WorldWideScience

Sample records for based chemical looping

  1. A Polygeneration System Based on Multi-Input Chemical Looping Combustion

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhang

    2014-11-01

    Full Text Available This paper proposes a polygeneration system based on a multi-input chemical looping combustion system, which generates methanol and electricity, through the use of natural gas and coal. In this system, the chemical looping hydrogen (CLH production system and the coal-based methanol production system are integrated. A high quality fuel, natural gas, is used to improve the conversion ratio of coal. The Gibbs energy of the two kinds of fuels is fully used. Benefitting from the chemical looping process, 27% CO2 can be captured without energy penalty. With the same outputs of methanol and electricity, the energy savings ratio of the new system is about 12%. Based on the exergy analyses, it is disclosed that the integration of synthetic utilization of natural gas and coal plays a significant role in reducing the exergy destruction of the new system. The promising results obtained in this paper may lead to a clean coal technology that will utilize natural gas and coal more efficiently and economically.

  2. Integration of calcium and chemical looping combustion using composite CaO/CuO-based materials.

    Science.gov (United States)

    Manovic, Vasilije; Anthony, Edward J

    2011-12-15

    Calcium looping cycles (CaL) and chemical looping combustion (CLC) are two new, developing technologies for reduction of CO(2) emissions from plants using fossil fuels for energy production, which are being intensively examined. Calcium looping is a two-stage process, which includes oxy-fuel combustion for sorbent regeneration, i.e., generation of a concentrated CO(2) stream. This paper discuss the development of composite materials which can use copper(II)-oxide (CuO) as an oxygen carrier to provide oxygen for the sorbent regeneration stage of calcium looping. In other words, the work presented here involves integration of calcium looping and chemical looping into a new class of postcombustion CO(2) capture processes designated as integrated CaL and CLC (CaL-CLC or Ca-Cu looping cycles) using composite pellets containing lime (CaO) and CuO together with the addition of calcium aluminate cement as a binder. Their activity was tested in a thermogravimetric analyzer (TGA) during calcination/reduction/oxidation/carbonation cycles. The calcination/reduction typically was performed in methane (CH(4)), and the oxidation/carbonation stage was carried out using a gas mixture containing both CO(2) and O(2). It was confirmed that the material synthesized is suitable for the proposed cycles; with the very favorable finding that reduction/oxidation of the oxygen carrier is complete. Various schemes for the Ca-Cu looping process have been explored here that would be compatible with these new composite materials, along with some different possibilities for flow directions among carbonator, calciner, and air reactor.

  3. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    Science.gov (United States)

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  4. Performance of Ni-based, Fe-based and Co-based Oxygen Carriers in Chemical-Looping Hydrogen Generation

    Institute of Scientific and Technical Information of China (English)

    Liang Hao; Zhang Xiwen; Fang Xiangchen; Yuan Honggang

    2013-01-01

    Ni-based, Fe-based and Co-based oxygen carriers with perovskite oxides used as the supports were prepared by citric acid complexation method. The oxygen carriers were characterized by thermal analysis, H2-temperature-programmed reduction and X-ray diffraction methods. Performance tests were evaluated through Chemical-Looping Hydrogen Genera-tion in a ifxed-bed reactor operating at atmospheric pressure. The characterization results showed that all samples were composed of metal oxides and perovskite oxides. Performance results indicated that CH4 conversion over the oxygen car-riers decreased in the following order:NiO/LaNiO3>Co2O3/LaCoO3>Fe2O3/LaFeO3. The ability of NiO/LaNiO3 and Fe2O3/LaFeO3 to decompose water was stronger than that of Co2O3/LaCoO3 as evidenced by our experiments. H2 amounting to 80 mL upon reacting on methane in every cycle could be completely oxidized by NiO/LaNiO3 at 900℃in the period from the third cycle to the eighth cycle.

  5. Study of highly efficient power generation system based on chemical-looping combustion; Chemical loop nenshoho ni yoru kokoritsu hatsuden system no kaihatsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, S.; Suzuki, T.; Yamamoto, M. [Tokyo Institute of Technology, Tokyo (Japan). Research Laboratory of Resources Utilization

    1997-02-01

    This paper describes the research and development of power generation system by means of chemical-looping combustion. For this system, fuel flows in a reduction reactor and air flows in an oxidation reactor. These two flows are separated. As a result, recovery of CO2 without energy consumption, drastic improvement of power generation efficiency, and suppression of NOx emission are expected. To realize the above, two promising candidates, NiCoO2/YSZ and NiO2/NiAl2O4, have been found as recycle solid particles between the both reactors. These have excellent oxidation/reduction cycle characteristics. By these particles as well as the existing particle, NiO/YSZ, practical application of the chemical-looping combustion is realized. Besides LNG, coal and hydrogen were considered as fuels. When using coal or hydrogen, it was found that temperature of the reduction reactor should be increased the same as that of the oxidation reactor. This is a different point from a case using LNG as a fuel. 5 refs., 2 figs.

  6. Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2

  7. Analysis of thermally coupled chemical looping combustion-based power plants with carbon capture

    KAUST Repository

    Iloeje, Chukwunwike

    2015-04-01

    © 2015 Elsevier Ltd. A number of CO2 capture-enabled power generation technologies have been proposed to address the negative environmental impact of CO2 emission. One important barrier to adopting these technologies is the associated energy penalty. Chemical-looping Combustion (CLC) is an oxy-combustion technology that can significantly lower this penalty. It utilizes an oxygen carrier to transfer oxygen from air/oxidizing stream in an oxidation reactor to the fuel in a reduction reactor. Conventional CLC reactor designs employ two separate reactors, with metal/metal oxide particles circulating pneumatically in-between. One of the key limitations of these designs is the entropy generation due to reactor temperature difference, which lowers the cycle efficiency. Zhao et al. (Zhao et al., 2014; Zhao and Ghoniem, 2014) proposed a new CLC rotary reactor design, which overcomes this limitation. This reactor consists of a single rotating wheel with micro-channels designed to maintain thermal equilibrium between the fuel and air sides. This study uses three thermodynamic models of increasing fidelity to demonstrate that the internal thermal coupling in the rotary CLC reactor creates the potential for improved cycle efficiency. A theoretical availability model and an ideal thermodynamic cycle model are used to define the efficiency limits of CLC systems, illustrate the impact of reactor thermal coupling and discuss relevant criteria. An Aspen Plus® model of a regenerative CLC cycle is then used to show that this thermal coupling raises the cycle efficiency by up to 2% points. A parametric study shows that efficiency varies inversely with pressure, with a maximum of 51% at 3bar, 1000C and 60% at 4bar, 1400C. The efficiency increases with CO2 fraction at high pressure ratios but exhibits a slight inverse dependence at low pressure ratios. The parametric study shows that for low purge steam demand, steam generation improves exhaust heat recovery and increases efficiency

  8. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 2: Base Case and Sensitivity Analysis

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Part 1 (10.1021/ef3014103) of this series describes a new rotary reactor for gas-fueled chemical-looping combustion (CLC), in which, a solid wheel with microchannels rotates between the reducing and oxidizing streams. The oxygen carrier (OC) coated on the surfaces of the channels periodically adsorbs oxygen from air and releases it to oxidize the fuel. A one-dimensional model is also developed in part 1 (10.1021/ef3014103). This paper presents the simulation results based on the base-case design parameters. The results indicate that both the fuel conversion efficiency and the carbon separation efficiency are close to unity. Because of the relatively low reduction rate of copper oxide, fuel conversion occurs gradually from the inlet to the exit. A total of 99.9% of the fuel is converted within 75% of the channel, leading to 25% redundant length near the exit, to ensure robustness. In the air sector, the OC is rapidly regenerated while consuming a large amount of oxygen from air. Velocity fluctuations are observed during the transition between sectors because of the complete reactions of OCs. The gas temperature increases monotonically from 823 to 1315 K, which is mainly determined by the solid temperature, whose variations with time are limited within 20 K. The overall energy in the solid phase is balanced between the reaction heat release, conduction, and convective cooling. In the sensitivity analysis, important input parameters are identified and varied around their base-case values. The resulting changes in the model-predicted performance revealed that the most important parameters are the reduction kinetics, the operating pressure, and the feed stream temperatures. © 2012 American Chemical Society.

  9. Utilization of chemical looping strategy in coal gasification processes

    Institute of Scientific and Technical Information of China (English)

    Liangshih Fan; Fanxing Li; Shwetha Ramkumar

    2008-01-01

    Three chemical looping gasification processes, i. e. Syngas Chemical Looping (SCL) process, Coal Direct Chemical Looping (CDCL) process, and Calcium Looping process (CLP), are being developed at the Ohio State University (OSU). These processes utilize simple reaction schemes to convert carbonaceous fuels into products such as hydrogen, electricity, and synthetic fuels through the transformation of a highly reactive, highly recyclable chemical intermediate. In this paper, these novel chemical looping gasification processes are described and their advantages and potential challenges for commercialization are discussed.

  10. Chemical Looping Combustion of Rice Husk

    Directory of Open Access Journals (Sweden)

    Rashmeet Singh Monga

    2015-05-01

    Full Text Available A thermodynamic investigation of direct chemical looping combustion (CLC of rice husk is presented in this paper. Both steam and CO2 are used for gasification within the temperature range of 500–1200˚C and different amounts of oxygen carriers. Chemical equilibrium model was considered for the CLC fuel reactor. The trends in product compositions of the fuel reactor, were determined. Rice husk gasification using 3 moles H2O and 0 moles CO2 per mole carbon (in rice husk at 1 bar pressure and 900˚C was found to be the best operating point for hundred percent carbon conversion in the fuel reactor. Such detailed thermodynamic studies can be useful to design chemical looping combustion processes using different fuels.

  11. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore

  12. Development on iron-based moving bed chemical looping process%铁基移动床化学链技术进展

    Institute of Scientific and Technical Information of China (English)

    许迪恺; Tong Andrew; 曾亮; 罗四维; 范良士

    2014-01-01

    在日益增长的能源需求与日益严峻的全球气候变化带来的双重压力下,清洁、高效且经济的能源利用方法显得尤为重要。将化学链概念用于传统化石能源的转化是一种前景广阔的新技术。化学链燃烧利用载氧体间接转化含碳燃料,同时实现二氧化碳的捕集。俄亥俄州立大学研发了采用铁基载氧体和移动床反应器的化学链技术,可实现天然气、煤、生物质等多种燃料向电力、氢、液体燃料等产品的零排放转化。目前,合成气化学链(syngas chemical looping, SCL)和煤直接化学链(coal direct chemical looping, CDCL)技术两套25 kWth级小试装置已成功运行总计超过850 h,一套250 kWth级的高压SCL装置即将投入示范运行。%Driven by increasing demands for energy and concerns for climate change, more attention are paid to the development of clean, efficient, and economical technologies for energy conversion, among which chemical looping is considered as a promising alternative for fossil fuel conversion. Chemical looping processes enable highly efficient in situ CO2 capture in oxidation of carbonaceous fuels by making use of solid oxygen carriers. The Ohio State University (OSU) has developed a unique chemical looping technology utilizing iron-based oxygen carrier and moving bed reactors. Thermodynamic analysis shows that counter-current moving bed reactor can maximize oxygen carrier conversion while fully converting fuels, enabling high purity H2 production by iron-steam reaction. OSU chemical looping is highly flexible for converting a variety of gaseous and solid fuels to electricity, H2, and chemicals with CO2 captured. To date, the syngas chemical looping (SCL) technology and the coal direct chemical looping technology has been successfully operated for more than 850 h in total on two 25 kWth sub-pilot units. A 250 kWth high pressure SCL pilot unit is constructed at National Carbon Capture Center

  13. Advancements in Development of Chemical-Looping Combustion: A Review

    Directory of Open Access Journals (Sweden)

    He Fang

    2009-01-01

    Full Text Available Chemical-looping combustion (CLC is a novel combustion technology with inherent separation of greenhouse CO2. Extensive research has been performed on CLC in the last decade with respect to oxygen carrier development, reaction kinetics, reactor design, system efficiencies, and prototype testing. Transition metal oxides, such as Ni, Fe, Cu, and Mn oxides, were reported as reactive species in the oxygen carrier particles. Ni-based oxygen carriers exhibited the best reactivity and stability during multiredox cycles. The performance of the oxygen carriers can be improved by changing preparation method or by making mixedoxides. The CLC has been demonstrated successfully in continuously operated prototype reactors based on interconnected fluidized-bed system in the size range of 0.3–50 kW. High fuel conversion rates and almost 100%  CO2 capture efficiencies were obtained. The CLC system with two interconnected fluidized-bed reactors was considered the most suitable reactor design. Development of oxygen carriers with excellent reactivity and stability is still one of the challenges for CLC in the near future. Experiences of building and operating the large-scale CLC systems are needed before this technology is used commercially. Chemical-looping reforming (CLR and chemical-looping hydrogen (CLH are novel chemical-looping techniques to produce synthesis gas and hydrogen deserving more attention and research.

  14. Chemical looping reforming of generator gas

    Energy Technology Data Exchange (ETDEWEB)

    Mendiara, T.; Jensen, Anker; Glarborg, P.

    2010-02-15

    The main objective of this work is to investigate the carbon deposition during reforming of hydrocarbons in a Chemical Looping Reformer (CLR). This knowledge is needed to asses the viability of the CLR technology in reforming tar from biomass gasification preserving lighter hydrocarbons and minimizing the carbon formation during the process. Two different setups were used to test the reactivity of the different samples in the conditions of interest for the tar reforming process: 1) Fixed bed flow reactor (FR), and 2) Thermogravimetric analyzer (TGA). In the experiments, the gas atmosphere was switched from reducing to oxidizing atmosphere in every cycle. During the oxidizing cycle, the carrier was regenerated using a mixture of oxygen and nitrogen. Four different oxygen carriers based on nickel (Ni40 and Ni60), manganese (Mn) and ilmenite (Fe) were tested. In the tests, toluene was used to simulate the tars. The Fe and the Mn carrier reacted to a small extent with methane at the highest temperature studied, 800 degrees C. The Ni-carriers did not react at 600 degrees C at first, but they showed some reactivity after having been activated at the higher temperature. Carbon formation occurred with the Ni-carriers, more so with the Ni60 than the Ni40. Ni40, Mn and Fe were activated at the higher temperature. However, Fe showed only low capacity. Ni60 showed no capability of tar reforming. Ni40 showed a high tendency to carbon formation at 800 degrees C, but the formation could be lowered by changing some parameters. Mn formed almost no carbon. Ni40 and Mn were chosen for further studies. Carbon deposition occurred for both Ni40 and Mn, but the amount deposited for Ni40 was about 10 times bigger. Ni40 reacted with the methane and toluene only at 800 degrees C. The conversion over Mn was not as big as for toluene alone. Carbon was formed from carbon monoxide on the Ni40 carrier and on the Mn, but to a much less extent on the latter one. The presence of hydrogen decreased

  15. Thermodynamic possibilities and constraints for pure hydrogen production by a nickel and cobalt-based chemical looping process at lower temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, Karel [Institute for Energy, Joint Research Centre of EC, 1755 ZG Petten (Netherlands); Institute of Chemical Process Fundamentals, Academy of Sciences of Czech Republic, Rozvojova 135, 165 02 Praha 6 - Suchdol 2 (Czech Republic); Siewiorek, Aleksandra; Baxter, David [Institute for Energy, Joint Research Centre of EC, 1755 ZG Petten (Netherlands); Rogut, Jan [Institute for Energy, Joint Research Centre of EC, 1755 ZG Petten (Netherlands); Central Mining Institute, Plac Gwarkow 1, 40 166 Katowice (Poland); Pohorely, Michael [Institute of Chemical Process Fundamentals, Academy of Sciences of Czech Republic, Rozvojova 135, 165 02 Praha 6 - Suchdol 2 (Czech Republic)

    2008-02-15

    The reduction of nickel and cobalt oxides by hydrogen, CO, CH{sub 4} and model syngas (mixtures of CO + H{sub 2} or H{sub 2} + CO + CO{sub 2}) and oxidation by water vapour has been studied from the thermodynamic and chemical equilibrium points of view. Attention was concentrated not only on convenient conditions for reduction of the relevant oxides to metals at temperatures in the range 400-1000 K, but also on the possible formation of undesired soot, carbides and carbonates as precursors for carbon monoxide and carbon dioxide formation in the steam oxidation step. Reduction of nickel and cobalt oxides (NiO, CoO and Co{sub 3}O{sub 4}) by hydrogen or CO at such temperatures is feasible. The oxidation of Ni and Co by steam and simultaneous production of hydrogen is thermodynamically the more difficult step at temperatures of 400-900 K. For the Ni-NiO and Co-CoO systems, the formation of corresponding Ni/Co-ferrite or Ni/Co aluminum spinel could be used for a higher hydrogen equilibrium yield. Only such Ni-NiO and Co-CoO systems with the support of ferrite and aluminum spinel formation could be suitable systems for chemical looping production of hydrogen by the chemical looping redox process. Oxidation of mixed Ni/Co-Fe metals or alloys by steam without segregation caused by preferential oxidation of Fe is critical for the ferrites. For processes based on Ni/Co aluminum spinel, reduction to metals is the critical part of the cyclic process. Under strongly reducing conditions, at high CO concentrations/pressures, formation of nickel carbide (Ni{sub 3}C) before cobalt carbide Co{sub 2}C is thermodynamically favored. Pressurized conditions during the reduction step with CO/CO{sub 2} containing gases enhance the formation of soot and carbon containing carbide and/or carbonate compounds. (author)

  16. Experimental Investigation of CaMnO3−δ Based Oxygen Carriers Used in Continuous Chemical-Looping Combustion

    Directory of Open Access Journals (Sweden)

    Peter Hallberg

    2014-01-01

    Full Text Available Three materials of perovskite structure, CaMn1−xMxO3−δ (M = Mg or Mg and Ti, have been examined as oxygen carriers in continuous operation of chemical-looping combustion (CLC in a circulating fluidized bed system with the designed fuel power 300 W. Natural gas was used as fuel. All three materials were capable of completely converting the fuel to carbon dioxide and water at 900°C. All materials also showed the ability to release gas phase oxygen when fluidized by inert gas at elevated temperature (700–950°C; that is, they were suitable for chemical looping with oxygen uncoupling (CLOU. Both fuel conversion and oxygen release improved with temperature. All three materials also showed good mechanical integrity, as the fraction of fines collected during experiments was small. These results indicate that the materials are promising oxygen carriers for chemical-looping combustion.

  17. Operation of fixed-bed chemical looping combustion

    NARCIS (Netherlands)

    Kimball, E.; Hamers, H.P.; Cobden, P.D.; Gallucci, F.; Sint Annaland, M. van

    2013-01-01

    Chemical Looping Combustion is an alternative technology for CO2 capture. While most systems utilize dual circulating fluidized-beds, this work shows that fixed-bed Chemical Looping Combustion is a feasible configuration for this technology. The inherent separation of the CO2 from the depleted air s

  18. Chemical Looping Combustion Reactions and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2011-07-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO2 capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This work focused on two classes of oxygen carrier, one that merely undergoes a change in oxidation state, such as Fe3O4/Fe2O3 and one that is converted from its higher to its lower oxidation state by the release of oxygen on heating, i.e., CuO/Cu2O. This topical report discusses the results of four complementary efforts: (1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification (3) the exploration of operating characteristics in the laboratory-scale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability (4) the identification of mechanisms and rates for the copper, cuprous oxide, and cupric oxide system using thermogravimetric analysis.

  19. Progress of energy system with chemical-looping combustion

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; HONG Hui; HAN Tao

    2009-01-01

    Chemical-looping combustion with zero energy penalty of CO2 separation is a significant breakthrough in resolving energy and environment problems for power generation systems. This paper summarizes the research on energy systems with chemical-looping combustion conducted in recent years, discloses the underlying mechanism of energy release of chemical-looping combustion, describes the trends of the key technology development, and presents the proposed chemicaMooping combustion thermal cycles. This paper may provide a new direction to the synthesis of the next-generation energy system compatible with environment.

  20. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  1. Physical/chemical closed-loop life support

    Science.gov (United States)

    Lawless, James G.

    1988-01-01

    Information on physical/chemical closed-loop life support systems are given in viewgraph form. Information is given on program objectives, the elements of a life support system, and Pathfinder program elements.

  2. Carbon Capture via Chemical-Looping Combustion and Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Marcus; Mattisson, Tobias; Ryden, Magnus; Lyngfelt, Anders

    2006-10-15

    Chemical-looping combustion (CLC) is a combustion technology with inherent separation of the greenhouse gas CO{sub 2}. The technique involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, a fuel reactor and an air reactor, are used in the process. In the fuel reactor, the metal oxide is reduced by the reaction with the fuel and in the air reactor; the reduced metal oxide is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, and almost pure stream of CO{sub 2} is obtained when water is condensed. Considerable research has been conducted on CLC in the last decade with respect to oxygen carrier development, reactor design, system efficiencies and prototype testing. The technique has been demonstrated successfully with both natural gas and syngas as fuel in continuous prototype reactors based on interconnected fluidized beds within the size range 0.3 - 50 kW, using different types of oxygen carriers based on the metals Ni, Co, Fe, Cu and Mn. From these tests it can be established that almost complete conversion of the fuel can be obtained and 100% CO{sub 2} capture is possible. Further, two different types of chemical-looping reforming (CLR) have been presented in recent years. CLR is a technology to produce hydrogen with inherent CO{sub 2} capture. This paper presents an overview of the research performed on CLC and CLR highlights the current status of the technology.

  3. Chemical looping integration with a carbon dioxide gas purification unit

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jr., Herbert E.; Jukkola, Glen D.; Thibeault, Paul R.; Liljedahl, Gregory N.

    2017-01-24

    A chemical looping system that contains an oxidizer and a reducer is in fluid communication with a gas purification unit. The gas purification unit has at least one compressor, at least one dryer; and at least one distillation purification system; where the gas purification unit is operative to separate carbon dioxide from other contaminants present in the flue gas stream; and where the gas purification unit is operative to recycle the contaminants to the chemical looping system in the form of a vent gas that provides lift for reactants in the reducer.

  4. Design of a rotary reactor for chemical-looping combustion. Part 2: Comparison of copper-, nickel-, and iron-based oxygen carriers

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. Part 1 of this series studied the fundamentals of the reactor design and proposed a comprehensive design procedure, enabling a systematic methodology of designing and evaluating the rotary CLC reactor with different OCs and operating conditions. This paper presents the application of the methodology to the designs with three commonly used OCs, i.e., copper, nickel, and iron. The physical properties and the reactivities of the three OCs are compared at operating conditions suitable for the rotary CLC. Nickel has the highest reduction rate, but relatively slow oxidation reactivity while the iron reduction rate is most sensitive to the fuel concentration. The design parameters and the operating conditions for the three OCs are selected, following the strategies proposed in Part 1, and the performances are evaluated using a one-dimensional plug-flow model developed previously. The simulations show that for all OCs, complete fuel conversion and high carbon separation efficiency can be achieved at periodic stationary state with reasonable operational stabilities. The nickel-based design includes the smallest dimensions because of its fast reduction rate. The operation of nickel case is mainly limited to the slow oxidation rate, and hence a relatively large share of air sector is used. The iron-based design has the largest size, due to its slow reduction reactivity near the exit or in the fuel purge sector where the fuel concentration is low. The gas flow temperature increases monotonically for all the cases, and is mainly determined by the solid temperature. In the periodic state, the local temperature variation is within 40 K and the thermal distortion is limited. The design of the rotary CLC is

  5. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    particles concentration in the upper section of the reactors, thus the gas solids contact. They are interconnected by means of two pneumatically controlled divided loop-seals and a bottom extraction/lift. The system is designed to be as compact as possible, to help up-scaling and enclosure into a pressurized vessel, aiming pressurization in a second phase. In addition several industrial solutions have been utilized, from highly loaded cyclones to several levels of secondary air injections.The divided loop-seals are capable to internally re-circulate part of the entrained solids, uncoupling the solids entrainment from the solids exchange. This will provide a better control on the process increasing its flexibility and helping to fulfil downstream requirements. No mechanical valves are utilized, but gas injections. The bottom extraction compensates the lower entrainment of the FR which has less fluidising gas availability and smaller cross section than the AR. The lift allows adjusting the reactors bottom inventories, thus the pressures in the bottom sections of the reactors. In this way the divided loop-seals are not exposed to large pressure unbalances and the whole system is hydrodynamically more robust. The proposed design was finally validated by means of a full scale cold flow model (CFM), without chemical reactions. A thorough evaluation of the scaling state-of-the-art in fluidization engineering has been done; two are the approaches. One consists of building a small scale model which resembles the hydrodynamics of the bigger hot setup, by keeping constant a set of dimensionless numbers. The other is based on the construction of a full scale model, being careful to be in the same fluidization regime and to utilize particles with the same fluidization properties as the hot setup. In this way the surface to volume ratio is kept the same as that one of the hot rig. The idea presented in this work combines those two strategies, building a full scale CFM. In this way, it

  6. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  7. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    particles concentration in the upper section of the reactors, thus the gas solids contact. They are interconnected by means of two pneumatically controlled divided loop-seals and a bottom extraction/lift. The system is designed to be as compact as possible, to help up-scaling and enclosure into a pressurized vessel, aiming pressurization in a second phase. In addition several industrial solutions have been utilized, from highly loaded cyclones to several levels of secondary air injections.The divided loop-seals are capable to internally re-circulate part of the entrained solids, uncoupling the solids entrainment from the solids exchange. This will provide a better control on the process increasing its flexibility and helping to fulfil downstream requirements. No mechanical valves are utilized, but gas injections. The bottom extraction compensates the lower entrainment of the FR which has less fluidising gas availability and smaller cross section than the AR. The lift allows adjusting the reactors bottom inventories, thus the pressures in the bottom sections of the reactors. In this way the divided loop-seals are not exposed to large pressure unbalances and the whole system is hydrodynamically more robust. The proposed design was finally validated by means of a full scale cold flow model (CFM), without chemical reactions. A thorough evaluation of the scaling state-of-the-art in fluidization engineering has been done; two are the approaches. One consists of building a small scale model which resembles the hydrodynamics of the bigger hot setup, by keeping constant a set of dimensionless numbers. The other is based on the construction of a full scale model, being careful to be in the same fluidization regime and to utilize particles with the same fluidization properties as the hot setup. In this way the surface to volume ratio is kept the same as that one of the hot rig. The idea presented in this work combines those two strategies, building a full scale CFM. In this way, it

  8. Feasibility study of sulfates as oxygen carriers for chemical looping processes

    Directory of Open Access Journals (Sweden)

    Ganesh Kale

    2012-12-01

    Full Text Available The operational feasibility temperature range of chemical looping combustion (CLC and chemical looping reforming (CLR of the fuels methane, propane, iso-octane and ethanol was explored using the common sulphates

  9. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    SHEN LaiHong; ZHENG Min; XIAO Jun; ZHANG Hui; XIAO Rui

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier.It can be used for CO2 capture in power generating processes. In this paper,chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the condensation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal.Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier particles, etc., are discussed. Some useful results are achieved. The suitable temperature of air reactor should be between 1050-1150Cand the optimal temperature of the fuel reactor be between 900-950℃.

  10. Chemical looping combustion of coal in interconnected fluidized beds

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can be used for CO2 capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized beds with inherent separation of CO2 is proposed. It consists of a high velocity fluidized bed as an air reactor in which oxygen carrier is oxidized, a cyclone, and a bubbling fluidized bed as a fuel reactor in which oxygen carrier is reduced by direct and indirect reactions with coal. The air reactor is connected to the fuel reactor through the cyclone. To raise the high carbon conversion efficiency and separate oxygen carrier particle from ash, coal slurry instead of coal particle is introduced into the bottom of the bubbling fluidized bed. Coal gasification and the reduction of oxygen carrier with the water gas take place simultaneously in the fuel reactor. The flue gas from the fuel reactor is CO2 and water. Almost pure CO2 could be obtained after the con- densation of water. The reduced oxygen carrier is then returned back to the air reactor, where it is oxidized with air. Thermodyanmics analysis indicates that NiO/Ni oxygen carrier is the optimal one for chemical looping combustion of coal. Simulation of the processes for chemical looping combustion of coal, including coal gasification and reduction of oxygen carrier, is carried out with Aspen Plus software. The effects of air reactor temperature, fuel reactor temperature, and ratio of water to coal on the composition of fuel gas, recirculation of oxygen carrier par- ticles, etc., are discussed. Some useful results are achieved. The suitable tem- perature of air reactor should be between 1050―1150℃and the optimal temperature of the fuel reactor be between 900―950℃.

  11. A novel double loop control model design for chemical unstable processes.

    Science.gov (United States)

    Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He

    2014-03-01

    In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods.

  12. Chemical looping combustion. Fuel conversion with inherent CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Brandvoll, Oeyvind

    2005-07-01

    Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into separate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and fuel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a variant of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapour. The thermodynamic potential and feasibility of CLC has been studied by means of process simulations and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most important process parameters in CLC. A promising thermodynamic potential of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiAl) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmospheric pressure and temperatures above 600 deg C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yielding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long-term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidation. The results for Ni

  13. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2015-09-01

    Full Text Available Chemical-looping technology is one of the promising CO2 capture technologies. It generates a CO2 enriched flue gas, which will greatly benefit CO2 capture, utilization or sequestration. Both chemical-looping combustion (CLC and chemical-looping gasification (CLG have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coal may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA has been widely used for the development of oxygen carriers (e.g., oxide reactivity. Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC and Chemical-Looping with Oxygen Uncoupling (CLOU. The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.

  14. Validation of chemical-looping with oxygen uncoupling (CLOU using Cu-based oxygen carrier and comparative study of Cu, Mn and Co based oxygen carriers using ASPEN plus

    Directory of Open Access Journals (Sweden)

    Xiao Zhang, Subhodeep Banerjee, Ramesh K. Agarwal

    2015-01-01

    Full Text Available The chemical-looping with oxygen uncoupling (CLOU has been demonstrated to be an effective technological pathway for high-efficiency low-cost carbon dioxide capture when particulate coal serves as the fuel. In this paper, complete process-level modeling of CLOU process conducted in ASPEN Plus is presented. The heat content of fuel and air reactors and air/flue gas heat exchangers is carefully examined. It is shown that the established model provides results which are in excellent agreement with the experiments for the overall power output of the CLOU process. Finally the effect of varying the air flow rate and three different types of coal as the solid fuel on energy output is investigated, and the performance of three – Copper (Cu, Manganese (Mn and Cobalt (Co based oxygen carriers in CLOU process is compared. It is shown that there exists an optimal air flow rate to obtain the maximum power output for a given coal feeding rate and coal type. The effect of three different oxygen carriers on energy output is also investigated using the optimal air flow rate. Among the three oxygen carriers - CuO, Mn2O3, and Co3O4; Mn2O3 shows the best performance on power output. The results presented in this paper can be used to estimate the amount of various quantities such as the air flow rate and oxygen carrier (and its type required to achieve near optimal energy output from a CLOU process based power plant.

  15. Closed loop chemical systems for energy storage and transmission (chemical heat pipe). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vakil, H.B.; Flock, J.W.

    1978-02-01

    The work documents the anlaysis of closed loop chemical systems for energy storage and transmission, commonly referred to as the Chemical Heat Pipe (CHP). Among the various chemical reaction systems and sources investigated, the two best systems were determined to be the high temperature methane/steam reforming reaction (HTCHP) coupled to a Very High Temperature Gas Cooled Reactor (VHTR) and the lower temperature, cyclohexane dehydrogenation reaction (LTCHP) coupled to existing sources such as coal or light water reactors. Solar and other developing technologies can best be coupled to the LTCHP. The preliminary economic and technical analyses show that both systems could transport heat at an incremental cost of approximately $1.50/GJ/160 km (in excess of the primary heat cost of $2.50/GJ), at system efficiencies above 80%. Solar heat can be transported at an incremental cost of $3/GJ/160 km. The use of the mixed feed evaporator concept developed in this work contributes significantly to reducing the transportation cost and increasing the efficiency of the system. The LTCHP shows the most promise of the two systems if the technical feasibility of the cyclic closed loop chemical reaction system can be established. An experimental program for establishing this feasibility is recommended. Since the VHTR is several years away from commercial demonstration and the HTCHP chemical technology is well developed, future HTCHP programs should be aimed at VHTR and interface problems.

  16. Chemical looping combustion: A new low-dioxin energy conversion technology.

    Science.gov (United States)

    Hua, Xiuning; Wang, Wei

    2015-06-01

    Dioxin production is a worldwide concern because of its persistence and carcinogenic, teratogenic, and mutagenic effects. The pyrolysis-chemical looping combustion process of disposing solid waste is an alternative to traditional solid waste incineration developed to reduce the dioxin production. Based on the equilibrium composition of the Deacon reaction, pyrolysis gas oxidized by seven common oxygen carriers, namely, CuO, NiO, CaSO4, CoO, Fe2O3, Mn3O4, and FeTiO3, is studied and compared with the pyrolysis gas directly combusted by air. The result shows that the activity of the Deacon reaction for oxygen carriers is lower than that for air. For four typical oxygen carriers (CuO, NiO, Fe2O3, and FeTiO3), the influences of temperature, pressure, gas composition, and tar on the Deacon reaction are discussed in detail. According to these simulation results, the dioxin production in China, Europe, the United States, and Japan is predicted for solid waste disposal by the pyrolysis-chemical looping combustion process. Thermodynamic analysis results in this paper show that chemical looping combustion can reduce dioxin production in the disposal of solid waste.

  17. Process/Equipment Co-Simulation on Syngas Chemical Looping Process

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Zhou, Qiang; Fan, Liang-Shih

    2012-09-30

    The chemical looping strategy for fossil energy applications promises to achieve an efficient energy conversion system for electricity, liquid fuels, hydrogen and/or chemicals generation, while economically separate CO{sub 2} by looping reaction design in the process. Chemical looping particle performance, looping reactor engineering, and process design and applications are the key drivers to the success of chemical looping process development. In order to better understand and further scale up the chemical looping process, issues such as cost, time, measurement, safety, and other uncertainties need to be examined. To address these uncertainties, advanced reaction/reactor modeling and process simulation are highly desired and the modeling efforts can accelerate the chemical looping technology development, reduce the pilot-scale facility design time and operating campaigns, as well as reduce the cost and technical risks. The purpose of this work is thus to conduct multiscale modeling and simulations on the key aspects of chemical looping technology, including particle reaction kinetics, reactor design and operation, and process synthesis and optimization.

  18. Phase transition of strongly interacting matter with a chemical potential dependent Polyakov loop potential

    CERN Document Server

    Shao, Guo-yun; Di Toro, Massimo; Colonna, Maria; Gao, Xue-yan; Gao, Ning

    2016-01-01

    We construct a hadron-quark two-phase model based on the Walecka-quantum hadrodynamics and the improved Polyakov-Nambu--Jona-Lasinio model with an explicit chemical potential dependence of Polyakov-loop potential ($\\mu$PNJL model). With respect to the original PNJL model, the confined-deconfined phase transition is largely affected at low temperature and large chemical potential. Using the two-phase model, we investigate the equilibrium transition between hadronic and quark matter at finite chemical potentials and temperatures. The numerical results show that the transition boundaries from nuclear to quark matter move towards smaller chemical potential (lower density) when the $\\mu$-dependent Polyakov loop potential is taken. In particular, for charge asymmetric matter, we compute the local asymmetry of $u, d$ quarks in the hadron-quark coexisting phase, and analyse the isospin-relevant observables possibly measurable in heavy-ion collision (HIC) experiments. In general new HIC data on the location and proper...

  19. Three loop HTL perturbation theory at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael [Department of Physics, Kent State University, Kent, OH 44242 (United States); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim (Norway); Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Su, Nan [Faculty of Physics, University of Bielefeld, D-33615 Bielefeld (Germany)

    2014-11-15

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  20. Three loop HTL perturbation theory at finite temperature and chemical potential

    CERN Document Server

    Strickland, Michael; Bandyopadhyay, Aritra; Haque, Najmul; Mustafa, Munshi G; Su, Nan

    2014-01-01

    In this proceedings contribution we present a recent three-loop hard-thermal-loop perturbation theory (HTLpt) calculation of the thermodynamic potential for a finite temperature and chemical potential system of quarks and gluons. We compare the resulting pressure, trace anomaly, and diagonal/off-diagonal quark susceptibilities with lattice data. We show that there is good agreement between the three-loop HTLpt analytic result and available lattice data.

  1. Syngas Generation from Methane Using a Chemical-Looping Concept: A Review of Oxygen Carriers

    Directory of Open Access Journals (Sweden)

    Kongzhai Li

    2013-01-01

    Full Text Available Conversion of methane to syngas using a chemical-looping concept is a novel method for syngas generation. This process is based on the transfer of gaseous oxygen source to fuel (e.g., methane by means of a cycling process using solid oxides as oxygen carriers to avoid direct contact between fuel and gaseous oxygen. Syngas is produced through the gas-solid reaction between methane and solid oxides (oxygen carriers, and then the reduced oxygen carriers can be regenerated by a gaseous oxidant, such as air or water. The oxygen carrier is recycled between the two steps, and the syngas with a ratio of H2/CO = 2.0 can be obtained successively. Air is used instead of pure oxygen allowing considerable cost savings, and the separation of fuel from the gaseous oxidant avoids the risk of explosion and the dilution of product gas with nitrogen. The design and elaboration of suitable oxygen carriers is a key issue to optimize this method. As one of the most interesting oxygen storage materials, ceria-based and perovskite oxides were paid much attention for this process. This paper briefly introduced the recent research progresses on the oxygen carriers used in the chemical-looping selective oxidation of methane (CLSOM to syngas.

  2. Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lou, Xinsheng; Neuschaefer, Carl; Chaudry, Majid; Quinn, Joseph

    2012-07-31

    This document provides the results of the project through September 2009. The Phase I project has recently been extended from September 2009 to March 2011. The project extension will begin work on Chemical Looping (CL) Prototype modeling and advanced control design exploration in preparation for a scale-up phase. The results to date include: successful development of dual loop chemical looping process models and dynamic simulation software tools, development and test of several advanced control concepts and applications for Chemical Looping transport control and investigation of several sensor concepts and establishment of two feasible sensor candidates recommended for further prototype development and controls integration. There are three sections in this summary and conclusions. Section 1 presents the project scope and objectives. Section 2 highlights the detailed accomplishments by project task area. Section 3 provides conclusions to date and recommendations for future work.

  3. 基于化学链制氧的 O2/CO2燃烧电站性能分析%Performance analysis of an O2/CO2 power plant based on chemical looping air separation

    Institute of Scientific and Technical Information of China (English)

    顾鹏飞; 向文国

    2015-01-01

    采用 Aspen Plus 软件对基于化学链高温空分制氧技术(CLAS)的 O2/CO2燃烧电厂全过程进行建模,对化学链高温空分单元进行运行参数及功耗分析,并对化学链高温空分单元、锅炉热力发电系统和烟气冷却压缩单元(CCU)进行耦合并优化,确定高温烟气抽取温度及抽取流量.结果表明,O2/CO2燃烧系统的净效率为39.2%,仅比不能进行碳捕集的常规电厂低3.54%.然而,基于深冷空分技术的 O2/CO2燃烧系统会使得全厂净效率下降8%~10%.当采取优化措施后,O2/CO2燃烧系统效率能够提高1.65%.烟气冷却压缩单元能耗占总能耗的59.7%,泵能耗占27.1%.化学链制氧单元的供氧浓度为12.2%.%The process of an O2 /CO2 power plant based on chemical looping air separation (CLAS)is modeled using the Aspen Plus software.The operating parameters and power consumption of the CLAS unit are analyzed.The CLAS system,thermal power generation system and flue gas cooling and compression unit (CCU)are coupled and optimized,and the temperature and flow of the flue gas extraction are determined.The results indicate that the net plant efficiency of CLAS O2 /CO2 power plant is 39.2%,which is only 3.54%lower than that of the conventional power plants without carbon capture.However,the O2 /CO2 power plant based on cryogenic air separation technology brings 8% to 10%decrease in the net plant efficiency.By optimizations,the net plant efficiency increases by 1.65%.The energy consumption of the CCU accounts for 59.7% and the pump accounts for 27.1%.The oxygen concentration from the chemical looping air separation unit is 12.2%.

  4. Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei-Ping; Cao, Yan

    2012-11-30

    Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen

  5. Investigation of the Performance of Low-Cost Calcium-Based Oxygen Carrier in Chemical Looping Combustion of Coal%廉价钙基载氧体煤化学链燃烧试验研究

    Institute of Scientific and Technical Information of China (English)

    施文平; 肖睿; 杨一超; 张帅

    2012-01-01

    化学链燃烧技术逐渐发展成为一项非常有前景的实现CO2高效低能耗分离捕集技术.在小型固定床上研究了廉价钙基载氧体的还原/氧化反应特性以及持续循环能力,讨论了温度、压力、煤/载氧体质量比对钙基载氧体反应特性的影响.试验结果表明,温度和压力的升高能显著增强煤气化产物与CaSO4之间的反应,导致CO2收率和碳转化率相应增加.在煤/载氧体高质量比情况下,由于实际反应过程中存在平行反应、载氧体颗粒内部传质阻力等因素,造成载氧体的失活和载氧能力下降.故为得到高的CO2收率和碳转化率,煤/载氧体质量比应控制在0.14以下.%Chemical-looping combustion(CLC) will be a very promising technology due to its high efficiency and low-cost for CO2 separation.In this paper,the reduction/oxidation characteristic as well as the cyclic performance of low-cost calcium-based oxygen carrier was investigated in a bench-scale fixed-bed reactor.The effect of temperature,operating pressure and coal/oxygen carrier mass ratio on the performance of calcium-based oxygen carrier were discussed.The results showed that increasing temperature and pressure can obviously enhance the reaction of calcium-based oxygen carrier with coal gasification products,which can lead to higher CO2 yield and carbon conversion.Such factors as the parallel reactions and the resistance of internal mass transfer in the oxygen carrier particles in practical reaction lead to inactivation of the oxygen carrier and the decrease of the oxygen carring ability.The coal/oxygen carrier mass ratio should be limited to 0.14 to get higher CO2 yield and carbon conversion.

  6. Loop Peeling Based on Quasi-Invariance/Induction Variables

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Loop optimization plays an important role in compileroptimization and program t ransformation. Many sophisticated techniques such as loop-invariance code motio n have been developed. Loop peeling is a technique to assist parallelization of l oops by unfolding loops a few times. This paper introduces a novel technique cal led loop peeling based on quasi-invariance/induction variables. It aims at find i ng a general and automatic method to derive how many times a given loop should b e peeled. Our technique allows for a number of iterations before some variables assigned inside a given loop become invariance or induction variables. In this p aper we define the notion of quasi-invariance/induction variables, present an a l gorithm for statically computing the optimal peeling length of a given loop. Our technique can increase the accuracy of program analyses, improve the effectiven ess of loop peeling and is well-suited as supporting other optimization techniq ues in the context of supercomputers.

  7. Three-loop HTLpt thermodynamics at finite temperature and chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Najmul; Bandyopadhyay, Aritra [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700107 (India); Andersen, Jens O. [Department of Physics, Norwegian University of Science and Technology,N-7491 Trondheim (Norway); Mustafa, Munshi G. [Theory Division, Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata-700107 (India); Strickland, Michael [Department of Physics, Kent State University,Kent, Ohio 44242 (United States); Su, Nan [Faculty of Physics, University of Bielefeld,D-33615 Bielefeld (Germany)

    2014-05-07

    We calculate the three-loop thermodynamic potential of QCD at finite temperature and chemical potential(s) using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The resulting analytic thermodynamic potential allows us to compute the pressure, energy density, and entropy density of the quark-gluon plasma. Using these we calculate the trace anomaly, speed of sound, and second-, fourth-, and sixth-order quark number susceptibilities. For all observables considered we find good agreement between our three-loop HTLpt calculations and available lattice data for temperatures above approximately 300 MeV.

  8. Loop Subdivision Surface Based Progressive Interpolation

    Institute of Scientific and Technical Information of China (English)

    Fu-Hua (Frank) Cheng; Feng-Tao Fan; Shu-Hua Lai; Cong-Lin Huang; Jia-Xi Wang; Jun-Hai Yong

    2009-01-01

    A new method for constructing interpolating Loop subdivision surfaces is presented. The new method is an extension of the progressive interpolation technique for B-splines. Given a triangular mesh M, the idea is to iteratively upgrade the vertices of M to generate a new control mesh M such that limit surface of M would interpolate M. It can be shown that the iterative process is convergent for Loop subdivision surfaces. Hence, the method is well-defined. The new method has the advantages of both a local method and a global method, i.e., it can handle meshes of any size and any topology while generating smooth interpolating subdivision surfaces that faithfully resemble the shape of the given meshes. The meshes considered here can be open or closed.

  9. Regenerable mixed copper-iron-inert support oxygen carriers for solid fuel chemical looping combustion process

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Tian, Hanjing

    2016-12-20

    The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600.degree. C.-1000.degree. C. particularly for solid fuels such as carbon and coal.

  10. Redox energetics of novel perovskite-type oxygen carriers for chemical looping reforming

    OpenAIRE

    2012-01-01

    The present work focuses on the redox energetics of novel perovskite-type oxygen carriers for chemical looping reforming. The aim of this study is to increase the level of knowledge on the redox characteristics of materials for possible applications as the oxygen carriers for the chemical looping processes. Here we focus on the perovskite-type oxides (ABO3) with lanthanum on the A-site and first row transition metals on the B-site since first row transition metals normally have more than ...

  11. Chemical Looping with Copper Oxide as Carrier and Coal as Fuel Boucle chimique pour la combustion du charbon avec un transporteur d’oxygène à base d’oxyde de cuivre

    Directory of Open Access Journals (Sweden)

    Eyring E.M.

    2011-04-01

    Full Text Available A preliminary analysis has been conducted of the performance of a Chemical Looping system with Oxygen Uncoupling (CLOU with copper oxide as the oxygen carrier and coal approximated by carbon as the fuel. The advantages of oxygen uncoupling are demonstrated by providing the energy balances, the circulation rate of oxygen carrier, the oxygen carrier mass loadings, the carbon burnout and oxygen partial pressure in the fuel reactor. Experimental data on the cycling of cuprous oxide to cupric oxide and kinetics for the oxidation and decomposition reactions of the oxides were obtained for use in the analysis. For this preliminary study unsupported oxides were utilized. The decomposition temperatures were rapid at the high temperature of 950°C selected for the fuel reactor. The oxidation kinetics peaked at about 800°C with the decrease in rate at higher temperatures, a decrease which is attributed in the literature to the temperature dependence of the diffusional resistance of the CuO layer surrounding the Cu2O; the diffusion occurs through grain boundaries in the CuO layers and the rate of diffusion decreases as a consequence of growth of CuO grains with increasing temperature. The analysis shows the advantages of CLOU in providing rapid combustion of the carbon with carbon burnout times lower than the decomposition times of the oxygen carrier. For the full potential of CLOU to be established additional data are needed on the kinetics of supported oxides at the high temperatures (>850°C at which oxygen is released by the CuO in the fuel reactor. Une analyse préliminaire a été conduite pour estimer les performances d’un procédé en boucle chimique découplé (CLOU, chemical looping uncoupling pour la combustion du charbon avec un transporteur d’oxygène à base d’oxyde de cuivre. Les avantages de ce système sont démontrés en établissant le bilan énergétique, l’inventaire et le débit de circulation du matériau transportant l

  12. A novel reactor configuration for packed bed chemical-looping combustion of syngas

    NARCIS (Netherlands)

    Hamers, H.P.; Gallucci, F.; Cobden, P.D.; Kimball, E.; Sint Annaland, M. van

    2013-01-01

    This study reports on the application of chemical looping combustion (CLC) in pressurized packed bed reactors using syngas as a fuel. High pressure operation of CLC in packed bed has a different set of challenges in terms of material properties, cycle and reactor design compared to fluidized bed ope

  13. Physical/chemical closed-loop water-recycling

    Science.gov (United States)

    Herrmann, Cal C.; Wydeven, Theodore

    1991-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on Earth, in regions where extensive water recycling is needed or where advanced water treatment is essential to meet EPA health standards.

  14. Numerical investigation of the role of clustering during oxygen-carrier regeneration in Chemical Looping Combustion

    Science.gov (United States)

    Goyal, Himanshu; Pepiot, Perrine

    2016-11-01

    In the air-reactor of a dual-bed Chemical Looping Combustion (CLC) system, the spent oxygen-carrier, in the form of metal or reduced metal oxide, is oxidized with air, typically in a high velocity riser reactor. Such a configuration provides challenging modeling issues, as the granular flow is characterized by a highly fluctuating solid volume fraction due to the formation of dense clusters. This may strongly affect the solid residence time in the air-reactor, and therefore, the extent of the oxygen-carrier regeneration and ultimately, the overall reactivity of the carrier in the fuel reactor. Here, we investigate how clustering impacts gas-solid chemical reactions in the reactor using a detailed Lagrange-Euler computational framework. The simulations account for both mass and heat transfer between the gas phase and the metal oxide particles, and the evolution of oxygen content of the metal oxide particles, or equivalently, their degree of oxidation. Two particle models of different complexity are considered. Results are analyzed to quantify the relative importance on the regeneration process of the reactor hydrodynamics. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1638837.

  15. Probing deconfinement in a chiral effective model with Polyakov loop at imaginary chemical potential

    CERN Document Server

    Morita, Kenji; Friman, Bengt; Redlich, Krzysztof

    2011-01-01

    The phase structure of the two-flavor Polyakov-loop extended Nambu-Jona-Lashinio model is explored at finite temperature and imaginary chemical potential with a particular emphasis on the confinement-deconfinement transition. We point out that the confined phase is characterized by a $\\cos3\\mu_I/T$ dependence of the chiral condensate on the imaginary chemical potential while in the deconfined phase this dependence is given by $\\cos\\mu_I/T$ and accompanied by a cusp structure induced by the Z(3) transition. We demonstrate that the phase structure of the model strongly depends on the choice of the Polyakov loop potential $\\mathcal{U}$. Furthermore, we find that by changing the four fermion coupling constant $G_s$, the location of the critical endpoint of the deconfinement transition can be moved into the real chemical potential region. We propose a new parameter characterizing the confinement-deconfinement transition.

  16. Three-loop HTLpt thermodynamics at finite temperature and isospin chemical potential

    CERN Document Server

    Andersen, Jens O; Mustafa, Munshi G; Strickland, Michael

    2015-01-01

    In a previous paper (JHEP {\\bf 05} (2014) 27), we calculated the three-loop thermodynamic potential of QCD at finite temperature $T$ and quark chemical potentials $\\mu_q$ using the hard-thermal-loop perturbation theory (HTLpt) reorganization of finite temperature and density QCD. The result allows us to study the thermodynamics of QCD at finite temperature and isospin chemical potential $\\mu_I$. We calculate the pressure, energy density, and entropy density, the trace anomaly, and the speed of sound at zero and nonzero $\\mu_I$. The second, fourth, and sixth-order isospin susceptibilities are calculated at zero $\\mu_I$. Our results can be directly compared to lattice QCD without Taylor expansions around $\\mu_q=0$ since QCD has no sign problem at finite isospin chemical potential.

  17. Timing Jitter Analysis for Clock recovery Circuits Based on an Optoelectronic Phase-Locked Loop (OPLL)

    DEFF Research Database (Denmark)

    Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo;

    2005-01-01

    Timing jitter of an OPLL based clock recovery is investigated. We demonstrate how loop gain, input and VCO signal jitter, loop filter bandwidth and a loop time delay influence jitter of the extracted clock signal......Timing jitter of an OPLL based clock recovery is investigated. We demonstrate how loop gain, input and VCO signal jitter, loop filter bandwidth and a loop time delay influence jitter of the extracted clock signal...

  18. Algorithms for a Single Hormone Closed-Loop Artificial Pancreas: Challenges Pertinent to Chemical Process Operations and Control

    Directory of Open Access Journals (Sweden)

    B. Wayne Bequette

    2016-10-01

    Full Text Available The development of a closed-loop artificial pancreas to regulate the blood glucose concentration of individuals with type 1 diabetes has been a focused area of research for over 50 years, with rapid progress during the past decade. The daily control challenges faced by someone with type 1 diabetes include asymmetric objectives and risks, and one-sided manipulated input action with frequent relatively fast disturbances. The major automation steps toward a closed-loop artificial pancreas include (i monitoring and overnight alarms for hypoglycemia (low blood glucose; (ii overnight low glucose suspend (LGS systems to prevent hypoglycemia; and (iii fully closed-loop systems that adjust insulin (and perhaps glucagon to maintain desired blood glucose levels day and night. We focus on the steps that we used to develop and test a probabilistic, risk-based, model predictive control strategy for a fully closed-loop artificial pancreas. We complete the paper by discussing ramifications of lessons learned for chemical process systems applications.

  19. Carbon stripping - a critical process step in chemical looping combustion of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, M.; Thon, A.; Hartge, E.U.; Heinrich, S.; Werther, J. [Hamburg University of Technology, Institute of Solids Process Engineering and Particle Technology, Hamburg (Germany)

    2012-03-15

    In chemical looping combustion of solid fuels the well-mixed solids flow from the fuel reactor consisting of char, ash, and oxygen carrier particles cannot be completely separated into its constituents before it enters the air reactor. The slip of carbon will thus lead to char oxidation in the wrong reactor. Process simulation was applied to investigate the carbon stripping process in chemical looping combustion of solid fuels. Depending on the fuel choice, without carbon stripping CO{sub 2} capture rates below 50 % are calculated for 4 min of solids residence time in the fuel reactor. In a process with carbon stripper, however, CO{sub 2} capture rates exceeding 90 % can be achieved for both fuels investigated in this work. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Virtual Induction Loops Based on Cooperative Vehicular Communications

    Directory of Open Access Journals (Sweden)

    Maria Calderon

    2013-01-01

    Full Text Available Induction loop detectors have become the most utilized sensors in traffic management systems. The gathered traffic data is used to improve traffic efficiency (i.e., warning users about congested areas or planning new infrastructures. Despite their usefulness, their deployment and maintenance costs are expensive. Vehicular networks are an emerging technology that can support novel strategies for ubiquitous and more cost-effective traffic data gathering. In this article, we propose and evaluate VIL (Virtual Induction Loop, a simple and lightweight traffic monitoring system based on cooperative vehicular communications. The proposed solution has been experimentally evaluated through simulation using real vehicular traces.

  1. Nanocomposite oxygen carriers for chemical-looping combustion of sulfur-contaminated synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Rahul D. Solunke; Goetz Veser [United States Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15

    Chemical-looping combustion (CLC) is an emerging technology for clean combustion. We have previously demonstrated that the embedding of metal nanoparticles into a nanostructured ceramic matrix can result in unusually active and sinter-resistant nanocomposite oxygen carrier materials for CLC, which combine the high reactivity of metals with the high-temperature stability of ceramics. In the present study, we investigate the effect of H{sub 2}S in a typical coal-derived syngas on the stability and redox kinetics of Ni- and Cu-based nanostructured oxygen carriers. Both carriers show excellent structural stability and only mildly changed redox kinetics upon exposure to H{sub 2}S, despite a significant degree of sulfide formation. Surprisingly, partial sulfidation of the support results in a strong increase in oxygen carrier capacity in both cases because of the addition of a sulfide-sulfate cycle. Overall, the carriers show great potential for use in CLC of high-sulfur fuels. 21 refs., 13 figs. 1 tab.

  2. Chemical looping combustion in a rotating bed reactor--finding optimal process conditions for prototype reactor.

    Science.gov (United States)

    Håkonsen, Silje Fosse; Blom, Richard

    2011-11-15

    A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.

  3. Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture solid oxygen- and CO2-carriers

    CERN Document Server

    Fennell, Paul

    2015-01-01

    Calcium and Chemical Looping Technology for Power Generation and Carbon Dioxide (CO2) Capture reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to chemical looping and combustion. Chapters review the market development, economics, and deployment of these systems, also providing detailed information on the variety of materials and processes that will help to shape the future of CO2 capture ready power plants. Reviews the fundamental principles, systems, oxygen carriers, and carbon dioxide carriers relevant to calcium and chemical loopingProvi

  4. Closed-loop operation of a solar chemical heat pipe at the Weizmann Institute solar furnace

    Energy Technology Data Exchange (ETDEWEB)

    Levitan, R.; Levy, M.; Rosin, H.; Rubin, R. (Materials Research Dept., Weizmann Inst. of Science, Rehovot (Israel))

    1991-12-01

    The performance of a solar chemical heat pipe was studied using CO{sub 2} reforming of methane as the vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a rhodium catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizmann Institute of Science. The exothermic methanation reaction was run in a tubular reactor filled with the same Rh catalyst and fed with the products from the reformer. Conversions of over 80% were achieved for both reactions. In the closed-loop mode the products from the reformer and from the methanator were compressed into separate storage tanks. The two reactions were run consecutively and the whole process was repeated for nine cycles. The overall performance of the closed loop was according to expectations. (orig.).

  5. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Institute of Scientific and Technical Information of China (English)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning

    2009-01-01

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-μm RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of-99 dBc/Hz @ 1 MHz offset from a 5.5 GHz carrier.

  6. A multiple-pass ring oscillator based dual-loop phase-locked loop

    Energy Technology Data Exchange (ETDEWEB)

    Chen Danfeng; Ren Junyan; Deng Jingjing; Li Wei; Li Ning, E-mail: dfchen@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-10-15

    A dual-loop phase-locked loop (PLL) for wideband operation is proposed. The dual-loop architecture combines a coarse-tuning loop with a fine-tuning one, enabling a wide tuning range and low voltage-controlled oscillator (VCO) gain without poisoning phase noise and reference spur suppression performance. An analysis of the phase noise and reference spur of the dual-loop PLL is emphasized. A novel multiple-pass ring VCO is designed for the dual-loop application. It utilizes both voltage-control and current-control simultaneously in the delay cell. The PLL is fabricated in Jazz 0.18-{mu}m RF CMOS technology. The measured tuning range is from 4.2 to 5.9 GHz. It achieves a low phase noise of -99 dBc/Hz - 1 MHz offset from a 5.5 GHz carrier.

