WorldWideScience

Sample records for based candidate alloys

  1. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hattel, Jesper Henri; Hald, John

    2010-01-01

    Au–Sn based candidate alloys have been proposed as a substitute for high-lead content solders that are currently being used for high-temperature soldering. The changes in microstructure and microhardness associated with the alloying of Ag and Cu to the Au rich side as well to the Sn rich side of...... the Au–Sn binary system were explored in this work. Furthermore, the effects of thermal aging on the microstructure and microhardness of these promising Au–Sn based ternary alloys were investigated. For this purpose, the candidate alloys were aged at a lower temperature, 150°C for up to 1week and...

  2. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    Au-Ge based candidate alloys have been proposed as an alternative to high-lead content solders that are currently being used for high-temperature applications. The changes in microstructure and microhardness associated with the addition of low melting point metals namely In, Sb and Sn to the Au......-Ge eutectic were investigated in this work. Furthermore, the effects of thermal aging on the microstructure and its corresponding microhardness of these promising candidate alloys have been extensively reported. To investigate the effects of aging temperature, candidate alloys were aged at a lower temperature...... induced by the In atoms were the most effective strengthening mechanism....

  3. Solid particle erosion of steels and nickel based alloys candidates for USC steam turbine blading

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, Federico; Guardamagna, Cristina; Lorenzoni, Lorenzo [ERSE SpA, Milan (Italy); Robba, Davide [CESI, Milan (Italy)

    2010-07-01

    The main objective of COST536 Action is to develop highly efficient steam power plant with low emissions, from innovative alloy development to validation of component integrity. In this perspective, to improve the operating efficiency, materials capable of withstanding higher operating temperatures are required. For the manufacturing of components for steam power plants with higher efficiency steels and nickel-based alloys with improved oxidation resistance and creep strength at temperature as high as 650 C - 700 C have to be developed. Candidate alloys for manufacturing high pressure steam turbine diaphragms, buckets, radial seals and control valves should exhibit, among other properties, a good resistance at the erosion phenomena induced by hard solid particles. Ferric oxide (magnetite) scales cause SPE by exfoliating from boiler tubes and steam pipes (mainly super-heaters and re-heaters) and being transported within the steam flow to the turbine. In order to comparatively study the erosion behaviour of different materials in relatively short times, an accelerated experimental simulation of the erosion phenomena must be carried out. Among different techniques to induce erosion on material targets, the use of an air jet tester is well recognised to be one of the most valid and reliable. In this work the results of SPE comparative tests performed at high temperatures (550 C, 600 C and 650 C) at different impaction angles on some steels and nickel based alloys samples are reported. (orig.)

  4. Au-Ge based Candidate Alloys for High-Temperature Lead-Free Solder Alternatives

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    and microhardness has been extensively reported. Furthermore, the effects of thermal aging on the microstructure and its corresponding microhardness of these promising candidate alloys have been investigated in this work. After thermal aging at 200°C for different durations ranging from 1 day to 3 weeks...

  5. Solid-state Diffusion Bonding of Candidate Fe-base and Ni-base Alloys for the Application of S-CO2 Cycle Heat Exchanger

    International Nuclear Information System (INIS)

    To achieve efficient heat transfer, compact type heat exchangers, such as printed circuit or plate fin type heat exchanger, are considered for intermediate heat exchangers (IHXs). Solid-state diffusion bonding (DB) is one of key issues for joining the thin metal sheets with flow passages that are either machined or photo-chemically etched. In this study, diffusion bonding was performed for the candidate Fe-base and Ni-base alloys. Tensile properties of the as-bonded were compared with the as-received and characteristics of the aged in high temperature S-CO2 environment were discussed. Studies on diffusion bonding of candidate alloys for the application of super-critical CO2 cycle were carried out. Strength ratios were close to 1 for Fe-base alloys (F91, SS 316H, and SS 347H), while those of Ni-base alloys (Alloy 600, Alloy 690) and Fe-Ni-Cr alloy (Incoloy 800HT) were somewhat decreased to about 0.8 due to the planar grain boundary and precipitates formed along the bond-line. After exposure in high temperature S-CO2 environment for 1000 h, mechanical properties were not changed substantially and the location of the failure was still in the gauge section away from the bond-line for most alloys. Thus, bond-line which plays a role as grain boundary is thought to have superior corrosion and carburization resistance comparable to that of parent matrix

  6. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  7. Characterization for Fusion Candidate Vanadium Alloys

    Institute of Scientific and Technical Information of China (English)

    T. Muroga; T. Nagasaka; J. M. Chen; Z. Y. Xu; Q. Y. Huang; y. C. Wu

    2004-01-01

    This paper summarizes recent achievements in the characterization of candidate vanadium alloys obtained for fusion in the framework of the Japan-China Core University Program.National Institute for Fusion Science (NIFS) has a program of fabricating high-purity V-4Cr4Ti alloys. The resulting products (NIFS-HEAT-1,2), were characterized by various research groups in the world including Chinese partners. South Western Institute of Physics (SWIP) fabricated a new V-4Cr-4Ti alloy (SWIP-Heat), and carried out a comparative evaluation of hydrogen embrittlement of NIFS-HEATs and SWIP-Heat. The tensile test of hydrogen-doped alloys showed that the NIFS-HEAT maintained the ductility to relatively high hydrogen levels.The comparison of the data with those of previous studies suggested that the reduced oxygen level in the NIFS-HEATs should be responsible for the increased resistance to hydrogen embrittlement.Based on the chemical analysis data of NIFS-HEATs and SWIP-Heats, neutron-induced activation was analyzed in Institute of Plasma Physics (IPP-CAS) as a function of cooling time after the use in the fusion first wall. The results showed that the low level of Co dominates the activity up to 50 years followed by a domination of Nb or Nb and Al in the respective alloys. It was suggested that reduction of Co and Nb, both of which are thought to have been introduced via cross-contamination into the alloys from the molds used should be crucial for reducing further the activation.

  8. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    International Nuclear Information System (INIS)

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute α grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase (α and β) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase α and near-α (Ti Gr 12) alloys

  9. Degradation mode survey candidate titanium-base alloys for Yucca Mountain project waste package materials. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.

    1997-12-01

    The Yucca Mountain Site Characterization Project (YMP) is evaluating materials from which to fabricate high-level nuclear waste containers (hereafter called waste packages) for the potential repository at Yucca Mountain, Nevada. Because of their very good corrosion resistance in aqueous environments titanium alloys are considered for container materials. Consideration of titanium alloys is understandable since about one-third (in 1978) of all titanium produced is used in applications where corrosion resistance is of primary importance. Consequently, there is a considerable amount of data which demonstrates that titanium alloys, in general, but particularly the commercial purity and dilute {alpha} grades, are highly corrosion resistant. This report will discuss the corrosion characteristics of Ti Gr 2, 7, 12, and 16. The more highly alloyed titanium alloys which were developed by adding a small Pd content to higher strength Ti alloys in order to give them better corrosion resistance will not be considered in this report. These alloys are all two phase ({alpha} and {beta}) alloys. The palladium addition while making these alloys more corrosion resistant does not give them the corrosion resistance of the single phase {alpha} and near-{alpha} (Ti Gr 12) alloys.

  10. Pitting, galvanic, and long-term corrosion studies on candidate container alloys for the Tuff Repository

    International Nuclear Information System (INIS)

    Contest Columbus Technologies, Inc. (CC Technologies) investigated the long-term performance of container materials for high-level radioactive waste packages as part of the information needed by the Nuclear Regulatory Commission to assess the Department of Energy's application to construct a geologic repository for the high-level radioactive waste. The scope of work focused on the Tuff Repository and employed short-term techniques, such as electrochemical and mechanical techniques to examine a wide range of possible failure modes. Two classes of alloys were evaluated for use as container materials for the Tuff Repository; Fe-Cr-Ni alloys and copper-base alloys. The candidate Fe-Cr-Ni alloys were Type 304L Stainless Steel (Alloy 304L) and Incoloy Alloy 825 (Alloy 825). The candidate copper-base alloys were CDA 102 Copper (Alloy CDA 102) and CDA 715 Copper-3D Nickel (Alloy CDA 715). The corrosion testing was performed in a simulated J-13 well water and in solutions selected from an experimental matrix from Task 2 of the program. This report summarizes the results of Task 4 (Pitting Studies), Task 6 (Other Failure Modes) and Task 7 (Long-Term Exposures) of the program. Pit-initiation studies, performed in Task 4, focused on anomalous Cyclic Potentiodynamic Polarization (CPP) behavior of the copper-base alloys reported in Task 2 of the program. Pit propagation studies were performed on Alloy CDA 102 in Task A of the program. Two types of galvanic corrosion studies were performed in Task 6 of the program; thermogalvanic couples and borehole linear-container interactions. In the thermogalvanic couples tests, the effect of temperature variation on the surface of the container on acceleration of corrosion was evaluated for two alloys; Alloy CDA 102 and Alloy 304L. Long-term immersion tests were conducted in Task 7 of the program

  11. Surface segregation in binary alloy first wall candidate materials

    International Nuclear Information System (INIS)

    We have been studying the conditions necessary to produce a self-sustaining stable lithium monolayer on a metal substrate as a means of creating a low-Z film which sputters primarily as secondary ions. It is expected that because of the toroidal field, secondary ions originating at the first wall will be returned and contribute little to the plasma impurity influx. Aluminum and copper have, because of their high thermal conductivity and low induced radioactivity, been proposed as first wall candidate materials. The mechanical properties of the pure metals are very poorly suited to structural applications and an alloy must be used to obtain adequate hardness and tensile strength. In the case of aluminum, mechanical properties suitable for aircraft manufacture are obtained by the addition of a few at% Li. In order to investigate alloys of a similar nature as candidate structural materials for fusion machines we have prepared samples of Li-doped aluminum using both a pyro-metallurgical and a vapor-diffusion technique. The sputtering properties and surface composition have been studied as a function of sample temperature and heating time, and ion beam mass. The erosion rate and secondary ion yield of both the sputtered Al and Li have been monitored by secondary ion mass spectroscopy and Auger analysis providing information on surface segregation, depth composition profiles, and diffusion rates. The surface composition ahd lithium depth profiles are compared with previously obtained computational results based on a regular solution model of segregation, while the partial sputtering yields of Al and Li are compared with results obtained with a modified version of the TRIM computer program. (orig.)

  12. Considerations on the performance and fabrication of candidate materials for the Yucca Mountain repository waste packages highly corrosion resistant nickel-base and titanium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E; Goldberg, A

    1995-11-30

    Among the metallurgical factors that affect the performance of a material in a given environment are alloy composition, alloy segregation, depletion of alloying elements, non-uniform microstructures, precipitation leading to an increase in susceptibility to corrosion as well as decreases in ductility, residual plastic deformation, and residual stresses. Precipitation often occurs preferentially at grain boundaries, causing depletion of critical elements in regions adjacent to these boundaries. Continuous grain-boundary precipitates can lead to drops in ductility and toughness. The presence of non-metallic inclusions, if excessive and/or segregated, can also cause embrittlement. Segregation of alloying elements can result in localized galvanic action. Depletion of alloying elements as well as segregation can result in reductions in the concentrations of critical elements below those necessary to resist localized corrosion. Segregation and alloy depletion can also facilitate precipitation that could lead to embrittlement.

  13. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  14. Effect of oxide films on hydrogen permeability of candidate Stirling heater head tube alloys

    Energy Technology Data Exchange (ETDEWEB)

    Schuon, S R; Misencik, J A

    1981-01-01

    High pressure hydrogen has been selected as the working fluid for the developmental automotive Stirling engine. Containment of the working fluid during operation of the engine at high temperatures and at high hydrogen gas pressures is essential for the acceptance of the Stirling engine as an alternative to the internal combustion engine. Most commercial alloys are extremely permeable to pure hydrogen at high temperatures. A program was undertaken at NASA Lewis Research Center (LeRC) to reduce hydrogen permeability in the Stirling engine heater head tubes by doping the hydrogen working fluid with CO or CO/sub 2/. Small additions of these gases were shown to form an oxide on the inside tube wall and thus reduce hydrogen permeability. A study of the effects of dopant concentration, alloy composition, and effects of surface oxides on hydrogen permeability in candidate heater head tube alloys is summarized. Results showed that hydrogen permeability was similar for iron-base alloys (N-155, A286, IN800, 19-9DL, and Nitronic 40), cobalt-base alloys (HS-188) and nickel-base alloys (IN718). In general, the permeability of the alloys decreased with increasing concentration of CO or CO/sub 2/ dopant, with increasing oxide thickness, and decreasing oxide porosity. At high levels of dopants, highly permeable liquid oxides formed on those alloys with greater than 50% Fe content. Furthermore, highly reactive minor alloying elements (Ti, Al, Nb, and La) had a strong influence on reducing hydrogen permeability.

  15. High temperature behavior of candidate VHTR heat exchanger alloys - HTR2008-58200

    International Nuclear Information System (INIS)

    Several nickel based solid solution alloys are under consideration for application in heat exchangers for very high temperature gas cooled reactors. The principal candidates being considered for this application by the Next Generation Nuclear Plant (NGNP) project are Inconel 617 and Haynes 230. While both of these alloys have an attractive combination of creep strength, fabricability, and oxidation resistance a good deal remains to be determined about their environmental resistance in the expected NGNP helium chemistry and their long term response to thermal aging. A series of experiments has been carried out in a He loop with controlled impurity chemistries within the range expected for the NGNP. The influence of oxygen partial pressure and carbon activity on the microstructure and mechanical properties of Alloys 617 and 230 has been characterized. A relatively simple phenomenological model of the environmental interaction for these alloys has been developed. (authors)

  16. Frictional Behavior of Fe-based Cladding Candidates for PWR

    International Nuclear Information System (INIS)

    After the recent nuclear disaster at Fukushima Daiichi reactors, there is a growing consensus on the development of new fuel systems (i.e., accident-tolerant fuel, ATF) that have high safety margins under design-basis accident (DBA) and beyond design-basis accident (BDBA). A common objective of various developing candidates is to archive the outstanding corrosion-resistance under severe accidents such as DBA and DBDA conditions for decreasing hydrogen production and increasing coping time to respond to severe accidents. ATF could be defined as new fuel/cladding system with enhanced accident tolerant to loss of active cooling in the core for a considerably longer time period under severe accidents while maintaining or improving the fuel performance during normal operations. This means that, in normal operating conditions, new fuel systems should be applicable to current operating PWRs for suppressing various degradation mechanisms of current fuel assembly without excessive design changes. When considering that one of the major degradation mechanisms of PWR fuel assemblies is a grid-to-rod fretting (GTRF), it is necessary to examine the tribological behavior of various ATF candidates at initial development stage. In this study, friction and reciprocating wear behavior of two kinds of Fe-based ATF candidates were examined with a reciprocating wear tests at room temperature (RT) air and water. The objective is to examine the compatibilities of these Fe-based alloys against current Zr-based alloy properties, which is used as major structural materials of PWR fuel assemblies. The reciprocating wear behaviors of Fe-based accident-tolerant fuel cladding candidates against current Zr-based alloy has been studied using a reciprocating sliding wear tester in room temperature air and water. Frictional behavior and wear depth were used for evaluating the applicability and compatibilities of Fe-based candidates without significant design changes of PWR fuel assemblies

  17. Frictional Behavior of Fe-based Cladding Candidates for PWR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Ho; Kim, Hyung-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Byun, Thak Sang [Oak Ridge National Lab., Oak Ridge (United States)

    2014-10-15

    After the recent nuclear disaster at Fukushima Daiichi reactors, there is a growing consensus on the development of new fuel systems (i.e., accident-tolerant fuel, ATF) that have high safety margins under design-basis accident (DBA) and beyond design-basis accident (BDBA). A common objective of various developing candidates is to archive the outstanding corrosion-resistance under severe accidents such as DBA and DBDA conditions for decreasing hydrogen production and increasing coping time to respond to severe accidents. ATF could be defined as new fuel/cladding system with enhanced accident tolerant to loss of active cooling in the core for a considerably longer time period under severe accidents while maintaining or improving the fuel performance during normal operations. This means that, in normal operating conditions, new fuel systems should be applicable to current operating PWRs for suppressing various degradation mechanisms of current fuel assembly without excessive design changes. When considering that one of the major degradation mechanisms of PWR fuel assemblies is a grid-to-rod fretting (GTRF), it is necessary to examine the tribological behavior of various ATF candidates at initial development stage. In this study, friction and reciprocating wear behavior of two kinds of Fe-based ATF candidates were examined with a reciprocating wear tests at room temperature (RT) air and water. The objective is to examine the compatibilities of these Fe-based alloys against current Zr-based alloy properties, which is used as major structural materials of PWR fuel assemblies. The reciprocating wear behaviors of Fe-based accident-tolerant fuel cladding candidates against current Zr-based alloy has been studied using a reciprocating sliding wear tester in room temperature air and water. Frictional behavior and wear depth were used for evaluating the applicability and compatibilities of Fe-based candidates without significant design changes of PWR fuel assemblies

  18. Potentiodynamic polarization studies on candidate container alloys for the Tuff Repository

    International Nuclear Information System (INIS)

    Cortest Columbus Technologies, Inc. (CC Technologies) is investigating the long-term performance of container materials used for high-level radioactive waste packages. This information is being developed for the Nuclear Regulatory Commission to aid in their assessment of the Department of Energy's application to construct a geologic repository for disposal of high-level radioactive waste. This report summarizes the results of cyclic-potentiodynamic-polarization (CCP) studies performed on candidate container materials for the Tuff Repository. The CPP technique was used to provide an understanding of how specific variables such as environmental composition, temperature, alloy composition, and welding affect both the general- and localized-corrosion behavior of two copper-base and two Fe-Cr-Ni alloys in simulated repository environments. A statistically-designed test solution matrix was formulated, based on an extensive search of the literature, to evaluate the possible range of environmental species that may occur in the repository over the life of the canister. Forty-two CPP curves were performed with each alloy and the results indicated that several different types of corrosion were possible. The copper-base alloys exhibited unusual CCP behavior in that hysteresis was not always associated with pitting. The effects of temperature on the corrosions behavior were evaluated in two types of tests; isothermal tests at temperatures from 50 degrees C to 90 degrees C and heat-transfer tests where the solution was maintained at 50 degrees C and the specimen was internally heated to 90 degrees C. In the isothermal test, CPP curves were obtained with each alloy in simulated environments at 50 degrees C, 75 degrees C, and 90 degrees C. The results of these CCP experiments indicated that no systematic trends were evident for the environments tested. Lastly, the effects of welding on the corrosion behavior of the alloys in simulated environments were examined

  19. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    International Nuclear Information System (INIS)

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values

  20. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  1. Terbium base alloy

    International Nuclear Information System (INIS)

    Composition of terbium-5-7 % gadolinium alloy with high magnetostriction sensitivity (180x10-8 Oe) is suggested. The alloy is designed for usage under cryogenic temperature within 500-1500 Oe fields. Magnetostriction sensitivity of the suggested alloy is by 2-2.5 times higher, than that of well-known before one. 1 tab

  2. Neutron spectrum effects of the defect production in fusion reactor candidate alloys

    International Nuclear Information System (INIS)

    In the present work, irradiation effects of fission and fusion neutrons on fusion reactor candidate alloys, V-4Cr-4Ti and F82H were studied using the FNS facility and the Kyoto University Reactor (KUR). The comparison of defect structures in two fusion reactor candidate alloys between fusion neutron irradiation and fission neutron irradiation was performed. Even though the irradiation doses were low, the defect formation was detected by positron annihilation spectroscopy. Higher irradiation doses and different irradiation temperatures are required to detect the effects of neutron spectra more precisely. (author)

  3. Test matrices for irradiation of Path A Prime Candidate and developmental alloys in FFTF

    International Nuclear Information System (INIS)

    These irradiations are generally intended to evaluate the void swelling resistance of the Path A Prime Candidate Alloy (PCA) at high fluence (>100 dpa) relative to 20%-cold-worked type 316 after side-by-side irradiation in the Fast Flux Test Facility (FFTF), as well as to evaluate the improvements achieved by additional minor compositional variations of the PCA. Further, these irradiations also serve as a low helium base line against which to gage more accurately the effects of higher helium generation for similar irradiation of exactly the same alloys in the High Flux Isotope Reactor (HFIR). An initial set of transmission electron microscopy (TEM) disk specimens was assembled for irradiation at approximately 420, 520, and 6000C to fluences of approximately 15, 45, and 75 dpa. Some TEM specimens were discharged at approximately 9.5 to 15.6 dpa at all temperatures, and additional specimens were then reloaded to achieve fluences well beyond 100 dpa. Tensile specimens were also included in the reload for irradiation in an above-core position at approximately 6000C. The general goals of the experiments are outlined and detailed specimen loadings are described. 9 references, 4 tables

  4. Uranium-Based Cermet Alloys

    International Nuclear Information System (INIS)

    The paper describes certain features of dispersion-hardened uranium-based cermets. As possible hardening materials, consideration was given to UO2, UC, Al2O3, MgO and UBe13. Data were obtained on the behaviour of uranium alloys containing the above-mentioned admixtures during creep tests, short-term strength tests and cyclic thermal treatment. The corrosion resistance o f UBe13-based uranium alloys was also studied. )author)

  5. Ion irradiation testing and characterization of FeCrAl candidate alloys

    Energy Technology Data Exchange (ETDEWEB)

    Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Yongqiang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commercially available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.

  6. Stress-corrosion-cracking studies on candidate container alloys for the Tuff Repository

    International Nuclear Information System (INIS)

    Cortest Columbus Technologies, Inc. (CC Technologies) investigated the long-term performance of container materials used for high-level waste package as part of the information needed by the Nuclear Regulatory Commission (NRC) to assess the Department of Energy's application to construct to geologic repository for high-level radioactive waste. At the direction of the NRC, the program focused on the Tuff Repository. This report summarizes the results of Stress-Corrosion-Cracking (SCC) studies performed in Tasks 3, 5, and 7 of the program. Two test techniques were used; U-bend exposures and Slow-Strain-Rate (SSR) tests. The testing was performed on two copper-base alloys (Alloy CDA 102 and Alloy CDA 175) and two Fe-Cr-Ni alloys (Alloy 304L and Alloy 825) in simulated J-13 groundwater and other simulated solutions for the Tuff Repository. These solutions were designed to simulate the effects of concentration and irradiation on the groundwater composition. All SCC testing on the Fe-Cr-Ni Alloys was performed on solution-annealed specimens and thus issues such as the effect of sensitization on SCC were not addressed

  7. Localized corrosion resistance of high nickel alloys as candidate materials for nuclear waste repository. Effect of alloy and weldment aging at 427 C for up to 40,000 h

    International Nuclear Information System (INIS)

    Ni-Cr-Mo alloys (e.g. C-22, C-4 and C-276) are considered candidate materials for nuclear waste containers because they offer excellent resistance to localized attack in conditions that can be encountered at the permanent repository site. Electrochemical and standard immersion tests showed that the most resistant of the studied alloys to localized attack was C-22 alloy and the less resistant was C-4 alloy. It was important to determine if long time exposure to low temperatures (below 500 C) would be detrimental in the resistance of these alloys to localized attack (pitting and crevice corrosion). After aging for 40,000 h at 427 C none of these alloys showed precipitation of a second phase (such as carbides or μ phase) that could promote a higher corrosion susceptibility of the alloys. Moreover, immersion and electrochemical tests showed that, after the same long term aging, the susceptibility to corrosion of both the base material and weldments remained unchanged. The effects of alloying elements on the resistance of the alloys to localized attack is discussed

  8. Corrosion and Creep of Candidate Alloys in High Temperature Helium and Steam Environments for the NGNP

    Energy Technology Data Exchange (ETDEWEB)

    Was, Gary; Jones, J. W.

    2013-06-21

    This project aims to understand the processes by which candidate materials degrade in He and supercritical water/steam environments characteristic of the current NGNP design. We will focus on understanding the roles of temperature, and carbon and oxygen potential in the 750-850 degree C range on both uniform oxidation and selective internal oxidation along grain boundaries in alloys 617 and 800H in supercritical water in the temperature range 500-600 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature rang 750-850 degree C; and examining the application of static and cyclic stresses in combination with impure He environments in the temperature range 750-850 degree C over a range of oxygen and carbon potentials in helium. Combined, these studies wil elucidate the potential high damage rate processes in environments and alloys relevant to the NGNP.

  9. Development of Mg-based Hydrogen Storage Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail,we reviewed the preparation and properties of Mg-Ni-based hydrogen storage alloys. All kinds of attempts have been done to improve the hydriding and dehydriding behaviors. It is found that the partial substitution of foreign elements can decrease the hydrogen absorption temperature,especially the substitution of a more electronegative element, such as Al and Mn. Mechanical alloying (MA) and mechanical grinding (MG) are the most effective methods to improve the hydriding/dehydriding kinetics and electrochemical capacity, and decrease the desorption temperature, but the corrosion resistance is so poor that the 80% of maximum capacity is lost within ten cycles. Microencapsulation is a useful measurement for improving the corrosion resistance and electrocatalytic activity. In order to improve the properties of the alloys for practical application, the alloys should have a large number of defects, which give activated sites, subsequently,MA, MG and electroless plating should be used to improve the hydriding/dehydriding kinetics and protect the surface of alloys, respectively. The new composite Mg-based alloys give a new way for the hydrogen storage material to practical application. Furthermore we put forward several problems which will be discussed in future.

  10. Biologically-Induced Micropitting of Alloy 22, a Candidate Nuclear Waste Packaging Material

    International Nuclear Information System (INIS)

    The effects of potential microbiologically influenced corrosion (MIC) on candidate packaging materials for nuclear waste containment are being assessed. Coupons of Alloy 22, the outer barrier candidate for waste packaging, were exposed to a simulated, saturated repository environment (or microcosm) consisting of crushed rock (tuff) from the Yucca Mountain repository site and a continual flow of simulated groundwater for periods up to five years at room temperature and 30 C. Coupons were incubated with YM tuff under both sterile and non-sterile conditions. Surfacial analysis by scanning electron microscopy of the biotically-incubated coupons show development of both submicron-sized pinholes and pores; these features were not present on either sterile or untreated control coupons. Room temperature, biotically-incubated coupons show a wide distribution of pores covering the coupon surface, while coupons incubated at 30 C show the pores restricted to polishing ridges

  11. Microstructures and oxidation behavior of some Molybdenum based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Pratik Kumar [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The advent of Ni based superalloys revolutionized the high temperature alloy industry. These materials are capable of operating in extremely harsh environments, comprising of temperatures around 1050 C, under oxidative conditions. Demands for increased fuel efficiency, however, has highlighted the need for materials that can be used under oxidative conditions at temperatures in excess of 1200 C. The Ni based superalloys are restricted to lower temperatures due to the presence of a number of low melting phases that melt in the 1250 - 1450 C, resulting in softening of the alloys above 1000 C. Therefore, recent research directions have been skewed towards exploring and developing newer alloy systems. This thesis comprises a part of such an effort. Techniques for rapid thermodynamic assessments were developed and applied to two different systems - Mo-Si alloys with transition metal substitutions (and this forms the first part of the thesis) and Ni-Al alloys with added components for providing high temperature strength and ductility. A hierarchical approach towards alloy design indicated the Mo-Ni-Al system as a prospective candidate for high temperature applications. Investigations on microstructures and oxidation behavior, under both isothermal and cyclic conditions, of these alloys constitute the second part of this thesis. It was seen that refractory metal systems show a marked microstructure dependence of oxidation.

  12. New generation super alloy candidates for medical applications: corrosion behavior, cation release and biological evaluation.

    Science.gov (United States)

    Reclaru, L; Ziegenhagen, R; Unger, R E; Eschler, P Y; Constantin, F

    2014-12-01

    Three super alloy candidates (X1 CrNiMoMnW 24-22-6-3-2 N, NiCr21 MoNbFe 8-3-5 AlTi, CoNiCr 35-20 Mo 10 BTi) for a prolonged contact with skin are evaluated in comparison with two reference austenitic stainless steels 316L and 904L. Several electrochemical parameters were measured and determined (E(oc), E(corr), i(corr), b(a), b(c), E(b), R(p), E(crev) and coulometric analysis) in order to compare the corrosion behavior. The cation release evaluation and in vitro biological characterization also were performed. In terms of corrosion, the results reveal that the 904L steels presented the best behavior followed by the super austenitic steel X1 CrNiMoMnW 24-22-6-3-2 N. For the other two super alloys (NiCr and CoNiCr types alloys) tested in different conditions (annealed, work hardened and work hardened+age hardened) it was found that their behavior to corrosion was weak and close to the other reference stainless steel, 316L. Regarding the extraction a mixture of cations in relatively high concentrations was noted and therefore a cocktail effect was not excluded. The results obtained in the biological assays WST-1 and TNF-alpha were in correlation with the corrosion and extraction evaluation. PMID:25491846

  13. Nickel-base alloys combat corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, D.C. [VDM Technologies Corp., Houston, TX (United States); Herda, W. [Krupp-VDM GmbH, Werdohl (Germany)

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  14. Characterization of the microstructure in Mg based alloy

    KAUST Repository

    Kutbee, Arwa T

    2013-06-01

    The cast products Mg–Sn based alloys are promising candidates for automobile industries, since they provide a cheap yet thermally stable alternative to existing alloys. One drawback of the Mg–Sn based alloys is their insufficient hardness. The hardenability can be improved by engineering the microstructure through additions of Zn to the base alloy and selective aging conditions. Therefore, detailed knowledge about the microstructural characteristics and the role of Zn to promote precipitation hardening is essential for age hardenable Mg-based alloys. In this work, microstructural investigation of the Mg–1.4Sn–1.3Zn–0.1Mn (at.%) precipitation system was performed using TEM. The chemical composition of the precipitates was analyzed using EDS. APT was employed to obtain precise chemical information on the distribution of Zn in the microstructure. It was found from microstructural studies that different precipitates with varying sizes and phases were present; lath-shaped precipitates of the Mg2Sn phase have an incoherent interface with the matrix, unlike the lath-shaped MgZn2 precipitates. Furthermore, nano-sized precipitates dispersed in the microstructure with short-lath morphology can either be enriched with Sn or Zn. On the other hand, APT analysis revealed the strong repulsion between Sn and Zn atoms in a portion of the analysis volume. However, larger reconstruction volume required to identify the role of Zn is still limited to the optimization of specimen preparation.

  15. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio and a...... low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state are...... discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  16. Surface Bond Strength in Nickel Based Alloys

    OpenAIRE

    Ramesh, Ganesh; Padmanabhan, T. V.; Ariga, Padma; Joshi, Shalini; Bhuminathan, S.; Vijayaraghavan, Vasantha

    2012-01-01

    Bonding of ceramic to the alloy is essential for the longevity of porcelain fused to metal restorations. Imported alloys used now a days in processing them are not economical. So this study was conducted to evaluate and compare the bond strength of ceramic material to nickel based cost effective Nonferrous Materials Technology Development Center (NFTDC), Hyderabad and Heraenium S, Heraeus Kulzer alloy. An Instron testing machine, which has three-point loading system for the application of loa...

  17. Shape memory alloy based motor

    Indian Academy of Sciences (India)

    S V Sharma; M M Nayak; N S Dinesh

    2008-10-01

    Design and characterization of a new shape memory alloy wire based Poly Phase Motor has been reported in this paper. The motor can be used either in stepping mode or in servo mode of operation. Each phase of the motor consists of an SMA wire with a spring in series. The principle of operation of the poly phase motor is presented. The motor resembles a stepper motor in its functioning though the actuation principles are different and hence has been characterized similar to a stepper motor. The motor can be actuated in either direction with different phase sequencing methods, which are presented in this work. The motor is modelled and simulated and the results of simulations and experiments are presented. The experimental model of the motor is of dimension 150 mm square, 20 mm thick and uses SMA wire of 0·4 mm diameter and 125 mm of length in each phase.

  18. Iron-based amorphous alloys and methods of synthesizing iron-based amorphous alloys

    Science.gov (United States)

    Saw, Cheng Kiong; Bauer, William A.; Choi, Jor-Shan; Day, Dan; Farmer, Joseph C.

    2016-05-03

    A method according to one embodiment includes combining an amorphous iron-based alloy and at least one metal selected from a group consisting of molybdenum, chromium, tungsten, boron, gadolinium, nickel phosphorous, yttrium, and alloys thereof to form a mixture, wherein the at least one metal is present in the mixture from about 5 atomic percent (at %) to about 55 at %; and ball milling the mixture at least until an amorphous alloy of the iron-based alloy and the at least one metal is formed. Several amorphous iron-based metal alloys are also presented, including corrosion-resistant amorphous iron-based metal alloys and radiation-shielding amorphous iron-based metal alloys.

  19. Development of Barrier Layers for the Protection of Candidate Alloys in the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Levi, Carlos G. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Jones, J. Wayne [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Pollock, Tresa M. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States); Was, Gary S. [Battelle Energy Alliance, LLC, Idaho Falls, ID (United States)

    2015-01-22

    The objective of this project was to develop concepts for barrier layers that enable leading candi- date Ni alloys to meet the longer term operating temperature and durability requirements of the VHTR. The concepts were based on alpha alumina as a primary surface barrier, underlay by one or more chemically distinct alloy layers that would promote and sustain the formation of the pro- tective scale. The surface layers must possess stable microstructures that provide resistance to oxidation, de-carburization and/or carburization, as well as durability against relevant forms of thermo-mechanical cycling. The system must also have a self-healing ability to allow endurance for long exposure times at temperatures up to 1000°C.

