number of seated occupants. The influence of above three variables on the proposed VCES′ overall thermodynamic performance is analyzed by comparing it to a conventional VCES, and suitable operation conditions are recommended under cooling and heating conditions. - Highlights: • A novel vehicle cogeneration energy system is proposed. • Slide-temperature thermal match at two levels are considered. • Integration of the topping vehicle engine and bottoming waste heat recovery cycle is designed. • The cogeneration system model is built and verified based on experimental data. • Energy-saving potential of the proposed system is investigated

  16. Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration

    International Nuclear Information System (INIS)

    Hogerwaard, Janette; Dincer, Ibrahim; Zamfirescu, Calin

    2013-01-01

    A low-temperature heat driven heat engine is proposed as a cost-effective system for power and heat production for small scale applications. The external heat source allows flexibility in the design; the system may be coupled with various available renewable sources including biomass/biofuel/biogas combustion, geothermal heat, concentrated solar radiation, and industrial waste heat, by selecting appropriate off-the-shelf components from the HVAC (heating, ventilation, and air conditioning), refrigeration, and automotive industries for use in an ORC (organic Rankine cycle). A theoretical analysis and an experimental study are carried out for an ORC with R134a as the working fluid, utilizing a low-temperature heat source (T source < 150 °C), with focus on the expansion and boiling processes. The complete ORC model is comprised of models for the expander, working fluid pump, boiler, and condenser. Thermodynamic and heat transfer models are developed to calculate the local and averaged heat transfer coefficient of the working fluid throughout the boiling process, based on the geometry of the selected heat exchanger. Data collected for the experimental ORC test bench are used to validate the expander and boiler models. A case study is performed for the proposed ORC, for cogeneration of power and heat in a residential application. The results of the case study analysis for the proposed ORC system indicate a cycle efficiency of 0.05, exergy efficiency of 0.17, and energy and exergy cogeneration efficiency of 0.87, and 0.35, respectively. - Highlights: • Development and investigation of a scroll based Rankine heat engine operating with R134a. • Thermodynamic analyses of the system and its components. • Heat transfer analyses of boiler and condenser. • Dynamic analysis of expander. • Model validation through performed experiments on an ORC test bench

  17. CO2 recovery from cogeneration projects

    International Nuclear Information System (INIS)

    Rushing, S.A.

    2001-01-01

    There is a ready market for carbon dioxide for use in industrial processes as well as in food and beverage production. Recovering this gas from flue gas exhausts can provide extra income for cogeneration projects -as well as reducing emissions. (author)

  18. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Ng, K. C.

    2013-01-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i

  19. An economic analysis of small-scale cogeneration using forest biomass and sawmill residuals in northern Ontario

    International Nuclear Information System (INIS)

    Beke, N.L.

    1994-01-01

    The economic feasibility of using biomass for cogeneration in northern Ontario was investigated and the institutional factors that may affect establishment and operation of cogeneration facilities were determined. Two fuel sources for a cogeneration plant were evaluated: forest materials and sawmill residuals. To establish and operate a cogeneration plant, the policies of the Ontario Ministry of Natural Resources and Ontario Hydro needed to be analyzed. Some of the benefits of using sawmill residuals for cogeneration were identified and an inventory of sawmill residuals was compiled. The welfare effects of three pricing schemes for non-utility generated electricity are described using a neoclassical welfare model. This model is further extended to include the effects of subsidizing public utilities and using biomass to generate electricity. A competitive market for electricity generation and relating pricing structure was also examined. The results of the capital budget for the cogeneration facility indicated that by using sawmill residuals and chipped forest biomass as fuel for cogeneration, internal rates of return would be 22.7% and 8.7% and net present values would be $8,659,870 and $1,867,822, respectively. This implied that using sawmill residuals for cogeneration fuel would be both profitable and would help to reduce possible harmful effects that current dumping practices may have on the surrounding ecosystem. 84 refs., 17 figs., 14 tabs

  20. Assessing and optimizing the economic and environmental impacts of cogeneration/district energy systems using an energy equilibrium model

    International Nuclear Information System (INIS)

    Wu, Y.J.; Rosen, M.A.

    1999-01-01

    Energy equilibrium models can be valuable aids in energy planning and decision-making. In such models, supply is represented by a cost-minimizing linear submodel and demand by a smooth vector-valued function of prices. In this paper, we use the energy equilibrium model to study conventional systems and cogeneration-based district energy (DE) systems for providing heating, cooling and electrical services, not only to assess the potential economic and environmental benefits of cogeneration-based DE systems, but also to develop optimal configurations while accounting for such factors as economics and environmental impact. The energy equilibrium model is formulated and solved with software called WATEMS, which uses sequential non-linear programming to calculate the intertemporal equilibrium of energy supplies and demands. The methods of analysis and evaluation for the economic and environmental impacts are carefully explored. An illustrative energy equilibrium model of conventional and cogeneration-based DE systems is developed within WATEMS to compare quantitatively the economic and environmental impacts of those systems for various scenarios. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Gas turbine cogeneration plant for textile dyeing plant in Italy

    International Nuclear Information System (INIS)

    Tonetti, P.E.

    1991-01-01

    This paper reports the information (i.e., notes on specific plant component weaknesses and defects, e.g., exchanger tube fouling, improper positioning of temperature probes, incorrect choice of flow valves, etc., and relative remedial actions) gained during a one year cogeneration plant debugging campaign at the Colorama textile dyeing plant in Italy. The cogeneration plant consists of a Solar Saturn MK III gas turbine (1,080 kw at terminals, 500 degrees C exhaust gas temperature); a double (steam and hot water) circuit waste heat boiler contemporaneously producing, with 100 degrees C supply water, 4 tonnes/h steam at 5 bars and 9 cubic meters/h of 20 to 80 degrees C hot water; and a 1,470 kVA generator operating at 3 kV connected by a 3kV/15kV transformer to the national grid. The plant is protected against fire by independent halon fire protection systems, one for the gas turbine plant, the other, for the control room. A modem connects the plant control and monitoring system with the firm which supplied the equipment. The plant operator cites an urgent national requirement for trained cogeneration equipment technical consultants and designers in order to better promote the use of innovative cogeneration technology by Italian industry

  2. Economic potential of natural gas-fired cogeneration in Brazil: two case studies

    Energy Technology Data Exchange (ETDEWEB)

    Szklo, Alexandre Salem; Soares, Jeferson Borghetti; Tolmasquim, Mauricio Tiomno [Rio de Janeiro Federal Univ., Energy Planning Program (COPPE), Rio de Janeiro (Brazil); Cidade Univ., Ilha do Fundao, Rio de Janeiro (Brazil)

    2000-11-01

    Recent restructuring of Brazil's power sector, allied to the expected larger share of natural gas in the nation's grid and the cost reductions of gas-fired power generation technologies, has introduced a set of situations apparently favorable to the expansion of natural gas-fired cogeneration. However, electricity self-generation applications are restricted to specific cases in Brazil. In order to deal with this issue, the COGEN model was developed to assess the economic potential of cogeneration ventures from the standpoint of the investor and guide incentive public policies. This model has been applied to two cases in Brazil -- a chemical plant and a shopping mall -- showing that the highest economic potential for gas-fired cogeneration in Brazil is found in industrial plants faced with high values of loss of load. In the commercial sector, measures reshaping the load curve of enterprises -- such as cold storage --- might be much more interesting than fired cogeneration. (Author)

  3. Evaluation of the demonstration project cogeneration at WVEM/Defever, Gistel; Evaluatie demonstratieproject WKK bij WVEM/DEFEVER te Gistel

    Energy Technology Data Exchange (ETDEWEB)

    Martens, A.

    1996-12-01

    As part of the promotion of energy saving technologies, the Flemish Government has ascribed a subsidy of 2,622,000 BEF to the energy company WVEM for the cogeneration project at market gardener Defever in Gistel. The cogeneration installation supplies heat at 2 temperature levels to the truck farming, the electricity is directly sent to the distribution grid of WVEM. The Flemish Institute for Technological Research is doing an evaluation of this demonstration project, at which the performances of the cogeneration installation based on hourly measurements during the period May 1994 up to December 1995 are analyzed, by order of the Department Natural Resources and Energy. The economical profitability from the point of view of WVEM of the cogeneration project is not as good as originally was estimated because of problems with the heat technical fitting in, that brought along an extra investment of 1.3 MBEF and caused relative high maintenance, operation and observance costs. For the following years WVEM expects to reduce the maintenance, operation and observance costs to about 0.35 BEF/kWh, by which the profitability will improve.

  4. Benefit Analysis of Emergency Standby System Promoted to Cogeneration System

    Directory of Open Access Journals (Sweden)

    Shyi-Wen Wang

    2016-07-01

    Full Text Available Benefit analysis of emergency standby system combined with absorption chiller promoted to cogeneration system is introduced. Economic evaluations of such upgraded projects play a major part in the decisions made by investors. Time-of-use rate structure, fuel cost and system constraints are taken into account in the evaluation. Therefore, the problem is formulated as a mixed-integer programming problem. Using two-stage methodology and modified mixed-integer programming technique, a novel algorithm is developed and introduced here to solve the nonlinear optimization problem. The net present value (NPV method is used to evaluate the annual benefits and years of payback for the cogeneration system. The results indicate that upgrading standby generators to cogeneration systems is profitable and should be encouraged, especially for those utilities with insufficient spinning reserves, and moreover, for those having difficulty constructing new power plants.

  5. Energy and cost saving results for advanced technology systems from the Cogeneration Technology Alternatives Study (CTAS)

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    An overview of the organization and methodology of the Cogeneration Technology Alternatives Study is presented. The objectives of the study were to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the future and to assess the advantages of advanced technology systems compared to those systems commercially available today. Advanced systems studied include steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics. Steam turbines, open cycle gas turbines, combined cycles, and diesel engines were also analyzed in versions typical of today's commercially available technology to provide a base against which to measure the advanced systems. Cogeneration applications in the major energy consuming manufacturing industries were considered. Results of the study in terms of plant level energy savings, annual energy cost savings and economic attractiveness are presented for the various energy conversion systems considered.

  6. Cogeneration handbook for the food processing industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Eakin, D.E.; Fassbender, L.L.; Garrett-Price, B.A.; Moore, N.L.; Fasbender, A.G.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the food processing industry. Appendices B through O provide specific information that will be called out in subsequent chapters.

  7. Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India

    International Nuclear Information System (INIS)

    Sahu, S K; Ohara, T; Nagashima, T; Beig, G; Kurokawa, J

    2015-01-01

    In the recent past, the emerging India economy is highly dependent on conventional as well as renewable energy to deal with energy security. Keeping the potential of biomass and its plentiful availability, the Indian government has been encouraging various industrial sectors to generate their own energy from it. The Indian sugar industry has adopted and made impressive growth in bagasse (a renewable biomass, i.e. left after sugercane is crushed) based cogeneration power to fulfil their energy need, as well as to export a big chunk of energy to grid power. Like fossil fuel, bagasse combustion also generates various critical pollutants. This article provides the first ever estimation, current status and overview of magnitude of air pollutant emissions from rapidly growing bagasse based cogeneration technology in Indian sugar mills. The estimated emission from the world’s second largest sugar industry in India for particulate matter, NO X, SO 2 , CO and CO 2 is estimated to be 444 ± 225 Gg yr −1 , 188 ± 95 Gg yr −1 , 43 ± 22 Gg yr −1 , 463 ± 240 Gg yr −1 and 47.4 ± 9 Tg yr −1 , respectively in 2014. The studies also analyze and identify potential hot spot regions across the country and explore the possible further potential growth for this sector. This first ever estimation not only improves the existing national emission inventory, but is also useful in chemical transport modeling studies, as well as for policy makers. (letter)

  8. Cogeneration and CO2 emissions. Impact of the low power decentralized cogeneration development on the CO2 emissions in France

    International Nuclear Information System (INIS)

    2004-01-01

    Facing the economic growth leading the increase of the energy demand, the new european organization of the electric Industry and the development of the renewable energies sources, the cogeneration is developing in France. The aim of this study is the impacts of these cogeneration technologies on the raw materials consumption and on the environment. In a first part the energy profile of the buildings, agriculture and Industry sectors are evaluated. Each sector is divided in sectoral parts of specific thermal and electrical needs. In a second part scenario, established in the study, present significant developments of decentralized technologies of simultaneous production of heat and electric power in the range of few kW to 1 MW. (A.L.B.)

  9. Optimal integration of linear Fresnel reflector with gas turbine cogeneration power plant

    International Nuclear Information System (INIS)

    Dabwan, Yousef N.; Mokheimer, Esmail M.A.

    2017-01-01

    Highlights: • A LFR integrated solar gas turbine cogeneration plant (ISGCPP) has been simulated. • The optimally integrated LFR with gas turbine cogeneration plant can achieve an annual solar share of 23%. • Optimal integration of LFR with gas turbine cogeneration system can reduce CO 2 emission by 18%. • Compared to a fully-solar-powered LFR plant, the optimal ISGCPP reduces the LEC by 83%. • ISGCPP reduces the LEC by 50% compared to plants integrated with carbon capture technology. - Abstract: Solar energy is an abundant resource in many countries in the Sunbelt, especially in the middle east, countries, where recent expansion in the utilization of natural gas for electricity generation has created a significant base for introducing integrated solar‐natural gas power plants (ISGPP) as an optimal solution for electricity generation in these countries. ISGPP reduces the need for thermal energy storage in traditional concentrated solar thermal plants and results in dispatchable power on demand at lower cost than stand-alone concentrated thermal power and much cheaper than photovoltaic plants. Moreover, integrating concentrated solar power (CSP) with conventional fossil fuel based thermal power plants is quite suitable for large-scale central electric power generation plants and it can be implemented in the design of new installed plants or during retrofitting of existing plants. The main objective of the present work is to investigate the possible modifications of an existing gas turbine cogeneration plant, which has a gas turbine of 150 MWe electricity generation capacity and produces steam at a rate of 81.4 at 394 °C and 45.88 bars for an industrial process, via integrating it with concentrated solar power system. In this regard, many simulations have been carried out using Thermoflow software to explore the thermo-economic performance of the gas turbine cogeneration plant integrated with LFR concentrated solar power field. Different electricity

  10. Cogeneration and the regulatory framework of energy law; Kraft-Waerme-Kopplung und der energiewirtschaftliche Ordnungsrahmen

    Energy Technology Data Exchange (ETDEWEB)

    Cornehl, Angelika Bettina

    2009-06-15

    The present publication shows that the existing regulatory framework poses numerous impediments to cogeneration plants. This holds especially for industrial operators, but also for municipalities. It has prevented cogeneration from developing its full potential both as an element of competition and as a relief for the environment. Unlike industrial cogeneration plants, those serving the public energy supply at least enjoy the privilege of regional monopoly rights. In today's liberalised electricity market, however, this can be a burden for existing municipal plants which were installed under territorial protection and in many cases have incurred high cost levels and become inflexible and lacking in entrepreneurial spirit as a result. On account of its tendency to promote optimal resource input and efficiency, competition promises positive impulses for the use of cogeneration in small-scale heat grids, where high fuel efficiency matters more. A reform of the competition regime in the power economy would eliminate numerous impediments, particularly for industrial cogeneration operators. Good hopes for the future of cogeneration in a liberalised electricity and gas market are also nurtured by cooperative supply concepts and, within the large domain of services, opportunities held out by special contracting offers.

  11. Application of information theory for the analysis of cogeneration-system performance

    International Nuclear Information System (INIS)

    Takahashi, Kazuki; Ishizaka, Tadashi

    1998-01-01

    Successful cogeneration system performance depends critically upon the correct estimation of load variation and the accuracy of demand prediction. We need not only aggregated annual heat and electricity demands, but also hourly and monthly patterns in order to evaluate a cogeneration system's performance by computer simulation. These data are usually obtained from the actual measurements of energy demand in existing buildings. However, it is extremely expensive to collect actual energy demand data and store it over a long period for many buildings. However we face the question of whether it is really necessary to survey hourly demands. This paper provides a sensitivity analysis of the influence of demand-prediction error upon the efficiency of cogeneration system, so as to evaluate the relative importance of various demand components. These components are annual energy demand, annual heat-to-electricity ratio, daily load factor and so forth. Our approach employs the concept of information theory to construct a mathematical model. This analysis provides an indication of the relative importances of demand indices, and identifies what may become a good measure of assessing the efficiency of the cogeneration system for planning purposes. (Author)

  12. Feasibility study of a biomass-fired cogeneration plant Groningen, Netherlands

    International Nuclear Information System (INIS)

    Rijk, P.J.; Van Loo, S.; Webb, R.

    1996-06-01

    The feasibility of the title plant is determined for district heating and electricity supply of more than 1,000 houses in Groningen, Netherlands. Also attention is paid to the feasibility of such installations in a planned area of the city. Prices and supply of several biomass resources are dealt with: prunings of parks, public and private gardens, clean wood wastes, wood wastes from forests, wood from newly planted forests, specific energy crops (willows in high densities and short cycles). Prices are calculated, including transport to the gate of the premises where the cogeneration installations is situated. For the conversion attention is paid to both the feasibility of the use of a conventional cogeneration installation (by means of a steam turbine) and the use of a new conversion technique: combined cycle of a gasification installation and a cogeneration installation. 5 figs., 5 ills., 22 tabs., 1 appendix, 33 refs

  13. Heating unit of Berovo by co-generation (Macedonia)

    International Nuclear Information System (INIS)

    Armenski, Slave; Dimitrov, Konstantin; Tashevski, Done

    1999-01-01

    A plant for combined heat and electric power production, for central heating of the town Berovo (Macedonia) is proposed. The common reason to use a co-generation unit is the energy efficiency and a significant reduction of environmental pollution. The heat consumption of town Berovo is analyzed and determined. Based on the energy consumption of a whole power plant, e. i. the plant for combined and simultaneous production of power is proposed. The quantity of annually heat and electrical production and annually coal consumption are estimated. (Author)

  14. Assessment of biomass cogeneration in the Great Lakes region

    International Nuclear Information System (INIS)

    Burnham, M.; Easterly, J.L.

    1994-01-01

    Many biomass cogeneration facilities have successfully entered into power sales agreements with utilities across the country, often after overcoming various difficulties or barriers. Under a project sponsored by the Great Lakes Regional Biomass Energy Program of the U.S. Department of Energy, DynCorp sm-bullet Meridian has conducted a survey of biomass facilities in the seven Great Lakes states, selecting 10 facilities for case studies with at least one facility in each of the seven states. The purpose of the case studies was to address obstacles that biomass processors face in adding power production to their process heat systems, and to provide examples of successful strategies for entering into power sales agreements with utilities. The case studies showed that the primary incentives for investing in cogeneration and power sales are to reduce operating costs through improved biomass waste management and lower energy expenditures. Common barriers to cogeneration and power sales were high utility stand-by charges for unplanned outages and low utility avoided cost payments due to excess utility generation capacity

  15. The impact of small scale cogeneration on the gas demand at distribution level

    International Nuclear Information System (INIS)

    Vandewalle, J.; D’haeseleer, W.

    2014-01-01

    Highlights: • Impact on the gas network of a massive implementation of cogeneration. • Distributed energy resources in a smart grid environment. • Optimisation of cogeneration scheduling. - Abstract: Smart grids are often regarded as an important step towards the future energy system. Combined heat and power (CHP) or cogeneration has several advantages in the context of the smart grid, which include the efficient use of primary energy and the reduction of electrical losses through transmission. However, the role of the gas network is often overlooked in this context. Therefore, this work presents an analysis of the impact of a massive implementation of small scale (micro) cogeneration units on the gas demand at distribution level. This work shows that using generic information in the simulations overestimates the impact of CHP. Furthermore, the importance of the thermal storage tank capacity on the impact on the gas demand is shown. Larger storage tanks lead to lower gas demand peaks and hence a lower impact on the gas distribution network. It is also shown that the use of an economically led controller leads to similar results compared to classical heat led control. Finally, it results that a low sell back tariff for electricity increases the impact of cogeneration on the gas demand peak

  16. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Young-Deuk; Choon, Ng Kim

    2011-01-01

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling

  17. Environmental licensing issues for cogeneration plants

    International Nuclear Information System (INIS)

    Lipka, G.S.; Bibbo, R.V.

    1990-01-01

    The siting and licensing of cogeneration and independent power production (IPP) facilities is a complex process involving a number of interrelated engineering, economic, and environmental impact considerations. Important considerations for the siting and licensing of such facilities include air quality control and air quality impacts, water supply and wastewater disposal, and applicable noise criteria and noise impact considerations. Air quality control and air quality impact considerations for power generation facilities are commonly reviewed in the public forum, and most project developers are generally aware of the key air quality licensing issues. These issues include Best Available Control Technology (BACT) demonstration requirements, and air quality modeling requirements. BACT is a case-by-case determination, which causes uncertainty, in that developers have difficulty in projecting the cost of required control systems. Continuing developments in control technology may cause this problem to continue in the 1990's. Air quality modeling can be a problem in hilly terrain or within or near an urban environment, which could delay or preclude permitting of a new cogeneration or IPP facility in such locations. This paper discusses several environmental issues which are less frequently addressed than air quality issues, namely water/wastewater and noise. The design features of typical cogeneration and IPP facilities that affect water supply requirements, wastewater volumes, and noise emissions are discussed. Then, the site selection and impact review process are examined to identify typical constraints and trade-offs that can develop relative to water, wastewater, and noise issues. Trends in permit review requirements for water, wastewater, and noise are examined. Finally, innovative approaches that can be used to resolve potential development constraints for water, wastewater, and noise issues are discussed

  18. Cogeneration cycles applied to desalination in the Arab World: state of the art

    International Nuclear Information System (INIS)

    Yassin, Jamal Saleh

    2006-01-01

    This paper presents a review of cogeneration cycles applied to water desalination in most of the Arab countries. The scarcity of fresh water resources in many countries around the world, and in particular Gulf countries and north African countries such as Libya and Tunisia forced the local authorities to establish many desalination plants to compensate the water shortage. Some plants are conventional for desalination processes only and others are with cogeneration cycle. The high performance of cogeneration cycles encouraged establishing combined power and desalination plants. The present study is intended to provide an overview of cogeneration cycles in conjunction with desalination technologies under the two main resources of energy, fossils and renewables. Thermal technologies, which utilize fossil resource constitute the mainstay of large-scale desalination in the Arab countries and enjoy a relatively important position worldwide. While the technologies which utilize renewable resources such as solar are getting more attention year by year and still under research and almost for small units.(Author)

  19. Homogeneous groups of plants, development scenarios, and basic configurations on the cogeneration systems optimization from the alcohol sector

    International Nuclear Information System (INIS)

    Silva Walter, A.C. da; Bajay, S.V.; Carrillo, J.L.L.

    1990-01-01

    The evaluation of introducing or diffusing new technologies at a macro economic level using micro economic information can be carried out through the careful selection of a small number of homogeneous groups of plants from the point of view of the main technical parameters being considered. In this paper this concept is applied to the study of cogeneration in sugar and alcohol producing plants. The statistical techniques of Cluster Analysis, regressions and mean value testing are used. Basic cogeneration plant designs are proposed for alternatives development scenarios for this industrial branch. These scenarios are based upon differing assumptions about the expansion of alcohol market, use of surplus sugar cane bagasse as saleable commodity, as a fuel or raw material, and price expectations for the sale of surplus power from the cogeneration plants to the local grid. (author)

  20. Development of miller cycle gas engine for cogeneration; Developpement d'un moteur a gaz a cycle de Miller destine a la cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Tsukida, N; Sakakura, A; Murata, Y; Okamoto, K [Tokyo Gas CO., LTD (Japan); Abe, T; Takemoto, T [YANMAR Diesel Engine CO., LTD (Japan)

    2000-07-01

    We have developed a 300 kW gas engine cogeneration system for practical use that uses natural gas. Using a gas engine operated under conditions with an excess air ratio {lambda} = 1 that is able to use a three way catalyst to purify the exhaust gases, we were able to achieve high efficiency through the application of the Miller Cycle, as well as a low NO{sub X} output. In terms of product specifications, we were able to achieve an electrical efficiency of 34.2% and a heat recovery efficiency of 49.3%, making an overall efficiency of 83.5% as a cogeneration system. (authors)

  1. Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration

    International Nuclear Information System (INIS)

    Darcovich, K.; Henquin, E.R.; Kenney, B.; Davidson, I.J.; Saldanha, N.; Beausoleil-Morrison, I.

    2013-01-01

    Highlights: • Characterized two novel high capacity electrode materials for Li-ion batteries. • A numerical discharge model was run to characterize Li-ion cell behavior. • Engineering model of Li-ion battery pack developed from cell fundamentals. • ESP-r model integrated micro-cogeneration and high capacity Li-ion storage. • Higher capacity batteries shown to improve micro-cogeneration systems. - Abstract: Combined heat and power on a residential scale, also known as micro-cogeneration, is currently gaining traction as an energy savings practice. The configuration of micro-cogeneration systems is highly variable, as local climate, energy supply, energy market and the feasibility of including renewable type components such as wind turbines or photovoltaic panels are all factors. Large-scale lithium ion batteries for electrical storage in this context can provide cost savings, operational flexibility, and reduced stress on the distribution grid as well as a degree of contingency for installations relying upon unsteady renewables. Concurrently, significant advances in component materials used to make lithium ion cells offer performance improvements in terms of power output, energy capacity, robustness and longevity, thereby enhancing their prospective utility in residential micro-cogeneration installations. The present study evaluates annual residential energy use for a typical Canadian home connected to the electrical grid, equipped with a micro-cogeneration system consisting of a Stirling engine for supplying heat and power, coupled with a nominal 2 kW/6 kW h lithium ion battery. Two novel battery cathode chemistries, one a new Li–NCA material, the other a high voltage Ni-doped lithium manganate, are compared in the residential micro-cogeneration context with a system equipped with the presently conventional LiMn 2 O 4 spinel-type battery

  2. Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems

    International Nuclear Information System (INIS)

    Dias, Marina O.S.; Modesto, Marcelo; Ensinas, Adriano V.; Nebra, Silvia A.; Filho, Rubens Maciel; Rossell, Carlos E.V.

    2011-01-01

    Demand for bioethanol has grown considerably over the last years. Even though Brazil has been producing ethanol from sugarcane on a large scale for decades, this industry is characterized by low energy efficiency, using a large fraction of the bagasse produced as fuel in the cogeneration system to supply the process energy requirements. The possibility of selling surplus electricity to the grid or using surplus bagasse as raw material of other processes has motivated investments on more efficient cogeneration systems and process thermal integration. In this work simulations of an autonomous distillery were carried out, along with utilities demand optimization using Pinch Analysis concepts. Different cogeneration systems were analyzed: a traditional Rankine Cycle, with steam of high temperature and pressure (80 bar, 510 o C) and back pressure and condensing steam turbines configuration, and a BIGCC (Biomass Integrated Gasification Combined Cycle), comprised by a gas turbine set operating with biomass gas produced in a gasifier that uses sugarcane bagasse as raw material. Thermoeconomic analyses determining exergy-based costs of electricity and ethanol for both cases were carried out. The main objective is to show the impact that these process improvements can produce in industrial systems, compared to the current situation.

  3. GTHTR300 cost reduction through design upgrade and cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xing L., E-mail: yan.xing@jaea.go.jp; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2016-09-15

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850 °C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5 US¢/kW h cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950 °C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/kW h.

  4. GTHTR300 cost reduction through design upgrade and cogeneration

    International Nuclear Information System (INIS)

    Yan, Xing L.; Sato, Hiroyuki; Kamiji, Yu; Imai, Yoshiyuki; Terada, Atsuhiko; Tachibana, Yukio; Kunitomi, Kazuhiko

    2014-01-01

    Japan Atomic Energy Agency began design and development of the Gas Turbine High Temperature Reactor of 300MWe nominal output (GTHTR300) in 2001. The reactor baseline design completed three years later was based on 850°C core outlet temperature and a direct cycle gas turbine balance of plant. It attained 45.6% net power generation efficiency and 3.5US¢/KWh cost of electricity. The cost was estimated 20% lower than LWR. The latest design upgrade has incorporated several major technological advances made in the past ten years to both reactor and balance of plant. As described in this paper, these advances have enabled raising the design basis reactor core outlet temperature to 950°C and increasing power generating efficiency by nearly 5% point. Further implementation of seawater desalination cogeneration is made through employing a newly-proposed multi-stage flash process. Through efficient waste heat recovery of the reactor gas turbine power conversion cycle, a large cost credit is obtained against the conventionally produced water prices. Together, the design upgrade and the cogeneration are shown to reduce the GTHTR300 cost of electricity to under 2.7 US¢/KWh. (author)

  5. Impact of cogeneration on integrated resource planning of Turkey

    International Nuclear Information System (INIS)

    Atikol, U.; Gueven, H.

    2003-01-01

    In most developing countries, difficulties in finding sector-specific data on heat rate and power demands make energy planning a hard task. In some countries, although this data is available, it may be four or five years old. In the present work, a new low-cost method is proposed for developing countries aiming at obtaining such data for the industrial sector quickly. Fifty-two textile factories were selected for a survey to represent the industrial sector. The data were processed and used to generate two scenarios of cogeneration applications in the industrial sector; one sized according to the electrical load of the factories, and the other one according to the thermal load. The costs and primary energy requirements of these programs were compared with that of the nuclear alternative. It was found that the most energy efficient and economical option for Turkey was the cogeneration program, the equipment sizing of which was based on the process heat demand of the industrial sector. Turkey would not only save US$ 72.6-billion by deferring the nuclear program, but it will also reduce the total primary energy demand by 11% in 2020

  6. District heating and co-generation in Slovenia

    International Nuclear Information System (INIS)

    Hrovatin, Franc; Pecaric, Marko; Perovic, Olgica

    2000-01-01

    Recent development of district heating systems, gasification and co-generation processes in local communities in Slovenia as well as current status, potentials, possibilities and plans for further development in this sphere are presented. The current status presents energy production, distribution and use in district heating systems and in local gas distribution networks. An analysis of the energy and power generated and distributed in district power systems, made with regard to the size of the system, fuel used, type of consumers and the way of production, is given. Growth in different areas of local power systems in the period of last years is included. Potentials in the sphere of electrical energy and heat co-generation were assessed. Some possibilities and experience in heat energy storage are given and trends and plans for further development are introduced. (Authors)

  7. A novel cogeneration system: A proton exchange membrane fuel cell coupled to a heat transformer

    International Nuclear Information System (INIS)

    Huicochea, A.; Romero, R.J.; Rivera, W.; Gutierrez-Urueta, G.; Siqueiros, J.; Pilatowsky, I.

    2013-01-01

    This study focuses on the potential of a novel cogeneration system which consists of a 5 kW proton exchange membrane fuel cell (PEMFC) and an absorption heat transformer (AHT). The dissipation heat resulting from the operation of the PEMFC would be used to feed the absorption heat transformer, which is integrated to a water purification system. Therefore, the products of the proposed cogeneration system are heat, electricity and distilled water. The study includes a simulation for the PEMFC as well as experimental results obtained with an experimental AHT facility. Based on the simulation results, experimental tests were performed in order to estimate the performance parameters of the overall system. This is possible due to the matching in power and temperatures between the outlet conditions of the simulated fuel cell and the inlet requirements of the AHT. Experimental coefficients of performance are reported for the AHT as well as the overall cogeneration efficiency for the integrated system. The results show that experimental values of coefficient of performance of the AHT and the overall cogeneration efficiency, can reach up to 0.256 and 0.571, respectively. This represents an increment in 12.4% of efficiency, compared to the fuel cell efficiency working individually. This study shows that the combined use of AHT systems with a PEMFC is possible and it is a very feasible project to be developed in the Centro de Investigación en Energía (Centre of Energy Research), México.

  8. Achieving emissions reduction through oil sands cogeneration in Alberta’s deregulated electricity market

    International Nuclear Information System (INIS)

    Ouellette, A.; Rowe, A.; Sopinka, A.; Wild, P.