  7. Modelling of Closed Loop Class E Inverter Based Induction Heater

    Directory of Open Access Journals (Sweden)

    S. Arumugam

    2011-01-01

    Full Text Available This study presents simulation of class E inverter based induction heater system using simulink. DC is converted into high frequency AC using class E inverter. This high frequency AC is used for induction heating. Closed loop systems are modeled and they are simulated using Mat lab Simulink.The results of closed loop systems are presented. The proposed amplifier with two series-parallel resonant load networks will allow sinusoidal output voltage to be achieved by associating with the positive and negative quasi-sinusoidal waveforms. The complementarily activated configuration will provide continuous high-ripple-frequency inputcurrent waveforms; this approach significantly reduces electromagnetic interference and requires very little filtering. With the symmetry of the push-pull Class-E Circuit, there is the additional benefit that the even harmonics are suppressed at the load, and thus there are fewer harmonic distortions.

  8. Heat Integration of the Water-Gas Shift Reaction System for Carbon Sequestration Ready IGCC Process with Chemical Looping

    Energy Technology Data Exchange (ETDEWEB)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2010-01-01

    Integrated gasification combined cycle (IGCC) technology has been considered as an important alternative for efficient power systems that can reduce fuel consumption and CO2 emissions. One of the technological schemes combines water-gas shift reaction and chemical-looping combustion as post gasification techniques in order to produce sequestration-ready CO2 and potentially reduce the size of the gas turbine. However, these schemes have not been energetically integrated and process synthesis techniques can be applied to obtain an optimal flowsheet. This work studies the heat exchange network synthesis (HENS) for the water-gas shift reaction train employing a set of alternative designs provided by Aspen energy analyzer (AEA) and combined in a process superstructure that was simulated in Aspen Plus (AP). This approach allows a rigorous evaluation of the alternative designs and their combinations avoiding all the AEA simplifications (linearized models of heat exchangers). A CAPE-OPEN compliant capability which makes use of a MINLP algorithm for sequential modular simulators was employed to obtain a heat exchange network that provided a cost of energy that was 27% lower than the base case. Highly influential parameters for the pos gasification technologies (i.e. CO/steam ratio, gasifier temperature and pressure) were calculated to obtain the minimum cost of energy while chemical looping parameters (oxidation and reduction temperature) were ensured to be satisfied.

  9. An Integrated Photoelectrochemical-Chemical Loop for Solar-Driven Overall Splitting of Hydrogen Sulfide

    DEFF Research Database (Denmark)

    Zong, Xu; Han, Jingfeng; Seger, Brian

    2014-01-01

    linked by redox couples such as Fe2+/Fe3+ and I-/I-3(-) for photoelectrochemical H-2 production and H2S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2S was successfully split into elemental sulfur and H-2 with high stability and selectivity under......Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H-2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical-chemical loop...... simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction....

  10. High Level Synthesis for Loop-Based BIST

    Institute of Scientific and Technical Information of China (English)

    李晓维; 张英相

    2000-01-01

    Area and test time are two major overheads encountered during data path high level synthesis for BIST. This paper presents an approach to behavioral synthesis for loop-based BIST. By taking into account the requirements of the BIST scheme during behavioral synthesis processes, an area optimal BIST solution can be obtained. This approach is based on the use of test resources reusability that results in a fewer number of registers being modified to be test registers. This is achieved by incorporating self-testability constraints during register assignment operations. Experimental results on benchmarks are presented to demonstrate the effectiveness of the approach.

  11. Process simulation and maximization of energy output in chemical-looping combustion using ASPEN plus

    Directory of Open Access Journals (Sweden)

    Xiao Zhang, Subhodeep Banerjee, Ling Zhou, Ramesh Agarwal

    2015-01-01

    Full Text Available Chemical-looping combustion (CLC is currently considered as a leading technology for reducing the economic cost of CO2 capture. In this paper, several process simulations of chemical-looping combustion are conducted using the ASPEN Plus software. The entire CLC process from the beginning of coal gasification to the reduction and oxidation of the oxygen carrier is modeled and validated against experimental data. The energy balance of each major component of the CLC process, e.g., the fuel and air reactors and air/flue gas heat exchangers is examined. Different air flow rates and oxygen carrier feeding rates are used in the simulations to obtain the optimum ratio of coal, air, and oxygen carrier that produces the maximum power. Two scaled-up simulations are also conducted to investigate the influence of increase in coal feeding on power generation. It is demonstrated that the optimum ratio of coal, air supply, and oxygen carrier for maximum power generation remains valid for scaled-up cases with substantially larger coal feeding rates; the maximum power generation scales up linearly by using the process simulation models in ASPEN Plus. The energy output from four different types of coals is compared, and the optimum ratio of coal, air supply and oxygen carrier for maximum power generation for each type of coal is determined.

  12. Effect of Gasifying Medium on the Coal Chemical Looping Gasification with CaSO4 as Oxygen Carrier☆

    Institute of Scientific and Technical Information of China (English)

    Yongzhuo Liu; Weihua Jia; Qingjie Guo; Hojung Ryu

    2014-01-01

    The chemical looping gasification uses an oxygen carrier for solid fuel gasification by supplying insufficient lattice oxygen. The effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier is investigated in this paper. The thermodynamical analysis indicates that the addition of steam and CO2 into the system can reduce the reaction temperature, at which the concentration of syngas reaches its maximum value. Experimental result in thermogravimetric analyzer and a fixed-bed reactor shows that the mixture sample goes through three stages, drying stage, pyrolysis stage and chemical looping gasification stage, with the temper-ature for three different gaseous media. The peak fitting and isoconversional methods are used to determine the reaction mechanism of the complex reactions in the chemical looping gasification process. It demonstrates that the gasifying medium (steam or CO2) boosts the chemical looping process by reducing the activation energy in the overall reaction and gasification reactions of coal char. However, the mechanism using steam as the gasifying medium differs from that using CO2. With steam as the gasifying medium, parallel reactions occur in the begin-ning stage, followed by a limiting stage shifting from a kinetic to a diffusion regime. It is opposite to the reaction mechanism with CO2 as the gasifying medium.

  13. Alstom's Chemical Looping Combustion Prototype for CO2 Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Jr., Herbert E. [Alstom Power Inc., Windsor, CT (United States); Chiu, John H. [Alstom Power Inc., Windsor, CT (United States); Edberg, Carl D. [Alstom Power Inc., Windsor, CT (United States); Thibeault, Paul R. [Alstom Power Inc., Windsor, CT (United States); Turek, David G. [Alstom Power Inc., Windsor, CT (United States)

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO2 from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO2 for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration

  14. Alstom's Chemical Looping Combustion Prototype for CO{sub 2} Capture from Existing Pulverized Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Andrus, Herbert; Chiu, John; Edberg, Carl; Thibeault, Paul; Turek, David

    2012-09-30

    Alstom’s Limestone Chemical Looping (LCL™) process has the potential to capture CO{sub 2} from new and existing coal-fired power plants while maintaining high plant power generation efficiency. This new power plant concept is based on a hybrid combustion- gasification process utilizing high temperature chemical and thermal looping technology. This process could also be potentially configured as a hybrid combustion-gasification process producing a syngas or hydrogen for various applications while also producing a separate stream of CO{sub 2} for use or sequestration. The targets set for this technology is to capture over 90% of the total carbon in the coal at cost of electricity which is less than 20% greater than Conventional PC or CFB units. Previous work with bench scale test and a 65 kWt Process Development Unit Development (PDU) has validated the chemistry required for the chemical looping process and provided for the investigation of the solids transport mechanisms and design requirements. The objective of this project is to continue development of the combustion option of chemical looping (LCL-C™) by designing, building and testing a 3 MWt prototype facility. The prototype includes all of the equipment that is required to operate the chemical looping plant in a fully integrated manner with all major systems in service. Data from the design, construction, and testing will be used to characterize environmental performance, identify and address technical risks, reassess commercial plant economics, and develop design information for a demonstration plant planned to follow the proposed Prototype. A cold flow model of the prototype will be used to predict operating conditions for the prototype and help in operator training. Operation of the prototype will provide operator experience with this new technology and performance data of the LCL-C™ process, which will be applied to the commercial design and economics and plan for a future demonstration plant.

  15. Adaptive Simulated Annealing Based Protein Loop Modeling of Neurotoxins

    Institute of Scientific and Technical Information of China (English)

    陈杰; 黄丽娜; 彭志红

    2003-01-01

    A loop modeling method, adaptive simulated annealing, for ab initio prediction of protein loop structures, as an optimization problem of searching the global minimum of a given energy function, is proposed. An interface-friendly toolbox-LoopModeller in Windows and Linux systems, VC++ and OpenGL environments is developed for analysis and visualization. Simulation results of three short-chain neurotoxins modeled by LoopModeller show that the method proposed is fast and efficient.

  16. The Physical/Chemical Closed-Loop Life Support Research Project

    Science.gov (United States)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  17. Simulation and validation of chemical-looping combustion using ASPEN plus

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ling [Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013 (China); Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States); Zhang, Zheming; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    Laboratory-scale experimental studies have demonstrated that Chemical-Looping Combustion (CLC) is an advanced technology which holds great potential for high-efficiency low-cost carbon capture. The generated syngas in CLC is subsequently oxidized to CO2 and H2O by reaction with an oxygen carrier. In this paper, process-level models of CLC are established in ASPEN Plus code for detailed simulations. The entire CLC process, from the beginning of coal gasification to reduction and oxidation of the oxygen carrier is modeled. The heat content of each major component such as fuel and air reactors and air/flue gas heat exchangers is carefully examined. Large amount of energy is produced in the fuel reactor, but energy needs to be supplied to the air reactor. The overall performance and efficiency of the modeled CLC systems are also evaluated.

  18. Simulation and validation of chemical-looping combustion using ASPEN plus

    Directory of Open Access Journals (Sweden)

    Ling Zhou, Zheming Zhang, Ramesh K. Agarwal

    2014-01-01

    Full Text Available Laboratory-scale experimental studies have demonstrated that Chemical-Looping Combustion (CLC is an advanced technology which holds great potential for high-efficiency low-cost carbon capture. The generated syngas in CLC is subsequently oxidized to CO2 and H2O by reaction with an oxygen carrier. In this paper, process-level models of CLC are established in ASPEN Plus code for detailed simulations. The entire CLC process, from the beginning of coal gasification to reduction and oxidation of the oxygen carrier is modeled. The heat content of each major component such as fuel and air reactors and air/flue gas heat exchangers is carefully examined. Large amount of energy is produced in the fuel reactor, but energy needs to be supplied to the air reactor. The overall performance and efficiency of the modeled CLC systems are also evaluated.

  19. Chemical Looping Pilot Plant Results Using a Nickel-Based Oxygen Carrier Résultats de l’expérimentation sur un pilote opérant en boucle chimique avec un matériau transporteur d’oxygène à base de nickel

    Directory of Open Access Journals (Sweden)

    Pröll T.

    2011-04-01

    Full Text Available A chemical looping pilot plant was designed, built and operated with a design fuel power of 120 kW (lower heating value, natural gas. The system consists of two Circulating Fluidized Bed (CFB reactors. Operating results are presented and evaluated for a highly reactive nickel-based oxygen carrier, total system inventory 65 kg. The performance in fuel conversion achieved is in the range of 99.8% (CH4 conversion and 92% (CO2 yield. In chemical looping reforming operation, it can be reported that thermodynamic equilibrium is reached in the fuel reactor and that all oxygen is absorbed in the air reactor as soon as the global stoichiometric air/fuel ratio is below 1 and the air reactor temperature is 900°C or more. Even though pure natural gas (98.6 vol.% CH4 without steam addition was fed to the fuel reactor, no carbon formation has been found as long as the global stoichiometric air/fuel ratio was larger than 0.4. Based on the experimental findings and on the general state of the art, it is concluded that niche applications such as industrial steam generation from natural gas or CO2-ready coupled production of H2 and N2 can be interesting pathways for immediate scale-up of the technology. Un pilote d’étude de la combustion en boucle chimique d’une puissance thermique de 120 kW a été dimensionné, construit et opéré. Il est constitué de deux lits circulants interconnectés. Les résultats d’opération qui sont présentés ont été obtenus avec un matériau transporteur d’oxygène très réactif à base de nickel. L’inventaire total du matériau est de 65 kg dans le pilote. La conversion du méthane atteinte est voisine de 99,8 % et le rendement en CO2 est de 92 %. Lorsqu’on opère en mode de reformage, l’équilibre thermodynamique est atteint dans le réacteur fioul. Tout l’oxygène est capté dans le réacteur air dès que le rapport stoechiométrique entre l’air et le méthane est inférieur à 1 et que la temp

  20. Analysis of Applicability of ISO 9564 PIN based Authentication to Closed-Loop Mobile Payment Systems

    OpenAIRE

    Amal Saha; Sugata Sanyal

    2014-01-01

    Payment transactions initiated through a mobile device are growing and security concerns must be addressed. People coming from payment card industry often talk passionately about porting ISO 9564 PIN standard based authentication in open-loop card payment to closed-loop mobile financial transactions and certification of closed-loop payment product or solution against this standard. In reality, so far this standard has not been adopted in closed-loop mobile payment authentication and applicabi...

  1. FPGA-Based Implementation of All-Digital QPSK Carrier Recovery Loop Combining Costas Loop and Maximum Likelihood Frequency Estimator

    Directory of Open Access Journals (Sweden)

    Kaiyu Wang

    2014-01-01

    Full Text Available This paper presents an efficient all digital carrier recovery loop (ADCRL for quadrature phase shift keying (QPSK. The ADCRL combines classic closed-loop carrier recovery circuit, all digital Costas loop (ADCOL, with frequency feedward loop, maximum likelihood frequency estimator (MLFE so as to make the best use of the advantages of the two types of carrier recovery loops and obtain a more robust performance in the procedure of carrier recovery. Besides, considering that, for MLFE, the accurate estimation of frequency offset is associated with the linear characteristic of its frequency discriminator (FD, the Coordinate Rotation Digital Computer (CORDIC algorithm is introduced into the FD based on MLFE to unwrap linearly phase difference. The frequency offset contained within the phase difference unwrapped is estimated by the MLFE implemented just using some shifter and multiply-accumulate units to assist the ADCOL to lock quickly and precisely. The joint simulation results of ModelSim and MATLAB show that the performances of the proposed ADCRL in locked-in time and range are superior to those of the ADCOL. On the other hand, a systematic design procedure based on FPGA for the proposed ADCRL is also presented.

  2. Evaluation of the use of different coals in chemical looping combustion using a bauxite waste as oxygen carrier

    OpenAIRE

    Mendiara, Teresa; García Labiano, Francisco; Gayán Sanz, Pilar; Abad Secades, Alberto; Diego Poza, Luis F. de; Adánez Elorza, Juan

    2013-01-01

    The interest in the use of solid fuels such as coal in Chemical Looping Combustion is growing because of the benefits of the direct use of coal in this technology on the reduction of the costs linked to carbon dioxide capture. In CLC, the oxygen needed for the combustion is supplied by a solid oxygen carrier therefore avoiding the direct contact between fuel and air. Focusing on the use of solid fuels in the In-Situ Gasification Chemical Looping Combustion (iG-CLC), the oxygen ...

  3. Exergy Analysis of a Syngas-Fueled Combined Cycle with Chemical-Looping Combustion and CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Álvaro Urdiales Montesino

    2016-08-01

    Full Text Available Fossil fuels are still widely used for power generation. Nevertheless, it is possible to attain a short- and medium-term substantial reduction of greenhouse gas emissions to the atmosphere through a sequestration of the CO2 produced in fuels’ oxidation. The chemical-looping combustion (CLC technique is based on a chemical intermediate agent, which gets oxidized in an air reactor and is then conducted to a separated fuel reactor, where it oxidizes the fuel in turn. Thus, the oxidation products CO2 and H2O are obtained in an output flow in which the only non-condensable gas is CO2, allowing the subsequent sequestration of CO2 without an energy penalty. Furthermore, with shrewd configurations, a lower exergy destruction in the combustion chemical transformation can be achieved. This paper focus on a second law analysis of a CLC combined cycle power plant with CO2 sequestration using syngas from coal and biomass gasification as fuel. The key thermodynamic parameters are optimized via the exergy method. The proposed power plant configuration is compared with a similar gas turbine system with a conventional combustion, finding a notable increase of the power plant efficiency. Furthermore, the influence of syngas composition on the results is investigated by considering different H2-content fuels.

  4. A Study on the Role of Reaction Modeling in Multi-phase CFD-based Simulations of Chemical Looping Combustion Impact du modèle de réaction sur les simulations CFD de la combustion en boucle chimique

    Directory of Open Access Journals (Sweden)

    Kruggel-Emden H.

    2011-03-01

    Full Text Available Chemical Looping Combustion is an energy efficient combustion technology for the inherent separation of carbon dioxide for both gaseous and solid fuels. For scale up and further development of this process multi-phase CFD-based simulations have a strong potential which rely on kinetic models for the solid/gaseous reactions. Reaction models are usually simple in structure in order to keep the computational cost low. They are commonly derived from thermogravimetric experiments. With only few CFD-based simulations performed on chemical looping combustion, there is a lack in understanding of the role and of the sensitivity of the applied chemical reaction model on the outcome of a simulation. The aim of this investigation is therefore the study of three different carrier materials CaSO4, Mn3O4 and NiO with the gaseous fuels H2 and CH4 in a batch type reaction vessel. Four reaction models namely the linear shrinking core, the spherical shrinking core, the Avrami-Erofeev and a recently proposed multi parameter model are applied and compared on a case by case basis. La combustion en boucle chimique (Chemical Looping Combustion est une technologie de combustion efficace permettant le captage in situ du CO2 pour des charges gazeuses ou solides. Dans l’optique du développement et de l’extrapolation du procédé, la CFD est un outil de simulation à fort potentiel qui s’appuie notamment sur des modèles cinétiques pour décrire les réactions gaz-solide. Ces modèles décrivant les réactions sont généralement assez simples pour limiter les temps de simulation et sont obtenus à partir d’expérimentations en thermobalance. Il y a encore peu de travaux de modélisation CFD du procédé CLC et il est difficile d’estimer l’importance du modèle décrivant les réactions chimiques sur les résultats des simulations. Le but de ce travail est donc d’étudier la combustion de charges gazeuses H2 et CH4 dans des réacteurs en batch en consid

  5. Metal ferrite oxygen carriers for chemical looping combustion of solid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani V.; Fan, Yueying

    2017-01-31

    The disclosure provides a metal ferrite oxygen carrier for the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The metal ferrite oxygen carrier comprises MFe.sub.xO.sub.y on an inert support, where MFe.sub.xO.sub.y is a chemical composition and M is one of Mg, Ca, Sr, Ba, Co, Mn, and combinations thereof. For example, MFe.sub.xO.sub.y may be one of MgFe.sub.2O.sub.4, CaFe.sub.2O.sub.4, SrFe.sub.2O.sub.4, BaFe.sub.2O.sub.4, CoFe.sub.2O.sub.4, MnFeO.sub.3, and combinations thereof. The MFe.sub.xO.sub.y is supported on an inert support. The inert support disperses the MFe.sub.xO.sub.y oxides to avoid agglomeration and improve performance stability. In an embodiment, the inert support comprises from about 5 wt. % to about 60 wt. % of the metal ferrite oxygen carrier and the MFe.sub.xO.sub.y comprises at least 30 wt. % of the metal ferrite oxygen carrier. The metal ferrite oxygen carriers disclosed display improved reduction rates over Fe.sub.2O.sub.3, and improved oxidation rates over CuO.

  6. Self-oscillating loop based piezoelectric power converter

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output...... voltage of the piezoelectric transformer and the input driver to provide a self-oscillation loop around a primary section of the piezoelectric transformer oscillating at an excitation frequency. Electrical characteristics of the feedback loop are configured to set the excitation frequency of the self......- oscillation loop within a zero-voltage-switching (ZVS) operation range of the piezoelectric transformer....

  7. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  8. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    Energy Technology Data Exchange (ETDEWEB)

    Siriwardane, Ranjani [U.S. Department of Energy/NETL; Riley, Jarrett [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Tian, Hanjing [West Virginia Univ., Morgantown, WV (United States); Richards, George [U.S. Department of Energy/NETL

    2016-01-01

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygen carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.

  9. Chemical looping combustion of biomass-derived syngas using ceria-supported oxygen carriers.

    Science.gov (United States)

    Huang, H B; Aisyah, L; Ashman, P J; Leung, Y C; Kwong, C W

    2013-07-01

    Cu, Ni and Fe oxides supported on ceria were investigated for their performance as oxygen carriers during the chemical looping combustion of biomass-derived syngas. A complex gas mixture containing CO, H2, CO2, CH4 and other hydrocarbons was used to simulate the complex fuel gas environment derived from biomass gasification. Results show that the transfer of the stored oxygen into oxidants for the supported Cu and Ni oxides at 800°C for the combustion of syngas was effective (>85%). The unsupported Cu oxide showed high oxygen carrying capacity but particle sintering was observed at 800°C. A reaction temperature of 950°C was required for the supported Fe oxides to transfer the stored oxygen into oxidants effectively. Also, for the complex fuel gas environment, the supported Ni oxide was somewhat effective in reforming CH4 and other light hydrocarbons into CO, which may have benefits for the reduction of tar produced during biomass pyrolysis.

  10. Design of a rotary reactor for chemical-looping combustion. Part 1: Fundamentals and design methodology

    KAUST Repository

    Zhao, Zhenlong

    2014-04-01

    Chemical-looping combustion (CLC) is a novel and promising option for several applications including carbon capture (CC), fuel reforming, H 2 generation, etc. Previous studies demonstrated the feasibility of performing CLC in a novel rotary design with micro-channel structures. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet, and depleted air and product streams at exit. The rotary wheel consists of a large number of micro-channels with oxygen carriers (OC) coated on the inner surface of the channel walls. In the CC application, the OC oxidizes the fuel while the channel is in the fuel zone to generate undiluted CO2, and is regenerated while the channel is in the air zone. In this two-part series, the effect of the reactor design parameters is evaluated and its performance with different OCs is compared. In Part 1, the design objectives and criteria are specified and the key parameters controlling the reactor performance are identified. The fundamental effects of the OC characteristics, the design parameters, and the operating conditions are studied. The design procedures are presented on the basis of the relative importance of each parameter, enabling a systematic methodology of selecting the design parameters and the operating conditions with different OCs. Part 2 presents the application of the methodology to the designs with the three commonly used OCs, i.e., nickel, copper, and iron, and compares the simulated performances of the designs. © 2013 Elsevier Ltd. All rights reserved.

  11. A comparison of open-loop and closed-loop adaptive calibration for pattern recognition based myoelectric control.

    Science.gov (United States)

    Jiayuan He; Dingguo Zhang; Xinjun Sheng; Xiangyang Zhu

    2015-08-01

    This study presented a closed-loop adaptive calibration (CLAC) scheme where subjects could get instantaneous feedback of their movements and alter their motions immediately to update the model parameters to enhance its ability. The real-time performance was compared between the conventional open-loop calibration (OLC) and the presented CLAC based on three metrics (motion-selection time, motion-completion time and motion-completion rate). The CLAC performed slightly better than the OLC, but the difference was not significant. This was the first study designed to investigate the effects of CLAC for pattern recognition-based myoelectric control (discrete movement). The CLAC could be potentially applied in the multiuser interface to make the adaptation of the common model to a novel user efficiently and flexibly.

  12. Self-oscillating loop based piezoelectric power converter

    OpenAIRE

    Rødgaard, Martin Schøler; Andersen, Michael A. E.; Esbern, Andreas; Meyer, Kasper Sinding

    2013-01-01

    The present invention relates to a piezoelectric power converter comprising an input driver electrically coupled directly to an input or primary electrode of the piezoelectric transformer without any intervening series or parallel inductor. A feedback loop is operatively coupled between an output voltage of the piezoelectric transformer and the input driver to provide a self-oscillation loop around a primary section of the piezoelectric transformer oscillating at an excitation frequency. Elec...

  13. Long Duration Life Test of Propylene Glycol Water Based Thermal Fluid Within Thermal Control Loop

    Science.gov (United States)

    Le, Hung; Hill, Charles; Stephan, Ryan A.

    2010-01-01

    Evaluations of thermal properties and resistance to microbial growth concluded that 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture was desirable for use as a fluid within a vehicle s thermal control loop. However, previous testing with a commercial mixture of PG and water containing phosphate corrosion inhibitors resulted in corrosion of aluminum within the test system and instability of the test fluid. This paper describes a follow-on long duration testing and analysis of 50% Propylene Glycol (PG)-based fluid and 50% de-ionized water mixture with inorganic corrosion inhibitors used in place of phosphates. The test evaluates the long-term fluid stability and resistance to microbial and chemical changes

  14. Hardware platforms for MEMS gyroscope tuning based on evolutionary computation using open-loop and closed -loop frequency response

    Science.gov (United States)

    Keymeulen, Didier; Ferguson, Michael I.; Fink, Wolfgang; Oks, Boris; Peay, Chris; Terrile, Richard; Cheng, Yen; Kim, Dennis; MacDonald, Eric; Foor, David

    2005-01-01

    We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation. We also report on the development of a hardware platform for integrated tuning and closed loop operation of MEMS gyroscopes. The control of this device is implemented through a digital design on a Field Programmable Gate Array (FPGA). The hardware platform easily transitions to an embedded solution that allows for the miniaturization of the system to a single chip.

  15. Inner Current Loop Analysis and Design Based on Resonant Regulators for Isolated Microgrids

    DEFF Research Database (Denmark)

    Federico, de Bosio; de Sousa Ribeiro, Luiz Antonio; Soares Lima, Marcel

    2015-01-01

    Inner current and voltage loops are fundamental in achieving good performance of microgrids based on power electronics voltage source inverters. The analysis and design of these loops are essential for the adequate operation of these systems. This paper investigates the effect of state feedback...... coupling in the design of proportional resonant controllers for these inner loops in voltage source inverters operating in islanded microgrids. It is also shown that the state feedback coupling has an important effect in the performance of the control loops by increasing the steady-state error...

  16. Minor hysteresis loops model based on exponential parameters scaling of the modified Jiles-Atherton model

    Energy Technology Data Exchange (ETDEWEB)

    Hamimid, M., E-mail: Hamimid_mourad@hotmail.com [Laboratoire de modelisation des systemes energetiques LMSE, Universite de Biskra, BP 145, 07000 Biskra (Algeria); Mimoune, S.M., E-mail: s.m.mimoune@mselab.org [Laboratoire de modelisation des systemes energetiques LMSE, Universite de Biskra, BP 145, 07000 Biskra (Algeria); Feliachi, M., E-mail: mouloud.feliachi@univ-nantes.fr [IREENA-IUT, CRTT, 37 Boulevard de l' Universite, BP 406, 44602 Saint Nazaire Cedex (France)

    2012-07-01

    In this present work, the minor hysteresis loops model based on parameters scaling of the modified Jiles-Atherton model is evaluated by using judicious expressions. These expressions give the minor hysteresis loops parameters as a function of the major hysteresis loop ones. They have exponential form and are obtained by parameters identification using the stochastic optimization method 'simulated annealing'. The main parameters influencing the data fitting are three parameters, the pinning parameter k, the mean filed parameter {alpha} and the parameter which characterizes the shape of anhysteretic magnetization curve a. To validate this model, calculated minor hysteresis loops are compared with measured ones and good agreements are obtained.

  17. Phase noise analysis of clock recovery based on an optoelectronic phase-locked loop

    DEFF Research Database (Denmark)

    Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo

    2007-01-01

    A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser....... It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and electrical...

  18. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Kathe, Mandar [Ohio State University, Columbus, OH (United States); Xu, Dikai [Ohio State University, Columbus, OH (United States); Hsieh, Tien-Lin [Ohio State University, Columbus, OH (United States); Simpson, James [Ohio State University, Columbus, OH (United States); Statnick, Robert [Ohio State University, Columbus, OH (United States); Tong, Andrew [Ohio State University, Columbus, OH (United States); Fan, Liang-Shih [Ohio State University, Columbus, OH (United States)

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol required selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.

  19. Gain Scheduling Control based on Closed-Loop System Identification

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    This paper deals with system identification and gain scheduling control of multi-variable nonlinear systems. We propose a novel scheme where a linear approximation of the system model is obtained in an operating point; then, a Youla-Kucera (YJBK) parameter specifying the difference between...... the first and a second operating point is identified in closed-loop using system identification methods with open-loop properties. Next, a linear controller is designed for this linearised model, and gain scheduling control can subsequently be achieved by interpolating between each controller...

  20. A circulating fluidized bed combustor system with inherent CO{sub 2} separation : application of chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, E.; Lyngfelt, A.; Mattisson, T.; Johnsson, F. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    This paper presents a method to achieve carbon dioxide-free combustion while still using fossil fuels as the energy source. The method is based on separation and disposal of carbon dioxide from combustion. Chemical looping combustion (CLC) uses metal oxide particles to transfer oxygen from air to a gaseous fuel. The gaseous fuel is combusted with inherent separation of carbon dioxide (a greenhouse gas) from the flue gas. A bubbling bed below the downcomer in the circulating fluidized bed acts as a fuel reactor where oxygen is transferred from the metal oxide to the fuel. The riser acts as the air reactor where the oxygen from the air oxidizes the previously reduced metal oxide. The fuel and combustion air are not in direct contact. The conceptual design of the pressurized CLC system was examined in order to map suitable conditions for the riser and to achieve sufficient net solids flux between the reactors and the bed mass in the riser. A range of possible operating conditions were suggested. The operating conditions depend on the reaction properties of the oxygen carriers. 16 refs., 1 tab., 8 figs.

  1. Using Low-Cost Iron-Based Materials as Oxygen Carriers for Chemical Looping Combustion Utilisation de matériaux bon marché à base de fer comme transporteur d’oxygène dans la combustion en boucle chimique

    Directory of Open Access Journals (Sweden)

    Jerndal E.

    2011-03-01

    Full Text Available In chemical looping combustion with solid fuels, the oxygen-carrier lifetime is expected to be shorter than with gaseous fuels. Therefore, it is particularly important to use low-cost oxygen carriers in solid fuel applications. Apart from being cheap, these oxygen carriers should be able to convert the CO and H2 produced from the solid fuel gasification and be sufficiently hard to withstand fragmentation. Several low-cost iron-based materials displayed high conversion of syngas and high mechanical strength and can be used for further development of the technology. These materials include oxide scales from Sandvik and Scana and an iron ore from LKAB. All tested oxygen carriers showed higher gas conversion than a reference sample, the mineral ilmenite. Generally, softer oxygen carriers were more porous and appeared to have a higher reactivity towards syngas. When compared with ilmenite, the conversion of CO was higher for all oxygen carriers and the conversion of H2 was higher when tested for longer reduction times. The oxygen carrier Sandvik 2 displayed the highest conversion of syngas and was therefore selected for solid fuel experiments. The conversion rate of solid fuels was higher with Sandvik 2 than with the reference sample, ilmenite. Pour appliquer la combustion en boucle chimique à des charges solides, il est important d’utiliser des matériaux transporteurs d’oxygène bon marché. En effet, la durée de vie du transporteur d’oxygène risque d’être plus courte sur charge solide que sur charge gazeuse. Ces matériaux doivent également bien convertir le monoxyde de carbone et l’hydrogène résultant de la gasification, tout en étant suffisamment durs pour résister à la fragmentation. Plusieurs matériaux ont montré un potentiel de conversion élevé sur le gaz de synthèse ainsi qu’une résistance mécanique élevée, ce qui permet d’envisager leur utilisation lors des développements futurs de la technologie. Parmi ces

  2. Mechanism of Methane Chemical Looping Combustion with Hematite Promoted with CeO 2

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Duane D.; Siriwardane, Ranjani

    2013-08-15

    Chemical looping combustion (CLC) is a promising technology for fossil fuel combustion that produces sequestration-ready CO{sub 2} stream, reducing the energy penalty of CO{sub 2} separation from flue gases. An effective oxygen carrier for CLC will readily react with the fuel gas and will be reoxidized upon contact with oxygen. This study investigated the development of a CeO{sub 2}-promoted Fe{sub 2}O{sub 3}-hematite oxygen carrier suitable for the methane CLC process. Composition of CeO{sub 2} is between 5 and 25 wt % and is lower than what is generally used for supports in Fe{sub 2}O{sub 3} carrier preparations. The incorporation of CeO{sub 2} to the natural ore hematite strongly modifies the reduction behavior in comparison to that of CeO{sub 2} and hematite alone. Temperature-programmed reaction studies revealed that the addition of even 5 wt % CeO{sub 2} enhances the reaction capacity of the Fe{sub 2}O{sub 3} oxygen carrier by promoting the decomposition and partial oxidation of methane. Fixed-bed reactor data showed that the 5 wt % cerium oxides with 95 wt % iron oxide produce 2 times as much carbon dioxide in comparison to the sum of carbon dioxide produced when the oxides were tested separately. This effect is likely due to the reaction of CeO{sub 2} with methane forming intermediates, which are reactive for extracting oxygen from Fe{sub 2}O{sub 3} at a considerably faster rate than the rate of the direct reaction of Fe{sub 2}O{sub 3} with methane. These studies reveal that 5 wt % CeO{sub 2}/Fe{sub 2}O{sub 3} gives stable conversions over 15 reduction/oxidation cycles. Lab-scale reactor studies (pulsed mode) suggest the methane reacts initially with CeO{sub 2} lattice oxygen to form partial oxidation products (CO + H{sub 2}), which continue to react with oxygen from neighboring Fe{sub 2}O{sub 3}, leading to its complete oxidation to form CO{sub 2}. The reduced cerium oxide promotes the methane decomposition reaction to form C + H{sub 2}, which continue to

  3. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction

    Science.gov (United States)

    Zhu, Kai; Day, Tyler; Warshaviak, Dora; Murrett, Colleen; Friesner, Richard; Pearlman, David

    2017-01-01

    We present the blinded prediction results in the Second Antibody Modeling Assessment (AMA-II) using a fully automatic antibody structure prediction method implemented in the programs BioLuminate and Prime. We have developed a novel knowledge based approach to model the CDR loops, using a combination of sequence similarity, geometry matching, and the clustering of database structures. The homology models are further optimized with a physics-based energy function (VSGB2.0), which improves the model quality significantly. H3 loop modeling remains the most challenging task. Our ab initio loop prediction performs well for the H3 loop in the crystal structure context, and allows improved results when refining the H3 loops in the context of homology models. For the 10 human and mouse derived antibodies in this assessment, the average RMSDs for the homology model Fv and framework regions are 1.19 Å and 0.74 Å, respectively. The average RMSDs for five non-H3 CDR loops range from 0.61 Å to 1.05 Å, and the H3 loop average RMSD is 2.91 Å using our knowledge-based loop prediction approach. The ab initio H3 loop predictions yield an average RMSD of 1.28 Å when performed in the context of the crystal structure and 2.67 Å in the context of the homology modeled structure. Notably, our method for predicting the H3 loop in the crystal structure environment ranked first among the seven participating groups in AMA-II, and our method made the best prediction among all participants for seven of the ten targets. PMID:24619874

  4. A LOOP-BASED APPROACH IN CLUSTERING AND ROUTING IN MOBILE AD HOC NETWORKS

    Institute of Scientific and Technical Information of China (English)

    Li Yanping; Wang Xin; Xue Xiangyang; C.K. Toh

    2006-01-01

    Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop suggests smart route recovery strategy. Our approach is composed of setup procedure, regular procedure and recovery procedure to achieve clustering, routing and emergent route recovering.

  5. High-sensitivity open-loop electronics for gravimetric acoustic-wave-based sensors.

    Science.gov (United States)

    Rabus, David; Friedt, Jean-Michel; Ballandras, Sylvain; Martin, Gilles; Carry, Emile; Blondeau-Patissier, Virginie

    2013-06-01

    Detecting chemical species in gas phase has recently received an increasing interest mainly for security control, trying to implement new systems allowing for extended dynamics and reactivity. In this work, an open-loop interrogation strategy is proposed to use radio-frequency acoustic transducers as micro-balances for that purpose. The resulting system is dedicated to the monitoring of chemical compounds in gaseous or liquid-phase state. A 16 Hz standard deviation is demonstrated at 125 MHz, with a working frequency band in the 60 to 133 MHz range, answering the requirements for using Rayleigh- and Love-wave-based delay lines operating with 40-μm acoustic wavelength transducers. Moreover, this electronic setup was used to interrogate a high-overtone bulk acoustic wave resonator (HBAR) microbalance, a new sensor class allowing for multi-mode interrogation for gravimetric measurement improvement. The noise source still limiting the system performance is due to the analog-to-digital converter of the microcontroller, thus leaving open degrees-of-freedom for improving the obtained results by optimizing the voltage reference and board layout. The operation of the system is illustrated using a calibrated galvanic deposition at the surface of Love-wave delay lines to assess theoretical predictions of their gravimetric sensitivity and to compare them with HBAR-based sensor sensitivity.

  6. Capacitively Loaded Loop-Based Antennas with Reconfigurable Radiation Patterns

    Directory of Open Access Journals (Sweden)

    Saber Dakhli

    2015-01-01

    Full Text Available A class of metamaterial-inspired antennas having reconfigurable radiation patterns is proposed. They consist of a driven monopole antenna with one- and two-capacitively loaded loop (CLL, near field resonant parasitic elements. Two configurations are studied by considering the state of these CLL elements as being either open or closed configurations. Simulation results explain the design features and demonstrate that the structure can change its beam direction simply by controlling the switched states. Two prototypes with one- and two-CLL elements were fabricated and tested. The measured impedance mismatch and radiation pattern results are presented and compared to the corresponding simulated values.

  7. Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.

    Science.gov (United States)

    Suresh, P V; Menon, Kavitha G; Prakash, K S; Prudhvi, S; Anudeep, A

    2016-10-01

    Chemical looping combustion (CLC) is an inherent CO2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors-fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe2O3, CuO, and mixed carrier-Fe2O3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.

  8. Probing deconfinement in the Polyakov-loop extended Nambu-Jona-Lasinio model at imaginary chemical potential

    CERN Document Server

    Morita, Kenji; Friman, Bengt; Redlich, Krzysztof

    2011-01-01

    The phase structure of Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model is explored at imaginary chemical potential, with particular emphasis on the deconfinement transition. We point out that the statistical confinement nature of the model naturally leads to characteristic dependence of the chiral condensate $$ on $\\theta=\\mu_I/T$. We introduce a dual parameter for the deconfinement transition by making use of this dependence. By changing a four-fermion coupling constant, we tune the location of the critical endpoint of the deconfinement transition.

  9. Robust PCA-Based Abnormal Traffic Flow Pattern Isolation and Loop Detector Fault Detection

    Institute of Scientific and Technical Information of China (English)

    JIN Xuexiang; ZHANG Yi; LI Li; HU Jianming

    2008-01-01

    One key function of intelligent transportation systems is to automatically detect abnormal traffic phenomena and to help further investigations of the cause of the abnormality. This paper describes a robust principal components analysis (RPCA)-based abnormal traffic flow pattern isolation and loop detector fault detection method. The results show that RPCA is a useful tool to distinguish regular traffic flow from abnor-mal traffic flow patterns caused by accidents and loop detector faults. This approach gives an effective traffic flow data pre-processing method to reduce the human effort in finding potential loop detector faults. The method can also be used to further investigate the causes of the abnormality.

  10. Digitized self-oscillating loop for piezoelectric transformer-based power converters

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh; Andersen, Thomas; Zhang, Zhe;

    2016-01-01

    A new method is implemented in designing of self-oscillating loop for driving piezoelectric transformers. The implemented method is based on combining both analog and digital control systems. Digitized delay, or digitized phase shift through the self-oscillating loop results in a very precise...... frequency control and ensures an optimum operation of the piezoelectric transformer in terms of voltage gain and efficiency. In this work, additional time delay is implemented digitally for the first time through 16 bit digital-to-analog converter to the self-oscillating loop. Delay control setpoints...

  11. High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multi-loop topology

    Science.gov (United States)

    Charalambous, Georgios; Hasanuzzaman, G. K. M.; Perentos, Andreas; Iezekiel, Stavros

    2017-03-01

    A WDM optoelectronic oscillator (OEO) based on a cascaded optical multi-loop configuration and multiple photodiodes is proposed and demonstrated experimentally. By employing up to three lasers widely separated in wavelength along with two cascaded multi-loop fiber sections and two photodiodes, we demonstrate OEO topologies that scale up to six effective loops revealing an ultra-high quality factor in excess of 1010 and a phase noise performance down to -119 dBc/Hz at 10 kHz offset

  12. Porous Foam Based Wick Structures for Loop Heat Pipes

    Science.gov (United States)

    Silk, Eric A.

    2012-01-01

    As part of an effort to identify cost efficient fabrication techniques for Loop Heat Pipe (LHP) construction, NASA Goddard Space Flight Center's Cryogenics and Fluids Branch collaborated with the U.S. Naval Academy s Aerospace Engineering Department in Spring 2012 to investigate the viability of carbon foam as a wick material within LHPs. The carbon foam was manufactured by ERG Aerospace and machined to geometric specifications at the U.S. Naval Academy s Materials, Mechanics and Structures Machine Shop. NASA GSFC s Fractal Loop Heat Pipe (developed under SBIR contract #NAS5-02112) was used as the validation LHP platform. In a horizontal orientation, the FLHP system demonstrated a heat flux of 75 Watts per square centimeter with deionized water as the working fluid. Also, no failed start-ups occurred during the 6 week performance testing period. The success of this study validated that foam can be used as a wick structure. Furthermore, given the COTS status of foam materials this study is one more step towards development of a low cost LHP.

  13. Dissecting the chemical interactions and substrate structural signatures governing RNA polymerase II trigger loop closure by synthetic nucleic acid analogues

    DEFF Research Database (Denmark)

    Xu, Liang; Butler, Kyle Vincent; Chong, Jenny;

    2014-01-01

    The trigger loop (TL) of RNA polymerase II (Pol II) is a conserved structural motif that is crucial for Pol II catalytic activity and transcriptional fidelity. The TL remains in an inactive open conformation when the mismatched substrate is bound. In contrast, TL switches from an inactive open...... state to a closed active state to facilitate nucleotide addition upon the binding of the cognate substrate to the Pol II active site. However, a comprehensive understanding of the specific chemical interactions and substrate structural signatures that are essential to this TL conformational change...... II. This study reveals novel insights into understanding the molecular basis of TL conformational transition upon substrate binding during Pol II transcription. This synthetic chemical biology approach may be extended to understand the mechanisms of other RNA polymerases as well as other nucleic acid...

  14. Wiener's Loop Filter for PLL-Based Carrier Recovery of OQPSK and MSK-Type Modulations

    Directory of Open Access Journals (Sweden)

    Arnaldo Spalvieri

    2008-01-01

    Full Text Available This letter considers carrier recovery for offset quadrature phase shift keying (OQPSK and minimum shift keying-type (MSK-type modulations based on phase-lock loop (PLL. The concern of the letter is the optimization of the loop filter of the PLL. The optimization is worked out in the light of Wiener's theory taking into account the phase noise affecting the incoming carrier, the additive white Gaussian noise that is present on the channel, and the self-noise produced by the phase detector. Delay in the loop, which may affect the numerical implementation of the PLL, is also considered. Closed-form expressions for the loop filter and for the mean-square error are given for the case where the phase noise is characterized as a first-order process.

  15. Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kunlei; Chen, Liangyong; Zhang, Yi; Richburg, Lisa; Simpson, James; White, Jay; Rossi, Gianalfredo

    2013-12-31

    The purpose of this document is to report the final result of techno-economic analysis for the proposed 550MWe integrated pressurized chemical looping combustion combined cycle process. An Aspen Plus based model is delivered in this report along with the results from three sensitivity scenarios including the operating pressure, excess air ratio and oxygen carrier performance. A process flow diagram and detailed stream table for the base case are also provided with the overall plant energy balance, carbon balance, sulfur balance and water balance. The approach to the process and key component simulation are explained. The economic analysis (OPEX and CAPX) on four study cases via DOE NETL Reference Case 12 are presented and explained.

  16. Polarization multiplexed dual-loop optoelectronic oscillator based on stimulated Brillouin scattering

    Science.gov (United States)

    Han, Xiuyou; Ma, Liang; Shao, Yuchen; Ye, Qing; Gu, Yiying; Zhao, Mingshan

    2017-01-01

    A polarization multiplexed dual-loop optoelectronic oscillator (OEO) based on stimulated Brillouin scattering (SBS) is theoretically analyzed and experimentally demonstrated. The narrow bandwidth of SBS gain spectrum is utilized to implement the phase modulation to intensity modulation conversion and select the oscillation mode of the OEO. The polarization multiplexed dual-loop is constructed to suppress the side modes with Vernier effect. The output frequency of the OEO can be tuned by changing the frequency of the signal or the pump light wave. With the polarization multiplexed dual-loop the side-mode suppression ratio (SMSR) of 45 dB is achieved at 10 GHz. The generated oscillation frequency is tuned from 4 GHz to 16 GHz by changing the frequency of the signal light wave. The phase noise decreases with the power increase of the signal light wave when it is under the threshold of SBS. By adjusting the polarization state of the light wave, the influence of the power distribution between the long loop and the short loop on the phase noise of the OEO is investigated. The results show that more power in the long loop is helpful to suppress the near end phase noise.

  17. Phase Noise Analysis of Clock Recovery Based on an Optoelectronic Phase-Locked Loop

    Science.gov (United States)

    Zibar, Darko; Mørk, Jesper; Katsuo Oxenløwe, Leif; Clausen, Anders T.

    2007-03-01

    A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser employed in the loop. The effects of loop time delay and the laser transfer function are included in the stochastic differential equations describing the system, and a detailed timing jitter analysis of this type of optoelectronic CR for high-speed optical-time-division-multiplexing systems is performed. It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and electrical clock signal can be evaluated. We numerically investigate the timing jitter requirements for combined electrical/optical local oscillators, in order for the recovered clock signal to have less jitter than that of the input signal. The timing jitter requirements for the free-running laser and the VCO are more relaxed for the extracted optical clock (lasers's output) signal.

  18. The Effects of Thermal Treatment and Steam Addition on Integrated CuO/CaO Chemical Looping Combustion for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Alvaro Recio

    2016-04-01

    Full Text Available The combination of Chemical Looping Combustion (CLC with Calcium Looping (CaL using integrated pellets is an alternative CO2 capture process to the current amine-based sorbent processes, but the pellets lose sorption capacity over time. In this paper, the deactivation behavior of CaO, CuO and CuO/CaO integrated pellets used for multiple (16–20 cycles in a thermogravimetric analyzer was studied. The impact of thermal treatment and the presence of steam on the deactivation were also investigated. Nitrogen physisorption and scanning electron microscopy/energy-dispersive X-ray analysis were used to characterize the pellets. The analysis revealed significant migration of the copper to the surface of the composite pellets, which likely suppressed carbonation capacity by reducing the accessibility of the CaO. While thermal pre-treatment and steam addition enhanced the performance of the base CaO pellets, the former led to cracks in the pellets. In contrast, thermal pretreatment of the CuO/CaO composite pellets resulted in worse CLC and CaL performance.

  19. Two-loop thermodynamics of warm and dense (isospin and baryo-chemical potential) perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Thorben [Institut fuer Theoretische Physik, Goethe Universitaet, Frankfurt am Main (Germany); Schaffner-Bielich, Juergen [Institut fuer Theoretische Physik, Goethe Universitaet, Frankfurt am Main (Germany); Fraga, Eduardo S. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil)

    2014-07-01

    We present a perturbative calculation of the thermodynamical potential of quantum chromodynamics at nonvanishing temperatures for different values of the isospin and baryo-chemical potential. A comparison to recent lattice calculations at nonvanishing isospin is performed and the region of the break-down of the perturbative calculations are delineated. Finally, we study the thermodynamic potential at high chemical potentials and low temperatures where the perturbative scheme should be also applicable.

  20. Conventional Exergetic and Exergoeconomic Analyses of a Power Plant with Chemical Looping Combustion for CO2 Capture

    Directory of Open Access Journals (Sweden)

    Tatiana Morosuk

    2010-09-01

    Full Text Available

    Exergy-based methods can be used as a tool for examining, comparing and assessing thermodynamic systems. In this paper, an exergoeconomic analysis is used to evaluate a power plant with chemical looping combustion (CLC for CO2 capture. This oxy-fuel plant is compared, from an exergetic and an economic perspective, to a conventional, reference power plant without CO2 capture. The exergetic analysis shows decreased exergy destruction in the CLC reactors, compared to the exergy destruction in the conventional combustion chamber of the reference case; thus, the irreversibilities caused by combustion in the CLC are reduced. However, due to the addition of the CO2 compression unit, the overall exergetic efficiency of the plant with CLC is lower than that of the reference plant by approximately 5 percentage points. The economic analysis confirms a significant increase in the investment cost of the CO2 capture plant, due to the addition of the units for CO2 compression and CLC. Thus, the cost of electricity is 24% higher for this plant in comparison to that of the reference case. Nevertheless, when compared to the reference plant with CO2 capture with monoethanolamine, the plant with CLC was found to be a more economical option. Since CO2 abatement must be realized in the future, given expected environmental or tax measures, CLC provides relatively low cost carbon dioxide capture and it, therefore, appears to be a promising option for

  1. Model based non-invasive estimation of PV loop from echocardiography.

    Science.gov (United States)

    Itu, Lucian; Sharma, Puneet; Georgescu, Bogdan; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2014-01-01

    We introduce a model-based approach for the non-invasive estimation of patient specific, left ventricular PV loops. A lumped parameter circulation model is used, composed of the pulmonary venous circulation, left atrium, left ventricle and the systemic circulation. A fully automated parameter estimation framework is introduced for model personalization, composed of two sequential steps: first, a series of parameters are computed directly, and, next, a fully automatic optimization-based calibration method is employed to iteratively estimate the values of the remaining parameters. The proposed methodology is first evaluated for three healthy volunteers: a perfect agreement is obtained between the computed quantities and the clinical measurements. Additionally, for an initial validation of the methodology, we computed the PV loop for a patient with mild aortic valve regurgitation and compared the results against the invasively determined quantities: there is a close agreement between the time-varying LV and aortic pressures, time-varying LV volumes, and PV loops.

  2. Lidar-based wake tracking for closed-loop wind farm control

    Science.gov (United States)

    Raach, Steffen; Schlipf, David; Cheng, Po Wen

    2016-09-01

    This work presents two advancements towards closed-loop wake redirecting of a wind turbine. First, a model-based estimation approach is presented which uses a nacelle-based lidar system facing downwind to obtain information about the wake. A reduced order wake model is described which is then used in the estimation to track the wake. The tracking is demonstrated with lidar measurement data from an offshore campaign and with simulated lidar data from a SOWFA simulation. Second, a controller for closed-loop wake steering is presented. It uses the wake tracking information to set the yaw actuator of the wind turbine to redirect the wake to a desired position. Altogether, this paper aims to present the concept of closed-loop wake redirecting and gives a possible solution to it.

  3. Operation of the NETL Chemical Looping Reactor with Natural Gas and a Novel Copper-Iron Material

    Energy Technology Data Exchange (ETDEWEB)

    Bayham, Sanuel [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Straub, Doug [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Weber, Justin [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2017-02-01

    As part of the U.S. Department of Energy’s Advanced Combustion Program, the National Energy Technology Laboratory’s Research and Innovation Center (NETL R&IC) is investigating the feasibility of a novel combustion concept in which the GHG emissions can be significantly reduced. This concept involves burning fuel and air without mixing these two reactants. If this concept is technically feasible, then CO2 emissions can be significantly reduced at a much lower cost than more conventional approaches. This indirect combustion concept has been called Chemical Looping Combustion (CLC) because an intermediate material (i.e., a metaloxide) is continuously cycled to oxidize the fuel. This CLC concept is the focus of this research and will be described in more detail in the following sections.

  4. Nano-Perovskite-Based (LaMO3) Oxygen Carrier for Syngas Generation by Chemical-Looping Reforming of Methane%LaMO3纳米复合钙钛矿氧载体化学循环重整甲烷制合成气

    Institute of Scientific and Technical Information of China (English)

    代小平; 余长春

    2011-01-01

    采用溶胶-凝胶法制备了不同B位可变价离子的LaMO3 (M= Cr,Mn,Fe,Co)复合氧化物氧载体,采用X射线衍射、N2吸附-脱附、扫描电镜及CH4程序升温表面反应等手段对氧载体进行了表征,并用于直接选择氧化CH4的反应中.结果表明,Cr,Mn,Fe 和Co均能形成LaMO3纳米复合钙钛矿结构,其氧物种氧化能力大小顺序为LaCoO3> LaMnO3> LaFeO3> LaCrO3.在连续流动化学循环甲烷重整反应中,LaFeO3中的氧物种具有更好的选择氧化性能(H2/CO= 2.06),其CH4转化率和CO选择性分别达到89.6%和98.9%.10个连续顺序氧化-还原化学循环重整反应中,CH4转化率约为60%~70%,CO选择性达98%以上;且其结构保持了较高的稳定性.%Catalytic reforming of natural gas is a commercial process to produce syngas, which is the main source for the production of ammonia, methanol, hydrogen, and many other important products. This method produces also large amounts of CO2 as by-product. Chemical-looping reforming (CLR) is a novel technology that can be used for syngas production by partial oxidation and steam reforming of hydrocarbon fuels. One key issue with the CLR concept that is being widely studied is the oxidation and reduction behavior of potential oxygen-carrier materials. Four perovskite-based nano-composite oxides were prepared by the sol-gel method and characterized by X-ray diffraction, N2 adsorption-desorption, scanning electron microscopy (SEM), and CH4 temperature-programmed surface reaction. The catalytic performance of the prepared samples for CLR of CH4 to syngas was investigated. The results showed that the LaMO3 (B = Cr, Mn, Fe, and Co) oxides possess perovskite-type nano-composite structure. The oxidizing ability of these four perovskite oxides follows the order of LaCoO3> LaMnO3 > LaFeO3 > LaCrO3 Among them, LaFeO3 oxide has higher activity for CLR of CH4 to syngas. The CH4 conversion and CO selectivity are 89.6% and 98.9%, respectively

  5. Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

    2013-09-30

    A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The

  6. Sustainable Rent-Based Closed-Loop Supply Chain for Fashion Products

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Hu

    2014-10-01

    Full Text Available The textile and clothing industry generates much pollution and consumes a large amount of resources. Improper uses and disposal of clothing products make the problems much more severe. Fast fashion products shorten the valid lifecycle and generate more waste than regular clothing products. Considering the features of fashion products, a system of a rent-based closed-loop supply chain is developed to improve the sustainability of fashion products. The supply chain processes (fashion design and manufacturing, laundry, logistics and disposal, the operations management issues (inventory management, closed-loop logistics, human-clothing matching, booking system and the rental pricing and the sustainability promotion aspects (customization, responsive system, culture and policy aspects are investigated by devising sustainable strategies. The rationalities of the developed system and strategies are reviewed and elucidated in detail. The results may contribute to building sustainable closed-loop fashion supply chains, the related information systems and operational and managerial mechanisms.

  7. Droop Control with an Adjustable Complex Virtual Impedance Loop based on Cloud Model Theory

    DEFF Research Database (Denmark)

    Li, Yan; Shuai, Zhikang; Xu, Qinming;

    2016-01-01

    Droop control framework with an adjustable virtual impedance loop is proposed in this paper, which is based on the cloud model theory. The proposed virtual impedance loop includes two terms: a negative virtual resistor and an adjustable virtual inductance. The negative virtual resistor term...... not only can avoid the active/reactive power coupling, but also it may reduce the output voltage drop of the PCC voltage. The proposed adjustable complex virtual impedance loop is putted into the conventional P/Q droop control to overcome the difficulty of getting the line impedance, which may change...... sometimes. The cloud model theory is applied to get online the changing line impedance value, which relies on the relevance of the reactive power responding the changing line impedance. The verification of the proposed control strategy is done according to the simulation in a low voltage microgrid in Matlab....

  8. Benchmarking of Phase Locked Loop based Synchronization Techniques for Grid-Connected Inverter Systems

    DEFF Research Database (Denmark)

    Yang, Yongheng; Hadjidemetriou, Lenos; Blaabjerg, Frede;

    2015-01-01

    , becoming inevitable challenges to the synchronization of the grid-connected renewable energy systems. In order to ensure the quality of the power generation from the renewables, robust and reliable synchronization methods are in demand. Among the prior-art solutions, Phase Locked Loop (PLL) based...

  9. Single-phase Phase-locked Loop Based on Derivative Elements

    DEFF Research Database (Denmark)

    Guan, Qingxin; Zhang, Yu; Kang, Yong;

    2017-01-01

    High performance phase locked loops (PLLs) are critical for power control in grid-connected systems. This paper presents a new method of designing a PLL for single-phase systems based on derivative elements (DEs). The quadrature signal generator (QSG) is constructed by two DEs with the same main ...

  10. Integrating a web-based system with business processes in closed loop supply chains

    NARCIS (Netherlands)

    A.I. Kokkinaki; R. Dekker (Rommert); R. Lee; C.P. Pappis (Costas)

    2001-01-01

    textabstractClosed Loop Supply Chains include operations for physical collection of end-of-use products, selection based on their configuration and/or condition and decision making for reuse, remanufacturing or recycling. Uncertainty factors regarding the time, place of origin, and status of retu

  11. Analysis of New Q-switched Erbium Doped Fiber Laser Based on Fiber Grating Loop Mirror

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An all-fiber wavelength selective Q-switching modulator based on fiber grating loop mirror is proposed. A newly configured Q-switched erbium doped fiber laser using this all-fiber modulator is numerically analyzed taking into account the effects of the spontaneous emission.