  20. MODELING OF NI-CR-MO BASED ALLOYS: PART II - KINETICS

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, P A; Kaufman, L; Liu, Z

    2006-07-07

    The CALPHAD approach is applied to kinetic studies of phase transformations and aging of prototypes of Ni-Cr-Mo-based alloys selected for waste disposal canisters in the Yucca Mountain Project (YMP). Based on a previous study on alloy stability for several candidate alloys, the thermodynamic driving forces together with a newly developed mobility database have been used to analyze diffusion-controlled transformations in these Ni-based alloys. Results on precipitation of the Ni{sub 2}Cr-ordered phase in Ni-Cr and Ni-Cr-Mo alloys, and of the complex P- and {delta}-phases in a surrogate of Alloy 22 are presented, and the output from the modeling are compared with experimental data on aging.

  1. Iron - based bulk amorphous alloys

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2010-07-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties analysis of Fe-based bulk amorphous materials in as-cast state and after crystallization process. In addition, the paper gives some brief review about achieving, formation and structure of bulk metallic glasses as a special group of amorphous materials.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The magnetic properties contained initial and maximum magnetic permeability, coercive force and magnetic after-effects measurements were determined by the Maxwell-Wien bridge and VSM methods.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast bulk metallic glasses in form of ribbons and rods were amorphous. Two stage crystallization process was observed for studied bulk amorphous alloy. The differences of crystallization temperature between ribbons and rods with chosen thickness are probably caused by different amorphous structures as a result of the different cooling rates in casting process. The SEM images showed that studied fractures could be classified as mixed fractures with indicated two zones contained “river” and “smooth” areas. The changing of chosen soft magnetic properties (μr, Bs, Hc obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses. The annealing process in temperature range from 373 to 773 K causes structural relaxation of tested amorphous materials, which leads to changes in their physical properties. The qualitative

  2. F-Alloy: An Alloy Based Model Transformation Language

    OpenAIRE

    Gammaitoni, Loïc; Kelsen, Pierre

    2015-01-01

    Model transformations are one of the core artifacts of a model-driven engineering approach. The relational logic language Alloy has been used in the past to verify properties of model transformations. In this paper we introduce the concept of functional Alloy modules. In essence a functional Alloy module can be viewed as an Alloy module representing a model transformation. We describe a sublanguage of Alloy called F-Alloy that allows the specification of functional Alloy modules. Module...

  3. Effect of yttrium additions on void swelling in Liquid Metal Fast Breeder Reactor candidate cladding alloys

    International Nuclear Information System (INIS)

    Candidate Liquid Metal Fast Breeder Reactor cladding alloys AL1 (Fe-26% Ni-9% Cr) and AL2 (Fe-35% Ni-12% Cr) without and with the addition of 0.1% yttrium were bombarded by 4 MeV56Fe2+ ions without and with simultaneous bombardment by 0.4 MeV 4He+ ions. These bombardments were conducted at various irradiation temperatures to determine the effect of yttrium on void swelling. The addition of yttrium decreased peak swelling for 4 MeV 56Fe2+ ion bombarded AL1 and AL2 by 28% and 20%, respectively. In all cases where similar sample comparisons were made (i.e., undoped with undoped and doped with doped) and where bombardment conditions were similar (i.e., single with single beam and dual with dual beam), AL1 showed less peak swelling than did AL2. Simultaneously implanting helium during heavy-ion bombardment increased peak swelling in undoped and doped AL1 by factors of 2.3 and 2.6, respectively

  4. Passivation of alloys on titanium base

    International Nuclear Information System (INIS)

    Results of passivation studies on Ti-base alloys show that the inhibition of anodic processes on these alloys is determined not by the total thickness of passive film, but by its barrier layer. The protective properties of the barrier layer increase if the passive film is formed at anodic potentials more positive than +1.4V. They were determined not by chemical stability of barrier layer, but by an inhibition which is produced by this layer for ionic current along the anodic direction. The protective properties are related to character defectiveness and semiconductor properties of the barrier layer. Additions of Al, V, Mo, Zr, and Nb to titanium increase the anodic current in the passive state. Additions of Cr and Mn decrease this current, and Sn does not influence it. The direct electrochemical transition of titanium ions into solution (as TiO2+) is a main anodic process of titanium dissolution and its low alloyed alloys in the passive state. Double phase titanium alloys (after tempering) have a lower corrosion resistance than those in the homogeneous single phase state (after hardening). The less passive phase of double phase alloys dissolves perferentially. The less passive phases are: in the active state, α-phase; in transpassive state for Ti--Mo alloys, β-phase, containing in a high Mo percentage; and for Ti--Cr alloys, γ-phase, having more chromium. (U.S.)

  5. Replacement of Co-base alloy for radiation exposure reduction in the primary system of PWR

    International Nuclear Information System (INIS)

    Of numerous Co-free alloys developed to replace Co-base stellite used in valve hardfacing material, two iron-base alloys of Armacor M and Tristelle 5183 and one nickel-base alloy of Nucalloy 488 were selected as candidate Co-free alloys, and Stellite 6 was also selected as a standard hardfacing material. These four alloys were welded on 316SS substrate using TIG welding method. The first corrosion test loop of KAERI simulating the water chemistry and operation condition of the primary system of PWR was designed and fabricated. Corrosion behaviors of the above four kinds of alloys were evaluated using this test loop under the condition of 300 deg C, 1500 psi. Microstructures of weldment of these alloys were observed to identify both matrix and secondary phase in each weldment. Hardnesses of weld deposit layer including HAZ and substrate were measured using micro-Vickers hardness tester. The status on the technology of Co-base alloy replacement in valve components was reviewed with respect to the classification of valves to be replaced, the development of Co-free alloys, the application of Co-free alloys and its experiences in foreign NPPs, and the Co reduction program in domestic NPPs and industries. 18 tabs., 20 figs., 22 refs. (Author)

  6. Effect of glass-ceramic-processing cycle on the metallurgical properties of candidate alloys for actuator housings

    Energy Technology Data Exchange (ETDEWEB)

    Weirick, L.J.

    1982-01-01

    This report summarizes the results from an investigation on the effect of a glass ceramic processing cycle on the metallurgical properties of metal candidates for actuator housings. The cycle consists of a 980/sup 0/C sealing step, a 650/sup 0/C crystallization step and a 475/sup 0/C annealing step. These temperatue excursions are within the same temperature regime as annealing and heat treating processes normally employed for metals. Therefore, the effect of the processing cycle on metallurgical properties of microstructure, strength, hardness and ductility were examined. It was found that metal candidates which are single phase or solid solution alloys (such as 21-6-9, Hastelloy C-276 and Inconel 625) were not affected whereas multiphase or precipitation hardened alloys (such as Inconel 718 and Titanium ..beta..-C) were changed by the processing cycle for the glass ceramic.

  7. Evaluation of Nb-base alloys for the divertor structure in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Purdy, I.M. [Argonne National Laboratory, Upton, IL (United States)

    1996-04-01

    Niobium-base alloys are candidate materials for the divertor structure in fusion reactors. For this application, an alloy should resist aqueous corrosion, hydrogen embrittlement, and radiation damage and should have high thermal conductivity and low thermal expansion. Results of corrosion and embrittlement screening tests of several binary and ternary Nb alloys in high-temperature water indicated the Mb-1Zr, Nb-5MO-1Zr, and Nb-5V-1Z4 (wt %) showed sufficient promise for further investigation. These alloys, together with pure Nb and Zircaloy-4 have been exposed to high purity water containing a low concentration of dissolved oxygen (<12 ppb) at 170, 230, and 300{degrees}C for up to {approx}3200 h. Weight-change data, microstructural observations, and qualitative mechanical-property evaluation reveal that Nb-5V-1Zr is the most promising alloy at higher temperatures. Below {approx}200{degrees}C, the alloys exhibit similiar corrosion behavior.

  8. LASER CLADDING ON ALUMINIUM BASE ALLOYS

    OpenAIRE

    Pilloz, M.; Pelletier, J; Vannes, A.; Bignonnet, A.

    1991-01-01

    laser cladding is often performed on iron or titanium base alloys. In the present work, this method is employed on aluminum alloys ; nickel or silicon are added by powder injection. Addition of silicon leads to sound surface layers, but with moderated properties, while the presence of nickel induces the formation of hard intermetallic compounds and then to an attractive hardening phenomena ; however a recovery treatment has to be carried out, in order to eliminate porosity in the near surface...

  9. Advanced gas cooled nuclear reactor materials evaluation and development program. Selection of candidate alloys. Vol. 1. Advanced gas cooled reactor systems definition

    International Nuclear Information System (INIS)

    Candidate alloys for a Very High Temperature Reactor (VHTR) Nuclear Process Heal (NPH) and Direct Cycle Helium Turbine (DCHT) applications in terms of the effect of the primary coolant exposure and thermal exposure were evaluated

  10. Advanced gas cooled nuclear reactor materials evaluation and development program. Selection of candidate alloys. Vol. 1. Advanced gas cooled reactor systems definition

    Energy Technology Data Exchange (ETDEWEB)

    Marvin, M.D.

    1978-10-31

    Candidate alloys for a Very High Temperature Reactor (VHTR) Nuclear Process Heal (NPH) and Direct Cycle Helium Turbine (DCHT) applications in terms of the effect of the primary coolant exposure and thermal exposure were evaluated. (FS)

  11. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  12. Oxygen diffusion in vanadium-based alloys

    International Nuclear Information System (INIS)

    The experimental study of transport and equilibrium properties of oxygen in vanadium-based alloys was made by EMF measurements on solid electrolytic cells over the temperature range of 873 to 14230K. The oxygen diffusion in vanadium was not significantly modified by small additions of Ti, Cr, Ni, Nb and Ta. The increase in the activation energy for oxygen diffusion in the V-based alloys containing Cr, Ni, Nb and Ta probably reflects the effect of these substitutional solutes on the activity coefficient of oxygen. The oxygen activity was increased by the addition of 1 at % of Cr, Ni and Nb, and decreased by the addition of Ti and Ta. However, the effects in the alloys containing Nb and Ta are very small

  13. Irradiation creep of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  14. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  15. Creep of nickel-base alloys in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J.S.; Attanasio, S.A.; Krasodomski, H.T.; Wilkening, W.W.; Was, G.S.; Cookson, J.; Yi, Y.

    1999-08-01

    Creep tests were performed to compare the creep behavior of commercial nickel-base alloys as a function of stress, temperature, and the environment. The results support earlier work that showed that low carbon alloys are more susceptible to creep and intergranular cracking than are high carbon alloys. Results also show a smaller influence of a water environment on the creep rate of commercial, creep-resistant alloys compared to high purity alloys.

  16. Mechanical Properties of Ni-base ODS Alloy Influenced by Process Variables

    International Nuclear Information System (INIS)

    According to a recent investigation, no proven industrial technology could be directly used for such applications. For example, extensive work on Alloy 617 which is the candidate material for the intermediate heat exchanger (IHX) in very high temperature reactors (VHTR) shows that Alloy 617 exhibit quite good creep properties, the maximum service temperature of Alloy 617 is much less than that required for the VHTR-IHX applications. In this regard, oxide dispersion strengthened (ODS) materials have received a great attention owing to their excellent mechanical properties at higher temperatures, e.g., creep resistance. As part of an alloy development program for nickel base ODS alloy, we have produced an ODS Alloy 617 via mechanical alloying and hot extrusion, and characterized its microstructural evolution during the process and evaluated mechanical properties at elevated temperatures. The current work reports the effects of process variables and yttria contents on the microstructure and mechanical properties of ODS Alloy 617. From the experimental work on the influences of yttria content, and process variables such as hot-extrusion ratio and hydrogen reduction on the mechanical properties of ODS Alloy 617, it is concluded that reduction of yttria contents from 0.6 wt.% to 0.45 wt.% and increasing hot extrusion ratio from 6.25:1 to 9:1 improve the ductility at elevated temperatures without the sacrifice of strength

  17. Chromium Activity Measurements in Nickel Based Alloys for Very High Temperature Reactors: Inconel 617, Haynes 230, and Model Alloys

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHXs) of (very) high temperature reactors ((V)-HTRs). The behavior under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra- and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer. The alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow (Rouillard, F., 2007, 'Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR, Ph.D. thesis, Ecole des Mines de Saint-Etienne, France). To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T approximate to 1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617, and model alloys 1178, 1181, and 1201. This coupling makes it possible for the thermodynamic equilibrium to be obtained between the vapor phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (I) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared with that of the pure substance (Cr) at the same temperature

  18. Progress in ODS Alloys: A Synopsis of a 2010 Workshop on Fe- Based ODS Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kad, Bimal [University of California, San Diego; Dryepondt, Sebastien N [ORNL; Jones, Andy R. [University of Liverpool; Vito, Cedro III [National Energy Technology Laboratory (NETL); Tatlock, Gordon J [ORNL; Pint, Bruce A [ORNL; Tortorelli, Peter F [ORNL; Rawls, Patricia A. [National Energy Technology Laboratory (NETL)

    2012-01-01

    In Fall 2010, a workshop on the role and future of Fe-based Oxide Dispersion Strengthened (ODS) alloys gathered together ODS alloy suppliers, potential industrial end-users, and technical experts in relevant areas. Presentations and discussions focused on the current state of development of these alloys, their availability from commercial suppliers, past major evaluations of ODS alloy components in fossil and nuclear energy applications, and the technical and economic issues attendant to commercial use of ODS alloys. Significant progress has been achieved in joining ODS alloys, with creep resistant joints successfully made by inertia welding, friction stir welding and plasma-assisted pulse diffusion bonding, and in improving models for the prediction of lifetime components. New powder and alloy fabrication methods to lower cost or improve endproduct properties were also described. The final open discussion centered on challenges and pathways for further development and large-scale use of ODS alloys.

  19. Trinocular stereo vision method based on mesh candidates

    Science.gov (United States)

    Liu, Bin; Xu, Gang; Li, Haibin

    2010-10-01

    One of the most interesting goals of machine vision is 3D structure recovery of the scenes. This recovery has many applications, such as object recognition, reverse engineering, automatic cartography, autonomous robot navigation, etc. To meet the demand of measuring the complex prototypes in reverse engineering, a trinocular stereo vision method based on mesh candidates was proposed. After calibration of the cameras, the joint field of view can be defined in the world coordinate system. Mesh grid is established along the coordinate axes, and the mesh nodes are considered as potential depth data of the object surface. By similarity measure of the correspondence pairs which are projected from a certain group of candidates, the depth data can be obtained readily. With mesh nodes optimization, the interval between the neighboring nodes in depth direction could be designed reasonably. The potential ambiguity can be eliminated efficiently in correspondence matching with the constraint of a third camera. The cameras can be treated as two independent pairs, left-right and left-centre. Due to multiple peaks of the correlation values, the binocular method may not satisfy the accuracy of the measurement. Another image pair is involved if the confidence coefficient is less than the preset threshold. The depth is determined by the highest sum of correlation of both camera pairs. The measurement system was simulated using 3DS MAX and Matlab software for reconstructing the surface of the object. The experimental result proved that the trinocular vision system has good performance in depth measurement.

  20. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    K T Kashyap

    2009-08-01

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is observed. This criterion points to diffusional coherency strain theory to be the operative mechanism for DP.

  1. Effects of alloying side B on Ti-based AB2 hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    王家淳; 于荣海; 刘庆

    2004-01-01

    Ti-based AB2-type hydrogen storage alloys are a group of promising materials, which will probably replace the prevalent rare earth-based AB5-type alloys and be adopted as the main cathode materials of nickelmetal hydride (Ni-MH) batteries in the near future. Alloying in side B is a major way to improve the performance of Ti-based AB2-type alloys. Based on recent studies, the effects of alloying elements in side B upon the performance of Ti-based AB2 -type hydrogen storage alloys are systematically reviewed here. These performances are divided into two categories, namely PCI characteristics, including hydrogen storage capacity (HSC), plateau pressure (PP), pressure hysteresis (PH) and pressure plateau sloping (PPS) , and electrochemical properties, including discharge capacity (DC), activation property (AP), cycling stability (CS) and high-rate dischargeability (HRD). Furthermore, the existing problems in these investigations and some suggestions for future research are proposed.

  2. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - phase II

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Stanko, G.J. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1996-08-01

    In Phase I a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase II (in situ testing) has exposed samples of 347, RA-8511, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, 800HT, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on an air-cooled, retractable corrosion probe, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. Samples of each alloy will be exposed for 4000, 12,000, and 16,000 hours of operation. The results will be presented for the metallurgical examination of the corrosion probe samples after 4000 hours of exposure.

  3. Radiation-Induced Segregation and Phase Stability in Candidate Alloys for the Advanced Burner Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gary S. Was; Brian D. Wirth

    2011-05-29

    Major accomplishments of this project were the following: 1) Radiation induced depletion of Cr occurs in alloy D9, in agreement with that observed in austenitic alloys. 2) In F-M alloys, Cr enriches at PAG grain boundaries at low dose (<7 dpa) and at intermediate temperature (400°C) and the magnitude of the enrichment decreases with temperature. 3) Cr enrichment decreases with dose, remaining enriched in alloy T91 up to 10 dpa, but changing to depletion above 3 dpa in HT9 and HCM12A. 4) Cr has a higher diffusivity than Fe by a vacancy mechanism and the corresponding atomic flux of Cr is larger than Fe in the opposite direction to the vacancy flux. 5) Cr concentration at grain boundaries decreases as a result of vacancy transport during electron or proton irradiation, consistent with Inverse Kirkendall models. 6) Inclusion of other point defect sinks into the KLMC simulation of vacancy-mediated diffusion only influences the results in the low temperature, recombination dominated regime, but does not change the conclusion that Cr depletes as a result of vacancy transport to the sink. 7) Cr segregation behavior is independent of Frenkel pair versus cascade production, as simulated for electron versus proton irradiation conditions, for the temperatures investigated. 8) The amount of Cr depletion at a simulated planar boundary with vacancy-mediated diffusion reaches an apparent saturation value by about 1 dpa, with the precise saturation concentration dependent on the ratio of Cr to Fe diffusivity. 9) Cr diffuses faster than Fe by an interstitial transport mechanism, and the corresponding atomic flux of Cr is much larger than Fe in the same direction as the interstitial flux. 10) Observed experimental and computational results show that the radiation induced segregation behavior of Cr is consistent with an Inverse Kirkendall mechanism.

  4. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Krawchuk, M.T.; Van Weele, S.F. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1995-08-01

    A number of developmental and commercial tubing alloys and claddings have previously been exposed in Phase I to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. This program is exposing samples of TP 347, RA-85H, HR-3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF-709, 690 clad, and 671 clad, which showed good corrosion resistance from Phase 1, to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and are being controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The exposure will continue for 4000, 12,000, and 16,000 hours of operation. After the three exposure times, the samples will be metallurgically examined to determine the wastage rates and mode of attack. The probes were commissioned November 16, 1994. The temperatures are being recorded every 15 minutes, and the weighted average temperature calculated for each sample. Each of the alloys is being exposed to a temperature in each of two temperature bands-1150 to 1260{degrees}F and 1260 to 1325{degrees}F. After 2000 hours of exposure, one of the corrosion probes was cleaned and the wall thicknesses were ultrasonically measured. The alloy performance from the field probes will be discussed.

  5. Characterization of copper base alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    The micro and nano structure of mechanical alloys of Cu-Al, Cu-V and Cu-Ti obtained by reactive milling, using an Attritor mill, was analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscope (TEM). In order to study the evolution of the alloys during the manufacturing process and during the period of service, the DSC and XRD were done before the mechanical milling, after 30 hours of milling and after hot extrusion of the alloyed powders. Using the Williamson-Hall and Klug-Alexander methods the size of the crystallites and the density of the dislocations in the prepared alloys were evaluated. In all the milled powder cases, the grain and crystallite size was found to be nanometric, the dispersoids were also nanometric and there was texture in the copper planes (220), in the cases of the milled Cu- Ti and Cu-V powders (au)

  6. Hot Workability of CuZr-Based Shape Memory Alloys for Potential High-Temperature Applications

    Science.gov (United States)

    Biffi, Carlo Alberto; Tuissi, Ausonio

    2014-07-01

    The research on high-temperature shape memory alloys has been growing because of the interest of several potential industrial fields, such as automotive, aerospace, mechanical, and control systems. One suitable candidate is given by the CuZr system, because of its relative low price in comparison with others, like the NiTi-based one. In this context, the goal of this work is the study of hot workability of some CuZr-based shape memory alloys. In particular, this study addresses on the effect of hot rolling process on the metallurgical and calorimetric properties of the CuZr system. The addition of some alloying elements (Cr, Co, Ni, and Ti) is taken into account and their effect is also put in comparison with each other. The alloys were produced by means of an arc melting furnace in inert atmosphere under the shape of cigars. Due to the high reactivity of these alloys at high temperature, the cigars were sealed in a stainless steel can before the processing and two different procedures of hot rolling were tested. The characterization of the rolled alloys is performed using discrete scanning calorimetry in terms of evolution of the martensitic transformation and scanning electron microscopy for the microstructural investigations. Additionally, preliminary tests of laser interaction has been also proposed on the alloy more interesting for potential applications, characterized by high transformation temperatures and its good thermal stability.

  7. Ti-V-Mn based alloys for hydrogen compression system

    Energy Technology Data Exchange (ETDEWEB)

    Dehouche, Z. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres, Que., G9A 5H7 (Canada)]. E-mail: zahir_dehouche@uqtr.ca; Savard, M. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres, Que., G9A 5H7 (Canada); Laurencelle, F. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres, Que., G9A 5H7 (Canada); Goyette, J. [Institut de Recherche sur l' hydrogene, Universite du Quebec a Trois-Rivieres, C.P. 500, Trois-Rivieres, Que., G9A 5H7 (Canada)

    2005-09-01

    Ti-V-Mn based hydrides are one family of alloys with improved hydrogenation properties and they have a great potential to replace the AB{sub 5} alloys as the sorption materials in hydrogen compression systems, although there still are many problems associated with their use, including unstable reversible hydrogen capacity and unfavorable thermodynamic properties. To gain a better understanding on the effect of the substitution elements and to optimize the alloy composition for high storage capacity, the influence of the alloy stoichiometry was investigated. Ti-Zr-V-Mn alloys were prepared by arc melting technique and were annealed in vacuum at temperature above 900 deg. C to obtain great sorption properties. Hydrogen absorption and desorption kinetics and PCT characteristics of these alloys at ambient temperature were measured and compared. These hydrogen storage features were also discussed in relation to the effect of alloy element compositions. Ti-Zr-V-Mn alloy cycling behavior was also examined.

  8. Ti-V-Mn based alloys for hydrogen compression system

    International Nuclear Information System (INIS)

    Ti-V-Mn based hydrides are one family of alloys with improved hydrogenation properties and they have a great potential to replace the AB5 alloys as the sorption materials in hydrogen compression systems, although there still are many problems associated with their use, including unstable reversible hydrogen capacity and unfavorable thermodynamic properties. To gain a better understanding on the effect of the substitution elements and to optimize the alloy composition for high storage capacity, the influence of the alloy stoichiometry was investigated. Ti-Zr-V-Mn alloys were prepared by arc melting technique and were annealed in vacuum at temperature above 900 deg. C to obtain great sorption properties. Hydrogen absorption and desorption kinetics and PCT characteristics of these alloys at ambient temperature were measured and compared. These hydrogen storage features were also discussed in relation to the effect of alloy element compositions. Ti-Zr-V-Mn alloy cycling behavior was also examined

  9. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    International Nuclear Information System (INIS)

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO2 and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: ► In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. ► Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. ► Evaluated interface shear strength, push-out energies, stiffness, histology. ► Mg WZ21 suitable, other materials only after alterations.

  10. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W.; Girshik, A. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  11. Microstructures of nickel-base alloy dissimilar metal welds

    OpenAIRE

    Mouginot, Roman; Hänninen, Hannu

    2013-01-01

    Dissimilar metal welds (DMWs) between low-alloy steels (LAS), stainless steels (SS) and nickel-base alloys are very important in the design of conventional and nuclear power plants (NPPs). They help to reach better performances for high temperature environment but they can promote premature failure of components. Failure is often related to cracking in the heat affected zone of base materials. In this study, a literature review was conducted concerning the behavior of Inconel Ni-base alloy...

  12. Nickel-base alloy forgings for advanced high temperature power plants

    Energy Technology Data Exchange (ETDEWEB)

    Donth, B.; Diwo, A.; Blaes, N.; Bokelmann, D. [Saarschmiede GmbH Freiformschmiede, Voelklingen (Germany)

    2008-07-01

    The strong efforts to reduce the CO{sub 2} emissions lead to the demand for improved thermal efficiency of coal fired power plants. An increased thermal efficiency can be realised by higher steam temperatures and pressures in the boiler and the turbine. The European development aims for steam temperatures of 700 C which requires the development and use of new materials and also associated process technology for large components. Temperatures of 700 C and above are too high for the application of ferritic steels and therefore only Nickel-Base Alloys can fulfill the required material properties. In particular the Nickel-Base Alloy A617 is the most candidate alloy on which was focused the investigation and development in several German and European programs during the last 10 years. The goal is to verify and improve the attainable material properties and ultrasonic detectability of large Alloy 617 forgings for turbine rotors and boiler parts. For many years Saarschmiede has been manufacturing nickel and cobalt alloys and is participating the research programs by developing the manufacturing routes for large turbine rotor forgings up to a maximum diameter of 1000 mm as well as for forged tubes and valve parts for the boiler side. The experiences in manufacturing and testing of very large forgings made from nickel base alloys for 700 C steam power plants are reported. (orig.)

  13. Indentation toughness of Mo5Si3-based alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The indentation toughness of Mo5Si3 -based phases was studied with regard to different alloying elements, amount of alloying addition as well as the presence of secondary phases. Cr, Ti, Nb, Ni and Co were added as alloying elements. The results show that the indentation fracture toughness of Mo5Si3 increases with the alloying additions, from 2.4 Mpa *m1/2 for mon olithic to just over 3 Mpa*m1/2 for highly alloyed Mo5Si3. Small volume fractions of brittle secondary phases may have a positive impact on the inde ntation toughness; while larger fractions seems to lower the toughness.

  14. PHB, crystalline and amorphous magnesium alloys: Promising candidates for bioresorbable osteosynthesis implants?

    Energy Technology Data Exchange (ETDEWEB)

    Celarek, Anna [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Kraus, Tanja [Department of Paediatric Orthopaedics, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Tschegg, Elmar K., E-mail: elmar.tschegg@tuwien.ac.at [Institute for Building Construction and Technology E-206-4, Vienna University of Technology, Karlsplatz 13, 1040 Vienna (Austria); Fischerauer, Stefan F. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria); Stanzl-Tschegg, Stefanie [Department of Material Sciences and Process Engineering, Institute of Physics and Materials Science, University of Natural Resources and Life Sciences, Peter Jordan Str. 82, 1190 Vienna (Austria); Uggowitzer, Peter J. [Department of Materials, Laboratory for Metal Physics and Technology, ETH Zurich, 8093 Zurich (Switzerland); Weinberg, Annelie M. [Department of Paediatric and Adolescent Surgery, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz (Austria)

    2012-08-01

    In this study various biodegradable materials were tested for their suitability for use in osteosynthesis implants, in particular as elastically stable intramedullary nails for fracture treatment in paediatric orthopaedics. The materials investigated comprise polyhydroxybutyrate (PHB), which belongs to the polyester family and is produced by microorganisms, with additions of ZrO{sub 2} and a bone graft substitute; two crystalline magnesium alloys with significantly different degradation rates ZX50 (MgZnCa, fast) and WZ21 (MgYZnCa, slow); and MgZnCa bulk metallic glasses (BMG). Push-out tests were conducted after various implantation times in rat femur meta-diaphysis to evaluate the shear forces between the implant material and the bone. The most promising materials are WZ21 and BMG, which exhibit high shear forces and push-out energies. The degradation rate of ZX50 is too fast and thus the alloy does not maintain its mechanical stability long enough during the fracture-healing period. PHB exhibits insufficient mechanical properties: it degrades very slowly and the respective low shear forces and push-out energy levels are unsatisfactory. - Highlights: Black-Right-Pointing-Pointer In-vivo (rat model) investigation of biodegradable materials suitable for ESIN. Black-Right-Pointing-Pointer Materials: polymer PHB, crystalline Mg ZX50 and Mg WZ21, MgZnCa bulk metallic glasses. Black-Right-Pointing-Pointer Evaluated interface shear strength, push-out energies, stiffness, histology. Black-Right-Pointing-Pointer Mg WZ21 suitable, other materials only after alterations.

  15. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  16. Corrosion and mechanical property at high temperature of nickel based alloy for VHTR

    International Nuclear Information System (INIS)

    Using a very high temperature reactor (VHTR), it is conceptually and practically possible to generate highly efficient electricity and produce massive hydrogen among generation IV nuclear power plants. The structural material for an intermediate heat exchanger (IHX) is exposed to high temperature of up to 950 .deg. C. In this harsh environment, nickel-based alloys such as Alloy 617 and Haynes 230 are considered as promising candidate materials for IHX material owing to their excellent creep resistances at high temperature. However, high-temperature degradation cannot be avoided even for nickel-based alloy. Helium which inevitably includes impurities such as H2, CH4, H2O and CO is used as a coolant in a VHTR. Material degradation is aggravated by corrosion under an impure helium environment, which is one of the main obstacles to overcome for the application and successful long-term operation of a VHTR. A review of the thermodynamics indicates which reactions are available on the surface of the materials among oxidation, carburization and decarburization, but it does not give US the kinetic preference. This kinetic preference can induce localized corrosion, kinetic irreversibility and long-term material instability leading to material degradation. In addition to a long-term corrosion test under a VHTR coolant environment, the development of new alloys superior to commercial nickel-based alloy also give way to the successful establishment of a VHTR. Commercial nickel-based wrought alloy is strengthened by a solid solution and precipitation hardening mechanism in a wide temperature range of 500 to 900 .deg. C. The γ' significantly contributes to the strengthening by locking dislocation motion by an antiphase boundary at an intermediate temperature range of 700 to 800 .deg. C, but is no longer stable above this temperature range. However, the material for an IHX needs to fulfill the mechanical property requirements in a narrow and very high temperature range of 850 to

  17. Stress corrosion crack tip microstructure in nickel-based alloys

    International Nuclear Information System (INIS)

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content

  18. Thermal sprayed iron base alloys coatings

    International Nuclear Information System (INIS)

    Particularities of thermal spraying of iron-based alloys coatings are associated with sufficiently great values of parameter of melting difficulty (for Fe D = 2.08 I-10/sup 10/ kJ.kg/sup -1/.m/sup -3/), and relatively low values of coefficients-of heat accumulation (for Fe b=C.raw.Lambda /sub 0.5/=108 W.m/sup -2/.K.sec/sup-0.5/). These materials are less inclined to form quality coating under the influence of the thermal activation and therefore it is reasonable to use in addition the mechanical activation of substrate surface. The powder of iron-base alloy FeSi/sub 7/AI/sub 3.5/C/sub 2/ was obtained by melt-atomization with water hardening of droplets. The main phase components of powder are alpha and gamma -solid solution on base of Fe (austenite), cementite (Fe/sub 3/C), metastable rhombic lattice x-phase, and possibly metastable carbide Fe/sub 2/C. When the powder particles shape is oval which axis dimensions about 80 and 300 micro meter, the main phase components of detonation sprayed coatings in case of oxy-acetylene gas mixture are alpha and gamma -phases, in case of oxy-propane-butane mixture the coating phase component the same as initial powder. When the powder particles size is 63-100 micro meter, the coatings phase components are alpha and gamma - solid solutions, Fe/sub 3/C, x-phase, Fe/sub 2/C, Fe/sub 3/0/sub 4/ and FeO. The main phase components of FeSi/sub 7/B/sub 12,6/ powder are alpha-solid solution, borides Fe/sub 2/B and FeB, X- phase. The sprayed coatings have the same phase composition. These types of Fe-base alloys powders have relatively low cost, easy available and can used for deposition of wear resistant coatings. (author)

  19. ATOM PROBE STUDY OF TITANIUM BASE ALLOYS : PRELIMINARY RESULTS

    OpenAIRE

    Menand, A.; Chambreland, S.; Martin, C

    1986-01-01

    Two different titanium base alloys, Ti46 Al54 and Ti88.8 Cu2.3, Al8.9, have been studied by atom probe microanalysis. A precipitate of Ti2 Al was analysed in the binary alloys. Micro-analysis of Ti Cu Al alloy revealed the presence of Copper enriched zones. The study has also exhibited a penetration of Hydrogen in the samples, probably due to preparation technique. The results demonstrate the feasibility of studies on titanium base alloys by mean of atom probe.