    2014-01-01

    The province of Alberta faces the challenge of balancing its commitment to reduce CO 2 emissions and the growth of its energy-intensive oil sands industry. Currently, these operations rely on the Alberta electricity system and on-site generation to satisfy their steam and electricity requirements. Most of the on-site generation units produce steam and electricity through the process of cogeneration. It is unclear to what extent new and existing operations will continue to develop cogeneration units or rely on electricity from the Alberta grid to meet their energy requirements in the near future. This study explores the potential for reductions in fuel usage and CO 2 emissions by increasing the penetration of oil sands cogeneration in the provincial generation mixture. EnergyPLAN is used to perform scenario analyses on Alberta’s electricity system in 2030 with a focus on transmission conditions to the oil sands region. The results show that up to 15–24% of CO 2 reductions prescribed by the 2008 Alberta Climate Strategy are possible. Furthermore, the policy implications of these scenarios within a deregulated market are discussed. - Highlights: • High levels of cogeneration in the oil sands significantly reduce the total fuel usage and CO 2 emissions for the province. • Beyond a certain threshold, the emissions reduction intensity per MW of cogeneration installed is reduced. • The cost difference between scenarios is not significant. • Policy which gives an advantage to a particular technology goes against the ideology of a deregulated market. • Alberta will need significant improvements to its transmission system in order for oil sands cogeneration to persist

  9. Experimental and numerical analysis of the combustor for a cogeneration system based on the aluminum/water reaction

    International Nuclear Information System (INIS)

    Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio; Stefani, Matteo

    2014-01-01

    Highlights: • Aluminum reaction with water is studied as a technology for hydrogen production. • A test rig is developed for the analysis of aluminum/water reaction. • The system is the core component of a cogeneration plant for hydrogen/power production. • The interaction of liquid aluminum jet and water steam stream is investigated. • The main capabilities of the injection system are assessed. - Abstract: The paper focuses on the design of the experimental apparatus aimed at analyzing the performance of the combustion chamber of a cogeneration system based on the reaction of liquid aluminum and water steam. The cogeneration system exploits the heat released by the oxidation of aluminum with water for super-heating the vapor of a steam cycle and simultaneously producing hydrogen. The only by-product is alumina, which in a closed loop can be recycled back and transformed again into aluminum. Therefore, aluminum is used as an energy carrier to transport the energy from the alumina reduction plant to the location of the proposed system. The water is also used in a closed loop since the amount of water produced employing the hydrogen obtained by the proposed system corresponds to the oxidizing water for the Al/H 2 O reaction. This study investigates the combustor where the liquid aluminum–steam reaction takes place. In particular, the design of the combustion chamber and the interaction between the liquid aluminum jet and the water steam flow are evaluated using a numerical and an experimental approach. The test rig is specifically designed for the analysis of the liquid aluminum injection in a slightly super-heated steam stream. The first experiments are carried out to verify the correct behavior of the test rig. Thermography is employed to qualitatively assess the steam entrainment of the liquid aluminum jet. Finally, the experimental measurements are compared with the multi-dimension multi-phase flow simulations in order to estimate the influence of

  10. Cogeneration handbook for the pulp and paper industry. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

  11. Life cycle inventory of electricity cogeneration from bagasse in the South African sugar industry

    CSIR Research Space (South Africa)

    Mashoko, L

    2013-01-01

    Full Text Available The South African sugar industry has a potential for cogeneration of steam and electricity using bagasse. The sugar industry has the potential to generate about 960 MW per year from bagasse based on the average of 20 million tons of sugar cane...

  12. High efficiency cogeneration in sugar industry: opportunities, obstacles and possible solutions

    International Nuclear Information System (INIS)

    Govinda Rao, R.

    1994-01-01

    The main objective of this paper is to highlight the feasibility of bagasse based cogeneration systems within the framework of the existing laws and policies of the government, and to encourage the private sector and others to come forth to make good use of an extremely good investment climate. The feasible options worked out are based on financing from banks and other financial institutions at market rates. The other major objective is to establish the impediments to implement these projects. (author)

  13. High temperature cogeneration with thermionic burners

    International Nuclear Information System (INIS)

    Fitzpatrick, G.O.; Britt, E.J.; Dick, R.S.

    1981-01-01

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging

  14. High temperature cogeneration with thermionic burners

    Science.gov (United States)

    Fitzpatrick, G. O.; Britt, E. J.; Dick, R. S.

    The thermionic cogeneration combustor was conceived to meet industrial requirements for high-temperature direct heat, typically in the form of gas at temperatures from 800 to 1900 K, while at the same time supplying electricity. The thermionic combustor is entirely self-contained, with heat from the combustion region absorbed by the emitters of thermionic converters to be converted to electric power and the high-temperature reject heat from the converters used to preheat the air used for combustion. Depending on the temperature of the process gas produced, energy savings of around 10% with respect to that used to produce the same amount of electricity and heat without cogeneration are possible with present technology, and savings of up to 20% may be possible with advanced converters. Possible thermionic combustor designs currently under investigation include a configuration in which heat is collected by heat pipes lining the periphery of the combustion region, and a fire-tube converter in which combustion occurs within the cylindrical emitter of each converter. Preliminary component tests of these designs have been encouraging.

  15. Gas turbine modular helium reactor in cogeneration; Turbina de gas reactor modular con helio en cogeneracion

    Energy Technology Data Exchange (ETDEWEB)

    Leon de los Santos, G. [UNAM, Facultad de Ingenieria, Division de Ingenieria Electrica, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico, D. F. (Mexico)], e-mail: tesgleon@gmail.com

    2009-10-15

    This work carries out the thermal evaluation from the conversion of nuclear energy to electric power and process heat, through to implement an outline gas turbine modular helium reactor in cogeneration. Modeling and simulating with software Thermo flex of Thermo flow the performance parameters, based on a nuclear power plant constituted by an helium cooled reactor and helium gas turbine with three compression stages, two of inter cooling and one regeneration stage; more four heat recovery process, generating two pressure levels of overheat vapor, a pressure level of saturated vapor and one of hot water, with energetic characteristics to be able to give supply to a very wide gamma of industrial processes. Obtaining a relationship heat electricity of 0.52 and efficiency of net cogeneration of 54.28%, 70.2 MW net electric, 36.6 MW net thermal with 35% of condensed return to 30 C; for a supplied power by reactor of 196.7 MW; and with conditions in advanced gas turbine of 850 C and 7.06 Mpa, assembly in a shaft, inter cooling and heat recovery in cogeneration. (Author)

  16. Feasibility study on revamping work for a cogeneration power plant at Cherkassy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective of saving energy and reducing greenhouse gas emission, investigations and discussions were given on modification of Cherkassyoblenegro Combined Heat and Power Station in the Republic of Ukraine. The project calls for shutdown of the first block and the heat supplying auxiliary boilers being the oldest facilities in the existing station, and utilization of the second block for emergency use. The new facilities will consist of natural gas burning gas turbine combined cycle cogeneration facilities of 200-MW class including two gas turbines, one steam turbine, two each of waste heat recovery boilers, ducts and stacks. As a result of the discussions, if the project execution period is set for 20 years, the energy saving effect would be 144,215 tons of crude oil equivalent annually, and the greenhouse gas emission reducing effect would be 431,421 t-CO2 annually. The total fund amount required for the project is estimated to be 185,700,000 dollars. With regard to the profitability, the internal profit rate for the total fund after tax would be 8.3%, and the principal and interest repayment multiplying factor for single year would be greater than 1.9, whereas the profitability can be anticipated if the financing is available under generous conditions. (NEDO)

  17. What is the future for gas cogeneration in the French context?

    International Nuclear Information System (INIS)

    Ades, D.

    1996-01-01

    The first part of this work is devoted to the institutional environment which hold the cogeneration success in France. Cogeneration is indeed a future technology but is under-exploited in France. The future communal lines and the conclusions of the study group, suggested to the Cabinet of the European Union in 1995, should meanwhile cope with some difficulties for its development in France. The second part deals more particularly with the customers listening and with their expectations towards the energy suppliers. (O.M.)

  18. Optimum design of cogeneration system for nuclear seawater desalination - 15272

    International Nuclear Information System (INIS)

    Jung, Y.H.; Jeong, Y.H.

    2015-01-01

    A nuclear desalination process, which uses the energy released by nuclear fission, has less environmental impact and is generally cost-competitive with a fossil-fuel desalination process. A reference cogeneration system focused on in this study is the APR-1400 coupled with a MED (multi-effect distillation) process using the thermal vapor compression (TVC) technology. The thermal condition of the heat source is the most crucial factor that determines the desalination performance, i.e. energy consumption or freshwater production, of the MED-TVC process. The MED-TVC process operating at a higher motive steam pressure clearly shows a higher desalination performance. However, this increased performance does not necessarily translate to an advantage over processes operated at lower motive steam pressures. For instance, a higher motive steam pressure will increase the heat cost resulting from larger electricity generation loss, and thus may make this process unfavorable from an economic point of view. Therefore, there exists an optimum design point in the coupling configuration that makes the nuclear cogeneration system the most economical. This study is mainly aimed at investigating this optimum coupling design point of the reference nuclear cogeneration system using corresponding analysis tools. The following tools are used: MEE developed by the MEDRC for desalination performance analysis of the MED-TVC process, DE-TOP and DEEP developed by the IAEA for modeling of coupling configuration and economic evaluation of the nuclear cogeneration system, respectively. The results indicate that steam extraction from the MS exhaust and condensate return to HP FWHTR 5 is the most economical coupling design

  19. Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration

    International Nuclear Information System (INIS)

    Blarke, Morten B.

    2012-01-01

    Highlights: ► We propose an “intermittency-friendly” energy system design. ► We compare intermittency-friendly concepts in distributed cogeneration. ► We investigate a new concept involving a heat pump and intermediate cold storage. ► We find significant improvements in operational intermittency-friendliness. ► Well-designed heat pump concepts are more cost-effective than electric boilers. -- Abstract: Distributed cogeneration has played a key role in the implementation of sustainable energy policies for three decades. However, increasing penetration levels of intermittent renewables is challenging that position. The paradigmatic case of West Denmark indicates that distributed operators are capitulating as wind power penetration levels are moving above 25%; some operators are retiring cogeneration units entirely, while other operators are making way for heat-only boilers. This development is jeopardizing the system-wide energy, economic, and environmental benefits that distributed cogeneration still has to offer. The solution is for distributed operators to adapt their technology and operational strategies to achieve a better co-existence between cogeneration and wind power. Four options for doing so are analysed including a new concept that integrates a high pressure compression heat pump using low-temperature heat recovered from flue gasses in combination with an intermediate cold storage, which enables the independent operation of heat pump and cogenerator. It is found that an electric boiler provides consistent improvements in the intermittency-friendliness of distributed cogeneration. However, well-designed heat pump concepts are more cost-effective than electric boilers, and in future markets where the gas/electricity price ratio is likely to increase, compression heat pumps in combination with intermediate thermal storages represent a superior potential for combining an intermittency-friendly pattern of operation with the efficient use of

  20. Co-generation potentials of municipal solid waste landfills in Serbia

    OpenAIRE

    Bošković Goran B.; Josijević Mladen M.; Jovičić Nebojša M.; Babić Milun J.

    2016-01-01

    Waste management in the Republic of Serbia is based on landfilling. As a result of such year-long practice, a huge number of municipal waste landfills has been created where landfill gas has been generated. Landfill gas, which is essentially methane (50-55%) and carbon dioxide (40-45%) (both GHGs), has a great environmental impact which can be reduced by using landfill gas in cogeneration plants to produce energy. The aim of this paper is to determine econo...

  1. Implementation of gas district cooling and cogeneration systems in Malaysia; Mise en oeuvre de systemes de gas district cooling et de cogeneration en Malaisie

    Energy Technology Data Exchange (ETDEWEB)

    Haron, S. [Gas District Cooling, M, Sdn Bhd (Malaysia)

    2000-07-01

    With its energy demand in the early 1990's growing at a high rate due to the country's strong economic growth, Malaysia studied various options to improve the efficiency of its energy use. Since its natural gas reserves are almost four times that of its crude oil reserves, efforts were therefore centered on seeking ways to boost the use of natural gas to mitigate the growing domestic energy need. PETRONAS, the national oil company, subsequently studied and chose the District Cooling System using natural gas as the primary source of fuel. The Kuala Lumpur City Center development, which houses the PETRONAS Twin Towers, was subsequently chosen as the first project to use the Gas District Cooling (GDC) System. To acquire the technology and implement this project, PETRONAS created a new subsidiary, Gas District Cooling (Malaysia) Sendirian Berhad (GDC(M)). In the process of improving the plant's efficiency, GDC(M) discovered that the GDC system's efficiency and project economics would be significantly enhanced if its is coupled to a Cogeneration system. Having proven the success of the GDC/Cogeneration system, GDC(M) embarked on a campaign to aggressively promote and seek new opportunities to implement the system, both in Malaysia-and abroad. Apart from enhancing efficiency of energy use, and providing better project economics, the GDC/Cogeneration system also is environment friendly. Today, the GDC/Cogeneration systems is the system of choice for several important developments in Malaysia, which also includes the country's prestigious projects such as the Kuala Lumpur International Airport and the New Federal Government Administrative Center in Putrajaya. (author)

  2. Termoacu Cogeneration: gas, power and oil; Cogeracao Termoacu: gas, energia e oleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Geraldo Jose; Gomes, Cicero Sena Moreira [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This paper describes the evolution of a project that involves cogeneration of power and steam for continuous injection in oil wells in the fields of Alto do Rodrigues and Estreito, in Rio Grande do Norte, Brazil. The project combines a PETROBRAS intention for recovering heavy oil in that area with partners intention of generating power to connect in a critical point of the Brazilian Electric System. PETROBRAS studies began in the nineties, when oil wells in that area became old end showed the necessity of some oil recovery technology. In 1999, PETROBRAS and Guaraniana made a partnership for implementation of Termoacu Combined Cycle, that would begin operation as a cogeneration plant for thirteen years, and as combined cycle from that point. The profile of steam injection has been adapted to a new one to comply with the powe r capacity of the Plant, and will operate eight years as a cogeneration plant , four years as a combined cycle with cogeneration and after twelve years as a complete combined cycle with 500 MW of capacity. The project integrates a gas pipeline, a Thermal Power Plant, a Transmission Line to connect to the grid and a Steam Pipeline for steam injection at Estreito and Alto do Rodrigues fields. (author)

  3. Efficient, Low Cost Dish Concentrator for a CPV Based Cogeneration System

    Science.gov (United States)

    Chayet, Haim; Kost, Ori; Moran, Rani; Lozovsky, Ilan

    2011-12-01

    Zenith Solar Ltd has developed efficient electricity and heat co-generation system based on segmented-parabolic dish of total aperture area of 11 m2 and water cooled dense array module combined of triple junction cells. Conventional parabolic dishes are inherently inefficient in the sense that the radiant flux distribution is non uniform causing inefficient generation by the PV array. Secondary optics improves uniformity but introduces additional complexity and losses to the system. Zenith's dish is assembled of 1200 flat mirrors of approximately 100 cm2 each. Every mirror facet has a unique shape such that the geometrical projection from each mirror on the focal plane is essentially the same. When perfectly aligned, the projected radiation from all mirrors overlaps uniformly on the PV surface. The low cost construction of the dish utilizes plastic mount supported by a precise metal frame. The precision of the metal frame affects the overall optical efficiency of the mirror and hence the efficiency of the system. State of the art dish of 11 m2 active aperture results in output of 2.25 kWp (900 W/m2) electrical and 5 kWp thermal power from one dish system representing 21% electrical and 50% thermal conversion efficiency adding to 71% overall system efficiency.

  4. Natural gas cogeneration plants: considerations on energy efficiency; Valutazioni energetiche di impianti cogenerativi alimentati a metano

    Energy Technology Data Exchange (ETDEWEB)

    Arcuri, P.; Florio, G.; Fragiacomo, P. [Calabria Univ., Arcavacata di Rende (Italy). Dip. di Meccanica

    1996-05-01

    Cogeneration is one of the most interesting solution to be adopted in order to achieve the goals of the Domestic Energy Plan. Besides the high primary energy savings, remarkable environmental benefits can be obtained. In the article, an energy analysis is carried out on the major cogeneration technologies depending on the parameters which define a generic user typology. The energy indexes of a cogeneration plant are the shown in charts from which useful information on the achievable performances can be obtained.

  5. EVALUATION OF ENERGY COGENERATION FROM SUGAR CANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Hanserth Abreu Elizundia

    2016-01-01

    Full Text Available In this paper were simulated and evaluated five alternatives of cogeneration scheme that promote a higher production of thermal and electrical energies as well as its right management. The first three alternatives are directed to increasing the boiler pressure and a change of steam turbines which are the extraction-condensation type, and then the fourth alternative proposed a boiler change to implement a bubbling fluidized bed and finally in the fifth alternative a scheme of biomass gasification is analyzed. All scheme were analyzed energetic and exergetically. The five cogeneration alternatives were simulated in ASPEN PLUS; they showed that the largest surplus bagasse and electricity are obtained with the scheme of a biomass gasification and the worst results in these parameters were obtained in the alternative that function in low pressure and temperature parameters

  6. EFFECTS OF IMPLEMENTATION OF CO-GENERATION IN THE DISTRICT HEATING SYSTEM OF THE FACULTY OF MECHANICAL ENGINEERING IN NIŠ

    Directory of Open Access Journals (Sweden)

    Mladen M Stojiljković

    2010-01-01

    Full Text Available Implementation of co-generation of thermal and electrical energy in district heating systems often results with higher overall energy efficiency of the systems, primary energy savings and environmental benefits. Financial results depend on number of parameters, some of which are very difficult to predict. After introduction of feed-in tariffs for generation of electrical energy in Serbia, better conditions for implementation of co-generation are created, although in district heating systems barriers are still present. In this paper, possibilities and effects of implementation of natural gas fired co-generation engines are examined and presented for the boiler house that is a part of the district heating system owned and operated by the Faculty of Mechanical Engineering in Niš. At the moment, in this boiler house only thermal energy is produced. The boilers are natural gas fired and often operate in low part load regimes. The plant is working only during the heating season. For estimation of effects of implementation of co-generation, referent values are taken from literature or are based on the results of measurements performed on site. Results are presented in the form of primary energy savings and greenhouse gasses emission reduction potentials. Financial aspects are also considered and triangle of costs is shown.

  7. Biomass-gasifier steam-injected gas turbine cogeneration for the cane sugar industry

    International Nuclear Information System (INIS)

    Larson, E.D.; Williams, R.H.; Ogden, J.M.; Hylton, M.G.

    1991-01-01

    Steam injection for power and efficiency augmentation in aeroderivative gas turbines has been commercially established for natural gas-fired cogeneration since 1980. Steam-injected gas turbines fired with coal and biomass are being developed. A performance and economic assessment of biomass integrated-gasifier steam-injected gas turbine (BIG/STIG) cogeneration systems is carried out here. A detailed economic case study is presented for the second largest sugar factory in Jamaica, with cane residues as the fuel. BIG/STIG cogeneration units would be attractive investments for sugar producers, who could sell large quantities of excess electricity to the utility, or for the utility, as a low-cost generating option. Worldwide, the cane sugar industry could support some 50,000 MW of BIG/STIG electric generation capacity. The relatively modest development effort required to commercialize the BIG/STIG technology is discussed in a companion paper prepared for this conference

  8. Impact of Ontario electricity industry structure on the viability of cogeneration projects

    International Nuclear Information System (INIS)

    Chuddy, B.

    1999-01-01

    A review of Ontario Hydro's existing market structure and how its move toward a more competitive profile can be advantageous for cogeneration projects was presented. Ontario's existing electric power supply is as follows: 6 fossil fuels stations generate a total of 9, 969 MW of electricity, 23 NUG stations generate 1,541 MW, 3 nuclear stations generate a total of 9,028 MW and 69 hydro-electric stations generates 6,751 MW of electricity. The criteria and characteristics for cogeneration projects were listed. The paper also discussed other topics such as the market price of power, outstanding regulatory issues, market volatility and relative pricing. The prognosis for Ontario cogeneration projects for the early years from 1999-2004 is that for economic reasons, only big projects with large loads of 200 to 800 MW will be considered. In later years, other projects will become economic

  9. Cogeneration opportunities in the maritime provinces

    International Nuclear Information System (INIS)

    MacPherson, S.W.

    1999-01-01

    With the arrival of natural gas in New Brunswick in November 1999, the province will be faced with new power generation development opportunities in four different categories of power projects. These include industrial self generation (including cogeneration), merchant power plants, power projects to replace aging facilities, and power projects to help meet future environmental needs. New Brunswick's competitive advantage in harnessing the power generation development opportunities lies in the fact that it is close to major electricity markets in Quebec and New England. It also has many available generation sites. The province's many pulp and paper plants with large process steam needs are also ideal candidates for cogeneration. Some of the major competitive advantages of natural gas over coal are its lower operation and maintenance costs, it is thermally more efficient, produces lower emissions to the environment and prices are competitive. One of the suggestions in New Brunswick Power's new restructuring proposal is to unbundle electricity service in the province into generation and transmission and distribution services. Three gas-fired projects have already been proposed for the province. The 284 MW Bayside Power Project at the Courtenay Bay Generating Station is the most advanced

  10. Data book on new energy technology development in FY 1997. Cogeneration; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Various policies are being implemented in the field of new energy technology in line with progress in technological development. Examples are about assistance mechanism, field test projects and advisory projects to support the introduction of new energy technology. In order to promote the introduction of new energy efficiently, it is necessary to compile the various information regarding new energy in a comprehensive and systematic way, and formulate a basic data set. Among various new energy technologies, cogeneration is discussed in this report. The latest published data on the respective technologies are compiled particularly regarding their overall systems, examples of introduction, assistance mechanisms and state of implementation in foreign countries. Items included in this report are the trend of cogeneration, outline of system, state of introduction, forecast of introduction, overview of policies, basic terms, and related organizations. 9 figs.

  11. Liberalization: asset or handicap for the cogeneration; Liberalisation: atout ou handicap pour la cogeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Trinh, M. [DIGEC, 75 - Paris (France); Ploix, B.; Laroche, G. [Club Cogeneration ATEE, Association Technique Energie Environnement, ATEE, 94 - Arcueil (France); Roncato, J.P. [Finergaz, 75 - Paris (France); Favre, O. [ELYO, 92 - Nanterre (France); Bernard, A. [Electricite de France, EDF, Dir. Developpement, 75 - Paris (France); Egal, Ch. [COGETERM, 75 - Paris (France); Cotard, E. [COGEN Europe, 75 - Paris (France); Lambinon, C. [Association Francaise des Operateurs Independants de l' Electricite, AFOIE, 75 - Paris (France); Golbach, A. [Fordergemeinschaft Blockheizkraftwerke, Suisse (Switzerland); Crochetet, D. [Gaz de France, GDF, Dir. des Projets de Developpement, 75 - Paris (France); Daverat, Ph. [Bergerat Monnoyeur, 91 - Montlhery (France); Bounakoff, F. [houvenaghel Hennequin Groel, 76 - Fecamp (France)

    2000-07-01

    The new laws on the energies market are going to change the commercial sector of the electric power market in France. The colloquium in two parts ( the 25 and 26 january 2000), constitutes a reflection on the future of this new market. The second part provides papers on the place of the cogeneration in this new market. The positive example of the United States and the negative example of the Germany are analyzed. giving answers to economic, legal, financial and technical problems. (A.L.B.)

  12. Cogeneration : A Regulatory Guide to Leasing, Permitting, and Licensing in Idaho, Montana, Oregon, and Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Deshaye, Joyce; Bloomquist, R. Gordon

    1992-12-01

    This guidebook focuses on cogeneration development. It is one of a series of four guidebooks recently prepared to introduce the energy developer to the federal, state and local agencies that regulate energy facilities in Idaho, Montana, Oregon, and Washington (the Bonneville Power Administration Service Territory). It was prepared specifically to help cogeneration developers obtain the permits, licenses and approvals necessary to construct and operate a cogeneration facility. The regulations, agencies and policies described herein are subject to change. Changes are likely to occur whenever energy or a project becomes a political issue, a state legislature meets, a preexisting popular or valuable land use is thought threatened, elected and appointed officials change, and new directions are imposed on states and local governments by the federal government. Accordingly, cogeneration developers should verify and continuously monitor the status of laws and rules that might affect their plans. Developers are cautioned that the regulations described herein may only be a starting point on the road to obtaining all the necessary permits.

  13. External financing of projects on cogeneration

    International Nuclear Information System (INIS)

    Contreras Olmedo, D.

    1993-01-01

    The Spanish Institute for Energy Saving and Diversification (IDAE), provides technical advisement and economical support to those industries requiring an improvement in the energy efficiency of their production chain. This paper focusses on administrative procedures to get external financing as one way to undertake the construction of cogeneration plants. Relationships among user, promoter and financier should be developed according to the outlined procedures. (Author)

  14. Experimental investigation and exergy analysis on thermal storage integrated micro-cogeneration system

    International Nuclear Information System (INIS)

    Johar, Dheeraj Kishor; Sharma, Dilip; Soni, Shyam Lal; Gupta, Pradeep K.; Goyal, Rahul

    2017-01-01

    Highlights: • Energy Storage System is integrated with Micro cogeneration system. • Erythritol is used as Phase Change Material. • Maximum energy saved is 15.2%. • Maximum exergy saved is 4.22%. • Combined systems are feasible to increase energy and exergy efficiency. - Abstract: This paper describes the performance of thermal storage integrated micro-cogeneration system based on single cylinder diesel engine. In addition to electricity generated from genset, waste heat from hot exhaust of diesel engine was used to heat water in a double pipe heat exchanger of 67.70 cm length with inside tube diameter of 3.81 cm and outside tube diameter of 5.08 cm. Additionally, a latent heat thermal energy storage system was also integrated with this cogeneration system. A shell and tube type heat exchanger of 346 mm diameter and 420 mm height with 45 tubes of 18 mm diameter each was designed and fabricated, to store thermal energy, in which Erythritol (C_4H_1_0O_4) was used as phase changing material. The test results show that micro capacity (4.4 kW), stationary, single cylinder, diesel engine can be successfully utilized to simultaneously produce power as well as heating, and to also store thermal energy. Slight decrease in engine performance was observed when double pipe heat exchanger and latent heat thermal energy storage system was integrated with engine but the amount of energy which could be recovered was significant. Maximum percentage of energy saved was obtained at a load of 3.6 kW and was 15.2%.

  15. The cogeneration and small power production manual. 3rd edition

    International Nuclear Information System (INIS)

    Spiewak, S.A.

    1990-01-01

    This book is divided into six sections covering regulations, environmental issues, engineering, contract, financing, and taxes. The edition adds a comprehensive 80-page chapter outlining how to prepare for electric power shortages, including details on rate structure, tariff negotiation, contract-based rates, partial requirement service, supplementary, backup, and interruptible rates, and retail sale of electric power. The engineering section covers optimum cogeneration system design, operational considerations, and energy efficiency. Combustion turbines, diesel engines, gas engines, rotary engines, steam turbines, and electric generators are covered in detail

  16. Analysis of cogeneration in the present energy framework

    International Nuclear Information System (INIS)

    Conde Lazaro, E.; Ramos Millan, A.; Reina Peral, P.

    2006-01-01

    In this paper, a general vision of cogeneration penetration in the European Union is shown; after this, a case study is included, evaluating as a function of two factors (electricity and emission allowance prices) the suitability of installing, for an industry with a determined thermal demand, two different options. The first one is a gas turbine cogeneration plant generating steam through a heat recovery steam generator (HRSG). The second one consists of installing a natural gas boiler for steam production covering the electricity demand from the grid. The CO 2 emissions from both options are compared regarding different kinds of generation mixes from the electricity grid in the case of using the industrial boiler; taking into account the advantages of using biomass in relation to emissions, a last comparison has been carried out considering a biomass boiler instead of the natural gas boiler. (author)

  17. Performance investigation of a novel water–power cogeneration plant (WPCP) based on humidification dehumidification (HDH) method

    International Nuclear Information System (INIS)

    He, W.F.; Han, D.; Xu, L.N.; Yue, C.; Pu, W.H.

    2016-01-01

    Highlights: • A novel water–power cogeneration plant (WPCP) is proposed. • Energy analysis of the proposed WPCP is achieved. • Comparison of the WPCP performance at different pressures is fulfilled. • Performance correlation between the HDH desalination and ORC power subsystems is revealed. - Abstract: Humidification dehumidification (HDH) technology was well applied to produce freshwater in the desalination system. However, besides the demand of freshwater, power is also required simultaneously in most situations. In the paper, a novel water–power cogeneration plant (WPCP) based on the HDH desalination system coupled with the organic Rankine cycle (ORC) is proposed. Energy analysis for the proposed combined system at different appointed operation parameters is achieved, and the corresponding performance correlation between the HDH desalination and ORC power system are revealed. It is verified that the production of freshwater and electricity can be gained synchronously in the suggested novel platform, and the performance of the whole system is really sensitive to the operation parameters of the HDH desalination system. It is found that after the regulation of the operation pressure, p, and the seawater temperature at the outlet of the seawater heater, T sw,2 , for the HDH desalination from p = 0.1 MPa, T sw,2 = 353.15 K to p = 0.3 MPa, T sw,2 = 383.15 K, a maximum elevation, 25.46 kg h −1 for the freshwater production, 4.17 kW for the electricity and 2% for the extended gained output ratio (EGOR) is obtained. Furthermore, owing to the asynchronism between the specific production and the final energy utilization efficiency, the balance should be optimized among the demand of the freshwater and power and the efficiency of the novel WPCP.

  18. Waste-to-Energy Cogeneration Project, Centennial Park

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Clay; Mandon, Jim; DeGiulio, Thomas; Baker, Ryan

    2014-04-29

    The Waste-to-Energy Cogeneration Project at Centennial Park has allowed methane from the closed Centennial landfill to export excess power into the the local utility’s electric grid for resale. This project is part of a greater brownfield reclamation project to the benefit of the residents of Munster and the general public. Installation of a gas-to-electric generator and waste-heat conversion unit take methane byproduct and convert it into electricity at the rate of about 103,500 Mwh/year for resale to the local utility. The sale of the electricity will be used to reduce operating budgets by covering the expenses for streetlights and utility bills. The benefits of such a project are not simply financial. Munster’s Waste-to Energy Cogeneration Project at Centennial Park will reduce the community’s carbon footprint in an amount equivalent to removing 1,100 cars from our roads, conserving enough electricity to power 720 homes, planting 1,200 acres of trees, or recycling 2,000 tons of waste instead of sending it to a landfill.

  19. Klickitat Cogeneration Project: Final environmental assessment

    International Nuclear Information System (INIS)

    1994-09-01

    To meet BPA's contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA's proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact)

  20. Klickitat Cogeneration Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Klickitat Energy Partners

    1994-09-01

    To meet BPA`s contractual obligation to supply electrical power to its customers, BPA proposes to acquire power generated by Klickitat Cogeneration Project. BPA has prepared an environmental assessment evaluating the proposed project. Based on the EA analysis, BPA`s proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 for the following reasons: (1)it will not have a significant impact land use, upland vegetation, wetlands, water quality, geology, soils, public health and safety, visual quality, historical and cultural resources, recreation and socioeconomics, and (2) impacts to fisheries, wildlife resources, air quality, and noise will be temporary, minor, or sufficiently offset by mitigation. Therefore, the preparation of an environmental impact statement is not required and BPA is issuing this FONSI (Finding of No Significant Impact).

  1. Techno-economic evaluation of commercial cogeneration plants for small and medium size companies in the Italian industrial and service sector

    International Nuclear Information System (INIS)

    Armanasco, Fabio; Colombo, Luigi Pietro Maria; Lucchini, Andrea; Rossetti, Andrea

    2012-01-01

    The liberalization of the electricity market and the concern for energy efficiency have resulted in a surge of interest in cogeneration and distributed power generation. In this regard, companies are encouraged to evaluate the opportunity to build their own cogeneration plant. In Italy, the majority of such companies belong to the industrial or service sector; it is small or medium in size and the electric power ranges between 1 ÷ 10 MW. Commercially available gas turbines are the less expensive option for cogeneration. Particular attention has been given to the possibility of combining an organic Rankine cycle (ORC) with gas turbine, to improve the conversion efficiency. Companies have to account for both technical and economical aspects to assess viability of cogeneration. A techno-economic analysis was performed to identify, in the Italian energy market, which users can take advantage of a cogeneration plant aimed to cover at least part of their energy demand. Since electricity and thermal needs change considerably in the same sector, single product categories have been considered in the analysis. Our work shows that in the industrial sector, independent of the product category, cogeneration is a viable option form a techno-economic perspective. - Highlights: ► The best technologies for 1 ÷ 10 MW distributed generation plant are gas turbine and ORC. ► A variety of commercial cogeneration plants is available to meet user needs. ► Cogeneration is a technical and economical advantage for industrial sector companies.