  12. Nanotube-Based Chemical and Biomolecular Sensors

    Institute of Scientific and Technical Information of China (English)

    J.Koh; B.Kim; S.Hong; H.Lim; H.C.Choi

    2008-01-01

    We present a brief review about recent results regarding carbon nanotube (CNT)-based chemical and biomolecular sensors. For the fabrication of CNT-based sensors, devices containing CNT channels between two metal electrodes are first fabricated usually via chemical vapor deposition (CVD) process or "surface programmed assembly" method. Then, the CNT surfaces are often functionalized to enhance the selectivity of the sensors. Using this process, highly-sensitive CNT-based sensors can be fabricated for the selective detection of various chemical and biological molecules such as hydrogen, ammonia, carbon monoxide, chlorine gas, DNA, glucose, alcohol, and proteins.

  13. 惰性载体Al_2O_3对Fe_2O_3及CuO氧载体煤化学链燃烧的影响%Effect of Inert Support Al_2O_3 on the Chemical Looping Combustion of Coal With Fe_2O_3 and CuO-based Oxygen Carrier

    Institute of Scientific and Technical Information of China (English)

    王保文; 赵海波; 郑瑛; 柳朝晖; 郑楚光; 晏蓉

    2011-01-01

    氧载体是煤化学链燃烧技术的基础,惰性载体则是其中的必要组成部分,起着重要的作用。以Al2O3作为典型惰性载体,采用热重分析仪、红外频谱仪、场发射扫描电镜和能谱分析仪以及X衍射仪,对六盘水贫煤与Fe2O3、CuO基氧载体的反应进行了详细的研究。研究发现,Al2O3的引入,使得Fe2O3、CuO基氧载体表面积增大、孔径分布更为优化,而且对氧载体与六盘水贫煤一次热解产物的反应是有利的,能够促进氧载体中更多晶格氧的传递,Fe2O3基氧载体中有更多的Fe2O3还原为低于Fe3O4价态的氧化物,而CuO基氧载体中CuO除了还原为Cu、Cu2O外,其中的CuAl2O4也有一定的反应活性,被还原为CuAlO2。与LPS煤反应时,Fe2O3深度还原产物与部分Al2O3及煤中的SiO2反应生成Fe3Al2(SiO4)3,而CuO则与Al2O3及六盘水贫煤反应生成了(Cu0.215Mg1.785)(Al4Si5O18)复合物。%Oxygen carrier(OC) is the basis for chemical looping combustion of coal and inert support is the necessary part of OC.Al2O3 was adopted as the typical inert support and the reaction of Liupanshui(LPS) coal with Fe2O3,CuO based OC was systematically investigated by various experimental means,including thermogravimetric analysis(TGA),Fourier transform infrared spectroscopy(FTIR),field scanning electron microscopy coupled with energy-dispersive X-ray spectrometry(FSEM-EDX) and X-ray diffraction(XRD) analysis.It was found that,the introduction of Al2O3 to Fe2O3 and CuO made the surface areas of these two OC greatly increased and the pore distribution more optimized,which benefited the primary gaseous products of LPS coal to react with Fe2O3 and CuO.Furthermore,during the reaction of LPS with these two OC,the optimized pore size distribution promoted more sufficient reaction of LPS coal with Fe2O3,and thus more Fe2O3 was reduced into lower valence oxides than Fe3O4;but for CuO based OC,their solid reduced products with

  14. Simple PID parameter tuning method based on outputs of the closed loop system

    Science.gov (United States)

    Han, Jianda; Zhu, Zhiqiang; Jiang, Ziya; He, Yuqing

    2016-05-01

    Most of the existing PID parameters tuning methods are only effective with pre-known accurate system models, which often require some strict identification experiments and thus infeasible for many complicated systems. Actually, in most practical engineering applications, it is desirable for the PID tuning scheme to be directly based on the input-output response of the closed-loop system. Thus, a new parameter tuning scheme for PID controllers without explicit mathematical model is developed in this paper. The paper begins with a new frequency domain properties analysis of the PID controller. After that, the definition of characteristic frequency for the PID controller is given in order to study the mathematical relationship between the PID parameters and the open-loop frequency properties of the controlled system. Then, the concepts of M-field and θ-field are introduced, which are then used to explain how the PID control parameters influence the closed-loop frequency-magnitude property and its time responses. Subsequently, the new PID parameter tuning scheme, i.e., a group of tuning rules, is proposed based on the preceding analysis. Finally, both simulations and experiments are conducted, and the results verify the feasibility and validity of the proposed methods. This research proposes a PID parameter tuning method based on outputs of the closed loop system.

  15. Screening of NiFe2O4 Nanoparticles as Oxygen Carrier in Chemical Looping Hydrogen Production

    DEFF Research Database (Denmark)

    Liu, Shuai; He, Fang; Huang, Zhen

    2016-01-01

    The objective of this paper is to systematically investigate the influences of different preparation methods on the properties of NiFe2O4 nanoparticles as oxygen carrier in chemical looping hydrogen production (CLH). The solid state (SS), coprecipitation (CP), hydrothermal (HT), and sol-gel (SG...

  16. Physical/chemical closed-loop water-recycling for long-duration missions

    Science.gov (United States)

    Herrmann, Cal C.; Wydeven, Ted

    1990-01-01

    Water needs, water sources, and means for recycling water are examined in terms appropriate to the water quality requirements of a small crew and spacecraft intended for long duration exploration missions. Inorganic, organic, and biological hazards are estimated for waste water sources. Sensitivities to these hazards for human uses are estimated. The water recycling processes considered are humidity condensation, carbon dioxide reduction, waste oxidation, distillation, reverse osmosis, pervaporation, electrodialysis, ion exchange, carbon sorption, and electrochemical oxidation. Limitations and applications of these processes are evaluated in terms of water quality objectives. Computerized simulation of some of these chemical processes is examined. Recommendations are made for development of new water recycling technology and improvement of existing technology for near term application to life support systems for humans in space. The technological developments are equally applicable to water needs on earth, in regions where extensive water ecycling is needed or where advanced water treatment is essential to meet EPA health standards.

  17. Ningxia Becomes China's Largest Coal Chemical Base

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Northwest China's Ningxia Hui Autonomous Region plans to invest more than 100 billion yuan (US$12.9 billion) to build Asia's largest liquefied-coal base,according to the regional development and reform commission. The first group of projects, designed to produce methanol and other chemicals from coal, are under construction in the Ningdong Chemical Resource Base, which is located near coal deposits containing 80 percent of Ningxia's known coal reserves, said Hao Linhai, director of the regional commission.

  18. Transparent Runtime Migration of Loop-Based Traces of Processor Instructions to Reconfigurable Processing Units

    Directory of Open Access Journals (Sweden)

    João Bispo

    2013-01-01

    Full Text Available The ability to map instructions running in a microprocessor to a reconfigurable processing unit (RPU, acting as a coprocessor, enables the runtime acceleration of applications and ensures code and possibly performance portability. In this work, we focus on the mapping of loop-based instruction traces (called Megablocks to RPUs. The proposed approach considers offline partitioning and mapping stages without ignoring their future runtime applicability. We present a toolchain that automatically extracts specific trace-based loops, called Megablocks, from MicroBlaze instruction traces and generates an RPU for executing those loops. Our hardware infrastructure is able to move loop execution from the microprocessor to the RPU transparently, at runtime, and without changing the executable binaries. The toolchain and the system are fully operational. Three FPGA implementations of the system, differing in the hardware interfaces used, were tested and evaluated with a set of 15 application kernels. Speedups ranging from 1.26 to 3.69 were achieved for the best alternative using a MicroBlaze processor with local memory.

  19. Reactivity of iron oxide with methane in a laboratory fluidized bed : application of chemical-looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cho, P. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Inorganic and Environmental Chemistry; Mattisson, T.; Lyngfelt, A. [Chalmers Univ. of Technology, Goteborg (Sweden). Dept. of Energy Conversion

    2002-07-01

    Chemical looping combustion (CLC) is a promising method for separating carbon dioxide from flue gases during combustion. A study was conducted in which cyclic reduction-oxidation experiments were conducted with synthetic oxygen carrier particles under fluidized conditions. Two interconnected fluidized beds were used as reactors in which a metal oxide was used as an oxygen carrier providing oxygen from the combustion air to the fuel. In particular, this study examined the feasibility of using iron oxide as an oxygen carrier in repeated cycles of methane and air at 950 degrees C. The advantage of CLC compared to normal combustion is that carbon dioxide can be separated from the other components of the flue gas, nitrogen and unreacted oxygen. This avoids efficiency losses and the need for costly equipment for carbon dioxide separation. The reduction rates measured in this experiment were lower than in previous tests with fixed beds due to less efficient contact between gas and particles under fluidized bed conditions. High reactivities were still observed, suggesting that the particles should have sufficient reactivity for use in the proposed CLC system. 10 refs., 1 tab., 5 figs.

  20. Thermogravimetric Analysis of Modified Hematite by Methane (CH{sub 4}) for Chemical-Looping Combustion: A Global Kinetics Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, Esmail R; Breault, Ronald W; Siriwardane, Ranjani; Miller, Duane D

    2013-10-01

    Iron oxide (Fe{sub 2}O{sub 3}) or in its natural form (hematite) is a potential material to capture CO{sub 2} through the chemical-looping combustion (CLC) process. It is known that magnesium (Mg) is an effective methyl cleaving catalyst and as such it has been combined with hematite to assess any possible enhancement to the kinetic rate for the reduction of Fe{sub 2}O{sub 3} with methane. Therefore, in order to evaluate its effectiveness as a hematite additive, the behaviors of Mg-modified hematite samples (hematite –5% Mg(OH){sub 2}) have been analyzed with regard to assessing any enhancement to the kinetic rate process. The Mg-modified hematite was prepared by hydrothermal synthesis. The reactivity experiments were conducted in a thermogravimetric analyzer (TGA) using continuous stream of CH{sub 4} (5, 10, and 20%) at temperatures ranging from 700 to 825 {degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2}, H{sub 2}O, H{sub 2} and CO in the gaseous product. The kinetic data at reduction step obtained by isothermal experiments could be well fitted by two parallel rate equations. The modified hematite samples showed higher reactivity as compared to unmodified hematite samples during reduction at all investigated temperatures.

  1. A digital phase locked loop based signal and symbol recovery system for wireless channel

    CERN Document Server

    Purkayastha, Basab Bijoy

    2015-01-01

    The book reports two approaches of implementation of the essential components of a Digital Phase Locked Loop based system for dealing with wireless channels showing Nakagami-m fading. It is mostly observed in mobile communication. In the first approach, the structure of a Digital phase locked loop (DPLL) based on Zero Crossing (ZC) algorithm is proposed. In a modified form, the structure of a DPLL based systems for dealing with Nakagami-m fading based on Least Square Polynomial Fitting Filter is proposed, which operates at moderate sampling frequencies. A sixth order Least Square Polynomial Fitting (LSPF) block and Roots Approximator (RA) for better phase-frequency detection has been implemented as a replacement of Phase Frequency Detector (PFD) and Loop Filter (LF) of a traditional DPLL, which has helped to attain optimum performance of DPLL. The results of simulation of the proposed DPLL with Nakagami-m fading and QPSK modulation is discussed in detail which shows that the proposed method provides better pe...

  2. Study on the dynamic performance of a novel buck-boost matrix converter based on double-loop control strategy

    Science.gov (United States)

    Li, Qing; Zhang, Xiao-ping; Chen, Qi

    2011-12-01

    The dynamic performance of a novel Buck-Boost matrix converter (BBMC) based on double-loop control strategy is put forward in this paper. The fundamental principle of BBMC has been elaborated and the method of the double-loop control strategy has been built with Matlab, and then the dynamic performances of BBMC based on the double-loop control strategy are discussed. The results show that the output voltage and frequency can be almost constant with the BBMC and double-loop control strategy despite of the changeable input voltage and frequency. Moreover, a high-quality sine output wave with low harmonic distortion can be directly obtained without filtering. So it can be drawn that the BBMC based on the double-loop control strategy has perfectly dynamic performance and practical importance to the engineering.

  3. IMC-PID design based on model matching approach and closed-loop shaping.

    Science.gov (United States)

    Jin, Qi B; Liu, Q

    2014-03-01

    Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability.

  4. Determination of Optimal Opening Scheme for Electromagnetic Loop Networks Based on Fuzzy Analytic Hierarchy Process

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-01-01

    Full Text Available Studying optimization and decision for opening electromagnetic loop networks plays an important role in planning and operation of power grids. First, the basic principle of fuzzy analytic hierarchy process (FAHP is introduced, and then an improved FAHP-based scheme evaluation method is proposed for decoupling electromagnetic loop networks based on a set of indicators reflecting the performance of the candidate schemes. The proposed method combines the advantages of analytic hierarchy process (AHP and fuzzy comprehensive evaluation. On the one hand, AHP effectively combines qualitative and quantitative analysis to ensure the rationality of the evaluation model; on the other hand, the judgment matrix and qualitative indicators are expressed with trapezoidal fuzzy numbers to make decision-making more realistic. The effectiveness of the proposed method is validated by the application results on the real power system of Liaoning province of China.

  5. A tunable comb filter using single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop

    Institute of Scientific and Technical Information of China (English)

    Ruan Juan; Zhang Wei-Gang; Zhang Hao; Geng Peng-Cheng; Bai Zhi-Yong

    2013-01-01

    A novel tunable comb filter composed of a single-mode/multimode/polarization-maintaining-fiber-based Sagnac fiber loop is proposed and experimentally demonstrated.The filter tunability is achieved by rotating the polarization controller.The spectral shift is dependent on rotation direction and the position of the polarization controller.In addition,the adjustable range achieved by rotating the half-wave-plate polarization controller is twice higher than that of the quarter-wave-plate one.

  6. Sustainable Rent-Based Closed-Loop Supply Chain for Fashion Products

    OpenAIRE

    Zhi-Hua Hu; Qing Li; Xian-Juan Chen; Yan-Feng Wang

    2014-01-01

    The textile and clothing industry generates much pollution and consumes a large amount of resources. Improper uses and disposal of clothing products make the problems much more severe. Fast fashion products shorten the valid lifecycle and generate more waste than regular clothing products. Considering the features of fashion products, a system of a rent-based closed-loop supply chain is developed to improve the sustainability of fashion products. The supply chain processes (fashion design and...

  7. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process.

    Science.gov (United States)

    Cheng, Zhuo; Qin, Lang; Guo, Mengqing; Xu, Mingyuan; Fan, Jonathan A; Fan, Liang-Shih

    2016-11-30

    We perform ab initio DFT+U calculations and experimental studies of the partial oxidation of methane to syngas on iron oxide oxygen carriers to elucidate the role of oxygen vacancies in oxygen carrier reactivity. In particular, we explore the effect of oxygen vacancy concentration on sequential processes of methane dehydrogenation, and oxidation with lattice oxygen. We find that when CH4 adsorbs onto Fe atop sites without neighboring oxygen vacancies, it dehydrogenates with CHx radicals remaining on the same site and evolves into CO2via the complete oxidation pathway. In the presence of oxygen vacancies, on the other hand, the formed methyl (CH3) prefers to migrate onto the vacancy site while the H from CH4 dehydrogenation remains on the original Fe atop site, and evolves into CO via the partial oxidation pathway. The oxygen vacancies created in the oxidation process can be healed by lattice oxygen diffusion from the subsurface to the surface vacancy sites, and it is found that the outward diffusion of lattice oxygen atoms is more favorable than the horizontal diffusion on the same layer. Based on the proposed mechanism and energy profile, we identify the rate-limiting steps of the partial oxidation and complete oxidation pathways. Also, we find that increasing the oxygen vacancy concentration not only lowers the barriers of CH4 dehydrogenation but also the cleavage energy of Fe-C bonds. However, the barrier of the rate-limiting step cannot further decrease when the oxygen vacancy concentration reaches 2.5%. The fundamental insight into the oxygen vacancy effect on CH4 oxidation with iron oxide oxygen carriers can help guide the design and development of more efficient oxygen carriers and CLPO processes.

  8. Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space

    Institute of Scientific and Technical Information of China (English)

    Liangyong WANG; Tianyou CHAI; Zheng FANG

    2009-01-01

    A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies.

  9. Closed-loop controller for chest compressions based on coronary perfusion pressure: a computer simulation study.

    Science.gov (United States)

    Wang, Chunfei; Zhang, Guang; Wu, Taihu; Zhan, Ningbo; Wang, Yaling

    2016-03-01

    High-quality cardiopulmonary resuscitation contributes to cardiac arrest survival. The traditional chest compression (CC) standard, which neglects individual differences, uses unified standards for compression depth and compression rate in practice. In this study, an effective and personalized CC method for automatic mechanical compression devices is provided. We rebuild Charles F. Babbs' human circulation model with a coronary perfusion pressure (CPP) simulation module and propose a closed-loop controller based on a fuzzy control algorithm for CCs, which adjusts the CC depth according to the CPP. Compared with a traditional proportion-integration-differentiation (PID) controller, the performance of the fuzzy controller is evaluated in computer simulation studies. The simulation results demonstrate that the fuzzy closed-loop controller results in shorter regulation time, fewer oscillations and smaller overshoot than traditional PID controllers and outperforms the traditional PID controller for CPP regulation and maintenance.

  10. Hardware-in the-loop Simulator for ABS based on MATLAB/Simulink

    Institute of Scientific and Technical Information of China (English)

    Pan,Wei; Gao,jinghui; Zhou,Yafu; Song,Zhenhuan

    2003-01-01

    A method for building a Hardware-in the-loop Simulator of ABS base on MATLAB/Simulink is presented in this paper. In this method, the vehicle transmission model, the AT model and ABS algorithm is built in Simulink. This system can simulate a vehicle system in the Simulink environment. Further more, the Hardware-in the-loop Simulator system can be connected with the real ABS by I/O boards to observe the algorithm is reasonable or not. At the same time, user can simulate some different conditions by changing the parameter. The system help the user heightening the efficiency when developing the electronic device. Also, the system can be used as teaching demo software.

  11. Osmotic Ballasts Enhance Faradaic Efficiency in Closed-Loop, Membrane-Based Energy Systems.

    Science.gov (United States)

    Kingsbury, Ryan S; Coronell, Orlando

    2017-02-07

    Aqueous processes for energy storage and conversion based on reverse electrodialysis (RED) require a significant concentration difference across ion exchange membranes, creating both an electrochemical potential and an osmotic pressure difference. In closed-loop RED, which we recently demonstrated as a new means of energy storage, the transport of water by osmosis has a very significant negative impact on the faradaic efficiency of the system. In this work, we use neutral, nonpermeating solutes as "osmotic ballasts" in a closed-loop concentration battery based on RED. We present experimental results comparing two proof-of-concept ballast molecules, and show that the ballasts reduce, eliminate, or reverse the net transport of water through the membranes when cycling the battery. By mitigating osmosis, faradaic and round-trip energy efficiency are more than doubled, from 18% to 50%, and 7% to 15%, respectively in this nonoptimized system. However, the presence of the ballasts has a slightly negative impact on the open circuit voltage. Our results suggest that balancing osmotic pressure using noncharged solutes is a promising approach for significantly reducing faradaic energy losses in closed-loop RED systems.

  12. Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier.

    Science.gov (United States)

    Wang, Baowen; Gao, Chuchang; Wang, Weishu; Zhao, Haibo; Zheng, Chuguang

    2014-05-01

    Chemical looping combustion (CLC) of coal has gained increasing attention as a novel combustion technology for its advantages in CO2 capture. Sulfur evolution from coal causes great harm from either the CLC operational or environmental perspective. In this research, a combined MnFe2O4 oxygen carrier (OC) was synthesized and its reaction with a typical Chinese high sulfur coal, Liuzhi (LZ) bituminous coal, was performed in a thermogravimetric analyzer (TGA)-Fourier transform infrared (FT-IR) spectrometer. Evolution of sulfur species during reaction of LZ coal with MnFe2O4 OC was systematically investigated through experimental means combined with thermodynamic simulation. TGA-FTIR analysis of the LZ reaction with MnFe2O4 indicated MnFe2O4 exhibited the desired superior reactivity compared to the single reference oxides Mn3O4 or Fe2O3, and SO2 produced was mainly related to oxidization of H2S by MnFe2O4. Experimental analysis of the LZ coal reaction with MnFe2O4, including X-ray diffraction and X-ray photoelectron spectroscopy analysis, verified that the main reduced counterparts of MnFe2O4 were Fe3O4 and MnO, in good agreement with the related thermodynamic simulation. The obtained MnO was beneficial to stabilize the reduced MnFe2O4 and avoid serious sintering, although the oxygen in MnO was not fully utilized. Meanwhile, most sulfur present in LZ coal was converted to solid MnS during LZ reaction with MnFe2O4, which was further oxidized to MnSO4. Finally, the formation of both MnS and such manganese silicates as Mn2SiO4 and MnSiO3 should be addressed to ensure the full regeneration of the reduced MnFe2O4.

  13. Application of Fe2O3/Al2O3 Composite Particles as Oxygen Carrier of Chemical Looping Combustion

    Institute of Scientific and Technical Information of China (English)

    Fang He; Hua Wang; Yongnian Dai

    2007-01-01

    Chemical looping combustion (CLC) of carbonaceous compounds has been proposed, in the past decade, as an efficient method for CO2 capture without cost of extra energy penalties. The technique involves the use of a metal oxide as an oxygen carrier that transfers oxygen from combustion air to fuels.The combustion is carried out in a two-step process: in the fuel reactor, the fuel is oxidized by a metal oxide, and in the air reactor, the reduced metal is oxidized back to the original phase. The use of iron oxide as an oxygen carrier has been investigated in this article. Particles composed of 80 wt% Fe2O3,together with Al2O3 as binder, have been prepared by impregnation methods. X-ray diffraction (XRD) analysis reveals that Fe2O3 does not interact with the Al2O3 binder after multi-cycles. The reactivity of the oxygen carrier particles has been studied in twenty-cycle reduction-oxidation tests in a thermal gravimetrical analysis (TGA) reactor. The components in the outlet gas have been analyzed. It has been observed that about 85% of CH4 converted to CO2 and H2O during most of the reduction periods. The oxygen carrier has kept quite a high reactivity in the twenty-cycle reactions. In the first twenty reaction cycles, the reaction rates became slightly higher with the number of cyclic reactions increasing, which was confirmed by the scanning electron microscopy (SEM) test results. The SEM analysis revealed that the pore size inside the particle had been enlarged by the thermal stress during the reaction, which was favorable for diffusion of the gaseous reactants into the particles. The experimental results suggested that the Fe2O3/Al2O3 oxygen carrier was a promising candidate for a CLC system.

  14. Multi-loop adaptive internal model control based on a dynamic partial least squares model

    Institute of Scientific and Technical Information of China (English)

    Zhao ZHAO; Bin HU; Jun LIANG

    2011-01-01

    A multi-loop adaptive internal model control (IMC) strategy based on a dynamic partial least squares (PLS) framework is proposed to account for plant model errors caused by slow aging, drift in operational conditions, or environmental changes. Since PLS decomposition structure enables multi-loop controller design within latent spaces, a multivariable adaptive control scheme can be converted easily into several independent univariable control loops in the PLS space. In each latent subspace,once the model error exceeds a specific threshold, online adaptation rules are implemented separately to correct the plant model mismatch via a recursive least squares (RLS) algorithm. Because the IMC extracts the inverse of the minimum part of the internal model as its structure, the IMC controller is self-tuned by explicitly updating the parameters, which are parts of the internal model.Both parameter convergence and system stability are briefly analyzed, and proved to be effective. Finally, the proposed control scheme is tested and evaluated using a widely-used benchmark of a multi-input multi-output (MIMO) system with pure delay.

  15. Clustering of HIV-1 Subtypes Based on gp120 V3 Loop electrostatic properties

    Directory of Open Access Journals (Sweden)

    López de Victoria Aliana

    2012-02-01

    Full Text Available Abstract Background The V3 loop of the glycoprotein gp120 of HIV-1 plays an important role in viral entry into cells by utilizing as coreceptor CCR5 or CXCR4, and is implicated in the phenotypic tropisms of HIV viruses. It has been hypothesized that the interaction between the V3 loop and CCR5 or CXCR4 is mediated by electrostatics. We have performed hierarchical clustering analysis of the spatial distributions of electrostatic potentials and charges of V3 loop structures containing consensus sequences of HIV-1 subtypes. Results Although the majority of consensus sequences have a net charge of +3, the spatial distribution of their electrostatic potentials and charges may be a discriminating factor for binding and infectivity. This is demonstrated by the formation of several small subclusters, within major clusters, which indicates common origin but distinct spatial details of electrostatic properties. Some of this information may be present, in a coarse manner, in clustering of sequences, but the spatial details are largely lost. We show the effect of ionic strength on clustering of electrostatic potentials, information that is not present in clustering of charges or sequences. We also make correlations between clustering of electrostatic potentials and net charge, coreceptor selectivity, global prevalence, and geographic distribution. Finally, we interpret coreceptor selectivity based on the N6X7T8|S8X9 sequence glycosylation motif, the specific positive charge location according to the 11/24/25 rule, and the overall charge and electrostatic potential distribution. Conclusions We propose that in addition to the sequence and the net charge of the V3 loop of each subtype, the spatial distributions of electrostatic potentials and charges may also be important factors for receptor recognition and binding and subsequent viral entry into cells. This implies that the overall electrostatic potential is responsible for long-range recognition of the V3

  16. Flatness-based control in successive loops for stabilization of heart's electrical activity

    Science.gov (United States)

    Rigatos, Gerasimos; Melkikh, Alexey

    2016-12-01

    The article proposes a new flatness-based control method implemented in successive loops which allows for stabilization of the heart's electrical activity. Heart's pacemaking function is modeled as a set of coupled oscillators which potentially can exhibit chaotic behavior. It is shown that this model satisfies differential flatness properties. Next, the control and stabilization of this model is performed with the use of flatness-based control implemented in cascading loops. By applying a per-row decomposition of the state-space model of the coupled oscillators a set of nonlinear differential equations is obtained. Differential flatness properties are shown to hold for the subsystems associated with the each one of the aforementioned differential equations and next a local flatness-based controller is designed for each subsystem. For the i-th subsystem, state variable xi is chosen to be the flat output and state variable xi+1 is taken to be a virtual control input. Then the value of the virtual control input which eliminates the output tracking error for the i-th subsystem becomes reference setpoint for the i + 1-th subsystem. In this manner the control of the entire state-space model is performed by successive flatness-based control loops. By arriving at the n-th row of the state-space model one computes the control input that can be actually exerted on the aforementioned biosystem. This real control input of the coupled oscillators' system, contains recursively all virtual control inputs associated with the previous n - 1 rows of the state-space model. This control approach achieves asymptotically the elimination of the chaotic oscillation effects and the stabilization of the heart's pulsation rhythm. The stability of the proposed control scheme is proven with the use of Lyapunov analysis.

  17. Flow Induced Microvascular Network Formation of Therapeutic Relevant Arteriovenous (AV) Loop-Based Constructs in Response to Ionizing Radiation

    Science.gov (United States)

    Schmidt, Volker J.; Covi, Jennifer M.; Koepple, Christoph; Hilgert, Johannes G.; Polykandriotis, Elias; Bigdeli, Amir K.; Distel, Luitpold V.; Horch, Raymund E.; Kneser, Ulrich

    2017-01-01

    Background The arteriovenous (AV) loop model enables axial vascularization to gain a functional microcirculatory system in tissue engineering constructs in vivo. These constructs might replace surgical flaps for the treatment of complex wounds in the future. Today, free flaps are often exposed to high-dose radiation after defect coverage, according to guideline-oriented treatment plans. Vascular response of AV loop-based constructs has not been evaluated after radiation, although it is of particular importance. It is further unclear whether the interposed venous AV loop graft is crucial for the induction of angiogenesis. Material/Methods We exposed the grafted vein to a single radiation dose of 2 Gy prior to loop construction to alter intrinsic and angio-inductive properties specifically within the graft. Vessel loops were embedded in a fibrin-filled chamber for 15 days and radiation-induced effects on flow-mediated vascularization were assessed by micro-CT and two-dimensional histological analysis. Results Vessel amount was significantly impaired when an irradiated vein graft was used for AV loop construction. However, vessel growth and differentiation were still present. In contrast to vessel density, which was homogeneously diminished in constructs containing irradiated veins, vessel diameter was primarily decreased in the more peripheral regions. Conclusions Vascular luminal sprouts were significantly diminished in irradiated venous grafts, suggesting that the interposing vein constitutes a vital part of the AV loop model and is essential to initiate flow-mediate angiogenesis. These results add to the current understanding of AV loop-based neovascularization and suggest clinical implications for patients requiring combined AV loop-based tissue transfer and adjuvant radiotherapy. PMID:28199294

  18. A linear coherent integrated receiver based on a broadband optical phase-locked loop

    Science.gov (United States)

    Ramaswamy, Anand

    Optical Phase-Locked Loops (OPLL) have diverse applications in future communication systems. They can be used in high sensitivity homodyne phase-shift keying receivers for phase noise reduction, provided sufficient loop bandwidth is maintained. Alternative phase-locked loop applications include coherent synchronization of laser arrays and frequency synthesis by offset locking. In this work, a broadband OPLL based coherent receiver is used for linear phase demodulation. Phase modulated (PM) analog optical links have the potential to outperform conventional direct detection links. However, their progress has been stymied by the lack of a linear phase demodulator. We describe how feedback can be used to suppress non-linearities arising from the phase demodulation process. The receiver concept is demonstrated at low frequencies and is found to improve the Spurious Free Dynamic Range (SFDR) of an experimental analog link by over 20dB. In order to extend the operation of the receiver to microwave frequencies, latencies arising from physical delays in the feedback path need to be dramatically reduced. To facilitate this, monolithic and hybrid versions of the receiver based on compact integration of InP photonic integrated circuits (PIC) with InP and SiGe electronic integrated circuits (EIC) have been developed at UCSB. In this work, we develop novel measurement techniques to characterize the linearity of the individual components of the PIC, namely, the semiconductor photodiodes and optical phase modulators. We then demonstrate the operation of the receiver in a high power analog link. The OPLL based receiver has a bandwidth of 1.5GHz. The link gain and shot-noise limited SFDR at 300MHz are -2dB and 125dB-Hz2/3, respectively. Further, optical sampling downconversion is demonstrated as a viable technique to increase the operating frequency of the receiver beyond the baseband range.

  19. Matlab Based Human & Hardware-in-Loop Simulation for the Study on Vehicle Stability Control

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper described an effective method to implement human & hardware in the loop simulation (HHILS), which is based on MATLAB system and can be used to study human driving actions in the abrupt situation and vehicle stability control(VSC). A hybrid control algorithm, which makes full use of the advantages of robust control and fuzzy logic, was adopted in VSC system. The results of HHILS show that HHILS' application on the vehicle handling and VSC resarch is feasible. These results also confirm that the handling performance of the vehicle with VSC is improved obviously compared to the vehicle without VSC.

  20. Principle and Implementation of an MC4044-Based Phase Locked Loop for Constant Speed Control

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An inexpensive MC4044-based phase locked loop for constant speed control of a DC motor is discussed. It operates on a principle similar to that of a frequency synthesizer. The paper introduces the system configuration with a detailed description of its operating principle, some practical design considerations are discussed with an experimental study to test the control performance of the newly designed system. The experimental result shows that the phase locked control system can regulate the speed of a DC torque motor with a precision up to 0.0022%(1σ).

  1. 20/30 GHz dual-band circularly polarized reflectarray antenna based on the concentric dual split-loop element

    DEFF Research Database (Denmark)

    Smith, Thomas Gunst; Vesterdal Larsen, Niels; Vesterager Gothelf, Ulrich;

    2012-01-01

    A concentric dual split-loop element is designed and investigated for reflectarray antenna design in the emerging 20 GHz and 30 GHz Ka-band satellite communication spectrum. The element is capable of providing adjustment of the phase of reflection coefficients for circular plane waves in two...... separate frequency bands, by rotation of the individual split-loops. Cross-polar reflection is simultaneously minimized by optimizing the gaps in the split-loops. Based on the element characteristics, an iterative design procedure is proposed and used to design a front-fed reflectarray antenna...

  2. Improvement of CaO-based sorbent performance for CO{sub 2} looping cycles

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada)

    2009-07-01

    This paper presents research on CO{sub 2} capture by lime-based looping cycles. This is a new and promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as the developing technologies for CO{sub 2} capture, especially those based on CaO looping cycles. This technology is at the pilot plant demonstration stage and there are still significant challenges that require solutions. The technology is based on a dual fluidized bed reactor which contains a carbonator - a unit for CO{sub 2} capture, and a calciner - a unit for CaO regeneration. The major technology components are well known from other technologies and easily applicable. However, even though CaO is a very good candidate as a solid CO{sub 2} carrier, its performance in a practical system still has significant limitations. Thus, research on CaO performance is critical and this paper discusses some of the more important problems and potential solutions that are being examined at CETC-O. To date, the most promising methods were reactivation of spent sorbent by steam, thermal pretreatment of sorbent, and doping, most likely with Al{sub 2}O{sub 3}. The combination of these methods, including pelletization, should provide us with enhanced sorbent performance. 75 refs., 19 figs.

  3. Cryogenic Phase-Locking Loop System Based on SIS Tunnel Junction

    Science.gov (United States)

    Khudchenko, A. V.; Koshelets, V. P.; Kalashnikov, K. V.

    An ultra-wideband cryogenic phase-locking loop (CPLL) system is a new cryogenic device. The CPLL is intended for phase-locking of a Flux-Flow Oscillator (FFO) in a Superconducting Integrated Receiver (SIR) but can be used for any cryogenic terahertz oscillator. The key element of the CPLL is Cryogenic Phase Detector (CPD), a recently proposed new superconducting element. The CPD is an innovative implementation of superconductor-insulator-superconductor (SIS) tunnel junction. All components of the CPLL reside inside a cryostat at 4.2 K, with the loop length of about 50 cm and the total loop delay 5.5 ns. Such a small delay results in CPLL synchronization bandwidth as wide as 40 MHz and allows phase-locking of more than 60% of the power emitted by the FFO even for FFO linewidth of about 10 MHz. This percentage of phase-locked power three times exceeds that achieved with conventional room-temperature PLLs. Such an improvement enables reducing the FFO phase noise and extending the SIR operation range.Another new approach to the FFO phase-locking has been proposed and experimentally verified. The FFO has been synchronized by a cryogenic harmonic phase detector (CHPD) based on the SIS junction. The CHPD operates simultaneously as the harmonic mixer (HM) and phase detector. We have studied the HM based on the SIS junction theoretically; in particular we calculated 3D dependences of the HM output signal power versus the bias voltage and the LO power. Results of the calculations have been compared with experimental measurements. Good qualitative and quantitative correspondence has been achieved. The FFO phase-locking by the CHPD has been demonstrated. Such a PLL system is expected to be extra wideband. This concept is very promising for building of the multi-pixel SIR array.

  4. Research on the man in the loop control system of the robot arm based on gesture control

    Science.gov (United States)

    Xiao, Lifeng; Peng, Jinbao

    2017-03-01

    The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.

  5. The implantable loop recorder and its mammographic appearance: A case based approach.

    Science.gov (United States)

    Steinberger, Sharon; Margolies, Laurie R

    2017-01-15

    The normal radiographic appearance of implantable loop recorders has been illustrated in the radiology literature; however, their mammographic appearance has not been described. Breast imagers should become familiar with the appearance of loop recorders in order to create an accurate report. In this paper we report 3 cases of patients with implantable loop recorders who underwent mammography. We describe the types and components of implantable loop recorders, indications for their placement, and their classic appearance on mammography.

  6. A third-rank tensor field based on a U(1) gauge theory in loop space

    Energy Technology Data Exchange (ETDEWEB)

    Deguchi, Shinichi; Nakajima, Tadahito [Nihon Univ., Tokyo (Japan). Dept. of Physics

    1995-08-01

    We derive the Stueckelberg formalism extended to a third-rank tensor field from a U(1) gauge theory in loop space, the space of all loops in space-time. The third-rank tensor field is regarded as a constrained U(1) gauge field on the loop space. (author).

  7. Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon

    Science.gov (United States)

    Trzynadlowski, Bart

    The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source

  8. Efficient Closed-Loop Schemes for MIMO-OFDM-Based WLANs

    Directory of Open Access Journals (Sweden)

    Jiang Yi

    2006-01-01

    Full Text Available The single-input single-output (SISO orthogonal frequency-division multiplexing (OFDM systems for wireless local area networks (WLAN defined by the IEEE 802.11a standard can support data rates up to 54 Mbps. In this paper, we consider deploying two transmit and two receive antennas to increase the data rate up to 108 Mbps. Applying our recent multiple-input multiple-output (MIMO transceiver designs, that is, the geometric mean decomposition (GMD and the uniform channel decomposition (UCD schemes, we propose simple and efficient closed-loop MIMO-OFDM designs for much improved performance, compared to the standard singular value decomposition (SVD based schemes as well as the open-loop V-BLAST (vertical Bell Labs layered space-time based counterparts. In the explicit feedback mode, precoder feedback is needed for the proposed schemes. We show that the overhead of feedback can be made very moderate by using a vector quantization method. In the time-division duplex (TDD mode where the channel reciprocity is exploited, our schemes turn out to be robust against the mismatch between the uplink and downlink channels. The advantages of our schemes are demonstrated via extensive numerical examples.

  9. QFT Based Robust Positioning Control of the PMSM Using Automatic Loop Shaping with Teaching Learning Optimization

    Directory of Open Access Journals (Sweden)

    Nitish Katal

    2016-01-01

    Full Text Available Automation of the robust control system synthesis for uncertain systems is of great practical interest. In this paper, the loop shaping step for synthesizing quantitative feedback theory (QFT based controller for a two-phase permanent magnet stepper motor (PMSM has been automated using teaching learning-based optimization (TLBO algorithm. The QFT controller design problem has been posed as an optimization problem and TLBO algorithm has been used to minimize the proposed cost function. This facilitates designing low-order fixed-structure controller, eliminates the need of manual loop shaping step on the Nichols charts, and prevents the overdesign of the controller. A performance comparison of the designed controller has been made with the classical PID tuning method of Ziegler-Nichols and QFT controller tuned using other optimization algorithms. The simulation results show that the designed QFT controller using TLBO offers robust stability, disturbance rejection, and proper reference tracking over a range of PMSM’s parametric uncertainties as compared to the classical design techniques.

  10. Interference-type time lens based on temporal hologram in a loop configuration.

    Science.gov (United States)

    Hu, Xiao; Li, Honggen

    2015-12-10

    An alternative scheme is proposed for implementing a time lens based on the temporal hologram concept. Instead of using edge-pass filtering, this scheme achieves the keeping of only the time-lens (quadratic phase modulation) term of interest through the interference of two modulated component beams. In this scheme, an additional linear frequency component does not have to be added to the electronic drive signal to avoid the overlapping of the target frequency component and its conjugate of the modulated signal. Thus, the proposed hologram-based time lens is not only able to relax the limitation of the bandwidth and sampling rate of the arbitrary waveform generator on the time-bandwidth product and resolution to some extent, but is also capable of processing shorter input pulse signals. These advantages make the proposed interference-type hologram time lens especially suitable for use in a loop configuration, where it can be reused when the signal pulse circulates in the loop. This promises significantly enhanced time-bandwidth product and resolution, and the temporal aperture size can be designed as large as desired theoretically.

  11. Efficient Closed-Loop Schemes for MIMO-OFDM-Based WLANs

    Science.gov (United States)

    Zheng, Xiayu; Jiang, Yi; Li, Jian

    2006-12-01

    The single-input single-output (SISO) orthogonal frequency-division multiplexing (OFDM) systems for wireless local area networks (WLAN) defined by the IEEE 802.11a standard can support data rates up to 54 Mbps. In this paper, we consider deploying two transmit and two receive antennas to increase the data rate up to 108 Mbps. Applying our recent multiple-input multiple-output (MIMO) transceiver designs, that is, the geometric mean decomposition (GMD) and the uniform channel decomposition (UCD) schemes, we propose simple and efficient closed-loop MIMO-OFDM designs for much improved performance, compared to the standard singular value decomposition (SVD) based schemes as well as the open-loop V-BLAST (vertical Bell Labs layered space-time) based counterparts. In the explicit feedback mode, precoder feedback is needed for the proposed schemes. We show that the overhead of feedback can be made very moderate by using a vector quantization method. In the time-division duplex (TDD) mode where the channel reciprocity is exploited, our schemes turn out to be robust against the mismatch between the uplink and downlink channels. The advantages of our schemes are demonstrated via extensive numerical examples.

  12. Simulation of nanosecond square pulse fiber laser based on nonlinear amplifying loop mirror

    Institute of Scientific and Technical Information of China (English)

    Guoliang Chen; Chun Gu; Lixin Xu; Huan Zheng; Hai Ming

    2011-01-01

    A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror (NALM) is numerically analyzed by the nonlinear Schrodinger equation. The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM, and the nanosecond square pulse is generated by the pulse shaping effect. The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately. The generated square pulses have flat top and no internal structure.%@@ A nanosecond square pulse fiber laser based on the nonlinear amplifying loop mirror(NALM)is numerically analyzed by the nonlinear Schr6dinger equation.The fiber cavity with a NALM has a tendency to provide pulse shaping effect with nonlinearity increasing in the NALM,and the nanosecond square pulse is generated by the pulse shaping effect.The numerical results show that the stable square pulse can be obtained when the parameters of the NALM are chosen appropriately.The generated square pulses have flat top and no internal structure.

  13. Amineborane Based Chemical Hydrogen Storage - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sneddon, Larry G.

    2011-04-21

    The development of efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier. The objectives of this project in the DOE Center of Excellence in Chemical Hydride Storage were both to develop new methods for on-demand, low temperature hydrogen release from chemical hydrides and to design high-conversion off-board methods for chemical hydride regeneration. Because of their reactive protic (N-H) and hydridic (B-H) hydrogens and high hydrogen contents, amineboranes such as ammonia borane, NH3BH3 (AB), 19.6-wt% H2, and ammonia triborane NH3B3H7 (AT), 17.7-wt% H2, were initially identified by the Center as promising, high-capacity chemical hydrogen storage materials with the potential to store and deliver molecular hydrogen through dehydrogenation and hydrolysis reactions. In collaboration with other Center partners, the Penn project focused both on new methods to induce amineborane H2-release and on new strategies for the regeneration the amineborane spent-fuel materials. The Penn approach to improving amineborane H2-release focused on the use of ionic liquids, base additives and metal catalysts to activate AB dehydrogenation and these studies successfully demonstrated that in ionic liquids the AB induction period that had been observed in the solid-state was eliminated and both the rate and extent of AB H2-release were significantly increased. These results have clearly shown that, while improvements are still necessary, many of these systems have the potential to achieve DOE hydrogen-storage goals. The high extent of their H2­-release, the tunability of both their H2 materials weight-percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products, such as borazine, continue to make AB/ionic­-liquid based systems attractive candidates for chemical hydrogen storage applications. These studies also

  14. A Single Loop Vectorization Method Based on Assemble Code%一种基于汇编代码的单重循环向量化方法

    Institute of Scientific and Technical Information of China (English)

    陆洪毅; 戴葵; 王志英

    2003-01-01

    Through loops vectorization in instruction sequence, the vector power provided by hardware can be fully utilized. This paper analyzes the RISC instructton set, and presents a single loop vectorization method that is based on assemble code, it can efficiently detect single loops in instruct sequence and vectorize them.

  15. Carbon-Nanotube-Based Chemical Gas Sensor

    Science.gov (United States)

    Kaul, Arunpama B.

    2010-01-01

    Conventional thermal conductivity gauges (e.g. Pirani gauges) lend themselves to applications such as leak detectors, or in gas chromatographs for identifying various gas species. However, these conventional gauges are physically large, operate at high power, and have a slow response time. A single-walled carbon-nanotube (SWNT)-based chemical sensing gauge relies on differences in thermal conductance of the respective gases surrounding the CNT as it is voltage-biased, as a means for chemical identification. Such a sensor provides benefits of significantly reduced size and compactness, fast response time, low-power operation, and inexpensive manufacturing since it can be batch-fabricated using Si integrated-circuit (IC) process technology.

  16. Feedback loops and temporal misalignment in component-based hydrologic modeling

    Science.gov (United States)

    Elag, Mostafa M.; Goodall, Jonathan L.; Castronova, Anthony M.

    2011-12-01

    In component-based modeling, a complex system is represented as a series of loosely integrated components with defined interfaces and data exchanges that allow the components to be coupled together through shared boundary conditions. Although the component-based paradigm is commonly used in software engineering, it has only recently been applied for modeling hydrologic and earth systems. As a result, research is needed to test and verify the applicability of the approach for modeling hydrologic systems. The objective of this work was therefore to investigate two aspects of using component-based software architecture for hydrologic modeling: (1) simulation of feedback loops between components that share a boundary condition and (2) data transfers between temporally misaligned model components. We investigated these topics using a simple case study where diffusion of mass is modeled across a water-sediment interface. We simulated the multimedia system using two model components, one for the water and one for the sediment, coupled using the Open Modeling Interface (OpenMI) standard. The results were compared with a more conventional numerical approach for solving the system where the domain is represented by a single multidimensional array. Results showed that the component-based approach was able to produce the same results obtained with the more conventional numerical approach. When the two components were temporally misaligned, we explored the use of different interpolation schemes to minimize mass balance error within the coupled system. The outcome of this work provides evidence that component-based modeling can be used to simulate complicated feedback loops between systems and guidance as to how different interpolation schemes minimize mass balance error introduced when components are temporally misaligned.

  17. Phase-locked loop based on machine surface topography measurement using lensed fibers

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jin-Ho; Lee, ChaBum; Joo, Jae-Young; Lee, Sun-Kyu

    2011-02-01

    We present the phase-locked loop (PLL)-based metrology concept using lensed fibers for on-machine surface topography measurement. The shape of a single-mode fiber at the endface was designed using an ABCD matrix method, and two designed lensed fibers--the ball type and the tapered type--were fabricated, and the performance was evaluated, respectively. As a result, the interferometric fringe was not found in the case of the ball lensed fiber, but the machined surface could be measured by utilization of autofocusing and intensity methods. On the other hand, a very clear Fizeau interferometric fringe was observed in the case of the tapered lensed fiber. Its performance was compared with the results of the capacitance sensor and a commercially available white-light interferometer. We confirmed that PLL-based surface profile measurement using the tapered and ball lensed fibers can be applied for on-machine surface topography measurement applications.

  18. A Loop-Based Apparatus for At-Speed Self-Testing

    Institute of Scientific and Technical Information of China (English)

    LI Xiaowei; Paul Y.S. Cheung

    2001-01-01

    At-speed testing using external tester requires an expensive equip ment, thus built-in self-test (BIST) is an alternative technique due to its ability to perform on-chip at-speed self-testing. The main issue in BIST for at-speed testing is to obtain high delay fault coverage with a low hardware overhead. This pa per presents an improved loop-based BIST scheme, in which a configurable MISR (multiple-input signature register) is used to generate test-pair sequences. The struc ture and operation modes of the BIST scheme are described. The topological proper ties of the state-transition-graph of the proposed BIST scheme are analyzed. Based on it, an approach to design and efficiently implement the proposed BIST scheme is developed. Experimental results on academic benchmark circuits are presented to demonstrate the effectiveness of the proposed BIST scheme as well as the design approach.

  19. Genetic diversity of native chicken based on analysis of D-Loop mtDNA marker

    Directory of Open Access Journals (Sweden)

    Tike Sartika

    2000-06-01

    Full Text Available Production was carried out using control region/D-loop mtDNA marker. The base population of native chicken was selected from subpopulation at Cianjur, Jatiwangi, Depok, Bogor I, and Bogor 2. Samples from each population was 10 heads and 2 samples Green Jungle Fowl (Gallus various from East Java as out Group samples. Two primers binding conserved tRNA Phenylalanine gene and tRNA Glutamine gene were DNA Heavy stranded HI255 (5'-CATCTTGGCATCTTCAGTGCC-3' and DNA Light stranded Ll6750 (5'-AGGACTACGGCTTGAAAAGC-3' was used to amplify D-Ioop mtDNA chicken. PCR-RFLP methods with 6 restriction enzymes 4 cutter such as, Alul (AG↓CT, Hpall (C↓CGG, Mbol (↓GATC, Rsal (GT↓AC, NlaIII (CATG↓ and HaeIII (GG↓CC were used to detect polymorphism within and between subpopulation. Result of experiment show that mtDNA which was amplified by PCR was 1320 bp, consist of 1227 bp control region/D-loop, 45 bp tRNA Glutamine gene and 48 bp tRNA Phenylalananine gene. PCR product which were digested from 6 endonucleases enzyme show that native chicken within and between population was monomorphic and if its compare with Green Jungle Fowl was polymorphic.

  20. Waveguide-based optical chemical sensor

    Science.gov (United States)

    Grace, Karen M.; Swanson, Basil I.; Honkanen, Seppo

    2007-03-13

    The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.

  1. Kinetics of the reduction of hematite (Fe{sub 2}O{sub 3}) by methane (CH{sub 4}) during chemical looping combustion: A global mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Monazam, Esmail R; Breault, Ronald W; Siriwardane, Ranjani; Richards, George; Carpenter, Stephen

    2013-10-01

    Chemical-looping combustion (CLC) has emerged as a promising technology for fossil fuel combustion which produces a sequestration ready concentrated CO{sub 2} stream in power production. A CLC system is composed with two reactors, an air and a fuel reactor. An oxygen carrier such as hematite (94%Fe{sub 2}O{sub 3}) circulates between the reactors, which transfers the oxygen necessary for the fuel combustion from the air to the fuel. An important issue for the CLC process is the selection of metal oxide as oxygen carrier, since it must retain its reactivity through many cycles. The primary objective of this work is to develop a global mechanism with respective kinetics rate parameters such that CFD simulations can be performed for large systems. In this study, thermogravimetric analysis (TGA) of the reduction of hematite (Fe{sub 2}O{sub 3}) in a continuous stream of CH{sub 4} (15, 20, and 35%) was conducted at temperatures ranging from 700 to 825{degrees}C over ten reduction cycles. The mass spectroscopy analysis of product gas indicated the presence of CO{sub 2} and H{sub 2}O at the early stage of reaction and H{sub 2} and CO at the final stage of reactions. A kinetic model based on two parallel reactions, 1) first-order irreversible rate kinetics and 2) Avrami equation describing nucleation and growth processes, was applied to the reduction data. It was found, that the reaction rates for both reactions increase with, both, temperature and the methane concentration in inlet gas.

  2. Bending and Twisting the Embryonic Heart: A Computational Model for C-Looping Based on Realistic Geometry

    Directory of Open Access Journals (Sweden)

    Yunfei eShi

    2014-08-01

    Full Text Available The morphogenetic process of cardiac looping transforms the straight heart tube into a curved tube that resembles the shape of the future four-chambered heart. Although great progress has been made in identifying the molecular and genetic factors involved in looping, the physical mechanisms that drive this process have remained poorly understood. Recent work, however, has shed new light on this complicated problem. After briefly reviewing the current state of knowledge, we propose a relatively comprehensive hypothesis for the mechanics of the first phase of looping, termed c-looping, as the straight heart tube deforms into a c-shaped tube. According to this hypothesis, differential hypertrophic growth in the myocardium supplies the main forces that cause the heart tube to bend ventrally, while regional growth and contraction in the omphalomesenteric veins (primitive atria and compressive loads exerted by the splanchnopleuric membrane drive rightward torsion. A computational model based on realistic embryonic heart geometry is used to test this hypothesis. The behavior of the model is in reasonable agreement with available experimental data from control and perturbed embryos, offering support for our hypothesis. The results also suggest, however, that several other mechanisms contribute secondarily to normal looping, and we speculate that these mechanisms play backup roles when looping is perturbed. Finally, some outstanding questions are discussed for future study.

  3. Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

    Directory of Open Access Journals (Sweden)

    Milan Krishna Singha Sarkar

    2017-02-01

    Full Text Available Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  4. Design of a delay-locked-loop-based time-to-digital converter

    Science.gov (United States)

    Zhaoxin, Ma; Xuefei, Bai; Lu, Huang

    2013-09-01

    A time-to-digital converter (TDC) based on a reset-free and anti-harmonic delay-locked loop (DLL) circuit for wireless positioning systems is discussed and described. The DLL that generates 32-phase clocks and a cycle period detector is employed to avoid “false locking". Driven by multiphase clocks, an encoder detects pulses and outputs the phase of the clock when the pulse arrives. The proposed TDC was implemented in SMIC 0.18 μm CMOS technology, and its core area occupies 0.7 × 0.55 mm2. The reference frequency ranges from 20 to 150 MHz. An LSB resolution of 521 ps can be achieved by using a reference clock of 60 MHz and the DNL is less than ±0.75 LSB. It dissipates 31.5 mW at 1.8 V supply voltage.

  5. Current control loop design and analysis based on resonant regulators for microgrid applications

    DEFF Research Database (Denmark)

    Federico, de Bosio; Pastorelli, Michelle; de Sousa Ribeiro, Luiz Antonio

    2015-01-01

    Voltage and current control loops play an important role in the performance of microgrids employing power electronics voltage source inverters. Correct design of feedback loops is essential for the proper operation of these systems. This paper analyzes the influence of state feedback cross......-coupling in the design of resonant regulators for inner current loops in power converters operating in standalone microgrids. It is also demonstrated that the effect of state feedback cross-coupling degrades the performance of the control loops by increasing the steady-state error. Different resonant regulators...

  6. Multiplexed readout demonstration of a TES-based detector array in a resistance locked loop

    CERN Document Server

    van der Kuur, Jan; Kiviranta, Mikko; Akamatsu, Hiroki; Khosropanah, Pourya; Hartog, Roland den; Suzuki, Toyoaki; Jackson, Brian

    2015-01-01

    TES-based bolometer and microcalorimeter arrays with thousands of pixels are under development for several space-based and ground-based applications. A linear detector response and low levels of cross talk facilitate the calibration of the instruments. In an effort to improve the properties of TES-based detectors, fixing the TES resistance in a resistance-locked loop (RLL) under optical loading has recently been proposed. Earlier theoretical work on this mode of operation has shown that the detector speed, linearity and dynamic range should improve with respect to voltage biased operation. This paper presents an experimental demonstration of multiplexed readout in this mode of operation in a TES-based detector array with noise equivalent power values (NEP) of $3.5\\cdot 10^{-19} $W/$\\sqrt{\\mathrm{Hz}}$. The measured noise and dynamic properties of the detector in the RLL will be compared with the earlier modelling work. Furthermore, the practical implementation routes for future FDM systems for the readout of ...

  7. Active-Flux-Based, V/f-with-Stabilizing-Loops Versus Sensorless Vector Control of IPMSM Drives

    DEFF Research Database (Denmark)

    Moldovan, Ana; Blaabjerg, Frede; Boldea, Ion

    2011-01-01

    . By this control strategy, a fast dynamic speed response, without steady state error and without speed or current regulators, for all AC machines is obtained. The second control method is a sensorless vector control strategy which also has been implemented and tested, just for comparison.......This paper proposes two control methods for Interior Permanent Magnet Synchronous Motor (IPMSM) Drives. The first one is a V/f control with two stabilizing loops: one loop based on active flux balance for voltage magnitude correction and a second, based on speed error, with voltage phase correction...

  8. Characterization study and five-cycle tests in a fixed-bed reactor of titania-supported nickel oxide as oxygen carriers for the chemical-looping combustion of methane.

    Science.gov (United States)

    Corbella, Beatriz M; de Diego, Luis F; García-Labiano, Francisco; Adánez, Juan; Palaciost, José M

    2005-08-01

    Recent investigations have shown that in the combustion of carbonaceous compounds CO2 and NOx emissions to the atmosphere can be substantially reduced by using a two stage chemical-looping process. In this process, the reduction stage is undertaken in a first reactor in which the framework oxygen of a reducible inorganic oxide is used, instead of the usual atmospheric oxygen, for the combustion of a carbonaceous compound, for instance, methane. The outlet gas from this reactor is mostly composed of CO2 and steam as reaction products and further separation of these two components can be carried out easily by simple condensation of steam. Then, the oxygen carrier found in a reduced state is transported to a second reactor in which carrier regeneration with air takes place at relatively low temperatures, consequently preventing the formation of thermal NOx. Afterward, the regenerated carrier is carried to the first reactor to reinitiate a new cycle and so on for a number of repetitive cycles, while the carrier is able to withstand the severe chemical and thermal stresses involved in every cycle. In this paper, the performance of titania-supported nickel oxides has been investigated in a fixed-bed reactor as oxygen carriers for chemical-looping combustion of methane. Samples with different nickel oxide contents were prepared by successive incipient wet impregnations, and their performance as oxygen carriers was investigated at 900 degrees C and atmospheric pressure in five-cycle fixed-bed reactor tests using pure methane and pure air for the respective reduction and regeneration stages. The evolution of the outlet gas composition in each stage was followed by gas chromatography, and the involved chemical, structural, and textural changes of the carrier in the reactor bed were studied by using different characterization techniques. From the study, it is deduced that the reactivity of these nickel-based oxygen carriers is in the two involved stages and almost independent

  9. Theoretical study of stability and reaction mechanism of CuO supported on ZrO{sub 2} during chemical looping combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minjun; Liu, Jing, E-mail: liujing27@mail.hust.edu.cn; Shen, Fenghua; Cheng, Hao; Dai, Jinxin; Long, Yan

    2016-03-30

    Graphical abstract: - Highlights: • The stability and reaction mechanism of CuO supported on ZrO{sub 2} were studied by DFT. • ZrO{sub 2} provides a high resistance to CuO sintering. • ZrO{sub 2} promotes the activity of CuO for CO oxidation in fuel reactor. • The energy barriers are low enough for CuO/ZrO{sub 2} oxidation reaction in air reactor. - Abstract: The addition of inert support is important for the Cu-based oxygen carrier used in chemical looping combustion (CLC). The effects of the ZrO{sub 2} support on the stability and reactivity of Cu-based oxygen carrier were investigated using the density functional theory (DFT). First, the sintering inhibition mechanism of ZrO{sub 2} that support active CuO was investigated. The optimized Cu{sub 4}O{sub 4}/ZrO{sub 2} structure showed a strong interaction occurred between the Cu{sub 4}O{sub 4} cluster and ZrO{sub 2}(1 0 1) surface. The interaction prevented the migration and agglomeration of CuO. Next, the adsorption of CO on Cu{sub 4}O{sub 4}/ZrO{sub 2} and the mechanism of the CuO/ZrO{sub 2} reduction by CO were studied. CO mainly chemisorbed on the Cu site and ZrO{sub 2} acted as an electron donor in the adsorption system. The energy barrier of CuO/ZrO{sub 2} reduction by CO (0.79 eV) was much lower than that of the pure CuO cluster (1.44 eV), indicating that ZrO{sub 2} had a positive effect on CuO/ZrO{sub 2} reduction by CO. After CO was oxidized in the fuel reactor, the CuO was reduced into Cu. The adsorption of O{sub 2} on Cu{sub 2}/ZrO{sub 2} and the most likely pathway of Cu{sub 2}/ZrO{sub 2} oxidation by O{sub 2} were investigated. The adsorption of O{sub 2} was found a strong chemisorption behavior. The energy barriers were low enough for the Cu-based oxygen carrier oxidation reaction.