  20. Fuel behavior in severe accidents and Mo-alloy based cladding designs to improve accident tolerance

    International Nuclear Information System (INIS)

    The severe accidents at TMI-2 and Fukushima-Daiichi led to core meltdown and hydrogen explosions. The main source of energy causing core melting is the decay heat from β-, β+, and γ decays of short-lived isotopes following a power scram. The exothermic reaction of Zr-alloy cladding can further increase the cladding temperature leading to rapid cladding corrosion and hydrogen production. The most effective mitigation to minimize core damage in a severe accident is to extend the duration of heat removal capacity via battery-supported passive cooling for as long as practically possible. Replacing the Zr-alloy cladding with a higher heat resistant cladding with lower enthalpy release rate may also provide additional coping time for accident management. Such a heat resistant cladding may also overcome the current licensing concerns about Zr-alloy hydriding and post quench ductility issues in a design base loss of coolant accident (LOCA). Zr-alloy cladding, while has been optimized for normal operation in high pressure water and steam of light water reactors, will rapidly lose its corrosion resistance and tensile and creep strength in high pressure steam. Evaluation of alternate cladding materials and designs have been performed to search for a new fuel cladding design which will substantially improve the safety margins at elevated temperatures during a severe accident, while maintaining the excellent fuel performance attributes of the current Zr-alloy cladding. The screening criteria for the evaluation include neutronic properties, material availability, adaptability and operability in current LWRs, resistance to melting. The new designs also need to be fabricable, maintain sufficient strength and resist to attack by high pressure steam. Engineering metals, alloys and ceramics which can meet some or most of these requirements are limited. Following review of the properties of potential candidates, it is concluded that molybdenum alloys may potentially achieve the

  1. Modeling of self-controlling hyperthermia based on nickel alloy ferrofluids: Proposition of new nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Delavari, H. Hamid, E-mail: Hamid.delavari@gmail.com [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Avenue, 145888-9694 Tehran (Iran, Islamic Republic of); Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); Madaah Hosseini, Hamid R. [Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Avenue, 145888-9694 Tehran (Iran, Islamic Republic of); Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 145888-9694 Tehran (Iran, Islamic Republic of); Wolff, Max, E-mail: Max.wolff@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden)

    2013-06-15

    In order to provide sufficient heat without overheating healthy tissue in magnetic fluid hyperthermia (MFH), a careful design of the magnetic properties of nanoparticles is essential. We perform a systematic calculation of magnetic properties of Ni-alloy nanoparticles. Stoner–Wohlfarth model based theories (SWMBTs) are considered and the linear response theory (LRT) is used to extract the hysteresis loop of nickel alloy nanoparticles in alternating magnetic fields. It is demonstrated that in the safe range of magnetic field intensity and frequency the LRT cannot be used for the calculation of the area in the hysteresis for magnetic fields relevant for hyperthermia. The best composition and particle size for self-controlling hyperthermia with nickel alloys is determined based on SWMBTs. It is concluded that Ni–V and Ni–Zn are good candidates for self-controlling hyperthermia. - Highlights: ► Systematic calculation of magnetic properties of Ni-alloy NPs with composition has been performed. ► Optimum composition and particle size for self-controlling hyperthermia (SCH) have been determined. ► Ni–V and Ni–Zn nanoparticles are more appropriate candidates for SCH.

  2. Hot rolling of intermetallics FeAl phase based alloys

    OpenAIRE

    G. Niewielski; D. Kuc; Schindler, I.; I. Bednarczyk

    2008-01-01

    Purpose: The one of major problem restricting universal employment of intermetallic phase base alloy istheir low plasticity which leads to hampering their development as construction materials. The following workconcentrates on possibilities to form through rolling process the alloys with various aluminium content.Design/methodology/approach: After casting and annealing, alloy specimens were subjected to axialsymmetriccompression at temperatures ranging from 900 to 1200°C at 10 s-1 strain rat...

  3. HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718

    Institute of Scientific and Technical Information of China (English)

    K.Kobayashi; K.Yamaguchi; M.Hayakawa; M.Kimura

    2004-01-01

    The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strengtn was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated.

  4. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  5. LASER CLADDING WITH COBALT-BASED HARDFACING ALLOYS

    OpenAIRE

    Frenk, A.; WagniÈre, J.-D.

    1991-01-01

    Preliminary results aimed at designing Co-based hardfacing alloys specifically for the laser cladding process are reported. Three alloys, ranging from hypo- to hypereutectic were deposited using scanning velocities between 1.7 and 170 mm/s. The microstructures and the dry sliding wear resistances of the clads were investigated. First trends relating composition to dry sliding wear resistance were deduced.

  6. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications

    Science.gov (United States)

    Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.

  7. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment. [for high-pressure oxidizer turbopump turbine nozzles

    Science.gov (United States)

    Cooper, R. A.

    1976-01-01

    Samples of two nickel-base casting alloys, Mar-M-246 (a Martin Company alloy) and 713LC (a low-carbon modification of the alloy 713C developed by International Nickel Company) were tested as candidate materials for the high-pressure fuel and high-pressure oxidizer turbopump turbine nozzles. The samples were subjected to tensile tests and to low cycle fatigue tests in high-pressure hydrogen to study the influence of the hydrogen environment. The Mar-M-246 material was found to have a three times higher cyclic life in hydrogen than the 713LC alloy, and was selected as the nozzle material.

  8. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  9. Fabrication and characterization of niobium based Fe-Cr alloys via mechanical alloying

    International Nuclear Information System (INIS)

    Niobium (Nb) based alloys and composites are currently used in various high temperature applications such as rocket engine nozzles, superconducting magnets, and automotive structural components. Niobium has also been traditionally employed as a micro-alloying element to fabricate high strength, low alloy steels and nickel based superalloys (example: Inconel 718) on account of its ability to form nano dispersions/precipitates which effectively impede high temperature grain growth. Traditionally, niobium alloys such as C-103 (Nb-10Hf-1Ti) and FS-85 (Nb-10W-28Ta-1Zr) having excellent high temperature properties have been fabricated using arc melting and e-beam melting methods. However these alloys have not been widely used on account of their high fabrication costs. On the other hand, nanostructured steels such as oxide dispersion strengthened (ODS) alloys (example: 12Y1, 12YWT, FeCrAl, HT-9, Hestalloy etc) are being proposed for high temperature structural applications for new generation nuclear reactors. In this context we present some of the work related to fabrication and characterization of some known ODS steel compositions with Nb as a micro-alloying element that is currently underway at the High Temperature Materials Laboratory at Virginia Commonwealth University in context of high temperature nuclear applications. (author)

  10. Processing TiAl-Based Alloy by Elemental Powder Metallurgy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    TiAl-based alloys with various compositions (including Ti-48Al, Ti-47Al-2Cr-2Nb, Ti-47Al-2Cr-2Nb-0.2B and Ti-47Al-3Cr, in mole fraction) had been prepared by elemental powder metallurgy (EPM). The results have shown that the density of the prepared Ti-48Al alloy increases with increasing hot pressing temperature up to 1300℃. The Ti-48Al alloy microstructure mainly consisted of island-like Ti3Al phase and TiAl matrix at hot pressing temperature below 1300℃, however, coarse α2/γlamellar colonies and γ grains appeared at 1400℃. It has also indicated that the additions of elemental Cr and B can refine the alloy microstructure. The main microstructural inhomogeneity in EPM TiAl-based alloys was the island-like α2 phase or the aggregate of α2/γ lamellar colony, and such island-like structure will be inherited during subsequent heat treatment in (α+γ) field. Only after heat treatment in α field would this structure be eliminated. The mechanical properties of EPM TiAl-based alloys with various compositions were tested, and the effect of alloy elements on the mechanical properties was closely related to that of alloy elements on the alloy microstructures. Based on the above results, TiAl-based alloy exhaust valves were fabricated by elemental powder metallurgy and diffusion joining. The automobile engine test had demonstrated that the performance of the manufactured valves was very promising for engine service.

  11. Candidate Smoke Region Segmentation of Fire Video Based on Rough Set Theory

    OpenAIRE

    Yaqin Zhao

    2015-01-01

    Candidate smoke region segmentation is the key link of smoke video detection; an effective and prompt method of candidate smoke region segmentation plays a significant role in a smoke recognition system. However, the interference of heavy fog and smoke-color moving objects greatly degrades the recognition accuracy. In this paper, a novel method of candidate smoke region segmentation based on rough set theory is presented. First, Kalman filtering is used to update video background in order to ...

  12. Stress corrosion cracking of nickel-base alloy weldments

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) of weldments occurs in media such as chloride, hydrofluoric acid, polythionic acid, caustic soda and molten metals. Nickel-base alloys on account of their low SCC are preferred for weldments in the above media. However, the choice of a particular nickel-base alloy depends upon the condition in which they are used. Studies on this aspect are reviewed. In reprocessing plants, Ni-Cr-Mo alloy No6625 and No6455 are found suitable. The Ni-Cr alloy No6600 failed in BWR type reactor due intergranular SCC. The alloy No6690 which has a higher chromium content is immune to intergranular SCC. Reduction of free carbon in the matrix of the weld metal makes it resistant to intergranular SCC. (M.G.B.)

  13. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse; Panagopoulos, C. N.; Papachristos, V. D.; Katsikis, S.

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion and...... wear performance compared with conventional coatings like electroless nickel, hard chromioum and anodised aluminium....

  14. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  15. Biocompatibility of new Ti-Nb-Ta base alloys.

    Science.gov (United States)

    Hussein, Abdelrahman H; Gepreel, Mohamed A-H; Gouda, Mohamed K; Hefnawy, Ahmad M; Kandil, Sherif H

    2016-04-01

    β-type titanium alloys are promising materials in the field of medical implants. The effect of β-phase stability on the mechanical properties, corrosion resistance and cytotoxicity of a newly designed β-type (Ti77Nb17Ta6) biocompatible alloys are studied. The β-phase stability was controlled by the addition of small quantities of Fe and O. X-ray diffraction and microstructural analysis showed that the addition of O and Fe stabilized the β-phase in the treated solution condition. The strength and hardness have increased with the increase in β-phase stability while ductility and Young's modulus have decreased. The potentio-dynamic polarization tests showed that the corrosion resistance of the new alloys is better than Ti-6Al-4V alloy by at least ten times. Neutral red uptake assay cytotoxicity test showed cell viability of at least 95%. The new alloys are promising candidates for biomedical applications due to their high mechanical properties, corrosion resistance, and reduced cytotoxicity. PMID:26838885

  16. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1996-08-01

    Alloys of Cr-Cr{sub 2}Nb with exceptionally high strength at 1200{degrees}C have been developed. However, these compositions suffer from limited ductility and toughness at room temperature. Despite improvements from processing modifications, as-fabricated defects still limit room temperature mechanical behavior. In contrast, an alloy system with only a small mismatch of the coefficients of thermal expansion of the two phases, Cr-Cr{sub 2}Zr, showed good fabricability. However, these alloys are weaker than Cr-Cr{sub 2}Nb compositions at high temperatures and have poor oxidation resistance. Silicide coatings can provide high-temperature oxidation and sulfidation protection of these alloys. Improvements in room temperature mechanical properties of Laves-phase-strengthened alloys will rely on further development based on increasing the ductility of the matrix phase by impurity control and compositional modifications.

  17. Electrochemical performance and capacity degradation mechanism of single-phase La-Mg-Ni-based hydrogen storage alloys

    Science.gov (United States)

    Liu, Jingjing; Li, Yuan; Han, Da; Yang, Shuqin; Chen, Xiaocui; Zhang, Lu; Han, Shumin

    2015-12-01

    La-Mg-Ni-based hydrogen storage alloys are a promising candidate for the negative electrode materials of nickel metal hydride batteries. However, their fast capacity degradation hinders them from more extensive application. In this study, the electrochemical performance and capacity degradation mechanism of single-phase La2MgNi9, La3MgNi14 and La4MgNi19 alloys are studied from the perspective of their constituent subunits. It is found that the rate capability and cycling stability of the alloy electrodes increase with higher [LaNi5]/[LaMgNi4] subunit ratio, while the discharge capacity shows a reverse trend. Degradation study shows that the inter-molecular strains in the alloys are the main reason that leads to the fast capacity degradation of La-Mg-Ni-based alloys. The strains are caused by the difference in the expansion/contraction properties between [LaNi5] and [LaMgNi4] subunits during charge/discharge which is mainly observed in the H-dissolved solid solution instead of hydride. It is also found that the strains can be relieved by adjusting [LaNi5]/[LaMgNi4] subunit ratio of the alloys, thus achieving less pulverization and oxidation, and better cycling stability. We expect our findings can inspire new thoughts on improving the electrochemical performance of La-Mg-Ni-based alloys by tuning their superlattice structures.

  18. On the mechanical properties of TiNb based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y. [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Georgarakis, K. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France); Yokoyama, Y. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai (Japan); Yavari, A.R., E-mail: euronano@minatec.inpg.fr [SIMAP-CNRS, Institut Polytechnique de Grenoble, BP 75, St. Martin d’Hères 38402 (France)

    2013-09-15

    Highlights: •Systematic study of compressive behaviors of TiNb based alloys in different states. •Comparison between X-ray diffraction results in reflection and transmission mode. •High melting temperature TiNb based alloys were fabricated by copper mold casting. •Textures of studied alloys are analyzed through synchrotron radiation data. -- Abstract: A series of TiNb(Sn) alloys were synthesized by copper mold suction casting and subjected to different heat treatments (furnace cooling or water quenching). The microstructure, thermal and mechanical properties of the as-cast and heat treated samples were investigated. For the Ti–8.34 at.% Nb alloy, the as-cast and water quenched samples possess martensitic α′′ phase at room temperature and compression tests of these samples show occurrence of shape memory effect. For β phase Ti–25.57 at.% Nb alloys, stress-induced martensitic transformation was found during compression in the as-cast and water quenched samples. For the ternary Ti–25.05 at.%Nb–2.04 at.%Sn alloy, conventional linear elastic behavior was observed. It is shown that the addition of Sn increases the stability of the β phase. The Young’s moduli of these alloys were also measured by ultrasonic measurements. Water-quenched Ti–25.57 at.%Nb alloy was found to exhibit the lowest Young’s modulus value. Sn addition has small impact on the Young’s moduli of the TiNb alloys.

  19. Nonlinear Hamiltonian modelling of magnetic shape memory alloy based actuators.

    OpenAIRE

    Gauthier, Jean-Yves; Hubert, Arnaud; Abadie, Joël; Chaillet, Nicolas; Lexcellent, Christian

    2008-01-01

    This paper proposes an application of the Lagrangian formalism and its Hamiltonian extension to design, model and control a mechatronic system using Magnetic Shape Memory Alloys. In this aim, an original dynamical modelling of a Magnetic Shape Memory Alloy based actuator is presented. Energy-based techniques are used to obtain a coherent modelling of the magnetical, mechanical and thermodynamic phenomena. The Lagrangian formalism, well suited in such a case, is introduced and used to take int...

  20. Development of Fe-Ni and Ni-base alloys without {gamma}' strengthening for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Igarashi, Masaaki; Hirata, Hiroyuki [Sumitomo Metal Industries, Ltd., Amagasaki, Hyogo (Japan). Corporate Research and Development Labs.; Yoshizawa, Mitsuru [Sumitomo Metal Industries Ltd., Amagasaki, Hyogo (Japan). Steel Tube Works

    2010-07-01

    An Fe-Ni base alloy, 23Cr-45Ni-7W alloy (HR6W) strengthened by Fe{sub 2}W-type Laves phase is one of the candidate materials for the piping application. Stability of long-term creep strength and superior creep rupture ductility have been proved by creep rupture tests up to 60000h at 650-800 C. The 10{sup 5}h extrapolated creep rupture strength at 700 C approved by TUV is 85MPa. It has also been confirmed that HR6W has excellent microstructural stability by means of microstructural observations after term creep tests and aging. A thick wall pipe of HR6W, which is 457mm in diameter and 60mm in wall thickness, has successfully been manufactured by the Erhart Push Bench press method. This trial production has shown that hot workability of HR6W is sufficient for manufacturing thick wall piping for A-USC plants. A new Ni-base alloy, 30r-50Ni-4W alloy (HR35) has been proposed for piping application having comparable creep rupture strength with Alloy 617 at 700 C. This alloy is not strengthened by {gamma}' phase but mainly by {alpha}-Cr phase. The 10{sup 5}h extrapolated creep rupture strength is estimated to be 114 MPa at 700 C. It has sufficient creep rupture ductility compared with Alloy 617. A thick wall pipe of HR35 has also been successfully manufactured. Capability of HR6W and HR35 as structural materials for A-USC plants has been examined in detail. They have high resistance to relaxation cracking after welding. It is, therefore, concluded that both the alloys are promising candidates especially for thick wall piping in A-USC power plants. (orig.)

  1. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  2. A Computationally Based Approach to Homogenizing Advanced Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, P D; Cowen, C J

    2011-02-27

    We have developed a computationally based approach to optimizing the homogenization heat treatment of complex alloys. The Scheil module within the Thermo-Calc software is used to predict the as-cast segregation present within alloys, and DICTRA (Diffusion Controlled TRAnsformations) is used to model the homogenization kinetics as a function of time, temperature and microstructural scale. We will discuss this approach as it is applied to both Ni based superalloys as well as the more complex (computationally) case of alloys that solidify with more than one matrix phase as a result of segregation. Such is the case typically observed in martensitic steels. With these alloys it is doubly important to homogenize them correctly, especially at the laboratory scale, since they are austenitic at high temperature and thus constituent elements will diffuse slowly. The computationally designed heat treatment and the subsequent verification real castings are presented.

  3. USING HASH BASED APRIORI ALGORITHM TO REDUCE THE CANDIDATE 2- ITEMSETS FOR MINING ASSOCIATION RULE

    OpenAIRE

    K. Vanitha

    2011-01-01

    In this paper we describe an implementation of Hash based Apriori. We analyze, theoretically and experimentally, the principal data structure of our solution. This data structure is the main factor in the efficiency of our implementation. We propose an effective hash-based algorithm for the candidate set generation. Explicitly, the number of candidate 2-itemsets generated by the proposed algorithm is, in orders of magnitude, smaller than that by previous methods, thus resolving the performanc...

  4. The shape memory effect in systems Cu-based alloys

    OpenAIRE

    2013-01-01

    330a The aim of this work was to analyse the mechanisms of hindered internal passivation of silver based alloys which was obtained by the modification of basic chemical composition. A generalisation of the phenomenon, experimental verification and the estimated range of micro-element concentration is also introduced. The ability for inoculation of a particular alloy is determined by the differences between the formation energies of oxides, as well as their crystallographic similarity. Therefo...

  5. Incorporation of Refractory Metals into Niobium Base Alloys

    OpenAIRE

    Antoni-Zdziobek, A.; Driole, J.; Durand, F; Durand, Franck

    1995-01-01

    Niobium-based alloys with additions such as Al, Ti and Mo were prepared in an inductive cold crucible. A process route was established to provide homogeneous ingots. Key ideas concerning the application of inductive cold crucible to preparation of refractory alloys are brought out. A model is proposed to explain and quantify the experimental observations, which couples the diffusive and convective heat transfers and the heat of mixing involved.

  6. Shape memory alloy wire-based smart natural rubber bearing

    International Nuclear Information System (INIS)

    In this study, two types of smart elastomeric bearings are presented using shape memory alloy (SMA) wires. Due to the unique characteristics of SMAs, such as the superelastic effect and the recentering capability, the residual deformation in SMA-based natural rubber bearings (SMA-NRBs) is significantly reduced whereas the energy dissipation capacity is increased. Two different configurations of SMA wires incorporated in elastomeric bearings are considered. The effect of several parameters, including the shear strain amplitude, the type of SMA, the aspect ratio of the base isolator, the thickness of SMA wire, and the amount of pre-strain in the wires on the performance of SMA-NRBs is investigated. Rubber bearings are composed of natural rubber layers bonded to steel shims as reinforcement. Results show that ferrous SMA wire, FeNiCuAlTaB, with 13.5% superelastic strain and a very low austenite finish temperature (−62 °C), is the best candidate to be used in SMA-NRBs subjected to high shear strain amplitudes. In terms of the lateral flexibility and wire strain level, the smart rubber bearing with a cross configuration of SMA wires is more efficient. Moreover, the cross configuration can be implemented in high-aspect-ratio elastomeric bearings since the strain induced in the wire does not exceed the superelastic range. When cross SMA wires with 2% pre-strain are used in a smart NRB, the dissipated energy is increased by 74% and the residual deformation is decreased by 15%. (paper)

  7. Stabilized nanocrystalline iron-based alloys: Guiding efforts in alloy selection

    International Nuclear Information System (INIS)

    Highlights: → A regular solution model for solute segregation is capable of estimating the effect of solutes on the stability of nanocrystalline Fe. → Stability increases for solutes having larger heats of segregation. → Zr and Ta had an effect on stabilizing the nanocrystalline microstructure of Fe, while Cr and Ni did not. - Abstract: Using a modified regular solution model for grain boundary solute segregation, the relative thermal stability of a number of Fe-based nanocrystalline binary alloys was predicted with considerable accuracy. It was found that nanocrystalline iron was strongly stabilized by zirconium, moderately stabilized by tantalum, and not significantly stabilized by nickel or chromium. These findings are fully in line with the aforementioned predictions. This success with iron based alloys highlights the utility of this practical approach to selecting stabilizing solutes for nanocrystalline alloys.

  8. An annotated history of container candidate material selection

    International Nuclear Information System (INIS)

    This paper documents events in the Nevada Nuclear Waste Storage Investigations (NNWSI) Project that have influenced the selection of metals and alloys proposed for fabrication of waste package containers for permanent disposal of high-level nuclear waste in a repository at Yucca Mountain, Nevada. The time period from 1981 to 1988 is covered in this annotated history. The history traces the candidate materials that have been considered at different stages of site characterization planning activities. At present, six candidate materials are considered and described in the 1988 Consultation Draft of the NNWSI Site Characterization Plan (SCP). The six materials are grouped into two alloy families, copper-base materials and iron to nickel-base materials with an austenitic structure. The three austenitic candidates resulted from a 1983 survey of a longer list of candidate materials; the other three candidates resulted from a special request from DOE in 1984 to evaluate copper and copper-base alloys. 24 refs., 2 tabs

  9. The influence of long-term low temperature aging on the performance of candidate high-nickel alloys for the nuclear waste repository

    International Nuclear Information System (INIS)

    The phase stability of candidate alloys under repository-relevant conditions is a critical issue that will have an impact on the long-term mechanical and corrosion properties of the metal barrier. For waste packages with the highest thermal outputs, the surface temperature of the containers will rise to a peak temperature of about 250 C. After 100 years the temperature will drop to about 150 C and will continue dropping slowly. This paper discusses the metallurgical phase stability in terms of precipitation and ordering behavior of Ni-Cr-Mo-W alloys after long term aging at temperatures below 550 C. In addition, the effect of low temperature aging on the mechanical and corrosion properties is presented. Charpy impact testing and tensile testing have been used to evaluate the effect of aging on mechanical properties. The corrosion resistance has been assessed using standard ASTM G28A and B test methods

  10. Mechanisms of oxide layer formation and destruction on a chromia former nickel base alloy in HTR environment

    International Nuclear Information System (INIS)

    Haynes 230 alloy which contains 22 wt.% chromium could be a promising candidate material for structures and heat exchangers (maximum operating temperature: 850-950 C) in Very High Temperature Reactors (VHTR). The feasibility demonstration involves to valid its corrosion resistance in the reactor specific environment namely impure helium. The alloys surface reactivity was investigated at temperatures between 850 and 1000 C. We especially focused on the influence of different parameters such as concentrations of impurities in the gas phase (carbon monoxide and methane, water vapour/hydrogen ratio), alloy composition (activities of Cr and C, alloying element contents) and temperature. Two main behaviours have been revealed: the formation of a Cr/Mn rich oxide layer at 900 C and its following reduction at higher temperatures. At 900 C, the water vapour is the main oxidizing gas. However in the initial times, the carbon monoxide reacts at the metal/oxide interface which involves a gaseous transport through the scale; CO mainly oxidizes the minor alloying elements aluminium and silicon. Above a critical temperature TA, the carbon in solution in the alloy reduces chromia. To ascribe the scale destruction, a model is proposed based on thermodynamic interfacial data for the alloy, oxide layer morphology and carbon monoxide partial pressure in helium; the model is then validated regarding experimental results and observations. (author)

  11. New Candidates for Plant-Based Repellents Against Aedes aegypti.

    Science.gov (United States)

    Misni, Norashiqin; Nor, Zurainee Mohamed; Ahmad, Rohani

    2016-06-01

    Based on an ethnobotanical study on use for plant species against mosquito bites in the Kota Tinggi District, Johor State, Malaysia, 3 plants selected for study, Citrus aurantifolia (leaves), Citrus grandis (fruit peel), and Alpinia galanga (rhizome), were extracted using hydrodistillation to produce essential oils. These essential oils were then formulated as a lotion using a microencapsulation process and then tested for their repellent effect against Aedes aegypti. N,N-diethyl-m-toluamide (deet) was also prepared in the same formulation and tested for repellency as controls. Four commercial plant-based repellent (KAPS(®), MozAway(®), BioZ Natural(®), and Mosiquard(®)) also were incorporated in the bioassay for comparison purposes. Bioassays revealed that at 20% concentration all repellent formulations demonstrated complete protection for 2 h and >90% for 4 h post-application. The A. galanga-based formulation provided the greatest level of protection (98.91%), which extended for 4 h post-application and was not significantly different from deet at similar concentration. When compared with commercial plant-based repellents (KAPS(®), MozAway(®), and BioZ Natural(®)), the 3 lotion formulations showed significantly better protection against Ae. aegypti bites, providing >90% protection for 4 h. In conclusion, our 3 plant-based lotion formulations provided acceptable levels of protection against host-seeking Ae. aegypti and should be developed. PMID:27280349

  12. Chromium activity measurements in nickel based alloys for very high temperature reactors: Inconel 617, haynes 230 and model alloys - HTR2008-58147

    International Nuclear Information System (INIS)

    The alloys Haynes 230 and Inconel 617 are potential candidates for the intermediate heat exchangers (IHX) of (V)-HTR reactors. The behaviour under corrosion of these alloys by the (V)-HTR coolant (impure helium) is an important selection criterion because it defines the service life of these components. At high temperature, the Haynes 230 is likely to develop a chromium oxide on the surface. This layer protects from the exchanges with the surrounding medium and thus confers certain passivity on metal. At very high temperature, the initial microstructure made up of austenitic grains and coarse intra and intergranular M6C carbide grains rich in W will evolve. The M6C carbides remain and some M23C6 richer in Cr appear. Then, carbon can reduce the protective oxide layer Then, the alloy loses its protective coating and can corrode quickly. Experimental investigations were performed on these nickel based alloys under an impure helium flow [1]. To predict the surface reactivity of chromium under impure helium, it is necessary to determine its chemical activity in a temperature range close to the operating conditions of the heat exchangers (T∼1273 K). For that, high temperature mass spectrometry measurements coupled to multiple effusion Knudsen cells are carried out on several samples: Haynes 230, Inconel 617 and model alloys 1178, 1181, 1201. This coupling makes it possible thermodynamic equilibrium to be obtained between the vapour phase and the condensed phase of the sample. The measurement of the chromium ionic intensity (/) of the molecular beam resulting from a cell containing an alloy provides the values of partial pressure according to the temperature. This value is compared to that of the pure substance (Cr) at the same temperature. These calculations provide thermodynamic data characteristic of the chromium behaviour in these alloys. These activity results call into question those previously measured by Hilpert [2], largely used in the literature. (authors)

  13. Effect of Annealing on Rare Earth Based Hydrogen Storage Alloys

    Institute of Scientific and Technical Information of China (English)

    Li Jinhua

    2004-01-01

    Rare earth-based hydrogen storage alloy used as negative electrode materials for nickel-metal hydride (Ni-MH) batteries are used commercially.The effect of annealing treatment with different annealing temperature and time on the MLNi3.68 Co0.78 Mn0.35 Al0.27 and MMNi3.55 Co0.75 Mn0.40 Al0.30 alloys were investigated.The crystal microstructure,pressure-composition-isotherms (p-C-T) and electrochemical properties of alloys were examined by X-ray diffraction (XRD), automatic PCI monitoring system and electrical performance testing instruments.The optimum annealing treatment conditions of two kinds of alloys were determined.

  14. Stress corrosion cracking of Ni-base and Ti alloys under controlled potential

    International Nuclear Information System (INIS)

    Susceptibility to stress corrosion cracking (SCC) of alloy C-22 and Ti Gr-12, two candidate alloys for the inner-container of the multi-barrier nuclear waste package, was evaluated by using the slow-strain-rate (SSR) test technique in a deaerated acidic brine (pH ∼ 2.70) at 90 C. The strain rate used was 3.3 x 10-6 sec-1. Prior to being tested in the acidic brine, specimens of each alloy were pulled inside the test chamber in the dry condition at room temperature (RT). Then specimens were exposed to the test solution while being strained under different controlled electrochemical potentials. The magnitude of the controlled potential was selected based on the corrosion potential measured in the test solution prior to straining of the specimen. Results indicate that, for Ti Gr-12, the times to failure were significantly shorter compared to those for alloy C-22. Furthermore, Ti Gr-12 showed reduced ductility in terms of percent reduction in area and true fracture stress, as the controlled potential became more cathodic. Results also indicate that the time-to-failure and percent elongation reached the minimum values when Ti Gr-12 was tested under impressed potential of -1162 mV. Finally, metallographic examination was performed to evaluate the primary fracture, and the secondary cracking, if any, along the gage section of the broken tensile specimen

  15. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L. (Nuclear Engineering Division)

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep

  16. Development of vanadium base alloys for fusion first-wall/blanket applications

    International Nuclear Information System (INIS)

    Vanadium alloys have been identified as a leading candidate material for fusion first-wall/blanket applications. Certain vanadium alloys exhibit favorable safety and environmental characteristics, good fabricability, high temperature and heat load capability, good compatibility with liquid metals and resistance to irradiation damage effects. The current focus is on vanadium alloys with (3-5)% Cr and (3-5)% Ti with a V-4Cr-4Ti alloy as the leading candidate. Preliminary results indicate that the crack-growth rates of certain alloys are not highly sensitive to irradiation. Results from the Dynamic Helium Charging Experiment (DHCE) which simulates fusion relevant helium/dpa ratios are similar to results from neutron irradiated material. This paper presents an overview of the recent results on the development of vanadium alloys for fusion first wall/blanket applications

  17. Development of gold based solder candidates for flip chip assembly

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hald, John; Hattel, Jesper Henri

    2009-01-01

    Flip chip technology is now rapidly replacing the traditional wire bonding interconnection technology in the first level packaging applications due to the miniaturization drive in the microelectronics industry. Flip chip assembly currently involves the use of high lead containing solders...... for interconnecting the chip to a carrier in certain applications due to the unique properties of lead. Despite of all the beneficial attributes of lead, its potential environmental impact when the products are discarded to land fills has resulted in various legislatives to eliminate lead from the electronic products...... based on its notorious legacy as a major health hazard across the spectrum of human generations and cultures. Flip chip assembly is also now increasingly being used for the high-performance (H-P) systems. These H-P systems perform mission-critical operations and are expected to experience virtually...

  18. Creep properties of Zr-based alloys with Zr-xNb-xSn-Fe-Cr-Mn alloying system

    International Nuclear Information System (INIS)

    To investigate the effect of Nb and Sn on the mechanical properties of Zr-based alloys with Zr-xNb-xSn-Fe-Cr-Mn alloying system, the Zr-based alloys were manufactured as two kinds of sheet specimens and tested for tensile properties and creep behaviors. PK2 alloy, which have more Sn content than Nb, showed higher tensile strength and creep resistance than PK1 alloy. With rising the applied stress and test temperature, PK1 and PK2 alloys increased the steady state creep rate and activation energy for the creep of the alloys. This behavior would be due to the effect of solid-solution hardening of Sn and the dislocation in worked structure. The stress exponent of the alloys also increased in response to rise the applied stress at the constant temperature. In the stress range of 50 to 180 MPa at 350 .deg. C and 400 .deg. C, the alloys showed creep deformation behavior due to diffusion and viscous dislocation glide mechanism below 4 of the stress exponent (n). Based on the higher stress exponent than 7. It is thought that the alloys were strained by dislocation climb mechanism at the applied stress over 100 MPa at 450 .deg. C

  19. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    International Nuclear Information System (INIS)

    Highlights: ► The corrosion behavior of magnesium for orthopedic applications is extremely poor. ► The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. ► Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. ► Treated samples indicated significant damping for the degradation rate. ► Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc–solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  20. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  1. Durable pd-based alloy and hydrogen generation membrane thereof

    Science.gov (United States)

    Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry

    2010-02-02

    A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.

  2. Cyclic and Linear Polarization of Yttrium-Containing Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Lian, T; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys are produced by rapid solidification from the melt. These alloys may possess unique mechanical and corrosion resistant properties. The chemical composition of the alloy may influence the cooling rate that is necessary for the alloys to be completely vitreous. At the same time, the corrosion resistance of the amorphous alloys may also depend on their chemical composition. This paper examines the anodic behavior of iron-based amorphous alloys containing three different concentrations (1, 3 and 5 atomic %) of yttrium (Y) in several electrolyte solutions. Results from polarization resistance potentiodynamic polarization show that when the alloy contains 5% atomic Y, the corrosion resistance decreases.

  3. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  4. Cobalt-based ferromagnetic shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Jarošová, Markéta; Drahokoupil, Jan; Majtás, Dušan; Kratochvílová, Irena; Heczko, Oleg

    Beijing : Chinese Association for Crystal Growth, 2010 - (Jiang, M.; Chen, C.). GM2 ISBN N. [International Conference on Crystal Growth /16./ (ICCG-16). 08.08.2010-13. 08.2010, Beijing] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824 Institutional research plan: CEZ:AV0Z10100520 Keywords : shape memory alloys * crystal growth * SBSD method * metallography Subject RIV: BM - Solid Matter Physics ; Magnetism http://210.72.154.189/Prelim_Abstract_Display.php?EID=1757

  5. Degradation mode survey of titanium-base alloys

    International Nuclear Information System (INIS)

    Of the materials reviewed, commercially pure titanium, Ti Gr 2, is the most susceptible to crevice corrosion. Ti Gr 7, 12, and 16 are likely to be resistant to crevice corrosion under the current expected Yucca Mountain repository conditions. Although Grade 7 has the greatest resistance to crevice corrosion it is also the most expensive. Although the possibility of sustained loads cracking exists, it has not yet been observed in a Ti alloys. For hydride precipitation to occur 100 degrees C, the hydrogen concentration would need to be relatively high, much higher than the maximum amount of hydrogen allowed during the manufacture of (α Ti alloys (0.0 15 wt%). A large amount of (SCC) stress corrosion cracking data accumulated at SNL and BNL for the WIPP program and by the Canadian Waste Management Program on titanium grades 2 and 12 indicates that there is no SCC at naturally occurring potentials in various brines. Hydride-induced cracking of titanium is a possibility and therefore, further investigation of this phenomenon under credible repository conditions is warranted. One disadvantage of titanium and its alloys is that their strengths decrease rather rapidly with temperature. This is due to the strong temperature dependence of interstitial solute strengthening mechanisms. Ti Gr 12 and 16 are recommended for further consideration as candidate materials for high level nuclear waste containers

  6. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.; Easton, D.S.; Heatherly, L.