  2. Cogeneration: A marketing opportunity for pipelines

    International Nuclear Information System (INIS)

    Ulrich, J.S.

    1992-01-01

    This chapter describes the marketing of dual-purpose power plants by pipeline companies as a long term marketing strategy for natural gas. The author uses case studies to help evaluate a company's attitude toward development of a market for cogeneration facilities. The chapter focuses on strategies for developing markets in the industrial sector and identifying customer groups that are likely to respond in like manner to a marketing strategy

  3. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoecomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoecomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  4. A study on utilization improvement of cogeneration potential in a complex industrial steam and power plant

    International Nuclear Information System (INIS)

    Mierka, O.; Variny, M.

    2012-01-01

    Efficient cogeneration is widely acknowledged as one of measures reducing primary energy use and emissions of greenhouse gases and other pollutants. This contribution bears on analyses of complex industrial power plants, incorporating the concept of exergetic and exergoeconomic balances-a concept that has been rarely utilized in Slovakia up to day. Emphasis is laid on synergic use of marginal and exergoeconomic analysis, thus assessing the economics of various complex cogeneration units' operational modes. The whole study, together with resulting recommendations for cogeneration efficiency improvement of the given unit is an excerpt of corresponding author's doctoral thesis. (Authors)

  5. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  6. A New Cogeneration Residential System Based on Solid Oxide Fuel Cells for a Northern European Climate

    DEFF Research Database (Denmark)

    Vialetto, Giulio; Rokni, Masoud

    2015-01-01

    of them received subsidies to increase installation and reduce cost. This article presents an innovative cogeneration system based on a solid oxide fuel cell (SOFC) system and heat pump for household applications with a focus on primary energy and economic savings using electric equivalent load parameter...... which is a function of the electricity and heat demand of the user, and allows different operation strategies to be considered. The proposal is to maximize the efficiency of the system and to make it profitable, even though technologies with a high purchase cost are considered. Simulations of the system...... are performed under different strategies at a resort located in a northern European climate (Denmark) to cover electricity, space heating and domestic hot water (DHW) demands. The results of these simulations are analyzed with thermodynamic and techno-economic benchmarks, considering different economic...

  7. European energy policy and the potential impact of HTR and nuclear cogeneration

    International Nuclear Information System (INIS)

    Fütterer, Michael A.; Carlsson, Johan; Groot, Sander de; Deffrennes, Marc; Bredimas, Alexandre

    2014-01-01

    This paper first provides an update on the current state of play and the potential future role of nuclear energy in Europe. It then describes the EU energy policy tools in the area of nuclear technology. It explains the three-tier strategy of the European nuclear technology platform and its demonstration initiatives, here specifically for nuclear cogeneration and HTR. The paper closes with an outlook on the boundary conditions at which HTR can become attractive for nuclear cogeneration, not only from an energy policy viewpoint but also economically

  8. European energy policy and the potential impact of HTR and nuclear cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Fütterer, Michael A., E-mail: michael.fuetterer@ec.europa.eu [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755ZG Petten (Netherlands); Carlsson, Johan [European Commission, Joint Research Centre, Institute for Energy and Transport, P.O. Box 2, NL-1755ZG Petten (Netherlands); Groot, Sander de [Nuclear Research and consultancy Group, NL-1755ZG Petten (Netherlands); Deffrennes, Marc [European Commission, DG ENER, L-2530 Luxembourg (Luxembourg); Bredimas, Alexandre [LGI Consulting, 13 rue Marivaux, F-75002 Paris (France)

    2014-05-01

    This paper first provides an update on the current state of play and the potential future role of nuclear energy in Europe. It then describes the EU energy policy tools in the area of nuclear technology. It explains the three-tier strategy of the European nuclear technology platform and its demonstration initiatives, here specifically for nuclear cogeneration and HTR. The paper closes with an outlook on the boundary conditions at which HTR can become attractive for nuclear cogeneration, not only from an energy policy viewpoint but also economically.

  9. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market

    International Nuclear Information System (INIS)

    Yusta, J.M.; De Oliveira-De Jesus, P.M.; Khodr, H.M.

    2008-01-01

    This paper addresses an optimal strategy for the daily energy exchange of a 22-MW combined-cycle cogeneration plant of an industrial factory operating in a liberalized electricity market. The optimization problem is formulated as a Mixed-Integer Linear Programming Problem (MILP) that maximizes the profit from energy exchange of the cogeneration, and is subject to the technical constraints and the industrial demand profile. The integer variables are associated with export or import of electricity whereas the real variables relate to the power output of gas and steam turbines, and to the electricity purchased from or sold to the market. The proposal is applied to a real cogeneration plant in Spain where the detailed cost function of the process is obtained. The problem is solved using a large-scale commercial package and the results are discussed and compared with different predefined scheduling strategies. (author)

  10. Evolution of Italian environmental normative on cogeneration and application of Law 10/91

    International Nuclear Information System (INIS)

    Piancastelli, E.

    1992-01-01

    From the Proceedings of the FIRE (Italian Federation for the Rational use of Energy), December 12 - 13, 1991, meeting, separate abstracts were prepared for 2 papers. The main topics were: the planning criteria that went into the formulation of the incentives made possible through Italian legislation on cogeneration plants for on-site power generation and the response obtained from small, medium and large industrial firms; the evaluation of cogeneration plants for on-site power generation to allow prospective cogeneration plant owners to build energy/cost efficient plants and to be able to make a proper assessment of eligible financial assistance which may be obtained through the provisions of energy conservation/environmental protection normatives and laws set up by the Italian National Energy Plan; and the determination of optimal contracts with ENEL (the Italian National Electricity Board), especially for the case of excess power to be ceded to the national grid

  11. Thermodynamic study of residual heat from a high temperature nuclear reactor to analyze its viability in cogeneration processes

    International Nuclear Information System (INIS)

    Santillan R, A.; Valle H, J.; Escalante, J. A.

    2015-09-01

    In this paper the thermodynamic study of a nuclear power plant of high temperature at gas turbine (GTHTR300) is presented for estimating the exploitable waste heat in a process of desalination of seawater. One of the most studied and viable sustainable energy for the production of electricity, without the emission of greenhouse gases, is the nuclear energy. The fourth generation nuclear power plants have greater advantages than those currently installed plants; these advantages have to do with security, increased efficiencies and feasibility to be coupled to electrical cogeneration processes. In this paper the thermodynamic study of a nuclear power plant type GTHTR300 is realized, which is selected by greater efficiencies and have optimal conditions for use in electrical cogeneration processes due to high operating temperatures, which are between 700 and 950 degrees Celsius. The aim of the study is to determine the heat losses and the work done at each stage of the system, determining where they are the greatest losses and analyzing in that processes can be taken advantage. Based on the study was appointed that most of the energy losses are in form of heat in the coolers and usually this is emitted into the atmosphere without being used. From the results a process of desalination of seawater as electrical cogeneration process is proposed. This paper contains a brief description of the operation of the nuclear power plant, focusing on operation conditions and thermodynamic characteristics for the implementation of electrical cogeneration process, a thermodynamic analysis based on mass and energy balance was developed. The results allow quantifying the losses of thermal energy and determining the optimal section for coupling of the reactor with the desalination process, seeking to have a great overall efficiency. (Author)

  12. Evolution of near term PBMR steam and cogeneration applications - HTR2008-58219

    International Nuclear Information System (INIS)

    Kuhr, R. W.; Hannink, R.; Paul, K.; Kriel, W.; Greyvenstein, R.; Young, R.

    2008-01-01

    US and international applications for large onsite cogeneration (steam and power) systems are emerging as a near term market for the PBMR. The South African PBMR demonstration project applies a high temperature (900 deg. C) Brayton cycle for high efficiency power generation. In addition, a number of new applications are being investigated using an intermediate temperature range (700-750 deg. C) with a simplified heat supply system design. This intermediate helium delivery temperature supports conventional steam Rankine cycle designs at higher efficiencies than obtained from water type reactor systems. These designs can be adapted for cogeneration of steam, similar to the design of gas turbine cogeneration plants that supply steam and power at many industrial sites. This temperature range allows use of conventional or readily qualifiable materials and equipment, avoiding some cost premiums associated with more difficult operating conditions. As gas prices and CO 2 values increase, the potential value of a small nuclear reactor with advanced safety characteristics increases dramatically. Because of its smaller scale, the 400-500 MWt PBMR offers the economic advantages of onsite thermal integration (steam, hot water and desalination co-production) and of providing onsite power at cost versus at retail industrial rates avoiding transmission and distribution costs. Advanced safety characteristics of the PBMR support the location of plants adjacent to steam users, district energy systems, desalination plants, and other large commercial and industrial facilities. Additional benefits include price stability, long term security of energy supply and substantial CO 2 reductions. Target markets include existing sites using gas fired boilers and cogeneration units, new projects such as refinery and petrochemical expansions, and coal-to-liquids projects where steam and power represent major burdens on fuel use and CO 2 emissions. Lead times associated with the nuclear licensing

  13. Cogeneration. Section 2: Products and services

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This is a directory of suppliers of products and services in the area of cogeneration. The subheadings of this directory include developers and owner operators, system packagers, manufacturers of prime movers, equipment manufacturers, instruments and controls manufacturing, consulting services, appraisal and valuation, computer services, environmental services, feasibility services, hydrology, marketing, measurements, meteorology, regulatory and licensing, research, testing, training and personnel, engineering and construction, operations and maintenance, and insurance, financial and legal services

  14. Combined heat and power (cogeneration) plant based on renewable energy sources and electrochemical hydrogen systems

    Science.gov (United States)

    Grigor'ev, S. A.; Grigor'ev, A. S.; Kuleshov, N. V.; Fateev, V. N.; Kuleshov, V. N.

    2015-02-01

    The layout of a combined heat and power (cogeneration) plant based on renewable energy sources (RESs) and hydrogen electrochemical systems for the accumulation of energy via the direct and inverse conversion of the electrical energy from RESs into the chemical energy of hydrogen with the storage of the latter is described. Some efficient technical solutions on the use of electrochemical hydrogen systems in power engineering for the storage of energy with a cyclic energy conversion efficiency of more than 40% are proposed. It is shown that the storage of energy in the form of hydrogen is environmentally safe and considerably surpasses traditional accumulator batteries by its capacitance characteristics, being especially topical in the prolonged absence of energy supply from RESs, e.g., under the conditions of polar night and breathless weather. To provide the required heat consumption of an object during the peak period, it is proposed to burn some hydrogen in a boiler house.

  15. Optimal operation of cogeneration units. State of art and perspective

    International Nuclear Information System (INIS)

    Polimeni, S.

    2001-01-01

    Optimal operation of cogeneration plants and of power plant fueling waste products is a complex challenge as they have to fulfill, beyond the contractual obligation of electric power supply, the constraints of supplying the required thermal energy to the user (for cogeneration units) or to burn completely the by-products of the industrial complex where they are integrated. Electrical power market evolution is pushing such units to a more and more volatile operation caused by uncertain selling price levels. This work intends to pinpoint the state of art in the optimization of these units outlining the important differences among the different size and cycles. The effect of the market liberalization on the automation systems and the optimization algorithms will be discussed [it

  16. Steam generation unit in a simple version of biomass based small cogeneration unit

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2014-01-01

    Full Text Available The organic Rankine cycle (ORC is a very promising process for the conversion of low or medium temperature heat to electricity in small and micro scale biomass powered systems. Classic ORC is analogous to Clausius–Rankine cycle in a steam power plant, but instead of water it uses low boiling, organic working fluids. Seeking energy and economical optimization of biomass-based ORC systems, we have proposed some modifications e.g. in low boiling fluid circuit construction. Due to the fact that the operation of a micro steam turbine is rather inefficient from the technical and economic point of view, a specially modified air compressor can be used as a steam piston engine. Such engine should be designed to work at low pressure of the working medium. Studies regarding the first version of the prototype installation were focused on the confirmation of applicability of a straw boiler in the prototype ORC power system. The results of the previous studies and the studies described in the paper (on the new cogeneration unit confirmed the high potential of the developed solution. Of course, many further studies have to be carried out.

  17. 78 FR 43198 - Watson Cogeneration Company; Notice of Filing

    Science.gov (United States)

    2013-07-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. TX13-1-000] Watson... Commission's (Commission) Regulations, 18 CFR 36.1, Watson Cogeneration Company filed an application... physical interconnection to the Watson facility; (2) direct SCE and California Independent System Operator...

  18. The actions of European cities about the use of new technologies of small size cogeneration; Les actions de villes europeennes sur l'utilisation des nouvelles technologies de petite cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Schilken, P

    2001-07-01

    After numerous experiences in the domain of big and medium-size cogeneration, some European municipalities, in particular in Germany, are developing small-size cogeneration units. The aim of this study is, first, to examine the policies and experiences of municipalities and municipal energy companies in terms of technology utilization and the way they have integrated these new technologies in existing installations. Secondly, its aim is to provide some information about the technical and organizational aspects, in particular about the difficulties encountered and the results obtained. In the domain of small cogeneration, various technologies enter in competition: combustion engines, combustion turbines, Stirling engine and fuel cells, which have reached different stages of technical and commercial development. All these technologies are described in case-forms. The ten examples described in these forms (Aachen (DE), Armagh (UK), Arnhem (NL), Basel (CH), Bielefeld (DE), Berlin (DE), Chelles (FR), Frankfurt (DE), Land Hessen (DE), and Ludwigshafen (DE)), indicate that today, only the facilities equipped with gas engines are economically competitive with respect to other means of electricity and heat generation. (J.S.)

  19. A wood-waste fuelled indirectly-fired gas turbine cogeneration plant for sawmill application. Preliminay engineering and financial evaluation. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    The overall objective of this project is to develop a cost-effective wood waste-fired power generation and lumber drying system for Canadian sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design and development of the system has been planned to take place in a number of phases. The first phase consists of a preliminary engineering design and financial evaluation of the system and is the subject of this report. This analysis focuses on British Columbia since it is the largest potential market for the sawmill cogeneration system. In order to provide design parameters for the cogeneration system, operational characteristics were compiled for a typical sawmill in the interior of British Columbia. A number of alternative design concepts were reviewed before arriving at the indirect-fired turbine concept selected for development in this project. The general concept involves the use of an open Brayton-cycle gas turbine as the prime mover to generate electrical power, while process heat for the dry-kiln is obtained by waste heat recovery from the turbine exhaust gas. The proposed system has many advantages over a conventional steam based cogeneration system and economic analysis indicates that the system generates very attractive financial returns over a variety of conditions. 7 refs., 8 figs., 8 tabs.

  20. Analysis of possible energy efficiency increasing of the cogeneration process in EL-TO Zagreb

    International Nuclear Information System (INIS)

    Stanisa, B.; Krivak, B.

    1996-01-01

    In the erection planing of new generation capacity, besides the profitability, there is need to taken in account the rational consumption of primary energy, and the environmental protection. The main rules could have cogenerations of the heat and power. In power plant EL-TO Zagreb there are analysed generating capacity of the cogeneration process. There is considered reconstruction and revitalisation's of existing generating units, and erections of new one, all in the purpose to meet the growing heat demand. The district heating system is considered from the point as opportunity in energy saving capacity in the cogeneration of heat and power. For the amount of the energy saved there is need for less primary energy to be consumed, and this in finally means that for the some energy demands it has the some effect as the natural energy resources are expanded. (author)

  1. Tariffs for natural gas, electricity and cogeneration

    International Nuclear Information System (INIS)

    1995-02-01

    The rate of return of the combined generation of heat and power is not only determined by the capital expenditures and the costs of maintenance, control, management and insurances, but also by the fuel costs of the cogeneration installation and the avoided fuel costs in case of separated heat production, the avoided/saved costs of electricity purchase, and the compensation for possible supply to the public grid (sellback). This brochure aims at providing information about the structure of natural gas and electricity tariffs to be able to determine the three last-mentioned expenditures. First, attention is paid to the tariffs of natural gas for large-scale consumers, the tariff for cogeneration, and other tariffs. Next, the structure of the electricity tariffs is dealt with in detail, discussing the accounting system within the electric power sector, including the alterations in the National Basic Tariff and the Regional Basic Tariff (abbreviated in Dutch LBR, respectively RBT) per January 1, 1995, the compensations for large-scale consumers and specific large-scale consumers, electricity sellback tariffs, and compensations for reserve capacity. 7 figs., 5 tabs., 2 appendices, 7 refs

  2. HTGR-GT closed-cycle gas turbine: a plant concept with inherent cogeneration (power plus heat production) capability

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1980-04-01

    The high-grade sensible heat rejection characteristic of the high-temperature gas-cooled reactor-gas turbine (HTGR-GT) plant is ideally suited to cogeneration. Cogeneration in this nuclear closed-cycle plant could include (1) bottoming Rankine cycle, (2) hot water or process steam production, (3) desalination, and (4) urban and industrial district heating. This paper discusses the HTGR-GT plant thermodynamic cycles, design features, and potential applications for the cogeneration operation modes. This paper concludes that the HTGR-GT plant, which can potentially approach a 50% overall efficiency in a combined cycle mode, can significantly aid national energy goals, particularly resource conservation

  3. Cogeneration through small and medium sized gas turbines in Italy: Marketing survey

    International Nuclear Information System (INIS)

    Bianchi, A.; Schieppati, P.

    1992-01-01

    In Italy, the use of cogeneration systems by private industrial concerns has greatly increased in the early 90's. The successful technological development of highly efficient low and medium sized gas turbines and the successful application of cogenerated power to a number of industrial processes, favourable legislation and financial incentives on the part of the Italian Government, especially interested in promoting energy conservation and the use of natural gas as an alternative to petroleum, as well as, fast payback periods for such investments are amongst the major regions for the growing demand for this type of power system alternative in Italy

  4. Report on achievements in fiscal 1999. Environment harmonizing energy community survey project for Public Yatsushika Hospital area (large-scale cogeneration district heat supplying facility); Koritsu Yatsushika byoin chiku kankyo chowagata energy community chosa jigyo chosa hokokusho. Daikibo cogeneration chiiki netsu kyokyu shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This survey is intended to utilize cogeneration to promote structuring a system to effectively utilize potential energy in a district. In connection with the total rebuilding plan for Yatsushika Hospital, a proposal was made on a cogeneration district heat supply system that could be introduced to six facilities in total including the hospital, its three ancillary facilities, and two neighboring facilities. The proposal is intended to evaluate energy conservation performance, environmentality, and economic performance of the system, and structure an optimal system. Two gas engines having the same capacity were selected as the driving source of the cogeneration system. The waste heat recovering system adopted the 'hot water plus steam recovery system'. Generators were selected that have high energy saving and overall cogeneration efficiency, power dependence, heat dependence, and waste heat utilization factor. As the countermeasures for heat load that cannot be taken care by the waste heat recovery alone, discussions were given on the cogeneration plus gas-burning absorption type cold-hot water device system (the system 1) and the cogeneration plus heat pump heat storing system (the system 2). As a result, the system 2 was selected as the optimal system because it uses both of LNG and commercial electric power effectively, and has stability against variation in fuel prices and excellent environmentality. (NEDO)

  5. Experimental study on a resorption system for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Jiang, L.; Wang, L.W.; Liu, C.Z.; Wang, R.Z.

    2016-01-01

    Energy conversion technologies, especially for power generation and refrigeration technologies driven by the low temperature heat, are gathering the momentum recently. This paper presents a novel resorption system for electricity and refrigeration cogeneraion. Compared with adsorption refrigeration system, resorption refrigeration is characterized as safety and simple structure since there is no ammonia liquid in the system. The cogeneration system is mainly composed of three HTS (high temperature salt) unit beds; three LTS (low temperature salts) unit beds, one expander, three ammonia valves, two oil valves, four water valves and connection pipes. Chemical working pair of MnCl 2 –CaCl 2 –NH 3 is selected. Since scroll expander is suitable for small type power generation system, it is chosen for expansion process. 4.8 kg MnCl 2 and 3.9 kg CaCl 2 impregnated in expanded natural graphite treated with sulfuric acid (ENG-TSA) are filled in the cogeneration system. Experimental results show that maximum cooling power 2.98 kW is able to be obtained while maximum shaft power is about 253 W with 82.3 W average value. The cogeneration system can be utilized for the heat source temperature lower than 170 °C. Total energy efficiency increases from 0.293 to 0.417 then decreases to 0.407 while exergy efficiency increases from 0.12 to 0.16. - Highlights: • A resorption system for power and refrigeration cogeneration is established and investigated. • ENG-TSA as the additive improves the heat and mass performance of composite adsorbent. • The highest shaft power and refrigeration power are 253 W and 2.98 kW, respectively. • Total energy efficiency of the system increases from 0.293 to 0.417 then decreases to 0.407.

  6. High-efficiency Gas Cogeneration – an Assessment of the Support Mechanism

    Directory of Open Access Journals (Sweden)

    Maciej Sołtysik

    2015-09-01

    Full Text Available The development of a single European energy market implies the need to harmonise national laws and the directions of the sector’s growth to EU determinants. One of these elements was the introduction of a system to support the development of high-efficiency cogeneration, including gas cogeneration. Several years of the mechanisms’ performance allows for analysis of the advisability and correctness of the support model format, and assessment of its impact on the sub-sector’s development and the cost of its operation. Against the background of the support system introduction origins, the paper presents results of volumetric and price analyses, trends, and assessment of the balance of property rights and of the mechanism’s effectiveness.

  7. Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria

    International Nuclear Information System (INIS)

    Ust, Yasin; Arslan, Feyyaz; Ozsari, Ibrahim; Cakir, Mehmet

    2015-01-01

    Miller cycle engines are one of the popular engine concepts that are available for improving performance, reducing fuel consumption and NO x emissions. There are many research studies that investigated the modification of existing conventional engines for operation on a Miller cycle. In this context, a comparative performance analysis and optimization based on exergetic performance criterion, total exergy output and exergy efficiency has been carried out for an irreversible Dual–Miller Cycle cogeneration system having finite-rate of heat transfer, heat leak and internal irreversibilities. The EPC (Exergetic Performance Coefficient) criterion defined as the ratio of total exergy output to the loss rate of availability. Performance analysis has been also extended to the Otto–Miller and Diesel-Miller cogeneration cycles which may be considered as two special cases of the Dual–Miller cycle. The effect of the design parameters such as compression ratio, pressure ratio, cut-off ratio, Miller cycle ratio, heat consumer temperature ratio, allocation ratio and the ratio of power to heat consumed have also been investigated. The results obtained from this paper will provide guidance for the design of Dual–Miller Cycle cogeneration system and can be used for selection of optimal design parameters. - Highlights: • A thermodynamic performance estimation tool for DM cogeneration cycle is presented. • Using the model two special cases OM and dM cogeneration cycles can be analyzed. • The effects of r M , ψ, χ 2 and R have been investigated. • The results evaluate exergy output and environmental aspects together.

  8. Efficiency analysis of a cogeneration and district energy system

    International Nuclear Information System (INIS)

    Rosen, Marc A.; Le, Minh N.; Dincer, Ibrahim

    2005-01-01

    This paper presents an efficiency analysis, accounting for both energy and exergy considerations, of a design for a cogeneration-based district energy system. A case study is considered for the city of Edmonton, Canada, by the utility Edmonton Power. The original concept using central electric chillers, as well as two variations (one considering single-effect and the other double-effect absorption chillers) are examined. The energy- and exergy-based results differ markedly (e.g., overall energy efficiencies are shown to vary for the three configurations considered from 83% to 94%, and exergy efficiencies from 28% to 29%, respectively). For the overall processes, as well as individual subprocesses and selected combinations of subprocesses, the exergy efficiencies are generally found to be more meaningful and indicative of system behaviour than the energy efficiencies

  9. State Support for Promotion of Electrical Energy Produced in High Efficiency Cogeneration in Romania

    Directory of Open Access Journals (Sweden)

    Mushatescu V.

    2016-12-01

    Full Text Available Romania accumulated a useful experience in supporting high efficient cogeneration through a bonus type scheme. Spreading this experience to other countries that can choose a similar support scheme could lead to important savings and better results in developing this efficient tool. This state aid is operational, targeted to new investments stimulation for cogeneration technologies and replacement or existing plants rehabilitation. Present paper focuses on the results of support scheme after five years of its application: increase of number of producers who benefit of this aid, raising of general efficiency of high efficient cogeneration, important savings of primary energy and CO2 emissions avoided. On the other hand, use of this scheme showed a number of problems (to which this paper proposes adequate solutions on institutional/administrative, investition, technical, economical-financial and social frameworks that influences beneficiaries and/or financiers of state aid.

  10. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Ligang Zheng [CANMET Energy Technology Center, Natural Resources Canada, Nepean, ONT (Canada); Furimsky, E. [IMAG Group, Ottawa, ONT (Canada)

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data. (author)

  11. ASPEN simulation of cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ligang E-mail: lzheng@nrcan.gc.ca; Furimsky, Edward

    2003-07-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data.

  12. ASPEN simulation of cogeneration plants

    International Nuclear Information System (INIS)

    Zheng Ligang; Furimsky, Edward

    2003-01-01

    A detailed flow sheet of the combined cycle cogeneration plant fuelled by natural gas was prepared. The model for simulation of this plant was developed using the ASPEN PLUS software. The results generated using this model were compared with the operating data of the commercial plant generating about 43.6 MW of electricity by gas turbine and 28.6 MW of electricity by steam turbine. The electricity is supplied to the grid, whereas the low pressure steam is utilised locally for heating purposes. The key data generated using the ASPEN model are in good agreement with the operating data

  13. The actions of European cities about the use of new technologies of small size cogeneration; Les actions de villes europeennes sur l'utilisation des nouvelles technologies de petite cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Schilken, P.

    2001-07-01

    After numerous experiences in the domain of big and medium-size cogeneration, some European municipalities, in particular in Germany, are developing small-size cogeneration units. The aim of this study is, first, to examine the policies and experiences of municipalities and municipal energy companies in terms of technology utilization and the way they have integrated these new technologies in existing installations. Secondly, its aim is to provide some information about the technical and organizational aspects, in particular about the difficulties encountered and the results obtained. In the domain of small cogeneration, various technologies enter in competition: combustion engines, combustion turbines, Stirling engine and fuel cells, which have reached different stages of technical and commercial development. All these technologies are described in case-forms. The ten examples described in these forms (Aachen (DE), Armagh (UK), Arnhem (NL), Basel (CH), Bielefeld (DE), Berlin (DE), Chelles (FR), Frankfurt (DE), Land Hessen (DE), and Ludwigshafen (DE)), indicate that today, only the facilities equipped with gas engines are economically competitive with respect to other means of electricity and heat generation. (J.S.)

  14. Thermionic cogeneration burner assessment study. Third quarterly technical progress report, April-June, 1983

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The specific tasks of this study are to mathematically model the thermionic cogeneration burner, experimentally confirm the projected energy flows in a thermal mock-up, make a cost estimate of the burner, including manufacturing, installation and maintenance, review industries in general and determine what groups of industries would be able to use the electrical power generated in the process, select one or more industries out of those for an in-depth study, including determination of the performance required for a thermionic cogeneration system to be competitive in that industry. Progress is reported. (WHK)

  15. The marginal costs like reference for the decision of electric energy cogeneration in Brazil

    International Nuclear Information System (INIS)

    Silva, D.B. da; Eduardo, J.H.B.P.

    1987-01-01

    The electric cogeneration question, in a form of optimal utilization of high quality chemical energy in some industrial processes, or a form of employment of any others feedstocks, can be discussed on economics view, with the marginal costs reference, actually in implantation in Brazilian Electrical Sector. In this article, some ideas are presented about the mentioned discussion, in the Brazilian Electric Sector ambient, including analysis of laws and proposed directions for its modifications, looking for the cogeneration activity development in Brazil. (author)

  16. Exploitation of low-temperature energy sources from cogeneration gas engines

    International Nuclear Information System (INIS)

    Caf, A.; Urbancl, D.; Trop, P.; Goricanec, D.

    2016-01-01

    This paper describes an original and innovative technical solution for exploiting low-temperature energy sources from cogeneration gas reciprocating engines installed within district heating systems. This solution is suitable for those systems in which the heat is generated by the use of reciprocating engines powered by gaseous fuel for combined heat and power production. This new technical solution utilizes low-temperature energy sources from a reciprocating gas engine which is used for a combined production of heat and power. During the operation of the cogeneration system low-temperature heat is released, which can be raised to as much as 85 °C with the use of a high-temperature heat-pump, thus enabling a high-temperature regime for heating commercial buildings, district heating or in industrial processes. In order to demonstrate the efficiency of utilizing low-temperature heat sources in the cogeneration system, an economic calculation is included which proves the effectiveness and rationality of integrating high-temperature heat-pumps into new or existing systems for combined heat and power production with reciprocating gas engines. - Highlights: • The use of low-temperature waste heat from the CHP is described. • Total energy efficiency of the CHP can be increased to more than 103.3%. • Low-temperature heat is exploited with high-temperature heat pump. • High-temperature heat pump allows temperature rise to up to 85 °C. • Exploitation of low-temperature waste heat increases the economics of the CHP.

  17. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P.; Bolduc, D.; Gauvin, D.; Guerrier, P.; Gauthier, R. [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P. [Laval Univ. (Canada). Dept. of Preventive Medicine

    1995-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  18. Public health impact assessment of a proposed cogeneration plant in the Quebec city metropolitan area

    Energy Technology Data Exchange (ETDEWEB)

    Lajoie, P; Bolduc, D; Gauvin, D; Guerrier, P; Gauthier, R [Quebec Public Health Center, Ste-Foy (Canada); Laflamme, P [Laval Univ. (Canada). Dept. of Preventive Medicine

    1996-12-31

    In 1994, public hearings were held in Quebec city concerning a 120 megawatt (MW) gas cogeneration project that was to be coupled with an already existing pulp and paper mill in the downtown area. Cogeneration plants are often described as highly beneficial from the point of view of local environment. It is well known that the burning of natural gas emits far less sulfur dioxide (SO{sub 2}) and particulate matters (PM) than the combustion of oil or coal. The proposed plant would use high pressure vapour from a nearby incinerator plant and natural gas to produce low pressure vapor for the paper mill industry as well as electricity. The cogeneration plant would allow the paper mill to stop burning heavy oil. By using natural gas instead of heavy oil, the new cogeneration-paper mill complex (CPC) is expected to reinforce the recent trend and willingness towards improving downtown air quality. On the other hand, the CPC would emit more CO{sub 2}, due to the production of additional electricity. According to the Rio de Janeiro Agreement ratified in 1988, Canada is committed to stabilize its greenhouse gas emissions by the year 2000. Nevertheless, the cogeneration file is a new option considered by the Quebec Provincial Governement in its last energy triennal plan. However, it must be specified that the Province of Quebec contributes to less than 15 % of the total Canadian CO{sub 2} production although it represents more than 25 % of its population. Furthermore the maximum production of electricity by this file has been set to 250 MW. It is a very small fraction of the total production of electricity in Quebec, which is 200 TW

  19. Mini-cogeneration in the flower bulb industry. Use of cogeneration in the cultivation and hot bed of tulip and hyacinth; Mini-wkk in de bloembollensector. Toepassing van wkk bij teelt en broei van tulp en hyacint

    Energy Technology Data Exchange (ETDEWEB)

    De Visser, I.; Koolwijk, E. [Cogen Projects, Driebergen-Rijsenburg (Netherlands)

    2008-06-15

    This study shows that by deploying cogeneration, energy savings can be realized in the flower bulb industry. Use of cogeneration at medium-sized to large flower bulb companies is interesting from the viewpoint of finance. [Dutch] Uit de studie blijkt dat met de toepassing van WKK energiebesparing gerealiseerd kan worden in de bollensector. Op de middelgrote tot grote bollenbedrijven is de toepassing van WKK uit financieel oogpunt interessant.

  20. Multi-objective technico-economic optimization of energy conversion systems: hydrogen and electricity cogeneration from Generation IV nuclear reactor

    International Nuclear Information System (INIS)

    Gomez, A.