  10. Double loop control strategy with different time steps based on human characteristics.

    Science.gov (United States)

    Gu, Gwang Min; Lee, Jinoh; Kim, Jung

    2012-01-01

    This paper proposes a cooperative control strategy in consideration of the force sensitivity of human. The strategy consists of two loops: one is the intention estimation loop whose sampling time can be variable in order to investigate the effect of the sampling time; the other is the position control loop with fixed time step. A high sampling rate is not necessary for the intention estimation loop due to the bandwidth of the mechanoreceptors in humans. In addition, the force sensor implemented in the robot is sensitive to the noise induced from the sensor itself and tremor of the human. Multiple experiments were performed with the experimental protocol using various time steps of the intention estimation loop to find the suitable sampling times in physical human robot interaction. The task involves pull-and-push movement with a two-degree-of-freedom robot, and the norm of the interaction force was obtained for each experiment as the measure of the cooperative control performance.

  11. A pedigree-based study of mitochondrial D-loop DNA sequence variation among Arabian horses.

    Science.gov (United States)

    Bowling, A T; Del Valle, A; Bowling, M

    2000-02-01

    Through DNA sequence comparisons of a mitochondrial D-loop hypervariable region, we investigated matrilineal diversity for Arabian horses in the United States. Sixty-two horses were tested. From published pedigrees they traced in the maternal line to 34 mares acquired primarily in the mid to late 19th century from nomadic Bedouin tribes. Compared with the reference sequence (GenBank X79547), these samples showed 27 haplotypes with altogether 31 base substitution sites within 397 bp of sequence. Based on examination of pedigrees from a random sampling of 200 horses in current studbooks of the Arabian Horse Registry of America, we estimated that this study defined the expected mtDNA haplotypes for at least 89% of Arabian horses registered in the US. The reliability of the studbook recorded maternal lineages of Arabian pedigrees was demonstrated by haplotype concordance among multiple samplings in 14 lines. Single base differences observed within two maternal lines were interpreted as representing alternative fixations of past heteroplasmy. The study also demonstrated the utility of mtDNA sequence studies to resolve historical maternity questions without access to biological material from the horses whose relationship was in question, provided that representatives of the relevant female lines were available for comparison. The data call into question the traditional assumption that Arabian horses of the same strain necessarily share a common maternal ancestry.

  12. Bio-based chemicals - green, but also sustainable?

    DEFF Research Database (Denmark)

    Ögmundarson, Ólafur; Herrgard, Markus; Förster, Jochen;

    For almost two decades, the chemical industry has put great effort into developing bio-chemicals,among others to fight global warming caused by greenhouse gas emissions, one of the biggest threats that are faced by our society today. To facilitate a growing and versatile bio-based chemical...... production, the US Department of Energy proposed in 2004 a list of 12 building block chemicals which can either be converged through biological or chemical conversions. Moving toward more bio-based chemicals, the chemical industry does not only claim to reduce climate change impacts, but also...... that they are increasing overall sustainability in chemical production. Whether such claims are justifiable is unclear. When sustainability of bio-based polymer production is assessed, various environmental trade-offs occur that need to be considered. It is not enough to claim that a bio-chemical is sustainable...

  13. M-H loop tracer based on digital signal processing for low frequency characterization of extremely thin magnetic wires

    Energy Technology Data Exchange (ETDEWEB)

    Butta, M.; Ripka, P. [Department of Measurement, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague 16627 (Czech Republic); Infante, G.; Badini-Confalonieri, G. A.; Vazquez, M. [Instituto de Ciencia de Materiales de Madrid (CSIC), Campus de Cantoblanco, Madrid 28049 (Spain)

    2009-08-15

    A high-sensitivity ac hysteresis loop tracer has been developed to measure the low frequency hysteresis loop of soft magnetic materials. It has been applied successfully to characterize straight pieces of amorphous glass-covered microwires with metallic nucleus down to 1.5 {mu}m thick. Based on the electromagnetic induction law, the proposed design is extremely simple and exploits the capabilities of commercially available data acquisition cards together with digital signal processing in order to achieve high-sensitivity without the need of expensive analog equipment.

  14. Laser-based Online Sliding-window Approach for UAV Loop-closure Detection in Urban Environments

    Directory of Open Access Journals (Sweden)

    Anqing Wang

    2016-04-01

    Full Text Available Online loop-closure detection serves as an essential task for Unmanned Aerial Vehicles (UAVs equipped with laser scanners. Due to the inherent errors in UAVs’ pose estimation, a 3-D reconstruction algorithm is adopted to perform 3-D map building, which establishes probabilistic models of the system according to the assumption of errors. To meet the demand of online loop-closure detection using sequential 2-D laser data, a robust ISW-NDT (incremental sliding-window-based NDT approach is proposed, which compares the appearance similarity between two scans by sliding a window with fixed size. Compared with the conventional 3-D NDT approach, the proposed loop-closure detection algorithm is capable of providing superior performance in large-scale outdoor environments, achieving higher recall rate at 100% precision and ensuring successful online implementation. Experimental results show the validity and robustness of the proposed method.

  15. 以煤为燃料的化学链燃烧研究进展%Research and Development of Coal-fueled Chemical Looping Combustion

    Institute of Scientific and Technical Information of China (English)

    李振山; 鲍金花; 孙宏明; 徐雷; 蔡宁生

    2014-01-01

    Coal-fueled chemical looping combustion was studied from three aspects. In the aspect of oxygen carriers, the gas-solid reaction of carriers was studied. Multi-crystal Fe with smooth surface was used as the reactant to eliminate the effect of pore structure. The morphology of solid products was observed under a scanning electron microscope. The problem of directly observing the product morphology was solved. A rate equation theory was developed to describe the macroscopic kinetics based on the nucleation and growth of solid product from molecular level. A model of interaction force between active components and inert supports was developed. The method of improving the reactivity of natural limonite by introducing foreign ions was proposed. In the aspect of interaction between coal and oxygen carriers, the effect of volatiles and ash on oxygen carriers was addressed. The match of char gasification rate and reduction rate can be achieved through catalytic gasification. Fragmentation, attrition, and segregation of coal particles caused the incomplete gas conversion in the fuel reactor. In the reactor aspect, a three fluidized beds reactor with dual circulating loops was built. A steady operation of 140h in hot mode was accomplished. The concepts of downer reactor, low temperature CLC, and direct CLC were proposed for converting the un-reacted gases.%从3个方面介绍以煤为燃料的化学链燃烧的研究进展。在载氧体方面,研究载氧体的气固反应特性,采用表面光滑的Fe多晶片作为反应物,借助扫描电镜观测固体产物,剥离了孔隙结构的影响,解决固体产物微观形貌难以直接观察的问题;建立了基于分子尺度固体产物成核与生长的速率方程,从微观分子尺度来描述宏观的动力学行为;建立活性成分与惰性载体间相互作用力模型;提出通过引入外来离子提高天然钛铁矿载氧体反应活性的方法。在煤与载氧体相互作用方面,考

  16. A Closed-Loop Imaging Infrared-Based Tracker For Fire Control

    Science.gov (United States)

    Marshall, William C.; Dahl, Peter; Richardson, Russell D.; Klein, Michael D.

    1989-09-01

    This report presents a closed-loop automatic tracker for imaging IR-based fire control. A tank target state estimation filter is discussed and major tradeoffs in the implementation of Kalman filters and tracker rate-aiding are given. Tank target maneuver capabilities are surveyed and results are incorporated in the filter. The developed augmented Kalman filter is based upon nine filter states and three measurements. Simulation studies show acceptable target prediction accuracies for tank targets even for constant Kalman gains. Gain scheduling is performed during filter initialization or when a "target maneuver" is detected from testing the statistics of filter residuals. The augmented Kalman filter uses range and line-of-sight (LOS) angular rate measurements obtained from platform-mounted range and angular rate sensors. Filtered inertial angular rates are used for tracker rate-aiding before and after "breaklock"-if this occurs (e.g., if target gets occluded). During the tracker "coast-until-reacquisition" phase the propagated filter rates are used to command the gimbals.

  17. Multi-loop decentralized PID control based on covariance control criteria: an LMI approach.

    Science.gov (United States)

    Huang, Xin; Huang, Biao

    2004-01-01

    PID control is well known and widely applied in industry and many design algorithms are readily available in the literature. However, systematic design of multi-loop or decentralized PID control for multivariable processes to meet certain objectives simultaneously is still a challenging task. Designing multi-loop PID controllers such that the process variables satisfy the generalized covariance constraints is studied in this paper. A convergent computational algorithm is proposed to calculate the multi-loop PID controller for a process with stable disturbances. This algorithm is then extended to a process with random-walk disturbances. The feasibility of the proposed algorithm is verified by applying it to several simulation examples.

  18. Spin Interference in Rectangle Loop Based on Rashba and Dresselhaus Spin-Orbit Interactions

    Institute of Scientific and Technical Information of China (English)

    NI Jia-Ting; LIANG Xiao-Wan; CHEN Bin; T.Koga

    2009-01-01

    We demonstrate the amplitude and spin polarization of AAS oscillation changing with Rashba spin-orbit interaction(SOI)and Dresselhaus SOI.The amplitude and spin polarization of AB oscillation changing with Rashba SOI and Dresselhaus SOI are demonstrated as well.The ideal quasi-one-dimensional square loop does not exist in reality,therefore to match the experiment better we should consider the shape of the rectangle loop in theory.

  19. Analysis of genetic relationship among Indonesian native chicken breeds based on 335 D-loop sequences

    Directory of Open Access Journals (Sweden)

    Sri Sulandari

    2008-12-01

    Full Text Available he Mitochondrial DNA (mtDNA D-loop segment was PCR amplified and subsequently sequenced for a total of 335 individuals from Indonesian native chicken. The individuals were drawn from sixteen populations of native chicken and three individuals of green jungle fowls (Gallus varius. Indonesian native chicken populations were: Pelung Sembawa, PL (n = 18, Pelung Cianjur, PLC (n = 29 and Arab Silver, ARS (n=30, Cemani, CM (n = 32, Gaok, GA (n = 7, Kedu Hitam, KDH (n = 11, Wareng, T & TW (n = 10, Cemani, CMP (n = 2, Kedu, KD (n=26, Kedu Putih, KDP (n = 15, Sentul Jatiwangi, STJ (n = 27, Ayam Kate, KT (n = 29, Ayam Sentul, STC (n = 15, Arab Golden, ARG (n = 26, Ayam Merawang, MR (n = 28, Kedu Putih Jatiwangi, KDPJ (n=6 and Kapas, KPS (n = 21. Green jungle fowls were: two individuals from Flores island (FL5 and FL57 and one individual (BD42 from Sumbawa island. The sequences of the first 530 nucleotides were used for analysis. Eighty two haplotypes were identified from 78 polymorphic sites for the 335 individuals. Seventy nine haplotypes were identified in native chicken from 57 polymorphic sites while three were of jungle fowls. Phylogenetic analysis indicates that Indonesian native chicken can be grouped into five clades (Clade I, II, IIIc, IIId and IV of the previously identified seven clades (Clade I, II, IIIa, IIIb, IIIc, IIId and IV in Asian domestic chicken. Haplotypes CM10 and CM32 fall to a different category while STC12 is also on its own. Interestingly STC12 clusters together with Gallus gallus gallus (GenBank accession No. SULANDARI et al. Analysis of genetic relationship among Indonesian native chicken breeds based on 335 D-loop sequences 296 AB007720. When CM10 (same as CM14, CM32 and STC12 were removed, 77 haplotypes of domestic chicken were identified from 53 polymorphic sites. All the green jungle fowls are clustered to one clade of their own. The clades of domestic chicken are: Clade I which has three haplotypes, Clade II has 52

  20. Performance Evaluation of Closed-Loop Spatial Multiplexing Codebook Based on Indoor MIMO Channel Measurement

    Directory of Open Access Journals (Sweden)

    Junjun Gao

    2012-01-01

    Full Text Available Closed-loop MIMO technique standardized in LTE can support different layer transmissions through precoding operation to match the channel multiplexing capability. However, the performance of the limited size codebook still needs to be evaluated in real channel environment for further insights. Based on the wideband MIMO channel measurement in a typical indoor scenario, capacity loss (CL of the limited size codebook relative to perfect precoding is studied first in two extreme channel conditions. The results show that current codebook design for single layer transmission is nearly capacity lossless, and the CL will increase with the number of transmitted layers. Furthermore, the capacity improvement of better codebook selection criterions is very limited compared to CL. Then we define the maximum capacity boost achieved by frequency domain layer adaption (FDLA and investigate its sensitivity to SNR and channel condition. To survey the effect of frequency domain channel variation on MIMO-OFDM system, we define a function to measure the fluctuation levels of the key channel metrics within a subband and reveal the inherent relationship between them. Finally, a capacity floor resulted as the feedback interval increases in frequency domain.

  1. Mobile Target Tracking Based on Hybrid Open-Loop Monocular Vision Motion Control Strategy

    Directory of Open Access Journals (Sweden)

    Cao Yuan

    2015-01-01

    Full Text Available This paper proposes a new real-time target tracking method based on the open-loop monocular vision motion control. It uses the particle filter technique to predict the moving target’s position in an image. Due to the properties of the particle filter, the method can effectively master the motion behaviors of the linear and nonlinear. In addition, the method uses the simple mathematical operation to transfer the image information in the mobile target to its real coordinate information. Therefore, it requires few operating resources. Moreover, the method adopts the monocular vision approach, which is a single camera, to achieve its objective by using few hardware resources. Firstly, the method evaluates the next time’s position and size of the target in an image. Later, the real position of the objective corresponding to the obtained information is predicted. At last, the mobile robot should be controlled in the center of the camera’s vision. The paper conducts the tracking test to the L-type and the S-type and compares with the Kalman filtering method. The experimental results show that the method achieves a better tracking effect in the L-shape experiment, and its effect is superior to the Kalman filter technique in the L-type or S-type tracking experiment.

  2. Gold Nanoparticles Based Colorimetric Detection of Target DNA After Loop-mediated Isothermal Amplification

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chao; MU Ying; YANG Meng-chao; WU Qing-qing; XU Wei; ZHANG Ying; JIN Wei

    2013-01-01

    We have developed a rapid,simple and label-free colorimetric method for the identification of target DNA.It is based on loop-mediated isothermal amplification(LAMP).Plain gold nanoparticles(AuNPs) are used to indicate the occurrence of LAMP.The amplified product is mixed with AuNPs in an optimized ratio,at which the deoxyribonucleotides(dNTPs) bind to the AuNPs via ligand-metal interactions and thus enhance AuNPs stability.If a target DNA is amplified,the dramatic reduction of the dNTPs leads to the aggregation of AuNPs and a color change from red to blue.The success of the method strongly depends on the ionic strength of the solution and the initial concentration of dNTPs.Unlike other methods for the identification of isothermal products,this method is simple and can be readily applied on site where instrumentation is inadequate or even lacking.

  3. An evaluation of multiple annealing and looping based genome amplification using a synthetic bacterial community

    Institute of Scientific and Technical Information of China (English)

    WANG Yong; GAO Zhaoming; XU Ying; LI Guangyu; HE Lisheng; QIAN Peiyuan

    2016-01-01

    The low biomass in environmental samples is a major challenge for microbial metagenomic studies. The amplification of a genomic DNA was frequently applied to meeting the minimum requirement of the DNA for a high-throughput next-generation-sequencing technology. Using a synthetic bacterial community, the amplification efficiency of the Multiple Annealing and Looping Based Amplification Cycles (MALBAC) kit that is originally developed to amplify the single-cell genomic DNA of mammalian organisms is examined. The DNA template of 10 pg in each reaction of the MALBAC amplification may generate enough DNA for Illumina sequencing. Using 10 pg and 100 pg templates for each reaction set, the MALBAC kit shows a stable and homogeneous amplification as indicated by the highly consistent coverage of the reads from the two amplified samples on the contigs assembled by the original unamplified sample. Although GenomePlex whole genome amplification kit allows one to generate enough DNA using 100 pg of template in each reaction, the minority of the mixed bacterial species is not linearly amplified. For both of the kits, the GC-rich regions of the genomic DNA are not efficiently amplified as suggested by the low coverage of the contigs with the high GC content. The high efficiency of the MALBAC kit is supported for the amplification of environmental microbial DNA samples, and the concerns on its application are also raised to bacterial species with the high GC content.

  4. Finite-volume effects on phase transition in the Polyakov-loop extended Nambu-Jona-Lasinio model with a chiral chemical potential

    CERN Document Server

    Pan, Zan; Chang, Chao-Hsi; Zong, Hong-Shi

    2016-01-01

    To investigate finite-volume effects on the chiral symmetry restoration and the deconfinement transition and some impacts of possible global topological background for a quantum chromodynamics (QCD) system with $N_f=2$ (two quark flavors), we apply the Polyakov-loop extended Nambu-Jona-Lasinio model by introducing a chiral chemical potential $\\mu_5$ artificially. The final numerical results indicate that the introduced chiral chemical potential does not change the critical exponents but shifts the location of critical end point (CEP) significantly; the ratios for the chiral chemical potentials and temperatures at CEP, $\\mu_c/\\mu_{5c}$ and $T_c/T_{5c}$, are significantly affected by the system size $R$. The behavior is that $T_c$ increases slowly with $\\mu_5$ when $R$ is large and $T_c$ decreases first and then increases with $\\mu_5$ when $R$ is small. It is also found that for a fixed $\\mu_5$, there is a $R_{\\text{min}}$, where the critical end point vanishes, and the whole phase diagram becomes a crossover w...

  5. Realization of tin freezing point using a loop heat pipe-based hydraulic temperature control technique

    Science.gov (United States)

    Joung, Wukchul; Gam, Kee Sool; Kim, Yong-Gyoo

    2015-10-01

    In this work, the freezing point of tin (Sn FP) was realized by inside nucleation where the supercooling of tin and the reheating of the sample after the nucleation were achieved without extracting the cell from an isothermal apparatus. To this end, a novel hydraulic temperature control technique, which was based on the thermo-hydraulic characteristics of a pressure-controlled loop heat pipe (LHP), was employed to provide a slow cooling of the sample for deep supercooling and fast reheating after nucleation to minimize the amount of initial freeze of the sample. The required temperature controls were achieved by the active pressure control of a control gas inside the compensation chamber of the pressure-controlled LHP, and slow cooling at  -0.05 K min-1 for the deep supercooling of tin and fast heating at 2 K min-1 for reheating the sample after nucleation was attained. Based on this hydraulic temperature control technique, the nucleation of tin was realized at supercooling of around 19 K, and a satisfactorily fast reheating of the sample to the plateau-producing temperature (i.e. 0.5 K below the Sn FP) was achieved without any temperature overshoots of the isothermal region. The inside-nucleated Sn FP showed many desirable features compared to the Sn FP realized by the conventional outside nucleation method. The longer freezing plateaus and the better immersion characteristics of the Sn FP were obtained by inside nucleation, and the measured freezing temperature of the inside-nucleated Sn FP was as much as 0.37 mK higher than the outside-nucleated Sn FP with an expanded uncertainty of 0.19 mK. Details on the experiment are provided and explanations for the observed differences are discussed.

  6. Optimization of thienopyrrole-based finger-loop inhibitors of the hepatitis C virus NS5B polymerase.

    Science.gov (United States)

    Martin Hernando, Jose Ignacio; Ontoria, Jesus Maria; Malancona, Savina; Attenni, Barbara; Fiore, Fabrizio; Bonelli, Fabio; Koch, Uwe; Di Marco, Stefania; Colarusso, Stefania; Ponzi, Simona; Gennari, Nadia; Vignetti, Sue Ellen; Del Rosario Rico Ferreira, Maria; Habermann, Jörg; Rowley, Michael; Narjes, Frank

    2009-10-01

    Infections caused by the hepatitis C virus (HCV) are a significant world health problem for which novel therapies are in urgent demand. The NS5B polymerase of HCV is responsible for the replication of viral RNA and has been a prime target in the search for novel treatment options. We had discovered allosteric finger-loop inhibitors based on a thieno[3,2-b]pyrrole scaffold as an alternative to the related indole inhibitors. Optimization of the thienopyrrole series led to several N-acetamides with submicromolar potency in the cell-based replicon assay, but they lacked oral bioavailability in rats. By linking the N4-position to the ortho-position of the C5-aryl group, we were able to identify the tetracyclic thienopyrrole 40, which displayed a favorable pharmacokinetic profile in rats and dogs and is equipotent with recently disclosed finger-loop inhibitors based on an indole scaffold.

  7. Analysis of laser energy characteristics of laser guided weapons based on the hardware-in-the-loop simulation system

    Science.gov (United States)

    Zhu, Yawen; Cui, Xiaohong; Wang, Qianqian; Tong, Qiujie; Cui, Xutai; Li, Chenyu; Zhang, Le; Peng, Zhong

    2016-11-01

    The hardware-in-the-loop simulation system, which provides a precise, controllable and repeatable test conditions, is an important part of the development of the semi-active laser (SAL) guided weapons. In this paper, laser energy chain characteristics were studied, which provides a theoretical foundation for the SAL guidance technology and the hardware-in-the-loop simulation system. Firstly, a simplified equation was proposed to adjust the radar equation according to the principles of the hardware-in-the-loop simulation system. Secondly, a theoretical model and calculation method were given about the energy chain characteristics based on the hardware-in-the-loop simulation system. We then studied the reflection characteristics of target and the distance between the missile and target with major factors such as the weather factors. Finally, the accuracy of modeling was verified by experiment as the values measured experimentally generally follow the theoretical results from the model. And experimental results revealed that ratio of attenuation of the laser energy exhibited a non-linear change vs. pulse number, which were in accord with the actual condition.

  8. A digital optical phase-locked loop for diode lasers based on field programmable gate array

    Energy Technology Data Exchange (ETDEWEB)

    Xu Zhouxiang; Zhang Xian; Huang Kaikai; Lu Xuanhui [Physics Department, Zhejiang University, Hangzhou, 310027 (China)

    2012-09-15

    We have designed and implemented a highly digital optical phase-locked loop (OPLL) for diode lasers in atom interferometry. The three parts of controlling circuit in this OPLL, including phase and frequency detector (PFD), loop filter and proportional integral derivative (PID) controller, are implemented in a single field programmable gate array chip. A structure type compatible with the model MAX9382/MCH12140 is chosen for PFD and pipeline and parallelism technology have been adapted in PID controller. Especially, high speed clock and twisted ring counter have been integrated in the most crucial part, the loop filter. This OPLL has the narrow beat note line width below 1 Hz, residual mean-square phase error of 0.14 rad{sup 2} and transition time of 100 {mu}s under 10 MHz frequency step. A main innovation of this design is the completely digitalization of the whole controlling circuit in OPLL for diode lasers.

  9. Theoretical and experimental investigation of a balanced phase-locked loop based clock recovery at a bit rate of 160 Gb/s

    DEFF Research Database (Denmark)

    Zibar, Darko; Oxenløwe, Leif Katsuo; Clausen, Anders;

    2003-01-01

    This paper describes a mathematical model of a balanced opto-electronic phase-locked loop (OPLL), which is required to be very fast for some network applications. OPLL is investigated in terms of clock pulse width, loop filter gain and residuals of the balancing DC level. Based on the guidelines...

  10. Development of GaN-based micro chemical sensor nodes

    Science.gov (United States)

    Son, Kyung-ah; Prokopuk, Nicholas; George, Thomas; Moon, Jeong S.

    2005-01-01

    Sensors based on III-N technology are gaining significant interest due to their potential for monolithic integration of RF transceivers and light sources and the capability of high temperature operations. We are developing a GaN-based micro chemical sensor node for remote detection of chemical toxins, and present electrical responses of AlGaN/GaN HEMT (High Electron Mobility Transistor) sensors to chemical toxins as well as other common gases.

  11. AlkB recognition of a bulky DNA base adduct stabilized by chemical cross-linking

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    E.coli AlkB is a direct DNA/RNA repair protein that oxidatively reverses N1 alkylated purines and N3 alkylated pyrimidines to regular bases.Previous crystal structures have revealed N1-methyl adenine(1-meA) recognition by AlkB and a unique base flipping mechanism,but how the AlkB active site can accommodate bulky base adducts is largely unknown.Employing a previously developed chemical cross-linking technique,we crystallized AlkB with a duplex DNA containing a caged thymine base(cagedT).The structure revealed a flexible hairpin lid and a reorganized substrate recognition loop used by AlkB to accommodate cagedT.These observations demonstrate,at the molecular level,how bulky DNA adducts may be recognized and processed by AlkB.

  12. What Controls DNA Looping?

    Directory of Open Access Journals (Sweden)

    Pamela J. Perez

    2014-08-01

    Full Text Available The looping of DNA provides a means of communication between sequentially distant genomic sites that operate in tandem to express, copy, and repair the information encoded in the DNA base sequence. The short loops implicated in the expression of bacterial genes suggest that molecular factors other than the naturally stiff double helix are involved in bringing the interacting sites into close spatial proximity. New computational techniques that take direct account of the three-dimensional structures and fluctuations of protein and DNA allow us to examine the likely means of enhancing such communication. Here, we describe the application of these approaches to the looping of a 92 base-pair DNA segment between the headpieces of the tetrameric Escherichia coli Lac repressor protein. The distortions of the double helix induced by a second protein—the nonspecific nucleoid protein HU—increase the computed likelihood of looping by several orders of magnitude over that of DNA alone. Large-scale deformations of the repressor, sequence-dependent features in the DNA loop, and deformability of the DNA operators also enhance looping, although to lesser degrees. The correspondence between the predicted looping propensities and the ease of looping derived from gene-expression and single-molecule measurements lends credence to the derived structural picture.

  13. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    Science.gov (United States)

    Beyerle, Georg; Zus, Florian

    2017-01-01

    A 1-year data set of ground-based GPS signal observations aiming at geometric elevation angles below +2° is analysed. Within the "GLESER" measurement campaign about 2600 validated setting events were recorded by the "OpenGPS" open-loop tracking receiver at an observation site located at 52.3808° N, 13.0642° E between January and December 2014. The measurements confirm the feasibility of open-loop signal tracking down to geometric elevation angles of -1 to -1.5° extending the corresponding closed-loop tracking range by up to 1°. The study is based on the premise that observations of low-elevation events by a ground-based receiver may serve as test cases for space-based radio occultation measurements, even if the latter proceed at a significantly faster temporal scale. The results support the conclusion that the open-loop Doppler model has negligible influence on the derived carrier frequency profile for strong signal-to-noise density ratios above about 30 dB Hz. At lower signal levels, however, the OpenGPS receiver's dual-channel design, which tracks the same signal using two Doppler models differing by 10 Hz, uncovers a notable bias. The repeat patterns of the GPS orbit traces in terms of azimuth angle reveal characteristic signatures in both signal amplitude and Doppler frequency with respect to the topography close to the observation site. Mean vertical refractivity gradients, extracted from ECMWF meteorological fields, correlate weakly to moderately with observed signal amplitude fluctuations at geometric elevation angles between +1 and +2°. Results from multiple phase screen simulations support the interpretation that these fluctuations are at least partly produced by atmospheric multipath; at negative elevation angles diffraction at the ground surface seems to contribute.

  14. Power-Hardware-In-the-Loop (PHIL) Test of VSC-based HVDC connection for Offshore Wind Power Plants (WPPs)

    DEFF Research Database (Denmark)

    Sharma, Ranjan; Cha, Seung-Tae; Wu, Qiuwei;

    2011-01-01

    This paper presents a power-hardware-in-the-loop (PHIL) test for an offshore wind power plant (WPP) interconnected to the onshore grid by a VSC-based HVDC connection. The intention of the PHIL test is to verify the control coordination between the plant side converter of the HVDC connection...... the successful control coordination between the WPP and the plant side VSC converter of the HVDC connection of the WPP....

  15. Recurrent-neural-network-based identification of a cascade hydraulic actuator for closed-loop automotive power transmission control

    Energy Technology Data Exchange (ETDEWEB)

    You, Seung Han [Hyundai Motor Company, Seoul (Korea, Republic of); Hahn, Jin Oh [University of Alberta, Edmonton (Canada)

    2012-05-15

    By virtue of its ease of operation compared with its conventional manual counterpart, automatic transmissions are commonly used as automotive power transmission control system in today's passenger cars. In accordance with this trend, research efforts on closed-loop automatic transmission controls have been extensively carried out to improve ride quality and fuel economy. State-of-the-art power transmission control algorithms may have limitations in performance because they rely on the steady-state characteristics of the hydraulic actuator rather than fully exploit its dynamic characteristics. Since the ultimate viability of closed-loop power transmission control is dominated by precise pressure control at the level of hydraulic actuator, closed-loop control can potentially attain superior efficacy in case the hydraulic actuator can be easily incorporated into model-based observer/controller design. In this paper, we propose to use a recurrent neural network (RNN) to establish a nonlinear empirical model of a cascade hydraulic actuator in a passenger car automatic transmission, which has potential to be easily incorporated in designing observers and controllers. Experimental analysis is performed to grasp key system characteristics, based on which a nonlinear system identification procedure is carried out. Extensive experimental validation of the established model suggests that it has superb one-step-ahead prediction capability over appropriate frequency range, making it an attractive approach for model-based observer/controller design applications in automotive systems.

  16. Loop-mediated isothermal amplification (LAMP) based detection of Colletotrichum falcatum causing red rot in sugarcane

    Science.gov (United States)

    Red rot, caused by Colletotrichum falcatum, is a destructive disease prevalent in most sugarcane-producing countries. Disease-free sugarcane planting materials are essential as the pathogen spreads primarily through infected setts. The present study was undertaken to develop loop-mediated isothermal...

  17. A modular perspective of protein structures; application to fragment based loop modeling

    Science.gov (United States)

    Fernandez-Fuentes, Narcis; Fiser, Andras

    2013-01-01

    Summary Proteins can be decomposed into supersecondary structure modules. We used a generic definition of supersecondary structure elements, so-called Smotifs, which are composed of two flanking regular secondary structures connected by a loop, to explore the evolution and current variety of structure building blocks. Here, we discuss recent observations about the saturation of Smotif geometries in protein structures and how it opens new avenues in protein structure modeling and design. As a first application of these observations we describe our loop conformation modeling algorithm, ArchPred that takes advantage of Smotifs classification. In this application, instead of focusing on specific loop properties the method narrows down possible template conformations in other, often not homologous structures, by identifying the most likely supersecondary structure environment that cradles the loop. Beyond identifying the correct starting supersecondary structure geometry, it takes into account information of fit of anchor residues, sterical clashes, match of predicted and observed dihedral angle preferences, and local sequence signal. PMID:22987351

  18. Ultrafast Phase Comparator for Phase-Locked Loop-Based Optoelectronic Clock Recovery Systems

    DEFF Research Database (Denmark)

    Gomez-Agis, F.; Oxenløwe, Leif Katsuo; Kurimura, S.;

    2009-01-01

    The authors report on a novel application of a chi((2)) nonlinear optical device as an ultrafast phase comparator, an essential element that allows an optoelectronic phase-locked loop to perform clock recovery of ultrahigh-speed optical time-division multiplexed (OTDM) signals. Particular interest...

  19. Analysis and design of DSP-based dual-loop controlled UPS inverters

    Institute of Scientific and Technical Information of China (English)

    吴燮华; 言超

    2003-01-01

    This paper presents a novel digital dual-loop control scheme of the PWM(PUlse width modulate)inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and control timing strategy is used to improve the system dynamic response. Simulation and experimental results presented in the paper verified the validity of the proposed control scheme.

  20. Analysis of feedback loops and robustness in network evolution based on Boolean models

    Directory of Open Access Journals (Sweden)

    Cho Kwang-Hyun

    2007-11-01

    Full Text Available Abstract Background Many biological networks such as protein-protein interaction networks, signaling networks, and metabolic networks have topological characteristics of a scale-free degree distribution. Preferential attachment has been considered as the most plausible evolutionary growth model to explain this topological property. Although various studies have been undertaken to investigate the structural characteristics of a network obtained using this growth model, its dynamical characteristics have received relatively less attention. Results In this paper, we focus on the robustness of a network that is acquired during its evolutionary process. Through simulations using Boolean network models, we found that preferential attachment increases the number of coupled feedback loops in the course of network evolution. Whereas, if networks evolve to have more coupled feedback loops rather than following preferential attachment, the resulting networks are more robust than those obtained through preferential attachment, although both of them have similar degree distributions. Conclusion The presented analysis demonstrates that coupled feedback loops may play an important role in network evolution to acquire robustness. The result also provides a hint as to why various biological networks have evolved to contain a number of coupled feedback loops.

  1. Analysis and design of DSP-based dual-loop controlled UPS inverters

    Institute of Scientific and Technical Information of China (English)

    吴燮华; 言超

    2003-01-01

    This paper presents a novel digital dual-loop control scheme of the PWM(Pulse width modulate) inverter. Deadbeat control technique are employed to enhance the performance. Half switching period delayed sampling and control timing strategy is used to improve the system dynamic response. Simulation and experimental results presented in the paper verified the validity of the proposed control scheme.

  2. Quantum Structure of Field Theory and Standard Model Based on Infinity-free Loop Regularization/Renormalization

    CERN Document Server

    Wu, Yue-Liang

    2013-01-01

    To understand better the quantum structure of field theory and standard model in particle physics, it is necessary to investigate carefully the divergence structure in quantum field theories (QFTs) and work out a consistent framework to avoid infinities. The divergence has got us into trouble since developing quantum electrodynamics in 1930s, its treatment via the renormalization scheme is satisfied not by all physicists, like Dirac and Feynman who have made serious criticisms. The renormalization group analysis reveals that QFTs can in general be defined fundamentally with the meaningful energy scale that has some physical significance, which motivates us to develop a new symmetry-preserving and infinity-free regularization scheme called loop regularization (LORE). A simple regularization prescription in LORE is realized based on a manifest postulation that a loop divergence with a power counting dimension larger than and equal to the space-time dimension must vanish. The LORE method is achieved without modi...

  3. Study on the Complexity of Closed-loop Supply Chain Based on Price Difference between New and Remanufactured Products

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2013-12-01

    Full Text Available This study studied a more realistic closed-loop supply chain model, which is based on price difference between new and remanufactured products and it contains manufacturers, two recyclers and customers. In this model, assumed that new and remanufactured products have price difference, first we build a decision-making dynamic system model of the manufacturers, two recyclers and customers and then analyze the possibility of the existence of the system equilibrium points and their stability. Through numerical simulation, we use bifurcation diagram, Maximum Lyapunov index variation diagram and chaos attractor to estimate the complexity and chaos of the system comprehensively, observe the profit trends of the manufacturers and recyclers when system change from stability to chaos and analyze the system initial value sensitivity. The conclusion of the numerical simulation has a lot of guidance and reference value to the decision-makers in a closed-loop supply chain.

  4. Numerical Simulation of Self-Pumped Phase Conjugate Plane-Curve Loop Mirror Based on Photorefractive Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Mehran Vahdani Moghaddam; Zeynab Chenari; Hamid Latifi; Vladimir Vladimirovich Shuvalov; Konestantin Valentinovich Rudenko

    2008-01-01

    @@ We deal with computer simulation of a transient process in a self-pumped phase conjugate plane-curve loop mirror based on BaTiO3. In optimal circumstances the nonlinear reflectivity and fidelity of such a mirror respectively achieve 0.80-0.90 and 0.95-0.98. The generation of conjugate wave-front occurs due to scattering from the dynamic hologram which is produced in the region of self-intersection of forward and backward beams. In such a model the scenario of passing to unstable generation regimes is similar to the self-pumped phase conjugate plane-plane loop mirror and substantially differs from a single-crystal double phase conjugate mirror.

  5. An optic fiber sensor for multiple gases based on fiber loop ring-down spectroscopy and microring resonator arrays

    Science.gov (United States)

    Zhang, Xin; Jian, Jia-wen; Zheng, Yan-gong; Jin, Han; Zou, Jie

    2016-07-01

    A high-sensitivity sensor for multiple gases based on microring array filter and fiber loop ring-down spectroscopy system is proposed and demonstrated. The parameters of the resonators are designed so that the filtered signal from a broadband light source can be tuned with an absorption spectral line of gas. Therefore, through adding microring resonators horizontally and vertically, the number of target gases and filter range are increased. In this research, in the broad spectral range of about 0.9 μm, only the absorption spectral lines of target gases are filtered. The simulation results show that three target gases, CH4, CO2 and HF, can be simultaneously detected by the sensing system. Owing to the fiber loop ring-down spectroscopy, the whole system is optimized in mini-size and sensitivity, and we can choose different sensing methods to enhance the measurement accuracy for high and low concentration conditions.

  6. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.

    Science.gov (United States)

    Kawaguchi, Hideo; Hasunuma, Tomohisa; Ogino, Chiaki; Kondo, Akihiko

    2016-12-01

    The feedstocks used for the production of bio-based chemicals have recently expanded from edible sugars to inedible and more recalcitrant forms of lignocellulosic biomass. To produce bio-based chemicals from renewable polysaccharides, several bioprocessing approaches have been developed and include separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation (SSF), and consolidated bioprocessing (CBP). In the last decade, SHF, SSF, and CBP have been used to generate macromolecules and aliphatic and aromatic compounds that are capable of serving as sustainable, drop-in substitutes for petroleum-based chemicals. The present review focuses on recent progress in the bioprocessing of microbially produced chemicals from renewable feedstocks, including starch and lignocellulosic biomass. In particular, the technological feasibility of bio-based chemical production is discussed in terms of the feedstocks and different bioprocessing approaches, including the consolidation of enzyme production, enzymatic hydrolysis of biomass, and fermentation.

  7. Advances in chemical looping reforming for direct hydrogen production%化学链重整直接制氢技术进展

    Institute of Scientific and Technical Information of China (English)

    曾亮; 巩金龙

    2015-01-01

    Chemical looping reforming (CLR) technology is a clean and efficient fuel conversion process for direct hydrogen production by using solid metal oxides. Instead of the traditional use of steam or pure oxygen, solid metal oxides are typically used as oxygen carriers to convert carbonaceous fuel to syngas or CO2/H2O. The reduced oxygen carrier then reacts with the steam for directly generating H2, which is separatedin situ with near zero energy consumption. Based on the need for different products and the different heat supply methods, both two-reactor and three-reactor CLR systems have been discussed, with a focus on the characteristics of oxygen carriers and reactor design. The Elingham diagram is used to compare the redox properties of various metal oxides, and to guide the selection of suitable oxygen carriers for direct hydrogen production. Recent oxygen carrier development is also discussed to investigate the strategies for improving H2 selectivity and yield. The gas solid contacting pattern should be carefully selected when designing CLR reactors with various kinds of feed fuels and target products.%化学链重整直接制氢技术使用固态金属氧化物作为氧载体代替传统重整过程中所需的水蒸气或纯氧,将燃料直接转化为高纯度的合成气或者二氧化碳和水,被还原的金属氧化物则可以与水蒸气再生并直接产生氢气,实现了氢气的近零能耗原位分离,是一种绿色高效的新型制氢过程。根据产物和供热方式的不同,可以将化学链重整直接制氢工艺分为双床系统和三床系统两类,并对各系统中氧载体与反应器的设计与选择进行了分析。通过Elingham图对不同氧载体的氧化还原能力进行比较,选取适于直接制氢的金属氧化物,并讨论了氧载体材料研发的最新进展。化学链制氢反应器设计应根据不同原料和产品的特点,选择合适的气-固接触方式,以强化化学链重整直接制氢效率。

  8. A Refractive Index Sensor Based on the Resonant Coupling to Cladding Modes in a Fiber Loop

    Science.gov (United States)

    Reyes, Mauricio; Monzón-Hernández, David; Martínez-Ríos, Alejandro; Silvestre, Enrique; Díez, Antonio; Cruz, José Luis; Andrés, Miguel V.

    2013-01-01

    We report an easy-to-build, compact, and low-cost optical fiber refractive index sensor. It consists of a single fiber loop whose transmission spectra exhibit a series of notches produced by the resonant coupling between the fundamental mode and the cladding modes in a uniformly bent fiber. The wavelength of the notches, distributed in a wavelength span from 1,400 to 1,700 nm, can be tuned by adjusting the diameter of the fiber loop and are sensitive to refractive index changes of the external medium. Sensitivities of 170 and 800 nm per refractive index unit for water solutions and for the refractive index interval 1.40–1.442, respectively, are demonstrated. We estimate a long range resolution of 3 × 10−4 and a short range resolution of 2 × 10−5 for water solutions. PMID:23979478

  9. Development and calibration of a MFM-based system for local hysteresis loops measurements

    Science.gov (United States)

    Coïsson, M.; Barrera, G.; Celegato, F.; Tiberto, P.

    2016-10-01

    A measurement technique derived from a field-dependent magnetic force microscope (MFM) is presented for the measurement of local hysteresis loops on patterned micrometric and sub-micrometric magnetic structures. The technique exploits the synchronisation of the applied field variations with the end-of-line signal of the microscope, while keeping the slow scan axis disabled. In this way, a single MFM image contains the whole field evolution of the magnetisation processes in the sample along a user-defined profile. An analysis procedure is presented for the subsequent determination of local hysteresis loops on magnetic dots. The system has been calibrated for what concerns the applied field values. No significant artifacts induced in the measurements by the applied field have been observed up to applied fields of ≈ 1000 Oe.

  10. Function Projective Synchronization of Fractional-Order Hyperchaotic System Based on Open-Plus-Closed-Looping

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Yuan; LIU Rong; ZHANG Na

    2011-01-01

    The purpose of this paper is to analyze the dynamic behavior of fractional-order four-order hyperchaotic Lii system, and use the Open-Plus-Closed-Looping (OPCL) coupling method to construct the system's corresponding response system, and then implement function projective synchronization (FPS) of fractional-order drive-response system with system parameters perturbation or not. Finally, the numerical simulations verify the effectiveness and robustness of this scheme.

  11. New insights into the structural bases of activation of Cys-loop receptors.

    Science.gov (United States)

    Bouzat, Cecilia

    2012-01-01

    Neurotransmitter receptors of the Cys-loop superfamily mediate rapid synaptic transmission throughout the nervous system, and include receptors activated by ACh, GABA, glycine and serotonin. They are involved in physiological processes, including learning and memory, and in neurological disorders, and they are targets for clinically relevant drugs. Cys-loop receptors assemble either from five copies of one type of subunit, giving rise to homomeric receptors, or from several types of subunits, giving rise to heteromeric receptors. Homomeric receptors are invaluable models for probing fundamental relationships between structure and function. Receptors contain a large extracellular domain that carries the binding sites and a transmembrane region that forms the ion pore. How the structural changes elicited by agonist binding are propagated through a distance of 50Å to the ion channel gate is central to understanding receptor function. Depending on the receptor subtype, occupancy of either two, as in the prototype muscle nicotinic receptor, or three binding sites, as in homomeric receptors, is required for full activation. The conformational changes initiated at the binding sites are propagated to the gate through the interface between the extracellular and transmembrane domains. This region forms a network that relays structural changes from the binding site towards the pore, and also contributes to open channel lifetime and rate of desensitization. Thus, this coupling region controls the beginning and duration of a synaptic response. Here we review recent advances in the molecular mechanism by which Cys-loop receptors are activated with particular emphasis on homomeric receptors.

  12. Study on rejection characteristic of current loop to the base disturbance of optical communication system

    Science.gov (United States)

    Mao, Yao; Deng, Chao; Liu, Qiong; Cao, Zheng

    2016-10-01

    As laser has narrow transmitting beam and small divergence angle, the LOS (Line of Sight) stabilization of optical communication system is a primary precondition of laser communication links. Compound axis control is usually adopted in LOS stabilization of optical communication system, in which coarse tracking and fine tracking are included. Rejection against high frequency disturbance mainly depends on fine tracking LOS stabilization platform. Limited by different factors such as mechanical characteristic of the stabilization platform and bandwidth/noise of the sensor, the control bandwidth of LOS stabilization platform is restricted so that effective rejection of high frequency disturbance cannot be achieved as it mainly depends on the isolation characteristic of the platform itself. It is proposed by this paper that current loop may reject the effect of back-EMF. By adopting the method of electric control, high frequency isolation characteristic of the platform can be improved. The improvement effect is similar to increasing passive vibration reduction devices. Adopting the double closed loop control structure of velocity and current with the combining of the rejection effect of back-EMF caused by current loop is equivalent to reducing back-EMF coefficient, which can enhance the isolation ability of the LOS stabilization platform to high frequency disturbance.

  13. EXTENDING THE KNOWLEDGE BASE OF CHEMICAL ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    Mooson Kwauk

    2005-01-01

    The obvious current reversion to micro-scale investigations in basic chemical engineering, combined with the need, of a quite different nature, in the rapid growth of high added-value and small-lot functional materials, have been pointing to an area not yet sufficiently covered by the unit operations, transport phenomena and chemical reaction engineering. Although it is difficult to define accurately this area, a cursory scan of the activities already in progress has revealed a few common attributes: multi-phased (structured), multi-scaled, multi-disciplined, nonlinear, needs for resolution to reductionism-solvable subsystems, and pervasive in the process industry. From these activities, the present paper drafts a tentative scheme for studying the related problems: first to dissect a problem into various scales - spatial, temporal or otherwise as best suits the case in hand- in order to identify pertinent parameters which are then organized into model formulations. Together with inter-scale model formulations, a zoom-in/zoom-out process is carried out between the scales, by trial-and-error and through reasoning, to arrive at a global formulation of a quantitative solution, in order to derive, eventually, the general from the particular.

  14. An Adaptive Least-Error Squares Filter-Based Phase-Locked Loop for Synchronization and Signal Decomposition Purposes

    DEFF Research Database (Denmark)

    Golestan, Saeed; Ebrahimzadeh, Esmaeil; Guerrero, Josep M.

    2017-01-01

    Without any doubt, phase-locked loops (PLLs) are the most popular and widely used technique for the synchronization purposes in the power and energy areas. They are also popular for the selective extraction of fundamental and harmonic/disturbance components of the grid voltage and current. Like...... input. A filtering technique that has received a little attention for this purpose is the least-error squares (LES)-based filter. In this paper, an adaptive LES filter-based PLL, briefly called the LES-PLL, for the synchronization and signal decomposition purposes is presented. The proposed LES filter...

  15. A closed-loop dynamic simulation-based design method for articulated heavy vehicles with active trailer steering systems

    Science.gov (United States)

    Manjurul Islam, Md.; Ding, Xuejun; He, Yuping

    2012-05-01

    This paper presents a closed-loop dynamic simulation-based design method for articulated heavy vehicles (AHVs) with active trailer steering (ATS) systems. AHVs have poor manoeuvrability at low speeds and exhibit low lateral stability at high speeds. From the design point of view, there exists a trade-off relationship between AHVs' manoeuvrability and stability. For example, fewer articulation points and longer wheelbases will improve high-speed lateral stability, but they will degrade low-speed manoeuvrability. To tackle this conflicting design problem, a systematic method is proposed for the design of AHVs with ATS systems. In order to evaluate vehicle performance measures under a well-defined testing manoeuvre, a driver model is introduced and it 'drivers' the vehicle model to follow a prescribed route at a given speed. Considering the interactions between the mechanical trailer and the ATS system, the proposed design method simultaneously optimises the active design variables of the controllers and passive design variables of the trailer in a single design loop (SDL). Through the design optimisation of an ATS system for an AHV with a truck and a drawbar trailer combination, this SDL method is compared against a published two design loop method. The benchmark investigation shows that the former can determine better trade-off design solutions than those derived by the latter. This SDL method provides an effective approach to automatically implement the design synthesis of AHVs with ATS systems.

  16. Validation of the generalized model of two-phase thermosyphon loop based on experimental measurements of volumetric flow rate

    Science.gov (United States)

    Bieliński, Henryk

    2016-09-01

    The current paper presents the experimental validation of the generalized model of the two-phase thermosyphon loop. The generalized model is based on mass, momentum, and energy balances in the evaporators, rising tube, condensers and the falling tube. The theoretical analysis and the experimental data have been obtained for a new designed variant. The variant refers to a thermosyphon loop with both minichannels and conventional tubes. The thermosyphon loop consists of an evaporator on the lower vertical section and a condenser on the upper vertical section. The one-dimensional homogeneous and separated two-phase flow models were used in calculations. The latest minichannel heat transfer correlations available in literature were applied. A numerical analysis of the volumetric flow rate in the steady-state has been done. The experiment was conducted on a specially designed test apparatus. Ultrapure water was used as a working fluid. The results show that the theoretical predictions are in good agreement with the measured volumetric flow rate at steady-state.

  17. A Real-Time and Closed-Loop Control Algorithm for Cascaded Multilevel Inverter Based on Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Libing Wang

    2014-01-01

    Full Text Available In order to control the cascaded H-bridges (CHB converter with staircase modulation strategy in a real-time manner, a real-time and closed-loop control algorithm based on artificial neural network (ANN for three-phase CHB converter is proposed in this paper. It costs little computation time and memory. It has two steps. In the first step, hierarchical particle swarm optimizer with time-varying acceleration coefficient (HPSO-TVAC algorithm is employed to minimize the total harmonic distortion (THD and generate the optimal switching angles offline. In the second step, part of optimal switching angles are used to train an ANN and the well-designed ANN can generate optimal switching angles in a real-time manner. Compared with previous real-time algorithm, the proposed algorithm is suitable for a wider range of modulation index and results in a smaller THD and a lower calculation time. Furthermore, the well-designed ANN is embedded into a closed-loop control algorithm for CHB converter with variable direct voltage (DC sources. Simulation results demonstrate that the proposed closed-loop control algorithm is able to quickly stabilize load voltage and minimize the line current’s THD (<5% when subjecting the DC sources disturbance or load disturbance. In real design stage, a switching angle pulse generation scheme is proposed and experiment results verify its correctness.

  18. Predicting Drugs Side Effects Based on Chemical-Chemical Interactions and Protein-Chemical Interactions

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2013-01-01

    Full Text Available A drug side effect is an undesirable effect which occurs in addition to the intended therapeutic effect of the drug. The unexpected side effects that many patients suffer from are the major causes of large-scale drug withdrawal. To address the problem, it is highly demanded by pharmaceutical industries to develop computational methods for predicting the side effects of drugs. In this study, a novel computational method was developed to predict the side effects of drug compounds by hybridizing the chemical-chemical and protein-chemical interactions. Compared to most of the previous works, our method can rank the potential side effects for any query drug according to their predicted level of risk. A training dataset and test datasets were constructed from the benchmark dataset that contains 835 drug compounds to evaluate the method. By a jackknife test on the training dataset, the 1st order prediction accuracy was 86.30%, while it was 89.16% on the test dataset. It is expected that the new method may become a useful tool for drug design, and that the findings obtained by hybridizing various interactions in a network system may provide useful insights for conducting in-depth pharmacological research as well, particularly at the level of systems biomedicine.

  19. A decision analytic approach to exposure-based chemical prioritization.

    Directory of Open Access Journals (Sweden)

    Jade Mitchell

    Full Text Available The manufacture of novel synthetic chemicals has increased in volume and variety, but often the environmental and health risks are not fully understood in terms of toxicity and, in particular, exposure. While efforts to assess risks have generally been effective when sufficient data are available, the hazard and exposure data necessary to assess risks adequately are unavailable for the vast majority of chemicals in commerce. The US Environmental Protection Agency has initiated the ExpoCast Program to develop tools for rapid chemical evaluation based on potential for exposure. In this context, a model is presented in which chemicals are evaluated based on inherent chemical properties and behaviorally-based usage characteristics over the chemical's life cycle. These criteria are assessed and integrated within a decision analytic framework, facilitating rapid assessment and prioritization for future targeted testing and systems modeling. A case study outlines the prioritization process using 51 chemicals. The results show a preliminary relative ranking of chemicals based on exposure potential. The strength of this approach is the ability to integrate relevant statistical and mechanistic data with expert judgment, allowing for an initial tier assessment that can further inform targeted testing and risk management strategies.

  20. Construction of a Linux based chemical and biological information system.

    Science.gov (United States)

    Molnár, László; Vágó, István; Fehér, András

    2003-01-01

    A chemical and biological information system with a Web-based easy-to-use interface and corresponding databases has been developed. The constructed system incorporates all chemical, numerical and textual data related to the chemical compounds, including numerical biological screen results. Users can search the database by traditional textual/numerical and/or substructure or similarity queries through the web interface. To build our chemical database management system, we utilized existing IT components such as ORACLE or Tripos SYBYL for database management and Zope application server for the web interface. We chose Linux as the main platform, however, almost every component can be used under various operating systems.

  1. Chemical-looping gasification of biomass in a 10k Wth interconnected fluidized bed reactor using Fe2 O3/Al2 O3 oxygen carrier

    Institute of Scientific and Technical Information of China (English)

    HUSEYIN Sozen; WEI Guo-qiang; LI Hai-bin; HE Fang; HUANG Zhen

    2014-01-01

    The aim of this research is to design and operate a 10 kW hot chemical-looping gasification ( CLG) unit using Fe2 O3/Al2 O3 as an oxygen carrier and saw dust as a fuel. The effect of the operation temperature on gas composition in the air reactor and the fuel reactor, and the carbon conversion of biomass to CO2 and CO in the fuel reactor have been experimentally studied. A total 60 h run has been obtained with the same batch of oxygen carrier of iron oxide supported with alumina. The results show that CO and H2 concentrations are increased with increasing temperature in the fuel reactor. It is also found that with increasing fuel reactor temperature, both the amount of residual char in the fuel reactor and CO2 concentration of the exit gas from the air reactor are degreased. Carbon conversion rate and gasification efficiency are increased by increasing temperature and H2 production at 870 ℃reaches the highest rate. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET-surface area tests have been used to characterize fresh and reacted oxygen carrier particles. The results display that the oxygen carrier activity is not declined and the specific surface area of the oxygen carrier particles is not decreased significantly.

  2. Chemical compound navigator: a web-based chem-BLAST, chemical taxonomy-based search engine for browsing compounds.

    Science.gov (United States)

    Prasanna, M D; Vondrasek, Jiri; Wlodawer, Alexander; Rodriguez, H; Bhat, T N

    2006-06-01

    A novel technique to annotate, query, and analyze chemical compounds has been developed and is illustrated by using the inhibitor data on HIV protease-inhibitor complexes. In this method, all chemical compounds are annotated in terms of standard chemical structural fragments. These standard fragments are defined by using criteria, such as chemical classification; structural, chemical, or functional groups; and commercial, scientific or common names or synonyms. These fragments are then organized into a data tree based on their chemical substructures. Search engines have been developed to use this data tree to enable query on inhibitors of HIV protease (http://xpdb.nist.gov/hivsdb/hivsdb.html). These search engines use a new novel technique, Chemical Block Layered Alignment of Substructure Technique (Chem-BLAST) to search on the fragments of an inhibitor to look for its chemical structural neighbors. This novel technique to annotate and query compounds lays the foundation for the use of the Semantic Web concept on chemical compounds to allow end users to group, sort, and search structural neighbors accurately and efficiently. During annotation, it enables the attachment of "meaning" (i.e., semantics) to data in a manner that far exceeds the current practice of associating "metadata" with data by creating a knowledge base (or ontology) associated with compounds. Intended users of the technique are the research community and pharmaceutical industry, for which it will provide a new tool to better identify novel chemical structural neighbors to aid drug discovery.

  3. Chemical-potential-based Lattice Boltzmann Method for Nonideal Fluids

    CERN Document Server

    Wen, Binghai; He, Bing; Zhang, Chaoying; Fang, Haiping

    2016-01-01

    Chemical potential is an effective way to drive phase transition or express wettability. In this letter, we present a chemical-potential-based lattice Boltzmann model to simulate multiphase flows. The nonideal force is directly evaluated by a chemical potential. The model theoretically satisfies thermodynamics and Galilean invariance. The computational efficiency is improved owing to avoiding the calculation of pressure tensor. We have derived several chemical potentials of the popular equations of state from the free-energy density function. An effective chemical-potential boundary condition is implemented to investigate the wettability of a solid surface. Remarkably, the numerical results show that the contact angle can be linearly tuned by the surface chemical potential.

  4. Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy

    Science.gov (United States)

    Jiang, Meng; Zhang, Weigang; Zhang, Qi; Liu, Yaping; Liu, Bo

    2010-01-01

    An improved ring-down measurement principle for optical waveguides is presented. Fiber loop ring-down spectroscopy allows for measurement of minute optical losses in high-finesse fiber-optic cavities and immunity to the fluctuation of laser source. The evanescent wave absorption losses dependent on the absorption and the refractive index of ambient solution have been theoretically analyzed. The complex refractive index is introduced into our model and extinction coefficient can be calculated accurately through finite element analysis by setting the boundaries of the fiber and the ambient conditions. Using this method, the refractive index of environment can be taken into consideration. Our principle is validated by the highly-sensitive measurement of evanescent wave absorption loss. By chemically processing the surface of sensing segment along an extending ring-down cavity, the concentration of small volume Diethyl Sulphoxide solution where the etched fiber immersed into has been successfully measured and discussed.