    1996-06-01

    The objective of this work is to develop a new generation of structural materials based on intermetallic alloys for use at high temperatures in advanced fossil energy conversion systems. Target applications of such ultrahigh strength alloys include hot components (for example, air heat exchangers) in advanced energy conversion systems and heat engines. However, these materials may also find use as wear-resistant parts in coal handling systems (for example, nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. One potential class of such alloys is that based on Cr-Cr{sub 2}Nb alloys. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for initial development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), and excellent high-temperature strength (at 1000 to 1250{degrees}C). This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions.

  7. Weldability of high strength Ni-based alloy USC141 as boiler tube for 700 C USC plant

    Energy Technology Data Exchange (ETDEWEB)

    Bao, G.; Sato, T. [Babcock-Hitachi K.K. Kure-shi, Hiroshima-ken (Japan); Imano, S.; Sato, J. [Hitachi, Ltd. Hitachi-shi, Ibaraki-ken (Japan); Uehara, T.; Toji, A. [Hitachi Metals, Ltd. Yasugi-shi, Shimane-ken (Japan)

    2007-07-01

    Recently the increase of steam temperature and pressure of power plant is required to enhance the thermal efficiency and reduce the CO{sub 2} emission. For the application to advanced USC (Ultra Super Critical) boiler with steam temperature around 700 C, the application of Ni-based alloy such as Alloy617 will be necessary. A new Ni-based alloy USC141 (20Cr-10Mo-2Ti-Al-bal.Ni) with excellent creep rupture strength and low thermal expansion has been developed by Hitachi Ltd. and Hitachi Metals Ltd. as the candidate material for 700 C USC turbine components. In present work, to investigate the possibility for boiler tube application of USC141, its weldability and high temperature strength properties were experimentally examined. The tested material as solution-treated condition shows higher creep rupture strength than that of Alloy617. GTAW (Gas Tungsten Arc Welding) trials of tubular specimen using NIMONIC263 filler wire were conducted successfully and the creep rupture strength of weld joint was as similar as that of parent metal. Therefore it is considered that USC141 has a promising potential as boiler tube candidate for 700 C class USC power plant. (orig.)

  8. Strain heterogeneity and the production of coarse grains in mechanically alloyed iron-based PM2000 alloy

    OpenAIRE

    Capdevila, Carlos; Miller, U; Jelenak, H; Bhadeshia, H. K. D. H.

    2001-01-01

    Mechanically alloyed iron-based ODS alloys have the potential for application in heat exchangers for biomass processing, with gas operating temperatures and pressures of approximately 1100°C and 15–30 bar. The yttria dispersion in such alloys improves the high-temperature creep and stress rupture life. The elevated temperature strength is enhanced by the development of a coarse-grained microstructure during recrystallisation. Factors controlling the evolution of this desirable micros...

  9. Hot rolling of intermetallics FeAl phase based alloys

    Directory of Open Access Journals (Sweden)

    G. Niewielski

    2008-02-01

    Full Text Available Purpose: The one of major problem restricting universal employment of intermetallic phase base alloy istheir low plasticity which leads to hampering their development as construction materials. The following workconcentrates on possibilities to form through rolling process the alloys with various aluminium content.Design/methodology/approach: After casting and annealing, alloy specimens were subjected to axialsymmetriccompression at temperatures ranging from 900 to 1200°C at 10 s-1 strain rates. In order to analyse theprocesses which take place during deformation, the specimens after deformation were intensely cooled with water.Structural examination was carried out using light microscopy. The process was conducted on the K -350 quartorolling mill used for hot rolling of flat products. The process was conducted in some stages in at temperaturesranging from 1200-900°C:Findings: The research carried out enabled the understanding of the phenomena taking place during hot rolling ofthe investigated alloy. An alloy with 38%at. aluminium concentration can be plastically formed at a temperature of upto 900°C, which has been also confirmed in plastometric studies conducted in the form of hot compression tests.Research limitations/implications:Practical implications: The obtained sheets can be used as constructional elements working in complex stressfields, at a high temperature and corrosive environmentsOriginality/value: The tests have shown that it is possible to form the investigated alloys through rolling processingonly where shields are applied. Rolling of the alloys without shields led to the occurrence of a grid of cracks.

  10. Oxide-layer formation and stability on a nickel-base alloy in impure helium at high temperature

    International Nuclear Information System (INIS)

    The corrosion behavior in impure helium of Haynes 230, a nickel base alloy candidate for heat exchangers in Very High Temperature Reactors (VHTR), has been investigated. The study focused on the formation and the subsequent destruction of the surface oxide layer at 900 C and 980 C. In-situ gas-phase analysis coupled to post-exposure surface analyses showed that a chromium-rich surface oxide formed on Haynes 230 at 900 C but was unstable above a critical temperature TA: the chromium-rich oxide reacted with carbon in solution in the alloy to produce chromium and CO(g). The effect of carbon monoxide partial pressure in the gas phase as well as the influence of chromium and carbon activities in the alloy on TA are discussed taking thermodynamics and kinetics aspects into account. (authors)

  11. Positron lifetime study in dilute electron irradiated lead based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Moya, G. [Lab. de Physique des Materiaux, 13 Marseille (France); Li, X.H. [D.R.F.M., S.P.2.M., M.P., C.E.N.G., 38 Grenoble (France); Menai, A. [Lab. de Physique des Materiaux, 13 Marseille (France); Kherraz, M. [Lab. de Physique des Materiaux, 13 Marseille (France); Amenzou, H. [Lab. de Physique des Materiaux, 13 Marseille (France); Bernardini, J. [Lab. de Metallurgie, 13 Marseille (France); Moser, P. [D.R.F.M., S.P.2.M., M.P., C.E.N.G., 38 Grenoble (France)

    1995-06-01

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centred at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (orig.)

  12. Enhanced Corrosion Resistance of Iron-Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rebak, R B; Day, S D; Lian, T; Aprigliano, L F; Hailey, P D; Farmer, J C

    2007-02-18

    Iron-based amorphous alloys possess enhanced hardness and are highly resistant to corrosion, which make them desirable for wear applications in corrosive environments. It was of interest to examine the behavior of amorphous alloys during anodic polarization in concentrated salt solutions and in the salt-fog testing. Results from the testing of one amorphous material (SAM2X5) both in ribbon form and as an applied coating are reported here. Cyclic polarization tests were performed on SAM2X5 ribbon as well as on other nuclear engineering materials. SAM2X5 showed the highest resistance to localized corrosion in 5 M CaCl{sub 2} solution at 105 C. Salt fog tests of 316L SS and Alloy 22 coupons coated with amorphous SAM2X5 powder showed resistance to rusting. Partial devitrification may be responsible for isolated pinpoint rust spots in some coatings.

  13. Positron lifetime study in dilute electron irradiated lead based alloys

    International Nuclear Information System (INIS)

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centred at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (orig.)

  14. Improved Mg-based alloys for hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Sapru, K.; Ming, L.; Stetson, N.T.; Evans, J. [Energy Conversion Devices, Inc., Troy, MI (United States)

    1998-08-01

    The overall objective of this on-going work is to develop low temperature alloys capable of reversibly storing at least 3 wt.% hydrogen, allowing greater than for 2 wt.% at the system level which is required by most applications. Surface modification of Mg can be used to improve its H-sorption kinetics. The authors show here that the same Mg-transition metal-based multi-component alloy when prepared by melt-spinning results in a more homogeneous materials with a higher plateau pressure as compared to preparing the material by mechanical grinding. They have also shown that mechanically alloyed Mg{sub 50}Al{sub 45}Zn{sub 5} results in a sample having a higher plateau pressure.

  15. Positron lifetime study in dilute electron irradiated lead based alloys

    International Nuclear Information System (INIS)

    The recovery of defects in two dilute solute-lead based alloys (Pb-Au, Pb-Cd) has been followed by positron lifetime measurements after a 3 MeV electron irradiation at 20 K. Two distinct isochronal annealing stages, the first centered at about 150 K and the other around 275 K, are to be observed as exactly the same in both the pure Pb and dilute alloys but the vacancy clustering over the second stage seen in lead and Pb-Au is completely suppressed in the Pb-Cd alloy. The results are discussed in terms of a high interaction between the cadmium atoms and vacancies in agreement with a probable presence of atomic excitons. (authors). 3 figs., 9 refs

  16. Effect of B addition to hypereutectic Ti-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Louzguina-Luzgina, Larissa V. [Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan); Louzguine-Luzgin, Dmitri V. [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)], E-mail: dml@imr.tohoku.ac.jp; Inoue, Akihisa [WPI Advanced Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577 (Japan)

    2009-04-17

    The structure and mechanical properties of Ti-Fe-B and Ti-Fe-Co-B alloys produced in the shape of the arc-melted ingots of about 25 mm diameter and 10 mm height are studied. The hypereutectic alloys showed excellent compressive mechanical properties. The structures of the high-strength and ductile hypereutectic alloys studied by X-ray diffractometry and scanning electron microscopy were found to consist of the primary cubic cP2 intermetallic compound (TiFe-phase or a solid solution on its base) and a dispersed eutectic consisting of this cP2 intermetallic compound + BCC cI2 {beta}-Ti supersaturated solid solution phase. The addition of B increased mechanical strength. Si causes embrittlement owing to the formation of alternative intermetallic compounds. The structure and deformation behaviour were studied.

  17. Differentially Private Frequent Sequence Mining via Sampling-based Candidate Pruning

    Science.gov (United States)

    Xu, Shengzhi; Cheng, Xiang; Li, Zhengyi; Xiong, Li

    2016-01-01

    In this paper, we study the problem of mining frequent sequences under the rigorous differential privacy model. We explore the possibility of designing a differentially private frequent sequence mining (FSM) algorithm which can achieve both high data utility and a high degree of privacy. We found, in differentially private FSM, the amount of required noise is proportionate to the number of candidate sequences. If we could effectively reduce the number of unpromising candidate sequences, the utility and privacy tradeoff can be significantly improved. To this end, by leveraging a sampling-based candidate pruning technique, we propose a novel differentially private FSM algorithm, which is referred to as PFS2. The core of our algorithm is to utilize sample databases to further prune the candidate sequences generated based on the downward closure property. In particular, we use the noisy local support of candidate sequences in the sample databases to estimate which sequences are potentially frequent. To improve the accuracy of such private estimations, a sequence shrinking method is proposed to enforce the length constraint on the sample databases. Moreover, to decrease the probability of misestimating frequent sequences as infrequent, a threshold relaxation method is proposed to relax the user-specified threshold for the sample databases. Through formal privacy analysis, we show that our PFS2 algorithm is ε-differentially private. Extensive experiments on real datasets illustrate that our PFS2 algorithm can privately find frequent sequences with high accuracy. PMID:26973430

  18. Structure and magnetic properties of Fe-based amorphous alloys

    Directory of Open Access Journals (Sweden)

    K. Błoch

    2013-12-01

    Full Text Available Purpose: This paper presents studies relating to the structure, magnetic properties and thermal stability of the following bulk amorphous alloys: Fe61Co10Ti3-xY6+xB20 (where x = 0 or 1 Design/methodology/approach: The investigated samples were prepared in the form of rods by using the suction-casting method. The material structures were investigated using X-ray diffractometry and Mössbauer spectroscopy. The thermal stability was determined on the basis of Differential Scanning Calorimetry (DSC plots The magnetic properties were studied using a completely automated set up for measuring susceptibility and its disaccommodation. Findings: It was found that both alloys were amorphous in the as-cast state. The DSC curve obtained for Fe61Co10Ti2Y7B20 alloy exhibited one exothermic peak, while for the Fe61Co10Ti3Y6B20 sample, two peaks were distinguishable, corresponding to the crystallization of the sample. The bifurcation of the maximum on the DSC curve for the Fe61Co10Ti3Y6B20 sample may also testify to the presence of the primary crystallizing phase (FeCo23B6 [1,2]. Data obtained from the analysis of the magnetic susceptibility disaccommodation curves clearly show that in the Fe61Co10Ti3Y6B20 alloy there is less free volumes than in the second of the investigated alloys, this results in a lesser range of relaxation time. Moreover, Fe61Co10Ti3Y6B20 alloy exhibits the better time and thermal stability of magnetic properties In both of the studied alloys, at low frequencies, the total losses were comparable with those observed in classical silicon-iron alloys. Practical implications: A Ferrometer was used for the determination of core losses. Originality/value: The paper presents some researches of the Fe-based bulk amorphous alloys obtained by the suction-casting method.

  19. Purely inorganic coatings based on nanoparticles for magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feil, Florian [DECHEMA e.V., Karl-Winnacker-Institut, Frankfurt am Main (Germany)], E-mail: feil@dechema.de; Fuerbeth, Wolfram; Schuetze, Michael [DECHEMA e.V., Karl-Winnacker-Institut, Frankfurt am Main (Germany)

    2009-03-30

    The chemical nanotechnology is offering a chance to apply stable inorganic coatings onto magnesium alloys. The cast alloy AZ91 as well as the wrought alloy AZ31 could be dip-coated with aqueous dispersions based on commercially available silica particles and various additives. The high surface activity of the nanoparticles and appropriate additives, e.g. boron, aluminium or alkali salts, help to densify these coatings under moderate conditions even suitable for those thermally precarious magnesium alloys. Another coating technique is based on the electrophoretic deposition of nanoparticles already containing all sintering aids. These particles could be synthesised by a base-catalysed sol-gel process. Polydiethoxysiloxane can act as an adhesion promoter for these coatings. Additionally concentration gradients of different oxides within these particles can adjust the coating properties, too. Usually single coatings are very thin (200-500 nm). However, multiple coating applications as well as a process involving special particle mixtures lead to coatings with a thickness of up to several micrometers. Even after thermal treatment at 200 or 400 deg. C these coatings stay crack-free. The composition and texture of these coatings were studied using IR, atomic force microscopy (AFM), scanning electron microscopy (SEM) and other techniques. Electrochemical impedance measurements show an improvement of the corrosion performance by these coatings. The coating resistance is improving with the coating thickness.

  20. Calibration of the Gaia RVS from ground-based observations of candidate standard stars

    OpenAIRE

    Chemin, L.; Soubiran, C.; Crifo, Françoise; Jasniewicz, Gérard; Katz, David; Hestroffer, Daniel; Udry, Stéphane

    2011-01-01

    International audience The Radial Velocity Spectrometer (RVS) on board of Gaia will perform a large spectroscopic survey to determine the radial velocities of some 1.5 × 10^8 stars. We present the status of ground-based observations of a sample of 1420 candidate standard stars designed to calibrate the RVS. Each candidate star has to be observed several times before Gaia launch (and at least once during the mission) to ensure that its radial velocity remains stable during the whole mission...

  1. Calibration of the Gaia Radial Velocity Spectrometer from ground-based observations of candidate standard stars

    OpenAIRE

    Chemin, L.; Soubiran, C.; Crifo, F.; Jasniewicz, G.; Katz, D.; Hestroffer, D.; Udry, S.

    2011-01-01

    The Radial Velocity Spectrometer (RVS) on board of Gaia will perform a large spectroscopic survey to determine the radial velocities of some 1.5x10^8 stars. We present the status of ground-based observations of a sample of 1420 candidate standard stars designed to calibrate the RVS. Each candidate star has to be observed several times before Gaia launch (and at least once during the mission) to ensure that its radial velocity remains stable during the whole mission. Observations are performed...

  2. A three-dimensional measurement method based on mesh candidates assisted with structured light

    Science.gov (United States)

    Xu, Gang; Zhang, Wenming; Li, Haibin; Liu, Bin

    2009-07-01

    Rendering three-dimensional information of a scene from optical measurement is very important for a wide variety of applications such as robot navigation, rapid prototyping, medical imaging, industrial inspection, etc. In this paper, a new 3D measurement method based on mesh candidate with structured light illuminating is proposed. The vision sensor consists of two CCD cameras and a DLP projector. The measurement system combines the technology of binocular stereo vision and structured light, so as to simplify the process of acquiring depth information using mesh candidates. The measurement method is based on mesh candidates which represent the potential depth in the three dimensional scene. First the mesh grid was created along the direction of axes in world coordinate system, and the nodes were considered as depth candidates on the surface of object. Then each group of the mesh nodes varying along z axis were mapped to the captured image planes of both cameras. At last, according to the similarity measure of the corresponding pixel pairs, the depth of the object surface can be obtained. The matching process is between the pixels in both camera planes corresponding to the spatial mesh candidates. Aided by the structured light pattern, the accuracy of measurement system improved. Appending the periodic sawtooth pattern on the scene by structured light made measurement easier, while the computational cost did not increased since the projector had no need to be calibrated. The 3DS MAX and Matlab software were used to simulate measurement system and reconstruct the surface of the object. After the positioned cameras have been calibrated using Matlab calibration toolbox, the projector is used to project structured light pattern on the scene. Indicated by experimental results, the mesh-candidate-based method is obviously superior in computation and accuracy. Compared with traditional methods based on image matching, our method has several advantages: (1) the complex

  3. A Plant-Based Transient Expression System for the Rapid Production of Malaria Vaccine Candidates.

    Science.gov (United States)

    Boes, Alexander; Reimann, Andreas; Twyman, Richard M; Fischer, Rainer; Schillberg, Stefan; Spiegel, Holger

    2016-01-01

    There are currently no vaccines that provide sterile immunity against malaria. Various proteins from different stages of the Plasmodium falciparum life cycle have been evaluated as vaccine candidates, but none of them have fulfilled expectations. Therefore, combinations of key antigens from different stages of the parasites life cycle may be essential for the development of efficacious malaria vaccines. Following the identification of promising antigens using bioinformatics, proteomics, and/or immunological approaches, it is necessary to express, purify, and characterize these proteins and explore the potential of fusion constructs combining different antigens or antigen domains before committing to expensive and time-consuming clinical development. Here, using malaria vaccine candidates as an example, we describe how Agrobacterium tumefaciens-based transient expression in plants can be combined with a modular and flexible cloning strategy as a robust and versatile tool for the rapid production of candidate antigens during research and development. PMID:27076325

  4. Admittance Loci Based Design of a Plasmonic Structure Using Ag-Au Bimetallic Alloy Film

    OpenAIRE

    Kaushik Brahmachari; Mina Ray

    2013-01-01

    A theoretical study based on the use of admittance loci method in the design of surface plasmon resonance (SPR) based structure using Ag-Au bimetallic alloy film of different alloy fractions and nanoparticle sizes has been reported along with some interesting performance related simulated results at 633 nm wavelength. The sensitivity and other performance parameter issues of the structure based on the choice of correct alloy fraction and nanoparticle size of Ag-Au bimetallic alloy film have a...

  5. Melt Protection of Mg-Al Based Alloys

    Directory of Open Access Journals (Sweden)

    María J. Balart

    2016-05-01

    Full Text Available This paper reports the current status of Mg melt protection in view to identify near-future challenges, but also opportunities, for Mg melt protection of Mg-Al based alloys. The goal is to design and manufacture sustainable Mg alloys for resource efficiency, recycling and minimising waste. Among alternative cover gas technologies for Mg melt protection other than SF6: commercially available technologies containing―HFC-134a, fluorinated ketone and dilute SO2―and developed technologies containing solid CO2, BF3 and SO2F2, can potentially produce toxic and/or corrosive by-products. On the other hand, additions of alkaline earth metal oxides to Mg and its alloys have developed a strong comparative advantage in the field of Mg melt protection. The near-future challenges and opportunities for Mg-Al based alloys include optimising and using CO2 gas as feedstock for both melt protection and grain refinement and TiO2 additions for melt protection.

  6. Results from investigations with an instrumented impact machine on a molybdenum base alloy, nickel base alloys, and Incoloy 800

    International Nuclear Information System (INIS)

    Experiments were performed on the molybdenum base alloy TZM, the nickel base alloys Nimocast 713 LC, Inconel 625, Nimonic 86, Hastelloy S, and the iron base alloy Incoloy 800 with an instrumented impact machine. The results are discussed in terms of absorbed impact energies and dynamic fracture toughness. In all cases the agreement between the energy determined by the dial reading and the energy determined by the integration of the load vs. load point displacement diagram was excellent. A procedure for the determination of the dynamic fracture toughness for load vs. load point displacement diagrams exhibiting high oscillations using an averaged curve is proposed. Using this procedure a pronounced influence of the experiments with tup and chisel (5.0 m/s and 0.1 m/s respectively) on the dynamic fracture toughness is not detectable. Using half the drop height, i.e. halving the total energy, lowers the dynamic fracture toughness values for these types of alloys. Low absorbed impact energies are often combined with high fracture toughness values. In these cases there is no or only a small reserve in deformation and/or stable crack growth. (Auth.)

  7. Selectivity of Ni-based surface alloys toward hydrazine adsorption: A DFT study with van der Waals interactions

    International Nuclear Information System (INIS)

    Highlights: • A series of Ni-based surface alloy films for hydrazine adsorption are proposed. • The doped atoms of Ir, Rh and Fe provide stronger adsorption sites. • The doped atoms of Pt and Pd provide weaker adsorption sites. • Ni8Fe8, Ni8Rh8 and Ni15Ir1 seem to be better candidates for hydrazine catalysis. - Abstract: We use dispersion corrected DFT calculations (DFT + D3) to investigate the selectivity of Ni-based surface alloys toward hydrazine adsorption. A series of Ni–M (M = Fe, Pt, Ir, Pd and Rh) alloy films were investigated, namely Ni15/M1/Ni(1 1 1), Ni14/M2/Ni(1 1 1), Ni12/M4/Ni(1 1 1) and Ni8/M8/Ni(1 1 1). Our results show that the doped atoms of Ir, Rh and Fe provide stronger adsorption sites than the Ni atom on the Ni(1 1 1) surface, while the doped atoms of Pt and Pd provide weaker adsorption sites. By analyzing the most favorable adsorption of hydrazine on Ni–M alloy surfaces we found that Ni8Fe8/Ni(1 1 1), Ni8Rh8/Ni(1 1 1), Ni15Ir1/Ni(1 1 1) and Ni14Ir2/Ni(1 1 1) present enhanced adsorption properties if compared to the pure Ni(1 1 1) surface, and seem to be better candidates for hydrazine catalysis, which are in agreement with that found by experiments. The correlation between d-band center position and adsorption energies of top modes in the Ni or doped atom has been calculated at DFT + D3 level to provide further insight into the Ni-based surface alloy properties for hydrazine adsorption

  8. Microstructural evolutions and mechanical behaviour of the nickel based alloys 617 and 230 at high temperature

    International Nuclear Information System (INIS)

    High Temperature Reactors (HTR), is one of the innovative nuclear reactor designed to be inherently safer than previous generation and to produce minimal waste. The most critical metallic component in that type of reactor is the Intermediate Heat exchanger (IHX). The constraints imposed by the conception and the severe operational conditions (high temperature of 850 C to 950 C, lifetime of 20,000 h) have guided the IHX material selection toward two solid solution nickel base alloys, the Inconel 617 and the Haynes 230. Inconel 617 is the primary candidate alloy thanks to its good high temperature mechanical and corrosion properties and the large data base developed in previous programs. However, its high cobalt content has to be considered as an issue (nuclear activation). The more recent alloy Haynes 230, in which most of the cobalt has been replaced by tungsten, present characteristics similar to the 617 alloy. The objective of this thesis is to study the high temperature mechanical behaviour of both alloys in relation with their microstructural evolutions. The as received microstructural observations have revealed primary carbides (M6C). Most of this precipitates are evenly distributed in the materials. Few M23C6 secondary carbides are observed in both alloys in the as received state. Thermal ageing treatments at 850 C lead to an important M23C6 precipitation on slip lines and at grain boundaries. The size of this carbides increases and their number decreases with increasing ageing duration. The intragranular precipitation of secondary carbides at 950 C is more limited and the intergranular evolution more important than at 850 C. The microstructural observations and the hardness evolution of both alloys show that the main microstructural evolutions occur before 1,000 h at both studied temperatures. The mechanical properties of the Inconel 617 and the Haynes 230 have been studied using tensile, creep, fatigue and relaxation-fatigue tests. Particularly, the

  9. Investigation of the Precipitation Behavior in Aluminum Based Alloys

    KAUST Repository

    Khushaim, Muna S.

    2015-11-30

    The transportation industries are constantly striving to achieve minimum weight to cut fuel consumption and improve overall performance. Different innovative design strategies have been placed and directed toward weight saving combined with good mechanical behavior. Among different materials, aluminum-based alloys play a key role in modern engineering and are widely used in construction components because of their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. For intelligent microstructure design in the complex Al-based alloy, it is important to gain a deep physical understanding of the correlation between the microstructure and macroscopic properties, and thus atom probe tomography with its exceptional capabilities of spatially resolution and quantitative chemical analyses is presented as a sophisticated analytical tool to elucidate the underlying process of precipitation phenomena in aluminum alloys. A complete study examining the influence of common industrial heat treatment on the precipitation kinetics and phase transformations of complex aluminum alloy is performed. The qualitative evaluation results of the precipitation kinetics and phase transformation as functions of the heat treatment conditions are translated to engineer a complex aluminum alloy. The study demonstrates the ability to construct a robust microstructure with an excellent hardness behavior by applying a low-energy-consumption, cost-effective method. The proposed strategy to engineer complex aluminum alloys is based on both mechanical strategy and intelligent microstructural design. An intelligent microstructural design requires an investigation of the different strengthen phases, such as T1 (Al2CuLi), θ′(Al2Cu), β′(Al3Zr) and δ′(Al3Li). Therefore, the early stage of phase decomposition is examined in different binary Al-Li and Al-Cu alloys together with different

  10. CuZn Alloy- Based Electrocatalyst for CO2 Reduction

    KAUST Repository

    Alazmi, Amira

    2014-06-01

    ABSTRACT CuZn Alloy- Based Electrocatalyst for CO2 Reduction Amira Alazmi Carbon dioxide (CO2) is one of the major greenhouse gases and its emission is a significant threat to global economy and sustainability. Efficient CO2 conversion leads to utilization of CO2 as a carbon feedstock, but activating the most stable carbon-based molecule, CO2, is a challenging task. Electrochemical conversion of CO2 is considered to be the beneficial approach to generate carbon-containing fuels directly from CO2, especially when the electronic energy is derived from renewable energies, such as solar, wind, geo-thermal and tidal. To achieve this goal, the development of an efficient electrocatalyst for CO2 reduction is essential. In this thesis, studies on CuZn alloys with heat treatments at different temperatures have been evaluated as electrocatalysts for CO2 reduction. It was found that the catalytic activity of these electrodes was strongly dependent on the thermal oxidation temperature before their use for electrochemical measurements. The polycrystalline CuZn electrode without thermal treatment shows the Faradaic efficiency for CO formation of only 30% at applied potential ~−1.0 V vs. RHE with current density of ~−2.55 mA cm−2. In contrast, the reduction of oxide-based CuZn alloy electrode exhibits 65% Faradaic efficiency for CO at lower applied potential about −1.0 V vs. RHE with current density of −2.55 mA cm−2. Furthermore, stable activity was achieved over several hours of the reduction reaction at the modified electrodes. Based on electrokinetic studies, this improvement could be attributed to further stabilization of the CO2•− on the oxide-based Cu-Zn alloy surface.

  11. Effect of Impurities and Cerium on Stress Concentration Sensitivity of Al-Li Based Alloys

    Institute of Scientific and Technical Information of China (English)

    孟亮; 田丽

    2002-01-01

    A notch sensitivity factor was derived in order to evaluate the stress concentration sensitivity of Al-Li based alloys. The factor values for the Al-Li alloy sheets containing various contents of impurities and cerium addition were evaluated by determining the mechanical properties. It is found that the impurities Fe, Si, Na and K significantly enhance the stress concentration sensitivity of the alloys 2090 and 8090, whereas cerium addition reduces the stress concentration sensitivity to a certain degree for the high strength alloys. However, an excess amount of cerium addition in the high ductility alloy 1420 can significantly increase the stress concentration sensitivity. As compared with conventional aluminum alloys, the Al-Li based alloys generally show high stress concentration sensitivity. Therefore, a special attention must be paid to this problem in the practical application of Al-Li based alloys.

  12. Smart materials based on shape memory alloys: examples from Europe

    International Nuclear Information System (INIS)

    Shape memory alloys (SMAs) have become increasingly attractive as embedded actuators in polymers yielding adaptive composite structures. In particular, SMA-elements have been used to actively or passively control shape, elastic modules, internal stress level and damping capacity of such smart composites. In the passive approach, copper-base SMA-plates can be used as temperature-sensitive damping elements, an interesting solution to improve the vibrational behaviour of alpine skis for example. Active materials are obtained by the integration of pre-strained Ni-Ti-base thin wires in polymer matrix composites enabling control of the vibrational behaviour through the recovery-stress tuning technique. In this paper, some results of national research programmes in Belgium and Switzerland, mainly concerning the damping capacity, are shown and a new European project entitled ''adaptive composites with embedded shape memory alloy wires'' is presented in which partners from Belgium, Germany, Greece, Great Britain and Switzerland are collaborating. (orig.)

  13. Cr{sub 2}Nb-based alloy development

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A. [Oak Ridge National Lab., TN (United States)] [and others

    1995-06-01

    The objective of this task is to develop a new generation of structural materials based on intermetallic alloys for use as critical hot components in advanced fossil energy conversion systems. The intermetallic phase, Cr{sub 2}Nb, with a complex cubic structure (C-15) has been selected for this development because of its high melting point (1770{degrees}C), relatively low material density (7.7 g/cm{sup 2}), excellent high-temperature strength (at 1000 to 1250{degrees}C), and potential resistance to oxidation and corrosion. This intermetallic phase, like many other Laves phases, has a wide range of compositional homogeneity suggesting the possibility of improving its mechanical and metallurgical properties by alloying additions. The major engineering concern with Cr{sub 2}Nb and other A{sub 2}B Laves phases is their poor fracture toughness and fracture resistance at ambient temperatures. The single-phase Cr{sub 2}Nb is very hard ({approximately}800 DPH) and brittle at room temperature. Because of this brittleness, the development effort has concentrated on two-phase structures containing the hard intermetallic phase Cr{sub 2}Nb and the softer Cr-rich solid solution phase. Potential applications of Cr-Cr{sub 2}Nb alloys include hot components (for example, air heat exchangers and turbine blades) in advanced energy conversion systems and heat engines, wear-resistant parts in coal handling systems (e.g., nozzles), drill bits for oil/gas wells, and valve guides in diesel engines. Current studies are focuses on enhancement of fracture resistance in tension at ambient temperatures and oxidation resistance above 1000{degrees}C. This report summarizes recent progress on controlling microstructure and improving the mechanical and metallurgical properties and the high-temperature corrosion behavior of Cr-Cr{sub 2}Nb alloys through alloying conditions, material processing, and heat treatment.

  14. Toughness enhancement in TiAlN-based quarternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sangiovanni, D.G., E-mail: davsan@ifm.liu.se; Chirita, V., E-mail: vio@ifm.liu.se; Hultman, L., E-mail: larhu@ifm.liu.se

    2012-03-30

    Improved toughness in hard and superhard thin films is a primary requirement for present day ceramic hard coatings, known to be prone to brittle failure during in-use conditions. We use density functional theory calculations to investigate a number of (TiAl){sub 1-x}M{sub x}N thin films in the B1 structure, with 0.06 {<=} x {<=} 0.75, obtained by alloying TiAlN with M = V, Nb, Ta, Mo and W. Results show significant ductility enhancements, hence increased toughness, in these compounds. Importantly, these thin films are also predicted to be superhard, with similar or increased hardness values, compared to Ti{sub 0.5}Al{sub 0.5} N. For (TiAl){sub 1-x}W{sub x}N the results are experimentally confirmed. The ductility increase originates in the enhanced occupancy of d-t{sub 2g} metallic states, induced by the valence electrons of substitutional elements (V, Nb, Ta, Mo, W). This effect is more pronounced with increasing valence electron concentration, and, upon shearing, leads to the formation of a layered electronic structure in the compound material, consisting of alternating layers of high and low charge density in the metallic sublattice, which in turn, allows a selective response to normal and shear stresses. - Highlights: Black-Right-Pointing-Pointer DFT calculated mechanical properties of TiAlN-based quarternary alloys. Black-Right-Pointing-Pointer (TiAl){sub 1-x}M{sub x}N alloys with M = V, Nb, Ta, Mo and W for 0.06 {<=} x {<=} 0.75. Black-Right-Pointing-Pointer Ductility enhancement induced by increased valence electron concentration (VEC). Black-Right-Pointing-Pointer Alloys predicted to be superhard, with higher hardness than TiAlN. Black-Right-Pointing-Pointer The hardness/ductility combination implies enhanced toughness in all alloys.