    2008-01-01

    With the increase in environmental considerations, such as the control of greenhouse emissions, and with the decrease in the fossil energy resources, hydrogen is currently considered as a promising energy vector. One of the main technological challenges of a future hydrogen economy is its large scale production without fossil fuel emissions. Under this context, nuclear energy is particularly adapted for hydrogen massive production by thermochemical cycles or high temperature electrolysis. One of the selected nuclear systems is the Very High Temperature Reactor (950 C/1200 C), cooled with helium, and dedicated to hydrogen production or to hydrogen electricity cogeneration. The main objective of this investigation, within the framework of a collaboration between CEA, French Atomic Agency (Cadarache) and LGC (Toulouse), consists in defining a technico-economic optimization methodology of electricity-hydrogen cogeneration systems, in order to identify and propose promising development strategies. Among the massive production processes of hydrogen, the thermochemical cycle Iodine-Sulphur has been considered. Taking into account the diversity of the used energies (i.e., heat and electricity) on the one hand and of the produced energies (hydrogen and electricity) on the other hand of the studied cogeneration system, an exergetic approach has been developed due to its ability to consider various energy forms on the same thermodynamical basis. The CYCLOP software tool (CEA) is used for the thermodynamic modelling of these systems. The economic criterion, calculated using the SEMER software tool (CEA), is based on the minimization of the total production site cost over its lifespan i.e., investment, operating costs and nuclear fuel cost. Capital investment involves the development of cost functions adapted to specific technologies and their specific operating conditions. The resulting optimization problems consist in maximizing the energy production, while minimizing the

  1. Feasibility study of wood-fired cogeneration at a Wood Products Industrial Park, Belington, WV. Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Vasenda, S.K.; Hassler, C.C.

    1992-06-01

    Customarily, electricity is generated in a utility power plant while thermal energy is generated in a heating/cooling plant; the electricity produced at the power plant is transmitted to the heating/cooling plant to power equipments. These two separate systems waste vast amounts of heat and result in individual efficiencies of about 35%. Cogeneration is the sequential production of power (electrical or mechanical) and thermal energy (process steam, hot/chilled water) from a single power source; the reject heat of one process issued as input into the subsequent process. Cogeneration increases the efficiency of these stand-alone systems by producing these two products sequentially at one location using a small additional amount of fuel, rendering the system efficiency greater than 70%. This report discusses cogeneration technologies as applied to wood fuel fired system.

  2. The effect of Ontario's transmission system policies on cogeneration projects

    International Nuclear Information System (INIS)

    Carr, J.

    1999-01-01

    The impact that the establishment of transmission tariffs would have on the viability of cogeneration projects in Ontario was discussed. The proposal to establish such tariffs on the basis of a 'postage stamp' rate would ensure that all electricity users have access to electricity at the same price. However, this would unfairly penalize short-haul transmission transactions and would possibly result in the inappropriate location of new generation facilities. Electricity users would ultimately be burdened with these inefficiencies. This presentation also discussed another public policy which proposes to determine what parts of the electricity system should have their costs recovered at postage stamp rates. The costs would include not only transmission charges but also distribution and generation costs. The restructuring of Ontario Hydro into the Ontario Power Generation Company (OPGC) and the Ontario Hydro Services Company (OHSC) and its impact on the cogeneration projects was also discussed

  3. Estonian energy system: Proposals for the implementation of a cogeneration strategy

    International Nuclear Information System (INIS)

    Lund, H.; Hvelplund, F.; Ingermann, K.; Kask, U.

    2000-01-01

    Since the Soviet era Estonia inherited oil-shale-based electricity plants, with a capacity of 3000 MW. Oil shale now provides Estonia with very low electricity prices. However, most of the stations are very old. Half of them were built before 1965, and sooner or later the old oil shale production units will have to be replaced. Estonia will then have to face serious increases in electricity production prices. At the same time Estonia has problems in restoring its district heating systems. The prices are rising and may consumers have converted to other heating sources such as electric heating. The major long-term strategic policy choices to make in Estonia are to decide (1) whether the oil shale power stations should be replaced by new centralized production units such as new oil shale stations or nuclear power, or (2) whether the electricity production should be decentralized. In the centralized solution (oil shale or nuclear power), the domestic heating will be left to boilers or electric heating leading to a very high primary energy supply. In the decentralized solution, Estonia could benefit from the advantage of cogeneration leading to very low fuel consumption. But this latter strategy depends on the restoration of the district heating systems. This article seeks to form a strategy to improve the efficiency of the Estonian energy system by increasing the use of cogeneration. (author)

  4. Intraday trade is the answer for cogeneration

    International Nuclear Information System (INIS)

    Lomme, J.J.

    2006-01-01

    It is possible for operators of small cogeneration plants to sell electricity on the day-ahead market of the Amsterdam Power Exchange (APX) or through the unbalance market of the Dutch power transmission operator TenneT. However, it is difficult for them to take part in the market. The solution could be a so-called intraday-market, in which electricity trade can be a continuous process, but the question is who will start such a market [nl

  5. Implementation of a cogeneration plant for a food processing facility. A case study

    International Nuclear Information System (INIS)

    Bianco, Vincenzo; De Rosa, Mattia; Scarpa, Federico; Tagliafico, Luca A.

    2016-01-01

    Highlights: • CHP utilization is demonstrated to allow a reduction of primary energy consumption. • The consideration of various investment indexes leads to the determination of different optimal powers. • The choice of a specific investment index to evaluate a CHP is linked to the strategy of the company. - Abstract: The present work presents an investigation regarding the feasibility analysis of a cogeneration plant for a food processing facility with the aim to decrease the cost of energy supply. The monthly electricity and heat consumption profiles are analyzed, in order to understand the consumption profiles, as well as the costs of the current furniture of electricity and gas. Then, a detailed thermodynamic model of the cogeneration cycle is implemented and the investment costs are linked to the thermodynamic variables by means of cost functions. The optimal electricity power of the co-generator is determined with reference to various investment indexes. The analysis highlights that the optimal dimension varies according to the chosen indicator, therefore it is not possible to establish it univocally, but it depends on the financial/economic strategy of the company through the considered investment index.

  6. Desalination of seawater with nuclear power reactors in cogeneration

    International Nuclear Information System (INIS)

    Flores E, R.M.

    2004-01-01

    The growing demand for energy and hydraulic resources for satisfy the domestic, industrial, agricultural activities, etc. has wakened up the interest to carry out concerning investigations to study the diverse technologies guided to increase the available hydraulic resources, as well as to the search of alternatives of electric power generation, economic and socially profitable. In this sense the possible use of the nuclear energy is examined in cogeneration to obtain electricity and drinkable water for desalination of seawater. The technologies are analysed involved in the nuclear cogeneration (desalination technology, nuclear and desalination-nuclear joining) available in the world. At the same time it is exemplified the coupling of a nuclear reactor and a process of hybrid desalination that today in day the adult offers and economic advantages. Finally, the nuclear desalination is presented as a technical and economically viable solution in regions where necessities of drinkable water are had for the urban, agricultural consumption and industrial in great scale and that for local situations it is possible to satisfy it desalinating seawater. (Author)

  7. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  8. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    International Nuclear Information System (INIS)

    Greene, Sherrell R.; Flanagan, George F.; Borole, Abhijeet P.

    2009-01-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  9. Benefices environnementaux de la cogeneration d'energie en milieu hospitalier et cas de l'Hopital de Moncton

    Science.gov (United States)

    Kone, Diakalia

    The present study aimed at assessing the environmental benefits of power management practices based on cogeneration in the particular industrial sector of hospitals and healthcare. Cogeneration power systems, also known as "Combined Heat and Power" (CHP) or Cogen, supply on-site electricity and heat from a single fuel source (natural gas in general). While the efficiency of conventional plants to produce power and heat separately is limited to about 30%, the efficiency of a CHP plant is close to 80% and can reach up to 90% in some applications (Borbely et Kreider, 2001). One of the distinctive features of hospitals is their continuous demand for both type of energy (electricity and heat), which makes them good candidate for cogeneration. However, in North America at the present time, less than 5% of hospitals run on CHP. Most are being supplied with electricity by conventional power plants, run by specialized companies, and use on-site boiler(s) to generate heat. Energy spending can reach up to 3% of an hospital's annual operational budget. There are also environmental impacts related to current energy supply and use in hospitals. For instance, the burning of fossil fuels releases greenhouse gases (GHG), which contribute to human health problems and climate change. The first objective of the study was to outline the main benefits and challenges faced by hospitals that aim at becoming their own energy co-generator, in comparison to having power and heat produced separately. Our second objective was to assess prospectively (proactively) the environmental impacts of a cogeneration plant that is being planned, but not yet operated, in a Canadian hospital. The methodology was based on literature reviews and on a case study, namely that of The Moncton Hospital (TMH)/L'Hopital de Moncton, Moncton, New Brunswick, Canada. This hospital is considered a large hospital with 375 beds and a major and expanding ambulatory care service. It is also in the process of developing a 1

  10. Practical design considerations for nuclear cogeneration installations

    International Nuclear Information System (INIS)

    Koupal, J.R.

    1987-01-01

    Dual-purpose nuclear plants, cogeneration electricity and steam, offer significant economic benefits over comparable electricity generating stations. The design of such a nuclear facility requires the resolution of unique technical challenges. This paper reports on experience gained in the detailed design of such a dual-purpose facility with the steam supplied to a chemical plant for process heating. The following topics are discussed: Siting, Radioactivity of Export Steam, Optimization for Load Combinations, Steam Supply Reliability, Steam Transportation, Water Chemistry, Cost Allocation. (author)

  11. FBC utilization prospects in decentralized cogeneration units in Caucasus region countries

    Directory of Open Access Journals (Sweden)

    Skodras George

    2003-01-01

    Full Text Available Great differences are encountered among Caucasus region countries with respect to energy resources reserves and economic conditions. Thermal power plants consist of obsolete and inefficient units, while the Soviet-type large heating systems in the area collapsed after 1992 and their reconstruction is considered uneconomic. Renovation needs of the power and heat sector, and the potential of Fluidised Bed Combustion implementations in decentralized cogeneration units were investigated, since operating oil and gas power plants exhibit high fuel consumption, low efficiency and poor environmental performance. Results showed significant prospects of Fluidised Bed Combustion utilization in decentralized cogeneration units in the Caucausus region heat and power sector. Their introduction constitutes an economically attractive way to cover power and heat demands and promotes utilization of domestic energy resources in all of three countries, provided that financial difficulties could be confronted.

  12. Modelling the dynamics of the cogeneration power plant gas-air duct

    Directory of Open Access Journals (Sweden)

    Аnatoliy N. Bundyuk

    2014-12-01

    Full Text Available Introducing into wide practice the cogeneration power plants (or CHP is one of promising directions of the Ukrainian small-scale power engineering development. Thermal and electric energy generation using the same fuel kind can increase the overall plant efficiency. That makes it appropriate to use CHPs at compact residential areas, isolated industrial enterprises constituting one complex with staff housing area, at sports complexes, etc. The gas-air duct of the cogeneration power plant has been considered as an object of the diesel-generator shaft velocity control. The developed GAD mathematical model, served to analyze the CHP dynamic characteristics as acceleration curves obtained under different external disturbances in the MathWorks MATLAB environment. According to the electric power generation technology requirements a convenient transition process type has been selected, with subsequent identification of the diesel-generator shaft rotation speed control law.

  13. Co-generation at CERN Beneficial or not?

    CERN Document Server

    Wilhelmsson, M

    1998-01-01

    A co-generation plant for the combined production of electricity and heat has recently been installed on the CERN Meyrin site. This plant consists of: a gas turbine generator set (GT-set), a heat recovery boiler for the connection to the CERN primary heating network, as well as various components for the integration on site. A feasibility study was carried out and based on the argument that the combined use of natural gas -available anyhow for heating purposes- gives an attractively high total efficiency, which will, in a period of time, pay off the investment. This report will explain and update the calculation model, thereby confirming the benefits of the project. The results from the commissioning tests will be taken into account, as well as the benefits to be realized under the condition that the plant can operate undisturbed by technical setbacks which, incidentally, has not been entirely avoided during the first year of test-run and operation.

  14. The ARCHER project (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Knol, S., E-mail: knol@nrg.eu [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Fütterer, M.A. [Joint Research Centre, Institute for Energy, Petten (Netherlands); Roelofs, F. [Nuclear Research and consultancy Group (NRG), PO Box 25, NL-1755 ZG Petten (Netherlands); Kohtz, N. [TÜV Rheinland, Köln (Germany); Laurie, M. [Joint Research Centre, Institute for Transuranium elements, Karlsruhe (Germany); Buckthorpe, D. [UMAN, University of Manchester, Manchester (United Kingdom); Scheuermann, W. [IKE, Stuttgart University, Stuttgart (Germany)

    2016-09-15

    The European HTR R&D project ARCHER (Advanced High-Temperature Reactors for Cogeneration of Heat and Electricity R&D) builds on a solid HTR technology foundation in Europe, established through former national UK and German HTR programs and in European framework programs. ARCHER runs from 2011 to 2015 and targets selected HTR R&D subjects that would specifically support demonstration, with a focus on experimental effort. In line with the R&D and deployment strategy of the European Sustainable Nuclear Energy Technology Platform (SNETP) ARCHER contributes to maintaining, strengthening and expanding the HTR knowledge base in Europe to lay the foundations for demonstration of nuclear cogeneration with HTR systems. The project consortium encompasses conventional and nuclear industry, utilities, Technical Support Organizations, R&D organizations and academia. ARCHER shares results with international partners in the Generation IV International Forum and collaborates directly with related projects in the US, China, Japan, the Republic of Korea and South Africa. The ARCHER project has finished, and the paper comprises an overview of the achievements of the project.

  15. Final report of phase 2 'Mini-cogeneration in the flower bulb industry'; Eindrapportage Fase 2 'Mini-WKK in de bloembollensector'

    Energy Technology Data Exchange (ETDEWEB)

    Koolwijk, E. [Cogen Projects, Driebergen-Rijsenburg (Netherlands); Smailbegovic, N. [SenterNovem, Utrecht (Netherlands)

    2009-09-15

    Phase 2 of the project 'mini-cogeneration in the flower bulb industry' is the sequel to the report 'mini-cogeneration in the flower bulb industry. Use of cogeneration in the cultivation and hot bed of tulip and hyacinth', Addressing the incentivisation of the use of cogeneration in the sector and working toward realizing a number of demonstration projects. To this end it is necessary that potential investors are given insight in the feasibility of cogeneration at their business and that their enthusiasm is kindled for the use of cogeneration. This was done by disseminating information in the flower bulb industry about the opportunities of cogeneration and by informing growers about technique, economy and points of interest. [Dutch] Fase 2 van het project 'Mini- WKK in de bloembollensector' is een vervolg op het rapport 'Mini-wkk in de bloembollensector. Toepassing van wkk bij teelt en broei van tulp en hyacint' en richt zich op het stimuleren van de toepassing van WKK in de sector en toewerken naar realisatie van een aantal demonstratieprojecten. Daartoe is het noodzakelijk dat potentiele investeerders inzicht krijgen over de haalbaarheid van WKK op hun bedrijf en geenthousiasmeerd worden voor het gebruik van WKK. Dit is gedaan door informatie in de bollensector te verspreiden over de mogelijkheden van WKK en telers te informeren over techniek, economie en aandachtspunten.

  16. A biofuel-based cogeneration plant in a natural gas expansion system: An energetic and economic assessment

    International Nuclear Information System (INIS)

    Badami, Marco; Modica, Stefano; Portoraro, Armando

    2017-01-01

    Highlights: • A Natural Gas Turbo Expander system with a rapeseed oil fueled CHP is studied. • The experimental data of the plant are considered in the analyses. • The energetic index of performance shows the attractiveness of the plant. • Incentives and fuel price volatility effects on economic profitability are analysed. - Abstract: The paper deals with an analysis of the energetic and economic performance of a City Gas Station (CGS) plant, made up of a rapeseed oil cogenerator coupled to a turbo-expansion system for the reduction of natural gas pressure, which is currently in operation in Italy. Although this kind of systems concept is well known, the plant can be considered unusual because the heat needed to pre-heat the gas before its expansion is obtained from a renewable source. The aim of the paper is to analyse the energetic efficiency of the plant and its economic viability, which is affected to a great extent by subsidizing energy policies and by the volatility of vegetable oil prices. All the evaluations have been based on a real set of experimental data.

  17. Proceedings of the 7th cogeneration and independent power congress, natural gas purchasing '92, HVAC controls and energy conservation '92, 1992 indoor air quality congress

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book is covered under the following topics: Cogeneration and IPP Market Developments; Natural Gas Marketing and Deliverability Strategies; Identifying the Sources of IAQ Problems; User-Owner Cogeneration Systems; Strategies for International Power Development; Strategic Fuel Purchasing; Cogeneration and utility Power Plant Compliance Issues; New HVAC Design Trends; IAQ Practical solutions: Case Studies

  18. Life cycle inventories for bioenergy and fossil-fuel fired cogeneration plants

    International Nuclear Information System (INIS)

    Braennstroem-Norberg, B.M.; Dethlefsen, U.

    1998-06-01

    Life-cycle inventories for heat production from forest fuel, Salix, coal and oil are presented. Data from the Oerebro cogeneration plant are used for the bioenergy and coal cycles, whereas the oil-fired cycle is based on a fictive plant producing 53 MW electricity and 106 MW heat, also located in the town of Oerebro. This life cycle analysis only covers the inventory stage. A complete life cycle analysis also includes an environmental impact assessment. The methods for assessing environmental impact are still being developed and thus this phase has been omitted here. The intention is, instead, to provide an overall perspective of where in the chain the greatest environmental load for each fuel can be found. Production and energy conversion of fuel requires energy, which is often obtained from fossil fuel. This input energy corresponds to about 11% of the extracted amount of energy for oil, 9% for coal, 6% for Salix, whereas it is about 4% for forest fuel. Utilization of fossil fuel in the coal cycle amounts to production of electricity using coal condensation intended for train transports within Poland. In a life cycle perspective, biofuels show 20-30 times lower emissions of greenhouse gases in comparison with fossil fuels. The chains for biofuels also give considerably lower SO 2 emissions than the chains for coal and oil. The coal chain shows about 50% higher NO x emission than the other fuels. Finally, the study illustrates that emission of particles are similar for all sources of energy. The biofuel cycle is assessed to be generally applicable to plants of similar type and size and with similar transport distances. The oil cycle is probably applicable to small-scale cogeneration plants. However, at present there are no cogeneration plants in Sweden that are solely fired with oil. In the case of the coal cycle, deep mining and a relatively long transport distance within Poland have been assumed. If the coal mining had been from open-cast mines, and if the

  19. Cogeneration technology alternatives study. Volume 1: Summary report

    Science.gov (United States)

    1980-01-01

    Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.

  20. Project financing consequences on cogeneration: industrial plant and municipal utility co-operation in Sweden

    International Nuclear Information System (INIS)

    Sundberg, Gunnel; Sjoedin, J.Joergen

    2003-01-01

    The liberalisation of the European electricity market influences investment decisions in combined heat and power plants. Energy companies modify their business strategies and their criteria for investments in power generation capacity. In this paper, the gains from a co-operation between a paper mill and municipal utility are studied. We find that a widened system boundary, including both the industrial plant and the district heating company, increases cost-effectiveness by 7-11%, compared to a situation with two separately optimised systems. Furthermore, optimal investments are strongly influenced by the actors' different required returns. With a relatively low required rate of return on energy investments, typical for a municipally owned utility, the most profitable investment is a wood chips-fuelled cogeneration plant. With a higher rate of return on capital, typical for a competitive industry, the optimal investment is mainly a heat-only steam boiler. Finally, some general influences on required rate of return caused by electricity market deregulation are observed. Whilst tending to increase companies' required returns, deregulation may, besides extending the outlet for locally generated electricity, also obstruct long-term high-cost investments such as cogeneration based on conventional technology

  1. Gas-based electricity production: which possibilities? - Thermal plants with steam generator; Perspectives for mini-cogeneration in collective housing; Electricity production by gas plants: which orientations on a middle term?

    International Nuclear Information System (INIS)

    Charrier, M.; Hubert, Charles-Emile; Lu, Long; Maire, Jacques; Bornard, Pierre; Garnier, Philippe-Jean; Jamme, Dominique; Cheylus, Jean-Christophe

    2012-01-01

    A set of articles proposes a comparison between coal fired and natural gas fired power stations, discusses the perspectives of low power cogeneration installations for collective housing (some examples are evoked). It also reports interventions of a meeting on middle-term orientation for gas-based electricity production during which interveners addressed several issues such as the opportunity of investment in new infrastructures, the evolution of the gas sector, modulation means

  2. Using in-house expertise in negotiating power sales contracts for industrial cogeneration plants

    International Nuclear Information System (INIS)

    Yott, R.A.

    1992-01-01

    Energy has always been a strategic component of Air Products and Chemicals production costs. In fact, Air Products is among the top consumers of electricity and natural gas in the U.S. Consequently, Air Products has developed a multifaceted Corporate Energy Department. The advent of PURPA in 1978 and the success enjoyed by Air Products in selling industrial gases over the fence to industrial customers as a integral part of their manufacturing system led Air Products into the industrial cogeneration business. This paper briefly summarizes Air Products entry into the industrial cogeneration market and the role that Air Products Energy Department has played in making this new business focus a success. It highlights how Air Products has been able to transfer its in-house expertise in purchasing power to the marketing, bidding, contract negotiation and avoided cost forecasting functions so critical in the successful development of industrial cogeneration opportunities. At Air Products we believe our long association with the utility industry first as a cost-conscious customer and more recently as an electric energy supplier has enhanced our competitive position. The same success story could be repeated at your company if you know what to look for and are not afraid to expand the horizons and responsibilities of your energy department

  3. Analysis of economic feasibility of sale of surplus electricity in cogeneration: case study

    International Nuclear Information System (INIS)

    Fodra, Marcelo; Esperancini, Maura Seiko Tsutsui

    2010-01-01

    The production of energy in large quantity and at competitive prices is crucial for economic development, which allied to the environmental question, has incentivated the use of renewable sources of energy. One of the most promising sources of renewable energy is the cogeneration from the residues of cane. Currently, the scenario for this kind of energy production is not consolidated, as production prices are not stable, inducing a risky situation for the environment. This work was aimed to study the economic viability of installing a main site for cogeneration of electricity, in a regional sugarcane factory located in the central region of Sao Paulo state that currently uses residues of sugar cane as fuel. The risk factor that was taken into consideration was the price paid for the MWh sold to the Chamber of Commerce of Electricity. The Monte Carlo Method was used to assess the risk factors for the analysis, by using of New Present Value (NPV), in a scenario that uses 20% of the initial investment made by the energy dealer. After the simulations were finished, considering the conditions used in this work, the project tends to be not feasible, as the behavior of the prices of cogenerated MWh are not sufficient for paying the initial investment and the operational costs. (author)

  4. Multi-objective approach in thermoenvironomic optimization of a benchmark cogeneration system

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn

    2009-01-01

    Multi-objective optimization for designing of a benchmark cogeneration system known as CGAM cogeneration system has been performed. In optimization approach, the exergetic, economic and environmental aspects have been considered, simultaneously. The thermodynamic modeling has been implemented comprehensively while economic analysis conducted in accordance with the total revenue requirement (TRR) method. The results for the single objective thermoeconomic optimization have been compared with the previous studies in optimization of CGAM problem. In multi-objective optimization of the CGAM problem, the three objective functions including the exergetic efficiency, total levelized cost rate of the system product and the cost rate of environmental impact have been considered. The environmental impact objective function has been defined and expressed in cost terms. This objective has been integrated with the thermoeconomic objective to form a new unique objective function known as a thermoenvironomic objective function. The thermoenvironomic objective has been minimized while the exergetic objective has been maximized. One of the most suitable optimization techniques developed using a particular class of search algorithms known as multi-objective evolutionary algorithms (MOEAs) has been considered here. This approach which is developed based on the genetic algorithm has been applied to find the set of Pareto optimal solutions with respect to the aforementioned objective functions. An example of decision-making has been presented and a final optimal solution has been introduced. The sensitivity of the solutions to the interest rate and the fuel cost has been studied

  5. Italian cogeneration legislation (Laws 9 ampersand 10): ENEL's (Italy) point of view

    International Nuclear Information System (INIS)

    Pello', P.M.

    1991-01-01

    Referring to recently legislated Italian normatives governing on-site electric power generation by private industry, in particular, to the clauses which regard rate structure in the case of auto-producers ceding power to the national grid controlled by ENEL (the Italian National Electricity Board), this paper determines auto-production economic feasibility limits, based on cogeneration plant annual power production, ceded power quality, type of fuel, and overall operating costs. Some consideration is then given to the long term implications that this legislation, encouraging on-site production on a wide scale, has on ENEL's strategic planning and natural gas marketing in Italy

  6. District heating development, air quality improvement, and cogeneration in Krakow, Poland

    International Nuclear Information System (INIS)

    Manczyk, H.; Leach, M.D.

    1992-01-01

    Krakow, Poland, is served by a district heating system that includes coal-fired electrical and heating plants and distribution networks and by approximately 200,000 residential coal furnaces. Cogeneration facilities were added in the mid-1970s to supply up to 40% of the regional peak electrical demand and to optimize energy extraction from the low-heating-value coal mined in the region. Several difficulties prevent the district from realizing the potential efficiencies of its technology: the poor condition of the distribution network, the lack of consumption control and metering devices, inadequate plant maintenance, and the lack of economic incentives for operator productivity and energy conservation by users. Environmental concerns have caused the local government and international agencies to plan major improvements to the system. This paper discusses the development of the district heating system, coal use in Poland, cogeneration facilities, environmental concerns and pollution control plans, and improvement strategies

  7. First Study of Helium Gas Purification System as Primary Coolant of Co-Generation Reactor

    International Nuclear Information System (INIS)

    Piping Supriatna

    2009-01-01

    The technological progress of NPP Generation-I on 1950’s, Generation-II, Generation-III recently on going, and Generation-IV which will be implemented on next year 2025, concept of nuclear power technology implementation not only for generate electrical energy, but also for other application which called cogeneration reactor. Commonly the type of this reactor is High Temperature Reactor (HTR), which have other capabilities like Hydrogen production, desalination, Enhanced Oil Recovery (EOR), etc. The cogeneration reactor (HTR) produce thermal output higher than commonly Nuclear Power Plant, and need special Heat Exchanger with helium gas as coolant. In order to preserve heat transfer with high efficiency, constant purity of the gas must be maintained as well as possible, especially contamination from its impurities. In this report has been done study for design concept of HTR primary coolant gas purification system, including methodology by sampling He gas from Primary Coolant and purification by using Physical Helium Splitting Membrane. The examination has been designed in physical simulator by using heater as reactor core. The result of study show that the of Primary Coolant Gas Purification System is enable to be implemented on cogeneration reactor. (author)

  8. Economic feasibility of high-temperature reactors for industrial cogeneration. An investor's perspective

    International Nuclear Information System (INIS)

    Hampe, Jona; Madlener, Reinhard

    2016-01-01

    This paper studies the economic potential of using high-temperature nuclear reactors (HTRs) for cogeneration of industrial process heat and electricity. A reference case HTR is found to deliver cost-competitive process heat with temperatures of ≥200°C, rendering the chemical and pulp and paper industries potential candidates. The reference case investment yields a positive net present value of €304 million. Real options analysis is employed to account for the uncertain environment and the resulting managerial flexibilities of the project. A real option model for optimal investment timing is adapted to HTRs for industrial cogeneration. The value of the option to invest in an HTR is determined at €667 million and the electricity price threshold for an optimal investment at 79 €/MWh. Though the option to invest in an HTR represents a significant value for a utility, the investment should be delayed until the electricity price has reached the threshold value. We also propose a model to calculate the option value of switching between two different operating modes (cogeneration vs. electricity only). For the reference case, this option value turns out to be €85 million. (author)

  9. Blocking of Goal-Location Learning Based on Shape

    Science.gov (United States)

    Alexander, Tim; Wilson, Stuart P.; Wilson, Paul N.

    2009-01-01

    Using desktop, computer-simulated virtual environments (VEs), the authors conducted 5 experiments to investigate blocking of learning about a goal location based on Shape B as a consequence of preliminary training to locate that goal using Shape A. The shapes were large 2-dimensional horizontal figures on the ground. Blocking of spatial learning…

  10. The potential of natural gas use including cogeneration in large-sized industry and commercial sector in Peru

    International Nuclear Information System (INIS)

    Gonzales Palomino, Raul; Nebra, Silvia A.

    2012-01-01

    In recent years there have been several discussions on a greater use of natural gas nationwide. Moreover, there have been several announcements by the private and public sectors regarding the construction of new pipelines to supply natural gas to the Peruvian southern and central-north markets. This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of the country based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. First, the paper estimates the market potential and characterizes the energy consumption. Then it makes a selection of technological alternatives for the use of natural gas, and it makes an energetic and economic analysis and economic feasibility. Finally, the potential use of natural gas is calculated through nine different scenarios. The natural gas use in cogeneration systems is presented as an alternative to contribute to the installed power capacity of the country. Considering the introduction of the cogeneration in the optimistic–advanced scenario and assuming that all of their conditions would be put into practice, in 2020, the share of the cogeneration in electricity production in Peru would be 9.9%. - Highlights: ► This paper presents future scenarios for the use of natural gas in the large-sized industrial and commercial sectors of Peru. ► The potential use of natural gas is calculated through nine different scenarios.► The scenarios were based on different hypotheses on developments in the natural gas industry, national economic growth, energy prices, technological changes and investment decisions. ► We estimated the market potential and characterized the energy consumption, and made a selection of technological alternatives for the use of natural gas.

  11. Rational use of energy and cogeneration in Argentina; Uso racional de la energia y la cogeneracion en Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, M.I. [Universidad Nacional de La Plata (GECCU/UNLP), Buenos Aires (Argentina). Fac. de Ingenieria. Sistemas de Generacion de Energia, Cogeneracion, Ciclos Combinados, Uso Racional de la Energia], E-mail: misosa@ing.unlp.edu.ar

    2009-07-01

    In this paper we discuss the energy situation in Argentina and indicates possibilities for the implementation of cogeneration projects in the industrial sector, which would include energy generated by a centralized system, without additional consumption of primary resources. We discuss the physical potential of cogeneration and regulatory barriers that do not assist in its implementation. Mentioned government measures on rational and efficient use of energy.

  12. Thermal Efficiency of Cogeneration Units with Multi-Stage Reheating for Russian Municipal Heating Systems

    Directory of Open Access Journals (Sweden)

    Evgeny Lisin

    2016-04-01

    Full Text Available This paper explores the layout of an optimum process for supplying heat to Russian municipal heating systems operating in a market environment. We analyze and compare the standard cogeneration unit design with two-stage reheating of service water coming from controlled extraction locations and layouts that employ three in-line reheaters with heat the supply controlled by a rotary diaphragm and qualitative/quantitative methods (so-called “uncontrolled extraction”. Cogeneration unit designs are benchmarked in terms of their thermal efficiency expressed as a fuel consumption rate. The specific fuel consumption rate on electricity production is viewed as a key parameter of thermal efficiency.

  13. Modern fluidized bed combustion in Ostrava-Karvina cogeneration plants

    Energy Technology Data Exchange (ETDEWEB)

    Mazac, V. [Energoprojekt Praha, Ostrava (Czechoslovakia); Novacek, A. [Moravskoslezske teplamy, Ostrava (Czechoslovakia); Volny, J. [Templamy Karvina (Czechoslovakia)

    1995-12-01

    The contemporary situation of our environment claims the sensitive approach to solving effective conversion of energy. Limited supplies of noble fuels and their prices evoke the need to use new combustion technologies of accessible fuels in given region without negative ecological influences. Energoproject participates in the preparation of the two projects in Ostrava-Karvin{acute a} black coal field in Czech Republic. The most effective usage of fuel energy is the combined of electricity and heat. If this physical principle is supported by a pressurized fluidized bed combustion (PFBC) one obtains a high electricity/heat ratio integrated steam-gas cycle on the basis of solid fuel. Cogeneration plant Toebovice is the dominant source (600 MW{sub th}) of Ostrava district heating system (1100 MW{sub th}). The high utilization of the installed output and utilization of the clean, compact and efficient of the PFBC technology is the principal but not the single reason for the selection of the Toebovice power plant as the first cogeneration plant for installation of the PFBC in Czech Republic. The boiler will burn black coal from the neighboring coal basin.