  5. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    Science.gov (United States)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  6. Open-loop GPS signal tracking at low elevation angles from a ground-based observation site

    Science.gov (United States)

    Beyerle, Georg; Zus, Florian

    2016-04-01

    For more than a decade space-based global navigation satellite system (GNSS) radio occultation (RO) observations are used by meteorological services world-wide for their numerical weather prediction models. In addition, climate studies increasingly rely on validated GNSS-RO data sets of atmospheric parameters. GNSS-RO profiles typically cover an altitude range from the boundary layer up to the upper stratosphere; their highest accuracy and precision, however, are attained at the tropopause level. In the lower troposphere, multipath ray propagation tend to induce signal amplitude and frequency fluctuations which lead to the development and implementation of open-loop signal tracking methods in GNSS-RO receiver firmwares. In open-loop mode the feed-back values for the carrier tracking loop are derived not from measured data, but from a Doppler frequency model which usually is extracted from an atmospheric climatology. In order to ensure that this receiver-internal parameter set, does not bias the carrier phase path observables, dual-channel open-loop GNSS-RO signal tracking was suggested. Following this proposal the ground-based "GLESER" (GPS low-elevation setting event recorder) campaign was established. Its objective was to disproof the existence of model-induced frequency biases using ground-based GPS observations at very low elevation angles. Between January and December 2014 about 2600 validated setting events, starting at geometric elevation angles of +2° and extending to -1°… - 1.5°, were recorded by the single frequency "OpenGPS" GPS receiver at a measurement site located close to Potsdam, Germany (52.3808°N, 13.0642°E). The study is based on the assumption that these ground-based observations may be used as proxies for space-based RO measurements, even if the latter occur on a one order of magnitude faster temporal scale. The "GLESER" data analysis shows that the open-loop Doppler model has negligible influence on the derived frequency profile

  7. DESIGN OF MULTIPLE-LOOP FEEDBACK HIGH-ORDER CURRENT-MODE FILTER BASED ON FTFNS

    Institute of Scientific and Technical Information of China (English)

    Xi Yanhui; Peng Liangyu

    2009-01-01

    A general multiple-loop feedback approach for realization of Four-Terminal Floating Nullor C (FTFN-RC) filter is presented.The proposed filter is constructed by multi-output FTFNs,capacitors and resistors.It can simultaneously realize slow-pass,band-pass(if order is even number),and high-pass filter responses.With RC elements grounded and requiring no component matching constraints,it is fully integrated conveniently.Simulations are performed for the fourth-order Butterworth filter to verify the validity of the circuit.

  8. Scenario-based, closed-loop model predictive control with application to emergency vehicle scheduling

    Science.gov (United States)

    Goodwin, Graham. C.; Medioli, Adrian. M.

    2013-08-01

    Model predictive control has been a major success story in process control. More recently, the methodology has been used in other contexts, including automotive engine control, power electronics and telecommunications. Most applications focus on set-point tracking and use single-sequence optimisation. Here we consider an alternative class of problems motivated by the scheduling of emergency vehicles. Here disturbances are the dominant feature. We develop a novel closed-loop model predictive control strategy aimed at this class of problems. We motivate, and illustrate, the ideas via the problem of fluid deployment of ambulance resources.

  9. COLLIER: A fortran-based complex one-loop library in extended regularizations

    Science.gov (United States)

    Denner, Ansgar; Dittmaier, Stefan; Hofer, Lars

    2017-03-01

    We present the library COLLIER for the numerical evaluation of one-loop scalar and tensor integrals in perturbative relativistic quantum field theories. The code provides numerical results for arbitrary tensor and scalar integrals for scattering processes in general quantum field theories. For tensor integrals either the coefficients in a covariant decomposition or the tensor components themselves are provided. COLLIER supports complex masses, which are needed in calculations involving unstable particles. Ultraviolet and infrared singularities are treated in dimensional regularization. For soft and collinear singularities mass regularization is available as an alternative.

  10. Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations

    CERN Document Server

    Denner, Ansgar; Hofer, Lars

    2016-01-01

    We present the library Collier for the numerical evaluation of one-loop scalar and tensor integrals in perturbative relativistic quantum field theories. The code provides numerical results for arbitrary tensor and scalar integrals for scattering processes in general quantum field theories. For tensor integrals either the coefficients in a covariant decomposition or the tensor components themselves are provided. Collier supports complex masses, which are needed in calculations involving unstable particles. Ultraviolet and infrared singularities are treated in dimensional regularization. For soft and collinear singularities mass regularization is available as an alternative.

  11. A high-resolution time interpolator based on a delay locked loop and an RC delay line

    CERN Document Server

    Mota, M

    1999-01-01

    An architecture for a time interpolation circuit with an rms error of ~25 ps has been developed in a 0.7- mu m CMOS technology. It is based on a delay locked loop (DLL) driven by a 160-MHz reference clock and a passive RC delay line controlled by an autocalibration circuit. Start-up calibration of the RC delay line is performed using code density tests (CDT). The very small temperature/voltage dependence of R and C parameters and the self calibrating DLL results in a low- power, high-resolution time interpolation circuit in a standard digital CMOS technology. (11 refs).

  12. An Adaptive Quadrature Signal Generation Based Single-Phase Phase-Locked Loop for Grid-Connected Applications

    DEFF Research Database (Denmark)

    Golestan, Saeed; Guerrero, Josep M.; Abusorrah, Abdullah;

    2017-01-01

    The quadrature signal generation based phase-locked loops (QSG-PLLs) are highly popular for synchronization purposes in single-phase systems. The main difference among these PLLs often lies in the technique they use for creating the fictitious quadrature component. One of the easiest QSG approaches...... the adaptive TD-PLL (ATD-PLL). The stability of the ATD-PLL is evaluated by the derivation of its small-signal model. Parameter design guidelines are also presented. Finally, the effectiveness of the ATD-PLL is confirmed using numerical results....

  13. All-optical wavelength conversion of short pulses and NRZ signals based on a nonlinear optical loop mirror

    DEFF Research Database (Denmark)

    Yu, Jianjun; Zheng, Xueyan; Peucheret, Christophe;

    2000-01-01

    Wavelength conversion of short pulses at 10 GHz based on a nonlinear optical loop mirror (NOLM) is experimentally and numerically investigated for the case of small group velocity dispersion and walkoff between the control pulses and continuous lightwaves. Experimental and numerical simulation...... results show that the pulsewidths of the converted signals at different wavelengths are almost the same, and the pulsewidths are compressed when the peak power of the control pulse is smaller than a certain value. An RZ optical source containing eight wavelengths having a high sidemode suppression ratio...

  14. VHDL-based system design of a cognitive sensorimotor loop (CSL) for haptic Human-Machine Interaction (HMI)

    OpenAIRE

    Miguel Morales, Pablo de

    2015-01-01

    This document is a summary of the Bachelor thesis titled “VHDL-Based System Design of a Cognitive Sensorimotor Loop (CSL) for Haptic Human-Machine Interaction (HMI)” written by Pablo de Miguel Morales, Electronics Engineering student at the Universidad Politécnica de Madrid (UPM Madrid, Spain) during an Erasmus+ Exchange Program at the Beuth Hochschule für Technik (BHT Berlin, Germany). The tutor of this project is Dr. Prof. Hild. This project has been developed inside the Neurobotics Researc...

  15. Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror

    Institute of Scientific and Technical Information of China (English)

    Luo Bo-Wen; Dong Jian-Ji; Yu Yuan; Yang Ting; Zhang Xin-Liang

    2013-01-01

    We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband (UWB) signal generation using a semiconductor optical amplifier (SOA) based nonlinear optical loop mirror (NOLM).By employing the cross phase modulation (XPM) effect,cross gain modulation (XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.

  16. A Compiling Framework Based on Uniform Partitioning Schemes for Parallel Loops%基于规范划分集的并行循环编译框架

    Institute of Scientific and Technical Information of China (English)

    黄其军; 丁阳; 余华山; 丁文魁; 许卓群

    2002-01-01

    Compilation of parallel loops is one of the most important parts in parallel compilation and optimization. This paper mainly discusses the key techniques during the compilation implementation of parallel loops, based on the uniform partition schemes. It includes techniques in local array index generating, loop space reconstructing, communication detecting and organizing and data dependence disposing. The efficiency of this implementation has been proved by lots of experiments. The p_HPF compiler which adopts this compiling framework can obtain good speedups and efficiencies. The compiler has been applied in many fields, particularly the field of petroleum exploration.

  17. Chemical characterization of carbohydrate-based biosurfactants

    Science.gov (United States)

    High-yield, glycolipid-based biosurfactants are of increasing interest for use in environmentally benign cleaning or emulsifying agents. We have developed a MALDI-TOF/MS screen for the rapid analysis of several types of biosurfactants, including various acylated rhamnolipids in Pseudomonas extracts...

  18. A Platform for Closing the Open Data Feedback Loop Based on Web2.0 Functionality

    Directory of Open Access Journals (Sweden)

    Charalampos Alexopoulos

    2014-11-01

    Full Text Available One essential element of open data ecosystems concerns their development through feedback loops, discussions and dynamic supplier and user interactions. These user-centric features communicate the users’ needs to the open data community as well to the public sector bodies responsible for data publication. Addressing these needs by the corresponding public sector bodies or even by utilising the power of the community as ENGAGE supports will actually accelerate innovation. However, these elements appear barely to be part of existing open data practices. We conducted a survey which showed that most professional open data users did not know at least one open data infrastructure that enabled five specific types of discussion and feedback mechanisms. The survey showed that much can still be done to improve feedback and discussion on open data infrastructures. In this paper we discuss an open data platform which has started to contribute to filling this gap and present a usage scenario explaining the sequence of the underlined functionality. The discussed ENGAGE open data infrastructure combines functionalities to close the feedback loop and to return information to public authorities for better open data use and publication as well as establishing communication channels between stakeholders. This may effectively lead to the stimulation and facilitation of value generation from open data, as such functionality position the user at the centre of the open data publication process.

  19. Primitive Non-Powerful Symmetric Loop-Free Signed Digraphs with Base 3 and Minimum Number of Arcs

    Institute of Scientific and Technical Information of China (English)

    Lihua YOU; Yuhan WU

    2013-01-01

    Let S be a primitive non-powerful symmetric loop-free signed digraph on even n vertices with base 3 and minimum number of arcs.In [Lihua YOU,Yuhan WU.Primitive nonpowerful symmetric loop-free signed digraphs with given base and minimum number of arcs.Linear Algebra Appl.,2011,434(5),1215-1227],authors conjectured that D is the underlying digraph of S with exp(D) =3 if and only if D is isomorphic to EDn,3,3,where EDn,3,3 =(V,A)is a digraph with V ={1,2,...,n},A ={(1,i),(i,1) | 3 ≤ i ≤ n} ∪ {(2i-1,2i),(2i,2i-1) |2 ≤ i ≤ n/2} ∪ {(2,3),(3,2),(2,4),(4,2)}).In this paper,we show the conjecture is true and completely characterize the underlying digraphs which have base 3 and the minimum number of arcs.

  20. Simulation of the Open-loop and Closed-loop Control System Based on AMESim%基于AMESim压力开环与闭环控制系统研究

    Institute of Scientific and Technical Information of China (English)

    李新觉; 刘志刚; 余纯

    2014-01-01

    Based on the laboratory bench work of existing hydraulic schematics, AMESim models of the open-loop pressure control system and closed-loop pressure control system are established, then the results of simulation are an-alyzed in this paper. It's found that the closed-loop control system can be more stable than the open-loop control sys-tem. And it's proved that simulation results are effective by two comparative experiments.%基于实验室现有液压实验台工作原理图,通过分别建立压力开环控制和压力闭环控制系统的AMESim模型,以及所进行的仿真和分析,得出了闭环控制的系统能比开环控制的系统得到稳定精确的加载压力的结论。通过两种系统的控制对比实验,验证了仿真的结论。

  1. Advances in hydrogen production using chemical-looping technology%基于化学链技术制氢的研究进展

    Institute of Scientific and Technical Information of China (English)

    罗明; 王树众; 王龙飞; 吕明明; 肖仲正; 朱佳斌

    2014-01-01

    Application of renewable fuel,especially hydrogen,is an efficient way to fight against the climate change and reduce the emission of the pollutants from the transport sector. Hydrogen production using chemical looping technology is a potential method for hydrogen production,which not only can improve energy conversion efficiency and reduce environmental pollution,but also can separate carbon dioxide,which shows good economic efficiency and promising future. This paper introduces two different approaches to produce hydrogen using chemical looping technology. The present development statuses on the screening of oxygen carrier particles,the design of proper reactors,and the system simulation for each approach are summarized respectively. The screening and preparation of proper oxygen carriers is the basis of successful operation in each process. The potential erosion of the reformer tubes by the oxygen carriers in CLR(s) process and the heat balance between the FR and AR in CLR(a) process need to be considered. The development of oxygen carriers with low price,and the design of proper reactor and the coupled system for solid fuel will be the main focus of CLH study.%利用氢能替代常规化石能源是运输行业应对气候变化和环境污染问题的一个重要突破口。将化学链技术应用于制氢过程不仅可以提高能量转换效率、减少环境污染,还可以在制氢的同时捕捉该过程产生的CO2,具有广阔的发展前景。本文概述了化学链制氢的两种方式的原理及特点,总结了不同过程在载氧体的筛选、反应器的形式以及系统模拟方面的研究现状。指出高效载氧体的筛选和制备是各个过程成功运行的关键。化学链水蒸气重整制氢[CLR(s)]过程需要考虑管束的磨损问题,而自热化学链重整制氢[CLR(a)]过程需要注意过程中的反应热量平衡。廉价载氧体的筛选、固体燃料的化学链制氢及其系统开发是化学链制

  2. Chemical Sensors Based on Piezoresistive Cantilever Array

    Institute of Scientific and Technical Information of China (English)

    于晓梅; 张大成; 王丛舜; 杜先锋; 王小宝; 阮勇

    2003-01-01

    U-shaped and rectangle piezoresistive cantilever arrays have been designed with the analysing results of stress,noise and sensitivity of the cantilevers. Based on silicon micromachining technology, the piezoresistive cantilevers were fabricated by using polysilicon as the piezoresistive materials. With the measurement results of noise and sensitivity, the Hooge factor is calculated to be 3 × 10-3, the gauge factor is 27, and the minimum detectable deflection of piezoresistive cantilevers are calculated to be 1.0nm for rectangle cantilever and 0.5 nm for the Ushaped cantilever at a 6 V bias voltage and a 1000 Hz measurement bandwidth. Using polymer-coated cantilevers as individual sensors, their responses to water vapour and ammonia were tested by measuring their output voltage signals. The measured results show that the sensor sensitivity to ammonia can reach a few ppm and the sensor responses are quick.

  3. Piezoresistive Chemical Sensors Based on Functionalized Hydrogels

    Directory of Open Access Journals (Sweden)

    Margarita Guenther

    2014-06-01

    Full Text Available Thin films of analyte-specific hydrogels were combined with microfabricated piezoresistive pressure transducers to obtain chemomechanical sensors that can serve as selective biochemical sensors for a continuous monitoring of metabolites. The gel swelling pressure has been monitored in simulated physiological solutions by means of the output signal of piezoresistive sensors. The interference by fructose, human serum albumin, pH, and ionic concentration on glucose sensing was studied. With the help of a database containing the calibration curves of the hydrogel-based sensors at different values of pH and ionic strength, the corrected values of pH and glucose concentration were determined using a novel calibration algorithm.

  4. Chemical-Based Formulation Design: Virtual Experimentation

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul

    This paper presents a software, the virtual Product-Process Design laboratory (virtual PPD-lab) and the virtual experimental scenarios for design/verification of consumer oriented liquid formulated products where the software can be used. For example, the software can be employed for the design...... system engineering community, it is possible now to replace, at least, some of the experimental steps with efficient and validated model-based approaches. For example, the search space can be significantly reduced through computer-aided screenings of the active ingredient (AI), the solvent mixture......, the additives and/or their mixtures (formulations). Therefore, the experimental resources can focus on a few candidate product formulations to find the best product. The virtual PPD-lab allows various options for experimentations related to design and/or verification of the product. For example, the selection...

  5. Security Loop Agents for the Enterprise Applications based on Resource Description Framework

    Directory of Open Access Journals (Sweden)

    Ahmed Isam Khaleel

    2011-01-01

    Full Text Available Security loop-holes can cost a fortune to a large enterprise organization providing e-commerce services. Meanwhile, the enterprise applications have been applied widely to simplify and generate better performance in managing the business tasks. Most of these applications (Enterprise Applications unable to provide a high level of security due to the new daily threats specially when malicious agents entered into agent platforms and destroyed other active agents during the agent performance for client query. Meanwhile, the security issues in these applications left in the system unintentionally but are intruded intentionally. Hence, this study aims to come out with suitable solution for the existing question on how to secure and platform independent environment for the enterprise applications? By designing architecture to provides a secure and platform independent environment for agents' communication.

  6. A New GPS-based Digital Protection System for Smart Grids in Loop Structure

    Directory of Open Access Journals (Sweden)

    X. Liu

    2014-12-01

    Full Text Available This paper presents a new digital protection system to solve the protection challenges in future smart grids, i.e., fast protection and fault isolation in a loop-structured system with limited magnitude of fault current. The new system combines two protection algorithms, i.e., a differential protection as the primary algorithm and an overcurrent protection as the backup one. The new system uses real-time Ethernet and digital data acquisition techniques to overcome the restriction on data transmission over large grids. The current measurements at different locations are time-synchronized by GPS clocks, and then transmitted to a central computer via the Ethernet. As opposed to digital relays which often contain PMU functionality nowadays, this approach uses time stamps on the instantaneous current values. We build a prototype of the new system on a test-bed. The results from simulations and experiments have demonstrated that the protection system achieves fast and accurate protection.

  7. Preparation of double perovskite-type oxide LaSrFeCoO6for chemical looping steam methane reforming to produce syngas and hydrogen

    Institute of Scientific and Technical Information of China (English)

    赵坤; 沈阳; 何方; 黄振; 魏国强; 郑安庆; 李海滨; 赵增立

    2016-01-01

    Double-perovskite type oxide LaSrFeCoO6was used as oxygen carrier for chemical looping steam methane reforming (CL-SMR) due to its unique structure and reactivity. Solid-phase, amorphous alloy, sol-gel and micro-emulsion methods were used to prepare the LaSrFeCoO6samples, and the as-prepared samples were characterized by means of X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area. Results showed that the samples made by the four different methods exhibited pure crystalline perovskite structure. The ordered dou-ble perovskite LaSrFeCoO6was regarded as a regular arrangement of alternating FeO6and CoO6corner-shared octahedra, with La and Sr cations occupying thevoids in between the octahedral. Because the La3+and Sr2+ions in A-site didnot take part in reaction, the TPR patterns showedthe reductive properties of the B-site metals. The reduction peaks at low temperature revealed the reduction of adsorbed oxygenon surface and combined with the reduction of Co3+to Co2+and to Co0, while the reduction of Fe3+to Fe2+and the partial reduction of Fe2+to Fe0occurred at higher temperatures. From the point of view of the oxygen-donation ability, resistance to carbon formation, as well as hydrogen generation capacity, the sample made by micro-emulsion method exhibited the best reactiv-ity. Its redox reactivitywas very stable in ten successive cycles without deactivation. Compared to the single perovskite-type oxides LaFeO3and LaCoO3, the double perovskite LaSrFeCoO6exhibitedbetter syngas and hydrogen generation capacity.

  8. Limited gene flow and partial isolation phylogeography of Himalayan snowcock Tetraogallus himalayensis based on part mitochondrial D-loop sequences

    Institute of Scientific and Technical Information of China (English)

    Xiaoli WANG; Jiangyong QU; Naifa LIU; Xinkang BAO; Sen SONG

    2011-01-01

    Himalayan snowcock Tetraogallus himalayensis are distributed in alpine and subalpine areas in China.We used mitochondrial DNA control-region data to investigate the origin and past demographic change in sixty-seven Himalayan snowcock T.himalayensis.The fragments of 1155 nucleotides from the control region of mitochondrial DNA were sequenced,and 57 polymorphic positions defined 37 haplotypes.A high level of genetic diversity was detected in all populations sampled and may be associated isolation of the mountains and habitat fragmentation and deterioration from Quaternary glaciations.In the phylogenetic tree,all haplotypes grouped into four groups:clade A (Kunlun Mountains clade),clade B (Northern Qinghai-Tibetan Plateau clade),clade C (Tianshan Mountains clade) and clade D (Kalakunlun Mountains clade).We found a low level of gene flow and significant genetic differentiation among all populations.Based on divergence time we suggest that the divergence of Himalayan snowcock occurred in the middle Pleistocene inter-glaciation,and expansion occurred in the glaciation.Analysis of mtDNA D-loop sequences confirmed demographic population expansion,as did our non-significant mismatch distribution analysis.In conclusion,limited gene flow and a pattern of partial isolation phylogeographic was found in geographic populations of T.himalayansis based on the analysis on mtDNA D-loop sequences [Current Zoology 57 (6):758-767,2011 ].

  9. Viscoelastic phenomenology based structure assignment for closed-loop vibration control of a beam with sensors and actuators

    Science.gov (United States)

    Vadiraja, G. K.; Mahapatra, D. Roy

    2009-03-01

    In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.

  10. Efficient exploration of chemical space by fragment-based screening.

    Science.gov (United States)

    Hall, Richard J; Mortenson, Paul N; Murray, Christopher W

    2014-01-01

    Screening methods seek to sample a vast chemical space in order to identify starting points for further chemical optimisation. Fragment based drug discovery exploits the superior sampling of chemical space that can be achieved when the molecular weight is restricted. Here we show that commercially available fragment space is still relatively poorly sampled and argue for highly sensitive screening methods to allow the detection of smaller fragments. We analyse the properties of our fragment library versus the properties of X-ray hits derived from the library. We particularly consider properties related to the degree of planarity of the fragments.

  11. CANCER – THE ULTIMATUM FROM OUR CHEMICAL BASED CIVILIZATION

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2014-06-01

    Full Text Available Cumulative effect of regular consumption of low amount of a large number of synthetic chemicals may create ultimately an environment inside our body leading to gereration of several types of diseases. Moreover, either DNA molecule of some tissue may get irreversible genetic damage or mutations or some tissue may start to grow abnormally due to the effect of those chemicals, both of which can lead to cancer, slowly but inevitably. To live with lesser number of hazardous diseases and for a healthy future generation, we must have to be conscious about these dangerous aspects of our chemical based civilization

  12. Loop-to-loop coupling.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  13. 废弃咖啡渣化学链气化反应特性%Reaction characteristics of chemical-looping gasification for waste coffee grounds

    Institute of Scientific and Technical Information of China (English)

    张云鹏; 刘永卓; 杨勤勤; 郭庆杰

    2016-01-01

    Iron-based composite oxygen carrier (OC) (Fe4ATP6K1) was prepared by sol-gel method, which features Fe2O3 as an active component, and natural attapugite (ATP) as an inert support, as well as being modified by KNO3. Effects of reaction temperature, flow rate of steam and molar ratio of O/C on chemical looping gasification (CLG) of coffee grounds were investigated in a high temperature fluidized bed using steam as gasification agent. It suggests that the Fe4ATP6K1 oxygen carrier as bed material could facilitate carbon conversion in CLG of coffee grounds from 71.38% to 86.25%, compared with that of SiO2. Under optimized conditions for CLG such as 900℃, 0.23 g·min−1of steam flow rate and 1 of molar ratio of O/C, up to 52.75% of average concentration of H2, 83.79 g·kg−1 of H2 production rate, and 1.30 m3·kg−1 of syngas production rate were achieved. The OC samples before and after reaction at 900℃ were characterized by X-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectrometer (SEM-EDS). The interactions within phases of Fe, K and Si, and K in presence of KFeSi3O8 phase in the OCs were observed. Twenty redox cycles testing demonstrated that the Fe4ATP6K1 oxygen carrier possessed a good cyclic stability, over 75% of both carbon conversion and cold gas efficiency, while the average concentration of each gas kept almost stable.%利用溶胶-凝胶法制备了以Fe2O3为活性组分,天然凹凸棒土(ATP)为惰性载体,KNO3修饰的Fe4ATP6K1铁基复合载氧体。在高温流化床中考察了反应温度、水蒸气流量和O/C摩尔比对咖啡渣化学链气化过程的影响。结果表明,与以石英砂为床料的咖啡渣气化相比,以Fe4ATP6K1载氧体为床料的咖啡渣化学链气化对应的碳转化率由71.38%提高到86.25%。咖啡渣化学链气化的较优操作条件为:反应温度900℃、水蒸气量0.23 g·min−1、O/C摩尔比1;在此操作条件下,合成气产量达到1.30 m3

  14. Plasmonics Based Harsh Environment Compatible Chemical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Michael Carpenter

    2012-01-15

    Au-YSZ, Au-TiO{sub 2} and Au-CeO{sub 2} nanocomposite films have been investigated as a potential sensing element for high-temperature plasmonic sensing of H{sub 2}, CO, and NO{sub 2} in an oxygen containing environment. The Au-YSZ and Au-TiO{sub 2} films were deposited using PVD methods, while the CeO{sub 2} thin film was deposited by molecular beam epitaxy (MBE) and Au was implanted into the as-grown film at an elevated temperature followed by high temperature annealing to form well-defined Au nanoclusters. Each of the films were characterized by x-ray diffraction (XRD) and Rutherford backscattering spectrometry (RBS). For the gas sensing experiments, separate exposures to varying concentrations of H{sub 2}, CO, and NO{sub 2} were performed at a temperature of 500°C in oxygen backgrounds of 5.0, 10, and ~21% O{sub 2}. Changes in the localized surface plasmon resonance (LSPR) absorption peak were monitored during gas exposures and are believed to be the result of oxidation-reduction processes that fill or create oxygen vacancies in the respective metal oxides. This process affects the LSPR peak position either by charge exchange with the Au nanoparticles or by changes in the dielectric constant surrounding the particles. Hyperspectral multivariate analysis was used to gauge the inherent selectivity of the film between the separate analytes. From principal component analysis (PCA), unique and identifiable responses were seen for each of the analytes. Linear discriminant analysis (LDA) was also used on the Au-CeO{sub 2} results and showed separation between analytes as well as trends in gas concentration. Results indicate that each of the films are is selective towards O{sub 2}, H{sub 2}, CO, and NO{sub 2} in separate exposures. However, when the films were analyzed in a sensor array based experiment, ie simultaneous exposures to the target gases, PCA analysis of the combined response showed an even greater selective character towards the target gases. Combined

  15. Analysis of the effects of time delay in clock recovery circuits based on Phase-locked loops

    DEFF Research Database (Denmark)

    Zibar, Darko; Oxenløwe, Leif Katsuo; Clausen, Anders;

    2004-01-01

    Influence of time delay in a balanced optical phase-locked loops (OPLL) with a proportional integrator (Pl) filter is investigated using a delayed differential equation (DDE) is investigated. The limitations, which a time delay imposes on the Pl filter bandwidth, at increasing values of loop gain......, are investigated by numerical simulations. Furthermore, simple expressions governing the stability properties of the loop, in the presence of time delay, are derived. For this purpose, three standard loop filters are considered: a Pl filter, a low pass (LP) filter and an active lag (AL) filter. The derived...... expressions are used to perform an optimisation in terms of the selected loop filters....

  16. Comparison between solar utilization of a closed microalgae-based bio-loop and that of a stand-alone photovoltaic system.

    Science.gov (United States)

    Jin, Qiang; Chen, Lei; Li, Aimin; Liu, Fuqiang; Long, Chao; Shan, Aidang; Borthwick, Alistair G L

    2015-05-01

    This study compared the solar energy utilization of a closed microalgae-based bio-loop for energy efficient production of biogas with fertilizer recovery against that of a stand-alone photovoltaic (PV) system. The comparison was made from the perspective of broad life cycle assessment, simultaneously taking exergy to be the functional unit. The results indicated that the bio-loop was more environmentally competitive than an equivalent stand-alone PV system, but had higher economic cost due to high energy consumption during the operational phase. To fix the problem, a patented, interior pressurization scheduling method was used to operate the bio-loop, with microalgae and aerobic bacterial placed together in the same reactor. As a result, the overall environmental impact and total investment were respectively reduced by more than 75% and 84%, a vast improvement on the bio-loop.

  17. Quantum Structure of Field Theory and Standard Model Based on Infinity-Free Loop Regularization/renormalization

    Science.gov (United States)

    Wu, Yue-Liang

    2014-04-01

    To understand better the quantum structure of field theory and standard model in particle physics, it is necessary to investigate carefully the divergence structure in quantum field theories (QFTs) and work out a consistent framework to avoid infinities. The divergence has got us into trouble since developing quantum electrodynamics in 1930s. Its treatment via the renormalization scheme is satisfied not by all physicists, like Dirac and Feynman who have made serious criticisms. The renormalization group analysis reveals that QFTs can in general be defined fundamentally with the meaningful energy scale that has some physical significance, which motivates us to develop a new symmetry-preserving and infinity-free regularization scheme called loop regularization (LORE). A simple regularization prescription in LORE is realized based on a manifest postulation that a loop divergence with a power counting dimension larger than or equal to the space-time dimension must vanish. The LORE method is achieved without modifying original theory and leads the divergent Feynman loop integrals well-defined to maintain the divergence structure and meanwhile preserve basic symmetries of original theory. The crucial point in LORE is the presence of two intrinsic energy scales which play the roles of ultraviolet cutoff Mc and infrared cutoff μs to avoid infinities. As Mc can be made finite when taking appropriately both the primary regulator mass and number to be infinity to recover the original integrals, the two energy scales Mc and μs in LORE become physically meaningful as the characteristic energy scale and sliding energy scale, respectively. The key concept in LORE is the introduction of irreducible loop integrals (ILIs) on which the regularization prescription acts, which leads to a set of gauge invariance consistency conditions between the regularized tensor-type and scalar-type ILIs. An interesting observation in LORE is that the evaluation of ILIs with ultraviolet

  18. Fold classification based on secondary structure – how much is gained by including loop topology?

    Directory of Open Access Journals (Sweden)

    Przytycka Teresa

    2006-03-01

    Full Text Available Abstract Background It has been proposed that secondary structure information can be used to classify (to some extend protein folds. Since this method utilizes very limited information about the protein structure, it is not surprising that it has a higher error rate than the approaches that use full 3D fold description. On the other hand, the comparing of 3D protein structures is computing intensive. This raises the question to what extend the error rate can be decreased with each new source of information, especially if the new information can still be used with simple alignment algorithms. We consider the question whether the information about closed loops can improve the accuracy of this approach. While the answer appears to be obvious, we had to overcome two challenges. First, how to code and to compare topological information in such a way that local alignment of strings will properly identify similar structures. Second, how to properly measure the effect of new information in a large data sample. We investigate alternative ways of computing and presenting this information. Results We used the set of beta proteins with at most 30% pairwise identity to test the approach; local alignment scores were used to build a tree of clusters which was evaluated using a new log-odd cluster scoring function. In particular, we derive a closed formula for the probability of obtaining a given score by chance.Parameters of local alignment function were optimized using a genetic algorithm. Of 81 folds that had more than one representative in our data set, log-odds scores registered significantly better clustering in 27 cases and significantly worse in 6 cases, and small differences in the remaining cases. Various notions of the significant change or average change were considered and tried, and the results were all pointing in the same direction. Conclusion We found that, on average, properly presented information about the loop topology improves noticeably

  19. Disturbance-rejection-based tuning of proportional-integral-derivative controllers by exploiting closed-loop plant data.

    Science.gov (United States)

    Jeng, Jyh-Cheng; Ge, Guo-Ping

    2016-05-01

    A systematic data-based design method for tuning proportional-integral-derivative (PID) controllers for disturbance attenuation is proposed. In this method, a set of closed-loop plant data are directly exploited without using a process model. PID controller parameters for a control system that behaves as closely as possible to the reference model for disturbance rejection are derived. Two algorithms are developed to calculate the PID parameters. One algorithm determines the optimal time delay in the reference model by solving an optimization problem, whereas the other algorithm avoids the nonlinear optimization by using a simple approximation for the time delay term, enabling derivation of analytical PID tuning formulas. Because plant data integrals are used in the regression equations for calculating PID parameters, the two proposed algorithms are robust against measurement noises. Moreover, the controller tuning involves an adjustable design parameter that enables the user to achieve a trade-off between performance and robustness. Because of its closed-loop tuning capability, the proposed method can be applied online to improve (retune) existing underperforming controllers for stable, integrating, and unstable plants. Simulation examples covering a wide variety of process dynamics, including two examples related to reactor systems, are presented to demonstrate the effectiveness of the proposed tuning method.

  20. Collective estimation of multiple bivariate density functions with application to angular-sampling-based protein loop modeling

    KAUST Repository

    Maadooliat, Mehdi

    2015-10-21

    This paper develops a method for simultaneous estimation of density functions for a collection of populations of protein backbone angle pairs using a data-driven, shared basis that is constructed by bivariate spline functions defined on a triangulation of the bivariate domain. The circular nature of angular data is taken into account by imposing appropriate smoothness constraints across boundaries of the triangles. Maximum penalized likelihood is used to fit the model and an alternating blockwise Newton-type algorithm is developed for computation. A simulation study shows that the collective estimation approach is statistically more efficient than estimating the densities individually. The proposed method was used to estimate neighbor-dependent distributions of protein backbone dihedral angles (i.e., Ramachandran distributions). The estimated distributions were applied to protein loop modeling, one of the most challenging open problems in protein structure prediction, by feeding them into an angular-sampling-based loop structure prediction framework. Our estimated distributions compared favorably to the Ramachandran distributions estimated by fitting a hierarchical Dirichlet process model; and in particular, our distributions showed significant improvements on the hard cases where existing methods do not work well.

  1. SEMICONDUCTOR INTEGRATED CIRCUITS Short locking time and low jitter phase-locked loop based on slope charge pump control

    Science.gov (United States)

    Zhongjie, Guo; Youbao, Liu; Longsheng, Wu; Xihu, Wang; Wei, Tang

    2010-10-01

    A novel structure of a phase-locked loop (PLL) characterized by a short locking time and low jitter is presented, which is realized by generating a linear slope charge pump current dependent on monitoring the output of the phase frequency detector (PFD) to implement adaptive bandwidth control. This improved PLL is created by utilizing a fast start-up circuit and a slope current control on a conventional charge pump PLL. First, the fast start-up circuit is enabled to achieve fast pre-charging to the loop filter. Then, when the output pulse of the PFD is larger than a minimum value, the charge pump current is increased linearly by the slope current control to ensure a shorter locking time and a lower jitter. Additionally, temperature variation is attenuated with the temperature compensation in the charge pump current design. The proposed PLL has been fabricated in a kind of DSP chip based on a 0.35 μm CMOS process. Comparing the characteristics with the classical PLL, the proposed PLL shows that it can reduce the locking time by 60% with a low peak-to-peak jitter of 0.3% at a wide operation temperature range.

  2. Process Design and Evaluation for Chemicals Based on Renewable Resources

    DEFF Research Database (Denmark)

    Fu, Wenjing

    One of the key steps in process design is choosing between alternative technologies, especially for processes producing bulk and commodity chemicals. Recently, driven by the increasing oil prices and diminishing reserves, the production of bulk and commodity chemicals from renewable feedstocks has...... development of chemicals based on renewable feedstocks. As an example, this thesis especially focuses on applying the methodology in process design and evaluation of the synthesis of 5-hydroxymethylfurfural (HMF) from the renewable feedstock glucose/fructose. The selected example is part of the chemoenzymatic...... gained considerable interest. Renewable feedstocks usually cannot be converted into fuels and chemicals with existing process facilities due to the molecular functionality and variety of the most common renewable feedstock (biomass). Therefore new types of catalytic methods as well as new types...

  3. Chemical and structural effects of base modifications in messenger RNA

    Science.gov (United States)

    Harcourt, Emily M.; Kietrys, Anna M.; Kool, Eric T.

    2017-01-01

    A growing number of nucleobase modifications in messenger RNA have been revealed through advances in detection and RNA sequencing. Although some of the biochemical pathways that involve modified bases have been identified, research into the world of RNA modification -- the epitranscriptome -- is still in an early phase. A variety of chemical tools are being used to characterize base modifications, and the structural effects of known base modifications on RNA pairing, thermodynamics and folding are being determined in relation to their putative biological roles.

  4. An open-loop RFOG based on harmonic division technique to suppress LD's intensity modulation noise

    Science.gov (United States)

    Ying, Diqing; Wang, Zeyu; Mao, Jianmin; Jin, Zhonghe

    2016-11-01

    A harmonic division technique is proposed for an open-loop resonator fiber optic gyro (RFOG) to suppress semiconductor laser diode's (LD's) intensity modulation noise. The theoretical study indicates the RFOG with this technique is immune to the intensity noise. The simulation and experimental results show this technique would lead to a diminished linear region, which still could be acceptable for an RFOG applied to low rotation rate detection. The tests for the gyro output signal are carried out with/without noise suppressing methods, including the harmonic division technique and previously proposed signal compensation technique. With the harmonic division technique at the rotation rate of 10 deg/s, the stability of gyro output signal is improved from 1.07 deg/s to 0.0361 deg/s, whose noise suppressing ratio is more than 3 times as that of the signal compensation technique. And especially, a 3.12 deg/s signal jump is significantly removed with the harmonic division technique; in contrast, a residual 0.36 deg/s signal jump still exists with the signal compensation technique. It is concluded the harmonic division technique does work in intensity noise suppressing under dynamic condition, and it is superior to the signal compensation technique.

  5. A new planar broadband antenna based on meandered line loops for portable wireless communication devices

    Science.gov (United States)

    Alibakhshi-Kenari, Mohammad; Naser-Moghadasi, Mohammad; Sadeghzadeh, R. A.; Virdee, Bal S.; Limiti, Ernesto

    2016-07-01

    This article presents the design of a novel planar antenna structure comprising two pairs of interconnected meandered line loops that are grounded to a truncated T-shaped ground plane through two via holes. The T-shaped ground plane is used as a reflector to enhance the performance of the antenna. The resulting antenna is compact occupying an area of 38.5 × 36.6 mm2 (0.070λo × 0.067λo), where free-space wavelength is 550 MHz. The antenna radiates omnidirectionally in the E plane across its operational bandwidth (550 MHz to 3.85 GHz) with peak gain and efficiency of 5.5 dBi and 90.1%, respectively, at 2.35 GHz and reflection coefficient better than -10 dB. These characteristics make the antenna suitable for numerous applications, in particular, JCDMA, UHF RFID, GSM 900, GPS, KPCS, DCS, IMT-2000, WiMAX, WiFi, and Bluetooth.

  6. Power Hardware-in-the-Loop-Based Anti-Islanding Evaluation and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Schoder, Karl [Florida State Univ., Tallahassee, FL (United States). Ceter for Advanced Power Systems (CAPS); Langston, James [Florida State Univ., Tallahassee, FL (United States). Ceter for Advanced Power Systems (CAPS); Hauer, John [Florida State Univ., Tallahassee, FL (United States). Ceter for Advanced Power Systems (CAPS); Bogdan, Ferenc [Florida State Univ., Tallahassee, FL (United States). Ceter for Advanced Power Systems (CAPS); Steurer, Michael [Florida State Univ., Tallahassee, FL (United States). Ceter for Advanced Power Systems (CAPS); Mather, Barry [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The National Renewable Energy Laboratory (NREL) teamed with Southern California Edison (SCE), Clean Power Research (CPR), Quanta Technology (QT), and Electrical Distribution Design (EDD) to conduct a U.S. Department of Energy (DOE) and California Public Utility Commission (CPUC) California Solar Initiative (CSI)-funded research project investigating the impacts of integrating high-penetration levels of photovoltaics (PV) onto the California distribution grid. One topic researched in the context of high-penetration PV integration onto the distribution system is the ability of PV inverters to (1) detect islanding conditions (i.e., when the distribution system to which the PV inverter is connected becomes disconnected from the utility power connection) and (2) disconnect from the islanded system within the time specified in the performance specifications outlined in IEEE Standard 1547. This condition may cause damage to other connected equipment due to insufficient power quality (e.g., over-and under-voltages) and may also be a safety hazard to personnel that may be working on feeder sections to restore service. NREL teamed with the Florida State University (FSU) Center for Advanced Power Systems (CAPS) to investigate a new way of testing PV inverters for IEEE Standard 1547 unintentional islanding performance specifications using power hardware-in-loop (PHIL) laboratory testing techniques.

  7. Very-low speed control of PMSM based on EKF estimation with closed loop optimized parameters.

    Science.gov (United States)

    Xu, Dong; Zhang, Shaoguang; Liu, Jingmeng

    2013-11-01

    When calculating the speed from the position of permanent magnet synchronous motor (PMSM), the accuracy and real-time are limited by the precision of the sensor. This problem causes crawling and jitter at very-low speed. Using the angle from the position sensor, an extended Kalman filter (EKF) designed in dq-coordinate is presented to solve this problem. The usage of position sensor simplifies the model and improves the accuracy of speed estimation. Specially, a closed loop optimal (CLO) method is devised to overcome the difficulty to adjust the parameters of the EKF. The EKF is the feedback link of speed control, CLO method is derived from the perspective of the speed step response to optimize the measurement covariance matrix and the system covariance matrix of EKF. Simulation and experimental results, comparing the low-speed performance of the EKF and sensor feedback methods, prove the effectiveness of the method to adjust the parameters of EKF and the advantages in eliminating the low speed jitter.

  8. Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors.

    Science.gov (United States)

    Lai, Rebecca Y; Walker, Bryce; Stormberg, Kent; Zaitouna, Anita J; Yang, Weiwei

    2013-12-15

    Here we present a summary of the sensor performance of the stem-loop probe (SLP) and linear probe (LP) electrochemical DNA sensors when interrogated using alternating current voltammetry (ACV), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). Specifically, we identified one critical parameter for each voltammetric technique that can be adjusted for optimal sensor performance. Overall, the SLP sensor displayed good sensor performance (i.e., 60+% signal attenuation in the presence of the target) over a wider range of experimental conditions when compared to the LP sensor. When used with ACV, the optimal frequency range was found to be between 5 and 5000 Hz, larger than the 5-100 Hz range observed with the LP sensor. A similar trend was observed for the two sensors in CV; the LP sensor was operational only at scan rates between 30 and 100 V/s, whereas the SLP sensor performed well at scan rates between 1 and 1000 V/s. Unlike ACV and CV, DPV has demonstrated to be a more versatile sensor interrogation technique for this class of sensors. Despite the minor differences in total signal attenuation upon hybridization to the target DNA, both SLP and LP sensors performed optimally under most pulse widths used in this study. More importantly, when used with longer pulse widths, both sensors showed "signal-on" behavior, which is generally more desirable for sensor applications.

  9. Variable Sampling Composite Observer Based Frequency Locked Loop and its Application in Grid Connected System

    Directory of Open Access Journals (Sweden)

    ARUN, K.

    2016-05-01

    Full Text Available A modified digital signal processing procedure is described for the on-line estimation of DC, fundamental and harmonics of periodic signal. A frequency locked loop (FLL incorporated within the parallel structure of observers is proposed to accommodate a wide range of frequency drift. The error in frequency generated under drifting frequencies has been used for changing the sampling frequency of the composite observer, so that the number of samples per cycle of the periodic waveform remains constant. A standard coupled oscillator with automatic gain control is used as numerically controlled oscillator (NCO to generate the enabling pulses for the digital observer. The NCO gives an integer multiple of the fundamental frequency making it suitable for power quality applications. Another observer with DC and second harmonic blocks in the feedback path act as filter and reduces the double frequency content. A systematic study of the FLL is done and a method has been proposed to design the controller. The performance of FLL is validated through simulation and experimental studies. To illustrate applications of the new FLL, estimation of individual harmonics from nonlinear load and the design of a variable sampling resonant controller, for a single phase grid-connected inverter have been presented.

  10. Spatiotemporal dynamics of a digital phase-locked loop based coupled map lattice system

    Science.gov (United States)

    Banerjee, Tanmoy; Paul, Bishwajit; Sarkar, B. C.

    2014-03-01

    We explore the spatiotemporal dynamics of a coupled map lattice (CML) system, which is realized with a one dimensional array of locally coupled digital phase-locked loops (DPLLs). DPLL is a nonlinear feedback-controlled system widely used as an important building block of electronic communication systems. We derive the phase-error equation of the spatially extended system of coupled DPLLs, which resembles a form of the equation of a CML system. We carry out stability analysis for the synchronized homogeneous solutions using the circulant matrix formalism. It is shown through extensive numerical simulations that with the variation of nonlinearity parameter and coupling strength the system shows transitions among several generic features of spatiotemporal dynamics, viz., synchronized fixed point solution, frozen random pattern, pattern selection, spatiotemporal intermittency, and fully developed spatiotemporal chaos. We quantify the spatiotemporal dynamics using quantitative measures like average quadratic deviation and spatial correlation function. We emphasize that instead of using an idealized model of CML, which is usually employed to observe the spatiotemporal behaviors, we consider a real world physical system and establish the existence of spatiotemporal chaos and other patterns in this system. We also discuss the importance of the present study in engineering application like removal of clock-skew in parallel processors.

  11. Structural and Chemical Diversity of Tl-Based Cuprate Superconductors

    Institute of Scientific and Technical Information of China (English)

    信赢

    2003-01-01

    The Tl-based cuprate superconductor family is the largest family in crystal structure and chemical composition among all high Tc cuprate superconductors. The Tl family can be divided into two sub-families, the Tl single layer family and the Tl double layer family, based on their crystal structural characteristics. The Tl single layer family is an ideal material for investigating the evolution of crystalline formation, charge carrier density, chemical composition, transport properties, superconductivity and their relationships. The Tl family contains almostall possible crystal structures discovered in high-Tc cuprate superconductors. Tl cuprate superconductors are of great importance not only in studying high-temperature superconductivity but also in commercial applications.

  12. Adaptive optics in nonlinear microscopy implemented with open-loop control and EMCCD-based Shack-Hartmann wavefront sensor

    Science.gov (United States)

    Sun, Wei

    Nonlinear microscopy, with its unique advantages over conventional confocal fluorescence microscopy, has been widely adopted to study biological processes at the cellular level. However, like all other high-resolution optical imaging techniques, nonlinear microscopy suffers from focal degradation due to optical aberrations in the sample as a result of refractive index mismatch. Optical aberrations distort the wavefront of the excitation beam, causing the focal spot to be larger than the diffraction limit. Since the fluorescence efficiency scales nonlinearly with the profile of the focusing excitation beam, aberrations further degrade the image brightness in addition to resolution. In this dissertation I describe the design, characterization and experimentation of an adaptive optics (AO) nonlinear laser scanning microscope implemented with open-loop control and an EMCCD-based Shack-Hartmann wavefront sensor (EMCCD SHWFS) for aberration compensation. Adaptive optics (AO), originally designed for ground-based astronomical observatories to correct for the aberrations from atmospheric turbulence while imaging distant stars and planets, has benefited many biomedical imaging platforms. We integrated a microelectromechanical system (MEMS) deformable mirror (DM) into our nonlinear laser scanning microscope. With an accurate open-loop control mechanism, which predicts the control voltages and generates a prescribed surface shape on the MEMS DM, known aberrations in the system can be compensated for with this computationally simple and inherently fast method. The use of a nonlinear guide star imbedded within the sample can reflect the sample aberration. However, the low level of nonlinear fluorescence signal is usually detected by photomultiplier tubes (PMT) and is below the sensitivity of a conventional charge-coupled device (CCD) based Shack-Hartmann wavefront sensor. This dissertation also describes the design of an EMCCD SHWFS to measure the wavefront distortion from the

  13. Detecting Chemically Modified DNA Bases Using Surface Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Barhoumi, Aoune; Halas, Naomi J

    2011-12-15

    Post-translational modifications of DNA- changes in the chemical structure of individual bases that occur without changes in the DNA sequence- are known to alter gene expression. They are believed to result in frequently deleterious phenotypic changes, such as cancer. Methylation of adenine, methylation and hydroxymethylation of cytosine, and guanine oxidation are the primary DNA base modifications identified to date. Here we show it is possible to use surface enhanced Raman spectroscopy (SERS) to detect these primary DNA base modifications. SERS detection of modified DNA bases is label-free and requires minimal additional sample preparation, reducing the possibility of additional chemical modifications induced prior to measurement. This approach shows the feasibility of DNA base modification assessment as a potentially routine analysis that may be further developed for clinical diagnostics.

  14. [Study on the axial strain sensor of birefringence photonic crystal fiber loop mirror based on the absolute integral of the monitoring peak].

    Science.gov (United States)

    Jiang, Ying; Zeng, Jie; Liang, Da-Kai; Wang, Xue-Liang; Ni, Xiao-Yu; Zhang, Xiao-Yan; Li, Ji-Feng; Luo, Wen-Yong

    2013-12-01

    In the present paper, the theoretical expression of the wavelength change and the axial strain of birefringence fiber loop mirror is developed. The theoretical result shows that the axial strain sensitivity of birefringence photonic crystal fiber loop mirror is much lower than conventional birefringence fiber loop mirror. It is difficult to measure the axial strain by monitoring the wavelength change of birefringence photonic crystal fiber loop mirror, and it is easy to cause the measurement error because the output spectrum is not perfectly smooth. The different strain spectrum of birefringence photonic crystal fiber loop mirror was measured experimentally by an optical spectrum analyzer. The measured spectrum was analysed. The results show that the absolute integral of the monitoring peak decreases with increasing strain and the absolute integral is linear versus strain. Based on the above results, it is proposed that the axial strain can be measured by monitoring the absolute integral of the monitoring peak in this paper. The absolute integral of the monitoring peak is a comprehensive index which can indicate the light intensity of different wavelength. This method of monitoring the absolute integral of the monitoring peak to measure the axial strain can not only overcome the difficulty of monitoring the wavelength change of birefringence photonic crystal fiber loop mirror, but also reduce the measurement error caused by the unsmooth output spectrum.

  15. THE DESIGN OF AN ALL-DIGITAL PHASE-LOCKED LOOP WITH LOW JITTER BASED ON ISF ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Deng Xiaoying; Yang Jun; Shi Longxing; Chen Xin

    2008-01-01

    A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed.The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis,an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.8V supply voltage,occupies 0.046mm2 of on-chip area. According to the measured results,the ADPLL can operate from 108MHz to 304MHz,and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.

  16. Towards closed-loop deep brain stimulation: decision tree-based essential tremor patient's state classifier and tremor reappearance predictor.

    Science.gov (United States)

    Shukla, Pitamber; Basu, Ishita; Tuninetti, Daniela

    2014-01-01

    Deep Brain Stimulation (DBS) is a surgical procedure to treat some progressive neurological movement disorders, such as Essential Tremor (ET), in an advanced stage. Current FDA-approved DBS systems operate open-loop, i.e., their parameters are unchanged over time. This work develops a Decision Tree (DT) based algorithm that, by using non-invasively measured surface EMG and accelerometer signals as inputs during DBS-OFF periods, classifies the ET patient's state and then predicts when tremor is about to reappear, at which point DBS is turned ON again for a fixed amount of time. The proposed algorithm achieves an overall accuracy of 93.3% and sensitivity of 97.4%, along with 2.9% false alarm rate. Also, the ratio between predicted tremor delay and the actual detected tremor delay is about 0.93, indicating that tremor prediction is very close to the instant where tremor actually reappeared.

  17. A novel fiber-laser-based fiber Bragg grating strain sensor with high-birefringence Sagnac fiber loop mirror

    Institute of Scientific and Technical Information of China (English)

    Ou Xu; Shaohua Lu; Suchun Feng; Shuisheng Jian

    2008-01-01

    A novel fiber-laser-based strain sensor is proposed and experimentally demonstrated. The laser cavity is composed of a high-birefringence Sagnac fiber loop mirror (HiBi-SFLM) and a fiher Bragg grating (FBG) which also acts as a strain-sensing element. In the linear region of the HiBi-SFI,M reflection spectrum, when the strain applied on the FBG makes the Bragg grating wavelength shift,, the laser output power changes due to reflectivity variation of the HiBi-SFLM. Experimental results show that the laser output power varies ahnost linearly with the applied strain. The measurement of the output power can be performed by a conventional photo-detector.

  18. Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter.

    Science.gov (United States)

    Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao

    2013-09-20

    A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.

  19. Correlation between the Cyclic Stress Behavior and Microstructure in 316LN based on the Analysis of Hysteresis Loops

    Institute of Scientific and Technical Information of China (English)

    CHANG Bo; ZHANG Zheng

    2014-01-01

    Total strain controlled cyclic test was performed on 316LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic (TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level.

  20. Chemical Information in Scirus and BASE (Bielefeld Academic Search Engine)

    Science.gov (United States)

    Bendig, Regina B.

    2009-01-01

    The author sought to determine to what extent the two search engines, Scirus and BASE (Bielefeld Academic Search Engines), would be useful to first-year university students as the first point of searching for chemical information. Five topics were searched and the first ten records of each search result were evaluated with regard to the type of…

  1. Durable chemical sensors based on field-effect transistors

    NARCIS (Netherlands)

    Reinhoudt, D.N.

    1995-01-01

    The design of durable chemical sensors based on field-effect transistors (FETs) is described. After modification of an ion-sensitive FET (ISFET) with a polysiloxane membrane matrix, it is possible to attach all electroactive components covalently. Preliminary results of measurements with a sodium-se

  2. The Complementarity of the Loop to the Stem in DNA Pseudoknots Gives Rise to Local TAT Base-Triplets.

    Science.gov (United States)

    Reiling-Steffensmeier, Calliste; Marky, Luis A

    2016-01-01

    Pseudoknots belong to an RNA structural motif that has significant roles in the biological function of RNA. An example is ribosomal frameshifting; in this mechanism, the formation of a local triplex changes the reading frame that allows for differences in the translation of mRNAs. In this work, we have used a combination of temperature-dependent UV spectroscopy and differential scanning calorimetry (DSC) to determine the unfolding thermodynamics of a set of DNA pseudoknots with the following sequence: d(TCTCTTnAAAAAAAAGAGAT5TTTTTTT), where "Tn" is a thymine loop with n=5 (PsK-5), 7 (PsK-7), 9 (PsK-9), or 11 (PsK-11). All four oligonucleotides form intramolecular pseudoknots, and the increase in the length of this loop yielded more stable pseudoknots due to higher transition temperatures and higher unfolding enthalpies. This indicates formation of one and three TAT/TAT stacks in PsK-9 and PsK-11, respectively. We have flipped one AT for a TA base pair in the core stem of these pseudoknots, preventing in this way the formation of these base-triplet stacks. The DSC curves of these pseudoknots yielded lower unfolding enthalpies, confirming the formation of a local triplex in PsK-9 and PsK-11. Furthermore, we have investigated the reaction of PsK-5 and PsK-9 with their partially complementary strands: directly by isothermal titration calorimetry and indirectly by creating a Hess cycle with the DSC data. Relative to the PsK-5 reaction, PsK-9 reacts with its complementary strand with less favorable free energy and enthalpy contributions; this indicates PsK-9 is more stable and more compact due to the formation of a local triplex.

  3. A computerized loop based approach for identification of isomorphism and type of mobility in planar kinematic chains

    Indian Academy of Sciences (India)

    Manoj K Lohumi; Aas Mohammad; Irshad A Khan

    2015-04-01

    Some new invariants like chain string, link identification string, loop participation of joint frequency string and loop size frequency string of simple jointed kinematic chains are presented. The first step of the proposed method is to identify all possible loops of a kinematic chain and then these new invariants are developed. A modified loop-joint approach is proposed in this work as compared to the previous work in literature where loop-link matrix is formulated to search all the loops present in a kinematic chain. A computer program has been developed for formulating loop-joint matrix of kinematic chain and its all invariants. This method takes into consideration all the loops present, associated joints and links and is able to test isomorphism among kinematic chains and their inversions and also to detect type of mobility of multi degree of freedom kinematic chains. The proposed method is successfully tested for all kinematic chains upto five independent loops having any number of degree of freedom and no counter example is found. The detailed results of 9-link, M = 2 (mobility) and 10 link, M = 3 kinematic chains are provided with five types of mobility and results are in accordance with the results published in literature. The method is also explained with the help of some complex examples and presented in this paper.

  4. Progress in chemical luminescence-based biosensors: A critical review.

    Science.gov (United States)

    Roda, Aldo; Mirasoli, Mara; Michelini, Elisa; Di Fusco, Massimo; Zangheri, Martina; Cevenini, Luca; Roda, Barbara; Simoni, Patrizia

    2016-02-15

    Biosensors are a very active research field. They have the potential to lead to low-cost, rapid, sensitive, reproducible, and miniaturized bioanalytical devices, which exploit the high binding avidity and selectivity of biospecific binding molecules together with highly sensitive detection principles. Of the optical biosensors, those based on chemical luminescence detection (including chemiluminescence, bioluminescence, electrogenerated chemiluminescence, and thermochemiluminescence) are particularly attractive, due to their high-to-signal ratio and the simplicity of the required measurement equipment. Several biosensors based on chemical luminescence have been described for quantitative, and in some cases multiplex, analysis of organic molecules (such as hormones, drugs, pollutants), proteins, and nucleic acids. These exploit a variety of miniaturized analytical formats, such as microfluidics, microarrays, paper-based analytical devices, and whole-cell biosensors. Nevertheless, despite the high analytical performances described in the literature, the field of chemical luminescence biosensors has yet to demonstrate commercial success. This review presents the main recent advances in the field and discusses the approaches, challenges, and open issues, with the aim of stimulating a broader interest in developing chemical luminescence biosensors and improving their commercial exploitation.

  5. Closed Loop Subspace Identification

    Directory of Open Access Journals (Sweden)

    Geir W. Nilsen

    2005-07-01

    Full Text Available A new three step closed loop subspace identifications algorithm based on an already existing algorithm and the Kalman filter properties is presented. The Kalman filter contains noise free states which implies that the states and innovation are uneorre lated. The idea is that a Kalman filter found by a good subspace identification algorithm will give an output which is sufficiently uncorrelated with the noise on the output of the actual process. Using feedback from the output of the estimated Kalman filter in the closed loop system a subspace identification algorithm can be used to estimate an unbiased model.