  15. Toughness enhancement in TiAlN-based quarternary alloys

    International Nuclear Information System (INIS)

    Improved toughness in hard and superhard thin films is a primary requirement for present day ceramic hard coatings, known to be prone to brittle failure during in-use conditions. We use density functional theory calculations to investigate a number of (TiAl)1−xMxN thin films in the B1 structure, with 0.06 ≤ x ≤ 0.75, obtained by alloying TiAlN with M = V, Nb, Ta, Mo and W. Results show significant ductility enhancements, hence increased toughness, in these compounds. Importantly, these thin films are also predicted to be superhard, with similar or increased hardness values, compared to Ti0.5Al0.5 N. For (TiAl)1−xWxN the results are experimentally confirmed. The ductility increase originates in the enhanced occupancy of d-t2g metallic states, induced by the valence electrons of substitutional elements (V, Nb, Ta, Mo, W). This effect is more pronounced with increasing valence electron concentration, and, upon shearing, leads to the formation of a layered electronic structure in the compound material, consisting of alternating layers of high and low charge density in the metallic sublattice, which in turn, allows a selective response to normal and shear stresses. - Highlights: ► DFT calculated mechanical properties of TiAlN-based quarternary alloys. ► (TiAl)1−xMxN alloys with M = V, Nb, Ta, Mo and W for 0.06 ≤ x ≤ 0.75. ► Ductility enhancement induced by increased valence electron concentration (VEC). ► Alloys predicted to be superhard, with higher hardness than TiAlN. ► The hardness/ductility combination implies enhanced toughness in all alloys.

  16. The design of cobalt-free, nickel-based alloy powder (Ni-3) used for sealing surfaces of nuclear power valves and its structure of laser cladding coating

    International Nuclear Information System (INIS)

    Research highlights: → The Ni-3 Co-free alloy coating prepared by laser welding. → Ni-3 alloy has excellent combination with stainless steel base. → Ni-3 alloy containing those strengthening phases could have excellent wear resistance and anti-oxidation ability at high temperature. - Abstract: To meet the demand of cobalt-free for the cladding coating materials used on sealing surface of nuclear power valves, a new Co-free, Ni-Cr based alloy powder (Ni-3) has been developed. It has been successfully coated on the surface of stainless steel as the strengthening layer. The XRD result reveals that the primary phase of cladding coating is Ni-based solid solution, and the carbides M7C3 and M23C6 as well as several A3B types of γ' strengthening phases. It indicates that the alloy possesses the high wear resistance, good corrosion resistance and high temperature tolerance. The test results suggest that the micro-hardness of Ni-3 corresponds to that of alloy Stellite 6 which containing cobalt and currently used as material for nuclear power valves. Hence, the developed Ni-3 alloy powder can be the hopeful candidate material for Co-free cladding material used on the surface of nuclear power valves; it can reduce the nuclear pollution and save the expensive metals.

  17. The design of cobalt-free, nickel-based alloy powder (Ni-3) used for sealing surfaces of nuclear power valves and its structure of laser cladding coating

    Energy Technology Data Exchange (ETDEWEB)

    Fu Geyan, E-mail: fugeyan@suda.edu.c [School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021 (China); Liu Shuang [School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021 (China); Fan Jiwei [School of Materials Science and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007 (China)

    2011-05-15

    Research highlights: The Ni-3 Co-free alloy coating prepared by laser welding. Ni-3 alloy has excellent combination with stainless steel base. Ni-3 alloy containing those strengthening phases could have excellent wear resistance and anti-oxidation ability at high temperature. - Abstract: To meet the demand of cobalt-free for the cladding coating materials used on sealing surface of nuclear power valves, a new Co-free, Ni-Cr based alloy powder (Ni-3) has been developed. It has been successfully coated on the surface of stainless steel as the strengthening layer. The XRD result reveals that the primary phase of cladding coating is Ni-based solid solution, and the carbides M{sub 7}C{sub 3} and M{sub 23}C{sub 6} as well as several A{sub 3}B types of {gamma}' strengthening phases. It indicates that the alloy possesses the high wear resistance, good corrosion resistance and high temperature tolerance. The test results suggest that the micro-hardness of Ni-3 corresponds to that of alloy Stellite 6 which containing cobalt and currently used as material for nuclear power valves. Hence, the developed Ni-3 alloy powder can be the hopeful candidate material for Co-free cladding material used on the surface of nuclear power valves; it can reduce the nuclear pollution and save the expensive metals.

  18. Self healing of damage in Fe-based alloys

    OpenAIRE

    Zhang, S.

    2015-01-01

    Steel components can exhibit premature and low-ductility creep fracture, when exposed to high temperatures for long times. The failure arises from the formation, growth and coalescence of ultra-fine cracks and cavities. Self healing of damage is a promising new approach to enhance the lifetime of the steel components, in particular for applications at high temperatures. This thesis aims to realize the self-healing of damage in Fe-based alloys and unravel the mechanism responsible for efficien...

  19. Combined thermodynamic study of nickel-base alloys. Progress report

    International Nuclear Information System (INIS)

    Achievements during this period are the following: (1) initiation of a high-temperature study of the Ni-Ta system using the galvanic cell technique, (2) emf study of high-temperature thermodynamics in the Ni-Mo system, (3) measured heat capacity data on ordered and disordered Ni4Mo, (4) heat capacities of Ni and disordered Ni3Fe, and (5) computer correlation of thermodynamic and phase diagram data in binary Ni-base alloys

  20. Technical assessment of vanadium-base alloys for fusion reactor applications. Volume I. Assessment of data base, needs and recommendations. Final report

    International Nuclear Information System (INIS)

    A technical assessment of vanadium and vanadium-base alloys for fusion reactor applications has been carried out. The major objective of this assessment was the development of an informed basis of understanding of the chemical, mechanical, and irradiation response characteristics of vanadium alloys. Efforts were focused on several separate, but interrelated, program tasks. First, a detailed review and analysis of the pertinent technical literature was carried out. Properties which were emphasized were those believed to be most important to making judgments of the viability of vanadium alloys as candidate fusion reactor strucutral materials. The next task reviewed the technical data bases, and methods and assumptions related to their use, which have been factored into life/performance analyses. The critical data gaps/priority needs necessary for these analyses are documented. Finally, criteria are suggested, and test/evaluation procedures recommended, pertinent to judging relative performance levels of vanadium alloys during future alloy development activities. Compositional and metallurgical variables recommended for investigation during such future activities are also presented

  1. High temperature corrosion of iron-base and nickel-base alloys for hydrogen production apparatus by thermochemical method in H2O+SO3 atmosphere

    International Nuclear Information System (INIS)

    Corrosion tests for ten iron-base and nickel-base alloys at 850degC for 1000h in H2O + SO3 atmosphere were carried out to obtain data for selection of candidate container materials in the thermochemical process which produces hydrogen from water by use of iodine and sulfur as circulating materials. The following results were obtained: (1) Oxidation, spallation of corrosion film, uniform corrosion and grain boundary penetration composed of internal oxidation and sulfuration occur in this atmosphere and the corrosion proceeds by grain boundary penetration. (2) SUS304, SUS316 and Hastelloy C276 are inferior in corrosion resistance and SUS329J4L is superior among ten alloys used in this experiment. Alloys such as Alloy 800H and Hastelloy XR show intermediate corrosion resistance. (3) Oxide films of alloys containing iron and chromium are mostly composed of outer iron-oxide and inner chromium-oxide. Sulfur concentrates at scale/metal interfaces and grain boundary penetration portions, and sulfides form. (4) Corrosion in this atmosphere could be expressed using the parabolic law between the grain boundary penetration depth and time. It is considered that causes of the apparently observed parabolic law were a high concentration of SO3 and change of the gas composition caused by catalytic action of the corrosion film formed with the progress of corrosion. (author)

  2. High Temperature Internal Oxidation Behavior of Iron Based Alloys

    International Nuclear Information System (INIS)

    A study of growth kinetics and microstructure of internal oxides in the iron-base alloys was carried out by an optical microscope and a scanning electron microscope, so that the growth mechanisms of the oxide precipitates in the internal oxidation zone could be understood in detail. Iron-based alloys, Fe-1%Al, Fe-1%Al-1%Hf, Fe-1%Cr, Fe-1%Cr-1%Hf and Fe-2%Hf, were oxidized in a sealed quartz tube containing Fe/FeO powder mixtures which maintained the oxygen partial pressure at the FeO decomposition pressure at 800 .deg. C for the various time periods to 121 hours. Results show that the growth rate of the oxide precipitates in the internal oxidation zone is controlled by the diffusion of oxygen. The variation of the solute element and the addition of Hf in the iron-base alloys led to a change in the depth of internal oxidation zone and in the oxide morphology. The internal precipitate adopted the form of continuous needles or feathers for the Fe-Al system, whereas that in the Fe-Cr and Fe-2%Hf systems adapted the form of discontinuous crystallites, that is, spheres or polyhedral crystallites. The mechanism of this morphological evolution was explained in detail

  3. Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    Long He; Ye-Fa Tan; Xiao-Long Wang; Qi-Feng Jing; Xiang Hong

    2015-01-01

    To improve the wear resistance of aluminum alloy frictional parts,TiB2 particles reinforced Ni-base alloy composite coatings were prepared on aluminum alloy 7005 by laser cladding.The microstructure and tribological properties of the composite coatings were investigated.The results show that the composite coating contains the phases of NiAl,Ni3Al,Al3Ni2,TiB2,TiB,TiC,CrB,and Cr23C6.Its microhardness is HV0.5 855.8,which is 15.4 % higher than that of the Ni-base alloy coating and is 6.7 times as high as that of the aluminum alloy.The friction coefficients of the composite coatings are reduced by 6.8 %-21.6 % and 13.2 %-32.4 % compared with those of the Ni-base alloy coatings and the aluminum alloys,while the wear losses are 27.4 %-43.2 % less than those of the Ni-base alloy coatings and are only 16.5 %-32.7 % of those of the aluminum alloys at different loads.At the light loads ranging from 3 to 6 N,the calculated maximum contact stress is smaller than the elastic limit contact stress.The wear mechanism of the composite coatings is micro-cutting wear,but changes into multi-plastic deformation wear at 9 N due to the higher calculated maximum contact stress than the elastic limit contact stress.As the loads increase to 12 N,the calculated flash temperature rises to 332.1 ℃.The composite coating experiences multi-plastic deformation wear,micro-brittle fracture wear,and oxidative wear.

  4. Crystal plasticity based finite element model for simulation of high temperature deformation behavior of Niobium based alloys for high temperature reactors

    International Nuclear Information System (INIS)

    For structural components of compact high temperature reactors, Niobium based alloys are some of the candidate materials which are being studied extensively by various researchers. These alloys have excellent high temperature mechanical properties for temperature range as high as 1000 to 1300 deg. C. The NbZrC alloys form different types of carbides which impart high temperature strength to these alloys. The alloy also possesses good ductility at elevated temperatures. In order to understand the material deformation behavior of the alloy, a crystal plasticity based model has been used in simulation of material stress-strain curve at various elevated temperatures. It is very important to take into account of the underlying microstructure of the material in order to develop a reliable constitutive model for predicting the elevated temperature strength of these alloys. Crystal plasticity based models are suitable for this purpose as these take into account of the crystal orientations of different grains as well as the effect of various microstructural features on the onset of plasticity and plastic hardening mechanisms in these materials. However, it is computationally expensive to incorporate the explicit models of different features of the microstructure in a crystal plasticity based framework to simulate the response of the polycrystalline micro-structure of these alloys. The aim of this work is to develop a physically motivated multi-scale approach for simulation of response of these types of alloys. At the lower scale, i.e., at the grain level, the crystal plasticity model simulates the response of various types of microstructures (with different morphology of precipitates) within a single crystal. The microstructures are designed with various shapes and volume fractions of precipitates. The lower scale model is homogenized as a function of various microstructural parameters and the homogenized model is used at the polycrystalline level of crystal plasticity

  5. Preparation and research on poisoning resistant Zr-Co based hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    LI Hualing; WANG Shumao; JIANG Lijun; ZHANG Lidong; LIU Xiaopeng; LI Zhinian

    2008-01-01

    At present,all hydrogen storage alloys are poisoned by hydrogen mixed with CO,CO2,etc,which decreases the hydrogen storage property sharply.Zr-Co based hydrogen storage alloys with good poisoning resistance were prepared by alloying,fluorinating,and electroless plating.The experiment results show that the poisoning resistance of the Zr-Co based alloy was improved remarkably after the treatments.The poisoning resistance mechanism of the Zr-Co based hydrogen storage alloys was analyzed.

  6. Corrosion of iron-base alloys by lithium

    International Nuclear Information System (INIS)

    A review of corrosion mechanisms operating in lithium-iron-base alloy systems is presented along with data obtained with thermal-convection loops of niobium-stabilized 2 1/4 percent Cr-1 percent Mo steel and types 304L and 321 stainless steels. A corrosion rate of 2.3 μm/year (0.09 mil/year) was obtained on the 2 1/4 percent Cr-1 percent Mo steel at 6000C. Considerably more mass transport of alloying constituents and a maximum corrosion rate of about 14 μm/year (0.55 mil/year) was obtained with the austenitic stainless steels. Results of metallography, x-ray fluorescence analysis, scanning electron microscopy, and weight-change data are presented and discussed

  7. Characterization of cold-sprayed nanostructured Fe-based alloy

    International Nuclear Information System (INIS)

    The ball-milled Fe-Si alloy was used as feedstock for deposition of nanocrystalline Fe-Si by cold spraying process. The microstructure of the as-sprayed nanostructured Fe-Si was characterized by using optical microscopy, scanning electron microscopy and transmission electron microscopy. The grain sizes of the feedstock and as-sprayed deposit were estimated based on X-ray diffraction analysis. The microhardness and coercivity of the deposited Fe-Si alloy were characterized. The results showed that the as-sprayed deposit presented a dense microstructure. The mean grain size of the as-deposited Fe-Si was several tens nanometers and comparable to that of the corresponding milled feedstock. The temperature of driving gas presented little effect on the microstructure of cold-sprayed nanostructured Fe-Si deposit. The mechanical alloying induced oxygen contents up to 8 wt% in the feedstocks and subsequent deposits. The microhardness of the deposit reached about 400 Hv. The deposit achieved a high coercivity up to 190 kA/m indicating the potential possibility for applications to recording materials.

  8. Investigation of solidification dynamics of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kobold, Raphael; Herlach, Dieter [Institut fuer Materialphysik im Weltraum, Deutsches Zentrum fuer Luft- und Raumfahrt, 51170 Koeln (Germany); Ruhr-Universitaet Bochum, 44780 Bochum (Germany)

    2013-07-01

    In contrast to experiments with most undercooled binary alloys the velocity of dendritic growth of a Cu50Zr50 alloy does not increase monotonically with undercooling but passes through a maximum and then decreases. To study this behaviour we investigate Zr-based alloys such as CuZr, NiZr and NiZrAl with Zirconium concentrations ranging from 36 to 64 at.% including eutectic and intermetallic phases. We use electrostatic levitation technique to melt and undercool samples with a diameter of 2-3 mm under ultra-high-vacuum conditions. Containerless processing is an effective tool for undercooling metallic melts far below their equilibrium melting temperatures since heterogeneous nucleation on container walls is completely avoided. During crystallisation of the undercooled melt the heat of crystallisation is released. The rapid increase of the temperature at the solid-liquid interface makes the solidification front visible. The velocities of the solidification front are recorded by using a high-speed camera with a maximum rate of 50.000 frames per second and are analyzed with a software for optical ray tracing. Furthermore, we try to model the growth velocity vs. the undercooling temperature and perform sample EBSD analysis with a scanning electron microscope.

  9. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  10. Pack cementation diffusion coatings for iron-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1995-02-01

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels. The Cr-Si ferrite layers have proven to be very resistant to high temperature cyclic oxidation and to pitting in aqueous solutions. The process has been patented, and is being transferred for industrial application, e.g. for water walls of utility boilers, etc. In the proposed extension of this project, the use of mixed pure metal powders in the pack will be extended to achieve similar ferrite Fe-Cr-Al coatings with excellent oxidation resistance, with the eventual transfer of the technology to industry. In other recent studies, Ni-base alloy rods were aluminized by the halide-activated pack cementation process to bring their average composition to that for the ORNL-developed Ni{sub 3}Al, for use as a welding rod. A similar effort to develop a welding rod for the ORNL Fe{sub 3}Al alloy did not yield reproducible coating compositions or growth kinetics. The continued effort to produce Duriron-type (Fe-18Si-5Cr) coatings on steels was not successful. Literature for the intrinsic diffusion coefficients suggests that this task cannot be achieved.

  11. The thermal transient effect on some nickel-based alloys

    International Nuclear Information System (INIS)

    This paper studies two nickel-based alloys after thermal transient tests. Two alloys were tested, namely Inconel 617 (UNS N06617) and Haynes 230 (UNS N06230). These materials are study for to be used in the construction of the steam generators of the future NPP reactors which must operate in severe conditions (high temperature, thermo-mechanical stress, aggressive media). The experiment consisted in thermal transient tests using a few scenarios: fast heating rates (50OC/minute) up to 1,000OC, maintaining this temperature level (0-60 minutes) and slowly/fast cooling. The metallographic analysis consisted in microstructure, micro-hardness determinations and traction tests. The average grain size was determined by linear interception method. The micro hardness was calculated by the relationship from the device technical book. On the traction diagrams the following mechanic characteristics were obtained: breaking resistance (Rm), elongation at rupture (A) and elastic modulus (E). The tested alloys were compared with the received materials. (authors)

  12. Crystallization kinetics of Fe based amorphous alloy

    Science.gov (United States)

    Shanker Rao, T.; Lilly Shanker Rao, T.

    2015-02-01

    Differential Scanning Calorimetry(DSC) experimental data under non-isothermal conditions for Fe based Metglas 2605SA1 (wt% Fe=85-95, Si=5-10, B=1-5) metallic glass ribbons are reported and discussed. The DSC Scans performed at different heating rates showed two step crystallization processes and are interpreted in terms of different models like Kissinger, Ozawa, Boswell, Augis & Bennett and Gao & Wang. From the heating rate dependence of the onset temperature (To) and the crystallization peak temperature (Tp), the kinetic triplet, activation energy of crystallization (E), Avrami exponent (n) and the frequency factor (A) are determined. The determined E for peak I is 354.5 ± 2.5 kJ/mol and for the peak II is 348.2 ± 2.2 kJ/mol, respectively. The frequency factor for peak I is 1.1 × 1023sec-1 and for peak II is 6.1 × 1020sec-1.

  13. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  14. Performance of a base isolator with shape memory alloy bars

    Institute of Scientific and Technical Information of China (English)

    Fabio Casciati; Lucia Faravelli; Karim Hamdaoui

    2007-01-01

    A new and innovative base isolation device is introduced in this paper based on extensive research carried out by the authors and their co-workers.A prototype of the device was built and experimentally tested on the shaking table.The new base isolation device consists of two disks,one vertical cylinder with an upper enlargement sustained by three horizontal cantilevers,and at least three inclined shape memory alloy(SMA) bars.The role of the SMA bars is to limit the relative motion between the base and the superstructure,to dissipate energy by their super-elastic constitutive law and to guarantee the re-centring of the device.To verify the expected performance,a prototype was built and tested under sinusoidal waves of displacement of increasing frequency with different amplitudes.It is shown that the main feature of the proposed base isolation device is that for cyclic loading,the super-elastic behavior of the alloy results in wide load-displacement loops,where a large amount of energy is dissipated.

  15. Candidate Smoke Region Segmentation of Fire Video Based on Rough Set Theory

    Directory of Open Access Journals (Sweden)

    Yaqin Zhao

    2015-01-01

    Full Text Available Candidate smoke region segmentation is the key link of smoke video detection; an effective and prompt method of candidate smoke region segmentation plays a significant role in a smoke recognition system. However, the interference of heavy fog and smoke-color moving objects greatly degrades the recognition accuracy. In this paper, a novel method of candidate smoke region segmentation based on rough set theory is presented. First, Kalman filtering is used to update video background in order to exclude the interference of static smoke-color objects, such as blue sky. Second, in RGB color space smoke regions are segmented by defining the upper approximation, lower approximation, and roughness of smoke-color distribution. Finally, in HSV color space small smoke regions are merged by the definition of equivalence relation so as to distinguish smoke images from heavy fog images in terms of V component value variety from center to edge of smoke region. The experimental results on smoke region segmentation demonstrated the effectiveness and usefulness of the proposed scheme.

  16. The surface spin polarization of Co-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fetzer, Roman; Wuestenberg, Jan-Peter; Neuschwander, Sabine; Aeschlimann, Martin; Cinchetti, Mirko [University of Kaiserslautern (Germany). Department of Physics and Research Center OPTIMAS; Jourdan, Martin; Herbort, Christian; Vilanova Vidal, Enrique; Jakob, Gerhard [University of Mainz (Germany). Institute of Physics

    2010-07-01

    Co-based Heusler alloys belong mainly to the family of half-metallic ferromagnets (HMFs). The predicted full spin polarization at the Fermi level due to the minority spin band gap makes this class of materials highly interesting for application in the field of spintronics. Thus, the characterization of the surface of Co-based Heusler compounds is extremely relevant for understanding and improving the performance of Heusler-based spintronics devices, like tunnel-magnetoresistance (TMR) junctions. Using Auger electron spectroscopy (AES) and low energy spin polarized electron photoemission, we systematically studied the correlation between chemical composition and spin polarisation of the surface. For various Co-based Heusler alloys, e.g. Co{sub 2}CrAl, Co{sub 2}MnAl and Co{sub 2}FeGa{sub 0.5}Ge{sub 0.5}, we found different degrees of spin-polarization at the very surface region. Reasons for the distinct deviation from the predicted 100% spin polarization and the dependence on the specific surface preparation procedure are discussed.

  17. Mechanical Properties of Candidate Materials for Hot Gas Duct of VHTR

    International Nuclear Information System (INIS)

    Hot gas duct of VHTR is operated at 950 .deg.. Ni based superalloys, such as Hastelloy XR, Alloy 617, Haynes 230, for hot gas duct have been candidate material because of good strength and corrosion properties at high temperature. Mechanical properties of these alloys are tested at high temperature to apply to hot gas duct of VHTR

  18. A new look at biomedical Ti-based shape memory alloys.

    Science.gov (United States)

    Biesiekierski, Arne; Wang, James; Gepreel, Mohamed Abdel-Hady; Wen, Cuie

    2012-05-01

    Shape memory alloys (SMAs) are materials that exhibit a distinct thermomechanical coupling, one that gives rise to a wide variety of applications across a broad range of fields. One of the most successful roles is in the construction of novel medical implants. Unfortunately, concerns have been raised about the biocompatibility of the most popular SMA, nitinol (NiTi), due to the known toxic, allergenic and carcinogenic properties of nickel. Given the unique capabilities of SMAs, it is apparent that there is a need for a new class of alloys - alloys that exhibit the full range of shape memory abilities yet are also free of any undesirable side effects. This article reviews the literature surrounding SMAs and identifies the metals Ti, Au, Sn, Ta, Nb, Ru and Zr as candidates for the production of thoroughly biocompatible SMAs. Hf and Re are also promising, though more research is necessary before a definitive statement can be made. Further, the Ti-(Ta,Nb)-(Zr,Hf) alloy system is particularly suited for orthopaedic implants due to a reduced Young's modulus. However, concerns over this system's shape memory properties exist, and should be taken into consideration. Alternate alloy systems that demonstrate higher bulk moduli may still be considered, however, if they are formed into a porous structure. Due to the nature of the alloying components, blended elemental powder metallurgy is recommended for the manufacture of these alloys, particularly due to the ease with which it may be adapted to the formation of porous alloys. PMID:22326786

  19. Ferromagnetic resonance in Ni-Mn based ferromagnetic Heusler alloys

    International Nuclear Information System (INIS)

    Ferromagnetic Ni-Mn based Heusler alloys undergo martensitic transformations leading to properties such as magnetic shape memory, magnetic field induced strain and magneto-caloric effects. The occurrence of such effects are closely related to the nature of magnetic interactions around the transition. These interactions can be closely examined by the ferromagnetic resonance (FMR) technique. Here, we report on the results of FMR studies performed at various temperatures in the martensite and austenite states of powder samples and discuss the mixed nature of the magnetic interactions in the martensitic state.

  20. Design of Zr-based AB2 type hydrogen storage alloys

    Institute of Scientific and Technical Information of China (English)

    文明芬; 王秋萍; 王兴海; 翟玉春; 陈廉

    2003-01-01

    The influences of the ratio of the radius of atom A(rA)to radius of atom B(rB),electronegativity and electron number were discussed on the Laves phase formation and the characteristics of Zr-based AB2 type hydrogen storage alloy.An enthalpy model of Zr-based AB2 alloy was obtained from known data and twelve Zr-based alloys were designed to test the model.The results show that the predicted values are in good agreement with the experimental values.The model can be used for predicting enthalpy values of Zr-based hydrogen storage alloys and settles a foundation for experiments.

  1. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Misencik, J.A.; Titran, R.H.

    1984-10-01

    Sixteen commercial tubing alloys were endurance tested at 820/sup 0/ C, 15 MPa in a diesel-fuel fired Stirling engine simulator materials test rig: iron-base N-155, A-286, Incoloy 800, 19-9DL, CG-27, W-545, 12RN72, 253MA, Sanicro 31H and Sanicro 32; nickel-base Inconel 601, Inconel 625, Inconel 718, Inconel 750 and Pyromet 901; and cobalt-base HS-188. The iron-nickel alloys CG-27 and Pyromet 901 exhibited superior oxidation/corrosion resistance to the diesel-fuel combustion products and surpassed the design criterias' 3500 h creep-rupture endurance life. Three other alloys, Inconel 625, W-545, and 12RN72, had creep-rupture failures after 2856, 2777, and 1598 h, respectively. Hydrogen permeability coefficients determined after 250 h of rig exposure show that Pyromet 901 had the lowest Phi value, 0.064x10/sup -6/ cm/sup 2//s MPa/sup 1///sup 2/. The next five hairpin tubes, CG-27, Inconel 601, Inconel 718(wd), Inconel 750, and 12RN72(cw) all had Phi values below 0.2x10/sup -6/ more than a decade lower than the design criteria. Based upon its measured high strength and low hydrogen permeation, CG-27 was selected for 3500 h endurance testing at 21 MPa gas pressure and 820/sup 0/C. Results of the high pressure, 21 MPa, CG-27 endurance test demonstrated that the 1.0 vol % C0/sub 2/ dopant is an effective deterrent to hydrogen permeation. The 21 MPa hydrogen gas pressure apparent permeability coefficient at 820/sup 0/C approached 0.1x10/sup -6/ cm/sup 2/sec MPa/sup 1///sup 2/ after 500 hr, the same as the 15 MPa test. Even at this higher gas pressure and comparable permeation rate, CG-27 passed the 3500 hr endurance test without creep-rupture failures. It is concluded that the CG-27 alloy, in the form of thin wall tubing is suitable for Stirling engine applications at 820/sup 0/C and gas pressures up to 21 MPa.

  2. Preliminary neutronic assessment for ATF (Accident Tolerant Fuel) based on iron alloy

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Alfredo, E-mail: ayabe@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Carluccio, Thiago; Piovezan, Pamela [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Departamento de Reatores; Giovedi, Claudia; Martins, Marcelo R. [Universidade de Sao Paulo (POLI/USP), SP (Brazil). Lab. de Analise, Avaliacao e Gerenciamento de Risco

    2015-07-01

    After Fukushima Daiichi nuclear accident in 2011, the nuclear fuel performance under accident condition became a very important issue and currently different research and development program are in progress toward to reliability and withstand under accident condition. These initiatives are known as ATF (Accident Tolerant Fuel) R and D program, which many countries with different research institutes, fuel vendors and others are nowadays involved. Accident Tolerant Fuel (ATF) can be defined as enhanced fuel which can tolerate loss of active cooling system capability for a considerably longer time period and the fuel/cladding system can be maintained without significant degradation and can also improve the fuel performance during normal operations and transients, as well as design-basis accident (DBA) and beyond design-basis (BDBA) accident. Different materials have being proposed as fuel cladding candidates considering thermo-mechanical properties and lower reaction kinetic with steam and slower hydrogen production. The aim of this work is to perform a neutronic assessment for several cladding candidates based on iron alloy considering a standard PWR fuel rod (fuel pellet and dimension). The purpose of the assessment is to address different parameters that might contribute for possible neutronic reactivity gain in order to overcome the penalty due to increase of neutron absorption in the cladding materials. All the neutronic assessment is performed using MCNP, Monte Carlo code. (author)

  3. Defect Interaction in Iron and Iron-based Alloys

    Science.gov (United States)

    Xu, Haixuan; Stocks, G. Malcolm; Stoller, Roger

    2014-03-01

    Magnetism has a profound influence on the defect properties in iron and iron-based alloys. For instance, it has been shown from first principles calculations that the helium interstitial occupies the tetrahedral site instead of octahedral site in contrast to all previous work that neglected the magnetic effects. In this study, we explore the effects of magnetism on the defect interaction, primarily interstitial-type defects, in bcc iron and Fe-Cr systems. The magnetic moment change during the interaction of two 1/2 interstitial loops in bcc iron was calculated using the ab initio locally self-consistent multiple-scattering (LSMS) method and a significant fluctuation was observed. Adding Cr significantly modifies the magnetic structure of the defects and defect interactions. In addition, the effects of magnetism on the defect energetics are evaluated. This study provides useful insights on whether magnetism can be used as a effective means to manipulate the defect evolution in iron-based structural alloys. This material is based upon work supported as part of the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  4. Immunogenicity of multi-epitope-based vaccine candidates administered with the adjuvant Gp96 against rabies.

    Science.gov (United States)

    Niu, Yange; Liu, Ye; Yang, Limin; Qu, Hongren; Zhao, Jingyi; Hu, Rongliang; Li, Jing; Liu, Wenjun

    2016-04-01

    Rabies, a zoonotic disease, causes > 55,000 human deaths globally and results in at least 500 million dollars in losses every year. The currently available rabies vaccines are mainly inactivated and attenuated vaccines, which have been linked with clinical diseases in animals. Thus, a rabies vaccine with high safety and efficacy is urgently needed. Peptide vaccines are known for their low cost, simple production procedures and high safety. Therefore, in this study, we examined the efficacy of multi-epitope-based vaccine candidates against rabies virus. The ability of various peptides to induce epitope-specific responses was examined, and the two peptides that possessed the highest antigenicity and conservation, i.e., AR16 and hPAB, were coated with adjuvant canine-Gp96 and used to prepare vaccines. The peptides were prepared as an emulsion of oil in water (O/W) to create three batches of bivalent vaccine products. The vaccine candidates possessed high safety. Virus neutralizing antibodies were detected on the day 14 after the first immunization in mice and beagles, reaching 5-6 IU/mL in mice and 7-9 IU/mL in beagles by day 28. The protective efficacy of the vaccine candidates was about 70%-80% in mice challenged by a virulent strain of rabies virus. Thus, a novel multi-epitope-based rabies vaccine with Gp96 as an adjuvant was developed and validated in mice and dogs. Our results suggest that synthetic peptides hold promise for the development of novel vaccines against rabies. PMID:27068655

  5. Properties of rhenium-based master alloys prepared by powder metallurgy techniques

    Directory of Open Access Journals (Sweden)

    A. Wrona

    2010-10-01

    Full Text Available Purpose: The aim of this work was to investigate an effect of phase composition, microstructure and selected properties of the rhenium-based alloys on the conditions of their preparation by mechanical alloying followed by pressure sintering.Design/methodology/approach: The structure and mechanical and physical properties of the Re-14.0% Ni, Re-13.7% Co and Re-9.1% Fe alloys prepared from pure metal powders by mechanical alloying in a planetary mill for 10 hours followed by sintering conducted for 1 hour at the temperature of 1150°C under the pressure of 600 MPa were investigated.Findings: The mechanical alloying results in partial dissolving of alloy components into each other, whereas their structure remains unchanged, and in a decrease in average density of powders and average diameter of their particles. As a result of sintering the alloy additives almost fully pass into rhenium-based solid solution. Density and hardness of the sinter compacts and homogeneity of alloying elements distribution were higher at longer times of mechanical alloying.Research limitations/implications: The obtained results provide complementary information on the possibility of obtaining high-melting alloys by mechanical alloying and on the rate of structural transformations taking place as a result of this process.Practical implications: The obtained materials can be used as master alloys for the production of contact materials and superalloys, providing higher homogeneity of the chemical composition and microstructure of the final products.Originality/value: A new method for preparation of rhenium-based alloys by means of mechanical alloying and powder metallurgy techniques has been successfully tested.