  14. Power and cogeneration technology environomic performance typification in the context of CO2 abatement part II: Combined heat and power cogeneration

    International Nuclear Information System (INIS)

    Li, Hongtao; Marechal, Francois; Favrat, Daniel

    2010-01-01

    This is the second of a series of two articles, dealing with a new approach of environomic (thermodynamic, economic and environmental) performance 'Typification' and optimization of power generation technologies. This part treats specifically of combined heat and power (CHP) cogeneration technologies in the context of CO 2 abatement and provides a methodology for a flexible and fast project based CHP system design evaluation. One of the aspect of the approach is the post-optimization integration of the operating and capital costs, in order to effectively deal with the uncertainty of the project specific design and operation conditions (fuel, electricity and heat selling prices, project financial conditions such as investment amortization periods, annual operating hours, etc). In addition the approach also allows to efficiently evaluate the influence of the external cost such as the CO 2 tax level under a tax scheme or the CO 2 permit price in the emission trading market. Application examples, including gas turbine and combined cycles are treated with the proposed methodology, by using superstructure based generic environomic models and a multi-objective optimizer.

  15. Assessing the economic feasibility of flexible integrated gasification Co-generation facilities

    NARCIS (Netherlands)

    Meerman, J.C.; Ramírez Ramírez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2011-01-01

    This paper evaluated the economic effects of introducing flexibility to state-of-the-art integrated gasification co-generation (IGCG) facilities equipped with CO2 capture. In a previous paper the technical and energetic performances of these flexible IG-CG facilities were evaluated. This paper

  16. Study of technical and economic feasibility of a cogeneration system in the tertiary sector; Estudo de viabilidade tecnica-economica de um sistema de cogeracao no setor terciario

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Rodolffo Aquino de; Rocha, Carlos Roberto; Bortoni, Edson da Costa [Universidade Federal de Itajuba (EXCEN/UNIFEI), MG (Brazil). Centro de Excelencia em Eficiencia Energetica

    2008-07-01

    This study aims to examine the technical feasibility and financial cost for a cogeneration system in a company in the tertiary sector. For this, was studied the electromechanical and thermal characteristics of a shopping center, as well as the technologies associated with the proposed cogeneration system. From the modeling of electric and thermal loads it was determined the system of operation for the system and the possible surplus energy generated. For the analysis of economic viability compare operating costs without cogeneration and with the alternative of cogeneration chosen. Among the calculations are the costs of investment and operation of the system. Was encountered the attractiveness of a cogeneration system, which uses natural gas as fuel for alternative engines and, in turn, reject heat to the absorption chillers. The idealized cogeneration system was also evaluated positively with a view to qualification required for participation in policies to encourage the rational use of energy resources. (author)

  17. Comparative Study of Electric Energy Storages and Thermal Energy Auxiliaries for Improving Wind Power Integration in the Cogeneration System

    Directory of Open Access Journals (Sweden)

    Yanjuan Yu

    2018-01-01

    Full Text Available In regards to the cogeneration system in Northern China, mainly supported by combined heat and power (CHP plants, it usually offers limited operation flexibility due to the joint production of electric and thermal power. For that large-scale wind farms included in the cogeneration system, a large amount of wind energy may have to be wasted. To solve this issue, the utilization of the electric energy storages and the thermal energy auxiliaries are recommended, including pumped hydro storage (PHS, compressed air energy storage (CAES, hydrogen-based energy storage (HES, heat storage (HS, electric boilers (EB, and heat pumps (HP. This paper proposes a general evaluation method to compare the performance of these six different approaches for promoting wind power integration. In consideration of saving coal consumption, reducing CO2 emissions, and increasing investment cost, the comprehensive benefit is defined as the evaluation index. Specifically, a wind-thermal conflicting expression (WTCE is put forward to simplify the formulation of the comprehensive benefit. Further, according to the cogeneration system of the West Inner Mongolia (WIM power grid, a test system is modelled to perform the comparison of the six different approaches. The results show that introducing the electric energy storages and the thermal energy auxiliaries can both contribute to facilitating wind power integration, and the HP can provide the best comprehensive benefit.

  18. Optimal technology choice and investment timing: A stochastic model of industrial cogeneration vs. heat-only production

    International Nuclear Information System (INIS)

    Wickart, Marcel; Madlener, Reinhard

    2007-01-01

    In this paper we develop an economic model that explains the decision-making problem under uncertainty of an industrial firm that wants to invest in a process technology. More specifically, the decision is between making an irreversible investment in a combined heat-and-power production (cogeneration) system, or to invest in a conventional heat-only generation system (steam boiler) and to purchase all electricity from the grid. In our model we include the main economic and technical variables of the investment decision process. We also account for the risk and uncertainty inherent in volatile energy prices that can greatly affect the valuation of the investment project. The dynamic stochastic model presented allows us to simultaneously determine the optimal technology choice and investment timing. We apply the theoretical model and illustrate our main findings with a numerical example that is based on realistic cost values for industrial oil- or gas-fired cogeneration and heat-only generation in Switzerland. We also briefly discuss expected effects of a CO 2 tax on the investment decision

  19. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators

    International Nuclear Information System (INIS)

    Chicco, Gianfranco; Mancarella, Pierluigi

    2008-01-01

    The diffusion of cogeneration and trigeneration plants as local generation sources could bring significant energy saving and emission reduction of various types of pollutants with respect to the separate production of electricity, heat and cooling power. The advantages in terms of primary energy saving are well established. However, the potential of combined heat and power (CHP) and combined cooling heat and power (CCHP) systems for reducing the emission of hazardous greenhouse gases (GHG) needs to be further investigated. This paper presents and discusses a novel approach, based upon an original indicator called trigeneration CO 2 emission reduction (TCO 2 ER), to assess the emission reduction of CO 2 and other GHGs from CHP and CCHP systems with respect to the separate production. The indicator is defined in function of the performance characteristics of the CHP and CCHP systems, represented with black-box models, and of the GHG emission characteristics from conventional sources. The effectiveness of the proposed approach is shown in the companion paper (Part II: Analysis techniques and application cases) with application to various cogeneration and trigeneration solutions

  20. Alternatives to electrical cogeneration: The direct application of steam engines

    International Nuclear Information System (INIS)

    Phillips, W.C.

    1993-01-01

    Although small to medium sized industrial facilities are aware of electrical cogeneration, often they are too small for it to be economically justifiable. The direct application of steam turbine power to equipment formerly powered by electric motors, can allow them to use steam capacity to reduce electrical demand and consumption, bypassing cogeneration. Cogeneration converts the heat energy of steam into circular mechanical motion and then converts the circular mechanical motion into electricity. Each conversion entails a loss of energy due to friction and other conversion losses. A substantial amount of the generated electricity is then converted back into circular motion with electric motors, again incurring energy losses. Directly applying the mechanical motion of turbines eliminates both the motion-to-electricity (generator) and the electricity-to-motion (motor) conversion losses. Excess steam capacity during the summer is not unusual for facilities that use steam to provide winter heating. Similarly, most of these facilities experience a large electrical demand peak during the cooling season due to the electricity needed to operate centrifugal chillers. Steam capacity via a turbine to power the chillers can allow the boilers to operate at a higher loading while reducing electrical consumption and demand precisely those periods when demand reduction is most needed. In facilities where the steam generating capacity is sufficient, air compressors provide an appropriate year-round application for turbine power. This paper is the result of an on-going project by the Energy Division, State of North Carolina, Department of Economic and Community Development, in conjunction with the University of North Carolina at Charlotte. The objective of this project is to educate the operating engineers and managers of small to medium sized manufacturing facilities on the technical application and economic justification of steam turbine power

  1. Morphology-properties relationship on nanocomposite films based on poly(styrene-block-diene-block-styrene copolymers and silver nanoparticles

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.

  2. Nuclear hydrogen - cogeneration and the transitional pathway to sustainable development

    International Nuclear Information System (INIS)

    Gurbin, G.M.; Talbot, K.H.

    1994-01-01

    The development of the next phase of the Bruce Energy Centre, in cooperation with Ontario Hydro, will see the introduction of a series of integrated energy processes whose end products will have environmental value added. Cogenerated nuclear steam and electricity were selected on the basis of economics, sustainability and carbon emissions. The introduction of hydrogen to combine with CO 2 from alcohol fermentation provided synthetic methanol as a feedstock to refine into ether for the rapidly expanding gasoline fuel additive market, large volumes of O 2 will enhance combustion processes and improve closed-looping of the systems. In the implementation of the commercial development, the first stage will require simultaneous electrolysis, methanol synthesis and additional fermentation capacity. Electricity and steam pricing will be key to viability and an 80-MV 'backup' fossil-fuelled, back pressure turbine cogeneration facility could be introduced in a compatible matter. Successful demonstration of transitional and integrating elements necessary to achieve sustainable development can serve as a model for electric utilities throughout the world. 11 ref., 1 tab., 4 figs

  3. Gas-fired cogeneration and cooling: new study identifies major benefits

    International Nuclear Information System (INIS)

    Watt, G.

    2001-01-01

    A research paper- 'Gas Fired Cogeneration and Cooling: Markets, Technologies and Greenhouse Gas Savings'- launched at last month's Australian Gas Association 2001 Convention, reveals that gas cooling could replace 25 PJ of electricity summer demand, and reduce greenhouse gas emissions by 58 percent compared with electrical technologies. Commissioned by the AGA's Gas Cooling Task Force and supported by the Sustainable Energy Authority of Victoria and the Sustainable Energy Development Authority of NSW, the study examined market opportunities and environmental outcomes for the combined gas cogeneration and cooling technologies. It shows that the penetration of gas into the distributed cooling and power generation market is being driven by the following developments: the uncertainty and volatility of electricity costs, particularly during summer, electricity market structural changes which encourage distributed generation, high and uncertain world oil prices, the relative stability of Australian gas prices, the encouragement of demand and energy management strategies by regulators, greenhouse gas emission reduction policies, indoor air quality issues, product and productivity improvements in industry and CFC phase-out opportunities

  4. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  5. Implementing of the multi-objective particle swarm optimizer and fuzzy decision-maker in exergetic, exergoeconomic and environmental optimization of a benchmark cogeneration system

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Babaie, Meisam; Farmani, Mohammad Reza

    2011-01-01

    Multi-objective optimization for design of a benchmark cogeneration system namely as the CGAM cogeneration system is performed. In optimization approach, Exergetic, Exergoeconomic and Environmental objectives are considered, simultaneously. In this regard, the set of Pareto optimal solutions known as the Pareto frontier is obtained using the MOPSO (multi-objective particle swarm optimizer). The exergetic efficiency as an exergetic objective is maximized while the unit cost of the system product and the cost of the environmental impact respectively as exergoeconomic and environmental objectives are minimized. Economic model which is utilized in the exergoeconomic analysis is built based on both simple model (used in original researches of the CGAM system) and the comprehensive modeling namely as TTR (total revenue requirement) method (used in sophisticated exergoeconomic analysis). Finally, a final optimal solution from optimal set of the Pareto frontier is selected using a fuzzy decision-making process based on the Bellman-Zadeh approach and results are compared with corresponding results obtained in a traditional decision-making process. Further, results are compared with the corresponding performance of the base case CGAM system and optimal designs of previous works and discussed. -- Highlights: → A multi-objective optimization approach has been implemented in optimization of a benchmark cogeneration system. → Objective functions based on the environmental impact evaluation, thermodynamic and economic analysis are obtained and optimized. → Particle swarm optimizer implemented and its robustness is compared with NSGA-II. → A final optimal configuration is found using various decision-making approaches. → Results compared with previous works in the field.

  6. Development of a Robust, Highly Efficient Oxygen-Carbon Monoxide Cogeneration System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This small business innovation research is intended to develop a long-life, highly efficient O2-CO cogeneration system to support NASA's endeavors to pursue...

  7. Nuclear Co-generation: The Analysis of Technical Capabilities and Cost Estimates

    Directory of Open Access Journals (Sweden)

    Andrzej Reński

    2016-09-01

    Full Text Available This paper presents a concept of the parallel connection of a nuclear power plant fitted to provide heat for district heating application, with the CHP and heat plants existing in the supply region, in this case with the heating systems of Wejherowo and Gdynia. Presented variant proposes to add heat to a nuclear power plant’s total output by supplying heat exchangers with the steam from bleeders of low pressure (LP turbine stage and from the crossover pipe between its high pressure (HP and intermediate pressure (IP stages. A detailed diagram of the EPR nuclear turbine system adapted to supply district heat is also presented. Also determined are the formulas for: electric power output of a nuclear CHP plant; electric power generated strictly in cogeneration, and the decrease in the electric power and energy resulting from the operation in cogeneration mode. Finally, the profitability (competitiveness criteria for a nuclear power plant adapted to supply district heat in a selected heat supply region were proposed.

  8. INCOGEN pre-feasibility study. Nuclear cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Van Heek, A.I.; De Haas, J.B.M.; Hogenbirk, A.; Klippel, H.T.; Kuijper, J.C.; Schram, R. [Netherlands Energy Research Foundation ECN, Petten (Netherlands); Hoogenboom, J.E.; Valko, J. [Interfaculty Reactor Institute IRI, Delft (Netherlands); Kanij, J.B.W.; Eendebak, B.T.; De Groot, P.C.; De Kler, R.C.F.; Stempniewicz, M.M. [KEMA, Arnhem (Netherlands); Van Dijk, A.B.; Bredman, B.; Van Essen, D.; Holtz, E.; Op `t Veld, R.; Tjemmes, J.G. [Stork Nucon, Amsterdam (Netherlands); Crommelin, G.A.K.; Crommelin-de Jonge, M.T. [eds.] [ROMAWA, Voorschoten (Netherlands)

    1997-09-01

    The Netherlands Programme to Intensify Nuclear Competence (PINK, abbreviated in Dutch) supported the technical and economical evaluation of a direct cycle High Temperature Reactor (HTR) installation for combined heat and power generation. This helium cooled, graphite moderated HTR based on the German HTR-M, is named INCOGEN (Inherently safe Nuclear COGENeration). The INCOGEN reference is a 40 MW HTR design by the US company Longmark Power International (LPI). The energy conversion system comprises a single-shaft helium turbine-compressor (2.3-1.0 MPa) directly coupled with a 16.5 MW generator, a recuperator and low-temperature (150C to 40C) heat exchangers (23 MW). Spherical fuel elements (60 mm diameter) will be added little by little, which keeps the core only marginally critical. Void core volume can accommodate added fuel for several years until defuelling. Analyses of failure scenarios (loss of coolant accident or LOCA, loss of flow accident or LOFA, anticipated transient without scram or ATWS) show no excess of maximum acceptable fuel temperature of 1600C. Scoping analyses indicate no severe graphite fires. Transient analyses of the turbine-compressor system indicate adequate control flexibility. Optimization and endurance testing of the helium turbine-compressor is recommended.

  9. A technical analysis for cogeneration systems with potential applications in twelve California industrial plants. [energy saving heat-electricity utility systems

    Science.gov (United States)

    Moretti, V. C.; Davis, H. S.; Slonski, M. L.

    1978-01-01

    In a study sponsored by the State of California Energy Resources Conservation and Development Commission, 12 industrial plants in five utility districts were surveyed to assess the potential applications of the cogeneration of heat and electricity in California industry. Thermodynamic calculations were made for each plant in determining the energy required to meet the existing electrical and steam demands. The present systems were then compared to conceptual cogeneration systems specified for each plant. Overall energy savings were determined for the cogeneration applications. Steam and gas turbine topping cycle systems were considered as well as bottoming cycle systems. Types of industries studied were: pulp and paper, timber, cement, petroleum refining, enhanced oil recovery, foods processing, steel and glass

  10. Investigation on an innovative cascading cycle for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Jiang, Long; Lu, Huitong; Wang, Ruzhu; Wang, Liwei; Gong, Lixia; Lu, Yiji; Roskilly, Anthony Paul

    2017-01-01

    Highlights: • A novel cascading cycle for power and refrigeration cogeneration is proposed and investigated. • Pumpless ORC and sorption refrigeration cycle act as the first and second stage. • The highest power and refrigeration output are able to reach 232 W and 4.94 kW, respectively. • The exergy efficiency of heat utilization ranges from 30.1% to 41.8%. - Abstract: In order to further realize efficient utilization of low grade heat, an innovative cascading cycle for power and refrigeration cogeneration is proposed. Pumpless Organic Rankine Cycle (ORC) acts as the first stage, and the refrigerant R245fa is selected as the working fluid. Sorption refrigeration cycle serves as the second stage in which silica-gel/LiCl composite sorbent is developed for the improved sorption characteristic. The concerning experimental system is established, and different hot water inlet temperatures from 75 °C to 95 °C are adopted to investigate the cogeneration performance. It is indicated that the highest power and refrigeration output are able to reach 232 W and 4.94 kW, respectively under the condition of 95 °C hot water inlet temperature, 25 °C cooling water temperature and 10 °C chilled water outlet temperature. For different working conditions, the total energy and exergy efficiency of the cascading system range from 0.236 to 0.277 and 0.101 to 0.132, respectively. For cascading system the exergy efficiency of heat utilization ranges from 30.1% to 41.8%, which is 144% and 60% higher than that of pumpless ORC and sorption chiller when the hot water inlet temperature is 95 °C.

  11. Regional hospital improves efficiency with co-generation retrofit.

    Science.gov (United States)

    Knutson, D; Anderson, L

    1999-11-01

    Feasibility analysis of the co-generation retrofit of the Red Deer Regional Hospital pointed to a reasonable payback of capital cost and increased efficiency in operation of the facility. Budget restrictions nearly stopped the project from proceeding. Innovative construction procedures proposed by the Facility Management Group, in particular, Mr Keith Metcalfe, Director of Maintenance, allowed a worthwhile project to reach successful completion. We feel that this model can perhaps be used by similar facilities in the future to achieve their energy efficiency goals.

  12. Effect of cycle coupling-configuration on energy cascade utilization for a new power and cooling cogeneration cycle

    International Nuclear Information System (INIS)

    Jing, Xuye; Zheng, Danxing

    2014-01-01

    Highlights: • A new power and cooling cogeneration cycle was proposed. • The thermophysical properties and the performance of the new cycle were calculated. • Different cycle coupling-configurations were analyzed. • The energy efficiency boosting mechanism of the new cycle was elucidated. - Abstract: To recover mid-low grade heat, a new power/cooling cogeneration cycle was proposed by combining the Kalina cycle and the double-effect ammonia–water absorption refrigeration (DAAR) cycle together, and the equivalent heat-to-power and exergy efficiencies of the cogeneration cycle reached 41.18% and 58.00%, respectively. To determine the effect of cycle coupling-configuration on energy cascade utilization for the new cycle, the cycle coupling-configuration of the Kalina and DAAR cycles were first analyzed, after which the cycle coupling-configuration of the new cycle was analyzed. Analysis results showed that the cycle coupling-configuration of the new cycle enhanced the energy cascade utilization. Furthermore, the energy efficiency boosting mechanism of the new cycle was elucidated

  13. Strategy for optimal operation of a biomass-fired cogeneration power plant

    International Nuclear Information System (INIS)

    Prasertsan, S.; Krukanont, P.; Nigamsritragul, P.; Kirirat, P.

    2001-01-01

    Biomass-fired cogeneration not only is an environmentally friendly energy production, but also possesses high energy conversion efficiency. Generally, the wood product industry requires both heat and electricity. Combined heat and power generation (cogeneration) using wood residue has a three-fold benefit: waste minimization, reduction of an energy-related production cost and additional income from selling the excess electricity to the utility. In reality, the process heat demand fluctuates according to the production activities in the factory. The fluctuation of process heat demand affects the cogeneration efficiency and the electricity output and, consequently, the financial return, since the prices of heat and electricity are different. A study by computer simulation to establish a guideline for optimum operation of a process heat fluctuating cogeneration power plant is presented. The power plant was designed for a sawmill and an adjacent plywood factory using wood wastes from these two processes. The maximum boiler thermal load is 81.9 MW while the electricity output is in the range 19-24 MW and the process heat 10-30 MW. Two modes of operation were studied, namely the full (boiler) load and the partial (boiler) load. In the full load operation, the power plant is operated at a maximum boiler thermal load, while the extracted steam is varied to meet the steam demand of the wood-drying kilns and the plywood production. The partial load operation was designed for the partially fuelled boiler to provide sufficient steam for the process and to generate electricity at a desired capacity ranging from the firmed contract of 19 MW to the turbine maximum capacity of 24 MW. It was found that the steam for process heat has an allowable extracting range, which is limited by the low pressure feed water heater. The optimum operation for both full and partial load occurs at the lower limit of the extracting steam. A guideline for optimum operation at various combinations of

  14. Energy and cost savings results for advanced technology systems from the Cogeneration Technology Alternatives Study /CTAS/

    Science.gov (United States)

    Sagerman, G. D.; Barna, G. J.; Burns, R. K.

    1979-01-01

    The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.

  15. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    Science.gov (United States)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  16. Hardware realization of chaos based block cipher for image encryption

    KAUST Repository

    Barakat, Mohamed L.; Radwan, Ahmed G.; Salama, Khaled N.

    2011-01-01

    Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.

  17. Hardware realization of chaos based block cipher for image encryption

    KAUST Repository

    Barakat, Mohamed L.

    2011-12-01

    Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.

  18. Modelling the adoption of industrial cogeneration in Japan using manufacturing plant survey data

    International Nuclear Information System (INIS)

    Bonilla, David; Akisawa, Atsushi; Kashiwagi, Takao

    2003-01-01

    Electric power deregulation in Japan opens opportunity for further penetration of on-site generation (cogeneration) otherwise known as distributed generation. In the paper the authors present a survey on Japanese industrial plants to fill existing gaps for the assessment of modern cogeneration (combined heat and power, CHP). The objective of the paper is to empirically examine CHP systems based on cross-sectional binary models; second to review diffusion trends of CHP by system vintage during the 1980-2000 period in the manufacturing sector. The econometric results point that the probabilities of embracing this technology increase, in declining importance, with on-site power consumption, and steam demand, operational hours as well as with payback period, purchased power. For example the survey shows that the CHP is used for the purpose of exporting power rather than meeting the plant's own consumption. Some of our results are in line with those of Dismukes and Kleit (Resource Energy Econ. 21 (1999) 153) as well with Rose and Macdonald (Energy J. 12(12) (1991) 47). We also find that a unit increase in satisfaction with CHP will lead to a 54% in CHP capacity. We find significant evidence on the cost effectiveness of CHP under conservative assumptions. Regarding the influence of satisfaction and performance indicators for the several plants, the survey threw some unexpected evidence on the nature of CHP

  19. The Results of Feasibility Study of Co-generation NPP With Innovative VK-300 Simplified Boiling Water Reactor

    International Nuclear Information System (INIS)

    Kuznetsov, Yury N.

    2006-01-01

    The co-generation nuclear power plant (CNPP) producing electricity and district heating heat is planned to be constructed in Archangelsk Region of Russia. Following the 'Letter of Intent' signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, and the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal/h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production. (authors)

  20. The results of feasibility study of co-generation NPP with innovative VK-300 simplified boiling water reactor

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. N.; Gabaraev, B. A.

    2004-01-01

    The co-generation nuclear power plant (CNPP) producing electricity and district-heating heat is planned to be constructed in Archangelsk Region of Russia. Following the Letter of Intent signed by Governor of Archangelsk region and by Minister of the Russian Federation for atomic energy the feasibility study of the Project has been done. The NPP will be based on the four co-generation nuclear power units with the Russian VK-300 SBWR. The innovative passive VK-300 reactor facility has been designed on the basis of well-established nuclear technologies, proven major components, the operating experience of the prototype VK-50 reactor in RIAR, Dimitrovgrad, and the experience in designing such reactors as SBWR (GE) and SWR-1000 (Siemens). The CNPP's total power is planned to be 1000 MW(e) and district-heating heat production capacity 1600 Gcal /h. A detailed description of the results of the feasibility study is presented in the report. The results of the feasibility study have shown that the Archangelsk CGNP is feasible in terms of engineering, economics and production.(author)

  1. Devising an energy saving technology for a biogas plant as a part of the cogeneration system

    OpenAIRE

    Чайковська, Євгенія Євстафіївна

    2015-01-01

    The paper suggests an operation technology for a biogas plant that allows setting a heating medium temperature at the inlet to the heat exchanger built in a digester and measuring the heating medium temperature at the outlet. An integrated system for assessing the varied temperature of digestion (that is based on mathematical and logical modeling within the cogeneration system) secures a continuous gas outlet, a timely unloading of fermented mash and loading of a fresh matter. For this purpos...

  2. ANRE-demonstration project: cogeneration in the college of West-Vlaanderen, Dep. Provincial Industrial college, Kortrijk; ANRE-demonstratieproject: WKK in Hogeschool West-Vlaanderen, dept. Provinciale Industrieele Hogeschool, Kortrijk

    Energy Technology Data Exchange (ETDEWEB)

    Desmedt, J.

    1997-09-01

    As part of the Royal Decision of 10/02/1983, in support of Rational Use of Energy (RUE)-demonstration projects, the Flemish community has ascribed a subsidy (5 MBEF) to the Hogeschool West-Vlaanderen to the purchase of a cogeneration-installation with a gas engine. The cogeneration installation works parallel with the net: additional power is bought from the grid. The heat of the installation is used in the central heating system. Additional heat is created in natural gas boilers. The Flemish Institute for Technological Research (VITO) made an evaluation of this demonstration project based on continuous measurement by order of the Department Natural Resources and Energy. The technical performances of the cogeneration installation, the achieved savings on primary energy, the diminution of CO2-emission and the profitability have been analyzed. During the registration period the installation has produced 346 MWH of electricity and 644 MWh of heat. There was taken 624 MWh of electricity from the grid. The natural gas boilers in the fireplace have produced 2.183 MWh of heat. The cogeneration installation was only in action during the normal school hours. The average electric capacity was 1.2.17 kW and the thermal capacity 404 kW. The installation reached a primary energy saving of 1.313 GJ and a CO2-emission reduction of 131 ton during the registration period. The annual net profit is 1.30 MBEF. The total investment costs is 14 MBEF of which 10 MBEF for the cogeneration installation. If a net profit of 1.30 MBEF is realized every year, the costs on the project will be recovered in 7.7 years.

  3. Technical feasibility and economics of retrofitting an existing nuclear power plant to cogeneration for hot water district heating

    International Nuclear Information System (INIS)

    Kolb, J.O.; Bauman, H.F.; Jones, P.D.

    1984-04-01

    This report gives the results of a study of the hypothetical conversion of the Prairie Island Nuclear Plant of the Northern States Power Company to cogeneration operation to supply a future hot water district heating system load in the Twin Cities of Minneapolis-St. Paul. The conceptual design of the nuclear turbine retrofitted for cogeneration and of a hot water transmission system has been performed, and the capital investment and annual owning and operating costs have been estimated for thermal energy capacities of 600 and 1200 MW(t). Unit costs of thermal energy (in mid-1982 dollars/million Btu) have been estimated for cogenerated hot water at the plant gate and also for the most economic transmission system from Prairie Island to the Twin Cities. The economic results from the analysis of the Prairie Island plant and transmission route have been generalized for other transmission distances in other locations

  4. Firing with wood chips in heating and cogeneration plants

    International Nuclear Information System (INIS)

    Kofman, P.D.

    1992-01-01

    The document was produced for use as detailed teaching material aimed at spreading information on the use of wood chips as fuel for heating and cogeneration plants. It includes information and articles on wood fuels generally, combustion values, chopping machines, suppliers, occupational health hazards connected with the handling of wood chips, measuring amounts, the selection of types, prices, ash, environmental aspects and information on the establishment of a wood-chip fired district heating plant. (AB)

  5. Performance analysis of a co-generation system using solar energy and SOFC technology

    International Nuclear Information System (INIS)

    Akikur, R.K.; Saidur, R.; Ping, H.W.; Ullah, K.R.

    2014-01-01

    Highlights: • A new concept of a cogeneration system is proposed and investigated. • The system comprises solar collector, PV, SOFC and heat exchanger. • 83.6% Power and heat generation efficiency has been found at fuel cell mode. • 85.1% Efficiency of SOSE has been found at H2 production mode. • The heat to power ratio of SOFC mode has been found about 0.917. - Abstract: Due to the increasing future energy demands and global warming, the renewable alternative energy sources and the efficient power systems have been getting importance over the last few decades. Among the renewable energy technologies, the solar energy coupling with fuel cell technology will be the promising possibilities for the future green energy solutions. Fuel cell cogeneration is an auspicious technology that can potentially reduce the energy consumption and environmental impact associated with serving building electrical and thermal demands. In this study, performance assessment of a co-generation system is presented to deliver electrical and thermal energy using the solar energy and the reversible solid oxide fuel cell. A mathematical model of the co-generation system is developed. To illustrate the performance, the system is considered in three operation modes: a solar-solid oxide fuel cell (SOFC) mode, which is low solar radiation time when the solar photovoltaic (PV) and SOFC are used for electric and heat load supply; a solar-solid oxide steam electrolyzer (SOSE) mode, which is high solar radiation time when PV is used for power supply to the electrical load and to the steam electrolyzer to generate hydrogen (H 2 ); and a SOFC mode, which is the power and heat generation mode of reversible SOFC using the storage H 2 at night time. Also the effects of solar radiation on the system performances and the effects of temperature on RSOFC are analyzed. In this study, 100 kW electric loads are considered and analyzed for the power and heat generation in those three modes to evaluate

  6. Optimisation of environmental gas cleaning routes for solid wastes cogeneration systems. Part II - Analysis of waste incineration combined gas/steam cycle

    International Nuclear Information System (INIS)

    Holanda, Marcelo R.; Perrella Balestieri, Jose A.

    2008-01-01

    In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I

  7. Tariffs for natural gas, heat, electricity and cogeneration in 1998

    International Nuclear Information System (INIS)

    1998-03-01

    The rate of return of the combined generation of heat and power is not only determined by the capital expenditures and the costs of maintenance, control, management and insurance, but also by the fuel costs of the cogeneration installation and the avoided fuel costs in case of separated heat production, the avoided/saved costs of electricity purchase, and the compensation for possible supply to the public grid (sellback). This brochure aims at providing information about the structure of natural gas and electricity tariffs to be able to determine the three last-mentioned expenditures. First, attention is paid to the tariffs of natural gas for large-scale consumers, the tariff for cogeneration and horticulture, and natural gas supply contracts. Next, the structure of the electricity tariffs is dealt with in detail, discussing the accounting system within the electric power sector, the tariffs and compensations for large-scale consumers and specific large-scale consumers, electricity sellback tariffs, and compensations for reserve capacity. Also attention will be paid to tariffs for electricity transport. Finally, several taxes, excises and levies that have a direct or indirect impact on natural gas tariffs, are discussed. 9 refs

  8. Techno-Economic Assessment of Redundancy Systems for a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Majid Mohd Amin Abd

    2014-07-01

    Full Text Available The use of distributed power generation has advantage as well as disadvantage. One of the disadvantages is that the plant requires a dependable redundancy system to provide back up of power during failure of its power generation equipment. This paper presents a study on techno-economic assessment of redundancy systems for a cogeneration plant. Three redundancy systems were investigated; using public utility, generator set and gas turbine as back up during failures. Results from the analysis indicate that using public utility provides technical as well as economic advantages in comparison to using generator set or turbine as back up. However, the economic advantage of the public utility depends on the frequency of failures the plant will experience as well on the maximum demand charge. From the break even analysis of the understudied plant, if the number of failures exceeds 3 failures per year for the case of maximum demand charge of RM56.80, it is more economical to install a generator set as redundancy. The study will be useful for the co-generator operators to evaluate the feasibility of redundancy systems.