  6. Comparing model-based adaptive LMS filters and a model-free hysteresis loop analysis method for structural health monitoring

    Science.gov (United States)

    Zhou, Cong; Chase, J. Geoffrey; Rodgers, Geoffrey W.; Xu, Chao

    2017-02-01

    The model-free hysteresis loop analysis (HLA) method for structural health monitoring (SHM) has significant advantages over the traditional model-based SHM methods that require a suitable baseline model to represent the actual system response. This paper provides a unique validation against both an experimental reinforced concrete (RC) building and a calibrated numerical model to delineate the capability of the model-free HLA method and the adaptive least mean squares (LMS) model-based method in detecting, localizing and quantifying damage that may not be visible, observable in overall structural response. Results clearly show the model-free HLA method is capable of adapting to changes in how structures transfer load or demand across structural elements over time and multiple events of different size. However, the adaptive LMS model-based method presented an image of greater spread of lesser damage over time and story when the baseline model is not well defined. Finally, the two algorithms are tested over a simpler hysteretic behaviour typical steel structure to quantify the impact of model mismatch between the baseline model used for identification and the actual response. The overall results highlight the need for model-based methods to have an appropriate model that can capture the observed response, in order to yield accurate results, even in small events where the structure remains linear.

  7. A Systematic Methodology for Design of Emulsion Based Chemical Products

    DEFF Research Database (Denmark)

    Mattei, Michele; Kontogeorgis, Georgios; Gani, Rafiqul

    2012-01-01

    A systematic methodology for emulsion based chemical product design is presented. The methodology employs a model-based product synthesis/design stage and a modelexperiment based further refinement and/or validation stage. In this paper only the first stage is presented. The methodology employs...... a hierarchical approach starting with the identification of the needs to be satisfied by the emulsified product and then building up the formulation by adding one-by-one the different classes of chemicals. A structured database together with dedicated property prediction models and evaluation criteria...... are employed to obtain a list of formulations that satisfy constraints representing the desired needs (target properties). Through a conceptual case study dealing with the design of a sunscreen lotion, the application of this new methodology is illustrated....

  8. Microstructural and Chemical Rejuvenation of a Ni-Based Superalloy

    Science.gov (United States)

    Yao, Zhiqi; Degnan, Craig C.; Jepson, Mark A. E.; Thomson, Rachel C.

    2016-10-01

    The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime morphology, size, and distribution after high-temperature degradation and subsequent rejuvenation heat treatments has been examined using field emission gun scanning electron microscopy and transmission electron microscopy. In this paper, it is shown that there are significant differences in the size of the `channels' between gamma prime particles, the degree of rafting, and the size of tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical analysis has been carried out to compare rejuvenated and pre-service samples after the same subsequent degradation procedure. The results indicate that although the microstructures of pre-service and rejuvenated samples are similar, chemical differences are more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements was not completely eliminated through the applied rejuvenation heat treatment. A number of modified rejuvenation heat treatment trials were carried out to reduce the chemical segregation prior to creep testing. The creep test results suggest that chemical segregation has an immeasurable influence on the short-term mechanical properties under the test conditions used here, indicating that further work is required to fully understand the suitability of specific rejuvenation heat treatments and their role in the extension of component life in power plant applications.

  9. Microstructural and Chemical Rejuvenation of a Ni-Based Superalloy

    Science.gov (United States)

    Yao, Zhiqi; Degnan, Craig C.; Jepson, Mark A. E.; Thomson, Rachel C.

    2016-12-01

    The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime morphology, size, and distribution after high-temperature degradation and subsequent rejuvenation heat treatments has been examined using field emission gun scanning electron microscopy and transmission electron microscopy. In this paper, it is shown that there are significant differences in the size of the `channels' between gamma prime particles, the degree of rafting, and the size of tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical analysis has been carried out to compare rejuvenated and pre-service samples after the same subsequent degradation procedure. The results indicate that although the microstructures of pre-service and rejuvenated samples are similar, chemical differences are more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements was not completely eliminated through the applied rejuvenation heat treatment. A number of modified rejuvenation heat treatment trials were carried out to reduce the chemical segregation prior to creep testing. The creep test results suggest that chemical segregation has an immeasurable influence on the short-term mechanical properties under the test conditions used here, indicating that further work is required to fully understand the suitability of specific rejuvenation heat treatments and their role in the extension of component life in power plant applications.

  10. Loop groups and noncommutative geometry

    CERN Document Server

    Carpi, Sebastiano

    2015-01-01

    We describe the representation theory of loop groups in terms of K-theory and noncommutative geometry. This is done by constructing suitable spectral triples associated with the level l projective unitary positive-energy representations of any given loop group LG. The construction is based on certain supersymmetric conformal field theory models associated with LG.

  11. Closed Loop Control of Active Damped Small DC-link Capacitor Based Drive

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Munk-Nielsen, Stig

    2010-01-01

    A new method of active damping for small DC-link capacitor based drive system is implemented in stator flux oriented control for an induction machine. The active damping technique is based on a detailed model of the drive system which leads to a very simple implementation. The active damping can...

  12. Reduction of Timing Jitter by Clock Recovery based on an Optical Phase-Locked Loop

    DEFF Research Database (Denmark)

    Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo;

    2006-01-01

    We numerically investigate the phase noise requirements for combined electrical/optical local oscillators in a PLL-based clock recovery. Suggestions for reducing the timing jitter are given.......We numerically investigate the phase noise requirements for combined electrical/optical local oscillators in a PLL-based clock recovery. Suggestions for reducing the timing jitter are given....

  13. Loop-loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis.

    Science.gov (United States)

    Zaccardi, Margot J; O'Rourke, Kathleen F; Yezdimer, Eric M; Loggia, Laura J; Woldt, Svenja; Boehr, David D

    2014-03-01

    Substrate binding, product release, and likely chemical catalysis in the tryptophan biosynthetic enzyme indole-3-glycerol phosphate synthase (IGPS) are dependent on the structural dynamics of the β1α1 active-site loop. Statistical coupling analysis and molecular dynamic simulations had previously indicated that covarying residues in the β1α1 and β2α2 loops, corresponding to Arg54 and Asn90, respectively, in the Sulfolobus sulfataricus enzyme (ssIGPS), are likely important for coordinating functional motions of these loops. To test this hypothesis, we characterized site mutants at these positions for changes in catalytic function, protein stability and structural dynamics for the thermophilic ssIGPS enzyme. Although there were only modest changes in the overall steady-state kinetic parameters, solvent viscosity and solvent deuterium kinetic isotope effects indicated that these amino acid substitutions change the identity of the rate-determining step across multiple temperatures. Surprisingly, the N90A substitution had a dramatic effect on the general acid/base catalysis of the dehydration step, as indicated by the loss of the descending limb in the pH rate profile, which we had previously assigned to Lys53 on the β1α1 loop. These changes in enzyme function are accompanied with a quenching of ps-ns and µs-ms timescale motions in the β1α1 loop as measured by nuclear magnetic resonance studies. Altogether, our studies provide structural, dynamic and functional rationales for the coevolution of residues on the β1α1 and β2α2 loops, and highlight the multiple roles that the β1α1 loop plays in IGPS catalysis. Thus, substitution of covarying residues in the active-site β1α1 and β2α2 loops of indole-3-glycerol phosphate synthase results in functional, structural, and dynamic changes, highlighting the multiple roles that the β1α1 loop plays in enzyme catalysis and the importance of regulating the structural dynamics of this loop through noncovalent

  14. Interdependent chemical-electrochemical steps in retrometabolism-based drug and safer chemical design.

    Science.gov (United States)

    Tókés, B; Suciu, G; Nagy, G

    2002-02-01

    An extension of the retrometabolic based drug (chemical) design concept, specifically the soft drug approach, to the family of nitrone compounds is presented. Nitrones oppose oxidative challenges by virtue of their ability to very rapidly trap free radical species that are more stable and biochemically less harmful than the original molecular fragments. Moreover, the spin adducts may undergo further transformations including reaction with a second radical and decomposition (hydrolysis) to hydroxylamines and carbonyl compounds. Nitrones and their spin adducts may generate nitric oxide in vivo, which, like nitrones themselves, exerts a number of diverse activities in phylogenetically distant species as well as opposing effects in related biological systems. It was described as a major messenger in the cardiovascular, immune, and nervous systems, in which it plays regulatory, signaling, cytoprotective, and cytotoxic effects. Nitrones play an important role in the synthesis of drugs belonging to chemically and pharmacologically very different classes. A combined chemical-electrochemical synthesis of nitrones has been elaborated. These compounds may be obtained from aldehydes or ketones and N-substituted hydroxylamines. These reactions were performed directly, in situ in the electrochemical cell, where phenylhydroxylamine obtained by electroreduction of nitrobenzene derivatives reacts with the carbonyl compound introduced in the cell. The kinetic and thermodynamic parameters of the processes were determined by analyzing the adequate polarographic curves. Differences between purely chemical and mixed chemical-electrochemical methods are discussed. Analysis of the experimental data permits optimization of the investigated process from a preparative point of view. Effects of structural factors were systematically evaluated. The proposed method may be useful for combinatorial chemistry as well.

  15. Problem-based learning biotechnology courses in chemical engineering.

    Science.gov (United States)

    Glatz, Charles E; Gonzalez, Ramon; Huba, Mary E; Mallapragada, Surya K; Narasimhan, Balaji; Reilly, Peter J; Saunders, Kevin P; Shanks, Jacqueline V

    2006-01-01

    We have developed a series of upper undergraduate/graduate lecture and laboratory courses on biotechnological topics to supplement existing biochemical engineering, bioseparations, and biomedical engineering lecture courses. The laboratory courses are based on problem-based learning techniques, featuring two- and three-person teams, journaling, and performance rubrics for guidance and assessment. Participants initially have found them to be difficult, since they had little experience with problem-based learning. To increase enrollment, we are combining the laboratory courses into 2-credit groupings and allowing students to substitute one of them for the second of our 2-credit chemical engineering unit operations laboratory courses.

  16. Estimation of complex permittivity using loop antenna

    DEFF Research Database (Denmark)

    Lenler-Eriksen, Hans-Rudolph; Meincke, Peter

    2004-01-01

    A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna.......A method for estimating the complex permittivity of materials in the vicinity of a loop antenna is proposed. The method is based on comparing measured and numerically calculated input admittances for the loop antenna....

  17. Closed-loop Supply Chain Information System Based on Service-oriented Architecture%基于SOA的闭环供应链信息系统研究

    Institute of Scientific and Technical Information of China (English)

    计三有; 仇艳丽

    2011-01-01

    深入分析了闭环供应链中信息管理面临的挑战和实现要求,介绍了面向服务的体系架构(SOA)的结构模型与技术,进而把SOA思想引入闭环供应链信息系统实现中,提出了一种新的闭环供应链信息系统架构方案,建立了基于SOA的闭环供应链信息系统模型,并详细分析了模型中各组成部分在整个系统中的作用,研究结果表明,该系统能够较好地解决闭环供应链信息集成的复杂性等问题.%Challenge and realization requirements of closed - loop supply chain information management were discussed. Structural model and technology of service - oriented architecture ( SOA) were introduced. The SOA idea was introduced to realize the closed - loop supply chain information system. A new architecture design for closed - loop supply chain information system was proposed. And SOA - based model for closed - loop supply chain information system was put forward. The function of each part in the model was emphatically analyzed. Research results show that the system can solve the complex problem of the closed - loop supply chain information system integration.

  18. CaMn0.875Ti0.125O3 as oxygen carrier for chemical-looping combustion with oxygen uncoupling (CLOU)—Experiments in a continuously operating fluidized-bed reactor system

    KAUST Repository

    Rydén, Magnus

    2011-03-01

    Particles of the perovskite material CaMn0.875Ti0.125O3 has been examined as oxygen carrier for chemical-looping with oxygen uncoupling, and for chemical-looping combustion of natural gas, by 70h of experiments in a circulating fluidized-bed reactor system. For the oxygen uncoupling experiments, it was found that the particles released O2 in gas phase at temperatures above 720°C when the fuel reactor was fluidized with CO2. The effect increased with increased temperature, and with the O2 partial pressure in the air reactor. At 950°C, the O2 concentration in the outlet from the fuel reactor was in the order of 4.0vol%, if the particles were oxidized in air. For the chemical-looping combustion experiments the combustion efficiency with standard process parameters was in the order of 95% at 950°C, using 1000kg oxygen carrier per MW natural gas, of which about 30% was located in the fuel reactor. Reducing the fuel flow so that 1900kg oxygen carrier per MW natural gas was used improved the combustion efficiency to roughly 99.8%. The particles retained their physical properties, reactivity with CH4 and ability to release gas-phase O2 reasonably well throughout the testing period and there were no problems with the fluidization or formation of solid carbon in the reactor. X-ray diffraction showed that the particles underwent changes in their phase composition though. © 2010 Elsevier Ltd.

  19. Agent-Based Chemical Plume Tracing Using Fluid Dynamics

    Science.gov (United States)

    Zarzhitsky, Dimitri; Spears, Diana; Thayer, David; Spears, William

    2004-01-01

    This paper presents a rigorous evaluation of a novel, distributed chemical plume tracing algorithm. The algorithm is a combination of the best aspects of the two most popular predecessors for this task. Furthermore, it is based on solid, formal principles from the field of fluid mechanics. The algorithm is applied by a network of mobile sensing agents (e.g., robots or micro-air vehicles) that sense the ambient fluid velocity and chemical concentration, and calculate derivatives. The algorithm drives the robotic network to the source of the toxic plume, where measures can be taken to disable the source emitter. This work is part of a much larger effort in research and development of a physics-based approach to developing networks of mobile sensing agents for monitoring, tracking, reporting and responding to hazardous conditions.

  20. Design and Simulink Simulation of Frequency Synthesizer Based on Phase-locked Loop%锁相环频率合成器设计与Simulink仿真

    Institute of Scientific and Technical Information of China (English)

    雷能芳

    2011-01-01

    介绍了锁相环频率合成器的的组成及工作原理,并基于Simulink平台对双环锁相4倍频频率合成器进行了模型设计,仿真结果表明了设计的正确性及可行性.%The principle and the composition of Frequency Synthesizer Based on Phase-locked Loop is introduced, and the Simulink module of Fourth Frequency-Multiply Frequency synthesilzer with Double Phase-Lock Loops is designed. The correctness and feasibility of this design is verified by simulation result.

  1. Moving Average Filter-Based Phase-Locked Loops: Performance Analysis and Design Guidelines

    DEFF Research Database (Denmark)

    Golestan, Saeed; Ramezani, Malek; Guerrero, Josep M.

    2014-01-01

    -integral (PI) type loopfilter (LF) in the PLL, and the other for the case of using a proportional-integral-derivative (PID) type LF. Finally, the paper compares the performance of a well-tuned MAF-based PLL when using the PI-type LF with the results of using the PID-type LF, which provides useful insights......, the PLL block diagram description is shown, the advantages and limitations are briefly discussed, and the tuning approach (if available) is evaluated. The paper then presents two systematic methods to design the control parameters of a typical MAF-based PLL: one for the case of using a proportional...

  2. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  3. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    OpenAIRE

    Zhenzhong Guo; Anca Florea; Mengjuan Jiang; Yong Mei; Weiying Zhang; Aidong Zhang; Robert Săndulescu; Nicole Jaffrezic-Renault

    2016-01-01

    The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF) for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclu...

  4. Loop electrosurgical excision of the cervix and subsequent risk for spontaneous preterm delivery: a population-based study of singleton deliveries during a 9-year period

    DEFF Research Database (Denmark)

    Noehr, Bugge; Jensen, Allan; Frederiksen, Kirsten;

    2009-01-01

    OBJECTIVE: Our aim was to assess the association between loop electrosurgical excision procedure (LEEP) and the subsequent risk for spontaneous preterm delivery, with the use of population-based data from various nationwide registries. STUDY DESIGN: The study population consisted of all singleton...

  5. The Role of Attrition and Solids Recovery in a Chemical Looping Combustion Process; Effet de l'attrition et de la recuperation des particules dans le procede de combustion en boucle chimique

    Energy Technology Data Exchange (ETDEWEB)

    Kramp, M.; Thon, A.; Hartge, E.U.; Heinrich, S.; Werther, J. [Institute of Solids Process Engineering and Particle Technology, Hamburg University of Technology, 21071 Hamburg (Germany)

    2011-03-15

    In the present work, the steady-state behavior of a Chemical Looping Combustion process of interconnected fluidized bed reactors is simulated. The simulations have been carried out in two different scales, 50 kWth and 100 MWth. Attrition model derived from small scale laboratory experiments has been employed for the prediction of the process behavior in terms of attrition and Oxygen Carrier loss. Information on Oxygen Carrier characteristics and reaction kinetics were taken from literature. Realistic circulation mass flows of Oxygen Carrier particles are obtained and Oxygen Carrier losses are quantified. The large scale process looses significantly more Oxygen Carrier than the small scale process based on the same amount of thermal energy produced. Incomplete conversion in the air reactor could be identified as a critical point. Another issue is the fuel gas bypassing the Oxygen Carrier particles through bubbles in the large scale process which leads to lowered fuel conversions. The simulations indicate that a similar performance of a pilot scale and a large scale process is not guaranteed due to the scale-up effect on fluid dynamics. Furthermore, the simulations allow an assessment of the influence of the quality of the solids recovery system on the Oxygen Carrier loss. The distribution of the losses between possible origins is investigated and different changes in the solids recovery system are discussed regarding their potential to decrease the Oxygen Carrier loss. For example, the addition of a second-stage cyclone after the air reactor of the large scale process reduces the Oxygen Carrier loss significantly. (authors)

  6. Comparison of nucleic acid sequence-based amplification and loop-mediated isothermal amplification for diagnosis of human African trypanosomiasis.

    Science.gov (United States)

    Mugasa, Claire M; Katiti, Diana; Boobo, Alex; Lubega, George W; Schallig, Henk D F H; Matovu, Enock

    2014-02-01

    Diagnosis of human African trypanosomiasis (HAT) using molecular tests should ideally achieve high sensitivity without compromising specificity. This study compared 2 simplified tests, nucleic acid sequence-based amplification (NASBA) combined with oligochromatography (OC) and loop-mediated isothermal amplification (LAMP), executed on 181 blood samples from 65 Trypanosoma brucei gambiense HAT patients, 86 controls, and 30 serological suspects from Uganda. Basing on the composite reference standard, the diagnostic sensitivity and specificity of NASBA were 93.9% (95% confidence interval [CI] = 84.9-98.3%) and 100% (95% CI = 94.9-100%), respectively. The same parameters for LAMP were 76.9% (95% CI = 64.8-86.5%) and 100% (95% CI = 91.6-100%), respectively. The level of agreement between LAMP and microscopy was good with a kappa (κ) value of 79.2% (95% CI = 69.4-88.9%), while that of NASBA-OC/microscopy was very good (κ value 94.6%; 95% CI = 89.3-99.8%). The sensitivity of NASBA-OC was significantly higher than that of LAMP (Z = 2.723; P = 0.007). These tests have potential application to HAT surveillance.

  7. Model-based rational feedback controller design for closed-loop deep brain stimulation of Parkinson's disease

    Science.gov (United States)

    Gorzelic, P.; Schiff, S. J.; Sinha, A.

    2013-04-01

    Objective. To explore the use of classical feedback control methods to achieve an improved deep brain stimulation (DBS) algorithm for application to Parkinson's disease (PD). Approach. A computational model of PD dynamics was employed to develop model-based rational feedback controller design. The restoration of thalamocortical relay capabilities to patients suffering from PD is formulated as a feedback control problem with the DBS waveform serving as the control input. Two high-level control strategies are tested: one that is driven by an online estimate of thalamic reliability, and another that acts to eliminate substantial decreases in the inhibition from the globus pallidus interna (GPi) to the thalamus. Control laws inspired by traditional proportional-integral-derivative (PID) methodology are prescribed for each strategy and simulated on this computational model of the basal ganglia network. Main Results. For control based upon thalamic reliability, a strategy of frequency proportional control with proportional bias delivered the optimal control achieved for a given energy expenditure. In comparison, control based upon synaptic inhibitory output from the GPi performed very well in comparison with those of reliability-based control, with considerable further reduction in energy expenditure relative to that of open-loop DBS. The best controller performance was amplitude proportional with derivative control and integral bias, which is full PID control. We demonstrated how optimizing the three components of PID control is feasible in this setting, although the complexity of these optimization functions argues for adaptive methods in implementation. Significance. Our findings point to the potential value of model-based rational design of feedback controllers for Parkinson's disease.

  8. Linear Model-Based Predictive Control of the LHC 1.8 K Cryogenic Loop

    CERN Document Server

    Blanco-Viñuela, E; De Prada-Moraga, C

    1999-01-01

    The LHC accelerator will employ 1800 superconducting magnets (for guidance and focusing of the particle beams) in a pressurized superfluid helium bath at 1.9 K. This temperature is a severely constrained control parameter in order to avoid the transition from the superconducting to the normal state. Cryogenic processes are difficult to regulate due to their highly non-linear physical parameters (heat capacity, thermal conductance, etc.) and undesirable peculiarities like non self-regulating process, inverse response and variable dead time. To reduce the requirements on either temperature sensor or cryogenic system performance, various control strategies have been investigated on a reduced-scale LHC prototype built at CERN (String Test). Model Based Predictive Control (MBPC) is a regulation algorithm based on the explicit use of a process model to forecast the plant output over a certain prediction horizon. This predicted controlled variable is used in an on-line optimization procedure that minimizes an approp...

  9. Nanosecond Square Pulse Fiber Laser based on the Nonlinear Amplifying Loop Mirror

    Institute of Scientific and Technical Information of China (English)

    陈国梁; 顾春; 许立新; 王安廷; 明海

    2011-01-01

    We propose and demonstrate a nanosecond square pulse ytterbium doped fiber laser in the 1060 nm band. The laser is based on the figure-8 structure and has a tunable pulse bandwidth from 3 ns to beyond 100 ns, showing excellent temporal tuning ability. The experimental results show that a steady square pulse can be generated when the parameters of the cavity are chosen appropriately.%We propose and demonstrate a nanosecond square pulse ytterbium doped fiber laser in the 1060nm band.The laser is based on the figure-8 structure and has a tunable pulse bandwidth from 3ns to beyond 100ns,showing excellent temporal tuning ability.The experimental results show that a steady square pulse can be generated when the parameters of the cavity are chosen appropriately.

  10. Rule-Based Classification of Chemical Structures by Scaffold.

    Science.gov (United States)

    Schuffenhauer, Ansgar; Varin, Thibault

    2011-08-01

    Databases for small organic chemical molecules usually contain millions of structures. The screening decks of pharmaceutical companies contain more than a million of structures. Nevertheless chemical substructure searching in these databases can be performed interactively in seconds. Because of this nobody has really missed structural classification of these databases for the purpose of finding data for individual chemical substructures. However, a full deck high-throughput screen produces also activity data for more than a million of substances. How can this amount of data be analyzed? Which are the active scaffolds identified by an assays? To answer such questions systematic classifications of molecules by scaffolds are needed. In this review it is described how molecules can be hierarchically classified by their scaffolds. It is explained how such classifications can be used to identify active scaffolds in an HTS data set. Once active classes are identified, they need to be visualized in the context of related scaffolds in order to understand SAR. Consequently such visualizations are another topic of this review. In addition scaffold based diversity measures are discussed and an outlook is given about the potential impact of structural classifications on a chemically aware semantic web.

  11. Multicore Based Open Loop Motor Controller Embedded System for Permanent Magnet Direct Current Motor

    Directory of Open Access Journals (Sweden)

    K. Baskaran

    2012-01-01

    Full Text Available Problem statement: In an advanced electronics world most of the applications are developed by microcontroller based embedded system. Approach: Multicore processor based motor controller was presented to improve the processing speed of the controller and improve the efficiency of the motor by maintaining constant speed. It was based on the combination of Cortex processor (Software core and Field Programmable Gate Arrays (FPGA, Hardware core. These multicore combination were help to design efficient low power motor controller. Results: A functional design of cortex processor and FPGA in this system was completed by using Actel libero IDE and IAR embedded IDE software PWM signal was generated by the proposed processor to control the motor driver circuit. All the function modules were programmed by Very-High-Speed Integrated Circuit Hardware Description Language (VHDL. The advantage of the proposed system was optimized operational performance and low power utility. Multicore processor was used to improve the speed of execution and optimize the performance of the controller. Conclusion: Without having the architectural concept of any motor we can control it by using this method.This is an low cost low power controller and easy to use. The simulation and experiment results verified its validity.

  12. Transformation of an uncertain video search pipeline to a sketch-based visual analytics loop.

    Science.gov (United States)

    Legg, Philip A; Chung, David H S; Parry, Matthew L; Bown, Rhodri; Jones, Mark W; Griffiths, Iwan W; Chen, Min

    2013-12-01

    Traditional sketch-based image or video search systems rely on machine learning concepts as their core technology. However, in many applications, machine learning alone is impractical since videos may not be semantically annotated sufficiently, there may be a lack of suitable training data, and the search requirements of the user may frequently change for different tasks. In this work, we develop a visual analytics systems that overcomes the shortcomings of the traditional approach. We make use of a sketch-based interface to enable users to specify search requirement in a flexible manner without depending on semantic annotation. We employ active machine learning to train different analytical models for different types of search requirements. We use visualization to facilitate knowledge discovery at the different stages of visual analytics. This includes visualizing the parameter space of the trained model, visualizing the search space to support interactive browsing, visualizing candidature search results to support rapid interaction for active learning while minimizing watching videos, and visualizing aggregated information of the search results. We demonstrate the system for searching spatiotemporal attributes from sports video to identify key instances of the team and player performance.

  13. A Criterion Based on Closed-loop Pilot-aircraft Systems for Predicting Flying Qualities

    Institute of Scientific and Technical Information of China (English)

    Tan Wenqian; A.V.Efremov; Qu Xiangju

    2010-01-01

    During the process of aircraft design,the mathematical model of pilot control behavior characteristics is always used to predict aircraft flying qualities (FQ).This is one of the important methods to avoid pilot-aircraft adverse coupling.In order to study the FQ criterion based on closedloop pilotaircraft systems,first,an experimental database is built,which includes 40 aircraft dynamics configurations and the corresponding flight simulation results.Second,the mathematical pilot models with a set of different aircraft configurations are obtained by this experimental database.Then,two FQ criteria,NealSmith criterion and Moscow Aviation Institute (MAI) criterion,are analyzed.And the relationship between the FQ level evaluated by actual pilot and the parameters of closedloop pilotaircraft systems is studied.Finally,an improved criterion of aircraft FQ is built based on the above two criteria.This new criterion is further used to predict FQ for four new aircraft dynamics configurations,and the prediction results verify its accuracy and practicability.

  14. Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops

    Science.gov (United States)

    Estep, Nicholas A.; Sounas, Dimitrios L.; Soric, Jason; Alù, Andrea

    2014-12-01

    Non-reciprocal components, which are essential to many modern communication systems, are almost exclusively based on magneto-optical materials, severely limiting their applicability. A practical and inexpensive route to magnetic-free non-reciprocity could revolutionize radio-frequency and nanophotonic communication networks. Angular-momentum biasing was recently proposed as a means of realizing isolation for sound waves travelling in a rotating medium, and envisaged as a path towards compact, linear integrated non-reciprocal electromagnetic components. Inspired by this concept, here we demonstrate a subwavelength, linear radio-frequency non-reciprocal circulator free from magnetic materials and bias. The scheme is based on the parametric modulation of three identical, strongly and symmetrically coupled resonators. Their resonant frequencies are modulated by external signals with the same amplitude and a relative phase difference of 120°, imparting an effective electronic angular momentum to the system. We observe giant non-reciprocity, with up to six orders of magnitude difference in transmission for opposite directions. Furthermore, the device topology is tunable in real time, and can be directly embedded in a conventional integrated circuit.

  15. Loop-locked coherent population trapping magnetometer based on a fiber electro-optic modulator.

    Science.gov (United States)

    Hu, Yong; Feng, Y Y; Xu, Chi; Xue, H B; Sun, Li

    2014-04-01

    We have set up a coherent population trapping (CPT)-based magnetometer prototype with the D1 line of ⁸⁷Rb atoms. The dichromatic light field is derived from a fiber electro-optic modulator (FEOM) connected to an external cavity laser diode. A CPT resonance signal with a 516 Hz linewidth is observed. By feeding back the derivative of the resonance curve to the FEOM with a proportional integral controller, of which the voltage output is directly converted to the measured magnetic field intensity, the resonance peak is locked to the environmental magnetic field. The measurement data we have achieved are well matched with the data measured by a commercial fluxgate magnetometer within 2 nT, and the sensitivity is better than 8 pT/√Hz in a parallel B field.

  16. Closing the loop from continuous M-health monitoring to fuzzy logic-based optimized recommendations.

    Science.gov (United States)

    Benharref, Abdelghani; Serhani, Mohamed Adel; Nujum, Al Ramzana

    2014-01-01

    Continuous sensing of health metrics might generate a massive amount of data. Generating clinically validated recommendations, out of these data, to patients under monitoring is of prime importance to protect them from risk of falling into severe health degradation. Physicians also can be supported with automated recommendations that gain from historical data and increasing learning cycles. In this paper, we propose a Fuzzy Expert System that relies on data collected from continuous monitoring. The monitoring scheme implements preprocessing of data for better data analytics. However, data analytics implements the loopback feature in order to constantly improve fuzzy rules, knowledge base, and generated recommendations. Both techniques reduced data quantity, improved data quality and proposed recommendations. We evaluate our solution through a series of experiments and the results we have obtained proved that our fuzzy expert system combined with the intelligent monitoring and analytic techniques provide a high accuracy of collected data and valid advices.

  17. Optimizing the control system of cement milling: process modeling and controller tuning based on loop shaping procedures and process simulations

    Directory of Open Access Journals (Sweden)

    D. C. Tsamatsoulis

    2014-03-01

    Full Text Available Based on a dynamical model of the grinding process in closed circuit mills, efficient efforts have been made to optimize PID controllers of cement milling. The process simulation is combined with an autoregressive model of the errors between the actual process values and the computed ones. Long term industrial data have been used to determine the model parameters. The data include grinding of various cement types. The M - Constrained Integral Gain Optimization (MIGO loop shaping method is utilized to determine PID sets satisfying a certain robustness constraint. The maximum sensitivity is considered as such a criterion. Both dynamical parameters and PID sets constitute the inputs of a detailed simulator which involves all the main process characteristics. The simulation is applied over all the PID sets aiming to find the parameter region that provides the minimum integral of absolute error, which functions as a performance criterion. For each cement type a PID set is selected and put in operation in a closed circuit cement mill. The performance of the regulation is evaluated after a sufficient time period, concluding that the developed design combining criteria of both robustness and performance leads to PID controllers of high efficiency.

  18. Comparison and performance analysis of closed loop controlled nonlinear system connected PWM inverter based on hybrid technique

    Directory of Open Access Journals (Sweden)

    V.M. Deshmukh

    2015-05-01

    Full Text Available This paper proposed closed loop control of nonlinear system connected inverter based on the optimal neural controller (ONC. The novelty of the proposed method rests on the hybrid technique which is the combined performance of both, particle swarm optimization (PSO technique and Radial basis function neural network (RBFNN. It effectively optimizes the feasible solutions by updating the generations, by taking lesser time with greater reliability. In the proposed method, the PSO generates the dataset according to different loading conditions. The RBFNN is trained by using the target control signals along with the corresponding input load voltage error and change in error. Depending on the load variations, the RBFNN predicts the exact control signals of the inverter during the testing time. Since experimentation and comparison of such inverter models on hardware being relatively expensive, the proposed method is implemented in the MATLAB/Simulink platform and the performance has been validated through the comparison analysis with the conventional techniques. The comparison results have proved the superiority of the proposed method.

  19. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.

    Science.gov (United States)

    Duan, Ya-Bing; Ge, Chang-Yan; Zhang, Xiao-Ke; Wang, Jian-Xin; Zhou, Ming-Guo

    2014-01-01

    Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP) with hydroxynaphthol blue dye (HNB). The LAMP reaction was optimal at 63 °C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10(-3) ng µL(-1) of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10(-2) ng µL(-1)). Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2%) were confirmed as positive by LAMP, 172 (90.1%) positive by the tissue separation, while 147 (77.0%) positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables.

  20. Hardware-in-the-loop simulation technology of wide-band radar targets based on scattering center model

    Institute of Scientific and Technical Information of China (English)

    Huang Hao; Pan Minghai; Lu Zhijun

    2015-01-01

    Hardware-in-the-loop (HWIL) simulation technology can verify and evaluate the radar by simulating the radio frequency environment in an anechoic chamber. The HWIL simulation technology of wide-band radar targets can accurately generate wide-band radar target echo which stands for the radar target scattering characteristics and pulse modulation of radar transmitting sig-nal. This paper analyzes the wide-band radar target scattering properties first. Since the responses of target are composed of many separate scattering centers, the target scattering characteristic is restructured by scattering centers model. Based on the scattering centers model of wide-band radar target, the wide-band radar target echo modeling and the simulation method are discussed. The wide-band radar target echo is reconstructed in real-time by convoluting the transmitting signal to the target scattering parameters. Using the digital radio frequency memory (DRFM) system, the HWIL simulation of wide-band radar target echo with high accuracy can be actualized. A typical wide-band radar target simulation is taken to demonstrate the preferable simulation effect of the reconstruction method of wide-band radar target echo. Finally, the radar target time-domain echo and high-resolution range profile (HRRP) are given. The results show that the HWIL simulation gives a high-resolution range distribution of wide-band radar target scattering centers.

  1. Development and evaluation of a novel and rapid detection assay for Botrytis cinerea based on loop-mediated isothermal amplification.

    Directory of Open Access Journals (Sweden)

    Ya-Bing Duan

    Full Text Available Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP with hydroxynaphthol blue dye (HNB. The LAMP reaction was optimal at 63 °C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10(-3 ng µL(-1 of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10(-2 ng µL(-1. Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2% were confirmed as positive by LAMP, 172 (90.1% positive by the tissue separation, while 147 (77.0% positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables.

  2. Graphene oxide based fluorescence resonance energy transfer and loop-mediated isothermal amplification for white spot syndrome virus detection.

    Science.gov (United States)

    Waiwijit, U; Phokaratkul, D; Kampeera, J; Lomas, T; Wisitsoraat, A; Kiatpathomchai, W; Tuantranont, A

    2015-10-20

    Graphene oxide (GO) is attractived for biological or medical applications due to its unique electrical, physical, optical and biological properties. In particular, GO can adsorb DNA via π-π stacking or non-covalent interactions, leading to fluorescence quenching phenomenon applicable for bio-molecular detection. In this work, a new method for white spot syndrome virus (WSSV)-DNA detection is developed based on loop-mediated isothermal amplification (LAMP) combined with fluorescence resonance energy transfer (FRET) between GO and fluorescein isothiocyanate-labeled probe (FITC-probe). The fluorescence quenching efficiency of FITC-probe was found to increase with increasing GO concentration and reached 98.7% at a GO concentration of 50 μg/ml. The fluorescence intensity of FITC-probe was recovered after hybridization with WSSV LAMP product with an optimal hybridization time of 10 min and increased accordingly with increasing amount of LAMP products. The detection limit was estimated to be as low as 10 copies of WSSV plasmid DNA or 0.6 fg of the total DNA extracted from shrimp infected with WSSV. In addition, no cross reaction was observed with other common shrimp viral pathogens. Therefore, the GO-FRET-LAMP technique is promising for fast, sensitive and specific detection of DNAs.

  3. A sapphire fibre thermal probe based on fast Fourier transform and phase-lock loop

    Institute of Scientific and Technical Information of China (English)

    Wang Yu-Tian; Wang Dong-Sheng; Ge Wen-Qian; Cui Li-Chao

    2006-01-01

    A sapphire fibre thermal probe with Cra+ ion-doped end is developed by using the laser heated pedestal growth method. The fluorescence thermal probe offers advantages of compact structure, high performance and ability to withstand high temperature in a detection range from room temperature to 450℃. Based on the fast Fourier transform(FFT), the fluorescence lifetime is obtained from the tangent function of phase angle of the non-zeroth terms in the FFT result. This method has advantages such as quick calculation, high accuracy and immunity to the background noise. This FFT method is compared with other traditional fitting methods, indicating that the standard deviation of the FFT method is about half of that of the Prony method and about 1/6 of that of the log-fit method. And the FFT method is immune to the background noise involved in a signal. So, the FFT method is an excellent way of processing signals. In addition, a phase-lock amplifier can effectively suppress the noise.

  4. A family-based intervention targeting parents of preschool children with overweight and obesity: conceptual framework and study design of LOOPS- Lund overweight and obesity preschool study

    OpenAIRE

    Önnerfält Jenny; Erlandsson Lena-Karin; Orban Kristina; Broberg Malin; Helgason Christina; Thorngren-Jerneck Kristina

    2012-01-01

    Abstract Background As the rate of overweight among children is rising there is a need for evidence-based research that will clarify what the best interventional strategies to normalize weight development are. The overall aim of the Lund Overweight and Obesity Preschool Study (LOOPS) is to evaluate if a family-based intervention, targeting parents of preschool children with overweight and obesity, has a long-term positive effect on weight development of the children. The hypothesis is that pr...

  5. Exploration of chemical space based on 4-anilinoquinazoline.

    Science.gov (United States)

    Li, D-D; Hou, Y-P; Wang, W; Zhu, H-L

    2012-01-01

    Chemical space is defined as all possible small organic molecules, including those present in biological systems, which is so vast that so far only a tiny fraction of it has been explored. Indeed, a thorough examination of all "chemical space" is practically impossible. The success of three EGFR inhibitors (Gefitnib, Erlotinib, Lapatinib) suggests that 4-anilinoquinazoline scaffold is still worth developing in the future. To date hundreds of this sort of derivatives have been synthesized and show potent anticancer activities. Most of the compounds have been proved to be EGFR/HER2 kinase inhibitors, binding at the hinge region of the ATP site and some lead compounds have been optimized against a number of different kinases, including VEGFR-2, Src, Aurora A/B, Tpl, Clk and PDE10A. Now there is now a rich pipeline of novel anticancer agents based on 4-anilinoquinazoline in early phase clinical trials. This review will highlight the exploration of chemical space of 4-anilinoquinazoline in the past ten years and we hope that increasing knowledge of the SAR and cellular processes underlying the antitumor-activity of anilinoquinazoline derivatives will be beneficial to the rational design of new generation of small molecule anticancer drugs.

  6. Chemical sensors based on molecularly modified metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haick, Hossam [Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2007-12-07

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  7. Modeling Phase-Locked Loops Using Verilog

    Science.gov (United States)

    2007-11-01

    a charge pump, the phase detector has a tri-state output that can drive a opamp loop filter directly. This signal is conditioned by the charge pump...then it can directly drive an opamp based loop filter. Most loop filters are based upon an integrator loop. The integrator loop filter is advantageous...replaced with an accumulator. The opamp circuit can be replaced by a digital filter using Z-transform theory z=exp(jwT), where T is the sampling

  8. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  9. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C

    1996-01-01

    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  10. Matching of Hysteresis Loop Based on Magnetic Controlled Reactor%基于磁控电抗器铁芯的磁滞回线拟合

    Institute of Scientific and Technical Information of China (English)

    李蕾; 程汉湘; 彭湃; 陈杏灿; 杨健

    2015-01-01

    Aimed at the distortion of ferro magnetic material hysteresis loop under direct current magnetic bias, this paper used the back propagation neural network theory to realize matching of hysteresis loop based on magnetic controlled reactor on the platform of Matlab, simulating the winding current distortion under direct current magnetic bias. The results show that the matching hyster-esis loop is close to the practical measured curve. The excitation current changes are consistent with theoretical analysis, which pro-vides an effective approach for the research of hysteresis loop matching and current distortion under direct current magnetic bias.%针对在直流偏磁状态下铁磁性材料磁滞回线发生畸变的现象,应用BP神经网络理论在Matlab平台上实现对磁控电抗器铁芯磁滞回线的拟合,并对直流偏磁下的绕组电流的畸变情况进行仿真.结果表明,经拟合之后的磁滞回线与实际测得值接近,各绕组电流变化情况与理论分析相符合,为研究直流偏磁下磁滞回线的拟合及电流畸变分析提供了有效的方法.

  11. Photonic crystal fiber based chloride chemical sensors for corrosion monitoring

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Corrosion of steel is one of the most important durability issues in reinforced concrete (RC) structures because aggressive ions such as chloride ions permeate concrete and corrode steel, consequently accelerating the destruction of structures, especially in marine environments. There are many practical methods for corrosion monitoring in RC structures, mostly focusing on electrochemical-based sensors for monitoring the chloride ion which is thought as one of the most important factors resulting in steel corrosion. In this work, we report a fiber-optic chloride chemical sensor based on long period gratings inscribed in a photonic crystal fiber (PCF) with a chloride sensitive thin film. Numerical simulation is performed to determine the characteristics and resonance spectral response versus the refractive indices of the analyte solution flowing through into the holes in the PCF. The effective refractive index of the cladding mode of the LPGs changes with variations of the analyte solution concentration, resulting in a shift of the resonance wavelength, hence providing the sensor signal. This fiber-optic chemical sensor has a fast response, is easy to prepare and is not susceptible to electromagnetic environment, and can therefore be of use for structural health monitoring of RC structures subjected to such aggressive environments.

  12. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  13. Chemical Abstracts Service approach to management of large data bases.

    Science.gov (United States)

    Huffenberger, M A; Wigington, R L

    1975-02-01

    When information handling is "the business," as it is at Chemical Abstract Service (CAS), the total organization must be involved in information management. Since 1967, when, as a result of long-range planning efforts, CAS adopted a "data-base approach" to management of both the processing system and the distribution of information files, CAS has been grappling with the problems of managing large collections of information in computer-based systems. This paper describes what has been done at CAS in the management of large files and what we see as necessary, as a result of our experience, to improve and complete the information management system that is the foundation of our production processes.

  14. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  15. The contrasting structures of mismatched DNA sequences containing looped-out bases (bulges) and multiple mismatches (bubbles).

    Science.gov (United States)

    Bhattacharyya, A; Lilley, D M

    1989-09-12

    We have studied the structure and reactivities of two kinds of mismatched DNA sequences--unopposed bases, or bulges, and multiple mismatched pairs of bases. These were generated in a constant sequence environment, in relatively long DNA fragments, using a technique based on heteroduplex formation between sequences cloned into single-stranded M13 phage. The mismatched sequences were studied from two points of view, viz 1. The mobility of the fragments on gel electrophoresis in polyacrylamide was studied in order to examine possible bending of the DNA due to the presence of the mismatch defect. Such bending would constitute a global effect on the conformation of the molecule. 2. Sequences in and around the mismatches were studied using enzyme and chemical probes of DNA structure. This would reveal more local structural effects of the mismatched sequences. We observed that the structures of the bulges and the multiple mismatches appear to be fundamentally different. The bulged sequences exhibited a large gel retardation, consistent with a significant bending of the DNA at the bulge, and whose magnitude depends on the number of mismatched bases. The larger bulges were sensitive to cleavage by single-strand specific nucleases, and modified by diethyl pyrocarbonate (adenines) or osmium tetroxide (thymines) in a non-uniform way, suggesting that the bulges have a precise structure that leads to exposure of some, but not all, of the bases. In contrast the multiple mismatches ('bubbles') cause very much less bending of the DNA fragment in which they occur, and uniform patterns of chemical reactivity along the length of the mismatched sequences, suggesting a less well defined, and possibly flexible, structure. The precise structure of the bulges suggests that such features may be especially significant for recognition by proteins.

  16. Novel tracking loop of BOC signal based on subcarrier tracking%基于副载波跟踪的BOC信号跟踪环路设计

    Institute of Scientific and Technical Information of China (English)

    杨再秀; 黄智刚; 耿生群

    2011-01-01

    针对二进制偏移载波(BOC,Binary Offset Carrier)调制信号跟踪的模糊性问题,提出了一种新的基于副载波跟踪的环路结构.通过增加副载波跟踪模块,对副载波和扩频码进行分离跟踪,解决了BOC信号跟踪的模糊性问题;针对副载波信号周期性的特点,以正弦波作为本地信号,利用锁相环实现对副载波的稳定跟踪.通过软件仿真,分析对比了该环路的码跟踪误差、跟踪门限和平均失锁时间(MTLL,Mean Time to Lose Lock)等性能指标.结果表明,新的环路结构能在保证跟踪精度的前提下,提高对弱信号的跟踪性能,具有较高的环路稳定性.%In order to eliminate the tracking ambiguity of binary offset carrier ( BOG ) signal, a novel tracking loop based on subcarrier tracking was proposed. Compared with traditional tracking loop, the proposed architecture provides a subcarrier locked loop to track subcarrier. The innovative tracking loop architecture resolves the tracking ambiguity problem by tracking the subcarrier and spread spectrum code respectively.The subcarrier was synchronized with the local sinusoidal signal using phase lock loop (PLL), which exploits the periodic feature of the subcarrier of BOC signal. Figures of merit, such as code tracking error, tracking threshold and mean time to lose lock (MTLL) have been analyzed and evaluated through software simulations.Simulation results show that the novel tracking loop can improve the tracking performance of weak signal and enhance the tracking loop stability with little degradation in tracking accuracy.

  17. Graphene-Based Chemical Vapor Sensors for Electronic Nose Applications

    Science.gov (United States)

    Nallon, Eric C.

    chemiresistor device and used as a chemical sensor, where its resistance is temporarily modified while exposed to chemical compounds. The inherent, broad selective nature of graphene is demonstrated by testing a sensor against a diverse set of volatile organic compounds and also against a set of chemically similar compounds. The sensor exhibits excellent selectivity and is capable of achieving high classification accuracies. The kinetics of the sensor's response are further investigated revealing a relationship between the transient behavior of the response curve and physiochemical properties of the compounds, such as the molar mass and vapor pressure. This kinetic information is also shown to provide important information for further pattern recognition and classification, which is demonstrated by increased classification accuracy of very similar compounds. Covalent modification of the graphene surface is demonstrated by means of plasma treatment and free radical exchange, and sensing performance compared to an unmodified graphene sensor. Finally, the first example of a graphene-based, cross-reactive chemical sensor array is demonstrated by applying various polymers as coatings over an array of graphene sensors. The sensor array is tested against a variety of compounds, including the complex odor of Scotch whiskies, where it is capable of perfect classification of 10 Scotch whiskey variations.

  18. Performance of MEMS-based visible-light adaptive optics at Lick Observatory: Closed- and open-loop control

    CERN Document Server

    Morzinski, Katie; Gavel, Donald T; Grigsby, Bryant; Dillon, Daren; Reinig, Marc; Macintosh, Bruce A

    2010-01-01

    At the University of California's Lick Observatory, we have implemented an on-sky testbed for next-generation adaptive optics (AO) technologies. The Visible-Light Laser Guidestar Experiments instrument (ViLLaGEs) includes visible-light AO, a micro-electro-mechanical-systems (MEMS) deformable mirror, and open-loop control of said MEMS on the 1-meter Nickel telescope at Mt. Hamilton. In this paper we evaluate the performance of ViLLaGEs in open- and closed-loop control, finding that both control methods give equivalent Strehl ratios of up to ~ 7% in I-band and similar rejection of temporal power. Therefore, we find that open-loop control of MEMS on-sky is as effective as closed-loop control. Furthermore, after operating the system for three years, we find MEMS technology to function well in the observatory environment. We construct an error budget for the system, accounting for 130 nm of wavefront error out of 190 nm error in the science-camera PSFs. We find that the dominant known term is internal static error...

  19. Model-based drug administration : current status of target-controlled infusion and closed-loop control

    NARCIS (Netherlands)

    Kuizenga, Merel H.; Vereecke, Hugo E. M.; Struys, Michel M. R. F.

    2016-01-01

    Purpose of review Drug administration might be optimized by incorporating pharmacokinetic-dynamic (PK/PD) principles and control engineering theories. This review gives an update of the actual status of target-controlled infusion (TCI) and closed-loop computer-controlled drug administration and the

  20. How to Generate Chaos from Switching System: A Saddle Focus of Index 1 and Heteroclinic Loop-Based Approach

    Directory of Open Access Journals (Sweden)

    Fang Bao

    2011-01-01

    Full Text Available There exist two different types of equilibrium points in 3-D autonomous systems, named as saddle foci of index 1 and index 2, which are crucial for chaos generation. Although saddle foci of index 2 have been usually applied for creating double-scroll or double-wing chaotic attractors, saddle foci of index 1 are further considered for chaos generation in this paper. A novel approach for constructing chaotic systems is investigated by applying the switching control strategy and yielding a heteroclinic loop which connects two saddle foci of index 1. A basic 3-D linear system with an arbitrary normal direction of the eigenplane, possessing a saddle focus of index 1 whose corresponding eigenvalues satisfy the Shil'nikov inequality, is first introduced. Then a heteroclinic loop connecting two saddle foci of index 1 will be formed by applying the switching control strategy to the basic 3-D linear system. The heteroclinic loop consists of an unstable manifold, a stable manifold, and a heteroclinic point. Under the necessary conditions for forming the heteroclinic loop, the intended two-segmented piecewise linear system which exhibits the chaotic behavior in the sense of the Smale horseshoe can be finally constructed. An illustrative example is given, confirming the effectiveness of the proposed method.

  1. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  2. Trends in information theory-based chemical structure codification.

    Science.gov (United States)

    Barigye, Stephen J; Marrero-Ponce, Yovani; Pérez-Giménez, Facundo; Bonchev, Danail

    2014-08-01

    This report offers a chronological review of the most relevant applications of information theory in the codification of chemical structure information, through the so-called information indices. Basically, these are derived from the analysis of the statistical patterns of molecular structure representations, which include primitive global chemical formulae, chemical graphs, or matrix representations. Finally, new approaches that attempt to go "back to the roots" of information theory, in order to integrate other information-theoretic measures in chemical structure coding are discussed.

  3. Chemical-looping combustion of coal usin ilmenite as oxygen-carrier (Combustión de carbón con captura de CO2 usando ilmenita como transportador de oxigeno)

    OpenAIRE

    Cuadrat Fernández, Ana; Adánez Elorza, Juan; Abad Secades, Alberto

    2012-01-01

    La combustión con transportadores sólidos de oxígeno o Chemical-Looping Combustion, (CLC) es una tecnología de combustión con captura inherente del gas de efecto invernadero CO2. Debido al bajo coste de captura de CO2 que posee es una tecnología prometedora para centrales térmicas de combustibles fósiles. En CLC el oxígeno del aire se transfiere al combustible con un transportador sólido de oxígeno que circula entre dos reactores de lecho fluidizado: el reactor de reducción y el de oxidación....

  4. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    Science.gov (United States)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  5. Development of Oilfield Chemicals Based on Advantages in Petrochemical Feedstocks

    Institute of Scientific and Technical Information of China (English)

    Wang Xieqing; Peng Pu

    2002-01-01

    This article focuses on the routes for development of oilfield chemicals by making use of the feedstock advantages of the petrochemical industry. The diversification of oilfield chemicals has re sulted in thousand product grades. Because there are hundred domestic producers of oilfield chemicals,mostly medium and small producers, the fluctuations of feedstock prices and product quality cannot be conducive to the application and development of oilfield chemicals. This article illustrates the feasibility of oilfield chemical production by state-run medium and large petrochemical enterprises by allowing full play to their own advantages in petrochemical feedstocks.

  6. Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking.

    Science.gov (United States)

    Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia

    2008-02-01

    To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.

  7. The extended loop representation of quantum gravity

    CERN Document Server

    Di Bartolo, C; Griego, J R

    1995-01-01

    A new representation of Quantum Gravity is developed. This formulation is based on an extension of the group of loops. The enlarged group, that we call the Extended Loop Group, behaves locally as an infinite dimensional Lie group. Quantum Gravity can be realized on the state space of extended loop dependent wavefunctions. The extended representation generalizes the loop representation and contains this representation as a particular case. The resulting diffeomorphism and hamiltonian constraints take a very simple form and allow to apply functional methods and simplify the loop calculus. In particular we show that the constraints are linear in the momenta. The nondegenerate solutions known in the loop representation are also solutions of the constraints in the new representation. The practical calculation advantages allows to find a new solution to the Wheeler-DeWitt equation. Moreover, the extended representation puts in a precise framework some of the regularization problems of the loop representation. We sh...

  8. Testing of a controller for an ETO-based STATCOM through controller hardware-in-the-loop simulation

    DEFF Research Database (Denmark)

    Langston, J.; Qi, L.; Steurer, M.;

    2009-01-01

    The testing of a controller for a proposed 10 MVA STATCOM through hardware-in-the-loop experimentation is described in this paper. The electrical environment into which the STATCOM is to be inserted, including a significant portion of the utility network and a nearby wind farm are simulated using...... farm. This paper presents preliminary results of the ongoing testing of the controller under the most realistic system conditions. ©2009 IEEE.......The testing of a controller for a proposed 10 MVA STATCOM through hardware-in-the-loop experimentation is described in this paper. The electrical environment into which the STATCOM is to be inserted, including a significant portion of the utility network and a nearby wind farm are simulated using...

  9. Decentralized Sliding Mode Observer Based Dual Closed-Loop Fault Tolerant Control for Reconfigurable Manipulator against Actuator Failure.

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    Full Text Available This paper considers a decentralized fault tolerant control (DFTC scheme for reconfigurable manipulators. With the appearance of norm-bounded failure, a dual closed-loop trajectory tracking control algorithm is proposed on the basis of the Lyapunov stability theory. Characterized by the modularization property, the actuator failure is estimated by the proposed decentralized sliding mode observer (DSMO. Moreover, the actuator failure can be treated in view of the local joint information, so its control performance degradation is independent of other normal joints. In addition, the presented DFTC scheme is significantly simplified in terms of the structure of the controller due to its dual closed-loop architecture, and its feasibility is highly reflected in the control of reconfigurable manipulators. Finally, the effectiveness of the proposed DFTC scheme is demonstrated using simulations.

  10. Phylogenetic relationships of Malaysia's pig-tailed macaque Macaca nemestrina based on D-loop region sequences

    Science.gov (United States)

    Abdul-Latiff M. A., B.; Ampeng, A.; Yaakop, S.; Md-Zain B., M.

    2014-09-01

    Phylogenetic relationships among Malaysian pig-tailed macaques have never been established even though the data are crucial in aiding conservation plan for the species. The aims of this study is to establish the phylogenetic relationships of Macaca nemestrina in Malaysia. A total of 21 genetic samples of M. nemestrina yielding 458 bp of D-loop sequences were used in phylogenetic analyses, in addition to one sample of M. fascicularis which was used as an outgroup. Sequence character analysis revealed that D-loop locus contains 23% parsimony informative character detected among the ingroups. Further analysis indicated a clear separation between populations originating from different regions; the Malay Peninsula populations are separated from Borneo Insular population; and Perak population formed a distinctive clade within Peninsular Malaysia populations. Phylogenetic trees (NJ, MP and Bayesian) portray a consistent clustering paradigm as Borneo population was distinguished from Peninsula population (100% bootstrap value in the NJ, MP, 1.00 posterior probability in Bayesian trees). Perak's population was separated from other Peninsula populations (100% in NJ, 99% in MP and 1.00 in Bayesian). D-loop region of mtDNA is proven to be a suitable locus in studying the separation of M. nemestrina at population level. These findings are crucial in aiding the conservation management and translocation process of M. fascicularis populations in Malaysia.

  11. A New Model Based on Adaptation of the External Loop to Compensate the Hysteresis of Tactile Sensors

    Directory of Open Access Journals (Sweden)

    José A. Sánchez-Durán

    2015-10-01

    Full Text Available This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes.

  12. A new model based on adaptation of the external loop to compensate the hysteresis of tactile sensors.

    Science.gov (United States)

    Sánchez-Durán, José A; Vidal-Verdú, Fernando; Oballe-Peinado, Óscar; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2015-10-15

    This paper presents a novel method to compensate for hysteresis nonlinearities observed in the response of a tactile sensor. The External Loop Adaptation Method (ELAM) performs a piecewise linear mapping of the experimentally measured external curves of the hysteresis loop to obtain all possible internal cycles. The optimal division of the input interval where the curve is approximated is provided by the error minimization algorithm. This process is carried out off line and provides parameters to compute the split point in real time. A different linear transformation is then performed at the left and right of this point and a more precise fitting is achieved. The models obtained with the ELAM method are compared with those obtained from three other approaches. The results show that the ELAM method achieves a more accurate fitting. Moreover, the involved mathematical operations are simpler and therefore easier to implement in devices such as Field Programmable Gate Array (FPGAs) for real time applications. Furthermore, the method needs to identify fewer parameters and requires no previous selection process of operators or functions. Finally, the method can be applied to other sensors or actuators with complex hysteresis loop shapes.

  13. Feasibility Study of a 6.6kV, 1MW Transformerless BTB-Based Loop Controller

    Science.gov (United States)

    Yonetani, Shinsuke; Fujita, Hideaki; Akagi, Hirofumi; Okada, Naotaka

    This paper achieves a feasibility study of a 6.6kV, 1MW loop controller that consists of a transformerless back-to-back configuration using two 5-level diode-clamped converters. However, the loop controller requires reducing the zero-sequence current circulating between the two distribution lines below than 0.2 A in rms, in order to avoid malfunction of line-to-ground fault protection relays. Moreover, all the dc voltages across four capacitors in the dc link have to be controlled equally. This paper presents a solution to these problems. Two common-mode chokes are installed at the ac side of each converter to suppress high-frequency zero-sequence currents, while feedback control is applied to eliminate low-frequency zero-sequence currents. Two bidirectional buck-boost dc-dc converters are employed to keep the four capacitor voltages equal. Simulation results verify viability and effectiveness of the loop controller, along with the developed theoretical analysis.