  6. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    International Nuclear Information System (INIS)

    In order to investigate the role of amorphous SiO2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO2 particles, and under alloying temperature (1000 deg. C) condition, the nano-SiO2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr2O3, MoO3, SiO2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer

  7. Palladium-based dental alloys are associated with oral disease and palladium-induced immune responses

    NARCIS (Netherlands)

    J. Muris; R.J. Scheper; C.J. Kleverlaan; T. Rustemeyer; I.M.W. van Hoogstraten; M.E. von Blomberg; A.J. Feilzer

    2014-01-01

    Background Palladium (Pd) and gold (Au) based dental alloys have been associated with oral disease. Objectives This study was designed to explore possible associations between the presence of Au-based and Pd-based dental alloys, and oral lesions, systemic complaints, and specific in vivo and in vitr

  8. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb5Si3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb5Si3. At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  9. High Energy Storage Mg-based amorphous alloys for nickel-metal hydride battery

    International Nuclear Information System (INIS)

    Full text: Mg-based hydrogen storage alloys possess very high hydrogen absorption capacity (For example, Mg2NiH4 contains 3.6 wt.% of hydrogen). Magnesium is also abundant in nature, light in weight and low in cost. As a result, magnesium alloys have become the subject of increasing research world-wide. For a long period, it was thought that Mg-based alloy-hydrogen systems needed to be operated at high temperature (over 250 deg C) and under high hydrogen pressure. However, in recent years, some research work was successfully done to improve the hydrogen absorption kinetics of Mg2Ni by mechanical grinding and alloying. Some nano and amorphous structured Mg2Ni alloys could absorb hydrogen even at room temperature. Our research results show that it is possible to use Mg2Ni-type alloys as promising materials for increasing the negative electrode capacity of Ni-MH batteries because the theoretical discharge capacity of Mg2Ni alloy is approximately 1000 mAh/g, much higher than that of the main commercial LaNi5 alloy (which has a capacity of only about 370 mAh/g). Mg-based alloy electrodes were manufactured by a powder metallurgical technique or a induction melting method followed by ball milling with Ni and/or other metal powders. The discharge capacities of the Mg-based alloy electrodes were significantly improved by ball milling. An amorphous structure is a key factor in order to achieve high discharge capacities. The figure below shows the ball milled amorphous Mg-based alloy electrodes have very high discharge capacities by comparison with crystalline Mg2Ni alloys or commercial AB5 alloy

  10. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    TiAu (equiatomic) exhibits phase transformation from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed. (author)

  11. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  12. Calibration of the Gaia Radial Velocity Spectrometer from ground-based observations of candidate standard stars

    CERN Document Server

    Chemin, L; Crifo, F; Jasniewicz, G; Katz, D; Hestroffer, D; Udry, S

    2011-01-01

    The Radial Velocity Spectrometer (RVS) on board of Gaia will perform a large spectroscopic survey to determine the radial velocities of some 1.5x10^8 stars. We present the status of ground-based observations of a sample of 1420 candidate standard stars designed to calibrate the RVS. Each candidate star has to be observed several times before Gaia launch (and at least once during the mission) to ensure that its radial velocity remains stable during the whole mission. Observations are performed with the high-resolution spectrographs SOPHIE, NARVAL and CORALIE, completed with archival data of the ELODIE and HARPS instruments. The analysis shows that about 7% of the current catalogue exhibits variations larger than the adopted threshold of 300 m/s. Consequently, those stars should be rejected as reference targets, due to the expected accuracy of the Gaia RVS. Emphasis is also put here on our observations of bright asteroids to calibrate the ground-based velocities by a direct comparison with celestial mechanics. ...

  13. Network Based Integrated Analysis of Phenotype-Genotype Data for Prioritization of Candidate Symptom Genes

    Directory of Open Access Journals (Sweden)

    Xing Li

    2014-01-01

    Full Text Available Background. Symptoms and signs (symptoms in brief are the essential clinical manifestations for individualized diagnosis and treatment in traditional Chinese medicine (TCM. To gain insights into the molecular mechanism of symptoms, we develop a computational approach to identify the candidate genes of symptoms. Methods. This paper presents a network-based approach for the integrated analysis of multiple phenotype-genotype data sources and the prediction of the prioritizing genes for the associated symptoms. The method first calculates the similarities between symptoms and diseases based on the symptom-disease relationships retrieved from the PubMed bibliographic database. Then the disease-gene associations and protein-protein interactions are utilized to construct a phenotype-genotype network. The PRINCE algorithm is finally used to rank the potential genes for the associated symptoms. Results. The proposed method gets reliable gene rank list with AUC (area under curve 0.616 in classification. Some novel genes like CALCA, ESR1, and MTHFR were predicted to be associated with headache symptoms, which are not recorded in the benchmark data set, but have been reported in recent published literatures. Conclusions. Our study demonstrated that by integrating phenotype-genotype relationships into a complex network framework it provides an effective approach to identify candidate genes of symptoms.

  14. Electronic-Structure-Based Design of Ordered Alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Andersson, M.P.; Jacobsen, Karsten Wedel; Skriver, Hans Lomholt; Christensen, Claus H.; Nørskov, Jens Kehlet

    2006-01-01

    We describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computational...... discovery of a promising catalytic metal alloy surface with high reactivity and low cost....

  15. Smart materials based on shape memory alloys: examples from Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gotthardt, R.; Scherrer, P. [Ecole Polytechnique Federale, Lausanne (Switzerland). Dept. de Physique; Stalmans, R. [Dept. of Metallurgy and Materials Engineering, Katholieke Univ. Leuven, Heverlee (Belgium)

    2000-07-01

    Shape memory alloys (SMAs) have become increasingly attractive as embedded actuators in polymers yielding adaptive composite structures. In particular, SMA-elements have been used to actively or passively control shape, elastic modules, internal stress level and damping capacity of such smart composites. In the passive approach, copper-base SMA-plates can be used as temperature-sensitive damping elements, an interesting solution to improve the vibrational behaviour of alpine skis for example. Active materials are obtained by the integration of pre-strained Ni-Ti-base thin wires in polymer matrix composites enabling control of the vibrational behaviour through the recovery-stress tuning technique. In this paper, some results of national research programmes in Belgium and Switzerland, mainly concerning the damping capacity, are shown and a new European project entitled ''adaptive composites with embedded shape memory alloy wires'' is presented in which partners from Belgium, Germany, Greece, Great Britain and Switzerland are collaborating. (orig.)

  16. Precipitation kinetics and phase stability in Nb-Ti-Al base alloys

    International Nuclear Information System (INIS)

    Niobium alloys are candidates for the next generation of high temperature materials needed for hotter, more efficient aircraft engines. Model ternary Nb-Ti-Al and quaternary Nb-Ti-Al-Cr alloys were studied to determine low temperature phase stability and precipitation kinetics. Optical microscopy, transmission electron microscopy, and electron diffraction were used for microstructural analysis. The results obtained from low temperature aging of the ternary alloys show evidence of a transformation of the ordered bcc (B2) phase to a fine lath structure consisting of variants of orthorhombic Ti2AlNb in a Nb-Ti bcc matrix. Compositions of these alloys are near the B2 phase field, with a nominal Ti/Nb atom ratio of 1.25. In this paper additional results concerning phase equilibria and precipitation kinetics are discussed

  17. Oxidation behavior of nickel-base superalloys and High Strength Low Alloy (HSLA) steels at elevated temperatures

    Science.gov (United States)

    Talekar, Anjali S.

    Alloy C-22 (UNS N06022) and High Strength Low Alloy (HSLA) steels are candidate materials for use in outer layer of waste storage packages and as rock bolts in the underground roof supports at Yucca Mountain nuclear waste repository respectively. Oxidation kinetics of three Ni-base Superalloys and two HSLA Steels, Split Set Friction Rock Stabilizers (SS-46) and Swellex Mn-24, have been determined by isothermal high temperature continuous measurement thermogravimetry at temperatures ranging between 600°C to 1100°C in pure oxygen atmosphere for predetermined periods of exposures (48 hours for the Superalloys and 100 hours for HSLA steels). The two other Ni-base Superalloys selected were Alloy-263 (UNS N07263) and Alloy-282. These are similar in their Cr composition to Alloy C-22 and have variations in the contents of other alloying elements namely Co and Mo. The alloys were selected for comparison of their oxidation resistance with C-22 as a baseline material. All three Superalloys are known chromia formers. All the superalloys were evaluated for determining their kinetic parameters and the activation energies for the superalloys were also calculated. The activation energy for the parabolic regime of Alloy-282 is found to be 232 kJ/mol. The slope of the curves on a plot of kp as a function of (1/T) show Alloy-282 to have better oxidation resistance up to 980°C and thereafter the rate constants are similar for all three alloys, but when activation energies over the whole temperature range are calculated, Alloy-263 shows the best average oxidation resistance. Surface characterization by means of microscopy as well as X-ray photoelectron spectroscopy showed the nature of oxides formed. Based on the kinetics and the characterization, proposed mechanisms for oxidation of these alloys at high temperatures are put forth. Temperature modulated thermogravimetry was used for studies on HSLA steels. The imposed sinusoidal temperature modulations on the isothermal temperature

  18. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    Science.gov (United States)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  19. Candidate List of yoUr Biomarker (CLUB: A Web-based Platform to Aid Cancer Biomarker Research

    Directory of Open Access Journals (Sweden)

    N. Leigh Anderson

    2008-01-01

    Full Text Available CLUB (“Candidate List of yoUr Biomarkers” is a freely available, web-based resource designed to support Cancer biomarker research. It is targeted to provide a comprehensive list of candidate biomarkers for various cancers that have been reported by the research community. CLUB provides tools for comparison of marker candidates from different experimental platforms, with the ability to filter, search, query and explore, molecular interaction networks associated with cancer biomarkers from the published literature and from data uploaded by the community. This complex and ambitious project is implemented in phases. As a first step, we have compiled from the literature an initial set of differentially expressed human candidate cancer biomarkers. Each candidate is annotated with information from publicly available databases such as Gene Ontology, Swiss-Prot database, National Center for Biotechnology Information’s reference sequences, Biomolecular Interaction Network Database and IntAct interaction. The user has the option to maintain private lists of biomarker candidates or share and export these for use by the community. Furthermore, users may customize and combine commonly used sets of selection procedures and apply them as a stored workflow using selected candidate lists. To enable an assessment by the user before taking a candidate biomarker to the experimental validation stage, the platform contains the functionality to identify pathways associated with cancer risk, staging, prognosis, outcome in cancer and other clinically associated phenotypes. The system is available at http://club.bii.a-star.edu.sg.

  20. Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites

    Science.gov (United States)

    Balcerzak, M.; Jakubowicz, J.; Kachlicki, T.; Jurczyk, M.

    2015-04-01

    Mechanical alloying and annealing at 1023 K for 0.5 h under an argon atmosphere were used to prepare Ti2Ni-based nanocrystalline alloys and their nanocomposites. Ti2Ni alloy was chemically modified by Pd and multi-walled carbon nanotubes. An objective of the present study is to provide data on hydrogenation properties of Ti2Ni-based alloys and compounds containing Pd and/or multi-walled carbon nanotubes. Alloys and composites were characterized by X-ray diffraction, scanning electron microscopy equipped with an electron energy dispersive spectrometer, transmission electron microscopy, atomic force microscopy to evaluate phase composition, crystal structure, grain size, particle morphology and distribution of catalyst element. Hydrogenation/dehydrogenation properties and hydriding kinetics of materials were measured using a Sievert's apparatus. Hydrogenation properties of nanostructured Ti2Ni-based alloy and Ti2Ni-based nanocomposites were compared with those of the binary Ti2Ni compound. In present work we shown how mechanical alloying method and chemical modification by Pd and MWCNTs affected hydrogen storage properties of Ti2Ni alloy. The highest hydrogen capacity obtained for nanostructured Ti2Ni + Pd alloy equaled 2.1 wt.%. Up to our knowledge it is the highest hydrogen storage capacity obtained so far for Ti2Ni-based materials.

  1. Evaluation of different finish line designs in base metal alloys

    Directory of Open Access Journals (Sweden)

    Aghandeh R

    1999-06-01

    Full Text Available This investigation was performed according to the widespread application of base metal alloys"nand few articles published about the marginal integrity of restorations fabricated by these metals."nThree standard dies of a maxillary first premolar were prepared with a flat shoulder finish line in buccal"naspect and chamfer in palatal. One of them left with no change. On the buccal aspect of the second and"nthird dies 135?and 1607 bevel were added respectively"nUsing dual wax technique, nine wax patterns were formed on each die and casting procedure of selected"nnon precious alloy was performed by centrifugal method. Marginal gaps of each copping seated on dies"nwere measured by scanning electron microscope (SEM with X500 magnification. Measurements were"ndone on three areas of marked dies on buccal aspect. Measurement son palatal aspect was done on"nmarked midpalatal point as control."nResults and statistical analysis showed no significant difference among marginal gaps in lingual aspect."nBut on the buccal aspect there were statistically significant differences among the groups (P<0.001. Flat"nshoulder had the best marginal integrity (mean 4 micron. Shoulder with 160' bevel had the most marginal"ngap (mean 26.5 micron and shoulder with 1357 bevel was between two other groups (mean 15.7 micron.

  2. 'Age-hardened alloy' based on bulk polycrystalline oxide ceramic

    Science.gov (United States)

    Gurnani, Luv; Singh, Mahesh Kumar; Bhargava, Parag; Mukhopadhyay, Amartya

    2015-05-01

    We report here for the first time the development of 'age-hardened/toughened' ceramic alloy based on MgO in the bulk polycrystalline form. This route allows for the facile development of a 'near-ideal' microstructure characterized by the presence of nanosized and uniformly dispersed second-phase particles (MgFe2O4) within the matrix grains, as well as along the matrix grain boundaries, in a controlled manner. Furthermore, the intragranular second-phase particles are rendered coherent with the matrix (MgO). Development of such microstructural features for two-phase bulk polycrystalline ceramics is extremely challenging following the powder metallurgical route usually adopted for the development of bulk ceramic nanocomposites. Furthermore, unlike for the case of ceramic nanocomposites, the route adopted here does not necessitate the usage of nano-powder, pressure/electric field-assisted sintering techniques and inert/reducing atmosphere. The as-developed bulk polycrystalline MgO-MgFe2O4 alloys possess considerably improved hardness (by ~52%) and indentation toughness (by ~35%), as compared to phase pure MgO.

  3. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  4. Hydrogen determinations in a zirconium based alloy with a DSC

    International Nuclear Information System (INIS)

    In the present work a method to measure hydrogen concentrations in zirconium-based alloys was developed measuring simultaneously both, the temperature of terminal solid solubility, TTSSd, and the hydride dissolution heat, Qδ->α, using a differential scanning calorimeter (DSC). The hydrogen concentration measured with that technique, [H]Q, and the values obtained with a standard hydrogen gas meter, [H]HGM, shows a linear relation: [H]Q=(1.00+/-0.03)[H]HGM|+(9.2+/-8.0) with a correlation factor of 0.99 in the entire solubility interval in the αZr phase, from 15 to 650wt.ppm-H. The mean enthalpy value determined with two different criteria for TTSSd and Qδ->α measurements is ΔHδ->α(Q)=39.3+/-1.5kJ/mol H. The present method is specially appropriate for alloys where a partition of the overall hydrogen concentration in two phases exists. It is applicable to all hydride forming metals which ideally follows the van't Hoff law

  5. Corrosion behavior of Alloy 690 and Alloy 693 in simulated nuclear high level waste medium

    Energy Technology Data Exchange (ETDEWEB)

    Samantaroy, Pradeep Kumar; Suresh, Girija; Paul, Ranita [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kamachi Mudali, U., E-mail: kamachi@igcar.gov.in [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Raj, Baldev [Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-11-15

    Highlights: > Alloy 690 and Alloy 693, both possess good corrosion resistance in simulated HLW. > SEM and EDS confirms the presence of Cr rich precipitates for both the alloys. > Passive film stability of Alloy 690 was found to be higher than Alloy 693. > Both alloys possess few micro pits even at a concentration of 100 ppm Cl{sup -} ion. - Abstract: Nickel based alloys are candidate materials for the storage of high level waste (HLW) generated from reprocessing of spent nuclear fuel. In the present investigation Alloy 690 and Alloy 693 are assessed by potentiodynamic anodic polarization technique for their corrosion behavior in 3 M HNO{sub 3}, 3 M HNO{sub 3} containing simulated HLW and in chloride medium. Both the alloys were found to possess good corrosion resistance in both the media at ambient condition. Microstructural examination was carried out by SEM for both the alloys after electrolytic etching. Compositional analysis of the passive film formed on the alloys in 3 M HNO{sub 3} and 3 M HNO{sub 3} with HLW was carried out by XPS. The surface of Alloy 690 and Alloy 693, both consists of a thin layer of oxide of Ni, Cr, and Fe under passivation in both the media. The results of investigation are presented in the paper.

  6. Rational design of Nb-based alloys for hydrogen separation: A first principles study

    OpenAIRE

    Byungki Ryu; Hyeon Cheol Park; Eunseog Cho; Kwanghee Kim; Jaeho Lee; Meilin Liu

    2013-01-01

    We have investigated the effect of alloying metal elements on hydrogen solubility and mechanical integrity of Nb-based alloys, Nb15M1 (where M = Ca–Zn, Ge), using first principles-based calculations. In general, the chemical interaction between the interstitial H and metal is weakened as the alloying element is changed from an early to a late transition metal, leading to lower H solubility and higher resistance to H embrittlement. This effect becomes more pronounced when a smaller alloying el...

  7. Relationship between phase composition and corrosion resistanceof Ni-Ti-Nb based shape memory alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The stability and microstructure of Ni-Ti-Nb based shape memory alloys were investigated after alloyed with elements Zr, Cr and V. In artificial seawater (3.5%NaCl) and physiological solution (5%NaCl+0.1%H2O2), the results show that the alloying elements influence the corrosion behavior of Ni-Ti-Nb alloys. Generally, Zr improves the corrosion resistance of Ni-Ti-Nb alloy, Cr reduces its corrosion resistance and V does not change the property. In order to investigate the reason of the difference,the relation of the phase components and corrosion resistance of Ni-Ti-Nb based shape memory alloys were studied by element analysis and SEM.

  8. Wear and isothermal oxidation kinetics of nitrided TiAl based alloys

    Institute of Scientific and Technical Information of China (English)

    赵斌; 吴建生; 孙坚

    2002-01-01

    Gas nitridation of TiAl based alloys in an ammonia atmosphere was c arried out. The evaluation of the surface wear resistance was performed to compare with those of the non-nitrided alloys. It is concluded that high temperature nitridation raised wear resistance of TiAl based alloys markedly. The tribol ogical behaviors of the nitrided alloys were also discussed. The oxidation kinetics of the nitrided TiAl based alloys were investigated at 800~1000 ℃ in hot air. It is concluded that nitridation is detrimental to the oxidation resistance of TiAl based alloys under the present conditions. The nitrided alloys exhibit increased oxidizing rate with the prolongation of nitridation time at 800 ℃. However, alloys nitrided at 940 ℃ for 50 hdisplay a sign of better oxidat ion resistance than the other nitrided alloys at more severe oxidizing conditions. The parabolic rate law is considered as the basis of the data processing and interpretation of the mass gainvs time data. As a comparison with it, attempts were made to fit the data with the power law. The oxidation kinetic parameter kn, kp and n were measured and the trends were discussed.

  9. CO2 laser beam welding of AM60 magnesium-based alloy

    OpenAIRE

    BELHADJ, Asma; MASSE, Jean-Eric; Barrallier, Laurent; BOUHAFS, Mahmoud; BESSROUR, Jamel

    2010-01-01

    Magnesium alloys have a 33% lower density than aluminum alloys, whereas they exhibit the same mechanical characteristics. Their application increases in many economic sectors, in particular, in aeronautic and automotive industries. Nevertheless, their assembly with welding techniques still remains to be developed. In this paper, we present a CO2 laser welding investigation of AM60 magnesium-based alloy. Welding parameters range is determinate for the joining of 3 mm thickness sheets. The effe...

  10. Maintenance of Ni-based alloy at PWR plant

    International Nuclear Information System (INIS)

    Kansai Electric owns 11 PWR plants. At our PWR plants, we are taking various preventive maintenance measures on Ni-based alloy according to the prediction of possible trouble while past trouble occurred at overseas plants due to Primary Water Stress Corrosion Cracking (PWSCC) being considered. In addition, we are making an effort to put new maintenance techniques into practical use by conducting demonstration tests to confirm their applicability to actual plants. We have replaced reactor vessel heads at 7 plants with new ones. At the other 4 plants, we took, measures to reduce the temperature of reactor vessel head top to delay the timing of PWSCC occurrence. We are carrying out the constant load tests to predict the timing of PWSCC occurrence at these 4 plants. It is planned to conduct non-destructive inspections at an appropriate timing based on the result of the prediction. Based on the prediction of the timing of PWSCC occurrence at bottom-mounted instrumentation (BMI), we have developed water jet peening (WJP) technique to reduce residual stress and applied the technique to our plants successively. Meanwhile, a technique to cut and eliminate cracking has been developed. In addition, capping technique, which covers overall the concerned nozzle on the outer surface of the reactor vessel, has been also established. For alloy 132/82 weld metal for the connection, we are conducting ultrasonic inspection at our plants successively. In order to prepare against PWSCC occurrence, we have also established a technique to replace the entire section of concerned short piping with new one. (author)

  11. Mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys

    International Nuclear Information System (INIS)

    Research highlights: → The corrosion resistance of V-based phase is much lower than that of C14 Laves phase of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. → The addition of Cr which mostly distributes in V-based phase can effectively increase the anti-corrosion ability of V-Ti-based alloys. - Abstract: In this work, the mechanisms of improving the cyclic stability of V-Ti-based hydrogen storage electrode alloys were investigated systemically. Several key factors for example corrosion resistance, pulverization resistance and oxidation resistance were evaluated individually. The V-based solid solution phase has much lower anti-corrosion ability than C14 Laves phase in KOH solution, and the addition of Cr in V-Ti-based alloys can suppress the dissolution of the main hydrogen absorption elements of the V-based phase in the alkaline solution. During the charge/discharge cycling, the alloy particles crack or break into several pieces, which accelerates their corrosion/oxidation and increases the contact resistance of the alloy electrodes. Proper decreasing the Vickers hardness and enhancing the fracture toughness can increase the pulverization resistance of the alloy particles. The oxidation layer thickness on the alloy particle surface obviously increases during charge/discharge cycling. This deteriorates their electro-catalyst activation to the electrochemical reaction, and leads to a quick degradation. Therefore, enhancing the oxide resistance can obviously improve the cyclic stability of V-Ti-based hydrogen storage electrode alloys.

  12. Mechanical and microstructural characterization of the nickel base alloy (Alloy 600) after heat treatment

    International Nuclear Information System (INIS)

    The characterization of microstructural and mechanical properties of cold rolled and heat treated alloys 600 made in Brazil were investigated. The recovery and recrystallization behavior as well as solubilization and aging have been studied using optical, scanning electron and transmission electron microscopy. Microhardness and tensile testing have been carried out. The recovery process of the cold rolled alloy 600 occurred until 600 deg C and the recrystallization stage was situated between 600 and 850 deg C. The primary recrystallization temperature was obtained at 850 deg C after 1 hour (isochronal heat treatments). The aged alloy 600 shows carbide precipitation on grains bu with ductility maintenance. (author)

  13. Site candidates for ground-based telescope devoted to space debris searching

    Science.gov (United States)

    Jiang, Hu; Hu, Haiying; Shen, Xue-min

    2015-12-01

    The demands for space debris scanning have been increasingly urgent in recent decade. The more space activities, the more urgent demands for space debris information. China has laid out space debris scanning from ground-based observation facilities. According to the latitudinal boundaries of China, north latitudes of 20deg, 30deg, 40deg, 50deg, 60deg are considered to be candidates for telescope sites. Space debris distribution is simulated under the assumption that telescopes are stationed in north latitudes of 20deg, 30deg, 40deg, 50deg, 60deg respectively. According to space debris simulations, it is recommended that the telescope dedicated to space debris scanning should be deployed in lower latitudes in order to achieve a better performance in detecting space debrises for China observing users.

  14. On the role of alloying elements in the formation of serrated grain boundaries in Ni-based alloys

    International Nuclear Information System (INIS)

    Ni-based model alloys were used to study the effect of alloying elements, namely Cr, Mo, C and Zr on the occurrence of grain boundary serration. The model alloys were free of aluminum to exclude precipitation of second-phase γ'. Similarly, the carbon content was very low, when present, to prevent precipitation of carbides. A special heat treatment involving slow cooling was used to promote grain boundary serration. No significant sign of serration was observed for Ni-10Cr-10Mo, Ni-20Cr-10Mo and Ni-10Cr-10Mo-0.05C model alloys. However, substantial serration was observed for Ni-10Cr-10Mo-0.5Zr and Ni-20Cr-0.5Zr model alloys. Serrated grain boundaries were observed in the absence of either γ' or carbides. Zirconium-rich precipitates were recognized at serrated grain boundaries though their involvement in the occurrence of serration was doubtful. A mechanism of grain boundary serration formation is proposed.

  15. On the role of alloying elements in the formation of serrated grain boundaries in Ni-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Terner, Mathieu; Hong, Hyun-Uk; Lee, Je-Hyun [Changwon National Univ. (Korea, Republic of). Dept. of Materials Science and Engineering; Choi, Baig-Gyu [Korea Institute of Materials Science, Changwon (Korea, Republic of). High Temperature Materials Group

    2016-03-15

    Ni-based model alloys were used to study the effect of alloying elements, namely Cr, Mo, C and Zr on the occurrence of grain boundary serration. The model alloys were free of aluminum to exclude precipitation of second-phase γ'. Similarly, the carbon content was very low, when present, to prevent precipitation of carbides. A special heat treatment involving slow cooling was used to promote grain boundary serration. No significant sign of serration was observed for Ni-10Cr-10Mo, Ni-20Cr-10Mo and Ni-10Cr-10Mo-0.05C model alloys. However, substantial serration was observed for Ni-10Cr-10Mo-0.5Zr and Ni-20Cr-0.5Zr model alloys. Serrated grain boundaries were observed in the absence of either γ' or carbides. Zirconium-rich precipitates were recognized at serrated grain boundaries though their involvement in the occurrence of serration was doubtful. A mechanism of grain boundary serration formation is proposed.

  16. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    International Nuclear Information System (INIS)

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x1020 n/cm2 at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranular failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed

  17. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, R.; Mills, W.J.; Kammenzind, B.F.; Burke, M.G.

    1999-07-01

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranular failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.

  18. Phases stability of shape memory alloys Cu based under irradiation

    International Nuclear Information System (INIS)

    The effects of irradiation on the relative phase stability of phases related by a martensitic transformation in copper based shape memory alloys were studied in this work.Different kind of particles and energies were employed in the irradiation experiments.The first kind of irradiation was performed with 2,6 MeV electrons, the second one with 170 keV and 300 keV Cu ions and the third one with swift heavy ions (Kr, Xe, Au) with energies between 200 and 600 MeV.Stabilization of the 18 R martensite in Cu-Zn-Al-Ni induced by electron irradiation was studied.The results were compared to those of the stabilization induced by quenching and ageing in the same alloy, and the ones obtained by irradiation in 18 R-Cu-Zn-Al alloys.The effects of Cu irradiation over b phase were analyzed with several electron microscopy techniques including: scanning electron microscopy (S E M), high resolution electron microscopy (H R E M), micro diffraction and X-ray energy dispersive spectroscopy (E D S). Structural changes in Cu-Zn-Al b phase into a closed packed structure were induced by Cu ion implantation.The closed packed structures depend on the irradiation fluence.Based on these results, the interface between these structures (closed packed and b) and the stability of disordered phases were analyzed. It was also compared the evolution of long range order in the Cu-Zn-Al and in the Cu-Zn-Al-Ni b phase as a function of fluence.The evolution of the g phase was also compared. Both results were discussed in terms of the mobility of irradiation induced point defects.Finally, the effects induced by swift heavy ions in b phase and 18 R martensite were studied. The results of the irradiation in b phase were qualitatively similar to those produced by irradiation with lower energies. On the contrary, nano metric defects were found in the irradiated 18 R martensite.These defects were characterized by H R E M.The characteristic contrast of the defects was associated to a local change in the

  19. Elevated temperature fretting fatigue of nickel based alloys

    Science.gov (United States)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  20. Laser welding of AZ61 magnesium-based alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Hongying; Li Zhijun; Zhang Yihui

    2006-01-01

    Laser welding of AZ61 magnesium alloys was carried out asing a CO2 laser weldingexperimental system.The welding properties of AZ61 sheets with different thickness were investigated.The effect of processing parameters including laser power, welding speed and protection gas flow was researched.The results show that laser power and welding speed have large effect on the weld width and joint dimensions.Protection gas flow has relatively slight effect on the weld width.The property test of three typical joints indicates that microhardness and tensile strength in weld zone are higher than that of AZ61 base metal.Joints with good appearance and excellent mechanical properties can be produced using CO2 laser welding method.The microstructure with small grains in weld zone is believed to be responsible for the excellent mechanical properties of AZ61 joints.

  1. Study of superficial films and of electrochemical behaviour of some nickel base alloys and titanium base alloys in solution representation of granitic, argillaceous and salted ground waters

    International Nuclear Information System (INIS)

    The corrosion behaviour of the stainless steels 304, 316 Ti, 25Cr-20Ni-Mo-Ti, nickel base alloys Hastelloy C4, Inconel 625, Incoloy 800, Ti and Ti-0.2% Pd alloy has been studied in the aerated or deaerated solutions at 200C and 900C whose compositions are representative of interstitial ground waters: granitic or clay waters or salt brine. The electrochemical techniques used are voltametry, polarization resistance and complexe impedance measurements. Electrochemical data show the respective influence of the parameters such as temperature, solution composition and dissolved oxygen, addition of soluble species chloride, fluoride, sulfide and carbonates, on which depend the corrosion current density, the passivation and the pitting potential. The inhibition efficiency of carbonate and bicarbonate activities against pitting corrosion is determined. In clay water at 900C, Ti and Ti-Pd show very high passivation aptitude and a broad passive potential range. Alloying Pd increases cathodic overpotential and also transpassive potential. It makes the alloy less sensitive to the temperature effect. Optical Glow Discharge Spectra show three parts in the composition depth profiles of surface films on alloys. XPS and SIMS spectrometry analyses are also carried out. Electron microscopy observation shows that passive films formed on Ti and Ti-Pd alloy have amorphous structure. Analysis of the alloy constituents dissolved in solutions, by radioactivation in neutrons, gives the order of magnitude of the Ni base alloy corrosion rates in various media. It also points out the preferential dissolution of alloying iron and in certain cases of chromium

  2. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  3. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    International Nuclear Information System (INIS)

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations in some corrosion-tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed. (orig.)

  4. Development and Making of New Jewellery Palladium Based Alloys at JSC "Krastsvetmet"

    Institute of Scientific and Technical Information of China (English)

    YEFIMOV V. N.; MAMONOV S. N.; SHULGIN D. R.; YELTSIN S. I.

    2012-01-01

    Complex of research and development work aimed at implementation of jewellery palladium based alloys technology has been carried out at JSC Krastsvetmet.A range of palladium alloys jewellery fabrication has been organized.Compositions of a number of jewellery palladium alloys grade 850,900,950 and 990 have been proposed,their production and application in jewellery manufacture has been organized.To produce palladium alloys induction melting in inert atmosphere and melt pouring into a copper mould has been used.The ingots heat treatment conditions,as well as semi-finished jewelry plastic deformation parameters have been determined.

  5. Cu-based shape memory alloys with enhanced thermal stability and mechanical properties

    International Nuclear Information System (INIS)

    Cu-based shape memory alloys were developed in the 1960s. They show excellent thermoelastic martensitic transformation. However the problems in mechanical properties and thermal instability have inhibited them from becoming promising engineering alloys. A new Cu-Zn-Al-Mn-Zr Cu-based shape memory alloy has been developed. With the addition of Mn and Zr, the martensitic transformation behaviour and the grain size ca be better controlled. The new alloys demonstrates good mechanical properties with ultimate tensile strenght and ductility, being 460 MPa and 9%, respectively. Experimental results revealed that the alloy has better thermal stability, i.e. martensite stabilisation is less serious. In ordinary Cu-Zn-Al alloys, martensite stabilisation usually occurs at room temperature. The new alloy shows better thermal stability even at elevated temperature (∝150 C, >Af=80 C). A limited small amount of martensite stabilisation was observed upon ageing of the direct quenched samples as well as the step quenched samples. This implies that the thermal stability of the new alloy is less dependent on the quenching procedure. Furthermore, such minor martensite stabilisation can be removed by subsequent suitable parent phase ageing. The new alloy is ideal for engineering applications because of its better thermal stability and better mechanical properties. (orig.)

  6. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    Science.gov (United States)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic

  7. Filler metal development for hastelloy alloy XR

    International Nuclear Information System (INIS)

    A method of alloy designing has been proposed and validated to develop the filler metal for Hastelloy alloy XR(nuclear reactor grade of Hastelloy alloy X), which is the candidate material for high temperature structure of High-Temperature Engineering Test Reactor (HTTR). In the filler metal development for Hastelloy alloy XR, materials of two heats were melted and fabricated with special emphasis placed on manufacturing process. One is the trial products (alloy termed 'C') designed by using multiple regression analysis in the range of the chemical composition specified as Hastelloy alloy X. The other is filler metal (alloy termed 'D') with optimum boron content in the same chemical composition as Hastelloy alloy XR. The results of the tests on several key items may be summarized as follows: (1) Weldments with alloy'C' showed higher strength and ductility at elevated temperatures than those of alloy'D'. (2) Weldments with alloy'D' had more excellent strength characteristics at elevated temperatures than those of the other conventional filler metals. (3) As for weldability, the crater cracks were slightly observed in the FISCO cracking test, but those were out of the problem in the degree of cracking from the viewpoint of practical application. The results of qualification tests on weldability showed good performance for all welding conditions of the present experiments. On the other hand, the mechanism of hot cracking initiation and the controlling factors in hot cracking susceptibility with relation to boron content have been clarified for Hastelloy alloy XR base metal. (author)

  8. An experimental study of the magnetic ordering in Pd-based Fe and Mn alloys

    International Nuclear Information System (INIS)

    This thesis presents the results of an investigation on the magnetic ordering phenomena in some Pd based alloys with small concentrations of magnetic impurities. It has been the object to explore the ordering mechanisms in these alloys which lead to various types of magnetism at low temperature. The experimental techniques used are described. (Auth.)

  9. An Integrated Study of a Novel Thermal Coating for Nb-Based High Temperature Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong [Southern Univ. and A & M College, Baton Rouge, LA (United States)

    2015-01-31

    This report summarizes our recent works of ab initio density functional theory (DFT) method and molecular dynamics (MD) simulation on the interfaces between niobium substrate and coatings at atomic level. Potential oxidation barrier bond coat, Nb₂AlC and high entropy alloys, and top coat candidates were synthesized, characterized, and evaluated in our labs. The simulation methods, experimental validation techniques, achievements already reached, students and postdoc training, and future improvement are briefly introduced.