  9. Performance assessment of cogeneration and trigeneration systems for small scale applications

    International Nuclear Information System (INIS)

    Angrisani, Giovanni; Akisawa, Atsushi; Marrasso, Elisa; Roselli, Carlo; Sasso, Maurizio

    2016-01-01

    Highlights: • Indices and methods to assess the performance of polygeneration systems. • Index to evaluate the economic feasibility of trigeneration system is introduced. • Thermo-economic analysis is performed considering three commercial cogenerators. • Sensitivity analysis varying reference electric efficiency for European Countries. • Sensitivity analysis varying environmental and economic parameters. - Abstract: Cogeneration and trigeneration systems can contribute to the reduction of primary energy consumption and greenhouse gas emissions in residential and tertiary sectors, by reducing fossil fuels demand and grid losses with respect to conventional systems. To evaluate the performance of these systems, several indices and assessment methodologies can be used, due to the high complexity of such systems, which can consist of several energy conversion devices and can perform bidirectional interactions with external electric and thermal grids. In this paper, a review of the available indices and methodologies to assess the performances of polygeneration systems is provided. An index (TSS_t_r_i) aimed to assess the economic feasibility of a trigeneration system is also introduced and discussed. This activity started in the framework of the International Energy Agency Annex 54 project (“Integration of Micro-Generation and Related Energy Technologies in Buildings”), where research groups shared their expertise about methods applied in each Country to evaluate the performance of polygeneration systems. It was concluded that a thermo-economic analysis comparing the performance of a polygeneration system with those of a reference benchmark scenario, is a very suitable assessment method. Some of the reviewed methodologies are then applied to small scale commercial cogenerators. The sensitivity analysis is performed considering different reference average values of electric efficiency, unitary natural gas and electricity prices, and emission factors for

  10. Distributed cogeneration can have a very meaningful strategic energy conservation outcome for islands

    International Nuclear Information System (INIS)

    Fielden, D.; Jacques, J.K.

    1997-01-01

    Since the first oil shock in 1973, many small islands have not assessed the strategic implications of dependence on oil imports, and have not opted to interfere in their own energy markets. This paper considers the notion of different levels of energy service delivery (by concentrating on local suitability), based on research relating to the Channel Island of Guernsey, and shows that significant energy savings are available. For this energy service delivery approach to be put into effect this paper suggests that a move away from the present laissez-faire supply-based stance will be necessary. Distributed cogeneration is considered in a case situation (using techniques that no small island currently employs) and shows strategic energy conservation solutions to questions no one has yet seriously asked. (author)

  11. Preliminary study of nuclear power cogeneration system using gas turbine process

    International Nuclear Information System (INIS)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya.

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author)

  12. Preliminary study of nuclear power cogeneration system using gas turbine process

    Energy Technology Data Exchange (ETDEWEB)

    Fumizawa, Motoo; Inaba, Yoshitomo; Hishida, Makoto [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ogawa, Masuro; Ogata, Kann; Yamada, Seiya

    1995-12-01

    The Nuclear power generation plant (NPGP) releases smaller amount of carbon dioxide than the fossil power plant for the generation of the unit electrical power. Thus, the NPGP is expected to contribute resolving the ecological problems. It is important to investigate the nuclear power cogeneration system using gas turbine process from the view point that it is better to produce electricity in high thermal efficiency from the high temperature energy. We carried out, in the current preliminary study, the survey and selection of the candidate cycles, then conducted the evaluation of cycle efficiency, the selection of R and D items to be solved for the decision of the optimum cycle. Following this, we evaluated nuclear heat application for intermediate and low temperature level released from gas turbine process and overall efficiency of cogeneration system. As a result, it was clarified that overall efficiency of the direct regenerative cycle was the highest in low temperature region below 200degC, and that of the direct regenerative inter cooling cycle was the highest in middle and high temperature region. (author).

  13. Greenhouse gas emission for co-generation installation - reduction and selling

    International Nuclear Information System (INIS)

    Manev, S.; Stankov, N.; Asenov, A.

    2005-01-01

    According to Kyoto protocol countries which have the availability to buy green house gas emissions from other countries could be made by means of realization of investment project. In this article the authors review the necessary scope of work which have to be done in order particular project for co-generation installation to be realized, according the requirement and their own experience in this field

  14. Analysis of energy cogeneration incentive politics to a sodium-chlorine Brazilian chemical plant energy cogeneration; Analise de politicas de incentivo a cogeracao de energia numa planta quimica brasileira de soda-cloro

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, J.B.V.; Borschiver, S. [Universidade Federal do Rio de Janeiro (CT/UFRJ), RJ (Brazil). Centro de Tecnologia], E-mail: suzana@eq.ufrj.br; Szklo, A.S. [Universidade Federal do Rio de Janeiro (PPE/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Planejamento Energetico], E-mail: szklo@ppe.ufrj.br; Andrade, M.H.S. [Braskem S.A., Rio de Janeiro, RJ (Brazil)], E-mail: marcio.andrade@braskem.com.br

    2010-07-01

    This paper evaluates, from a pont of view of investor and through the use of a simulator, the impact of incentive politics to the cogeneration, from the sugar cane bagasse, at a plant for production of sodium-chlorine.

  15. Emission characterization and evaluation of natural gas-fueled cogeneration microturbines and internal combustion engines

    International Nuclear Information System (INIS)

    Canova, Aldo; Chicco, Gianfranco; Genon, Giuseppe; Mancarella, Pierluigi

    2008-01-01

    The increasing diffusion of small-scale energy systems within the distributed generation (DG) paradigm is raising the need for studying the environmental impact due to the different DG solutions in order to assess their sustainability. Addressing the environmental impact calls for building specific models for studying both local and global emissions. In this framework, the adoption of natural gas-fueled DG cogeneration technologies may provide, as a consequence of cogeneration enhanced overall energy efficiency and of natural gas relatively low carbon content, a significant reduction of global impact in terms of CO 2 emissions with respect to the separate production of electricity and heat. However, a comprehensive evaluation of the DG alternatives should take into account as well the impact due to the presence of plants spread over the territory that could increase the local pollution, in particular due to CO and NO x , and thus could worsen the local air quality. This paper provides an overview on the characterization of the emissions from small-scale natural gas-fueled cogeneration systems, with specific reference to the DG technologies nowadays most available in the market, namely, microturbines and internal combustion engines. The corresponding local and global environmental impacts are evaluated by using the emission balance approach. A numerical case study with two representative machines highlights their different emission characteristics, also considering the partial-load emission performance

  16. Dynamic performance assessment of a residential building-integrated cogeneration system under different boundary conditions. Part II: Environmental and economic analyses

    International Nuclear Information System (INIS)

    Rosato, Antonio; Sibilio, Sergio; Scorpio, Michelangelo

    2014-01-01

    Highlights: • A building-integrated micro-cogeneration system was dynamically simulated. • Simulation data were analyzed from both environmental and economic point of views. • The proposed system was compared with a conventional supply system. • The proposed system reduces the environmental impact under heat-led operation. • The proposed system reduces the operating costs whatever the control logic is. - Abstract: This work examines the performance of a residential building-integrated micro-cogeneration system during the winter by means of a whole building simulation software. The cogeneration unit was coupled with a multi-family house composed of three floors, compliant with the transmittance values of both walls and windows suggested by the Italian Law; a stratified combined tank for both heating purposes and domestic hot water production was also used for storing heat. Simulations were performed considering the transient nature of the building and occupant driven loads as well as the part-load characteristics of the cogeneration unit. This system was described in detail and analyzed from an energy point of view in the companion paper. In this paper the simulation results were evaluated in terms of both carbon dioxide equivalent emissions and operating costs; detailed analyses were performed in order to estimate the influence of the most significant boundary conditions on both environmental and economic performance of the proposed system: in particular, three volumes of the hot water storage, four climatic zones corresponding to four Italian cities, two electric demand profiles, as well as two control strategies micro-cogeneration unit were considered. The assessment of environmental impact was performed by using the standard emission factors approach, neglecting the effects of local pollutants. The operating costs due to both natural gas and electric energy consumption were evaluated in detail, whereas both the capital and maintenance costs were

  17. Long-term optimization of cogeneration systems in a competitive market environment

    International Nuclear Information System (INIS)

    Thorin, E.; Brand, H.; Weber, C.

    2005-01-01

    A tool for long-term optimization of cogeneration systems is developed that is based on mixed integer linear-programming and Lagrangian relaxation. We use a general approach without heuristics to solve the optimization problem of the unit commitment problem and load dispatch. The possibility to buy and sell electric power at a spot market is considered as well as the possibility to provide secondary reserve. The tool has been tested on a demonstration system based on an existing combined heat-and-power (CHP) system with extraction-condensing steam turbines, gas turbines, and boilers for heat production and district-heating networks. The key feature of the model for obtaining solutions within reasonable times is a suitable division of the whole optimization period into overlapping sub-periods. Using Lagrangian relaxation, the tool can be applied to large CHP systems. For the demonstration model, almost optimal solutions were found. (author)

  18. 'BACO' code: Cogeneration cycles heat balance; El programa BACO (Balance de Ciclos de Cogeneracion)

    Energy Technology Data Exchange (ETDEWEB)

    Huelamo Martinez, E; Conesa Lopez, P; Garcia Kilroy, P [Empresarios Agrupados, A.I.E., Madrid (Spain)

    1993-12-15

    This paper presents a code, developed by Empresarios Agrupados, sponsored by OCIDE, CSE and ENHER, that, with Electrical Utilities as final users, allows to make combined and cogeneration cycles technical-economical studies. (author)

  19. Feed-in tariff and market electricity price comparison. The case of cogeneration units in Croatia

    International Nuclear Information System (INIS)

    Uran, Vedran; Krajcar, Slavko

    2009-01-01

    In August 2007, the Government of the Republic of Croatia instituted a feed-in tariff system, requiring the Croatian Electricity Market Operator (HROTE) to off-take the electricity produced from renewable energy sources or cogeneration units fueled by natural gas. Analysis of the off-take electricity price range, which depends on the net electrical output and electricity market trends, indicates that it is more cost effective for cogeneration units greater than 1 MW to sell their electricity on the exchange market. This was confirmed by developing a mathematical model to calculate the cost-effectiveness ratio of a cogeneration unit. This ratio represents the relation between the profit spread, i.e. the difference between the profit generated from selling the electricity on the exchange market and the profit made from dispatching the electricity to HROTE, as well as the total investment costs. The model can be applied for changes in certain parameters, such as the net electrical output, volatility and spot electricity price. The Monte Carlo method is used to obtain the most probable cost-effectiveness ratio and average future electricity price. Together with these two economic parameters and market price analysis, it is possible to calculate and calibrate an acceptable off-take electricity price. (author)

  20. Innovative coupling of cogeneration units with fire tube boilers: thermo-fluid dynamics of the fire tubes

    Science.gov (United States)

    Cioccolanti, L.; Arteconi, A.; Bartolini, C. M.; Polonara, F.

    2017-11-01

    Nowadays the thermal energy demand in the industrial sector is usually satisfied by means of fire tube boilers while electricity is supplied from the grid. Alternatively cogeneration units could be adopted for thermal and electrical energy self-production, whilst installing boilers only as back-up units. However, even when cogeneration is profitable, it is not widespread because industries are usually unwilling to accept cogeneration plants for reliability and high investment costs issues. In this work a system aimed at overcoming the above mentioned market difficulties is proposed. It consists of an innovative coupling of a combined heat and power unit with a modified fire tube boiler. In particular, a CFD analysis was carried out by the authors in order to address the most critical aspects related with the coupling of the two systems. More precisely, the following aspects were evaluated in detail: (i) pressure losses of the exhausts going from the prime mover to the boiler due to the sudden cross-section area variations; (ii) thermal power recoverable from the exhausts in the tubes of the boiler; (iii) dependence of the system on the final users’ specification.

  1. Achieving the economic potential for industrial cogeneration in Ontario: A financial perspective on electric utility policy

    International Nuclear Information System (INIS)

    Diemer, S.G.; Cain, S.R.

    1993-01-01

    The impact of private vs public ownership regimes on the magnitude of achievable industrial cogeneration capacity in Ontario is assessed. Estimates of technical and economic potential are presented for several industrial subsectors and heat demand categories, showing that nearly all of the technically feasible 7,600 MW is also economically efficient given a value of power of at least 4 cents/kWh in 1991 dollars. Using financial data and investment criteria specific to the two forms of ownership, the project evaluation model points to a significantly larger quantum of financial (achievable) potential with public rather than private development of industrial cogeneration. At avoided costs and associated buyback rates of 4 and 5 cents/kWh, the achievable cogeneration capacities are ca 2,400 and 7,600 MW under public ownership and 132 and 3,000 MW under private ownership. Ratepayer savings are significant: the full economic potential can be achieved through public ownership at a buyback rate of 5 cents/kWh; under private ownership, a comparable capacity requires a 6 cents buyback rate, reflecting additional ratepayer costs of nearly $600 million annually. 1 fig., 4 tabs

  2. Analysis of an optimal resorption cogeneration using mass and heat recovery processes

    International Nuclear Information System (INIS)

    Lu, Yiji; Wang, Yaodong; Bao, Huashan; Yuan, Ye; Wang, Liwei; Roskilly, Anthony Paul

    2015-01-01

    Highlights: • Resorption cogeneration for electricity and refrigeration generation. • Mass and heat recovery to further improve the performance. • The first and second law analysis. - Abstract: This paper presents an optimised resorption cogeneration using mass and heat recovery to improve the performance of a novel resorption cogeneration fist proposed by Wang et al. This system combines ammonia-resorption technology and expansion machine into one loop, which is able to generate refrigeration and electricity from low-grade heat sources such as solar energy and industrial waste heat. Two sets of resorption cycle are designed to overcome the intermittent performance of the chemisorption and produce continuous/simultaneous refrigeration and electricity. In this paper, twelve resorption working pairs of salt complex candidates are analysed by the first law analysis using Engineering Equation Solver (EES). The optimal resorption working pairs from the twelve candidates under the driven temperature from 100 °C to 300 °C are identified. By applying heat/mass recovery, the coefficient of performance (COP) improvement is increased by 38% when the high temperature salt (HTS) is NiCl 2 and by 35% when the HTS is MnCl 2 . On the other hand, the energy efficiency of electricity has also been improved from 8% to 12% with the help of heat/mass recovery. The second law analysis has also been applied to investigate the exergy utilisation and identify the key components/processes. The highest second law efficiency is achieved as high as 41% by the resorption working pair BaCl 2 –MnCl 2 under the heat source temperature at 110 °C.

  3. CANDU co-generation opportunities

    International Nuclear Information System (INIS)

    Meneley, D.A.; Duffey, R.B.; Pendergast, D.R.

    2000-01-01

    Modern technology makes use of natural energy 'wealth' (uranium) to produce useful energy 'currency' (electricity) that can be used to society's benefit. This energy currency can be further applied to help solve a difficult problem faced by mankind. Within the next few years we must reduce our use of the same fuels which have made many countries wealthy - fossil fuels. Fortunately, electricity can be called upon to produce another currency, namely hydrogen, which has some distinct advantages. Unlike electricity, hydrogen can be stored and can be recovered for later use as fuel. It also is extremely useful in chemical processes and refining. To achieve the objective of reducing greenhouse gas emissions hydrogen must, of course, be produced using a method which does not emit such gases. This paper summarizes four larger studies carried out in Canada in the past few years. From these results we conclude that there are several significant opportunities to use nuclear fission for various co-generation technologies that can lead to more appropriate use of energy resources and to reduced emissions. (author)

  4. Evaluation. The actions of european towns on the utilization of new little cogeneration technologies. Contract n. 99.07.071; Etat de l'Art. Les actions de villes europeennes sur l'utilisation des nouvelles technologies de petite cogeneration. Contrat n. 99.07.071

    Energy Technology Data Exchange (ETDEWEB)

    Schilken, P

    2001-04-01

    After many experiences in the large cogeneration domain, some european municipalities, especially in Germany, develop now little cogeneration projects. This study aims to examine in a first part the policies and experiences of the municipalities and of the energy municipal companies in term of appropriate technology and in a second part the integration of these installations in the existing systems. The study brings also information on the technical aspects and the organization, in particular the difficulties and the results. (A.L.B.)

  5. Cogeneration in Italian agricultural industry

    International Nuclear Information System (INIS)

    Bonfitto, E.; Jacoboni, S.

    1991-01-01

    This paper examines the technical, environmental and economical feasibility of an industrial cogeneration system which incorporates combined gas-steam cycles and a biomass/agricultural waste sludge fired fluidized bed combustion system. It cites the suitability of the use of fluidized bed combustion for the combustion of biomass and agricultural waste sludges - high combustion efficiency, uniform and relatively low combustion temperatures (850 C) within the combustion chamber to reduce scaling, reduced nitrogen oxide and micro-pollutant emissions, the possibility to control exhaust gas acidity through the injection of calcium carbonates, the possibility of the contemporaneous feeding of different fuels. Reference is made to test results obtained with an ENEL (Italian National Electricity Board) pilot plant fired by vineyard wastes. Attention is given to an analysis of the fuel's physical-chemical characteristics and the resulting flue gas chemical composition and ash characteristics. Comparisons are made with legal release limits

  6. Production of Bioethanol from Agricultural Wastes Using Residual Thermal Energy of a Cogeneration Plant in the Distillation Phase

    Directory of Open Access Journals (Sweden)

    Raffaela Cutzu

    2017-05-01

    Full Text Available Alcoholic fermentations were performed, adapting the technology to exploit the residual thermal energy (hot water at 83–85 °C of a cogeneration plant and to valorize agricultural wastes. Substrates were apple, kiwifruit, and peaches wastes; and corn threshing residue (CTR. Saccharomyces bayanus was chosen as starter yeast. The fruits, fresh or blanched, were mashed; CTR was gelatinized and liquefied by adding Liquozyme® SC DS (Novozymes, Dittingen, Switzerland; saccharification simultaneous to fermentation was carried out using the enzyme Spirizyme® Ultra (Novozymes, Dittingen, Switzerland. Lab-scale static fermentations were carried out at 28 °C and 35 °C, using raw fruits, blanched fruits and CTR, monitoring the ethanol production. The highest ethanol production was reached with CTR (10.22% (v/v and among fruits with apple (8.71% (v/v. Distillations at low temperatures and under vacuum, to exploit warm water from a cogeneration plant, were tested. Vacuum simple batch distillation by rotary evaporation at lab scale at 80 °C (heating bath and 200 mbar or 400 mbar allowed to recover 93.35% (v/v and 89.59% (v/v of ethanol, respectively. These results support a fermentation process coupled to a cogeneration plant, fed with apple wastes and with CTR when apple wastes are not available, where hot water from cogeneration plant is used in blanching and distillation phases. The scale up in a pilot plant was also carried out.

  7. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  8. Stepping on the gas for district heating in Germany. Gas and steam turbines for cogeneration; Gas geben fuer Fernwaerme in Deutschland. Gas- und Dampfturbinen fuer die KWK

    Energy Technology Data Exchange (ETDEWEB)

    Bohtz, Christian [Alstom Power, Baden (Switzerland). Marketing and Product Management Gas Business

    2011-07-15

    Measured by its intensive efforts to lower CO{sub 2} emissions Germany is one of the leading countries in the EU. One contribution to this end is to be had from cogeneration. As a provider of cogeneration plants Alstom is working to improve the fuel efficiency as well as the overall efficiency and flexibility of its products. The author explains the technology of gas-fired cogeneration plants and gives three examples of their use.

  9. FY1999 annual report on the research and development on practical industrial cogeneration technology; 1999 nendo sangyoyo cogeneration jitsuyo gijutsu kaihatsu kenkyu seika

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The basic plan aims to quicken the practical application of the industrial HBGT (hybrid gas turbine) cogeneration technology and thereby to realize high-efficiency energy utilization for reduction in CO2 emission. For this purpose, a medium-scale HBGT, expected to be high in efficiency and low in polluting, and its components are subjected to assessment tests and endurance tests to prove that there are reliability and soundness in HBGT. Ceramic members are developed which are high in strength at elevated temperatures and in resistance to oxidation, and are subjected to assessment so that they will be further improved in reliability and durability. An HBGT is designed, fabricated, and operated. The engine system is tested for performance, and the performance is improved. It is put to a long-term operation, which is to confirm the presence of soundness and reliability in HBGT as an industrial cogeneration system. Industrial fields in which HBGT will be useful are selected and surveys are conducted to find out how it will function in such selected fields. Problems which HBGT will encounter upon practical application are extracted, and measures for solving them are clarified. Such an HBGT will have a shaft output of approximately 8,000kW, engine thermal efficiency of not less than 34%, and a turbine inlet temperature of approximately 1,250 degrees C. (NEDO)

  10. Market integration of block heat and power plants. An investigation from a business and an overall systemic viewpoint; Marktintegration von BHKW. Eine Untersuchung aus betriebswirtschaftlicher und gesamtsystemischer Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Matthias; Bauknecht, Dierk [Oeko-Institut e.V., Freiburg (Germany); Hollinger, Raphael; Hamperl, Simon; Erge, Thomas [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany)

    2013-01-15

    Cogeneration plants are nowadays operated according to the economic dictates of electricity remuneration (laid down in the Renewable Energy Law (EEG) for those fired with biogas and in the Cogeneration Law for those fired with natural gas). As yet, operators wishing to link the operation of cogeneration plants to the electricity price are given only rudimentary support, one example being the direct marketing option provided by the EEG. For this reason electricity production in cogeneration plants is usually heat-driven or, in the case of plants meeting EEG requirements, continuous or evenly distributed. However, if they are operated according to demand, and heat storages or biogas or sewage gas storages are used for this purpose, cogeneration plants can also contribute to an electricity supply system that is both stable and inexpensive. The purpose of the present model-base analysis was to investigate both from a business and an overall systemic viewpoint whether market-price driven operation offers advantages over classical heat-driven or continuous operation of cogeneration plants.

  11. Warped Discrete Cosine Transform-Based Low Bit-Rate Block Coding Using Image Downsampling

    Directory of Open Access Journals (Sweden)

    Ertürk Sarp

    2007-01-01

    Full Text Available This paper presents warped discrete cosine transform (WDCT-based low bit-rate block coding using image downsampling. While WDCT aims to improve the performance of conventional DCT by frequency warping, the WDCT has only been applicable to high bit-rate coding applications because of the overhead required to define the parameters of the warping filter. Recently, low bit-rate block coding based on image downsampling prior to block coding followed by upsampling after the decoding process is proposed to improve the compression performance for low bit-rate block coders. This paper demonstrates that a superior performance can be achieved if WDCT is used in conjunction with image downsampling-based block coding for low bit-rate applications.

  12. Ship Block Transportation Scheduling Problem Based on Greedy Algorithm

    Directory of Open Access Journals (Sweden)

    Chong Wang

    2016-05-01

    Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.

  13. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  14. Improvement of the cogeneration facilities, considering the aspects of financial risks

    International Nuclear Information System (INIS)

    Santos, A.H.M.; Nogueira, L.A.H.; Costa Bortoni, E. da

    1992-01-01

    This paper proposes a methodology to include the tools of the Portfolio Theory in the design of the cogeneration facilities. So, the effects of the risk on the return can be take in account. A computer program was developed to simulate the impacts of the thermal and mechanical (or electrical) loads on energy surplus and the potential risk. (C.M.)

  15. Building blocks of Collagen based biomaterial devices

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...

  16. Kyoto protocol and cogeneration in rural areas: institutional and organizational configuration and perspectives; Protocolo de Kyoto e co-geracao no meio rural: configuracao institucional e organizacional e perspectivas

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Zilmar Jose de; Azevedo, Paulo Furquim de [Fundacao Getulio Vargas (EESP/FGV), Sao Paulo, SP (Brazil). Escola de Economia de Sao Paulo], e-mails: zilmar.souza@energiasdobrasil.com.br, pfa@fgvsp.br

    2006-07-01

    This article presents a brief historical record concerning the Brazilian institutional arrangement given to the Kyoto Protocol and, based on the Brazilian emissions profile, discusses general perspectives to the use of the CDM, mainly in projects involving co-generation in the agricultural sector. It is observed high uncertainty about the liquidity and development of the carbon credit market, above all, with reference to the definition of the second period of the Kyoto Protocol commitments. Even so, with the consolidation of the institutional environment, the carbon credit market must become favorable to the projects of co-generation in agricultural sector, especially in countries as Brazil. (author)

  17. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao

    2017-11-29

    In the latest Joint Video Exploration Team development, the quadtree plus binary tree (QTBT) block partitioning structure has been proposed for future video coding. Compared to the traditional quadtree structure of High Efficiency Video Coding (HEVC) standard, QTBT provides more flexible patterns for splitting the blocks, which results in dramatically increased combinations of block partitions and high computational complexity. In view of this, a confidence interval based early termination (CIET) scheme is proposed for QTBT to identify the unnecessary partition modes in the sense of rate-distortion (RD) optimization. In particular, a RD model is established to predict the RD cost of each partition pattern without the full encoding process. Subsequently, the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure by reducing 54.7% encoding time with only 1.12% increase in terms of bit rate. Moreover, the proposed scheme performs consistently well for the high resolution sequences, of which the video coding efficiency is crucial in real applications.

  18. HTTR demonstration program for nuclear cogeneration of hydrogen and electricity

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Sumita, Junya; Terada, Atsuhiko; Ohashi, Hirofumi; Yan, Xing L.; Nishihara, Tetsuo; Tachibana, Yukio; Inagaki, Yoshiyuki

    2015-01-01

    Japan Atomic Energy Agency initiated a High Temperature Engineering Test Reactor (HTTR) demonstration program in accordance with recommendations of a task force established by Ministry of Education, Culture, Sports, Science and Technology according to the Strategic Energy Plan as of April 2014. The demonstration program is designed to complete helium gas turbine and hydrogen production system technologies aiming at commercial plant deployment in 2030s. The program begins with coupling a helium gas turbine in the secondary loop of the HTTR and expands by adding the H 2 plant to a tertiary loop to enable hydrogen cogeneration. Safety standards for coupling the helium gas turbine and H 2 plant to the nuclear reactor will be established through safety review in licensing. A system design and its control method are planned to be validated with a series of test operations using the HTTR-GT/H 2 plant. This paper explains the outline of HTTR demonstration program with a plant concept of the heat application system directed at establishing an HTGR cogeneration system with 950°C reactor outlet temperature for production of power and hydrogen as recommended by the task force. Commercial deployment strategy including a development plan for the helium gas turbine is also presented. (author)

  19. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  20. Co-generation and reality Potential in Mexico; Potencial de cogeneracion y realidad en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    This document deals with the Mexican use of co-generation -the efficient use of the energy- through the support offered by the Comision Nacional para el Ahorro de Energia (CONAE), since this is the agency in charge of fomenting the efficient use of energy by means of actions coordinated with diverse dependencies and organizations of the Administracion Publica Federal and with the governments of the federal entities as well as municipalities, social and private sectors. Among the subjects to be dealt are quality of the electrical and thermal energy, types of fuels that can be used in the co-generation project, the present situation of the co-generation in Mexico and the conditions for their development. [Spanish] Este documento analiza el uso de la cogeneracion en Mexico es decir, el uso eficiente de la energia a traves del apoyo que brinda la Comision Nacional para el Ahorro de Energia (CONAE) ya que es el organo encargado de fomentar la eficiencia en el uso de la energia mediante acciones coordinadas con las diversas dependencias y entidades de la Administracion Publica Federal y con los gobiernos de las entidades federativas y los municipios y, a traves de acciones concertadas, con los sectores social y privado. Se trataran temas como calidad de la energia electrica y termica, los tipos de combustibles que pueden utilizarse en el proyecto de cogeneracion, la situacion actual de la cogeneracion en Mexico y las ccondiciones para su desarrollo.

  1. Analysis of blocking probability for OFDM-based variable bandwidth optical network

    Science.gov (United States)

    Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi

    2011-12-01

    Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.

  2. Cogeneration in large processing power stations; Cogeneracion en grandes centrales de proceso

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Jose Manuel [Observatorio Ciudadano de la Energia A. C., (Mexico)

    2004-06-15

    In this communication it is spoken of the cogeneration in large processing power stations with or without electricity surplus, the characteristics of combined cycle power plants and a comparative analysis in a graph entitled Sale price of electricity in combined cycle and cogeneration power plants. The industrial plants, such as refineries, petrochemical, breweries, paper mills and cellulose plants, among others, with steam necessities for their processes, have the technical and economical conditions to cogenerate, that is, to produce steam and electricity simultaneously. In fact, many of such facilities that exist at the moment in any country, count on cogeneration equipment that allows them to obtain their electricity at a very low cost, taking advantage of the existence steam generators that anyway are indispensable to satisfy their demand. In Mexico, given the existing legal frame, the public services of electricity as well as the oil industry are activities of obligatory character for the State. For these reasons, the subject should be part of the agenda of planning of this power sector. The opportunities to which we are referring to, are valid for the small industries, but from the point of view of the national interest, they are more important for the large size facilities and in that rank, the most numerous are indeed in PEMEX, whereas large energy surplus and capacity would result into cogenerations in refineries and petrochemical facilities and they would be of a high value, precisely for the electricity public service, that is, for the Comision Federal de Electricidad (CFE). [Spanish] En esta ponencia se habla de la cogeneracion en grandes centrales de proceso con o sin excedentes de electricidad, las caracteristicas de plantas de ciclo combinado y se muestra el analisis comparativo en una grafica titulada precio de venta de electricidad en plantas de ciclo combinado y de cogeneracion. Las plantas industriales, tales como refinerias, petroquimicas

  3. Adsorption thermal energy storage for cogeneration in industrial batch processes: Experiment, dynamic modeling and system analysis

    International Nuclear Information System (INIS)

    Schreiber, Heike; Graf, Stefan; Lanzerath, Franz; Bardow, André

    2015-01-01

    Adsorption thermal energy storage is investigated for heat supply with cogeneration in industrial batch processes. The feasibility of adsorption thermal energy storage is demonstrated with a lab-scale prototype. Based on these experiments, a dynamic model is developed and successfully calibrated to measurement data. Thereby, a reliable description of the dynamic behavior of the adsorption thermal energy storage unit is achieved. The model is used to study and benchmark the performance of adsorption thermal energy storage combined with cogeneration for batch process energy supply. As benchmark, we consider both a peak boiler and latent thermal energy storage based on a phase change material. Beer brewing is considered as an example of an industrial batch process. The study shows that adsorption thermal energy storage has the potential to increase energy efficiency significantly; primary energy consumption can be reduced by up to 25%. However, successful integration of adsorption thermal storage requires appropriate integration of low grade heat: Preferentially, low grade heat is available at times of discharging and in demand when charging the storage unit. Thus, adsorption thermal energy storage is most beneficial if applied to a batch process with heat demands on several temperature levels. - Highlights: • A highly efficient energy supply for industrial batch processes is presented. • Adsorption thermal energy storage (TES) is analyzed in experiment and simulation. • Adsorption TES can outperform both peak boilers and latent TES. • Performance of adsorption TES strongly depends on low grade heat temperature.

  4. Economic study on compressed energy storage cogeneration system in urban areas

    International Nuclear Information System (INIS)

    Uchiyama, Youji

    1991-01-01

    Due to the concentration of functions into cities and the spread of room cooling facilities, the energy demand in cities increased rapidly especially in summer season. The improvement of load factor of electric power has become an important subject for electric power companies, and as the technology for positively improving it, there is electric power storage. As for compressed air energy storage (CAES) system, its introduction, has been investigated as the electric power storage technology for the future in electric power business, but since it is also gas turbine technology, it becomes a cogeneration system. If the waste heat of gas turbines and compressors can be utilized effectively, not only the load factor of electric power is improved, but also it contributes to the improvement of overall energy efficiency and the improvement of environmental problems. This research is to study on the feasibility of compressed air energy storage centering around its economical efficiency when it is installed in customer side as the cogeneration system in cities. The features of CAES, the tendency of the development in Japan and foreign countries, the introduction of CAES in new town districts and the economy are described. (K.I.)

  5. Analysis of combustion turbine inlet air cooling systems applied to an operating cogeneration power plant

    International Nuclear Information System (INIS)

    Chacartegui, R.; Jimenez-Espadafor, F.; Sanchez, D.; Sanchez, T.