  14. Comments and Remarks over Classic Linear Loop-Gain Method for Oscillator Design and Analysis. New Proposed Method Based on NDF/RRT

    Directory of Open Access Journals (Sweden)

    J. L. Jimenez-Martin

    2012-04-01

    Full Text Available Present paper describes a new method for designing oscillators based on the Normalized Determinant Function (NDF and Return Relations (RRT . First a review of the loop-gain method will be performed, showing pros, cons and including some examples for exploring wrong so- lutions provided by this method. Wrong solutions, because some conditions have to be previously fulfilled in order to obtain right ones, which will be described and finally, demonstrate that NDF analysis is necessary, including Return Relations (RRT usefulness, which in fact are related with the True Loop-Gain. Finally concluding this paper, steps for oscillator design and analysis, using the proposed NDF/RRT method will be presented, compared to wrong previous solutions pointing out new accuracy achieved on oscillation frequency and QL prediction. Also, more new examples, of plane reference oscillators (Z/Y/rho, will be added for which loop gain method application is clearly difficult or even impossible, solving them with the new proposed NDF/RRT method.

  15. Graphene Electronic Device Based Biosensors and Chemical Sensors

    Science.gov (United States)

    Jiang, Shan

    Two-dimensional layered materials, such as graphene and MoS2, are emerging as an exciting material system for a new generation of atomically thin electronic devices. With their ultrahigh surface to volume ratio and excellent electrical properties, 2D-layered materials hold the promise for the construction of a generation of chemical and biological sensors with unprecedented sensitivity. In my PhD thesis, I mainly focus on graphene based electronic biosensors and chemical sensors. In the first part of my thesis, I demonstrated the fabrication of graphene nanomesh (GNM), which is a graphene thin film with a periodic array of holes punctuated in it. The periodic holes introduce long periphery active edges that provide a high density of functional groups (e.g. carboxylic groups) to allow for covalent grafting of specific receptor molecules for chemical and biosensor applications. After covalently functionalizing the GNM with glucose oxidase, I managed to make a novel electronic sensor which can detect glucose as well as pH change. In the following part of my thesis I demonstrate the fabrication of graphene-hemin conjugate for nitric oxide detection. The non-covalent functionalization through pi-pi stacking interaction allows reliable immobilization of hemin molecules on graphene without damaging the graphene lattice to ensure the highly sensitive and specific detection of nitric oxide. The graphene-hemin nitric oxide sensor is capable of real-time monitoring of nitric oxide concentrations, which is of central importance for probing the diverse roles of nitric oxide in neurotransmission, cardiovascular systems, and immune responses. Our studies demonstrate that the graphene-hemin sensors can respond rapidly to nitric oxide in physiological environments with sub-nanomolar sensitivity. Furthermore, in vitro studies show that the graphene-hemin sensors can be used for the detection of nitric oxide released from macrophage cells and endothelial cells, demonstrating their

  16. The finite Bruck Loops

    CERN Document Server

    Baumeister, Barbara

    2009-01-01

    We continue the work by Aschbacher, Kinyon and Phillips [AKP] as well as of Glauberman [Glaub1,2] by describing the structure of the finite Bruck loops. We show essentially that a finite Bruck loop $X$ is the direct product of a Bruck loop of odd order with either a soluble Bruck loop of 2-power order or a product of loops related to the groups $PSL_2(q)$, $q= 9$ or $q \\geq 5$ a Fermat prime. The latter possibillity does occur as is shown in [Nag1, BS]. As corollaries we obtain versions of Sylow's, Lagrange's and Hall's Theorems for loops.

  17. 基于SDG图的化工过程初步设计方案的错误侦破方法%A Signed Digraphs Based Method for Detecting Inherently Unsafe Factors of Chemical Process at Conceptual Design Stage

    Institute of Scientific and Technical Information of China (English)

    王杭州; 陈丙珍; 何小荣; 邱彤; 章龙江

    2008-01-01

    Digraph-based causal models have been widely used to model the cause and effect behavior of process systems. Signed digraphs (SDG) capture the direction of the effect. It should be mentioned that there are loops in SDG generated from chemical process. From the point of the inherent operability, the worst unsafe factor is the SDG having positive loops that means any disturbance occurring within the loop will propagate through the nodes one by one and are amplified gradually, so the system may lose control, which may lead to an accident. So finding the positive loops in a SDG and treating these unsafe factors in a proper manner can improve the inherent safety of a chemical process. This article proposed a method that can detect the above-mentioned unsafe factors in the proc-ess conceptual design stage automatically through the analysis of the SDG generated from the chemical process. A case study is illustrated to show the working of the algorithm, and then a complicated case from industry is studied to depict the effectiveness of the proposed algorithm.

  18. Porosity prediction of calcium phosphate cements based on chemical composition.

    Science.gov (United States)

    Öhman, Caroline; Unosson, Johanna; Carlsson, Elin; Ginebra, Maria Pau; Persson, Cecilia; Engqvist, Håkan

    2015-07-01

    The porosity of calcium phosphate cements has an impact on several important parameters, such as strength, resorbability and bioactivity. A model to predict the porosity for biomedical cements would hence be a useful tool. At the moment such a model only exists for Portland cements. The aim of this study was to develop and validate a first porosity prediction model for calcium phosphate cements. On the basis of chemical reaction, molar weight and density of components, a volume-based model was developed and validated using calcium phosphate cement as model material. 60 mol% β-tricalcium phosphate and 40 mol% monocalcium phosphate monohydrate were mixed with deionized water, at different liquid-to-powder ratios. Samples were set for 24 h at 37°C and 100% relative humidity. Thereafter, samples were dried either under vacuum at room temperature for 24 h or in air at 37 °C for 7 days. Porosity and phase composition were determined. It was found that the two drying protocols led to the formation of brushite and monetite, respectively. The model was found to predict well the experimental values and also data reported in the literature for apatite cements, as deduced from the small absolute average residual errors (brushite, monetite and apatite cements. The model gives a good estimate of the final porosity and has the potential to be used as a porosity prediction tool in the biomedical cement field.

  19. Reference field effect transistor based on chemically modified ISFETs

    NARCIS (Netherlands)

    Skowronska-Ptasinska, Maria; Wal, van der Peter D.; Berg, van den Albert; Bergveld, Piet; Sudhölter, Ernst J.R.; Reinhoudt, David N.

    1990-01-01

    Different hydrophobic polymers were used for chemical modification of ion-sensitive field effect transistors (ISFETs) in order to prepare a reference FET (REFET). Chemical attachment of the polymer to the ISFET gate results in a long lifetime of the device. Properties of polyacrylate (polyACE) REFET

  20. Empirical potential simulations of interstitial dislocation loops in uranium dioxide

    Science.gov (United States)

    Le Prioux, Arno; Fossati, Paul; Maillard, Serge; Jourdan, Thomas; Maugis, Philippe

    2016-10-01

    Stoichiometric circular shaped interstitial dislocation loop energies are calculated in stoichiometric UO2 by empirical potential simulation. The Burgers vector directions studied are and . The main structural properties of each type of interstitial dislocation loop are determined, including stacking fault energy. Defect energies are compared and a maximum size for stable dislocation loops before transition to dislocation loops is given. A model of dislocation loop energy based on elasticity theory is then fitted on the basis of these simulation results.

  1. A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives.

    Science.gov (United States)

    Grimm, Fabian A; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A; Wright, Fred A; Reif, David M; Braisted, John; Gerhold, David L; Yeakley, Joanne M; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J; Ketelslegers, Hans B; Rohde, Arlean M; Rusyn, Ivan

    2016-08-21

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health impacts of

  2. Inverse Kinematics and Control of a 7-DOF Redundant Manipulator Based on the Closed-Loop Algorithm

    Directory of Open Access Journals (Sweden)

    Jingguo Wang

    2011-01-01

    Full Text Available Closed-loop inverse kinematics (CLIK algorithm mostly resolves the redundancy at the velocity level. In this paper we extend the CLIK algorithm to the acceleration level to meet some applications that require the joint accelerations. The redundancy resolutions at the velocities and acceleration levels via pseudoinverse method are analyzed respectively. The objective function of joint limits avoidance (JLA is combined into the redundancy resolution as an optimization approach of the null space motion. A seven-DOF redundant manipulator is designed to do the computer simulations and the real experiments are carried out on a Powercube modular manipulator. Their results demonstrated the effectiveness of the proposed algorithm.

  3. Property Model-based Tailor-made Design of Chemical-based Products

    DEFF Research Database (Denmark)

    Kalakul, Sawitree

    on experiment are reduced leading to faster and cheaper to market the products. The tools also help to manage the solution of product design problems, which usually require efficient handling of model-data-knowledge from different sources and at different time and size scales. The main contribution......Computer-aided model-based methods and tools are increasingly playing important roles in chemical product design. They have the potential to very quickly search for and identify reliable product candidates that can then be verified through experiments. Inthis way, the time and resources spent...... of this project is: (1) the development of a systematic model-based framework for chemical product design; (2) its implementation as a computer-aided tool based on a specially developed architecture; (3) the creation of product design template together with their algorithms, models, tools and data for various...

  4. Distinguishing magnetizing inductance of power transformer based on hysteresis loop%利用磁滞回线辨识变压器励磁电感研究

    Institute of Scientific and Technical Information of China (English)

    何源; 李新; 罗建

    2013-01-01

      针对变压器在空载情况下副边电压,电流数据未知,励磁电感不易获取的缺陷,提出了利用变压器磁滞回线上的离散数据点求励磁电感的方法。该方法具体步骤是首先根据变压器空载时原边的电压电流采样数据点找出此时关于磁链与电流的函数关系(磁滞回线),然后由磁滞回线上关于磁链和电流的离散数据点找出算法求励磁电感。通过ATP和Matlab软件相结合,仿真出了磁滞回线和相对应的励磁电感,得出了磁滞回线和励磁电感变化情况与理论分析相符。此方法可以求出空载时的励磁电感。%On account of difficulty in finding magnetizing inductance when the transformer is no load and secondary-side voltage and current data are unknown, a method is put forward to solve magnetizing inductance of transformer based on hysteresis loop of dispersed data point. The concrete step is as follows. Firstly, according to the voltage and current sample data point of the primary-side when transformer is no-load, the hysteresis loop of flux linkage and current is found. Then magnetizing inductance is solved through flux linkage and current discrete data point of hysteresis loop. ATP and MATLAB simulation softwares are used to get hysteresis loop and magnetizing inductance. It is concluded that the hysteresis loop and variation of magnetizing inductance are similar to theoretical analysis. So the method can obtain magnetizing inductance when it is no load.

  5. Waveform Analysis of Dynamic Magnetic Hysteresis Loop Based on Oscilloscope%基于示波器动态磁滞回线的波形分析

    Institute of Scientific and Technical Information of China (English)

    杨斌; 胡瑞雪; 张亚萍; 韩立立

    2013-01-01

    An oscilloscope was used for displaying waveform based on the dynamic measurement of magnetic hysteresis loop.The magnetic hysteresis loop and the waveform of incentive coil and detecting coil were directly shown in different source voltage.The existing magnetic hysteresis loop measuring instrument was modified,and double-wire reverse connection was used in the detecting coil,on the outside of which excitation coil was placed.It can measure many magnetic materials of different shapes and different composition structure.The magnetic hysteresis loop and double wave of ferrite materials and pure iron materials were observed in the signal source voltage of 3,6,12,24 V,respectively.The difference between the result and reasons for the difference were analyzed.It is proven that the modified instrument is useful for a more intuitive and more profound understanding of the generation of magnetic hysteresis loop,which enriches,complements,and expands the teaching contents.%基于动态磁滞回线测量的基本原理,采用示波器显示波形,直观显示了不同信号源电压下磁性材料的磁滞回线以及励磁线圈和探测线圈的波形.对现有的磁滞回线测量仪进行改装,探测线圈采用双线圈反向连接的方式,在其外面套上励磁线圈,即可测量不同形状、不同成分结构的磁性材料.观察铁氧体材料和纯铁材料在信号源电压分别取3、6、12、24 V时的磁滞回线及双线波形,分析在不同信号源电压下两种材料实验结果的差异及原因,得出该实验所用铁氧体材料为软磁材料,纯铁为硬磁材料.改装后仪器有助于对磁滞回线产生有更直观、深刻的认识,对教学内容起到丰富、补充、拓展的作用.

  6. Pseudonoise code tracking loop

    Science.gov (United States)

    Laflame, D. T. (Inventor)

    1980-01-01

    A delay-locked loop is presented for tracking a pseudonoise (PN) reference code in an incoming communication signal. The loop is less sensitive to gain imbalances, which can otherwise introduce timing errors in the PN reference code formed by the loop.

  7. Design of an All-Digital Synchronized Frequency Multiplier Based on a Dual-Loop (D/FLL Architecture

    Directory of Open Access Journals (Sweden)

    Maher Assaad

    2012-01-01

    Full Text Available This paper presents a new architecture for a synchronized frequency multiplier circuit. The proposed architecture is an all-digital dual-loop delay- and frequency-locked loops circuit, which has several advantages, namely, it does not have the jitter accumulation issue that is normally encountered in PLL and can be adapted easily for different FPGA families as well as implemented as an integrated circuit. Moreover, it can be used in supplying a clock reference for distributed digital processing systems as well as intra/interchip communication in system-on-chip (SoC. The proposed architecture is designed using the Verilog language and synthesized for the Altera DE2-70 development board. The experimental results validate the expected phase tracking as well as the synthesizing properties. For the measurement and validation purpose, an input reference signal in the range of 1.94–2.62 MHz was injected; the generated clock signal has a higher frequency, and it is in the range of 124.2–167.9 MHz with a frequency step (i.e., resolution of 0.168 MHz. The synthesized design requires 330 logic elements using the above Altera board.

  8. Recycler Reaction for the Government Behavior in Closed-Loop Supply Chain Distribution Network: Based on the System Dynamics

    Directory of Open Access Journals (Sweden)

    Xi gang Yuan

    2015-01-01

    Full Text Available With system dynamics, we establish three-closed-loop supply chain distribution network system model which consists of supplier, manufacturer, two retailers, and products (parts recycler. We proposed that recycler make reflect for the government policy by adjusting the recycling ratio and recycling delay. We use vensim software to simulate this model and investigate how the products (parts recyclers behavior influences the loop supply chain distribution system. The result shows that (1 when recyclers respond positively to government policies, recycling will increase the proportion of recyclers. When recyclers respond negatively to government policy making, recycling will reduce the proportion of recyclers. (2 When the recovery percentage of recyclers improves, manufacturers, Retailer 1, and Retailer 2 quantity fluctuations will reduce and the bullwhip effect will diminish. (3 When the proportion of recycled parts recyclers is lowered, manufacturers, Retailer 1, and Retailer 2 inventory fluctuation will increase and the bullwhip effect will be enhanced. (4 When recyclers recycling product delays increased, volatility manufacturers order quantity will rise, but there is little change in the amount of fluctuation of orders of the two retailers. (5 When recycling parts recyclers delay increases, fluctuations in the supplier order quantity will rise, but there is little change in the amount of fluctuation of orders of the two retailers.

  9. MRFT-based design of robust and adaptive controllers for gas loop of oil–gas separator

    Directory of Open Access Journals (Sweden)

    Hamdati Al Shehhi

    2015-12-01

    Full Text Available The modified relay feedback test (MRFT, which was recently proposed as a continuous oscillation method for identification of the process parameters and controller tuning, is used for the design of a robust and an adaptive Proportional-Integral (PI controller for a gas loop in the oil–gas separator. The gas normally found in the separator is the natural gas (mostly methane which is contained in crude oil coming from the reservoir. The robust and adaptive PI controllers are developed from analysis of 64 operating modes corresponding to certain ranges of the gas inflow and liquid-level values. It is shown through the developed model and simulations that these operating modes have significant effect on the dynamics of the gas loop. Dynamic properties of the process in each mode are studied through MRFT. The controllers are designed in order to maintain the pressure during the change of the operating conditions. Performance of the designed control system is studied by simulations.

  10. SOIL QUALITY ASSESSMENT BASED ON CHEMICAL, ENZYMATIC AND BACTERIOLOGICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sofia-Paulina BALAURE

    2012-01-01

    Full Text Available This study highlights the problem of soil pollution as the result of human activities. Soil pollutans may be either chemicals or biological in nature. microbial enzymatic activities are often proposed as indicators of environmental stress. The soil samples were submitted by chemical, microbiological and enzymatic analyses. Chemical analyses were been made for determinating the heavy metals. Heavy metals from the forest soil were represented by Cu, Zn, Mn, Ni, Pb, Cd and Cr. To evaluate the concentration in heavy metals from the filtrate, we used a acetylene-nitrous oxide flame atomic absorption spectrophotometry. Potential dehydrogenase activity, the only indicator of the possible sources of pollution, excluded the presence of either chemical or biological pollution. The number of bacteria involved in the biogeochemical cycle of nitrogen in the analyzed soil indicated a high efficiency regarding the mineralization of the organic residues of plant and animal origin.

  11. Nanoscale chemical sensor based on organic thin-film transistors

    Science.gov (United States)

    Wang, Liang; Fine, Daniel; Dodabalapur, Ananth

    2004-12-01

    Nanoscale organic thin-film transistors were fabricated to investigate their chemical sensing properties. The use of a four-terminal geometry ensures that the sensor active area is truly nanoscale, and eliminates undesirable spreading currents. The sensor response was markedly different in nanoscale sensors compared to large-area sensors for the same analyte-semiconductor combination. The chemical sensing mechanisms in both microscale and nanoscale transistors are briefly discussed.

  12. Accurate and efficient gp120 V3 loop structure based models for the determination of HIV-1 co-receptor usage

    Directory of Open Access Journals (Sweden)

    Vaisman Iosif I

    2010-10-01

    Full Text Available Abstract Background HIV-1 targets human cells expressing both the CD4 receptor, which binds the viral envelope glycoprotein gp120, as well as either the CCR5 (R5 or CXCR4 (X4 co-receptors, which interact primarily with the third hypervariable loop (V3 loop of gp120. Determination of HIV-1 affinity for either the R5 or X4 co-receptor on host cells facilitates the inclusion of co-receptor antagonists as a part of patient treatment strategies. A dataset of 1193 distinct gp120 V3 loop peptide sequences (989 R5-utilizing, 204 X4-capable is utilized to train predictive classifiers based on implementations of random forest, support vector machine, boosted decision tree, and neural network machine learning algorithms. An in silico mutagenesis procedure employing multibody statistical potentials, computational geometry, and threading of variant V3 sequences onto an experimental structure, is used to generate a feature vector representation for each variant whose components measure environmental perturbations at corresponding structural positions. Results Classifier performance is evaluated based on stratified 10-fold cross-validation, stratified dataset splits (2/3 training, 1/3 validation, and leave-one-out cross-validation. Best reported values of sensitivity (85%, specificity (100%, and precision (98% for predicting X4-capable HIV-1 virus, overall accuracy (97%, Matthew's correlation coefficient (89%, balanced error rate (0.08, and ROC area (0.97 all reach critical thresholds, suggesting that the models outperform six other state-of-the-art methods and come closer to competing with phenotype assays. Conclusions The trained classifiers provide instantaneous and reliable predictions regarding HIV-1 co-receptor usage, requiring only translated V3 loop genotypes as input. Furthermore, the novelty of these computational mutagenesis based predictor attributes distinguishes the models as orthogonal and complementary to previous methods that utilize sequence

  13. Kalman Orbit Optimized Loop Tracking

    Science.gov (United States)

    Young, Lawrence E.; Meehan, Thomas K.

    2011-01-01

    Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.

  14. Innovative Waste Management in the Mercury Loop of the EURISOL Multi-MW Converter Target

    CERN Document Server

    PSI: Jörg Neuhausen, Dorothea Schumann, Rugard Dressler, Susanne Horn, Sabrina Lüthi, Stephan Heinitz, Suresh ChirikiCERN: Thierry Stora, Martin Eller

    The choice of mercury as target material imposes various questions concerning the safe operation of such a system that are related to the physical and chemical properties of the target material itself and the nuclear reaction products produced within the target during its life time of several decades. Therefore, a subtask was created within the EURISOL-DS project that is concerned with studying an innovative waste management for the generated radioactivity by chemical means. Such a study strongly depends on the radioactive inventory and its distribution throughout the target and loop system. Radioactive inventory calculations were performed within task 5 [6]. The distribution of nuclear reaction products and their chemical state that can be expected within the target and loop system is one of the topics covered in this report. Based on the results obtained by theoretical studies as well as laboratory scale experiments, the feasibility of waste reduction using chemical methods, both conventional (e.g. leaching...

  15. High temperature storage loop :

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  16. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    Science.gov (United States)

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  17. Phylogeography of the rice frog, Fejervarya multistriata (Anura: Ranidae), from China based on mtDNA D-loop sequences.

    Science.gov (United States)

    Zhong, Jing; Liu, Zhong-Quan; Wang, Yi-Quan

    2008-08-01

    The rice frog, Fejervarya multistriata, is an amphibian widely distributed in China. In this study, we sampled the species across its distributional area in China and sequenced the mtDNA D-loop to investigate the genetic diversity and geographical pattern of the frog population. The results revealed 38 haplotypes in the population, with K2P values varying from 0.19% to 4.22%. Both a phylogenetic analysis and a nested clade analysis (NCA) detected two geographically isolated lineages respectively distributed around the Yangtze drainage (Yangtze lineage) and the south of China (southern lineage). NCA inferred a contiguous range expansion within the Yangtze lineage and allopatric fragmentation within the southern lineage, which might be partly due to the limited samples from this lineage. Accordingly, Fu's Fs test also indicated a population expansion after glacial movement. Therefore, we assumed that the species history responding to glacial events shaped the present population pattern of F. multistriata on the Chinese mainland.

  18. Complete subsite mapping of a "loopful" GH19 chitinase from rye seeds based on its crystal structure.

    Science.gov (United States)

    Ohnuma, Takayuki; Umemoto, Naoyuki; Kondo, Kaori; Numata, Tomoyuki; Fukamizo, Tamo

    2013-08-19

    Crystallographic analysis of a mutated form of "loopful" GH19 chitinase from rye seeds a double mutant RSC-c, in which Glu67 and Trp72 are mutated to glutamine and alanine, respectively, (RSC-c-E67Q/W72A) in complex with chitin tetrasaccharide (GlcNAc)₄ revealed that the entire substrate-binding cleft was completely occupied with the sugar residues of two (GlcNAc)₄ molecules. One (GlcNAc)₄ molecule bound to subsites -4 to -1, while the other bound to subsites +1 to +4. Comparisons of the main chain conformation between liganded RSC-c-E67Q/W72A and unliganded wild type RSC-c suggested domain motion essential for catalysis. This is the first report on the complete subsite mapping of GH19 chitinase.

  19. Study on chaos control of second-order non-autonomous phase-locked loop based on state observer

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yibo [College of physics and Electronic Information, Anhui Normal University, Wuhu 241000 (China)], E-mail: zhyb26@yahoo.com.cn; Wei Duqu; Luo Xiaoshu [College of Physics and Electronic engineering, Guangxi Normal University, Guilin 541004 (China)

    2009-02-28

    With system parameters falling into a certain area, the second-order non-autonomous phase locked loop (PLL) is experiencing chaotic behavior which is undesirable in system, where it is necessary to estimate the phase of a received signal. In order to control chaos in PLL and drive it to the locked state, dynamical equation for phase error model of PLL is firstly derived. Then, the state values of phase and transient frequency errors were estimated by a state observer. Moreover, by exploiting these state estimations, a non-linear feedback controller is designed. Since the presented controller does not need to change the controlled system structure and not to use any information of system except the system state variables, the designed controller is simple and desirable. Simulation results show that the presented control law is very effective.

  20. A paradigm-based evolution of chemical engineering

    Institute of Scientific and Technical Information of China (English)

    Alexandru Woinaroschy

    2016-01-01

    A short presentation of chemical engineering evolution, as guided by its paradigms, is exposed. The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applica-tions at the end of 19th century. The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep, scientific knowledge of the phenomena that explain what happens inside of unit operations. In the second part of 20th century, the importance of chemical product properties and qualities has become essential y in the market fights. Accordingly, it was required with additional and even new fundamen-tal approaches, and product engineering was recognized as the third paradigm. Nowadays chemical industry, as a huge materials and energy consumer, and with a strong ecological impact, couldn't remain outside of sustainability requirements. The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.

  1. HIV-1 co-receptor usage based on V3 loop sequence analysis: preferential suppression of CXCR4 virus post HAART?

    Science.gov (United States)

    Jiao, Yanmei; Wang, Pengfei; Zhang, Hongwei; Zhang, Tong; Zhang, Yonghong; Zhu, Huanzhang; Wu, Hao

    2011-01-01

    Disease progression during human immunodeficiency virus type 1 (HIV-1) infection has been associated with a switch of viral coreceptor usage from CCR5 to CXCR4. The current study investigates the effect of anti retroviral therapy (ART) on the viral tropism in a group of patients based on the V3 loop sequence, in ART naïve patients prior to and 24 weeks after ART. Genomic DNA was extracted from the PBMCs of these patients, and the C2-V5 region of the HIV-1 env genes were cloned and sequenced. The coreceptor usage was predicated based on V3 loop amino acid sequences using Geno2pheno and PSSM programs. Our results indicate that following ART, the plasma viral loads of both CXCR4 and CCR5 viruses were significantly decreased. We observed a relatively higher ratio of R5 than X4 virus after 24 weeks of ART and both the positive charges and the net charges of the V3 regions were decreased significantly (p suppression of X4 virus. These data will help improve prognostic outcomes and help clinicians determine the course of treatment in patients who exhibit virologic failure while taking a CCR5 antagonist.

  2. A CCD-based fluorescence imaging system for real-time loop-mediated isothermal amplification-based rapid and sensitive detection of waterborne pathogens on microchips.

    Science.gov (United States)

    Ahmad, Farhan; Seyrig, Gregoire; Tourlousse, Dieter M; Stedtfeld, Robert D; Tiedje, James M; Hashsham, Syed A

    2011-10-01

    Rapid, sensitive, and low-cost pathogen diagnostic systems are needed for early disease diagnosis and treatment, especially in resource-limited settings. This study reports a low-cost charge-coupled device (CCD)-based fluorescence imaging system for rapid detection of waterborne pathogens by isothermal gene amplification in disposable microchips. Fluorescence imaging capability of this monochromatic CCD camera is evaluated by optimizing the gain, offset, and exposure time. This imaging system is validated for 12 virulence genes of major waterborne pathogens on cyclic olefin polymer (COP) microchips, using SYTO-82 dye and real time fluorescence loop-mediated isothermal amplification referred here as microRT(f)-LAMP. Signal-to-noise ratio (SNR) and threshold time (Tt) of microRT(f)-LAMP assays are compared with those from a commercial real-time polymerase chain reaction (PCR) instrument. Applying a CCD exposure of 5 s to 10(5) starting DNA copies of microRT(f)-LAMP assays increases the SNR by 8-fold and reduces the Tt by 9.8 min in comparison to a commercial real-time PCR instrument. Additionally, single copy level sensitivity for Campylobacter jejuni 0414 gene is obtained for microRT(f)-LAMP with a Tt of 19 min, which is half the time of the commercial real-time PCR instrument. Due to the control over the exposure time and the wide field imaging capability of CCD, this low-cost fluorescence imaging system has the potential for rapid and parallel detection of pathogenic microorganisms in high throughput microfluidic chips.

  3. PANET: a GPU-based tool for fast parallel analysis of robustness dynamics and feed-forward/feedback loop structures in large-scale biological networks.

    Directory of Open Access Journals (Sweden)

    Hung-Cuong Trinh

    Full Text Available It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic property which can be induced by an observed result because it has no function to simulate the observation on a large number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and example datasets are freely available at http://panet-csc.sourceforge.net/.

  4. Mass Spectrometry-based Footprinting Reveals Structural Dynamics of Loop E of the Chlorophyll-binding Protein CP43 during Photosystem II Assembly in the Cyanobacterium Synechocystis 6803*

    Science.gov (United States)

    Liu, Haijun; Chen, Jiawei; Huang, Richard Y.-C.; Weisz, Daniel; Gross, Michael L.; Pakrasi, Himadri B.

    2013-01-01

    The PSII repair cycle is required for sustainable photosynthesis in oxygenic photosynthetic organisms. In cyanobacteria and higher plants, proteolysis of the precursor D1 protein (pD1) to expose a C-terminal carboxylate group is an essential step leading to coordination of the Mn4CaO5 cluster, the site of water oxidation. Psb27 appears to associate with both pD1- and D1-containing PSII assembly intermediates by closely interacting with CP43. Here, we report that reduced binding affinity between CP43 and Psb27 is triggered by the removal of the C-terminal extension of the pD1 protein. A mass spectrometry-based footprinting strategy was adopted to probe solvent-exposed aspartic and glutamic acid residues on the CP43 protein. By comparing the extent of footprinting between HT3ΔctpAΔ27PSII and HT3ΔctpAPSII, two genetically modified PSII assembly complexes, we found that Psb27 binds to CP43 on the side of Loop E distal to the pseudo-symmetrical D1-D2 axis. By comparing a second pair of PSII assembly complexes, we discovered that Loop E of CP43 undergoes a significant conformational rearrangement due to the removal of the pD1 C-terminal extension, altering the Psb27-CP43 binding interface. The significance of this conformational rearrangement is discussed in the context of recruitment of the PSII lumenal extrinsic proteins and Mn4CaO5 cluster assembly. In addition to CP43's previously known function as one of the core PSII antenna proteins, this work demonstrates that Loop E of CP43 plays an important role in the functional assembly of the Water Oxidizing Center (WOC) during PSII biogenesis. PMID:23546881

  5. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    Science.gov (United States)

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  6. My contribution to broadening the base of chemical engineering.

    Science.gov (United States)

    Sargent, Roger W H

    2011-01-01

    This paper is a short account, from a personal viewpoint, of the various contributions I have made to expand the academic basis of chemical engineering from its origin in the unifying concept of unit operations, focussed on process design, to encompassing all the professional activities of industrial chemical engineers. This includes all aspects of planning and scheduling the operations as well as designing and controlling the process plant. The span of my career also happens to include the birth of the age of computing, with all the consequential implications.

  7. Holonomy loops, spectral triples and quantum gravity

    DEFF Research Database (Denmark)

    Johannes, Aastrup; Grimstrup, Jesper Møller; Nest, Ryszard

    2009-01-01

    We review the motivation, construction and physical interpretation of a semi-finite spectral triple obtained through a rearrangement of central elements of loop quantum gravity. The triple is based on a countable set of oriented graphs and the algebra consists of generalized holonomy loops...

  8. 77 FR 18752 - Benzidine-Based Chemical Substances; Di-n

    Science.gov (United States)

    2012-03-28

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 721 RIN 2070-AJ73 Benzidine-Based Chemical Substances; Di-n-pentyl phthalate (DnPP...-based chemical substances; a SNUR for di-n-pentyl phthalate (DnPP) (1,2-benzenedicarboxylic acid,...

  9. Chemical Looping Combustion of Solid Fuels in a Laboratory Fluidized-bed Reactor Combustion de charges solides avec la boucle chimique dans un lit fluidisé de laboratoire

    Directory of Open Access Journals (Sweden)

    Leion H.

    2011-02-01

    Full Text Available When using solid fuel in a chemical looping system, the char fraction of the fuel needs to be gasified before syngas react with the oxygen carrier. This can be done inside the fuel reactor with fuel and oxygen carriers well mixed, and, since this gasification is comparably slow, this will be the time limiting step of such a system. An option is to use an oxygen carrier that is able to release gas-phase oxygen which can react with the fuel by normal combustion giving a significantly faster overall fuel conversion. This last option is generally referred to as Chemical Looping combustion with Oxygen Un-coupling (CLOU. In this work, an overview is given of parameters that affect the fuel conversion in laboratory CLC and CLOU experiments. The main factor determining the fuel conversion, in both CLC and CLOU, is the fuel itself. High-volatile fuels are generally more rapidly converted than low volatile fuels. This difference in fuel conversion rate is more pronounced in CLC than in CLOU. However, the fuel conversion is also, both for CLC and CLOU, increased by increasing temperature. Increased steam and SO2 fraction in the surrounding gas will also enhance the fuel conversion in CLC. CO2 gasification in CLC appears to be very slow in comparison to steam gasification. H2 can inhibit fuel gasification in CLC whereas CO did not seem to have any effect. Possible deactivation of oxygen carriers due to SO2 or ash also has to be considered. Lorsque l’on utilise des combustibles solides dans la boucle chimique (CLC pour Chemical Looping Combustion, il est nécessaire de gazéifier le char avant de faire la combustion du gaz de synthèse au contact du transporteur d’oxygène. Ces réactions peuvent s’effectuer dans le réacteur fuel, dans lequel le combustible et le transporteur d’oxygène sont bien mélangés. Cependant, la gazéification du charbon est lente et reste l’étape limitante du processus de combustion dans ces conditions. Une alternative

  10. A four-component organogel based on orthogonal chemical interactions.

    Science.gov (United States)

    Luisier, Nicolas; Schenk, Kurt; Severin, Kay

    2014-09-14

    A thermoresponsive organogel was obtained by orthogonal assembly of four compounds using dynamic covalent boronate ester and imine bonds, as well as dative boron-nitrogen bonds. It is shown that the gel state can be disrupted or reinforced by chemicals which undergo exchange reactions with the gel components.

  11. Model Based Monitoring and Control of Chemical and Biochemical Processes

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted

    This presentation will give an overview of the work performed at the department of Chemical and Biochemical Engineering related to process control. A research vision is formulated and related to a number of active projects at the department. In more detail a project describing model estimation...

  12. Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors

    Directory of Open Access Journals (Sweden)

    PingAn Hu

    2010-05-01

    Full Text Available Over the past decade, electrical detection of chemical and biological species using novel nanostructure-based devices has attracted significant attention for chemical, genomics, biomedical diagnostics, and drug discovery applications. The use of nanostructured devices in chemical/biological sensors in place of conventional sensing technologies has advantages of high sensitivity, low decreased energy consumption and potentially highly miniaturized integration. Owing to their particular structure, excellent electrical properties and high chemical stability, carbon nanotube and graphene based electrical devices have been widely developed for high performance label-free chemical/biological sensors. Here, we review the latest developments of carbon nanostructure-based transistor sensors in ultrasensitive detection of chemical/biological entities, such as poisonous gases, nucleic acids, proteins and cells.

  13. Solution NMR determination of hydrogen bonding and base pairing between the glyQS T box riboswitch Specifier domain and the anticodon loop of tRNA(Gly).

    Science.gov (United States)

    Chang, Andrew T; Nikonowicz, Edward P

    2013-11-01

    In Gram-positive bacteria the tRNA-dependent T box riboswitch regulates the expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. The Specifier domain of the T box riboswitch contains the Specifier sequence that is complementary to the tRNA anticodon and is flanked by a highly conserved purine nucleotide that could result in a fourth base pair involving the invariant U33 of tRNA. We show that the interaction between the T box Specifier domain and tRNA consists of three Watson-Crick base pairs and that U33 confers stability to the complex through intramolecular hydrogen bonding. Enhanced packing within the Specifier domain loop E motif may stabilize the complex and contribute to cognate tRNA selection.

  14. A New Optimal Control System Design for Chemical Processes

    Institute of Scientific and Technical Information of China (English)

    丛二丁; 胡明慧; 涂善东; 邵惠鹤

    2013-01-01

    Based on frequency response and convex optimization, a novel optimal control system was developed for chemical processes. The feedforward control is designed to improve the tracking performance of closed loop chemical systems. The parametric model is not required because the system directly utilizes the frequency response of the loop transfer function, which can be measured accurately. In particular, the extremal values of magnitude and phase can be solved according to constrained quadratic programming optimizer and convex optimization. Simula-tion examples show the effectiveness of the method. The design method is simple and easily adopted in chemical industry.

  15. Coxeter-Chein Loops

    CERN Document Server

    Blok, Rieuwert J

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give amalgam presentations for Coxeter-Chein loops. This is to our knowledge the first such presentation for a Moufang loop.

  16. Cosmic string loop shapes

    CERN Document Server

    Blanco-Pillado, Jose J; Shlaer, Benjamin

    2015-01-01

    We analyze the shapes of cosmic string loops found in large-scale simulations of an expanding-universe string network. The simulation does not include gravitational back reaction, but we model that process by smoothing the loop using Lorentzian convolution. We find that loops at formation consist of generally straight segments separated by kinks. We do not see cusps or any cusp-like structure at the scale of the entire loop, although we do see very small regions of string that move with large Lorentz boosts. However, smoothing of the string almost always introduces two cusps on each loop. The smoothing process does not lead to any significant fragmentation of loops that were in non-self-intersecting trajectories before smoothing.

  17. Examination of Perovskite Structure CaMnO3-δ with MgO Addition as Oxygen Carrier for Chemical Looping with Oxygen Uncoupling Using Methane and Syngas

    Directory of Open Access Journals (Sweden)

    Dazheng Jing

    2013-01-01

    Full Text Available Perovskite structure oxygen carriers with the general formula CaMnxMg1-xO3-δ were spray-dried and examined in a batch fluidized bed reactor. The CLOU behavior, reactivity towards methane, and syngas were investigated at temperature 900°C to 1050°C. All particles showed CLOU behavior at these temperatures. For experiments with methane, a bed mass corresponding to 57 kg/MW was used in the reactor, and the average CH4 to CO2 conversion was above 97% for most materials. Full syngas conversion was achieved for all materials utilizing a bed mass corresponding to 178 kg/MW. SEM/EDX and XRD confirmed the presence of MgO in the fresh and used samples, indicating that the Mg cation is not incorporated into the perovskite structure and the active compound is likely pure CaMnO3-δ. The very high reactivity with fuel gases, comparable to that of baseline oxygen carriers of NiO, makes these perovskite particles highly interesting for commercial CLC application. Contrary to NiO, oxygen carriers based on CaMnO3-δ have no thermodynamic limitations for methane oxidation to CO2 and H2O, not to mention that the materials are environmentally friendly and can utilize much cheaper raw materials for production. The physical properties, crystalline phases, and morphology information were also determined in this work.

  18. Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Seright

    2007-09-30

    This final technical progress report describes work performed from October 1, 2004, through May 16, 2007, for the project, 'Aperture-Tolerant, Chemical-Based Methods to Reduce Channeling'. We explored the potential of pore-filling gels for reducing excess water production from both fractured and unfractured production wells. Several gel formulations were identified that met the requirements--i.e., providing water residual resistance factors greater than 2,000 and ultimate oil residual resistance factors (F{sub rro}) of 2 or less. Significant oil throughput was required to achieve low F{sub rro} values, suggesting that gelant penetration into porous rock must be small (a few feet or less) for existing pore-filling gels to provide effective disproportionate permeability reduction. Compared with adsorbed polymers and weak gels, strong pore-filling gels can provide greater reliability and behavior that is insensitive to the initial rock permeability. Guidance is provided on where relative-permeability-modification/disproportionate-permeability-reduction treatments can be successfully applied for use in either oil or gas production wells. When properly designed and executed, these treatments can be successfully applied to a limited range of oilfield excessive-water-production problems. We examined whether gel rheology can explain behavior during extrusion through fractures. The rheology behavior of the gels tested showed a strong parallel to the results obtained from previous gel extrusion experiments. However, for a given aperture (fracture width or plate-plate separation), the pressure gradients measured during the gel extrusion experiments were much higher than anticipated from rheology measurements. Extensive experiments established that wall slip and first normal stress difference were not responsible for the pressure gradient discrepancy. To explain the discrepancy, we noted that the aperture for gel flow (for mobile gel wormholing through concentrated

  19. Testable two-loop radiative neutrino mass model based on an LLQd^cQd^c effective operator

    CERN Document Server

    Angel, Paul W; Rodd, Nicholas L; Schmidt, Michael A; Volkas, Raymond R

    2013-01-01

    A new two-loop radiative Majorana neutrino mass model is constructed from the gauge- invariant effective operator L^i L^j Q^k d^c Q^l d^c \\epsilon_{ik} \\epsilon_{jl} that violates lepton number conservation by two units. The ultraviolet completion features two scalar leptoquark flavors and a color-octet Majorana fermion. We show that there exists a region of parameter space where the neutrino oscillation data can be fitted while simultaneously meeting flavor-violation and collider bounds. The model is testable through lepton flavor-violating processes such as {\\mu} -> e{\\gamma}, {\\mu} -> eee, and {\\mu}N -> eN conversion, as well as collider searches for the scalar leptoquarks and color-octet fermion. We computed and compiled a list of necessary Passarino-Veltman integrals up to boxes in the approximation of vanishing external momenta and made them available as a Mathematica package, denoted as ANT.

  20. Efficient and Specific Detection of Salmonella in Food Samples Using a stn-Based Loop-Mediated Isothermal Amplification Method

    Directory of Open Access Journals (Sweden)

    Mevaree Srisawat

    2015-01-01

    Full Text Available The Salmonella enterotoxin (stn gene exhibits high homology among S. enterica serovars and S. bongori. A set of 6 specific primers targeting the stn gene were designed for detection of Salmonella spp. using the loop-mediated isothermal amplification (LAMP method. The primers amplified target sequences in all 102 strains of 87 serovars of Salmonella tested and no products were detected in 57 non-Salmonella strains. The detection limit in pure cultures was 5 fg DNA/reaction when amplified at 65°C for 25 min. The LAMP assay could detect Salmonella in artificially contaminated food samples as low as 220 cells/g of food without a preenrichment step. However, the sensitivity was increased 100-fold (~2 cells/g following 5 hr preenrichment at 35°C. The LAMP technique, with a preenrichment step for 5 and 16 hr, was shown to give 100% specificity with food samples compared to the reference culture method in which 67 out of 90 food samples gave positive results. Different food matrixes did not interfere with LAMP detection which employed a simple boiling method for DNA template preparation. The results indicate that the LAMP method, targeting the stn gene, has great potential for detection of Salmonella in food samples with both high specificity and high sensitivity.

  1. Coxeter-Chein Loops

    OpenAIRE

    Blok, Rieuwert J.; Gagola III, Stephen

    2011-01-01

    In 1974 Orin Chein discovered a new family of Moufang loops which are now called Chein loops. Such a loop can be created from any group $W$ together with $\\mathbb{Z}_2$ by a variation on a semi-direct product. We study these loops in the case where $W$ is a Coxeter group and show that it has what we call a Chein-Coxeter system, a small set of generators of order 2, together with a set of relations closely related to the Coxeter relations and Chein relations. As a result we are able to give am...

  2. Chemical bases for medicinal plant use in Oaxaca, Mexico.

    Science.gov (United States)

    Ortiz de Montellano, B R; Browner, C H

    1985-03-01

    Fifty-eight medicinal plants used for the management of reproduction and the treatment of women's reproductive health problems in an indigenous community in southern Mexico are described. The efficacy of these plants is assessed according to both community members' understandings of the therapeutic effects they seek and the standards of conventional Western medicine. The majority of the plants contain chemicals which would appear to enable them to accomplish their intended effects in either or both the popular and the conventional medical systems.

  3. Process design and simulation of open-loop sulfur-iodine thermo-chemical cycle for hydrogen production%热化学硫碘开路循环制氢系统的设计与模拟

    Institute of Scientific and Technical Information of China (English)

    杨剑; 王智化; 张彦威; 陈云; 周俊虎; 岑可法

    2011-01-01

    In order to optimize the process and thermal efficiency of the open-loop sulfur-iodine (SI) thermo-chemical cycle for production of hydrogen, a flowsheet of open-loop SI thermo-chemical cycle was designed and simulated by Aspen Plus. The heat and mass balance as well as thermal efficiency were first calculated. The maximum thermal efficiency of the process was 66.2% considering waste heat recoveryand pumping power. Secondly, through sensitivity analysis, the effects of 5 operating parameters like: reflux ratio at HI distillation column, pressure in HI distillation column, flow rate of HI phase, conversion ratio of HI and mass fraction of H2 SO4 were evaluated to the thermal efficiency. Results show that the flow rate of HI phase and reflux ratio of the HI distillation column are the primary paramenters influence the total efficiency, while the other parameters are not so obviously. Through optimization of the Bunsen reactor operation condition, the flow rate of the HI phase can be reduced therefore improve the whole thermal efficiency. The simulation results agree well with published datas and can be used as reference for design and optimization of the large scale SI thermo-chemical cycle H2 production system.%为了对热化学硫碘开路循环制氢系统进行优化设计及热效率评估,利用大型化工流程模拟软件AspenPlus对硫碘开路循环联产氢气和硫酸系统进行设计和模拟,计算质量、能量平衡及热效率.在考虑泵功和废热回收的情况下,开路系统的最高计算热效率达到66.2%.其次,利用灵敏度分析,分别考察HI精馏塔同流比、精馏塔压力、HI相循环量、HI分解率和产品硫酸质量分数5个设计参数对系统效率的影响.结果显示,HI相循环量和精馏塔同流比是影响系统效率的主要因素,其他参数对效率影响较小.通过优化本生反应操作条件可显著减少HI相的循环量,提高系统效率.计算结果与文献参考值接近,为今后大

  4. CuO/Al2O3作为载氧剂的流化床化学链燃烧数值模拟%Numerical Simulation of Fluidized Bed Chemical Looping Combustion Using CuO/Al2O3 as Oxygen Carrier

    Institute of Scientific and Technical Information of China (English)

    李俊; 郭雪岩

    2012-01-01

    Based on the Eulerian-Eulerian bi-fluid model and the kinetic model of the gas-solid heterogeneous chemical reactions,by adding the UDF (user defined function) code into Fluent 6.3 flow solver to integrate the chemical reaction mechanism and heat source term, the gas-solid flow processes and chemical reactions of the chemical looping combustion in the fuel reactor-the spouted fluidized bed were modeled. The influences of methane gas inlet velocities on gas-solid flow feature,heat transfer and chemical reaction rates were analyzed. With an increasing methane inlet velocity, the gas and solids are found to be mixed more intensely and the uneven distribution of gas-solid, lower quality of fluidization,and non-uniform chemical reaction rates and temperature will take place due to the formation,collision and burst of the bubbles. It is also found that there are some spots of higher temperature in local regions, which may lead to particles agglomeration and lower efficiencies of methane combustion.%以欧拉-欧拉双流体模型和气固非均相化学反应动力学为基础,嵌入了气固化学反应速率方程和反应内热源项的UDF(自定义函数)程序,对化学链燃烧燃料反应器——鼓泡流化床内气固两相流动及化学反应过程进行了数值模拟,并分析了甲烷进气速度对床内气固两相流动、传热及化学反应速率的影响.结果表明:随着甲烷进气速度增加,床内气固混合更加剧烈,气泡的产生、碰撞和破碎使得气固分布不均,流化质量下降,导致反应器内化学反应速率以及温度分布不均,床内局部存在的高温区域将使颗粒温度过高而烧结,降低了甲烷燃烧效率.

  5. Uranyl Nitrate Flow Loop

    Energy Technology Data Exchange (ETDEWEB)

    Ladd-Lively, Jennifer L [ORNL

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion

  6. Inferential protein structure determination and refinement using fast, electronic structure based backbone amide chemical shift predictions

    CERN Document Server

    Christensen, Anders S

    2015-01-01

    This report covers the development of a new, fast method for calculating the backbone amide proton chemical shifts in proteins. Through quantum chemical calculations, structure-based forudsiglese the chemical shift for amidprotonen in protein has been parameterized. The parameters are then implemented in a computer program called Padawan. The program has since been implemented in protein folding program Phaistos, wherein the method andvendes to de novo folding of the protein structures and to refine the existing protein structures.

  7. Progress toward controlling in vivo fibrillating sheep atria using a nonlinear-dynamics-based closed-loop feedback method

    Science.gov (United States)

    Gauthier, Daniel J.; Hall, G. Martin; Oliver, Robert A.; Dixon-Tulloch, Ellen G.; Wolf, Patrick D.; Bahar, Sonya

    2002-09-01

    We describe preliminary experiments on controlling in vivo atrial fibrillation using a closed-loop feedback protocol that measures the dynamics of the right atrium at a single spatial location and applies control perturbations at a single spatial location. This study allows investigation of control of cardiac dynamics in a preparation that is physiologically close to an in vivo human heart. The spatial-temporal response of the fibrillating sheep atrium is measured using a multi-channel electronic recording system to assess the control effectiveness. In an attempt to suppress fibrillation, we implement a scheme that paces occasionally the cardiac muscle with small shocks. When successful, the inter-activation time interval is the same and electrical stimuli are only applied when the controller senses that the dynamics are beginning to depart from the desired periodic rhythm. The shock timing is adjusted in real time using a control algorithm that attempts to synchronize the most recently measured inter-activation interval with the previous interval by inducing an activation at a time projected by the algorithm. The scheme is "single-sided" in that it can only shorten the inter-activation time but not lengthen it. Using probability distributions of the inter-activation time intervals, we find that the feedback protocol is not effective in regularizing the dynamics. One possible reason for the less-than-successful results is that the controller often attempts to stimulate the tissue while it is still in the refractory state and hence it does not induce an activation.

  8. Chemical composition of silica-based biocidal modifier

    Directory of Open Access Journals (Sweden)

    Grishina Anna Nikolaevna

    2016-11-01

    Full Text Available Increase of the amount of fungi spores and micotixines causes the increase in the number of different diseases. Because of this, ensuring the biological safety in buildings is becoming more and more important today. The preferred way to guarantee the biological safety of a building is to employ modern building materials that prevent the settlement of the fungi colonies on the inner surfaces of walls. Such building materials can be produced using novel biocidal modifiers that allow controlling the number of microorganisms on the surface and in the bulk of a composite construction. The precipitation product of zinc hydrosilicates and sodium sulfate is one of the mentioned modifiers. Till now, the exact chemical composition of such precipitation product is controversial; it is obvious, though, that the efficacy of the biocidal modifier is mostly determined by the type of the copper compounds. In the present work an integrated approach is used for the investigation of the chemical composition of the biocidal modifier. Such an approach consists in the examination of the modifier’s composition by means of different, yet complementary, research methods: X-ray diffraction, infrared spectroscopy and DTA. It is shown that the chemical composition of the modifier mainly depends on the amount of precipitant. X-ray diffraction reveals that the major part of the modifier is represented by amorphous phase. Along with the increase of the precipitant’s amount the crystalline phase Zn4SO4(OH6•xH2O formation takes place. Such a crystalline phase is not appropriate as a component of the biocidal modifier. Another two methods - DTA and IR spectroscopy - reveal that the amorphous phase consists essentially of zinc hydrosilicates.

  9. Electronic and chemical properties of graphene-based structures:

    DEFF Research Database (Denmark)

    Vanin, Marco

    hydrogen passivation. A joint experimental and theoretical study of the mechanism by which suspended graphene is etched by catalytically active silver nanoparticles have been studied. The experimental observation of zigzag channels is elucidated by the DFT calculations, which show that the armchair edges...... are easier to remove and therefore only zigzag edges are left. Finally, functionalized graphene has been investigated as catalyst for the electrochemical reduction of CO2 to chemical fuels and comparisons are made with traditional transition-metal surfaces. The investigated porphyrin-like structures...

  10. Investigation of opening switch mechanisms based on chemically reactive plasmas

    Science.gov (United States)

    Lapatovich, W. P.; Piejak, R. B.; Proud, J. M.

    1985-11-01

    An investigation of discharge-induced chemical reactions resulting in high-density product vapors containing strongly attaching gases has been conducted to evaluate the feasibility and potential of such reactions in rapid opening plasma switches. This new concept of employing such reactions to limit and/or interrupt large currents on a microsecond time scale was studied in two element (electrodeless and electroded) devices and in three element (electroded) devices. Bimolecular and unimolecular reactions were considered. The plasma reaction between AlCl sub 3 and SiO sub 2 was studied. The electrical properties of one of the reaction products (SiCl sub 4) is reported.

  11. Space-Based Chemical Lasers in Strategic Defense

    Science.gov (United States)

    2007-11-02

    using <fJ*™’™ „, „,,„,,; rrÄr^ÄSXnceuea. MlRACL Chemical laser at White planned for 1995. ssssSS Sands New Mexico ^f Tit:*n s«ron»1 «>ta<J*’f...AsswnHY P«o Su<«y CS2 Secwios CaoaMitv LPE 10,412 OPE 12.323 S/C with Test Objects 12,382 Subtotal 35,117 Titan IVA Margin !32.7°.o

  12. Validation of metabolic pathway databases based on chemical substructure search.

    Science.gov (United States)

    Félix, Liliana; Valiente, Gabriel

    2007-09-01

    Metabolic pathway databases such as KEGG contain information on thousands of biochemical reactions drawn from the biomedical literature. Ensuring consistency of such large metabolic pathways is essential to their proper use. In this paper, we present a new method to determine consistency of an important class of biochemical reactions. Our method exploits the knowledge of the atomic rearrangement pattern in biochemical reactions, to reduce the automatic atom mapping problem to a series of chemical substructure searches between the substrate and the product of a biochemical reaction. As an illustrative application, we describe the exhaustive validation of a substantial portion from the latest release of the KEGG LIGAND database.

  13. Non-allergic cutaneous reactions in airborne chemical sensitivity--a population based study.

    Science.gov (United States)

    Berg, Nikolaj Drimer; Linneberg, Allan; Thyssen, Jacob Pontoppidan; Dirksen, Asger; Elberling, Jesper

    2011-06-01

    Multiple chemical sensitivity (MCS) is characterised by adverse effects due to exposure to low levels of chemical substances. The aetiology is unknown, but chemical related respiratory symptoms have been found associated with positive patch test. The purpose of this study was to investigate the relationship between cutaneous reactions from patch testing and self-reported severity of chemical sensitivity to common airborne chemicals. A total of 3460 individuals participating in a general health examination, Health 2006, were patch tested with allergens from the European standard series and screened for chemical sensitivity with a standardised questionnaire dividing the participants into four severity groups of chemical sensitivity. Both allergic and non-allergic cutaneous reactions--defined as irritative, follicular, or doubtful allergic reactions--were analysed in relationship with severity of chemical sensitivity. Associations were controlled for the possible confounding effects of sex, age, asthma, eczema, atopic dermatitis, psychological and social factors, and smoking habits. In unadjusted analyses we found associations between allergic and non-allergic cutaneous reactions on patch testing and the two most severe groups of self-reported sensitivity to airborne chemicals. When adjusting for confounding, associations were weakened, and only non-allergic cutaneous reactions were significantly associated with individuals most severely affected by inhalation of airborne chemicals (odds ratio = 2.5, p = 0.006). Our results suggest that individuals with self-reported chemical sensitivity show increased non-allergic cutaneous reactions based on day 2 readings of patch tests.

  14. The Loop Algorithm

    Science.gov (United States)

    Evertz, Hans Gerd

    1998-03-01

    Exciting new investigations have recently become possible for strongly correlated systems of spins, bosons, and fermions, through Quantum Monte Carlo simulations with the Loop Algorithm (H.G. Evertz, G. Lana, and M. Marcu, Phys. Rev. Lett. 70, 875 (1993).) (For a recent review see: H.G. Evertz, xxx.lanl.gov/abs/cond-mat/9707221>cond- mat/9707221.) and its generalizations. A review of this new method, its generalizations and its applications is given, including some new results. The Loop Algorithm is based on a formulation of physical models in an extended ensemble of worldlines and graphs, and is related to Swendsen-Wang cluster algorithms. It performs nonlocal changes of worldline configurations, determined by local stochastic decisions. It overcomes many of the difficulties of traditional worldline simulations. Computer time requirements are reduced by orders of magnitude, through a corresponding reduction in autocorrelations. The grand-canonical ensemble (e.g. varying winding numbers) is naturally simulated. The continuous time limit can be taken directly. Improved Estimators exist which further reduce the errors of measured quantities. The algorithm applies unchanged in any dimension and for varying bond-strengths. It becomes less efficient in the presence of strong site disorder or strong magnetic fields. It applies directly to locally XYZ-like spin, fermion, and hard-core boson models. It has been extended to the Hubbard and the tJ model and generalized to higher spin representations. There have already been several large scale applications, especially for Heisenberg-like models, including a high statistics continuous time calculation of quantum critical exponents on a regularly depleted two-dimensional lattice of up to 20000 spatial sites at temperatures down to T=0.01 J.

  15. AC bias characterization of low noise bolometers for SAFARI using an Open-Loop Frequency Domain SQUID-based multiplexer operating between 1 and 5 MHz

    CERN Document Server

    Gottardi, Luciano; Gao, Jan-R; Hartog, Roland den; Hijmering, Richard; Hoevers, Henk; Khosropanah, Pourya; de Korte, Piet; van der Kuur, Jan; Lindeman, Mark; Ridder, Marcel

    2016-01-01

    SRON is developing the Frequency Domain Multiplexing (FDM) readout and the ultra low NEP TES bolometers array for the infrared spectrometer SAFARI on board of the Japanese space mission SPICA. The FDM prototype of the instrument requires critical and complex optimizations. For single pixel characterization under AC bias we are developing a simple FDM system working in the frequency range from 1 to 5 MHz, based on the open loop read-out of a linearized two-stage SQUID amplifier and high Q lithographic LC resonators. We describe the details of the experimental set-up required to achieve low power loading (< 1 fW) and low noise (NEP $\\sim 10^{-19} W/Hz^{1/2}$) in the TES bolometers. We conclude the paper by comparing the performance of a $4 \\cdot 10^{-19} W/Hz^{1/2}$ TES bolometer measured under DC and AC bias.

  16. Modified Projective Synchronization between Different Fractional-Order Systems Based on Open-Plus-Closed-Loop Control and Its Application in Image Encryption

    Directory of Open Access Journals (Sweden)

    Hongjuan Liu

    2014-01-01

    Full Text Available A new general and systematic coupling scheme is developed to achieve the modified projective synchronization (MPS of different fractional-order systems under parameter mismatch via the Open-Plus-Closed-Loop (OPCL control. Based on the stability theorem of linear fractional-order systems, some sufficient conditions for MPS are proposed. Two groups of numerical simulations on the incommensurate fraction-order system and commensurate fraction-order system are presented to justify the theoretical analysis. Due to the unpredictability of the scale factors and the use of fractional-order systems, the chaotic data from the MPS is selected to encrypt a plain image to obtain higher security. Simulation results show that our method is efficient with a large key space, high sensitivity to encryption keys, resistance to attack of differential attacks, and statistical analysis.