  10. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    OpenAIRE

    Tianwen Yuan; Jia Yu; Jun Cao; Fei Gao; Yueqi Zhu; Yingsheng Cheng; Wenguo Cui

    2016-01-01

    Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) as the coated membrane on ma...

  11. Properties and Application of Iron-based Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jian-chen; Jiang Qing; Dai Jun

    2005-01-01

    The properties of FeMnSiCrNi shape memory alloy were investigated. The results show that the best shape memory effect of Fel4Mn6Si9Cr5Ni alloy is 85%. The transformation amount of the ε→γ transformation is not complete after heating the alloy to 1000 K, As and Af points drop with increased transformation enthalpy ( △Hγ→ε) by thermal cycling and increased prestrain. The alloy shows also good creep and stress relaxation resistance. In addition, the alloy having a tensile force of 20 kN and a sealing pressure of 6 MPa can satisfy requirements for possible industrial application on pipe joints.

  12. Preparation of candidate reference materials for the determination of phosphorus containing flame retardants in styrene-based polymers.

    Science.gov (United States)

    Roth, Thomas; Urpi Bertran, Raquel; Latza, Andreas; Andörfer-Lang, Katrin; Hügelschäffer, Claudia; Pöhlein, Manfred; Puchta, Ralph; Placht, Christian; Maid, Harald; Bauer, Walter; van Eldik, Rudi

    2015-04-01

    Candidate reference materials (RM) for the analysis of phosphorus-based flame retardants in styrene-based polymers were prepared using a self-made mini-extruder. Due to legal requirements of the current restriction for the use of certain hazardous substances in electrical and electronic equipment, focus now is placed on phosphorus-based flame retardants instead of the brominated kind. Newly developed analytical methods for the first-mentioned substances also require RMs similar to industrial samples for validation and verification purposes. Hence, the prepared candidate RMs contained resorcinol-bis-(diphenyl phosphate), bisphenol A bis(diphenyl phosphate), triphenyl phosphate and triphenyl phosphine oxide as phosphorus-based flame retardants. Blends of polycarbonate and acrylonitrile-co-butadiene-co-styrene as well as blends of high-impact polystyrene and polyphenylene oxide were chosen as carrier polymers. Homogeneity and thermal stability of the candidate RMs were investigated. Results showed that the candidate RMs were comparable to the available industrial materials. Measurements by ICP/OES, FTIR and NMR confirmed the expected concentrations of the flame retardants and proved that analyte loss and degradation, respectively, was below the uncertainty of measurement during the extrusion process. Thus, the candidate RMs were found to be suitable for laboratory use. PMID:25410641

  13. A PROJECT-BASED LEARNING PACKAGE FOR PH. D CANDIDATES AT HIT

    Institute of Scientific and Technical Information of China (English)

    ZhaoYuqin

    2004-01-01

    Project-based learning is to involve students in a project-like learning program to achieve the required purposes of language learning, It is a new pedagogical approach composed of a series of tasks, requiring students to use various languages and other skills to accomplish respectively. It is to provide students with opportunities to learn the language in a simulated authentic communicative situation when they are using the language. A project-based learning program was desigued for the Ph. D.candidates at HIT, named “simulating an international conference”. It involves the students in the whole process of organizing and participating an international conference. In the simulated context, students have opportunities to learn and practice English while they are using English to fulfill some tasks. Meanwhile, students are able to practice other skills, such as using information technologies, word editing and publishing. More importantly, students need to collaborate and cooperate with each other. The abilities to use English as a communicative tool for international communication, to use information technologies and to be able to cooperate with other sare the aims of education in the 21st century.

  14. A Sub-Pathway Based Method to Identify Candidate Agents for Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-10-01

    Full Text Available The need for new therapeutics for Ankylosing Spondylitis (AS is highlighted by the general lack of efficacy for most agents currently available for this disease. Many recent studies have detailed molecular pathways in AS, and several molecule-targeting agents are undergoing evaluation. We aimed to explore the mechanism of AS and identify biologically active small molecules capable of targeting the sub-pathways which were disregulated in the development of AS. By using the GSE25101 microarray data accessible from the Gene Expression Omnibus database, we first identified the differentially expressed genes (DEGs between AS samples and healthy controls, followed by the sub-pathway enrichment analysis of the DEGs. In addition, we propose the use of an approach based on targeting sub-pathways to identify potential agents for AS. A total of 3,280 genes were identified as being significantly different between patients and controls with p-values < 0.1. Our study showed that neurotrophic signaling pathway and some immune-associated pathways may be involved in the development of AS. Besides, our bioinformatics analysis revealed a total of 15 small molecules which may play a role in perturbing the development of AS. Our study proposes the use of an approach based on targeting sub-pathways to identify potential agents for AS. Candidate agents identified by our approach may provide the groundwork for a combination therapy approach for AS.

  15. Effects of Cr and Nb contents on the susceptibility of Alloy 600 type Ni-base alloys to stress-corrosion cracking in a simulated BWR environment

    International Nuclear Information System (INIS)

    In order to discuss the effects of chromium and niobium contents on the susceptibility of Alloy 600 type nickel-base alloys to stress-corrosion cracking in the BWR primary coolant environment, a series of creviced bent-beam (CBB) tests were conducted in a high-temperature, high-purity water environment. Chromium, niobium, and titanium as alloying elements improved the resistivity to stress-corrosion cracking, whereas carbon enhanced the susceptibility to it. Alloy-chemistry-based correlations have been defined to predict the relative resistances of alloys to stress-corrosion cracking. A strong correlation was found, for several heats of alloys, between grain-boundary chromium depletion and the susceptibility to stress-corrosion cracking

  16. Computerized detection of multiple sclerosis candidate regions based on a level set method using an artificial neural network

    International Nuclear Information System (INIS)

    Yamamoto et al. developed the system for computer-aided detection of multiple sclerosis (MS) candidate regions. In a level set method in their proposed method, they employed the constant threshold value for the edge indicator function related to a speed function of the level set method. However, it would be appropriate to adjust the threshold value to each MS candidate region, because the edge magnitudes in MS candidates differ from each other. Our purpose of this study was to develop a computerized detection of MS candidate regions in MR images based on a level set method using an artificial neural network (ANN). To adjust the threshold value for the edge indicator function in the level set method to each true positive (TP) and false positive (FP) region, we constructed the ANN. The ANN could provide the suitable threshold value for each candidate region in the proposed level set method so that TP regions can be segmented and FP regions can be removed. Our proposed method detected MS regions at a sensitivity of 82.1% with 0.204 FPs per slice and similarity index of MS candidate regions was 0.717 on average. (author)

  17. Strengthening mechanisms of indirect-extruded Mg–Sn based alloys at room temperature

    Directory of Open Access Journals (Sweden)

    Wei Li Cheng

    2014-12-01

    Full Text Available The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated. These dislocations create stress fields within the material depending on their intrinsic character. Generally, the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature: fine-grain strengthening, precipitate strengthening and solid solution strengthening as well as texture strengthening. The indirect-extruded Mg–8Sn (T8 and Mg–8Sn–1Al–1Zn (TAZ811 alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition. The contributions to the strengthen of Mg–Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics, physical characteristics, thermomechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark.

  18. Microstructure and tensile properties of magnesium alloy modified by Si/Ca based refiner

    Institute of Scientific and Technical Information of China (English)

    DUAN Zhi-chao; SUN Yang-shan; WEI Yu; DU Wen-wen; XUE Feng; ZHU Tian-bai

    2005-01-01

    Microstructure and mechanical properties of pure magnesium and AZ31 alloy with Ca/Si based refiner addition were investigated. The results indicate that addition of Ca/Si based refiners to pure magnesium and AZ31 alloy results in remarkable microstructure refinement. With proper amount of refiner addition, the grain size in as cast ingots can be one order of magnitude lower than that without refiner addition. Small amount of refiner addition to AZ31 alloy increases both ultimate strength and yield strength significantly, while the ductility of the alloy with refiner addition is similar to that without refiner addition. Addition of refiner improves the deformability of AZ31 alloy and extruded or hot rolled specimens (rods or sheets) with refiner addition exhibit higher surface quality and mechanical properties than those without refiner addition.

  19. Scale formation on Ni-based alloys in simulated solid oxide fuel cell interconnect environments

    Energy Technology Data Exchange (ETDEWEB)

    Ziomek-Moroz, Margaret; Cramer, Stephen D.; Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Singh, P. (PNNL); Windisch, C.F. (PNNL); Johnson, C.D. (NETL); Schaeffer, C. (National Energy Research Laboratory, Morgantown, WV)

    2004-11-01

    Recent publications suggest that the environment on the fuel side of the bi-polar stainless steel SOFC interconnects changes the oxidation behavior and morphology of the scale formed on the air side. The U.S. Department of Energy Albany Research Center (ARC), has examined the role of such exposure conditions on advanced nickel base alloys. Alloy formulations developed at ARC and commercial alloys were studied using X-ray diffraction (XRD) and Raman spectroscopy. The electrical property of oxide scales formed on selected alloys was determined in terms of areaspecific resistance (ASR). The corrosion behavior of ARC nickel-based alloys exposed to a dual environment of air/ H2 were compared to those of Crofer 22APU and Haynes 230.

  20. Perpendicular Magnetic Anisotropy in Co-Based Full Heusler Alloy Thin Films

    Science.gov (United States)

    Wu, Y.; Xu, X. G.; Miao, J.; Jiang, Y.

    2015-12-01

    Half-metallic Co-based full Heusler alloys have been qualified as promising functional materials in spintronic devices due to their high spin polarization. The lack of perpendicular magnetic anisotropy (PMA) is one of the biggest obstacles restricting their application in next generation ultrahigh density storage such as magnetic random access memory (MARM). How to induce the PMA in Co-based full Heusler alloy thin films has attracted much research interest of scientists. This paper presents an overview of recent progress in this research area. We hope that this paper would provide some guidance and ideas to develop highly spin-polarized Co-based Heusler alloy thin films with PMA.

  1. Detection of residual Al-base core in Ni alloy with Gd-tagging neutron radiography

    International Nuclear Information System (INIS)

    Detection of residual aluminum-base core in nickel alloy is important for manufacturing blades of an aero-engine. Because of the strong penetrability, neutrons are more effective than X-rays to detect residual material in the nickel alloy blade. In this paper, both theoretical calculation and experiments on an accelerator-based neutron source at Peking University are used to verify the feasibility of Gd-tagging neutron radiography in detecting residual aluminum-base core in the nickel alloy. The results show that the technique can achieve a sensitivity of 0.2 mg for the residual core detection. (authors)

  2. Melting, Processing, and Properties of Disordered Fe-Al and Fe-Al-C Based Alloys

    Science.gov (United States)

    Satya Prasad, V. V.; Khaple, Shivkumar; Baligidad, R. G.

    2014-09-01

    This article presents a part of the research work conducted in our laboratory to develop lightweight steels based on Fe-Al alloys containing 7 wt.% and 9 wt.% aluminum for construction of advanced lightweight ground transportation systems, such as automotive vehicles and heavy-haul truck, and for civil engineering construction, such as bridges, tunnels, and buildings. The melting and casting of sound, porosity-free ingots of Fe-Al-based alloys was accomplished by a newly developed cost-effective technique. The technique consists of using a special flux cover and proprietary charging schedule during air induction melting. These alloys were also produced using a vacuum induction melting (VIM) process for comparison purposes. The effect of aluminum (7 wt.% and 9 wt.%) on melting, processing, and properties of disordered solid solution Fe-Al alloys has been studied in detail. Fe-7 wt.% Al alloy could be produced using air induction melting with a flux cover with the properties comparable to the alloy produced through the VIM route. This material could be further processed through hot and cold working to produce sheets and thin foils. The cold-rolled and annealed sheet exhibited excellent room-temperature ductility. The role of carbon in Fe-7 wt.% Al alloys has also been examined. The results indicate that Fe-Al and Fe-Al-C alloys containing about 7 wt.% Al are potential lightweight steels.

  3. Imprecise knowledge based design and development of titanium alloys for prosthetic applications.

    Science.gov (United States)

    Datta, S; Mahfouf, M; Zhang, Q; Chattopadhyay, P P; Sultana, N

    2016-01-01

    Imprecise knowledge on the composition-processing-microstructure-property correlation of titanium alloys combined with experimental data are used for developing rule based models for predicting the strength and elastic modulus of titanium alloys. The developed models are used for designing alloys suitable for orthopedic and dental applications. Reduced Space Searching Algorithm is employed for the multi-objective optimization to find composition, processing and microstructure of titanium alloys suitable for orthopedic applications. The conflicting requirements attributes of the alloys for this particular purpose are high strength with low elastic modulus, along with adequate biocompatibility and low costs. The 'Pareto' solutions developed through multi-objective optimization show that the preferred compositions for the fulfilling the above objectives lead to β or near β-alloys. The concept of decision making employed on the solutions leads to some compositions, which should provide better combination of the required attributes. The experimental development of some of the alloys has been carried out as guided by the model-based design methodology presented in this research. Primary characterizations of the alloys show encouraging results in terms of the mechanical properties. PMID:26398780

  4. Electronic-Structure-Based Design of Ordered Alloys

    DEFF Research Database (Denmark)

    Bligaard, Thomas; Andersson, M.P.; Jacobsen, Karsten Wedel; Skriver, Hans Lomholt; Christensen, Claus H.; Nørskov, Jens Kehlet

    2006-01-01

    We describe some recent advances in the methodology of using electronic structure calculations for materials design. The methods have been developed for the design of ordered metallic alloys and metal alloy catalysts, but the considerations we present are relevant for the atomic-scale computational...... discovery of a promising catalytic metal alloy surface with high reactivity and low cost....... design of other materials as well. A central problem is how to treat the huge number of compounds that can be envisioned by varying the concentrations and the number of the elements involved. We discuss various strategies for approaching this problem and show how one strategy has led to the computational...

  5. Formation and Corrosion Resistance of Amorphous Ti Base Alloys

    OpenAIRE

    Naka, M.; Okada, T.; T. Matsui

    1996-01-01

    Corrosion resistant amorphous Ti-B and Ti-Si alloys were prepared on various substrates by RF sputtering. The alloying of B content of 8 at% or more stabilizes the amorphous structure. The corrosion properties of Ti alloys were evaluated by measuring the polarization curves in 1N HCl. Although the addition of B to crystalline bulky Ti shifts the corrosion potentials of Ti to the less nobles of -0.5 V(SCE) or less, that of B to amorphous sputtered Ti moves the corrosion potentials to the noble...

  6. Electron-ion plasma modification of Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Yurii, E-mail: yufi55@mail.ru [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Rygina, Mariya, E-mail: l-7755me@mail.ru [National Research Tomsk Polytechnic University, Tomsk, 634050, Russia, Tomsk, 30 Lenina Str (Russian Federation); Petrikova, Elizaveta, E-mail: elizmarkova@yahoo.com; Krysina, Olga, E-mail: krysina-82@mail.ru; Teresov, Anton, E-mail: tad514@sibmail.com [Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences, 634055, Russia, Tomsk, 2/3 Akademicheskiy Ave (Russian Federation); National Research Tomsk State University, 634050, Russia, Tomsk, 36 Lenina Str (Russian Federation); Ivanova, Olga, E-mail: ivaov@mail.ru; Ikonnikova, Irina, E-mail: irina-ikonnikova@yandex.ru [Tomsk State University of Architecture and Building, Tomsk, 634002, Russia, Tomsk, 2 Solyanaya Sq (Russian Federation)

    2016-01-15

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm{sup 2}) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa.

  7. Electron-ion plasma modification of Al-based alloys

    International Nuclear Information System (INIS)

    The paper reports on the study where we analyzed the surface structure and strength properties of coated Al alloys modified by electron-ion plasma treatment. The Al alloys were deposited with a thin (≈0.5 μm) TiCu film coating (TiCu-Al system) and with a hard TiCuN coating (TiCuN–AlSi system) on a TRIO vacuum setup in the plasma of low-pressure arc discharges. The temperature fields and phase transformations in the film–substrate system were estimated by numerical simulation in a wide range of electron energy densities (5–30 J/cm2) and pulse durations (50–200 μs). The calculations allowed us to determine the threshold energy density and pulse duration at which the surface structure of the irradiated Al-based systems is transformed in a single-phase state (solid or liquid) and in a two-phase state (solid plus liquid). The elemental composition, defect structure, phase state, and lattice state in the modified surface layers were examined by optical, scanning, and transmission electron microscopy, and by X-ray diffraction analysis. The mechanical characteristics of the modified layers were studied by measuring the hardness and Young’s modulus. The tribological properties of the modified layers were analyzed by measuring the wear resistance and friction coefficient. It is shown that melting and subsequent high-rate crystallization of the TiCu–Al system makes possible a multiphase Al-based surface structure with the following characteristics: crystallite size ranging within micrometer, microhardness of more than 3 times that in the specimen bulk, and wear resistance ≈1.8 times higher compared to the initial material. Electron beam irradiation of the TiCuN–AlSi system allows fusion of the coating into the substrate, thus increasing the wear resistance of the material ≈2.2 times at a surface hardness of ∼14 GPa

  8. Candidate Gene Analysis Suggests Untapped Genetic Complexity in Melanin-Based Pigmentation in Birds.

    Science.gov (United States)

    Bourgeois, Yann X C; Bertrand, Joris A M; Delahaie, Boris; Cornuault, Josselin; Duval, Thomas; Milá, Borja; Thébaud, Christophe

    2016-07-01

    Studies on melanin-based color variation in a context of natural selection have provided a wealth of information on the link between phenotypic and genetic variation. Here, we evaluated associations between melanic plumage patterns and genetic polymorphism in the Réunion grey white-eye (Zosterops borbonicus), a species in which mutations on MC1R do not seem to play any role in explaining melanic variation. This species exhibits 5 plumage color variants that can be grouped into 3 color forms which occupy discrete geographic regions in the lowlands of Réunion, and a fourth high-elevation form which comprises 2 color morphs (grey and brown) and represents a true color polymorphism. We conducted a comprehensive survey of sequence variation in 96 individuals at a series of 7 candidate genes other than MC1R that have been previously shown to influence melanin-based color patterns in vertebrates, including genes that have rarely been studied in a wild bird species before: POMC, Agouti, TYR, TYRP1, DCT, Corin, and SLC24A5 Of these 7 genes, 2 (Corin and TYRP1) displayed an interesting shift in allele frequencies between lowland and highland forms and a departure from mutation-drift equilibrium consistent with balancing selection in the polymorphic highland form only. Sequence variation at Agouti, a gene frequently involved in melanin-based pigmentation patterning, was not associated with color forms or morphs. Thus, we suggest that functionally important changes in loci other than those classically studied are involved in the color polymorphism exhibited by the Réunion grey white-eye and possibly many other nonmodel species. PMID:26995742

  9. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy.

    Science.gov (United States)

    Zhao, Dianyun; Yu, Guolong; Tian, Kunlong; Xu, Caixia

    2016-08-15

    In current work highly sensitive and stable electrochemical sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is constructed based on the hierarchical nanoporous (HNP) PtTi alloy. The HNP-PtTi alloy is simply fabricated by two-step dealloying process, characterized by the bimodal ligament/pore size distributions and interconnected hollow channels. The HNP structure with the advantages of large surface area, excellent structure stability, and rich pore channels is used for facilitating the electron conductivity and the mass transfer. Combined with the dual effects of the bimodal nanoporous architecture and the excellent electrocatalytic activity of PtTi alloy, the constructed sensor exhibits high electrochemical sensing activity with wide linear responses from 0.2 to 1mM, 0.004 to 0.5mM, and 0.1 to 1mM for simultaneous detection of AA, DA, and UA, respectively. In addition, HNP-PtTi alloy also shows long-term sensing stability towards the AA, DA, and UA detection and behaves as a good anti-interference towards NaCl, KCl, FeCl3, CuCl2, AlCl3, glucose, and H2O2. The HNP-PtTi alloy manifests intriguing application potential as the candidate for the application of the electrochemical sensor for simultaneous detection of AA, DA, and UA. PMID:27058442

  10. Trust Based Algorithm for Candidate Node Selection in Hybrid MANET-DTN

    Directory of Open Access Journals (Sweden)

    Jan Papaj

    2014-01-01

    Full Text Available The hybrid MANET - DTN is a mobile network that enables transport of the data between groups of the disconnected mobile nodes. The network provides benefits of the Mobile Ad-Hoc Networks (MANET and Delay Tolerant Network (DTN. The main problem of the MANET occurs if the communication path is broken or disconnected for some short time period. On the other side, DTN allows sending data in the disconnected environment with respect to higher tolerance to delay. Hybrid MANET - DTN provides optimal solution for emergency situation in order to transport information. Moreover, the security is the critical factor because the data are transported by mobile devices. In this paper, we investigate the issue of secure candidate node selection for transportation of the data in a disconnected environment for hybrid MANET- DTN. To achieve the secure selection of the reliable mobile nodes, the trust algorithm is introduced. The algorithm enables select reliable nodes based on collecting routing information. This algorithm is implemented to the simulator OPNET modeler.

  11. Cell-Based Assay Design for High-Content Screening of Drug Candidates.

    Science.gov (United States)

    Nierode, Gregory; Kwon, Paul S; Dordick, Jonathan S; Kwon, Seok-Joon

    2016-02-01

    To reduce attrition in drug development, it is crucial to consider the development and implementation of translational phenotypic assays as well as decipher diverse molecular mechanisms of action for new molecular entities. High-throughput fluorescence and confocal microscopes with advanced analysis software have simplified the simultaneous identification and quantification of various cellular processes through what is now referred to as highcontent screening (HCS). HCS permits automated identification of modifiers of accessible and biologically relevant targets and can thus be used to detect gene interactions or identify toxic pathways of drug candidates to improve drug discovery and development processes. In this review, we summarize several HCS-compatible, biochemical, and molecular biology-driven assays, including immunohistochemistry, RNAi, reporter gene assay, CRISPR-Cas9 system, and protein-protein interactions to assess a variety of cellular processes, including proliferation, morphological changes, protein expression, localization, post-translational modifications, and protein-protein interactions. These cell-based assay methods can be applied to not only 2D cell culture but also 3D cell culture systems in a high-throughput manner. PMID:26428732

  12. Factors affecting the optical properties of Pd-free Au-Pt-based dental alloys.

    Science.gov (United States)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Tanaka, Yasuhiro; Hisatsune, Kunihiro

    2003-12-01

    The optical properties of experimental Au-Pt-based alloys containing a small amount of In, Sn, and Zn were investigated by spectrophotometric colorimetry to extract factors affecting color of Au-Pt-based high-karat dental alloys. It was found that the optical properties of Au-Pt-based alloys are strongly affected by the number of valence electrons per atom in an alloy, namely, the electron:atom ratio, e/a. That is, by increasing the e/a-value, activities of reflection in the long-wavelength range and absorption in the short-wavelength range in the visible spectrum apparently increased. As a result, the maximum slope of the spectral reflectance curve at the absorption edge, which is located near 515 nm (approximately 2.4 eV), apparently increased with e/a-value. Due to this effect, the b*-coordinate (yellow-blue) in the CIELAB color space considerably increased and the a*-coordinate (red-green) slightly increased with e/a-value. The addition of a third element with a higher number of valence electrons to the binary Au-Pt alloy is, therefore, effective in giving a gold tinge to the parent Au-Pt alloy. This information may be useful in controlling the color of Au-Pt-based dental alloys. PMID:15348493

  13. Shape Memory Alloy-Based Periodic Cellular Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  14. Damping and microstructures in aged Cu-Mn based alloys

    OpenAIRE

    Heil, Joseph Patrick.

    1988-01-01

    Approved for public release; distribution is unlimited An aged high damping alloy 53Cu 45Mn-2Al was studied both microstructurally by transmission electron microscopy (TEM) and microstructurally with two different damping measurement methods. In-situ heating and cooling observations were made with TEM in order to define the recently discovered flickering phenomenon associated with it's tweed microstructure. TEM studies were also made of an aged 53.6Cu-46.4Mn binary alloy. Damping measureme...

  15. Detection of the early keratoconus based on corneal biomechanical properties in the refractive surgery candidates

    Directory of Open Access Journals (Sweden)

    Zofia Pniakowska

    2016-01-01

    Full Text Available Context: Subclinical keratoconus is contraindication to refractive surgery. The currently used methods of preoperative screening do not always allow differentiating between healthy eyes and those with subclinical keratoconus. Aim: To evaluate biomechanical parameters of the cornea, waveform score (WS, and intraocular pressure (IOP as potentially useful adjuncts to the diagnostic algorithm for precise detection of the early keratoconus stages and selection of refractive surgery candidates. Settings and Design: Department of Ophthalmology and prospective cross-sectional study. Patients and Methods: Patients enrolled in the study were diagnosed with refractive disorders. We assessed parameters of corneal biomechanics such as corneal hysteresis (CH, corneal resistance factor (CRF, Goldman-correlated IOP (IOPg, corneal compensated IOP, WS, and keratoconus match index (KMI. They were classified into one of three groups based on the predefined KMI range: Group 1 (from 0.352 to 0.757 – 45 eyes, Group 2 (from −0.08 to 0.313 – 52 eyes, and Group 0 - control group (from 0.761 to 1.642 – 80 eyes. Results: In both study groups, IOPg, CRF, and CH were decreased when compared to control (P < 0.0001. In control group, there was positive correlation between CH and KMI (P < 0.05, with no correlations in any of the two study groups. CRF correlated positively with KMI in control (P < 0.0001 and in Group 2 (P < 0.05. Conclusions: CH and CRF, together with WS and IOPg, consist a clinically useful adjunct to detect subclinical keratoconus in patients referred for refractive surgery when based on KMI staging.

  16. Effects of copper-based alloy on the synthesis of single-crystal diamond

    CERN Document Server

    Chen Li Xue; Ma Hong An; Jia Xiao Peng; Wakatsuki, M; Zou Guang Tian

    2002-01-01

    The catalytic effects of copper-based alloys in diamond growth have been investigated. A single crystal of diamond has been obtained by the temperature gradient method (TGM), using Cu-Mn-Co and Cu-Co alloys as catalysts. It was found that the melted Cu-Mn-Co and Cu-Co alloys show low viscosity. The eutectic temperatures of these two alloys with graphite were between 1130 and 1150 deg. C, and the temperature of the transition to diamond was over 1300 deg. C at 5.5 GPa. High-quality diamond could not be obtained in Cu-Co alloy by the TGM. Our results suggest that adding Cu to a catalyst cannot decrease the reaction temperature for diamond growth.

  17. Modification of mechanical properties and microstructure of Ni-Cr-base alloy by continuous electron irradiation

    International Nuclear Information System (INIS)

    Using the methods of transmission and scanning electron microscopy and X-ray structure analysis investigation of 40CrNiAl alloy structure-phase state after different conditions of thermomechanical treatment (TMT) and electron irradiation is carried out. Correlation of microstructure parameters of irradiated alloy with its mechanical properties is ascertained as well as morphology of structural and phase transformations in alloy at continuous electron irradiation. Simultaneous increasing of strength characteristics and plasticity of 40CrNiAl alloy after certain conditions of TMT and electron irradiation is find out, the reasons of the phenomenon is analyzed. The scientifically-based schemes of 40CrNiAl alloy TMT are developed and choice of electron irradiation conditions for optimization of its mechanical properties is substantiated

  18. Oxidation induced phase transformations and lifetime limits of chromia forming nickel base alloy 625

    OpenAIRE

    Chyrkin, Anton

    2011-01-01

    For its high creep resistance the commercial nickel-base alloy 625 relies on solid solution strengthening in combination with precipitation hardening by formation of delta-Ni3Nb and (Ni,Mo,Si)6C precipitates during high-temperature service. In oxidizing environments the alloy forms a slow growing, continuous chromia layer on the material surface which protects the alloy against rapid oxidation attack. The growth of the chromia base oxide scale results during exposure at 900–1000°C in oxidatio...

  19. Study on DC welding parameters of Al-alloy shaping based on arc-welding robot

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Al-alloy arc-welding shaping system based on arc-welding robot is established, and the Al-alloy shaping manufacture is realized with the DC (direct current) gas metal arc welding (GMAW). The research indicates that the metal transfer type of DC GMAW, heat input and the initial temperature of the workpiece greatly affect the Al-alloy shaping based on arc welding robot. On the penetration, the weld width and the reinforcement, the influence of welding parameters is analyzed by generalized regression neural network (GRNN) fitting.

  20. Neutron scattering measurements a useful alloy development tool for the new generation high temperature alloys based Co-Re system

    Czech Academy of Sciences Publication Activity Database

    Mukherji, D.; Wehr, J.; Strunz, Pavel; Gilles, R.; Hofmann, M.; Hoelzel, M.; Roesler, J.

    München : Technische Universität München, 2012 - (Carsughi, F.; Lommatzsch, I.; Neuhaus, J.). s. 34-34 [4th User Meeting at the FRM II. 23.03.2012-23.03.2012, Garching bei München] Institutional support: RVO:61389005 Keywords : Co-Re based alloys * neutron scattering * high temeperature Subject RIV: BM - Solid Matter Physics ; Magnetism http://cdn.frm2.tum.de/fileadmin/stuff/ information /UserOffice/UM2012_Booklet_lr.pdf

  1. Alloys based on Group 5 metals for hydrogen purification membranes

    International Nuclear Information System (INIS)

    Highlights: • The Ta77Nb23 alloy showed hydrogen permeability high enough to be used in diffusion purification technology. • The Ta77Nb23 alloy has mechanical properties suitable for practical application. • The hydrogen permeability data were acquired for the alloys with no special coatings. - Abstract: Production of high-purity hydrogen is required to move to power systems with little environmental impact. The considerable part of hydrogen is suggested to be obtained by methane conversion and its separation from other hydrocarbon gases which are not involved in the energy production process (associated gas, waste gas of petrochemical industry, etc.). The aim of this study was to compare properties of low cost alloys for membranes for hydrogen purification and separation. To investigate the membranes of V53Ti26Ni21 and Ta77Nb23 (wt.%) alloys, the specific hydrogen permeability and micro hardness tests, metallography and X-ray diffraction were applied. It was concluded the Ta77Nb23 (wt.%) alloy has hydrogen permeability parameters and mechanical characteristics that make it suitable for the production of thin membranes

  2. Alloys based on Group 5 metals for hydrogen purification membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kozhakhmetov, S. [Institute of High Technologies, 050012 Almaty (Kazakhstan); Sidorov, N. [Institute of Metallurgy UB RAS, 620016 Ekaterinburg (Russian Federation); Piven, V. [Saint Petersburg State University, 198504 Saint Petersburg (Russian Federation); Sipatov, I. [Institute of Metallurgy UB RAS, 620016 Ekaterinburg (Russian Federation); Gabis, I. [Saint Petersburg State University, 198504 Saint Petersburg (Russian Federation); Arinov, B. [Institute of High Technologies, 050012 Almaty (Kazakhstan)

    2015-10-05

    Highlights: • The Ta{sub 77}Nb{sub 23} alloy showed hydrogen permeability high enough to be used in diffusion purification technology. • The Ta{sub 77}Nb{sub 23} alloy has mechanical properties suitable for practical application. • The hydrogen permeability data were acquired for the alloys with no special coatings. - Abstract: Production of high-purity hydrogen is required to move to power systems with little environmental impact. The considerable part of hydrogen is suggested to be obtained by methane conversion and its separation from other hydrocarbon gases which are not involved in the energy production process (associated gas, waste gas of petrochemical industry, etc.). The aim of this study was to compare properties of low cost alloys for membranes for hydrogen purification and separation. To investigate the membranes of V{sub 53}Ti{sub 26}Ni{sub 21} and Ta{sub 77}Nb{sub 23} (wt.%) alloys, the specific hydrogen permeability and micro hardness tests, metallography and X-ray diffraction were applied. It was concluded the Ta{sub 77}Nb{sub 23} (wt.%) alloy has hydrogen permeability parameters and mechanical characteristics that make it suitable for the production of thin membranes.

  3. Transport phenomena in nanowires based on bismuth alloys

    International Nuclear Information System (INIS)

    Full text: In this work, we study the conductivity and thermopower of quantum wires (QW) based on bismuth alloys. Calculations are carried out for nanowires with degenerate and nondegenerate gas of carriers at various crystalline orientations taking into account the real band structure of Bi. We find the energy eigenvalues of holes and taking into account the nonparabolicity of the band, the energy eigenvalues for electrons. The conductivity and thermopower determined with the use of the Kubo formulae in the case when the basic mechanism of carrier scattering is assumed to be elastic acoustic-phonon scattering and on a roughness surface of QW. Dependences of kinetic coefficients on temperature, nanowire diameter and crystalline orientation are investigated. The conductivity and thermopower of a QW contains the contributions of electrons and holes. Taking into account values of carrier effective masses and other band parameters of Bi, it is possible to conclude that the contribution of holes to the conductivity of nondegenerate carriers of QWs is more less than that of electrons, which is attributed to smaller effective mass of electrons. For a semiconducting Bi QW the conductivity depends exponentially on a temperature and wire diameter. The thermopower of a semiconducting and of a semimetallic Bi QW at low temperatures can be positive and change sign in more higher temperatures. The theoretical results are close to experiment for Bi wires with diameter of 50-100 nm. (author)

  4. Deployable aerospace PV array based on amorphous silicon alloys

    Science.gov (United States)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  5. Shape-Memory-Alloy-Based Deicing System Developed

    Science.gov (United States)

    1996-01-01

    Ice buildup on aircraft leading edge surfaces has historically been a problem. Most conventional deicing systems rely either on surface heating to melt the accreted ice or pneumatic surface inflation to mechanically debond the ice. Deicers that rely solely on surface heating require large amounts of power. Pneumatic deicers usually cannot remove thin layers of ice and lack durability. Thus, there is a need for an advanced, low-power ice protection system. As part of the NASA Small Business and Innovation Research (SBIR) program, Innovative Dynamics, Inc., developed an aircraft deicing system that utilizes the properties of Shape Memory Alloys (SMA). The SMA-based system has achieved promising improvements in energy efficiency and durability over more conventional deicers. When they are thermally activated, SMA materials change shape; this is analogous to a conventional thermal expansion. The thermal input is currently applied via conventional technology, but there are plans to implement a passive thermal input that is supplied from the energy transfer due to the formation of the ice itself. The actively powered deicer was tested in the NASA Lewis Icing Research Tunnel on a powered rotating rig in early 1995. The system showed promise, deicing both rime and glaze ice shapes as thin as 1/8 in. The first prototype SMA deicer reduced power usage by 45 percent over existing electrothermal systems. This prototype system was targeted for rotorcraft system development. However, there are current plans underway to develop a fixed-wing version of the deicer.