    2008-01-01

    In this work, combustion turbine inlet air cooling (CTIAC) systems are analyzed from an economic outlook, their effects on the global performance parameters and the economic results of the power plant. The study has been carried out on a combined cogeneration system, composed of a General Electric PG 6541 gas turbine and a heat recovery steam generator. The work has been divided into three parts. First, a revision of the present CTIAC technologies is shown, their effects on power plant performance and evaluation of the associated investment and maintenance costs. In a second phase of the work, the cogeneration plant was modelled with the objective of evaluating the power increase and the effects on the generated steam and the thermal oil. The cogeneration power plant model was developed, departing from the recorded operational data of the plant in 2005 and the gas turbine model offered by General Electric, to take into consideration that, in 2000, the gas turbine had been remodelled and the original performance curves should be corrected. The final objective of this model was to express the power plant main variables as a function of the gas turbine intake temperature, pressure and relative humidity. Finally, this model was applied to analyze the economic interest of different intake cooling systems, in different operative ranges and with different cooling capacities

  6. Thermoeconomic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant

    Energy Technology Data Exchange (ETDEWEB)

    Arrieta, Felipe Raul Ponce; Lora, Electo Silva [Escola Federal de Engenharia de Itajuba, MG (Brazil). Nucleo de Estudos de Sistemas Termicos]. E-mails: aponce@iem.efei.br; electo@iem.efei.br; Perez, Silvia Azucena Nebra de [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mail: sanebra@fem. unicamp.br

    2000-07-01

    Using thermoeconomics as a tool to identify the location and magnitude of the real thermodynamic losses (energy waste, or exergy destruction and exergy losses) it is possible to assess the production costs of each product (electric power and heat) and the exergetic and exergoeconomic cost of each flow in a cogeneration plant to assist in decision-marketing procedures concerning to plant design, investment, operation and allocations of research funds. Thermo economic analysis of Biomass Integrated Gasification Gas Turbine Combined Cycle (BIG GT CC) cogeneration plant for its applications in sugar cane mills brings the following results: the global exergetic efficiency is low; the highest irreversibilities occur in the following equipment, by order: scrubber (38%), gas turbine (16%), dryer (12%), gasifier and HRSG (6%); due to the adopted cost distribution methodology, the unit exergetic cost of the heat (4,11) is lower than electricity (4,71); the lower market price of biomass is one of the most sensible parameter in the possible implementation of BIG-GT technology in sugar cane industry; the production costs are 31 US$/MWh and 32 US$/MWh for electricity and heat, respectively. The electricity cost is, after all, competitive with the actual market price. The electricity and heat costs are lower or almost equal than other values reported for actual Rankine cycle cogeneration plants. (author)

  7. Adaptive block online learning target tracking based on super pixel segmentation

    Science.gov (United States)

    Cheng, Yue; Li, Jianzeng

    2018-04-01

    Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.

  8. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    Science.gov (United States)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  9. Evaluation. The actions of european towns on the utilization of new little cogeneration technologies. Contract n. 99.07.071; Etat de l'Art. Les actions de villes europeennes sur l'utilisation des nouvelles technologies de petite cogeneration. Contrat n. 99.07.071

    Energy Technology Data Exchange (ETDEWEB)

    Schilken, P.

    2001-04-01

    After many experiences in the large cogeneration domain, some european municipalities, especially in Germany, develop now little cogeneration projects. This study aims to examine in a first part the policies and experiences of the municipalities and of the energy municipal companies in term of appropriate technology and in a second part the integration of these installations in the existing systems. The study brings also information on the technical aspects and the organization, in particular the difficulties and the results. (A.L.B.)

  10. Efficient production of electricity and water in cogeneration systems. [Desalination plant

    Energy Technology Data Exchange (ETDEWEB)

    Tadros, S.K.

    1981-11-01

    This paper discusses two topping cycle steam turbine cogeneration systems. The water desalination plant selected is the multistage flash evaporator cycle which uses brine recirculation and high temperature additives for scale protection and 233F maximum brine temperature. The paper mentions briefly the impact of future fuel prices on design and factors which would further improve thermal efficiency. The fuel chargeable to power is determined. 6 refs.

  11. The duties of public service in relation to cogeneration and renewable energy sources

    International Nuclear Information System (INIS)

    Suzzoni, P.

    2004-01-01

    In France, the costs of programs for cogeneration and renewable energy are ultimately paid by consumers via mechanisms based on bids, the obligation to purchase at a guaranteed price, and an evaluation made by the energy regulation Commission. The emission permit (or green certificate) guaranties that the amount of electricity delivered by the producer to the distribution network comes from renewable primary energy sources. A special market devoted to emission permits could be set independently from that of electricity, this market would allow electricity producers to reach a minimal ratio of electricity issued from renewable energy sources. The suggestion made is to test in France marketed emission permits before creating a European market

  12. Comparative exergoeconomic analysis of prime movers of cogeneration plants; Avaliacao exergoeconomica comparativa de acionadores primarios de plantas de cogeracao

    Energy Technology Data Exchange (ETDEWEB)

    Donatelli, Joao L.M. [Espirito Santo Univ., Vitoria, ES (Brazil). Dept. de Engenharia Mecanica]. E-mail: donatelli@lttc.com.ufrj.br; Vieira, Leonardo S.R. [Centro de Pesquisas de Energia Eletrica, Rio de Janeiro, RJ (Brazil). Area de Conhecimento de Materiais e Mecanica]. E-mail: lsrv@cepel.br; Cruz, Manuel E.C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mail: manuel@serv.com.ufrj.br

    2000-07-01

    In this paper we apply exergoeconomic principles to perform a comparative analysis of the use of internal combustion engines or gas turbines as prime movers of cogeneration plants. A preliminary comparison of these movers can be obtained by analysing them individually, considering the complete utilization of the generated products rated on a common exergetic basis. However, when these movers are integrated in a cogeneration plant, it is necessary to perform a global system analysis, which will consider the coupling between generation capacity and demand, under the design conditions. The design of a cogeneration plant should, ideally, consider all the aspects that affect its performance. In this paper we take into account several aspects which are not normally collectively considered in similar analyses encountered in the literature. Specifically, the comparative procedure considers the electrical tariff on an hourly basis, the electrical and thermal load profiles, the influence of the environmental conditions on the performance of the prime movers, sizing and operation mode options to meet plant loads, part-load efficiency, different criteria for cost partitioning, and, finally, the effect of size on plant cost. Once the operating conditions of the cogeneration plant are defined, the procedure attributes costs to all the fluxes, allowing for the identification of the ranges of capacity where each mover is economically advantageous. We apply the procedure to the energetic supply analysis of a typical process of Brazilian shopping centers. (author)

  13. Energy conservation through the implementation of cogeneration and grid interconnection

    International Nuclear Information System (INIS)

    Dashash, M. A.

    2007-01-01

    With increasing awareness of energy conservation and environmental protection, the Arab World is moving to further improve energy conversion efficiency. The equivalent of over 2.7 MM bbl is being daily burnt to fuel the thermal power plants that represent 92% of the total Arab power generation. This adds up to close to one billion barrels annually. At a conservative 30$ per barrel, this represents a daily cost of over $81 Million. This paper will introduce two strategies with the ultimate objective to cut-off up to half of the current fuel consumption. Firstly, Cogeneration Technology is able to improve thermal efficiency from the current average of less than 25% to up to 80%. Just 1% improvement in power plant thermal efficiency represents 3 million $/day in fuel cost savings. In addition, a well-designed and operated cogeneration plant will: - Reduce unfriendly emissions by burning less fuel as a result of higher thermal efficiency, - Increase the decentralization of electrical generation, - Improve the reliability of electricity supply. As an example, the Kingdom of Saudi Arabia's experience of implementing cogeneration will be presented, in particular within its hydrocarbon facilities and desalination plants. This will include the existing facilities and the planned and on-going projects. Secondly, by interconnecting the power networks of all the adjacent Arab countries, the following benefits could be reached: - Reduce generation reserves and enhance the system reliability, - Improve the economic efficiency of the electricity power systems, - Provide power exchange and strengthen the supply reliability, - Adopt technological development and use the best modern technologies. At least two factors plead for this direction. On one hand, the four-hour time zone difference from Eastern to Western Arab World makes it easy to exchange power. On the other hand, this will help to reduce the reserve capacity and save on corresponding Capital investment, fuel, and O and M

  14. Experimental results and thermodynamic analysis of a natural gas small scale cogeneration plant for power and refrigeration purposes

    International Nuclear Information System (INIS)

    Bazzo, Edson; Nacif de Carvalho, Alvaro; Matelli, José Alexandre

    2013-01-01

    In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24 °C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at −5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. -- Highlights: • A small scale cogeneration plant for power and refrigeration is proposed and analyzed. • The plant is based on a microturbine and a modified absorption chiller. • The plant is analysed based on 1st and 2nd laws of thermodynamics. • Experimental results are found for different power and refrigeration conditions. • The plant proved to be technically feasible

  15. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes

    Science.gov (United States)

    Lin, Shu

    1998-01-01

    A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and

  16. A method for the correction of the feed-in tariff price for cogeneration based on a comparison between Croatia and EU Member States

    International Nuclear Information System (INIS)

    Uran, Vedran; Krajcar, Slavko

    2009-01-01

    The European Commission has adopted Directive 2004/8/EC on the promotion of cogeneration, which the EU Member States, as well as candidates including Croatia, were obliged to accept. Among other terms and conditions, the Directive requires certain support mechanisms, such as feed-in tariff prices and premiums added to market electricity prices. In this paper, the cost effectiveness of selling electricity at the feed-in tariff prices in the selected EU Member States is compared to selling it on the European electricity market, with or without premiums. The results of this comparison will indicate whether correction of the Croatian feed-in tariff price to a higher value would be justified. The cost effectiveness ratio of a cogeneration unit upgraded with mean reverting and jump diffusion processes is used for comparison. At the end of this paper, a method is suggested for the correction of feed-in tariff prices, with examples of corrected prices for the years 2008 and 2009. Such corrections have been proven to be justified and are compared to the feed-in tariff prices in most of the selected EU Member States.

  17. The HTScroll project - Innovative cogeneration system with a high-temperature turbine; Projet HTScroll. Nouveau systeme de cogeneration a turbine spirale haute temperature - Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Kane, M.; Cretegny, D.; Maquet, J. [ENEFTECH Innovation SA, Swiss Federal Institute of Technology EPFL, Laboratoire d' Energetique Industrielle LENI, EPFL Science Park PSE, Lausanne (Switzerland); Favrat, D. [Swiss Federal Institute of Technology EPFL, Lausanne (Switzerland)

    2009-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) proposes an alternative for micro-cogeneration based on a scroll expander to produce electricity from relatively low-temperature heat sources (less than 250 {sup o}C), thus allowing the use of renewable energy resources such as biomass, solar thermal and geothermal energy. The authors note that such a system could produce cost-effective 'green' electricity as well as heat (near 60 {sup o}C) for space heating and domestic hot-water preparation. The design and validation of a new concept for a double-stage scroll expander ('HT-Scroll') operating at high and low pressures and high temperatures is discussed. Design, modelling and construction of a 5 kW unit have been carried out. The organic fluid Rankine Cycle concept is described, the modelling of the turbine, its construction and tests carried out are discussed. Problems encountered and future work are noted.

  18. Cogeneration Technology Alternatives Study (CTAS). Volume 6: Computer data. Part 2: Residual-fired nocogeneration process boiler

    Science.gov (United States)

    Knightly, W. F.

    1980-01-01

    Computer generated data on the performance of the cogeneration energy conversion system are presented. Performance parameters included fuel consumption and savings, capital costs, economics, and emissions of residual fired process boilers.

  19. Exergy analysis of a cogeneration power plant

    International Nuclear Information System (INIS)

    Núñez Bosch, Osvaldo Manuel

    2015-01-01

    In the following study exergetic evaluation of a cogeneration power plant in operation with installed electrical capacity of 24 MW and process heat demand of 190 MW it is performed. The main objective of the research was to determine the influence of the increase in power generation capacity, raising the superheated steam parameters and the number of regenerative heaters on the second law efficiency and irreversibilities in the different components of the plant. To study the power plant was divided into subsystems: steam generator blowdown expander, main steam pipe, steam turbine regenerative heaters, reduction system, deaerator and pumps. The study results show that exergy losses and irreversibilities differ widely from one subsystem to another. In general, the total irreversibility accounted for 70.7% of primary fuel availability. The steam generator subsystem had the highest contribution to the irreversibility of the plant by 54%. It was determined that the increased steam parameters helps reduce the irreversibility and increase the exergetic efficiency of installation. The suppression of the reduction and incorporation of extraction-condensing turbine produce the same effect and helps to reduce power consumption from the national grid. Based on the results recommendations for improving plant efficiency are made. (full text)

  20. Stirling micro cogeneration unit for single-family houses. Compact and assembly-friendly; Stirling-Mikro-BHKW fuer den Einsatz im Einfamilienhaus. Kompakt und montagefreundlich

    Energy Technology Data Exchange (ETDEWEB)

    Gimsa, Andreas [Enerlyt Technik GmbH, Potsdam (Germany)

    2010-07-01

    Enerlyt of Potsdam is a manufacturer working on a micro cogeneration unit based on a Stirling engine whose thermodynamic cycle has lower losses, e.g. by making the expansion pistons bigger than the compression pistons. The unit can be operated with various fuels. The author describes the function and state of development of the unit. (orig.)

  1. Numerical simulation of a cogeneration plant with micro gas turbine using computational tool EES; Simulacao numerica de uma planta de cogeracao com microturbina a gas natural utilizando ferramenta computacional EES

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Guilherme L.B. de; Oliveira, Andrezza C.C.T.; Dutra, Jose C.C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2008-07-01

    Today, the cogeneration of energy has been widely disseminated and presents itself as a very viable alternative for energy savings, reducing CO2 emissions by conducting reuse energy. This study aims to develop a software for simulation, analysis and optimization of a cogeneration system that uses a natural gas turbine as a primary source. The data contained in the software were similar to existing data in a micro-cogeneration plant installed at UFPE and the results showed up in the standard presented by actual plant. We conclude that the software serves as a tool to pre-analysis of the plant of choice for cogeneration equipment to be installed as: pumps, heat exchangers, chillers, cooling towers. (author)

  2. Efficiency and environmental compatibility of premium cogeneration plants operated by fermentation gas; Effizienz und Umweltvertraeglichkeit biogasbetriebener Blockheizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Aschmann, V.; Kissel, R.; Gronauer, A.

    2007-07-15

    Due to the climatic protection as well as shortage and raising the price of fossil fuels, a supply of a sustainable and future power supply is necessary. Therefore, the importance of the production of electricity and heat by means of premium cogeneration plants operated by fermentation gas increases. In the comparison to the conventional power production from fossil fuels, the utilization of fermentation gas reduces the release of climatic relevant gases. A compromise between high achievement and low emission with the burn of fermentation gas in premium cogeneration plants has to be established. It is the subject of the investigation of the contribution under consideration, to what extent this is feasible in practice.

  3. Modelling of the change in national exchange rate model depending on the economic parameters of a natural gas cogeneration system: Turkey case

    International Nuclear Information System (INIS)

    Inan, Aslan; Izgi, Ercan; Ay, Selim

    2009-01-01

    In this paper, to what extent a cogeneration system's fixed and variable costs and profits are affected from the exchange rate model implemented in the country is examined. An autoproductor system, as known, uses a part of its electrical energy production for its own requirements while selling the remaining energy to the regional energy corporation. As a function of the load factor and the fuel cost, the production cost and energy sale income of the system are influenced much by the exchange rate model of the country. A cost analysis of a natural gas cogeneration (autoproductor) system has been performed for the numerical application, based on the monetary program supported by the IMF commenced in January 2000. In order to investigate the effect of the change in exchange rate model (introducing the floating exchange rate model) on the fuel cost, both the characteristics of the IMF program and some various forecasting methods have been utilized

  4. Block Access Token Renewal Scheme Based on Secret Sharing in Apache Hadoop

    Directory of Open Access Journals (Sweden)

    Su-Hyun Kim

    2014-07-01

    Full Text Available In a cloud computing environment, user data is encrypted and stored using a large number of distributed servers. Global Internet service companies such as Google and Yahoo have recognized the importance of Internet service platforms and conducted their own research and development to utilize large cluster-based cloud computing platform technologies based on low-cost commercial off-the-shelf nodes. Accordingly, as various data services are now allowed over a distributed computing environment, distributed management of big data has become a major issue. On the other hand, security vulnerability and privacy infringement due to malicious attackers or internal users can occur by means of various usage types of big data. In particular, various security vulnerabilities can occur in the block access token, which is used for the permission control of data blocks in Hadoop. To solve this problem, we have proposed a weight-applied XOR-based efficient distribution storage and recovery scheme in this paper. In particular, various security vulnerabilities can occur in the block access token, which is used for the permission control of data blocks in Hadoop. In this paper, a secret sharing-based block access token management scheme is proposed to overcome such security vulnerabilities.

  5. Cogeneration: A solution from energetical auditoring. Cogeneracion: hipotesis de solucion en auditorias energeticas

    Energy Technology Data Exchange (ETDEWEB)

    Gomara Martinez, E; Riesco Leal, P

    1993-01-01

    An energetical auditor provides the solutions to avoid environmental problems generated from the consumption of a determined fuel and reduces fuel consumption. One of the solutions is changing the energy source or introducing cogeneration. The author introduces under the point of view of an auditor the reasons to use to generation. (Author)

  6. Research of Block-Based Motion Estimation Methods for Video Compression

    Directory of Open Access Journals (Sweden)

    Tropchenko Andrey

    2016-08-01

    Full Text Available This work is a review of the block-based algorithms used for motion estimation in video compression. It researches different types of block-based algorithms that range from the simplest named Full Search to the fast adaptive algorithms like Hierarchical Search. The algorithms evaluated in this paper are widely accepted by the video compressing community and have been used in implementing various standards, such as MPEG-4 Visual and H.264. The work also presents a very brief introduction to the entire flow of video compression.

  7. Methodology for the economic evaluation of cogeneration/desalination options: A user's manual

    International Nuclear Information System (INIS)

    1997-01-01

    The Methodology for the Economic Evaluation of Cogeneration/Desalination Options is suitable for economic evaluations and screening analyses of various desalination and energy source options. The methodology, based on the spreadsheet, includes simplified models of several types of nuclear/fossil power plants, nuclear/fossil heat sources, and both distillation and membrane desalination plants. Current cost and performance data have already been incorporated so that the spreadsheet can be quickly adapted to analyze a large variety of options with very little new input data required. The spreadsheet output includes the levelized cost of water and power, breakdowns of cost components, energy consumption and net saleable power for each selected option. Specific power plants can be modeled by adjustment of input data including design power, power cycle parameters and costs

  8. Semi-catalyzed deuterium reactors for co-generation of 3He and synfuels (the CoSCD concept)

    International Nuclear Information System (INIS)

    1980-01-01

    The potential of developing semi-catalyzed deuterium reactors for co-generation of 3 He and synthetic fuels is discussed. Such factors as environmental impact, siting, energy basics, and engineering technology are also discussed

  9. Cogeneration and Small Power Production Quarterly Report to the California Public Utilities Commission. Second Quarter 1984

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-01-01

    At the end of the Second Quarter of 1984, the number of signed contracts and letter agreements for cogeneration and small power production projects was 334, with total estimated nominal capacity of 2,876 MW. Of these totals, 232 projects, capable of producing 678 MW, are operational (Table A). A map indicating the location of operational facilities under contract with PG and E is provided as Figure A. Developers of cogeneration projects had signed 80 contracts with a potential of 1,161 MW. Thirty-three contracts had been signed for solid waste/biomass projects for a total of 298 MW. In total, 118 contracts and letter agreements had been signed with cogeneration, solid waste, and biomass projects capable of producing 1,545 MW. PG and E also had under active discussion 46 cogeneration projects that could generate a total of 688 MW to 770 MW, and 13 solid waste or biomass projects with a potential of 119 MW to 139 MW. One contract had been signed for a geothermal project, capable of producing 80 MW. Two geothermal projects were under active discussion for a total of 2 MW. There were 8 solar projects with signed contracts and a potential of 37 MW, as well as 4 solar projects under active discussion for 31 MW. Wind farm projects under contract numbered 34, with a generating capability of 1,042 MW, Also, discussions were being conducted with 23 wind farm projects, totaling 597 MW. There were 100 wind projects of 100 kW or less with signed contracts and a potential of 1 MW, as well as 7 other small wind projects under active discussion. There were 71 hydroelectric projects with signed contracts and a potential of 151 MW, as well as 76 projects under active discussion for 505 MW. In addition, there were 18 hydroelectric projects, with a nominal capacity of 193 MW, that PG and E was planning to construct. Table B displays the above information. Appendix A displays in tabular form the status reports of the projects as of June 30, 1984.

  10. Cogeneration in air separation cryogenic plants; Cogeracao em plantas criogenicas de separacao de ar

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, Walter N.; Orlando, Alcir F. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica]. E-mails: wnovellob@openlink.com.br; afo@mec-puc-rio.br

    2000-07-01

    A thermal and economic study, carried on by using the first and second law of thermodynamics concepts demonstrated the economic feasibility of the cogeneration system, and proposed modifications to be done in the studied cryogenic plant, a typical T-240 NA MPL3 plant. The thermodynamic analysis showed that the second law efficiency of the processes could be improved, together with a 12% electric energy consumption reduction. Four cogeneration schemes were analyzed with both the first and second laws of thermodynamics and, then, the economic analysis was performed. Rankine, Brayton, Otto and Combined gas-steam basic cycles were used in this analysis.The combined gas-steam cycle was shown to be more economically feasible than others. Thermal and electric loads were well balanced, resulting in a higher second law efficiency. Although the initial investment for the modification was higher, the savings resulted to be higher, turning into a higher rate of return of the investment. (author)

  11. Thermodynamic Investigation of a Shared Cogeneration System with Electrical Cars for Northern Europe Climate

    Directory of Open Access Journals (Sweden)

    Giulio Vialetto

    2017-12-01

    Full Text Available Transition to alternative energy systems is indicated by EU Commission as a suitable path to energy efficiency and energy saving in the next years. The aims are to decrease greenhouses gases emissions, relevance of fossil fuels in energy production and energy dependence on extra-EU countries. These goals can be achieved increasing renewable energy sources and/or efficiency on energy production processes. In this paper an innovative micro-cogeneration system for household application is presented: it covers heating, domestic hot water and electricity demands for a residential user. Solid oxide fuel cells, heat pump and Stirling engine are utilised as a system to achieve high energy conversion efficiency. A transition from traditional petrol cars to electric mobility is also considered and simulated here. Different types of fuel are considered to demonstrate the high versatility of the simulated cogeneration system by changing the pre-reformer of the fuel cell. Thermodynamic analysis is performed to prove high efficiency with the different fuels.

  12. Combined cogeneration equipment containing gas turbine using low sulphur heavy stock as fuel

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, Goro; Ishiki, Katsuhiko

    1988-03-10

    This paper describes the combined cogeneration in Chemical and Plastics Co. Madras (India) which uses low sulphur heavy stock (LSHS) as a fuel. By the combined cogeneration of gas turbine and boiler steam turbine power generation, the exhaust from the steam turbine is supplied to the factory as a process steam. This equipment has a capacity of 4835 kW in overall generation power and 23.5 tons/hrs. in steam evaporation. The gas turbine system is equipped with an axial-flow, 11 step compressor, an axial flow, 4 step turbine, and a single-can back flow combustor fixed to the intermediate casing. The temperature of the exhaust from the gas turbine is 542/sup 0/C. Low quality LSHS when burned exerts no influence on the service life of the turbine blades. The boiler is a horizontal bent pipe, forced circulation type, and the steam turbine is a back pressure control type. The fuel is treated with a horizontal, two drum, electrostatic separator to which a demulsifier is supplied, to be separated into oil and water. As to the vanadium salts contained in the fuels, a chemical liquid containing MgO as a major ingredient is added to the fuel prior to the combustion. Thereby, the melting temperature of the vanadium oxide is enhanced, which serves for prevention of the melting and adhesion of the vanadium oxide to the gas turbine. LSHS is a residual oil produced by the ordinary pressure distillation of India-produced crude oil, has a sulphur content of 1.75%, and is solid at room temperature. Attention should be paid to clogging of the pipings. The overall efficiency is 80%. The combined cogeneration can be coordinated with load variations of 10 - 20%. (12 figs, 1 tab)

  13. Potential of the HTGR hydrogen cogeneration system in Japan

    International Nuclear Information System (INIS)

    Nishihara, Tetsuo; Mouri, Tomoaki; Kunitomi, Kazuhiko

    2007-01-01

    A high temperature gas cooled reactor (HTGR) is one of the next generation nuclear systems. The HTGR hydrogen cogeneration system can produce not only electricity but also hydrogen. Then it has a potential to supply massive low-cost hydrogen without greenhouse gas emission for the future hydrogen society. Japan Atomic Energy Agency (JAEA) has been carried out the design study of the HTGR hydrogen cogeneration system (GTHTR300C). The thermal power of the reactor is 600 MW. The hydrogen production plant utilizes 370 MW and can supply 52,000 m 3 /h (0.4 Bm 3 /y) of hydrogen. Present industrial hydrogen production capacity in Japan is about 18 Bm 3 /y and it will decrease by 15 Bm 3 /y in 2030 due to the aging facilities. On the other hand, the hydrogen demand for fuel cell vehicle (FCV) in 2030 is estimated at 15 Bm 3 /y at a maximum. Since the hydrogen supply may be short after 2030, the additional hydrogen should be produced by clean hydrogen process to reduce greenhouse gas emission. This hydrogen shortage is a potential market for the GTHTR300C. The hydrogen production cost of GTHTR300C is estimated at 20.5 JPY/Nm 3 which has an economic competitiveness against other industrial hydrogen production processes. 38 units of the GTHTR300C can supply a half of this shortage which accounts for the 33% of hydrogen demand for FCV in 2100. According to the increase of hydrogen demand, the GTHTR300C should be constructed after 2030. (author)

  14. A wood-waste fuelled, indirectly-fired gas turbine cogeneration plant for sawmill application. Phase 1. Preliminary engineering design and financial evaluation

    Energy Technology Data Exchange (ETDEWEB)

    1986-02-01

    Most sawmills generate more than enough wood waste to be potentially self-sufficient in both dry-kiln heat and electricity requirements. It is not generally economically viable to use conventional steam/electricty cogeneration systems at the sawmill scale of operation. As a result, Canadian sawmills are still large consumers of purchased fuels and electricity. The overall objective of this project was to develop a cost-effective wood waste-fired power generation and lumber drying system for sawmill applications. The system proposed and evaluated in this project is a wood waste-fuelled, indirectly-fired gas turbine cogeneration plant. Research, design, and development of the system has been planned to take place in a number of phases. Phase 1 consists of a preliminary engineering design and financial evaluation of the system, the subjects of this report. The results indicate that the proposed indirectly-fired gas turbine cogeneration system is both technically and financially feasible under a variety of conditions. 8 figs., 8 tabs.

  15. FY1998 survey on preparation of data collection related to new energy technology development (cogeneration); 1998 nendo shin energy gijutsu kaihatsu kankei data shu sakusei chosa (cogeneration) chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    New energy technologies have had the subsidy institutions established in association with advancement of the technologies, and such introduction promoting measures developed as the introduction assistance and advisory project. To promote this development more effectively, it is necessary that different data related to new energies are put into order comprehensively and systematically to be retained as the basic data. Therefore, this paper collects and puts into order the latest published data on cogeneration from among other new energy technology areas, with main regard to system listing, specific introduction examples, subsidy institutions, and how other countries are working on the technologies. Hydroelectric power generation uses up head energy of water by installing power plants along a river from higher location to lower location. Similarly the cogeneration is a kind of multi-stage energy utilization (cascade utilization) system that uses up energy serially from as high oil and natural gas combustion temperature as 1,500 degrees C or higher down to temperature levels used for hot water supply and air conditioning as low as 45 to 50 degrees C. It generates electric power by using a thermal engine, and utilizes waste heat effectively. (NEDO)

  16. Optimizing block-based maintenance under random machine usage

    NARCIS (Netherlands)

    de Jonge, Bram; Jakobsons, Edgars

    Existing studies on maintenance optimization generally assume that machines are either used continuously, or that times until failure do not depend on the actual usage. In practice, however, these assumptions are often not realistic. In this paper, we consider block-based maintenance optimization

  17. Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost

    International Nuclear Information System (INIS)

    Metalli, E.

    2009-01-01

    A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it

  18. Ground reaction curve based upon block theory

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.; Goodman, R.E.

    1985-09-01

    Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. Once a potentially unstable block is identified, the forces affecting it can be calculated to assess its stability. The normal and shear stresses on each block face before displacement are calculated using elastic theory and are modified in a nonlinear way by discontinuity deformations as the keyblock displaces. The stresses are summed into resultant forces to evaluate block stability. Since the resultant forces change with displacement, successive increments of block movement are examined to see whether the block ultimately becomes stable or fails. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were evaluated. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls blocks displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender

  19. Error Concealment using Neural Networks for Block-Based Image Coding

    Directory of Open Access Journals (Sweden)

    M. Mokos

    2006-06-01

    Full Text Available In this paper, a novel adaptive error concealment (EC algorithm, which lowers the requirements for channel coding, is proposed. It conceals errors in block-based image coding systems by using neural network. In this proposed algorithm, only the intra-frame information is used for reconstruction of the image with separated damaged blocks. The information of pixels surrounding a damaged block is used to recover the errors using the neural network models. Computer simulation results show that the visual quality and the MSE evaluation of a reconstructed image are significantly improved using the proposed EC algorithm. We propose also a simple non-neural approach for comparison.

  20. Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.

    Science.gov (United States)

    Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C

    2014-08-01

    A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Quantum Image Steganography and Steganalysis Based On LSQu-Blocks Image Information Concealing Algorithm

    Science.gov (United States)

    A. AL-Salhi, Yahya E.; Lu, Songfeng

    2016-08-01

    Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.

  2. A new block cipher based on chaotic map and group theory

    International Nuclear Information System (INIS)

    Yang Huaqian; Liao Xiaofeng; Wong Kwokwo; Zhang Wei; Wei Pengcheng

    2009-01-01

    Based on the study of some existing chaotic encryption algorithms, a new block cipher is proposed. In the proposed cipher, two sequences of decimal numbers individually generated by two chaotic piecewise linear maps are used to determine the noise vectors by comparing the element of the two sequences. Then a sequence of decimal numbers is used to define a bijection map. The modular multiplication operation in the group Z 2 8 +1 * and permutations are alternately applied on plaintext with block length of multiples of 64 bits to produce ciphertext blocks of the same length. Analysis show that the proposed block cipher does not suffer from the flaws of pure chaotic cryptosystems.

  3. Energetic and exergetic analysis of cogeneration power combined cycle and ME-TVC-MED water desalination plant: Part-1 operation and performance

    International Nuclear Information System (INIS)

    Almutairi, Abdulrahman; Pilidis, Pericles; Al-Mutawa, Nawaf; Al-Weshahi, Mohammed

    2016-01-01

    Highlights: • Develop a comprehensive model for a very advanced cogeneration plant using real data. • Evaluate ME-TVC-MED unit using the latest thermodynamic properties of seawater. • Evaluate the desalination unit contribution to the overall efficiency. • Evaluate the stage exergetic efficiency in the ME-TVC-MED unit. • Numerous possibilities have been suggested to improve the proposed system. - Abstract: A comprehensive model of cogeneration plant for electrical power and water desalination has been developed based on energetic and exergetic analyses using real operational data. The power side is a combined cycle power plant (CCPP), while the desalination side is a multi-effect thermal vapour compression plant coupled with a conventional multi-effect plant (ME-TVC-MED). IPSEpro software was utilized to model the process, which shows good agreement with the manufacturer's data and published research. The thermodynamic properties of saline water were obtained from the latest published data in the literature. The performance of the cogeneration plant was examined for different ambient temperatures, pressure ratios, loads, feed water temperatures, number of effects and entrainment ratios. The results show that gas turbine engines produce the highest level of useful work in the system at around 34% of the total fuel input. At the same time, they constitute a major source of irreversibility, which accounts for 84% of the total exergy destruction in the plant, while the lowest source of irreversibility is in the steam turbine of 3.3% due to the type of working fluid and reheating system. In the ME-TVC-MED desalination unit, the highest source of irreversibilities occurs in the effects and in the thermo-compressor. The first two effects in the ME-TVC parallel section were responsible for about 40.6% of the total effect exergy destruction, which constitutes the highest value among all the effects. Operating the system at full load while reducing ambient

  4. Entropy, exergy, and cost analyses of solar driven cogeneration systems using supercritical CO_2 Brayton cycles and MEE-TVC desalination system

    International Nuclear Information System (INIS)

    Kouta, Amine; Al-Sulaiman, Fahad; Atif, Maimoon; Marshad, Saud Bin

    2016-01-01

    Highlights: • The entropy, exergy, and cost analyses for two solar cogeneration configurations are conducted. • The recompression cogeneration cycle achieves lower LCOE as compared to the regeneration cogeneration cycle. • The solar tower is the largest contributor to entropy generation in both configurations reaching almost 80%. • The specific entropy generation in the MEE-TVC decreases with decreasing the fraction. - Abstract: In this study, performance and cost analyses are conducted for a solar power tower integrated with supercritical CO_2 (sCO_2) Brayton cycles for power production and a multiple effect evaporation with a thermal vapor compression (MEE-TVC) desalination system for water production. The study is performed for two configurations based on two different supercritical cycles: the regeneration and recompression sCO_2 Brayton cycles. A two-tank molten salt storage is utilized to ensure a uniform operation throughout the day. From the entropy analysis, it was shown that the solar tower is the largest contributor to entropy generation in both configurations, reaching almost 80% from the total entropy generation, followed by the MEE-TVC desalination system, and the sCO_2 power cycle. The entropy generation in the two-tank thermal storage is negligible, around 0.3% from the total generation. In the MEE-TVC system the highest contributing component is the steam jet ejector, which is varying between 50% and 60% for different number of effects. The specific entropy generation in the MEE-TVC decreases as the fraction of the input heat to the desalination system decreases; while the specific entropy generation of the sCO_2 cycle remains constant. The cost analysis performed for different regions in Saudi Arabia and the findings reveal that the regions characterized by the highest average solar irradiation throughout the year have the lowest LCOE and LCOW values. The region achieving the lowest cost is Yanbu, followed by Khabt Al-Ghusn in the second

  5. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.