  17. Frequency comb-based microwave transfer over fiber with $7 \\times 10^{-19}$ instability using fiber-loop optical-microwave phase detectors

    CERN Document Server

    Jung, Kwangyun; Kang, Jinho; Hunziker, Stephan; Min, Chang-Ki; Kim, Jungwon

    2013-01-01

    We demonstrate a remote microwave/radio-frequency (RF) transfer technique based on the stabilization of a fiber link using a fiber-loop optical-microwave phase detector (FLOM-PD). This method compensates for the excess phase fluctuations introduced in fiber transfer by direct phase comparison between the optical pulse train reflected from the remote site and the local microwave/RF signal using the FLOM-PD. This enables sub-fs resolution and long-term stable link stabilization while having wide timing detection range and less demand in fiber dispersion compensation. The demonstrated relative frequency instability between 2.856-GHz RF oscillators separated by a 2.3-km fiber link is $7.6 \\times 10^{-18}$ and $6.5 \\times 10^{-19}$ at 1000 s and 82500 s averaging time, respectively.

  18. Multiple-Complex Coefficient-Filter-Based Phase-Locked Loop and Synchronization Technique for Three-phase Grid-Interfaced Converters in Distributed Utility Networks

    DEFF Research Database (Denmark)

    Guo, Xiaoqiang; Wu, Weiyang; Chen, Zhe

    2011-01-01

    Synchronization with the utility networks is crucial for operating three-phase grid-interfaced converters. A challenge of synchronization is how to fast and precisely extract the fundamental positive and negative sequences under the distorted and unbalanced conditions. Many phase-locked loop (PLL...... and rapid extraction of the positive and negative sequence components from the polluted grid voltage, and the harmonic components can also be estimated precisely, which has the potential use for selective compensation in active filter applications. Another advantage of the proposed method is its flexibility...... for simplifying its structure in some specified conditions. Results of continuous-domain simulations in MATLAB and discrete-domain experiments based on a 32-b fixed-point TMS320F2812 DSP are in good agreement, which confirm the effectiveness of the proposed method....

  19. SYNTHESIS OF PROTEINS BY NATIVE CHEMICAL LIGATION USING FMOC-BASED CHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Mitchell, A R

    2005-01-20

    C-terminal peptide {alpha}-thioesters are valuable intermediates in the synthesis/semisynthesis of proteins by native chemical ligation. They are prepared either by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. The present paper reviews the different methods available for the chemical synthesis of peptide {alpha}-thioesters using Fmoc-based SPPS.

  20. Acid-Base Chemistry According to Robert Boyle: Chemical Reactions in Words as well as Symbols

    Science.gov (United States)

    Goodney, David E.

    2006-01-01

    Examples of acid-base reactions from Robert Boyle's "The Sceptical Chemist" are used to illustrate the rich information content of chemical equations. Boyle required lengthy passages of florid language to describe the same reaction that can be done quite simply with a chemical equation. Reading or hearing the words, however, enriches the student's…

  1. Introduction to Chemical Engineering Reactor Analysis: A Web-Based Reactor Design Game

    Science.gov (United States)

    Orbey, Nese; Clay, Molly; Russell, T.W. Fraser

    2014-01-01

    An approach to explain chemical engineering through a Web-based interactive game design was developed and used with college freshman and junior/senior high school students. The goal of this approach was to demonstrate how to model a lab-scale experiment, and use the results to design and operate a chemical reactor. The game incorporates both…

  2. Simulations of a Circulating Fluidized Bed Chemical Looping Combustion System Utilizing Gaseous Fuel Simulation de la combustion en boucle chimique d’une charge gazeuse dans un lit fluidisé circulant

    Directory of Open Access Journals (Sweden)

    Mahalatkar K.

    2011-05-01

    Full Text Available Numerical studies using Computational Fluid Dynamics (CFD have been carried out for a complete circulating fluidized bed chemical looping combustor described in the literature (Abad et al., 2006 Fuel 85, 1174-1185. There have been extensive experimental studies in Chemical Looping Combustion (CLC, however CFD simulations of this concept are quite limited. The CLC experiments that were simulated used methane as fuel. A 2-D continuum model was used to describe both the gas and solid phases. Detailed sub-models to account for fluid-particle and particleparticle interaction forces were included. Global models of fuel and carrier chemistry were utilized. The results obtained from CFD were compared with experimental outlet species concentrations, solid circulation rates, solid mass distribution in the reactors, and leakage and dilution rates. The transient CFD simulations provided a reasonable match with the reported experimental data. Des études numériques de simulation des écoulements (CFD ont été réalisées sur un lit fluidisé circulant opérant en combustion par boucle chimique (CLC décrit dans la littérature (Abad et al., 2006 Fuel 85, 1174-1185. Si de nombreuses études expérimentales ont été conduites pour étudier le procédé CLC, les études concernant la simulation des écoulements par CFD de ce concept sont très limitées. Le système de combustion en boucle chimique simulé dans cette étude concerne la combustion d’une charge gazeuse (méthane. Un modèle 2-D à deux phases continues a été utilisé pour décrire les phases gaz et solide avec des sous-modèles détaillés pour décrire les forces d’interactions entre fluideparticule et particule-particule. Des modèles cinétiques globaux ont été intégrés pour décrire les réactions de combustion et de transformation du matériau transporteur d’oxygène. Les résultats obtenus par CFD ont été comparés aux concentrations expérimentales mesurées des diff

  3. Damped transverse oscillations of interacting coronal loops

    CERN Document Server

    Soler, Roberto

    2015-01-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...

  4. A self-organizing algorithm for modeling protein loops.

    Directory of Open Access Journals (Sweden)

    Pu Liu

    2009-08-01

    Full Text Available Protein loops, the flexible short segments connecting two stable secondary structural units in proteins, play a critical role in protein structure and function. Constructing chemically sensible conformations of protein loops that seamlessly bridge the gap between the anchor points without introducing any steric collisions remains an open challenge. A variety of algorithms have been developed to tackle the loop closure problem, ranging from inverse kinematics to knowledge-based approaches that utilize pre-existing fragments extracted from known protein structures. However, many of these approaches focus on the generation of conformations that mainly satisfy the fixed end point condition, leaving the steric constraints to be resolved in subsequent post-processing steps. In the present work, we describe a simple solution that simultaneously satisfies not only the end point and steric conditions, but also chirality and planarity constraints. Starting from random initial atomic coordinates, each individual conformation is generated independently by using a simple alternating scheme of pairwise distance adjustments of randomly chosen atoms, followed by fast geometric matching of the conformationally rigid components of the constituent amino acids. The method is conceptually simple, numerically stable and computationally efficient. Very importantly, additional constraints, such as those derived from NMR experiments, hydrogen bonds or salt bridges, can be incorporated into the algorithm in a straightforward and inexpensive way, making the method ideal for solving more complex multi-loop problems. The remarkable performance and robustness of the algorithm are demonstrated on a set of protein loops of length 4, 8, and 12 that have been used in previous studies.

  5. 基于水泥修饰的赤铁矿载氧体污泥化学链燃烧特性研究%Chemical looping combustion of sewage sludge with oxygen carrier of cement-modified hematite

    Institute of Scientific and Technical Information of China (English)

    牛欣; 沈来宏; 肖军; 蒋守席; 顾海明

    2015-01-01

    采用水泥修饰赤铁矿来提高载氧体的反应活性。实验在1 kWth串行流化床上进行,研究了添加水泥对污泥化学链燃烧特性的影响,考察其长期运行的物化性能。结果表明,在实验工况下,赤铁矿添加水泥后,出口的未燃气体浓度明显下降。燃料反应器温度低于870℃时,水泥的添加使污泥的碳转化率和燃烧效率显著升高。在10 h长期运行后,一部分污泥灰沉积在载氧体表面。虽然在反应过程中部分的Fe2 O3被深度还原,但在长期运行中未出现流化问题和烧结现象。%Chemical looping combustion ( CLC) for sewage sludge has a relatively low efficiency using hematite as oxygen carrier. The experiments on improving the reactivity of hematite with cement modified for CLC of sewage sludge in a 1 kWth continuous CLC unit were carried out. Compared to hematite oxygen carrier, the concentrations of unconverted combustible gas rapidly decrease when the cement-hematite is used. Moreover, both carbon conversion and combustion efficiency increase when the cement is added. Although some ash particles deposit on the surface of oxygen carrier and a part of Fe2 O3 is reduced to FeO, there are no defluidization and sintering problems.

  6. SDG-based Model Validation in Chemical Process Simulation

    Institute of Scientific and Technical Information of China (English)

    张贝克; 许欣; 马昕; 吴重光

    2013-01-01

    Signed direct graph (SDG) theory provides algorithms and methods that can be applied directly to chemical process modeling and analysis to validate simulation models, and is a basis for the development of a soft-ware environment that can automate the validation activity. This paper is concentrated on the pretreatment of the model validation. We use the validation scenarios and standard sequences generated by well-established SDG model to validate the trends fitted from the simulation model. The results are helpful to find potential problems, as-sess possible bugs in the simulation model and solve the problem effectively. A case study on a simulation model of boiler is presented to demonstrate the effectiveness of this method.

  7. Design of LTCC-based Ceramic Structure for Chemical Microreactor

    Directory of Open Access Journals (Sweden)

    D. Belavic

    2012-04-01

    Full Text Available The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s, mixer(s, reformer and combustor. Low-temperature co-fired ceramic (LTCC technology was used to fabricate the ceramic structures with buried cavities and channels, and thick-film technology was used to make electrical heaters, temperature sensors and pressure sensors. The final 3D ceramic structure consists of 45 LTCC tapes. The dimensions of the structure are 75 × 41 × 9 mm3 and the weight is about 73 g.

  8. Chemical Sensors Based on Molecularly Imprinted Sol-Gel Materials

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2010-03-01

    Full Text Available The sol-gel technique is earning the worldwide attention of researchers in the field of material science, due to its versatility in synthesizing inorganic ceramic materials at mild conditions. High purity, homogeneity, controlled porosity, stable temperature and nanoscale structuring are the most remarkable features offered by this method for generating highly sensitive and selective matrices to incorporate analyte molecules. The crafting of sol-gel sensors through molecular imprinting has put great influence on the development of innovative chemical sensors, which can be seen from the growing number of publications in this field. The review provides a brief overview of sol-gel sensor applications, and discusses the contribution of molecular imprinting in exploring the new world of sensors.

  9. Mindfulness-based cognitive therapy for multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Hauge, Christian R; Bonde, Jens Peter E; Rasmussen, Alice;

    2012-01-01

    no evidence-based treatments for MCS. Nevertheless, there is a substantial need for a treatment, because the condition can be severely disabling and can greatly reduce the quality of life (QOL) for those affected.In this study, we aim to assess the effects of a mindfulness-based cognitive therapy (MBCT...

  10. Inquiry-Based Examination of Chemical Disruption of Bacterial Biofilms

    Science.gov (United States)

    Redelman, Carly V.; Hawkins, Misty A. W.; Drumwright, Franklin R.; Ransdell, Beverly; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    Inquiry-based instruction in the sciences has been demonstrated as a successful educational strategy to use for both high school and college science classrooms. As participants in the NSF Graduate STEM Fellows in K-12 Education (GK-12) Program, we were tasked with creating novel inquiry-based activities for high school classrooms. As a way to…

  11. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    Science.gov (United States)

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques.

  12. Prediction of Drug Indications Based on Chemical Interactions and Chemical Similarities

    Directory of Open Access Journals (Sweden)

    Guohua Huang

    2015-01-01

    Full Text Available Discovering potential indications of novel or approved drugs is a key step in drug development. Previous computational approaches could be categorized into disease-centric and drug-centric based on the starting point of the issues or small-scaled application and large-scale application according to the diversity of the datasets. Here, a classifier has been constructed to predict the indications of a drug based on the assumption that interactive/associated drugs or drugs with similar structures are more likely to target the same diseases using a large drug indication dataset. To examine the classifier, it was conducted on a dataset with 1,573 drugs retrieved from Comprehensive Medicinal Chemistry database for five times, evaluated by 5-fold cross-validation, yielding five 1st order prediction accuracies that were all approximately 51.48%. Meanwhile, the model yielded an accuracy rate of 50.00% for the 1st order prediction by independent test on a dataset with 32 other drugs in which drug repositioning has been confirmed. Interestingly, some clinically repurposed drug indications that were not included in the datasets are successfully identified by our method. These results suggest that our method may become a useful tool to associate novel molecules with new indications or alternative indications with existing drugs.

  13. Initial chemical transport of reducing elements and chemical reactions in oxide cathode base metal

    Energy Technology Data Exchange (ETDEWEB)

    Roquais, J.M.; Poret, F.; Doze, R. le; Dufour, P.; Steinbrunn, A

    2002-11-30

    In the present work, the formation of compounds associated to the diffusion of reducing elements (Mg and Al) to the nickel surface of a one-piece oxide cathode has been studied. Those compounds have been evidenced after the annealing steps at high temperature performed on cathode base metal prior to the emitting ing deposition. Therefore, they form the ''initial'' interface between the nickel and the coating, in other words, the interface existing at the beginning of cathode life. Extensive analysis to characterize the nickel base prior to coating deposition has been performed by means of scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and glow discharge optical emission spectroscopy (GDOES). TEM and AES analysis have allowed to identify for the first time a spinel compound of MgAl{sub 2}O{sub 4}. The preferential distribution of the different compounds on the nickel surface has been studied by EDX mapping. Experimental profiles of diffusion of the reducing elements in the nickel have been obtained over the entire thickness of the material by GDOES. The mechanism of formation of these compounds together with a related diffusion model are proposed.

  14. Gardner定时同步环路参数设计及性能分析%Parameters design and performance analysis of the timing recovery loop based on Gardner timing detector

    Institute of Scientific and Technical Information of China (English)

    付永明; 朱江; 琚瑛珏

    2012-01-01

    In-depth research was carried out into parameters design in the feedback timing recovery loop based on Gardner timing error detector,according to the theory of digital phase-lock loop. MATLAB based simulation was performed for both first-order and second-order loop. Comprehensive analysis of the influence from loop order and noise- equivalent bandwidth on synchronization performance indicates the relationship between synchronization performance and noise-equivalent bandwidth,which provides a theoretic reference for timing recovery loop design.%以数字锁相环理论为依据,对Gardner定时误差检测器反馈定时环路参数的设计进行了深入研究,基于MATLAB对一阶、二阶环路性能进行了仿真,重点分析了环路阶数和等效噪声带宽对系统性能的影响,得到了等效噪声带宽与定时同步环路性能的关系,为定时同步环路的设计提供了理论依据.

  15. Information Theory and Voting Based Consensus Clustering for Combining Multiple Clusterings of Chemical Structures.

    Science.gov (United States)

    Saeed, Faisal; Salim, Naomie; Abdo, Ammar

    2013-07-01

    Many consensus clustering methods have been applied in different areas such as pattern recognition, machine learning, information theory and bioinformatics. However, few methods have been used for chemical compounds clustering. In this paper, an information theory and voting based algorithm (Adaptive Cumulative Voting-based Aggregation Algorithm A-CVAA) was examined for combining multiple clusterings of chemical structures. The effectiveness of clusterings was evaluated based on the ability of the clustering method to separate active from inactive molecules in each cluster, and the results were compared with Ward's method. The chemical dataset MDL Drug Data Report (MDDR) and the Maximum Unbiased Validation (MUV) dataset were used. Experiments suggest that the adaptive cumulative voting-based consensus method can improve the effectiveness of combining multiple clusterings of chemical structures.

  16. CHEMICALLY MODIFIED FIELD-EFFECT TRANSISTORS - POTENTIOMETRIC AG+ SELECTIVITY OF PVC MEMBRANES BASED ON MACROCYCLIC THIOETHERS

    NARCIS (Netherlands)

    BRZOZKA, Z; COBBEN, PLHM; REINHOUDT, DN; EDEMA, JJH; KELLOGG, RM

    1993-01-01

    A chemically modified field-effect transistor (CHEMFET) with satisfactory Ag+ selectivity is described. The potentiometric Ag+ selectivities of CHEMFETs with plasticized PVC membranes based on macrocyclic thioethers have been determined. All the macrocyclic thioethers tested showed silver response a

  17. Qingtongxia Aluminum Carrying Out Off-site Renovation in Ningdong Energy & Chemical Base

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Recently,the off-site renovation project of Qingtongxia Aluminum commenced the con- struction in Linhe General Industrial Park of Ningdong Energy & Chemical Base,symboliz- ing a concrete step of Qingtongxia Aluminum

  18. Fuskite® preliminary experimental tests based on permeation against vacuum for hydrogen recovery as a potential application in Pb15.7Li loop systems.

    Energy Technology Data Exchange (ETDEWEB)

    Sacristán, R., E-mail: mrosa.sacristan@sener.es [SENER Ingeniería y Sistemas, C/ Provença 392, 5a, 08025 Barcelona (Spain); Veredas, G. [EURATOM-CIEMAT Fusion Assoc., Fusion Technology Division, Av. Complutense 40, 28040 Madrid (Spain); Bonjoch, I. [SENER Ingeniería y Sistemas, C/ Provença 392, 5a, 08025 Barcelona (Spain); Peñalva, I. [UPV/EHU, Departamento de Ingeniería Nuclear y Mecánica de Fluidos, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Calderón, E. [SENER Ingeniería y Sistemas, C/ Provença 392, 5a, 08025 Barcelona (Spain); Alberro, G. [UPV/EHU, Departamento de Ingeniería Nuclear y Mecánica de Fluidos, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Balart, D. [SENER Ingeniería y Sistemas, Avda. Zugazarte 56, 48930 Las Arenas, Vizcaya (Spain); Sarrionandia-Ibarra, A. [UPV/EHU, Departamento de Ingeniería Nuclear y Mecánica de Fluidos, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Pérez, V. [SENER Ingeniería y Sistemas, Avda. Zugazarte 56, 48930 Las Arenas, Vizcaya (Spain); Ibarra, A. [EURATOM-CIEMAT Fusion Assoc., Fusion Technology Division, Av. Complutense 40, 28040 Madrid (Spain); Legarda, F. [UPV/EHU, Departamento de Ingeniería Nuclear y Mecánica de Fluidos, Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2014-10-15

    Highlights: • Full material characterization as far as hydrogen transport properties are concern. • Quantification of permeator leaks and material degasification. • Analysis of H{sub 2} recovered by means of permeation against vacuum in different conditions. • Hydrogen recovery efficiencies determination. - Abstract: Tritium recovery in fusion reactors is one of the main goals in R and D, as a limited inventory is available and its uneconomic production. That is the reason why efficient technologies are indispensable to be developed in order to achieve fast tritium recovery and its subsequent reuse in the system for increasing its self-sufficiency. In this work a flexible tritium recovery demonstrator prototype based on permeation against vacuum concept has been designed and manufactured, as well as all necessary equipment for a Pb15.7Li loop implementation in order to test and demonstrate that an in-pipe integrated solution is possible, and at the same time, to validate the manufacturing process. Thus, efficient rates for more optimized future models could be then extrapolated. The aim of this paper is to show the different testing results that have been carried out in this research project. These results include permeation properties of the material considered for the permeator, as long as it has been manufactured with a novel technique, Selective Laser Melting. They also include vacuum tests on the permeator to quantify possible leakages and to set up and analyze the capability to generate vacuum inside the permeator, and finally, permeation tests with the prototype, in a first stage with a gas mixture of hydrogen and argon inside the loop instead of Pb15.7Li.

  19. Analysis of Thermal Desorption System for the Chemical Treatment of Old Storages of Oil Based Mud

    OpenAIRE

    Tanweer Hussain; Abdul Rehman Memon; Javed Larik

    2013-01-01

    This paper presents an analysis for the chemical treatment of OBM (Oil Based Mud) used in the drilling process in the oil and gas industry. The analysis is based on OBM stored at ENI (Italian National Energy) gas fields at Bhit mount district Jamshoro since the last ten years that has been chemically and physically deteriorated. Characterization of various OBM samples was performed and these samples were processed in order to evaluate the best characteristics of the OBM for optimum treatment ...

  20. Acid-Base Chemistry of White Wine: Analytical Characterisation and Chemical Modelling

    OpenAIRE

    Enrico Prenesti; Silvia Berto; Simona Toso; Pier Giuseppe Daniele

    2012-01-01

    A chemical model of the acid-base properties is optimized for each white wine under study, together with the calculation of their ionic strength, taking into account the contributions of all significant ionic species (strong electrolytes and weak one sensitive to the chemical equilibria). Coupling the HPLC-IEC and HPLC-RP methods, we are able to quantify up to 12 carboxylic acids, the most relevant substances responsible of the acid-base equilibria of wine. The analytical concentration of car...

  1. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  2. Parallelization of While Loops in Nested Loop Programs for Shared-Memory Multiprocessor Systems

    NARCIS (Netherlands)

    Geuns, Stefan J.; Bekooij, Marco J.G.; Bijlsma, Tjerk; Corporaal, Henk

    2011-01-01

    Many applications contain loops with an undetermined number of iterations. These loops have to be parallelized in order to increase the throughput when executed on an embedded multiprocessor platform. This paper presents a method to automatically extract a parallel task graph based on function level

  3. Natively unstructured loops differ from other loops.

    Directory of Open Access Journals (Sweden)

    Avner Schlessinger

    2007-07-01

    Full Text Available Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested

  4. Natively unstructured loops differ from other loops.

    Science.gov (United States)

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-07-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%-70% of all worm proteins observed to have more than seven protein-protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  5. A two-loop excitation control system for synchronous generators

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ramirez, Jose; Cervantes, Ilse; Escarela-Perez, Rafael; Espinosa-Perez, Gerardo [Seccion de Estudios de Posgrado e Investigacion ESIME-C, Av. Santa Ana 1000 Col. San Francisco Culhuacan, Mexico D.F. 04430 (Mexico)

    2005-10-01

    An excitation controller for a single generator based on modern multi-loop design methodology is presented in this paper. The proposed controller consists of two-loops: a stabilizing (damping injection) loop and a voltage regulating loop. The task of the stabilizing loop is to add damping in the face of voltage oscillations. The voltage regulating loop is basically a PI compensator whose objective is to obtain terminal voltage regulation about the prescribed reference. The main contribution of this paper is to give some insights into the systematic derivation of multi-loop controllers of power generators. Certain connections between the two-loop excitation controller and standard PSS-AVR schemes are discussed. In this way, some insight into the stability of the standard PSS scheme is obtained from the analysis of the proposed controller. The proposed controller is evaluated via numerical simulations on a full finite-element model. (author)

  6. Paper-based chemical and biological sensors: Engineering aspects.

    Science.gov (United States)

    Ahmed, Snober; Bui, Minh-Phuong Ngoc; Abbas, Abdennour

    2016-03-15

    Remarkable efforts have been dedicated to paper-based chemosensors and biosensors over the last few years, mainly driven by the promise of reaching the best trade-off between performance, affordability and simplicity. Because of the low-cost and rapid prototyping of these sensors, recent research has been focused on providing affordable diagnostic devices to the developing world. The recent progress in sensitivity, multi-functionality and integration of microfluidic paper-based analytical devices (µPADs), increasingly suggests that this technology is not only attractive in resource-limited environments but it also represents a serious challenger to silicon, glass and polymer-based biosensors. This review discusses the design, chemistry and engineering aspects of these developments, with a focus on the past few years.

  7. Introduction to Loop Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  8. An integrated rotary microfluidic system with DNA extraction, loop-mediated isothermal amplification, and lateral flow strip based detection for point-of-care pathogen diagnostics.

    Science.gov (United States)

    Park, Byung Hyun; Oh, Seung Jun; Jung, Jae Hwan; Choi, Goro; Seo, Ji Hyun; Kim, Do Hyun; Lee, Eun Yeol; Seo, Tae Seok

    2017-05-15

    Point-of-care (POC) molecular diagnostics plays a pivotal role for the prevention and treatment of infectious diseases. In spite of recent advancement in microfluidic based POC devices, there are still rooms for development to realize rapid, automatic and cost-effective sample-to-result genetic analysis. In this study, we propose an integrated rotary microfluidic system that is capable of performing glass microbead based DNA extraction, loop mediated isothermal amplification (LAMP), and colorimetric lateral flow strip based detection in a sequential manner with an optimized microfluidic design and a rotational speed control. Rotation direction-dependent coriolis force and siphon valving structures enable us to perform the fluidic control and metering, and the use of the lateral flow strip as a detection method renders all the analytical processes for nucleic acid test simplified and integrated without the need of expensive instruments or human intervention. As a proof of concept for point-of-care DNA diagnostics, we identified the food-borne bacterial pathogen which was contaminated in water or milk. Not only monoplex Salmonella Typhimurium but also multiplex Salmonella Typhimurium and Vibrio parahaemolyticus were analysed on the integrated rotary genetic analysis microsystem with a limit of detection of 50 CFU in 80min. In addition, three multiple samples were simultaneously analysed on a single device. The sample-to-result capability of the proposed microdevice provides great usefulness in the fields of clinical diagnostics, food safety and environment monitoring.

  9. Blind Loop Syndrome

    Science.gov (United States)

    ... more commonly result from other conditions such as short bowel syndrome or chronic pancreatitis. Small intestine aspirate and fluid ... people with severe blind loop syndrome resulting in short bowel syndrome. References Townsend CM Jr, et al. Sabiston Textbook ...

  10. A loop quantum multiverse?

    CERN Document Server

    Bojowald, Martin

    2013-01-01

    Inhomogeneous space-times in loop quantum cosmology have come under better control with recent advances in effective methods. Even highly inhomogeneous situations, for which multiverse scenarios provide extreme examples, can now be considered at least qualitatively.

  11. Blind loop syndrome

    Science.gov (United States)

    ... part of the stomach) and operations for extreme obesity As a complication of inflammatory bowel disease Diseases such as diabetes or scleroderma may slow down movement in a segment of the intestine, leading to blind loop syndrome.

  12. Diffusion of Wilson Loops

    CERN Document Server

    Brzoska, A M; Negele, J W; Thies, M

    2004-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory.

  13. On the Chemical Emergence of Phosphate-Based Biochemistry

    Science.gov (United States)

    Kee, Terence

    Contemporary organisms use orthophosphate derivatives (PO43-) in their cell biochemistry,1 yet questions remain as to how Nature was able to accumulate, activate and exploit the or-thophosphate group from geological sources with both poorly solubility and low chemical activ-ity.2 Gulick argued3 a central role for reduced oxidation state phosphorus (P) oxyacids such as H-phosphonates (H2PO3-) and especially H-phosphinates (H2PO2-) in prebiotic chemistry on account of the greater water solubility of their metal salts and, with the presence of P-H bonds, a different reactivity profile to that expected of orthophosphate. The recent demonstration that hydrothermal corrosion of P-rich mineral phases such as schreibersite (Fe,Ni)3P within iron meteorites leads to production of various P-oxyacids including H-phosphonic (H3PO3)4 and H-phosphinic5 acids as well as orthophosphate has reignited interest in reduced oxida-tion state P chemistry in prebiotic environments. We are examining the prebiotic potential of reduced oxidation state P-chemistry through reactions with carbonyl substrates with rea-sonable prebiotic provenance including formaldehyde glycolaldehyde, both intimately involved in the formose reaction for sugar synthesis6 and pyruvic acid,7 a product of glycolysis and feed-stock for the citric acid cycle, a fundamental cellular metablic process whose heritage is considered an ancient one. In this contribution we present some of our latest results on the H-phosphinate-pyruvate system. References: [1] Lodish H et al. (2000) Molecular Cell Biology, 4th Ed., W. H. Freeman Co., New York. [2] Gulick A. (1955) Am. Sci., 43, 479. [3] Gulick A. (1957) Ann. N. Y. Acad. Sci. 69, 309. [4] Pasek M. A. (2008) Proc. Nat. Acad. Sci. USA, 105, 853. [5] Bryant D. E.and Kee T. P. (2006) Chem. Commun. 2344. [6] Weber A. L. (2000) Origins of Life and Evol. Biosph., 30, 33. [7] Cody G. D. et. al. (2000) Science 289, 1337.

  14. Chemically induced morphology change in cluster-based nanostructures

    Science.gov (United States)

    Lando, A.; Kébaǧli, N.; Cahuzac, Ph.; Colliex, C.; Couillard, M.; Masson, A.; Schmidt, M.; Bréchignac, C.

    2007-07-01

    Preformed clusters carrying surfactant are used as primary blocks for the building of nano structures. Self assembly of silver atom based clusters, soft landed on a HOPG surface, generates a large variety of new architectures depending on the nature and on the concentration of the impurities. Fractal shapes fragmented into multiple compact like islands, and chain like structures might be formed. A strong local enhancement of the silver atom mobility at the surface of islands is responsible for those morphology changes.

  15. Quantum Chemical Characterization of Single Molecule Magnets Based on Uranium.

    Science.gov (United States)

    Spivak, Mariano; Vogiatzis, Konstantinos D; Cramer, Christopher J; Graaf, Coen de; Gagliardi, Laura

    2017-03-02

    Multiconfigurational electronic structure theory calculations including spin-orbit coupling effects were performed on four uranium-based single-molecule-magnets. Several quartet and doublet states were computed and the energy gaps between spin-orbit states were then used to determine magnetic susceptibility curves. Trends in experimental magnetic susceptibility curves were well reproduced by the calculations, and key factors affecting performance were identified.

  16. Learning Loops--Interactions between Guided Reflection and Experience-Based Learning in a Serious Game Activity

    Science.gov (United States)

    Cowley, B.; Heikura, T.; Ravaja, N.

    2013-01-01

    In a study on experience-based learning in serious games, 45 players were tested for topic comprehension by a questionnaire administered before and after playing the single-player serious game Peacemaker (Impact Games 2007). Players were divided into two activity conditions: 20 played a 1-h game with a 3-min half-time break to complete an affect…

  17. Mindfulness-based cognitive therapy to treat multiple chemical sensitivities

    DEFF Research Database (Denmark)

    Skovbjerg, S; Hauge, Christian Riis; Rasmussen, Alice

    2012-01-01

    of an 8-week mindfulness-based cognitive therapy program (MBCT) for adults with MCS and to evaluate possible effects on psychological distress and illness perception. The study design was a randomized clinical trial. The MBCT programme comprised 8 weekly sessions of 2½ hours. Forty-two adults were...... screened for eligibility and 37 were included. Mean age of the participants was 51.6 years, 35 (94.6%) were female and 21 (56.8%) were unemployed. Measures of psychological distress and illness perceptions were assessed at baseline, 4 weeks, 8 weeks and at 3 months follow-up. No significant differences...

  18. Emergent loop-nodal s(±)-wave superconductivity in CeCu(2)Si(2): similarities to the iron-based superconductors.

    Science.gov (United States)

    Ikeda, Hiroaki; Suzuki, Michi-To; Arita, Ryotaro

    2015-04-10

    Heavy-fermion superconductors are prime candidates for novel electron-pairing states due to the spin-orbital coupled degrees of freedom and electron correlations. Superconductivity in CeCu_{2}Si_{2} discovered in 1979, which is a prototype of unconventional (non-BCS) superconductors in strongly correlated electron systems, still remains unsolved. Here we provide the first report of superconductivity based on the advanced first-principles theoretical approach. We find that the promising candidate is an s_{±}-wave state with loop-shaped nodes on the Fermi surface, different from the widely expected line-nodal d-wave state. The dominant pairing glue is magnetic but high-rank octupole fluctuations. This system shares the importance of multiorbital degrees of freedom with the iron-based superconductors. Our findings reveal not only the long-standing puzzle in this material, but also urge us to reconsider the pairing states and mechanisms in all heavy-fermion superconductors.

  19. CO{sub 2} capture efficiency and energy requirement analysis of power plant using modified calcium-based sorbent looping cycle

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.J.; Zhao, C.S.; Chen, H.C.; Ren, Q.Q.; Duan, L.B. [Southeast University, Nanjing (China). School of Energy & Environment

    2011-03-15

    This paper examines the average carbonation conversion, CO{sub 2} capture efficiency and energy requirement for post-combustion CO{sub 2} capture system during the modified calcium-based sorbent looping cycle. The limestone modified with acetic acid solution, i.e. calcium acetate is taken as an example of the modified calcium-based sorbents. The modified limestone exhibits much higher average carbonation conversion than the natural sorbent under the same condition. The CO{sub 2} capture efficiency increases with the sorbent flow ratios. Compared with the natural limestone, much less makeup mass flow of the recycled and the fresh sorbent is needed for the system when using the modified limestone at the same CO{sub 2} capture efficiency. Achieving 0.95 of CO{sub 2} capture efficiency without sulfation, 272 kJ/mol CO{sub 2} is required in the calciner for the natural limestone, whereas only 223 kJ/mol CO{sub 2} for the modified sorbent. The modified limestone possesses greater advantages in CO{sub 2} capture efficiency and energy consumption than the natural sorbent. When the sulfation and carbonation of the sorbents take place simultaneously, more energy is required. It is significantly necessary to remove SO{sub 2} from the flue gas before it enters the carbonator in order to reduce energy consumption in the calciner.

  20. Climate-based archetypes for the environmental fate assessment of chemicals.

    Science.gov (United States)

    Ciuffo, Biagio; Sala, Serenella

    2013-11-15

    Emissions of chemicals have been on the rise for years, and their impacts are greatly influenced by spatial differentiation. Chemicals are usually emitted locally but their impact can be felt both locally and globally, due to their chemical properties and persistence. The variability of environmental parameters in the emission compartment may affect the chemicals' fate and the exposure at different orders of magnitude. The assessment of the environmental fate of chemicals and the inherent spatial differentiation requires the use of multimedia models at various levels of complexity (from a simple box model to complex computational and high-spatial-resolution models). The objective of these models is to support ecological and human health risk assessment, by reducing the uncertainty of chemical impact assessments. The parameterisation of spatially resolved multimedia models is usually based on scenarios of evaluative environments, or on geographical resolutions related to administrative boundaries (e.g. countries/continents) or landscape areas (e.g. watersheds, eco-regions). The choice of the most appropriate scale and scenario is important from a management perspective, as a balance should be reached between a simplified approach and computationally intensive multimedia models. In this paper, which aims to go beyond the more traditional approach based on scale/resolution (cell, country, and basin), we propose and assess climate-based archetypes for the impact assessment of chemicals released in air. We define the archetypes based on the main drivers of spatial variability, which we systematically identify by adopting global sensitivity analysis techniques. A case study that uses the high resolution multimedia model MAPPE (Multimedia Assessment of Pollutant Pathways in the Environment) is presented. Results of the analysis showed that suitable archetypes should be both climate- and chemical-specific, as different chemicals (or groups of them) have different traits

  1. A Novel Grid Impedance Estimation Technique based on Adaptive Virtual Resistance Control Loop Applied to Distributed Generation Inverters

    DEFF Research Database (Denmark)

    Ghzaiel, Walid; Jebali-Ben Ghorbal, Manel; Slama-Belkhodja, Ilhem;

    2013-01-01

    The penetration of the distributed power generation systems (DPGSs) based on renewable sources (PV, WT) is strongly dependent on the quality of the power injected to the utility grid. However, the grid impedance variation, mainly caused by grid faults somewhere in the electric network, can degrade...... the power quality and even damage some sensitive loads connected at the point of the common coupling (PCC). This paper presents detection-estimation method of the grid impedance variation. This estimation tehnique aims to improve the dynamic of the distributed generation (DG) interfacing inverter control...... and to take the decision of either keep the DG connected, or disconnect it from the utility grid. The proposed method is based on a fast and easy grid fault detection method. A virtual damping resistance is used to drive the system to the resonance in order to extract the grid impedance parameters, both...

  2. A generalized physiologically-based toxicokinetic modeling system for chemical mixtures containing metals

    Directory of Open Access Journals (Sweden)

    Isukapalli Sastry S

    2010-06-01

    Full Text Available Abstract Background Humans are routinely and concurrently exposed to multiple toxic chemicals, including various metals and organics, often at levels that can cause adverse and potentially synergistic effects. However, toxicokinetic modeling studies of exposures to these chemicals are typically performed on a single chemical basis. Furthermore, the attributes of available models for individual chemicals are commonly estimated specifically for the compound studied. As a result, the available models usually have parameters and even structures that are not consistent or compatible across the range of chemicals of concern. This fact precludes the systematic consideration of synergistic effects, and may also lead to inconsistencies in calculations of co-occurring exposures and corresponding risks. There is a need, therefore, for a consistent modeling framework that would allow the systematic study of cumulative risks from complex mixtures of contaminants. Methods A Generalized Toxicokinetic Modeling system for Mixtures (GTMM was developed and evaluated with case studies. The GTMM is physiologically-based and uses a consistent, chemical-independent physiological description for integrating widely varying toxicokinetic models. It is modular and can be directly "mapped" to individual toxicokinetic models, while maintaining physiological consistency across different chemicals. Interaction effects of complex mixtures can be directly incorporated into the GTMM. Conclusions The application of GTMM to different individual metals and metal compounds showed that it explains available observational data as well as replicates the results from models that have been optimized for individual chemicals. The GTMM also made it feasible to model toxicokinetics of complex, interacting mixtures of multiple metals and nonmetals in humans, based on available literature information. The GTMM provides a central component in the development of a "source

  3. 基于扩展逻辑变换系统μTS证明循环优化正确性%Verifying the Correctness of Loop Optimization Based on Extended Logic Transformation System μTS

    Institute of Scientific and Technical Information of China (English)

    王昌晶

    2012-01-01

    Loop optimization plays an important role in improving cache performance, making effective use of parallel processing capabilities, and reducing overheads associated with executing loops. Verifying the correctness of modern compilers with loop optimization is a challenge of trustworthy compiling. Formally verifying a full-fledged optimizing compiler is not feasible in nature. Rather than verifying the compiler itself, after every run of the loop transformation, formally verifing the target code produced is a correct translation of the source program. A novel approach is proposed to verify the correctness of loop optimization based on extended logic transformation system μTS, which extends a number of derived rules from logic transformation TS. After converting source program and target code into formal language Radl by predicate abstracting, one can verify the correctness of common loop transformations using the derived rules of μTS, such as loop fusion, loop distribution, loop interchange, loop reversal, loop splitting, loop peeling, loop alignment, loop unrolling, loop tiling, loop unswitching, loop-invariant code motion, etc. Loop optimization can be regarded as a series of loop transformation composition so that μTS can verify the correctness of loop optimization. Furthermore, an aided certified algorithm is put forward in order to automatic verify the correctness of loop optimization and show its proof. Finally this approach is elaborated using one typical example. Practical effects manifest its effectiveness. This approach has important instructive significance in designing high-trusted optimization compiler.%循环优化对于提高Cache性能、发掘程序的并行性以及减少执行循环的开销都有着重要的作用,证明带循环优化功能的现代编译器的正确性已成为可信编译的一个挑战性的问题.形式化证明一个羽翼丰满的优化编译器本质上是不可行的,可以使用替代的方法,即不是证明优化

  4. Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M.; Novicevic, M.; Dobrijevic, D.; Babic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [Electric Power Research Inst., Palo Alto, CA (United States); Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

    1995-12-01

    This paper presents a design technique of a new adaptive optimal controller of the low head hydropower plant using artificial neural networks (ANN). The adaptive controller is to operate in real time to improve the generating unit transients through the exciter input, the guide vane position and the runner blade position. The new design procedure is based on self-organization and the predictive estimation capabilities of neural-nets implemented through the cluster-wise segmented associative memory scheme. The developed neural-net based controller (NNC) whose control signals are adjusted using the on-line measurements, can offer better damping effects for generator oscillations over a wide range of operating conditions than conventional controllers. Digital simulations of hydropower plant equipped with low head Kaplan turbine are performed and the comparisons of conventional excitation-governor control, state-space optimal control and neural-net based control are presented. Results obtained on the non-linear mathematical model demonstrate that the effects of the NNC closely agree with those obtained using the state-space multivariable discrete-time optimal controllers.

  5. One-loop effective actions and 2D hydrodynamics with anomalies

    Directory of Open Access Journals (Sweden)

    Gim Seng Ng

    2015-06-01

    Full Text Available We revisit the study of a 2D quantum field theory in the hydrodynamic regime and develop a formalism based on Euclidean one-loop partition functions that is suitable to analyze transport properties due to gauge and gravitational anomalies. To do so, we generalize the method of a modified Dirac operator developed for zero-temperature anomalies to finite temperature, chemical potentials and rotations.

  6. Network defense simulation test model based on hardware-in-the-loop%基于半实物的网络防御仿真测试模型

    Institute of Scientific and Technical Information of China (English)

    毕治国; 张明清; 唐俊; 孔红山

    2011-01-01

    Aiming at the deficiency of high cost and risk in testing network defense in real network, Hardware-in-the-loop simulation is introduced in network defense testing research, and a defense testing model is erected based on HITLS through analyzing of the elements of HITLS, and then two basic applications of model are given. The implementation technology of this model, and a method used to extend attacking simulation based on hardware-in-the-loop support are analyzed in detail by OPNET through creating custom packet-translation functions. At last, a HITLS experiment is given to prove the validity of this model. This model can make real attacking and defending behaviors run in simulation network, which maps the real node into the simulation network. The model can not only avoid building complex hardware experiment platform but also make the process of testing in security and control, even more it can improve the reliability of simulation.%针对在真实网络中对防御进行测试存在高成本高风险的不足,将半实物网络仿真方法引入防御测试研究中,分析了半实物网络仿真的原理,建立了一种基于半实物的网络防御仿真测试模型,给出了模型的两种基本应用.着重对网络防御半实物仿真测试的实现技术进行了分析,通过自定义包转换的方法来扩展OPNET所能支持的攻击的半实物仿真,最后通过仿真实验来验证了模型的有效性.该模型能够将实际节点映射到虚拟网络中,使防御测试中的实际攻防行为在虚拟网络中运行,从而既避免了建立复杂的真实测试平台,又使得测试过程安全可控,还提高了仿真测试结果的可信度.

  7. A family-based intervention targeting parents of preschool children with overweight and obesity: conceptual framework and study design of LOOPS- Lund overweight and obesity preschool study

    Directory of Open Access Journals (Sweden)

    Önnerfält Jenny

    2012-10-01

    Full Text Available Abstract Background As the rate of overweight among children is rising there is a need for evidence-based research that will clarify what the best interventional strategies to normalize weight development are. The overall aim of the Lund Overweight and Obesity Preschool Study (LOOPS is to evaluate if a family-based intervention, targeting parents of preschool children with overweight and obesity, has a long-term positive effect on weight development of the children. The hypothesis is that preschool children with overweight and obesity, whose parents participate in a one-year intervention, both at completion of the one-year intervention and at long term follow up (2-, 3- and 5-years will have reduced their BMI-for-age z-score. Methods/Design The study is a randomized controlled trial, including overweight (n=160 and obese (n=80 children 4-6-years-old. The intervention is targeting the parents, who get general information about nutrition and exercise recommendations through a website and are invited to participate in a group intervention with the purpose of supporting them to accomplish preferred lifestyle changes, both in the short and long term. To evaluate the effect of various supports, the parents are randomized to different interventions with the main focus of: 1 supporting the parents in limit setting by emphasizing the importance of positive interactions between parents and children and 2 influencing the patterns of daily activities to induce alterations of everyday life that will lead to healthier lifestyle. The primary outcome variable, child BMI-for-age z-score will be measured at referral, inclusion, after 6 months, at the end of intervention and at 2-, 3- and 5-years post intervention. Secondary outcome variables, measured at inclusion and at the end of intervention, are child activity pattern, eating habits and biochemical markers as well as parent BMI, exercise habits, perception of health, experience of parenthood and level of

  8. 基于FPGA的全数字锁相环电路的设计%Design of All Digital Phase-locked Loop Based on FPGA

    Institute of Scientific and Technical Information of China (English)

    张楠

    2016-01-01

    为了协调锁相环锁定时间与环路同步误差之间的矛盾,设计了一种基于自动变模控制的全数字锁相环电路,主要有四部分构成:异或门鉴相器、K变模可逆计数器、脉冲加减电路以及自动变模控制模块。其中自动变模控制模块实时控制可逆计数器的模值,当输入信号和本地参考信号的相位差较大时,降低KMode值,增大步进校正量,缩短捕获时间;当相位差较小时,增大KMode值,使捕获过程变慢,即延长锁定时间,提高捕获精度。采用VerilogHDL语言对各模块功能进行描述,利用Modelsim SE10.1c软件进行功能仿真验证并给出RTL级电路图,运用Quartus II软件进行功能仿真和综合,并将程序下载到FPGA芯片上验证环路功能,结果证明此环路能够实现相位锁定。%To coordinate the contradiction between the locking time and the loop synchronization error,the paper design an ADPLL circuit based on automatic control mode, consisted by four parts:XOR gate as phase detector, K variable modulus reversible counter, ID counter and automatically changed module, which to control the counter modulus value on real-time. when the phase error is bigger,reduce the KMode value,to stepper correction amount,shorten acquisi-tion time;when the phase error is smaller, increase the KMode value, slow down the capture process, extend the lock time, improve capture accuracy. Each of these modules’ description of functions are based on VerilogHDL and functional simulation by Modelsim SE10.1c, the RTL logic circuit diagrams of them are given. Using Quartus II soft-ware for timing simulation and synthesis, and download the program to the FPGA development board to verify. The results showed that the loop can be locked.

  9. 化学循环重整甲烷制合成气LaB03钙钛矿型氧载体研究%LaBO3 Oxygen Carrier for Synthesis Gas Generation by Chemical-Looping Reforming

    Institute of Scientific and Technical Information of China (English)

    代小平; 余长春

    2012-01-01

    Chemical Looping Reforming(CLR) is a new technology that can be used for syngas production(CO+H2),which demands less energy than normal endothermic steam methane reforming(SMR) processes.CLR for syngas production avoids separation problems since the gasses are taken out separately from fuel reactor and air reactor.One key issue with the CLR concept that is being widely studied is the oxidation-reduction performance of potential oxygen-carrier materials.Two compound oxides(La-Cr-O and La-Ni-O) were prepared by sol-gel method,and characterized by XRD,BET,FT-IR,H2-TPR and CH4-TPSR.The catalytic performance of the prepared samples for CLR of CH4 to syngas was investigated.The results indicated that LaNiO3 should provide the oxygen species for the total oxidation and partial oxidation with CH4,whereas cracking reaction of CH4 to H2 is favourable on LaCrO3 oxide.Among them,LaNiO3 oxide has higher oxygen amount and continuous oxygen supply for CLR for CH4 to syngas with H2/CO=1.45 in continuous flow reaction.The CH4 conversion and CO selectivity are 23.4% and 86.9%.%采用溶胶-凝胶法制备了不同B位可变价离子的La-B-O复合氧载体(B=Cr、Ni),采用XRD、BET、FT-IR、H2-TPR及CH4-TPSR等进行了表征,并用于化学循环重整(CLR)CH4反应中.结果表明,LaNiO3氧化物更易于与CH4发生深度氧化和选择氧化,LaCrO3氧化物则利于CH4裂解,其氧物种氧化CH4的能力较弱.在连续流动CLR反应中,LaNiO3具有较高的供氧量和持续供氧能力,能将CH4选择氧化为H2/CO=1.45的合成气,其CH4转化率和CO选择性分别达到23.4%和86.9%,且其结构保持了较高的稳定性.

  10. Clustering and rule-based classifications of chemical structures evaluated in the biological activity space.

    Science.gov (United States)

    Schuffenhauer, Ansgar; Brown, Nathan; Ertl, Peter; Jenkins, Jeremy L; Selzer, Paul; Hamon, Jacques

    2007-01-01

    Classification methods for data sets of molecules according to their chemical structure were evaluated for their biological relevance, including rule-based, scaffold-oriented classification methods and clustering based on molecular descriptors. Three data sets resulting from uniformly determined in vitro biological profiling experiments were classified according to their chemical structures, and the results were compared in a Pareto analysis with the number of classes and their average spread in the profile space as two concurrent objectives which were to be minimized. It has been found that no classification method is overall superior to all other studied methods, but there is a general trend that rule-based, scaffold-oriented methods are the better choice if classes with homogeneous biological activity are required, but a large number of clusters can be tolerated. On the other hand, clustering based on chemical fingerprints is superior if fewer and larger classes are required, and some loss of homogeneity in biological activity can be accepted.

  11. Chemicals identified in human biological media: a data base. Third annual report, October 1981

    Energy Technology Data Exchange (ETDEWEB)

    Cone, M.V.; Baldauf, M.F.; Martin, F.M. (comps.)

    1981-12-01

    Data from almost 1600 of the 3800 body-burden documents collected to date have been entered in the data base as of October 1981. The emphasis on including recent literature and significant research documents has resulted in a chronological mix of articles from 1974 to the present. When body-burden articles are identified, data are extracted and entered in the data base by chemical and tissue/body fluid. Each data entry comprises a single record (or line entry) and is assigned a record number. If a particular document deals with more than one chemical and/or tissue, there will be multiple records for that document. For example, a study of 5 chemicals in each of 3 tissues has 15 different records (or 15 line entries) in the data base with 15 record numbers. Record numbers are assigned consecutively throughout the entire data base and appear in the upper left corner of the first column for each record.

  12. Challenges in LCA modelling of multiple loops for aluminium cans

    DEFF Research Database (Denmark)

    Niero, Monia; Olsen, Stig Irving

    packaging scrap sources (i.e. used beverage can and mixed aluminium packaging) to understand the limiting factors for multiple loop aluminium can recycling. Secondly, we performed a comparative LCA of aluminium can production and recycling in multiple loops considering the two aluminium packaging scrap...... this information to perform an LCA of 30 recycling loops based on the actual alloy composition. From the comparative LCA the closed product loop option (i.e. using used beverage can scraps) turned out to have lower environmental impact than the open loop option (i.e. using mixed aluminium packaging scraps...

  13. Development of a chemical microthruster based on pulsed detonation

    Science.gov (United States)

    Wu, Ming-Hsun; Lu, Tsung-Hsun

    2012-10-01

    The development of a microthruster based on gaseous pulsed detonation is presented in this study. The feasibility of cyclic valveless pulsed detonation at frequencies over 100 Hz is first experimentally investigated in a microchannel with 1 mm × 0.6 mm rectangular cross-section. Highly reactive ethylene/oxygen mixtures are utilized to reduce the time and distance required for the reaction wave to run up to detonation in a smooth channel. High-speed visualizations have shown that the reaction waves reach detonative state through highly repeatable flame acceleration and deflagration-to-detonation transition processes in the channel. The validated concepts are implemented for the development of an integrated pulsed detonation microthruster. The microthruster was fabricated using low temperature co-fired ceramic tape technology. The volume of the reaction channel in the microthruster was 58 mm3. Spark electrodes and ion probes were embedded in the ceramic microthruster. The channel and via holes were fabricated using laser cutting techniques. Ion probe measurements showed that the reaction wave propagated at velocities larger than 2000 m s-1 before reaching the channel exit. The pulsed detonation microthruster has been successfully operated at frequencies as high as 200 Hz.

  14. A synthetic biochemistry module for production of bio-based chemicals from glucose.

    Science.gov (United States)

    Opgenorth, Paul H; Korman, Tyler P; Bowie, James U

    2016-06-01

    Synthetic biochemistry, the cell-free production of biologically based chemicals, is a potentially high-yield, flexible alternative to in vivo metabolic engineering. To limit costs, cell-free systems must be designed to operate continuously with minimal addition of feedstock chemicals. We describe a robust, efficient synthetic glucose breakdown pathway and implement it for the production of bioplastic. The system's performance suggests that synthetic biochemistry has the potential to become a viable industrial alternative.

  15. Development of multiplex loop mediated isothermal amplification (m-LAMP) label-based gold nanoparticles lateral flow dipstick biosensor for detection of pathogenic Leptospira.

    Science.gov (United States)

    Nurul Najian, A B; Engku Nur Syafirah, E A R; Ismail, Nabilah; Mohamed, Maizan; Yean, Chan Yean

    2016-01-15

    In recent years extensive numbers of molecular diagnostic methods have been developed to meet the need of point-of-care devices. Efforts have been made towards producing rapid, simple and inexpensive DNA tests, especially in the diagnostics field. We report on the development of a label-based lateral flow dipstick for the rapid and simple detection of multiplex loop-mediated isothermal amplification (m-LAMP) amplicons. A label-based m-LAMP lateral flow dipstick assay was developed for the simultaneous detection of target DNA template and a LAMP internal control. This biosensor operates through a label based system, in which probe-hybridization and the additional incubation step are eliminated. We demonstrated this m-LAMP assay by detecting pathogenic Leptospira, which causes the re-emerging disease Leptospirosis. The lateral flow dipstick was developed to detect of three targets, the LAMP target amplicon, the LAMP internal control amplicon and a chromatography control. Three lines appeared on the dipstick, indicating positive results for all representative pathogenic Leptospira species, whereas two lines appeared, indicating negative results, for other bacterial species. The specificity of this biosensor assay was 100% when it was tested with 13 representative pathogenic Leptospira species, 2 intermediate Leptospira species, 1 non-pathogenic Leptospira species and 28 other bacteria species. This study found that this DNA biosensor was able to detect DNA at concentrations as low as 3.95 × 10(-1) genomic equivalent ml(-1). An integrated m-LAMP and label-based lateral flow dipstick was successfully developed, promising simple and rapid visual detection in clinical diagnostics and serving as a point-of-care device.

  16. 等量采样伪码跟踪环的MATLAB实现%Realization of pseudo-code tracking loop with commensurate sampling based on MATLAB

    Institute of Scientific and Technical Information of China (English)

    赵林军

    2012-01-01

    According to the parameters optimization design of pseudo code tracking loop, the paper proposes a scheme of the baseband pseudo-code tracking loop. Second, the parameter design method and design flow of this loop is discussed. Finally, simulation results show that the realization of the pseudo code baseband tracking loop is feasible, and can be completely realized in the value.%针对伪码数字跟踪环路参数优化设计,提出了基带伪码数字跟踪环的实现方案.讨论了伪码数字跟踪环的参数设计方法,给出伪码基带跟踪环路的MATLAB设计流程,仿真结果表明,该伪码基带数字跟踪环的实现方案可行,且可以完全在数值域实现.

  17. Genetic Programming with Simple Loops

    Institute of Scientific and Technical Information of China (English)

    QI Yuesheng; WANG Baozhong; KANG Lishan

    1999-01-01

    A kind of loop function LoopN inGenetic Programming (GP) is proposed.Different from other forms of loopfunction, such as While-Do and Repeat-Until, LoopNtakes only oneargument as its loop body and makes its loop body simply run N times,soinfinite loops will never happen. The problem of how to avoid too manylayers ofloops in Genetic Programming is also solved. The advantage ofLoopN in GP is shown bythe computational results in solving the mowerproblem.

  18. Today’s and tomorrow’s bio-based bulk chemicals from white biotechnology

    NARCIS (Netherlands)

    Hermann, B.G.; Patel, M.K.

    2007-01-01

    Little information is yet available on the economic viability of the production of bio-based bulk chemicals and intermediates from white biotechnology (WB). This paper details a methodology to systematically evaluate the techno-economic prospects of present and future production routes of bio-based

  19. A Novel Robot System Integrating Biological and Mechanical Intelligence Based on Dissociated Neural Network-Controlled Closed-Loop Environment

    Science.gov (United States)

    Wang, Yuechao; Li, Hongyi; Zheng, Xiongfei

    2016-01-01

    We propose the architecture of a novel robot system merging biological and artificial intelligence based on a neural controller connected to an external agent. We initially built a framework that connected the dissociated neural network to a mobile robot system to implement a realistic vehicle. The mobile robot system characterized by a camera and two-wheeled robot was designed to execute the target-searching task. We modified a software architecture and developed a home-made stimulation generator to build a bi-directional connection between the biological and the artificial components via simple binomial coding/decoding schemes. In this paper, we utilized a specific hierarchical dissociated neural network for the first time as the neural controller. Based on our work, neural cultures were successfully employed to control an artificial agent resulting in high performance. Surprisingly, under the tetanus stimulus training, the robot performed better and better with the increasement of training cycle because of the short-term plasticity of neural network (a kind of reinforced learning). Comparing to the work previously reported, we adopted an effective experimental proposal (i.e. increasing the training cycle) to make sure of the occurrence of the short-term plasticity, and preliminarily demonstrated that the improvement of the robot’s performance could be caused independently by the plasticity development of dissociated neural network. This new framework may provide some possible solutions for the learning abilities of intelligent robots by the engineering application of the plasticity processing of neural networks, also for the development of theoretical inspiration for the next generation neuro-prostheses on the basis of the bi-directional exchange of information within the hierarchical neural networks. PMID:27806074

  20. Material removal mechanism of copper chemical mechanical polishing in a periodate-based slurry

    Science.gov (United States)

    Cheng, Jie; Wang, Tongqing; He, Yongyong; Lu, Xinchun

    2015-05-01

    The material removal mechanism of copper in a periodate-based slurry during barrier layer chemical mechanical polishing (CMP) has not been intensively investigated. This paper presents a study of the copper surface film chemistry and mechanics in a periodate-based slurry. On this basis, the controlling factor of the copper CMP material removal mechanism is proposed. The results show that the chemical and electrochemical reaction products on the copper surface are complex and vary considerably as a function of the solution pH. Under acidic conditions (pH 4) the copper surface underwent strong chemical dissolution while the corrosion was mild and uniform under alkaline conditions (pH 11). The corrosion effect was the lowest in near neutral solutions because the surface was covered with non-uniform Cu(IO3)2·H2O/Cu-periodate/copper oxides films, which had better passivation effect. The surface film thickness and mechanical removal properties were studied by AES and AFM nano-scratch tests. Based on the combined surface film analysis and CMP experiment results, it can be concluded that the controlling factor during copper CMP in a periodate-based slurry is the chemical-enhanced mechanical removal of the surface films. The periodate-based slurry should be modified by the addition of corrosion inhibitors and complexing agents to achieve a good copper surface quality with moderate chemical dissolution.