    Science.gov (United States)

    Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying

    2015-04-14

    Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.

  6. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Ilow Jacek

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of information packets to construct redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  7. A mathematical model for the dynamic simulation of low size cogeneration gas turbines within smart microgrids

    International Nuclear Information System (INIS)

    Bracco, Stefano; Delfino, Federico

    2017-01-01

    Microturbines represent a suitable technology to be adopted in smart microgrids since they are characterized by affordable capital and maintenance costs, high reliability and flexibility, and low environmental impact; moreover, they can be fed by fossil fuels or biofuels. They can operate in cogeneration and trigeneration mode, thus permitting to attain high global efficiency values of the energy conversion system from primary energy to electrical and thermal energy; from the electrical point of view, microturbines can operate connected to the distribution grid but also in islanded mode, thus enabling their use in remote areas without electrification. The paper describes the mathematical model that has been developed to simulate in off-design and transient conditions the operation of a 65 kW_e_l cogeneration microturbine installed within a smart microgrid. The dynamic simulation model is characterized by a flexible architecture that permits to simulate other different size single-shaft microturbines. The paper reports the main equations of the model, focusing on the architecture of the simulator and the microturbine control system; furthermore the most significant results derived from the validation phase are reported too, referring to the microturbine installed in the Smart Polygeneration Microgrid of the Savona Campus at the University of Genoa in Italy. - Highlights: • Dynamic simulation model of a cogeneration microturbine. • Off-design and transient performances of the microturbine. • Simulator validated on the Smart Polygeneration Microgrid at the Savona Campus.

  8. Electricity and heat energy co-generation process modelling in Belarus

    Energy Technology Data Exchange (ETDEWEB)

    Chtcherbitch, A [Belarus Scientific Research Heat Power Inst., Minsk (Belarus); Iakoushev, A; Popov, B [Institute of Power Engineering Problems, Minsk (Belarus); Vorontsov, V [Institute of New Technics and Technology, Minsk (Belarus)

    1997-09-01

    This paper describes the experience gathered in the application of the ENPEP package to the conditions of Belarus energy system, focusing on the principal problems encountered in modelling a system having an important component of co-generation systems to satisfy the demands for electricity and heat. The approach used to solve this problem and some recommendations for future enhancements of the ENPEP program are discussed. The preliminary results obtained with the use of the model, as well as further analyses expected to be conducted in the near future are also described. (author). 6 figs.

  9. Thermoeconomic and exegetic analysis of a cogeneration proposal by using natural gas in breweries; Analise termoeconomica e exergetica de uma proposta de cogeracao usando gas natural em cervejarias

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Antonio Garrido; Martins, Gilberto [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara do Oeste, SP (Brazil). Faculdade de Engenharia Mecanica e de Producao]. E-mail: agallego@unimep.br; gmartins@unimep.br; Nebra, Silvia Azucena [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]. E-mail: sanebra@fem.unicamp.br

    2000-07-01

    In this work the thermo economic method is used for analysis of the cost distribution in a cogeneration power plant proposed for a brewery in the Campinas - state of Sao Paulo, Brazil. The thermal process energy demands were considered for beer production in 1997. The proposed cogeneration system consists of two gas turbines with recovering boiler and ammonium compression cooling system. The present power generation configuration and the cogeneration proposed performance were simulated in a monthly basis, considering the month steam and refrigeration requests. The gas turbines were simulated considering the nominal load and the energy surplus sold to the concessionaire.

  10. A novel block cryptosystem based on iterating a chaotic map

    International Nuclear Information System (INIS)

    Xiang Tao; Liao Xiaofeng; Tang Guoping; Chen Yong; Wong, Kwok-wo

    2006-01-01

    A block cryptographic scheme based on iterating a chaotic map is proposed. With random binary sequences generated from the real-valued chaotic map, the plaintext block is permuted by a key-dependent shift approach and then encrypted by the classical chaotic masking technique. Simulation results show that performance and security of the proposed cryptographic scheme are better than those of existing algorithms. Advantages and security of our scheme are also discussed in detail

  11. The fuel cell: a coming technology for the cogeneration and the automotive; La pile a combustible: une technologie d'avenir pour la cogeneration et l'automobile

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    In the framework of the Eco-Industries 2000 meeting, the ATEE organized a colloquium on the fuel cell use in the automotive and cogeneration industries. This book presents the six papers proposed at this colloquium bringing information on the fuel cell market, design and advantages. In the automotive domain, the fuel cell integration in the future car at Renault is presented. The PEM (Proton Exchange Membrane) concept is also detailed. (A.L.B.)

  12. Adaptive bit plane quadtree-based block truncation coding for image compression

    Science.gov (United States)

    Li, Shenda; Wang, Jin; Zhu, Qing

    2018-04-01

    Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.

  13. Technical-Economic Evaluation of a Cogeneration Unit Considering Carbon Emission Savings

    Directory of Open Access Journals (Sweden)

    Ana Christina Ferreira

    2014-06-01

    Full Text Available The support of combined heat and power production systems has gained policy attention, because these are often considered to be less polluting and more efficient than conventional energy conversion systems. As a consequence, the potential market for these energy systems that contribute to reduce greenhouse gas emissions and to enhance energy security on a national level, is shifting from large-scale existing units to small and micro-size emerging technologies. This paper presents a numerical model based on a cost-benefit analysis used to design an optimal cogeneration system for a small-scale building application, considering the Portuguese context and the comparison with the harmonized efficiency reference values for the separate production of electricity and useful heat. The model includes the identification of the objective function terms (i.e., the elements involved in the financial analysis across the system lifetime and the economic evaluation of costs and benefits of the combined heat and power production system. The economic viability of cogeneration systems significantly depends on system technology, client energy requirements and support schemes implemented in the respective countries. A strategic approach is necessary to adequately embed the new technology as a feasible solution in terms of investment and operational costs. Only by matching the energy supply to the needs and expectations of the energy users, it will be possible to improve the market competitiveness of these alternative power production plants. The optimal solution disclosed a positive annual worth, which is higher if the carbon emission savings are monetized. In addition, the optimal system represents a more efficient way to produce useful heat and electricity (i.e. a positive primary energy saving and to reduce gas emissions. A cost-benefit analysis can be applied for the techno-economic evaluation of a CHP system by assessing the monetary socio-environmental costs

  14. Text extraction method for historical Tibetan document images based on block projections

    Science.gov (United States)

    Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian

    2017-11-01

    Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.

  15. Saturation Detection-Based Blocking Scheme for Transformer Differential Protection

    Directory of Open Access Journals (Sweden)

    Byung Eun Lee

    2014-07-01

    Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.

  16. Low power cogeneration prototype system; Prototipo de sistema de co-geracao de pequena potencia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Sara M.; Martins, Jose A.S.; Camara, Paulo R.; Cortes, Breno P.; Neves, Elierton E. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil); F. Filho, Roberto; Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The fuels from oil and natural gas play an important role, not only in the sector of primary energy, but also in almost all the other sectors of the economy, due to its imbrication as insum of these. The use of the natural gas will have great expansion in Brazil, motivated for the Government decision to increase the participation of this fuel in the Brazilian energy matrix from 4% to 12% up to 2010. Then, it's so important the investment in new technologies and also the improvement. In order to reach the objective related to increase the consumption of natural gas in the energy matrix, and to propose solutions to attend the electric requirements, of heat and refrigeration, using natural gas as primary power plant, the Center of Gas Technologies; CTGAS, in partnership with PETROBRAS and the Fockink Group, has developed the first modular system of generation and co-generation of energy by natural gas of low power, of easy installation and shipment with the characteristics techniques to take care of to companies or industrial sectors that consummate this band of power. The equipment generates 35 kW/55 kVA of electric energy, 7TR (Ton of Refrigeration) of energy for refrigeration and posses the ability to heat 2200 l/h of water in the temperature of 85 deg C. The equipment will be able to produce electric and thermal energy simultaneously, from an only fuel, the natural gas. The main objective of this work is to present the main phases of development of the archetype, functions techniques of the co-generator and its field of performance in the market of systems for generation and co-generation of energy by natural gas of low power. (author)

  17. A new PI tuning method for an industrial process: A case study from a micro-cogeneration system

    International Nuclear Information System (INIS)

    Sağlam, Gaye; Tutum, Cem Celal; Kurtulan, Salman

    2013-01-01

    Highlights: ► PI controller is implemented with new tuning rules for a micro-cogeneration system. ► These tuning rules ensure a critically damped response as well as safe control signal. ► These rules are totally based on the model parameters unlike some other methods in the literature. ► An evolutionary search algorithm is also used to support the results of the proposed tuning method. ► Both methods give superior results as compared with a few available methods given in the literature. - Abstract: Micro-cogeneration systems are efficient and clean energy sources. For this reason, reliable control of the overall system itself and its sub-components is of great importance. This paper presents a proportional–integral (PI) controller tuning method for cooling of the hydrogen production unit within the polymer electrolyte membrane (PEM) fuel cell based micro-cogeneration system having 5 kW electrical and 30 kW thermal capacity. The flow rate control of the coolant water was implemented by means of the modeled temperature control system. Modeling and control system design were implemented in both MATLAB/Simulink and industrial programmable logic controller (PLC) software. The novel analytical tuning rules proposed in this paper, which were developed with the help of the digital control theory and experiences in industrial control problems, are based totally on the model parameters. The output response attained by the proposed controller is a critically damped response (a non-oscillatory system response with damping ratio: ζ = 1) and the control signal is a slowly varying safe control signal. Slowly varying control signal denotes that there is no sudden or fast change in the control effort which causes a wear and tear effect in the actuators and shortens the life cycle of the relevant hardware. Besides, an evolutionary multi-objective optimization (EMO) procedure, namely non-dominated sorting genetic algorithm (NSGA-II), was used in order to simultaneously

  18. ASIC chipset design to generate block-based complex holographic video.

    Science.gov (United States)

    Seo, Young-Ho; Lee, Yoon-Hyuk; Kim, Dong-Wook

    2017-03-20

    In this paper, we propose a new hardware architecture implemented as a very large scaled integrated circuit by using an application-specific integrated circuit technology, where block-based calculations are used to generate holograms. The proposed hardware is structured to produce a part of a hologram in the block units in parallel. A block of a hologram is calculated using an object point, and then the calculation is repeated for all object points to obtain intermediate results that are accumulated to produce the final block of a hologram. This structure can be used to produce holograms of various sizes in real time with optimized memory access. The proposed hardware was implemented using the Hynix 0.18 μm CMOS technology of Magna Chip, Inc., and it has about 448 K gate counts and a silicon size of 3.592  mm×3.592  mm. It can generate complex holograms and operate in a stable manner at a clock frequency of 200 MHz.

  19. Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.

    Science.gov (United States)

    Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy

    2016-07-11

    Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Self-sorting of guests and hard blocks in bisurea-based thermoplastic elastomers

    NARCIS (Netherlands)

    Botterhuis, N.E.; Karthikeyan, S.; Spiering, A.J.H.; Sijbesma, R.P.

    2010-01-01

    Self-sorting in thermoplastic elastomers was studied using bisurea-based thermoplastic elastomers (TPEs) which are known to form hard blocks via hierarchical aggregation of bisurea segments into ribbons and of ribbons into fibers. Self-sorting of different bisurea hard blocks in mixtures of polymers

  1. Fabrication of calcite blocks from gypsum blocks by compositional transformation based on dissolution-precipitation reactions in sodium carbonate solution.

    Science.gov (United States)

    Ishikawa, Kunio; Kawachi, Giichiro; Tsuru, Kanji; Yoshimoto, Ayami

    2017-03-01

    Calcium carbonate (CaCO 3 ) has been used as a bone substitute, and is a precursor for carbonate apatite, which is also a promising bone substitute. However, limited studies have been reported on the fabrication of artificial calcite blocks. In the present study, cylindrical calcite blocks (ϕ6×3mm) were fabricated by compositional transformation based on dissolution-precipitation reactions using different calcium sulfate blocks as a precursor. In the dissolution-precipitation reactions, both CaSO 4 ·2H 2 O and CaSO 4 transformed into calcite, a polymorph of CaCO 3 , while maintaining their macroscopic structure when immersed in 1mol/L Na 2 CO 3 solution at 80°C for 1week. The diametral tensile strengths of the calcite blocks formed using CaSO 4 ·2H 2 O and CaSO 4 were 1.0±0.3 and 2.3±0.7MPa, respectively. The fabrication of calcite blocks using CaSO 4 ·2H 2 O and CaSO 4 proposed in this investigation may be a useful method to produce calcite blocks because of the self-setting ability and high temperature stability of gypsum precursors. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Opportunities for saving energy by means of cogeneration in Vegetales's Cannery of Sancti Spiritus.

    Directory of Open Access Journals (Sweden)

    Arturo Alberto Clemente Corujo

    2010-09-01

    Full Text Available This work analyzes the viability to install a system of cogeneration and to save energy at Vegetales's Cannery. The type of more convenient arrangement according to the conditions of the industry was defined. The magnitude of necessary investment, the equipment required, and also the additional quantity of diesel were determined for the correct operation of the project. It was considered the steam production and the consumptions of combustible oil and the electricity in the year 2008. As a primary motor was each engine Volvo of 3 existent generating sets. A minimal time of 4 daily hours during 300 days was calculated to work annually and they analyzed the necessary investments for expected benefits. The economic evaluation has as possitive results: a VAN of $192 646,89's and 36 %'s TIR. The cogeneration scheme more convenient is with Topping cycle. The necessary investment is about $144 000 and for having profitability it is necessary to work the same amount of hours from 6 to 10 p.m. that in the rest of a day.

  3. Performance investigation of a cogeneration plant with the efficient and compact heat recovery system

    KAUST Repository

    Myat, Aung

    2011-10-03

    This paper presents the performance investigation of a cogeneration plant equipped with an efficient waste heat recovery system. The proposed cogeneration system produces four types of useful energy namely: (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification. The proposed plant comprises a Capstone C30 micro-turbine which generates 24 kW of electricity, a compact and efficient waste heat recovery system and a host of waste heat activated devices namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The numerical analysis for the host of waste heat recovery system and thermally activated devices using FORTRAN power station linked to powerful IMSL library is performed to investigate the performance of the overall system. A set of experiments, both part load and full load, of micro-turbine is conducted to examine the electricity generation and the exhaust gas temperature. It is observed that energy utilization factor (EUF) could achieve as high as 70% while Fuel Energy Saving Ratio (FESR) is found to be 28%.

  4. Exergoeconomic improvement of a complex cogeneration system integrated with a professional process simulator

    International Nuclear Information System (INIS)

    Vieira, Leonardo S.; Donatelli, Joao L.; Cruz, Manuel E.

    2009-01-01

    In this paper, the application of an iterative exergoeconomic methodology for improvement of thermal systems to a complex combined-cycle cogeneration plant is presented. The methodology integrates exergoeconomics with a professional process simulator, and represents an alternative to conventional mathematical optimization techniques, because it reduces substantially the number of variables to be considered in the improvement process. By exploiting the computational power of a simulator, the integrated approach permits the optimization routine to ignore the variables associated with the thermodynamic equations, and thus to deal only with the economic equations and objective function. In addition, the methodology combines recent available exergoeconomic techniques with qualitative and quantitative criteria to identify only those decision variables, which matter for the improvement of the system. To demonstrate the strengths of the methodology, it is here applied to a 24-component cogeneration plant, which requires O(10 3 ) variables for its simulation. The results which are obtained, are compared to those reached using a conventional mathematical optimization procedure, also coupled to the process simulator. It is shown that, for engineering purposes, improvement of the system is often more cost effective and less time consuming than optimization of the system.

  5. Probabilistic Decision Based Block Partitioning for Future Video Coding

    KAUST Repository

    Wang, Zhao; Wang, Shiqi; Zhang, Jian; Wang, Shanshe; Ma, Siwei

    2017-01-01

    , the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure

  6. District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalisation

    Directory of Open Access Journals (Sweden)

    Enrique Rosales-Asensio

    2016-10-01

    Full Text Available Yearly, EU-28 conventional thermal generating plants reject a greater amount of energy than what ultimately is utilised by residential and commercial loads for heating and hot water. If this waste heat were to be used through district heating networks, given a previous energy valorisation, there would be a noticeable decrease in imported fossil fuels for heating. As a consequence, benefits in the form of an energy efficiency increase, an energy security improvement, and a minimisation of emitted greenhouse gases would occur. Given that it is not expected for heat demand to decrease significantly in the medium term, district heating networks show the greatest potential for the development of cogeneration. However, to make this happen, some barriers that are far from being technological but are mostly institutional and financial need to be removed. The purpose of this review is to provide information on the potential of using waste heat from conventional thermal power plants (subsequently converted into cogeneration plants in district heating networks located in the EU-28. For this, a preliminary assessment is conducted in order to show an estimate of the cost of adopting an energy strategy in which district heating networks are a major player of the energy mix. From this assessment, it is possible to see that even though the energy strategy proposed in this paper, which is based on a dramatic increase in the joint use of district heating networks and cogeneration, is capital-intensive and would require an annual investment of roughly 300 billion euros, its adoption would result in a reduction of yearly fuel expenses in the order of 100 billion euros and a shortening of about 15% of the total final energy consumption, which makes it of paramount interest as an enabler of the legal basis of the “Secure, Clean and Efficient Energy” future enacted by the EU-28 Horizon 2020.

  7. Load averaging system for co-generation plant; Jikayo hatsuden setsubi ni okeru fuka heijunka system

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Y. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1995-07-30

    MAZDA Motor Corp. planed the construction of a 20.5MW co-generation plant in 1991 for responding to an increase in power demand due to expansion of the Hofu factory. On introduction of this co-generation plant, it was decided that the basic system would adopt the following. (1) A circulating fluidized bed boiler which can be operated by burning multiple kinds of fuels with minimum environmental pollution. (2) A heat accumulation system which can be operated through reception of a constant power from electric power company despite a sudden and wide range change in power demand. (3) A circulating-water exchange heat recovery system which recovers exhaust heat of the turbine plant as the hot water to be utilized for heating and air-conditioning of the factory mainly in winter. Power demand in MAZDA`s Hofu factory changes 15% per minute within a maximum range from 20MW to 8MW. This change is difficult to be followed even by an oil burning boiler excellent in load follow-up. The circulating Fluidized bed boiler employed this time is lower in the follow-up performance than the oil boiler. For the newly schemed plant, however, load averaging system named a heat accumulation system capable of responding fully to the above change has been developed. This co-generation plant satisfied the official inspection before commercial operation according the Ministerial Ordinance in 1993. Since then, with regard to the rapid load following, which was one of the initial targets, operation is now performed steadily. This paper introduces an outline of the system and operation conditions. 10 refs.

  8. Design of Packet-Based Block Codes with Shift Operators

    Directory of Open Access Journals (Sweden)

    Jacek Ilow

    2010-01-01

    Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of k information packets to construct r redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of k information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of n=k+r received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.

  9. Thermodynamic and economic evaluation of a solar aided sugarcane bagasse cogeneration power plant

    International Nuclear Information System (INIS)

    Burin, Eduardo Konrad; Vogel, Tobias; Multhaupt, Sven; Thelen, Andre; Oeljeklaus, Gerd; Görner, Klaus; Bazzo, Edson

    2016-01-01

    This work evaluated the integration of Concentrated Solar Power (CSP) with a sugarcane bagasse cogeneration plant located in Campo Grande (Brazil). The plant is equipped with two 170 t/h capacity steam generators that provide steam at 67 bar/525 °C. Superheated steam is expanded in a backpressure and in a condensing-extraction turbine. The evaluated hybridization layouts were: (layout 1) solar feedwater pre-heating; (layout 2) saturated steam generation with solar energy and post superheating in biomass steam generators and (layout 3) superheated steam generation in parallel with biomass boilers. Linear Fresnel and parabolic trough were implemented in layouts 1 and 2, while solar tower in layout 3. The exportation of electricity to the grid was increased between 1.3% (layout 1/linear Fresnel) and 19.8% (layout 3) in comparison with base case. The levelized cost of additional electricity was accounted between 220 US$/MWh (layout 3) and 628 US$/MWh (layout 1/linear Fresnel). The key factor related to layout 3 was the improvement of solar field capacity factor due to the solar-only operation of this approach. These aspects demonstrate that the combination of solar and bagasse resources might be the key to turn CSP economically feasible in Brazil. - Highlights: • The integration of CSP and a sugarcane bagasse cogeneration plant was here evaluated. • Additional hours of operation during off-season were achieved due to hybridization. • The part load performance of plant was predicted as solar thermal load was increased. • The electricity exportation to the grid could be increased between 1.3 and 19.8%. • The LCOE of additional electricity produced was ranged between 220 and 628 US$/MWh.

  10. Cogeneration development in Mexico and its recent environmental impact; Desarrollo de la cogeneracion en Mexico y su reciente impacto ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde Baltierra, Alberto; Garcia Pelaez, Juan [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    1996-12-31

    This paper presents the historical development of the electric auto supply systems and cogeneration in Mexico since 1942 to 1995 with the understanding that these are clearly differentiated and defined since 1992. Though it is not, but until 1994 when the first ex profeso permit for cogeneration was granted. It also develops a short prospective vision of the cogeneration in our country, as well as the fuel consumption employed by auto- supply systems during 1993. The pollution emissions to the environment are also analyzed and with it the environmental impact of these electric systems in this year. [Espanol] Se presenta el desarrollo historico de los sistemas de autoabastecimiento electrico y cogeneracion en Mexico desde 1942 a 1995, en el entendido que estos se diferencian y definen claramente desde 1992. Es, sin embargo, hasta 1994 cuando se otorgo el primer permiso ex profeso de cogeneracion. Se desarrolla, ademas, una breve vision prospectiva de la cogeneracion en nuestro pais. Asimismo, se analiza el consumo de combustibles empleados por los sistemas de autoabastecimiento en 1993. Se estiman las emisiones contaminantes a la atmosfera y con ello se valora el impacto ambiental de estos sistemas electricos en ese ano.

  11. Cogeneration development in Mexico and its recent environmental impact; Desarrollo de la cogeneracion en Mexico y su reciente impacto ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Elizalde Baltierra, Alberto; Garcia Pelaez, Juan [Universidad Nacional Autonoma de Mexico, Mexico, D. F. (Mexico)

    1997-12-31

    This paper presents the historical development of the electric auto supply systems and cogeneration in Mexico since 1942 to 1995 with the understanding that these are clearly differentiated and defined since 1992. Though it is not, but until 1994 when the first ex profeso permit for cogeneration was granted. It also develops a short prospective vision of the cogeneration in our country, as well as the fuel consumption employed by auto- supply systems during 1993. The pollution emissions to the environment are also analyzed and with it the environmental impact of these electric systems in this year. [Espanol] Se presenta el desarrollo historico de los sistemas de autoabastecimiento electrico y cogeneracion en Mexico desde 1942 a 1995, en el entendido que estos se diferencian y definen claramente desde 1992. Es, sin embargo, hasta 1994 cuando se otorgo el primer permiso ex profeso de cogeneracion. Se desarrolla, ademas, una breve vision prospectiva de la cogeneracion en nuestro pais. Asimismo, se analiza el consumo de combustibles empleados por los sistemas de autoabastecimiento en 1993. Se estiman las emisiones contaminantes a la atmosfera y con ello se valora el impacto ambiental de estos sistemas electricos en ese ano.

  12. Economic viability study of micro-cogeneration plants at residential scale; Estudo de viabilidade economica de plantas de micro-cogeracao em escala residencial

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Jose Carlos Charamba; Ramalho e Soares, Ravi [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Michalewicz, Jacek Stanislaw [Centro Federal de Educacao Tecnologica de Pernambuco (CEFET-PE), Recife, RN (Brazil)

    2008-07-01

    This paper presents the results of a technical and economical feasibility study for the use of micro cogeneration systems in residential scale, using natural gas as an energy source. It was considered two micro-cogeneration systems to meet demand of some types of fictitious establishment of commercial and residential plants, each with its advantages and disadvantages. The first system has as a main driving machine a micro turbine with a nominal capacity of 30 kw, the second one uses a gas motor-generator, with nominal capacity of 35 kw. (author)

  13. Tackling student neurophobia in neurosciences block with team-based learning

    Directory of Open Access Journals (Sweden)

    Khurshid Anwar

    2015-07-01

    Full Text Available Introduction: Traditionally, neurosciences is perceived as a difficult course in undergraduate medical education with literature suggesting use of the term “Neurophobia” (fear of neurology among medical students. Instructional strategies employed for the teaching of neurosciences in undergraduate curricula traditionally include a combination of lectures, demonstrations, practical classes, problem-based learning and clinico-pathological conferences. Recently, team-based learning (TBL, a student-centered instructional strategy, has increasingly been regarded by many undergraduate medical courses as an effective method to assist student learning. Methods: In this study, 156 students of year-three neuroscience block were divided into seven male and seven female groups, comprising 11–12 students in each group. TBL was introduced during the 6 weeks of this block, and a total of eight TBL sessions were conducted during this duration. We evaluated the effect of TBL on student learning and correlated it with the student's performance in summative assessment. Moreover, the students’ perceptions regarding the process of TBL was assessed by online survey. Results: We found that students who attended TBL sessions performed better in the summative examinations as compared to those who did not. Furthermore, students performed better in team activities compared to individual testing, with male students performing better with a more favorable impact on their grades in the summative examination. There was an increase in the number of students achieving higher grades (grade B and above in this block when compared to the previous block (51.7% vs. 25%. Moreover, the number of students at risk for lower grades (Grade B- and below decreased in this block when compared to the previous block (30.6% vs. 55%. Students generally elicited a favorable response regarding the TBL process, as well as expressed satisfaction with the content covered and felt that such

  14. Gas and electric power opening of the markets. Reality, limits and paradoxes the position of the cogeneration; Gaz electricite ouverture des marches. Realite, limites et paradoxes place de la cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    During these two days of the colloquium on gas and electric power market opening, industrial and french administration discussed about the new market deregulation impacts and the cogeneration position in this context. The position of EDF and Gaz De France, the european competition and the government policy are presented. These nineteen papers proposed an economic analysis and the state of the art of the situation. (A.L.B.)

  15. Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems

    International Nuclear Information System (INIS)

    Espirito Santo, Denilson Boschiero do; Gallo, Waldyr Luiz Ribeiro

    2017-01-01

    Rising energy conversion processes efficiencies reduces CO_2 emissions and global warming implications. Decentralized electricity production through cogeneration/trigeneration systems can save primary energy if it operates with high efficiency. High efficiency is obtained when the system produces electricity and a substantial amount of the energy rejected by the prime mover is used to meet site thermal demands. Environmental concerns and international agreements are directing governments of different countries to incentive high efficiency solutions. Centralized thermal plants and cogeneration/trigeneration efficiency are compared through efficiency indicators using the first law of thermodynamics and the second law of thermodynamics. This paper proposes the use of the primary energy savings analysis and the exergy destruction analysis to compare decentralized power production through cogeneration/trigeneration systems and centralized thermal plants. The analysis concluded that both methods achieve the same results if the thermal efficiency indicator is used to compare the methods. The analysis also revealed that trigeneration systems with the same energy input are comparable with quite different thermal efficiency centralized thermal plants. Case 1 is comparable to a 53% thermal efficiency power plant and case 2 is comparable to a 77% thermal efficiency power plant. - Highlights: • Trigeneration and thermal plants are compared using PES and exergy destruction. • The thermal efficiency indicator is used to compare both methods. • The same equivalent thermal efficiency is achieved by both methods. • Same energy input trigeneration is similar to different thermal efficiency plants. • Evaluated trigeneration are comparable to a 53–77% thermal efficiency power plant.

  16. The changing energy context in 2000 and its impact on cogeneration

    International Nuclear Information System (INIS)

    Plumejeaud, D.

    2000-01-01

    On 25 and 26 January, a conference on the future of energy in the context of gas and electricity market liberalization was organized by ATEE (technical association for energy and the environment) at the Palais des Congres in Paris. The first day was devoted to the opportunities and challenges facing the gas and electricity markets and the second day focused on the effects of liberalization on cogeneration, a rapidly expanding market in France. This article summarizes the points raised during the second day. (author)

  17. Copper based superconductors by the combination of blocking and mediating layers

    International Nuclear Information System (INIS)

    Shimizu, K.; Nobumasa, H.; Kawai, T.

    1992-01-01

    Copper based high temperature superconductors are composed of Cu-O 2 sheets in combination with thin atomic mediating layers and thick blocking layers which mediate and intercept interactions between Cu-O 2 sheets, respectively. New possible superconductors can be designed by the stacking of the Cu-O 2 sheets along with the periodic insertion of the mediating layers and different kinds of blocking layers. (orig.)

  18. A novel fractal image compression scheme with block classification and sorting based on Pearson's correlation coefficient.

    Science.gov (United States)

    Wang, Jianji; Zheng, Nanning

    2013-09-01

    Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.

  19. Analysis of possible energy efficiency increasing of the cogeneration process in EL-TO Zagreb; Analiza mogucnosti povecanja energetske ucinkovitosti spojnog procesa EL-TO Zagreb

    Energy Technology Data Exchange (ETDEWEB)

    Stanisa, B [Tehnicki fakultet, Rijeka (Croatia); Krivak, B [Hrvatska elektroprivreda, Zagreb (Croatia)

    1997-12-31

    In the erection planing of new generation capacity, besides the profitability, there is need to taken in account the rational consumption of primary energy, and the environmental protection. The main rules could have cogenerations of the heat and power. In power plant EL-TO Zagreb there are analysed generating capacity of the cogeneration process. There is considered reconstruction and revitalisation`s of existing generating units, and erections of new one, all in the purpose to meet the growing heat demand. The district heating system is considered from the point as opportunity in energy saving capacity in the cogeneration of heat and power. For the amount of the energy saved there is need for less primary energy to be consumed, and this in finally means that for the some energy demands it has the some effect as the natural energy resources are expanded. (author). 9 figs., 7 tabs., 12 refs.

  20. Report on survey for environment harmonizing type energy community project for Chubu International Airport. District heat supply facilities using large-scale cogeneration systems; Chubu kokusai kuko kankyo chowagata energy community jigyo chosa hokokusho. Daikibo cogeneration chiiki netsu kyokyu shisetsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The Chubu International Airport is positioned as a hub airport scheduled to start its use in the early part of the 21st century, to which introduction of large-scale cogeneration systems was discussed. Structuring an energy supply system conscious of the 21st century is intended, that is friendly to the environment, is attached with importance on the economy, and has high reliability and safety. The systems have cogeneration capacity from 4,500 to 6,000 kW, and utilize high-pressure waste heat from the cogeneration system as the heat source. The system uses the high pressure waste heat, stored heat, and gas at the same time to achieve high economic performance brought about by heat storage and the best energy source mix, while attempting cascade utilization of the heat. Considerations were given to suppress the environmental and energy load on the district as low as possible for the coexistence with the district, and to build framework and coordination to return the merits to the district. Subsidy introduction also has a great effect to assure the economic performance. The optimal specific construction of the system was found in combining the utilization of energy generated from temperature difference in sea water as a heat source system, the topping system utilizing the high pressure waste heat available in the system, high-efficiency heat pumps, and the heat storing system utilizing electric power available at late night. (NEDO)