  6. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  7. Welding and mechanical properties of cast FAPY (Fe-16 at. % Al-based) alloy slabs

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, V.K.; Goodwin, G.M.; Alexander, D.J.; Howell, C.R.

    1995-08-01

    The low-aluminum-content iron-aluminum program deals with the development of a Fe-Al alloy with aluminum content such as a produce the minimum environmental effect at room temperature. The FAPY is an Fe-16 at. % Al-based alloy developed at the Oak Ridge National Laboratory as the highest aluminum-containing alloy with essentially no environmental effect. The chemical composition for FAPY in weight percent is: aluminum = 8.46, chromium = 5.50, zirconium = 0.20, carbon = 0.03, molybdenum = 2.00, yttrium = 0.10, and iron = 83.71. The cast ingots of the alloy can be hot worked by extrusion, forging, and rolling processes. The hot- worked cast structure can be cold worked with intermediate anneals at 800{degrees}C. Typical room-temperature ductility of the fine-grained wrought structure is 20 to 25% for this alloy. In contrast to the wrought structure, the cast ductility at room temperature is approximately 1% with a transition temperature of approximately 100 to 150{degrees}C, above which ductility values exceed 20%. The alloy has been melted and processed into bar, sheet, and foil. The alloy has also been cast into slabs, step-blocks of varying thicknesses, and shapes. The purpose of this section is to describe the welding response of cast slabs of three different thicknesses of FAPY alloy. Tensile, creep, and Charpy-impact data of the welded plates are also presented.

  8. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  9. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    International Nuclear Information System (INIS)

    The aim of this study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. According to our study, the salient features for the ternary alloy are a negative SRO parameter between Ni–Cr and a positive between Cr–Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni–Cr and Ni–Fe pairs and positive for Cr–Cr and Fe–Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. The predicted SRO has an impact on point-defect energetics, electron–phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys

  10. Advanced oxidation-resistant iron-based alloys for LWR fuel cladding

    Science.gov (United States)

    Terrani, K. A.; Zinkle, S. J.; Snead, L. L.

    2014-05-01

    Application of advanced oxidation-resistant iron alloys as light water reactor fuel cladding is proposed. The motivations are based on specific limitations associated with zirconium alloys, currently used as fuel cladding, under design-basis and beyond-design-basis accident scenarios. Using a simplified methodology, gains in safety margins under severe accidents upon transition to advanced oxidation-resistant iron alloys as fuel cladding are showcased. Oxidation behavior, mechanical properties, and irradiation effects of advanced iron alloys are briefly reviewed and compared to zirconium alloys as well as historic austenitic stainless steel cladding materials. Neutronic characteristics of iron-alloy-clad fuel bundles are determined and fed into a simple economic model to estimate the impact on nuclear electricity production cost. Prior experience with steel cladding is combined with the current understanding of the mechanical properties and irradiation behavior of advanced iron alloys to identify a combination of cladding thickness reduction and fuel enrichment increase (∼0.5%) as an efficient route to offset any penalties in cycle length, due to higher neutron absorption in the iron alloy cladding, with modest impact on the economics.

  11. Thermodynamic Prediction of Compositional Phases Confirmed by Transmission Electron Microscopy on Tantalum-Based Alloy Weldments

    International Nuclear Information System (INIS)

    Tantalum alloys have been used by the U.S. Department of Energy as structural alloys for radioisotope based thermal to electrical power systems since the 1960s. Tantalum alloys are attractive for high temperature structural applications due to their high melting point, excellent formability, good thermal conductivity, good ductility (even at low temperatures), corrosion resistance, and weldability. Tantalum alloys have demonstrated sufficient high-temperature toughness to survive prolonged exposure to the radioisotope power-system working environment. Typically, the fabrication of power systems requires the welding of various components including the structural members made of tantalum alloys. Issues such as thermodynamics, lattice structure, weld pool dynamics, material purity and contamination, and welding atmosphere purity all potentially confound the understanding of the differences between the weldment properties of the different tantalum-based alloys. The objective of this paper is to outline the thermodynamically favorable material phases in tantalum alloys, with and without small amounts of hafnium, during and following solidification, based on the results derived from the FactSage(c) Integrated Thermodynamic Databank. In addition, Transition Electron Microscopy (TEM) data will show for the first time, the changes occurring in the HfC before and after welding, and the data will elucidate the role HfC plays in pinning grain boundaries

  12. Aluminium Alloy-Based Metal Matrix Composites: A Potential Material for Wear Resistant Applications

    OpenAIRE

    Rupa Dasgupta

    2012-01-01

    Aluminium alloy-based metal matrix composites (AMMCs) have been by now established themselves as a suitable wear resistant material especially for sliding wear applications. However, in actual practice engineering components usually encounter combination of wear types. An attempt has been made in the present paper to highlight the effect of dispersing SiC in 2014 base alloy adopting the liquid metallurgy route on different wear modes like sliding, abrasion, erosion, and combinations of wear m...

  13. Single-crystal tungsten-based alloys with molybdenum and rhenium

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Single crystals of ternary W-based alloys with 2 % Re and less than 7 % Mo have been grown for the first time at the Baikov Institute of Metallurgy and Materials Science RAS. Plasma arc melting allowed us to effectively purify the single crystals from a number of impurities. According to mass spectrometric analysis for 70 elements, the total content of impurities does not exceed 0. 063%. It was found that, as the Mo content increases, the size of first-kind subgrains decreases and their mutual misorientation increases. In the W-based alloy with 2.3 % Re and 6.7% Mo, no first-kind subgrains are observed,whereas second-kind subgrains are elongated along the growth direction. In this case, their total misorientation is well below that in the other low-alloy single crystals.Single-crystal of binary tungsten-based alloys with rhenium were prepared by electron-beam zone melting (1% Re, mass fraction) and plasma arc melting (2%Re, 10%Re, 25%Re (mass fraction)). It was found that the low-alloyed (1%-2 % Rh (mass fraction)) W-based alloys are characterized by a rather perfect single-crystal structure and misorientations of first- and second-kind subgrains of 20-50' and 10-40', respectively. Sections with the coarse-grained structure are observed in ingots of the alloy with 10%and 25% (mass fraction) Rh; in the alloy with 25% Rh, such structure is observed immediately from the seed.A device for measuring the liquidus and solidus temperatures of refractory metallic alloys has been designed. The liquidus temperatures of ternary single crystals (W-Mo-Re) have been measured.The studied single crystals, owing to their purity and high stability of the structure and properties,are widely used in electronics, electrical engineering, and analytical devices for various purposes.

  14. Welding of refractory alloys

    International Nuclear Information System (INIS)

    This review primarily summarizes welding evaluations supported by NASA-Lewis Research Center in the 1960s. A literature search run in preparation for this review indicates that more recent work is modest by comparison. Hence, this review restates these accomplishments briefly and addresses opportunities which have evolved in welding technology (such as lasers) in the intervening decade. Emphasis in this review is given to tantalum- and niobium-base alloys. Considerable work was also done to assure that a consistent comparison was made with tungsten. A wide variety of candidate alloys derived primarily from developments directed at aircraft propulsion applications were available. Early efforts by NASA were directed at screening studies to select promising structural alloys for the space power application. This objective required fine tuning of welding procedures, e.g., the demonstration of stringent standards for control of welding atmosphere to assure good corrosion resistance in liquid alkali metals. 16 figures, 6 tables

  15. Survey of BGFA Criteria for the Cu-Based Bulk Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    D. Janovszky

    2011-01-01

    Full Text Available To verify the effect of composition on the bulk glass forming ability (BGFA of Cu-based alloys, properties have been collected from the literature (~100 papers, more than 200 alloys. Surveying the BGFA criteria published so far, it has been found that the atomic mismatch condition of Egami-Waseda is fulfilled for all the Cu-based BGFAs, the value being above 0,3. The Zhang Bangwei criterion could be applied for the binary Cu-based alloys. The Miracle and Senkov criteria do not necessarily apply for Cu based bulk amorphous alloys. The critical thickness versus =/(+ plot of Lu and Liu extrapolates to =0.36, somewhat higher than the 0.33 value found in other BGFA alloys. The Park and Kim parameter correlates rather poorly with the critical thickness for Cu based alloys. The Cheney and Vecchino parameter is a good indicator to find the best glass former if it is possible to calculate the exact liquids projection. In 2009 Xiu-lin and Pan defined a new parameter which correlates a bit better with the critical thickness. Based on this survey it is still very difficult to find one parameter in order to characterize the real GFA without an unrealized mechanism of crystallization.

  16. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  17. The metallographic investigation of brazed joints in nickel base alloys using various techniques for the production of contrast

    International Nuclear Information System (INIS)

    Brazing with high melting point nickel base brazing alloys permits distortion-free, high strength joints to be produced in high temperature, high alloy steel and nickel alloys which cannot easily be welded. This method is used for gas turbine parts subject to high thermal stresses and in nuclear engineering. (orig.)

  18. Rational design of Nb-based alloys for hydrogen separation: A first principles study

    Directory of Open Access Journals (Sweden)

    Byungki Ryu

    2013-02-01

    Full Text Available We have investigated the effect of alloying metal elements on hydrogen solubility and mechanical integrity of Nb-based alloys, Nb15M1 (where M = Ca–Zn, Ge, using first principles-based calculations. In general, the chemical interaction between the interstitial H and metal is weakened as the alloying element is changed from an early to a late transition metal, leading to lower H solubility and higher resistance to H embrittlement. This effect becomes more pronounced when a smaller alloying element is used due to stronger elastic interaction between interstitial H and metal atoms. These finding may provide scientific basis for rational design of Nb-based hydrogen separation membranes with tailored H solubility to effectively suppress H embrittlement while maintaining excellent hydrogen permeation rate.

  19. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    , low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section

  20. Corrosion of candidate container materials by Yucca Mountain bacteria

    International Nuclear Information System (INIS)

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5-6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS NO4400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS NO6022 Ni-Cr- MO-W alloy, UN's NO6625 Ni-Cr-Mo alloy, and UNS S30400 stainless steel were measured below 0.05 umyr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni. Key words: MIC, container materials, YM bacteria, de-alloying, Ni-depletion, Cr-depletion, polarization resistance, anodic polarization,

  1. Dry sliding wear characteristics of rheocast Mg–Sn based alloys

    International Nuclear Information System (INIS)

    Highlights: • Studied wear behavior of rheocast Mg–Sn based alloys under ambient temperature. • The volumetric wear was found to be increased with increasing applied load. • Different wear micro-mechanism was observed under electron micro-scope. • Plastic deformation and work hardening took place for all the alloys mainly at the higher loads. - Abstract: Present paper focuses on the dry sliding wear behavior of rheocast Mg–Sn based alloys under ambient temperature. The alloys were studied through pin-on-disc wear experiments under four different loading conditions, namely, 9.8, 19.6, 29.4 and 39.2 N. Present investigations highlight the influence of load on the cumulative wear loss, volumetric wear loss, dry sliding wear rate and co-efficient of friction of the different alloys under study. The volumetric wear was found to be increased with increasing applied load. Different wear micro-mechanisms were observed under electron micro-scope. The wear occurs mainly by ploughing mechanism and by delamination also. During wear, extensive plastic deformation and work hardening took place for all the alloys mainly at the higher loads. Micro-structural analysis has been performed for all the alloys at different loading conditions

  2. Investigation of the isothermal precipitation behaviour of nickel-base alloys using electrochemical phase extraction

    International Nuclear Information System (INIS)

    Electrochemical phase extraction methods have been developed empirically for the selective separation of the precipitates in metallic materials. A detailed description of the process has been undertaken to allow optimization for various nickel-base alloys. For this part of the investigation, 16 model alloys were prepared as test electrodes and the electrolyte composition was varied over a wide range. The results enabled a series of effects to be explained on the basis of electrochemical data. The large number of test parameters limited the scope of the preliminary experiments and the range of model alloys used. In the nickel-base alloys, titanium carbo-nitride and primary M6C precipitates were identified. During isothermal ageing, M23C6 (except in Alloy KSN), Ni3Al (in INCONEL 617), Laves phases (in Hastelloy X and INCONEL 617), M12C (in HASTELLOY X and INCONEL 617) and α-tungsten (in the tungsten-containing alloys) were precipitated. The precipitation behaviour changed in the alloys investigated from intracrystalline to intercrystalline with increasing ageing temperature. The intracrystalline secondary precipitations affect the microhardness, structure and the solid-solution lattice. (orig.)

  3. High temperature corrosion of iron-base and nickel-base alloys for hydrogen production apparatus by thermochemical method in H{sub 2}O+SO{sub 3} atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kurata, Yuji; Suzuki, Tomio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Shimizu, Saburo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2000-03-01

    Corrosion tests for ten iron-base and nickel-base alloys at 850degC for 1000h in H{sub 2}O + SO{sub 3} atmosphere were carried out to obtain data for selection of candidate container materials in the thermochemical process which produces hydrogen from water by use of iodine and sulfur as circulating materials. The following results were obtained: (1) Oxidation, spallation of corrosion film, uniform corrosion and grain boundary penetration composed of internal oxidation and sulfuration occur in this atmosphere and the corrosion proceeds by grain boundary penetration. (2) SUS304, SUS316 and Hastelloy C276 are inferior in corrosion resistance and SUS329J4L is superior among ten alloys used in this experiment. Alloys such as Alloy 800H and Hastelloy XR show intermediate corrosion resistance. (3) Oxide films of alloys containing iron and chromium are mostly composed of outer iron-oxide and inner chromium-oxide. Sulfur concentrates at scale/metal interfaces and grain boundary penetration portions, and sulfides form. (4) Corrosion in this atmosphere could be expressed using the parabolic law between the grain boundary penetration depth and time. It is considered that causes of the apparently observed parabolic law were a high concentration of SO{sub 3} and change of the gas composition caused by catalytic action of the corrosion film formed with the progress of corrosion. (author)

  4. Interstitial-phase precipitation in iron-base alloys: a comparative study

    International Nuclear Information System (INIS)

    Recent developments have elucidated the atomistic mechanisms of precipitation of interstitial elements in simple alloy systems. However, in the more technologically important iron base alloys, interstitial phase precipitation is generally not well understood. The present experimental study was therefore designed to test the applicability of these concepts to more complex ferrous alloys. Hence, a comparative study was made of interstitial phase precipitation in ferritic Fe-Si-C and in austenitic phosphorus-containing Fe-Cr-Ni steels. These systems were subjected to a variety of quench-age thermal treatments, and the microstructural development was subsequently characterized by transmission electron microscopy

  5. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    OpenAIRE

    J. Cebulski

    2015-01-01

    This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C an...

  6. Mechanical Responses of Superlight β-Based Mg-Li-Al-Zn Wrought Alloys under Resonance

    Science.gov (United States)

    Song, Jenn-Ming; Lin, Yi-Hua; Su, Chien-Wei; Wang, Jian-Yih

    2009-05-01

    To extend the application of lightweight Mg alloys in the automotive industry, this study suggests a β-based Mg-Li alloy (LAZ1110) with superior vibration fracture resistance by means of material design. In the cold-rolled state, a strengthened β matrix by the additions of Al and Zn, as well as intergranular platelike α precipitates, which are able to stunt the crack growth, contributes to a comparable vibration life with commercial Mg-Al-Zn alloys under a similar strain condition.

  7. Thermo-physical properties and phase transformation behavior of thorium-based alloys and oxides

    International Nuclear Information System (INIS)

    In this presentation, the results of classical molecular dynamics (CMD) simulations of lattice thermal expansion (LTE), elastic constants and thermal conductivity of Urania-Thoria, Thoria-Ceria/Plutonia MOX fuels will be presented along with some experimental results using high temperature X-ray diffraction techniques. At the same time, it is very useful to understand the possible phase transformations in Th bases metallic alloys with a view to identify the metastable phases. This aspect is important from phase stability point of view. All these metallic alloys shows phase separation tendencies and complex compound formation. This presentation also discusses the nature of phase transformations in these alloys involving stable and metastable phases

  8. Investigations of carbon diffusion and carbide formation in nickel-based alloys

    International Nuclear Information System (INIS)

    The present thesis describes the carburization behaviour of nickel based alloys in heavily carburizing environments. The mechanisms of carbon diffusion and carbide precipitation in NiCr alloys with and without ternary additions of iron, cobalt or molybdenum have been investigated. Using the results of carburization experiments, a mathematical model which describes carbon diffusion and carbide formation, was developed. The simulation of the carburization process was carried out by an iterative calculation of the local thermodynamic equilibrium in the alloy. An accurate description of the carbon profiles as a function of time became possible by using a finite-difference calculation. (orig.)

  9. Solute partitioning and site preference in γ/γ′ cobalt-base alloys

    International Nuclear Information System (INIS)

    This paper reports three-dimensional atom probe tomography results from a γ/γ′ based Co–Al–W alloy and two quaternary variants of this alloy highlighting the following salient features: (i) sub-nanometer-scale solute partitioning across the γ/γ′ interface as well as solute pile-up at this interface; (ii) the site preference of quaternary elements in γ′ precipitates, Co3(Al, W); and (iii) formation of multiple generations of γ′ precipitates in one of the alloys.

  10. A New Strategy Based on Smrho Protein Loaded Chitosan Nanoparticles as a Candidate Oral Vaccine against Schistosomiasis

    OpenAIRE

    Oliveira, Carolina R.; Rezende, Cíntia M. F.; Silva, Marina R.; Ana Paula Pêgo; Olga Borges; Alfredo M. Goes

    2012-01-01

    BACKGROUND: Schistosomiasis is one of the most important neglected tropical diseases and an effective control is unlikely in the absence of improved sanitation and vaccination. A new approach of oral vaccination with alginate coated chitosan nanoparticles appears interesting because their great stability and the ease of target accessibility, besides of chitosan and alginate immunostimulatory properties. Here we propose a candidate vaccine based on the combination of chitosan-based nanoparticl...

  11. Atom probe analysis of Sn in Zr-based alloys

    International Nuclear Information System (INIS)

    We have extensively used atom-probe field ion microscopy (APFIM) for microanalyses of a heat-treated Zircaloy-4 and Zr-Sn alloys containing 0.6 or 1.39 wt% Sn and clarified as to whether Sn is fully dissolved or not in the α-Zr matrix. It is found that Sn dissolves in the matrix of both Zircaloy-4 and Zr-0.6 wt% Sn alloy upon annealing at 723 K. For Zr-1.39 wt% Sn alloy, after annealing for more than 200 h, the symptom of phase separation has been found. The distribution of Sn in the matrix is changed from the α-quenched state, and local regions enriched with Sn are formed in the matrix. (orig.)

  12. Fatigue properties of nickel-base high temperature alloys for HTGRs

    International Nuclear Information System (INIS)

    A series of strain controlled low-cycle fatigue tests were conducted at temperatures ranging from room temperature (RT) to 900 deg. C on nickel-base high-temperature alloys, namely Hastelloy X and its modified versions Hastelloy XR and Hastelloy XR-II, which are candidate alloys for HTGR applications. The tests were conducted in the simulated HTGR helium environment with the exception of those conducted in air at RT. In those tests the examination was made on the effects of strain rate, hold time, aging and test temperature on fatigue properties. Decreasing the strain rate led to notable decreases in the fatigue life. Based on the stress-strain curves and the crack morphology, it was suggested that a considerable contribution of creep damage was included at lower strain rates. In the experiments with the trapezoidal strain waveform with different holding types, the fatigue life was found to be reduced most effectively in tensile hold-time experiments. From the observations of the crack morphology the strain holding in the compressive side was suggested to play the role of suppressing the initiation and the growth of internal cracks and/or cavities, and to cause crack branching. The fatigue lives of the aged (900 deg. C, 1000h) specimens were shorter than those of the solution annealed ones at test temperatures ranging from RT to 700 deg. C. The tendency became more pronounced under higher strain range conditions. The reduction in the fatigue life due to aging treatment, observed through the tests conducted at and below 700 deg. C, was closely related with the loss of tensile ductility, which was attributed to the precipitation of M6C carbide along the grain boundaries which occurred during the aging. Fractographic features and crack morphology of the aged specimens fatigued at and below 700 deg. C were of brittle nature relative to those of the solution annealed ones fatigued in the same temperature range. The fatigue lives estimated from the tensile properties

  13. An Exploration of Initial Certification Candidates' TPACK and Mathematics-Based Applications Using Touch Device Technology

    Science.gov (United States)

    McCrory, Michael Ray

    2010-01-01

    This qualitative research study employed a multiple-case study approach to describe the experiences of a group of Initial Certification Candidates (ICCs) as they participated in explorations of readings and third-party applications (apps) run on touch screen technology devices. The group of ICCs was comprised of two Undergraduate Teacher…

  14. Local atomic ordering in nickel based Ir and Rh alloys

    International Nuclear Information System (INIS)

    Experimental measurements of the diffuse X-ray scattering are performed on alloys of Ni with Rh and Ir. The atomic short range order (SRO) parameters αsub(i) are calculated from the measured intensity. The existence of SRO is established in the two systems. The values of α1 are observed to have anomalously large negative values for all the samples. The experimental data so obtained is interpreted theoretically by calculating the interaction energies on the basis of electronic theory of ordering. Theoretically calculated values of interaction energies are found to be in agreement with the experimentally determined type of order in these alloys. (author)

  15. Martensitic transformation in Co-based ferromagnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Yokaichiya, F.; Laufek, F.; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Sedláková-Ignácová, Silvia; Molnár, Peter; Heczko, Oleg

    2012-01-01

    Roč. 122, č. 3 (2012), s. 475-477. ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : microstructure * shape memory alloy s * neutron diffraction * cobalt alloy s Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  16. Mechanical strenght and niobium and niobium-base alloys substructures

    International Nuclear Information System (INIS)

    Niobium and some of its alloys have been used in several fields of technological applications such as the aerospace, chemical and nuclear industries. This is due to its excelent mechanical stringth at high temperatures and reasonable ductility at low temperatures. In this work, we review the main features of the relationship mechanical strength - substructure in niobium and its alloys, taking into account the presence of impurities, the influence of initial thermal and thermo - mechanical treatments as well as the irradiation by energetic particles. (Author)

  17. Undercooling and demixing of copper-based alloys

    DEFF Research Database (Denmark)

    Kolbe, M.; Brillo, J.; Egry, I.; Herlach, D.M.; Ratke, L.; Chatain, D.; Tinet, N.; Antion, C.; Battezzati, L.; Curiotto, S.; Johnson, E.; Pryds, Nini

    Since the beginning of materials science research under microgravity conditions immiscible alloys have been an interesting subject. New possibilities to investigate such systems are offered by containerless processing techniques. Of particular interest is the ternary system Cu-Fe-Co, and its...... limiting binaries, Cu-Co and Cu-Fe. They all show a metastable miscibility gap in the regime of the undercooled melt. Within the ESA-MAP project “CoolCop”, different aspects of this alloy have been investigated; results obtained so far are reported here....

  18. Corrosion properties of high silicon iron-based alloys in nitric acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of copper and rare-earth elements on corrosion behavior of ~iigh silicon iron-based alloys in nitric acid was studied by means of static and loading current corrosion experiments. The anodic polarization curve was also made to discuss the corrosion mechanism. The examination on alloy microstructure and SEM corrosion pattern showed that when silicon content reached 14.5%, the Fe3Si phase appeared and the primary structure of the iron-base alloy was ferrite. When adding 4.57% copper in the iron alloy, its corrosion resistance in static diluted sulfuric acid was improved while its corrosion resistance and electrochemical corrosion properties in the nitric acid were decreased. In contrast, the addition of rare earth elements could improve the corrosion properties in all above conditions including in static diluted sulfuric acid and in nitric acid.

  19. Iron-based alloy and nitridation treatment for PEM fuel cell bipolar plates

    Science.gov (United States)

    Brady, Michael P. [Oak Ridge, TN; Yang, Bing [Oak Ridge, TN; Maziasz, Philip J. [Oak Ridge, TN

    2010-11-09

    A corrosion resistant electrically conductive component that can be used as a bipolar plate in a PEM fuel cell application is composed of an alloy substrate which has 10-30 wt. % Cr, 0.5 to 7 wt. % V, and base metal being Fe, and a continuous surface layer of chromium nitride and vanadium nitride essentially free of base metal. A oxide layer of chromium vanadium oxide can be disposed between the alloy substrate and the continuous surface nitride layer. A method to prepare the corrosion resistant electrically conductive component involves a two-step nitridization sequence by exposing the alloy to a oxygen containing gas at an elevated temperature, and subsequently exposing the alloy to an oxygen free nitrogen containing gas at an elevated temperature to yield a component where a continuous chromium nitride layer free of iron has formed at the surface.

  20. Atomic site location by channelling enhanced microanalysis (ALCHEMI) in γ'-strengthened Ni- and Pt-base alloys

    International Nuclear Information System (INIS)

    The additions of alloying elements to Ni- and Pt-base alloys influence the microstructure and thereby the creep properties, whereas the mechanism is uncertain. Therefore atomic site location by channelling enhanced microanalysis (ALCHEMI) was used to determine the site partitioning of ternary and quaternary alloying elements in the L12-ordered γ'-phase. Two ternary Ni-Al alloys with Cr and Ti additions were investigated. The measured site partitioning showed that Cr and Ti atoms prefer the Al-sublattice sites. For a ternary Pt-Al-Cr alloy, it was found that Cr atoms occupy Al sites. The influence of Ni as a fourth alloying element in a Pt-Al-Cr-Ni alloy on the site partitioning was also investigated. The detected results give evidence that in the quaternary alloy Cr and Ni atoms prefer the Pt sublattice. First principles calculations were used to support the experimental data

  1. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kalay, Yunus Eren [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 {micro}m with a Peclet number of ~0.2, JH and TMK deviate from

  2. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    International Nuclear Information System (INIS)

    Remarkable advances have been made since rapid solidification was first introduced to the field of materials science and technology. New types of materials such as amorphous alloys and nanostructure materials have been developed as a result of rapid solidification techniques. While these advances are, in many respects, ground breaking, much remains to be discerned concerning the fundamental relationships that exist between a liquid and a rapidly solidified solid. The scope of the current dissertation involves an extensive set of experimental, analytical, and computational studies designed to increase the overall understanding of morphological selection, phase competition, and structural hierarchy that occurs under far-from equilibrium conditions. High pressure gas atomization and Cu-block melt-spinning are the two different rapid solidification techniques applied in this study. The research is mainly focused on Al-Si and Al-Sm alloy systems. Silicon and samarium produce different, yet favorable, systems for exploration when alloyed with aluminum under far-from equilibrium conditions. One of the main differences comes from the positions of their respective T0 curves, which makes Al-Si a good candidate for solubility extension while the plunging T0 line in Al-Sm promotes glass formation. The rapidly solidified gas-atomized Al-Si powders within a composition range of 15 to 50 wt% Si are examined using scanning and transmission electron microscopy. The non-equilibrium partitioning and morphological selection observed by examining powders at different size classes are described via a microstructure map. The interface velocities and the amount of undercooling present in the powders are estimated from measured eutectic spacings based on Jackson-Hunt (JH) and Trivedi-Magnin-Kurz (TMK) models, which permit a direct comparison of theoretical predictions. For an average particle size of 10 (micro)m with a Peclet number of ∼0.2, JH and TMK deviate from each other. This

  3. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    Science.gov (United States)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  4. Atmospheric Corrosion of Different Fe-based Alloys in Nanocrystalline State

    Science.gov (United States)

    Sitek, J.; Sedlačková, K.; Seberíni, M.

    2005-07-01

    Nanocrystalline Fe-based alloys are interesting for their soft magnetic properties. Because these alloys are potentially applicable in outdoor-working components, their corrosion behaviour requires careful analysis. This work presents the results of the atmospheric corrosion tests in industrial and rural environments performed for up to 6 months. We compared the corrosion behaviour of two different compositions of NANOPERM-type alloys: Fe87.5Zr6.5B6 and Fe76Mo8Cu1B15 with classical FINEMET alloys of the nominal composition of Fe73.5Cu1Nb3Si13.5B9 type. The techniques of Mössbauer spectroscopy, conversion electron Mössbauer spectroscopy, X-ray diffraction and transmission electron microscopy have been employed to compare their corrosion rate, characterize corrosion products and inspect the structural changes of the nanocrystalline structure. It was found that the Si-containing FINEMET alloys are the most corrosion-resistant whereas worse corrosion properties were observed for molybdenum-containing Fe76Mo8Cu1B15 alloy. The corrosion product formed on the surface of NANOPERM-type alloys showed a needlelike morphology and a poor crystalline order and has been identified as lepidocrocite, γ-FeOOH.

  5. Microstructural observations of the crystallization of amorphous Fe-Si-B based magnetic alloys

    International Nuclear Information System (INIS)

    The effect of Cu and Nb alloying additions on the crystallization of Fe-Si-B based alloys were studied. DSC, XRD, TEM, EELS and VSM techniques were used to study the thermal properties, phase formation during primary crystallization, morphological transitions and magnetic properties. The additions of individual Cu or Nb alloying additions changed the crystallization temperature as well as the activation energy for primary crystallization. The phases formed during primary crystallization for the Fe77.5Si13.5B9, Fe76.5Si13.5B9Cu1 and Fe74.5Si13.5B9Nb3Cu1 alloys are the same, however the morphologies are significantly different. Alloying additions of 3 at.% Nb induced a change in the crystallization mechanism and the type of phases formed. The combined additions of Cu and Nb resulted in the formation of nanocrystals. B atoms were found to be rejected around dendrites formed during primary crystallization of the Fe77.5Si13.5B9 alloy. The highest saturation magnetization and the lowest coercivity is obtained in the Fe77.5Si13.5B9 and Fe74.5Si13.5B9Nb3Cu1 alloy respectively after annealing at 550 deg. C for 1 h

  6. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells

    OpenAIRE

    Ahmad Agha, Nezha; Willumeit-Römer, Regine; Laipple, Daniel; Luthringer, Bérengère; Feyerabend, Frank

    2016-01-01

    Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys) is studied for up to 14 days. Se...

  7. Formation Mechanism of Curved Martensite Structures in Cu-based Shape Memory Alloys

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The curved martensite structures have been observed in CuZnAl-based shape memory alloys by both transmission electron microscope and optical microscope. It was found that the curved martensite structures observed in as-solution treated, as-aged and as-trained alloys usually occurred around dislocation tangles or precipitate, at the plate boundary or grain boundary, and when the growing plates collided with each other or alternate mutually.

  8. RESIDUAL STRESS IN NICKEL BASE SUPER ALLOY UDIMET 720 FOR DIFFERENT SURFACE CONDITIONS

    OpenAIRE

    B.R.SRIDHAR,; S.RAMACHANDRA,; U.CHANDRASEKAR

    2011-01-01

    Nickel base super alloy Udimet 720 finds applications in gas turbine engine components like discs, shafts and blades. These components rotate at high speeds in a gas turbine engine and consequently experience both high cycle fatigue (HCF) and low cycle fatigue (LCF) due to dynamic loads and temperatures. Since residual stress affects both HCF and LCF properties, study of residual stress for varying surface conditions for this alloy assumes significance. Specimens extracted from a forging were...

  9. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    Science.gov (United States)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  10. Formation of silicide based oxidation resistant coating over Mo-30 wt. % W alloy

    International Nuclear Information System (INIS)

    Silicide based oxidation resistant coatings were developed over Mo-30 W alloy using halide activated pack cementation process. Coated samples were characterized by SEM, optical microscopy, EDX and hardness measurements. Isothermal oxidation tests of coated alloy performed at 1000 deg C for 25h revealed a smaller weight gain at the initial stage of oxidation followed by no weight change indicating the protective nature of the coating. (author)

  11. Impact of dilution on the microstructure and properties of Ni-based 625 alloy coatings

    OpenAIRE

    Tiago Jose Antoszczyszyn; Rodrigo Metz Gabriel Paes; Ana Sofia Clímaco Monteiro de Oliveira; Adriano Scheid

    2014-01-01

    Nickel-based alloy IN 625 is used to protect components of aircrafts, power generation and oil refinery due to an association of toughness and high corrosion resistance. These properties are associated with the chemical composition and microstructure of coatings which depend on the processing parameters and the composition of the component being protected. This paper assessed impact of dilution on the microstructure and properties of the Ni alloy IN 625 deposited by Plasma Transferred Arc (PT...

  12. A first principles examination of phase stability in FCC-based Ni-V substitutional alloys

    International Nuclear Information System (INIS)

    In this paper the phase stability of fcc- based Ni-V substitutional alloys is investigated using linear muffin-tin orbitals total energy (LMTO) calculations. The method of Connolly and Williams (CWM) is used to extract many body interactions from the ground state energies of selected ordered configurations. These interactions are used in conjunction with the cluster variations method (CVM) to calculate the alloy phase diagram. The dependence of the interactions on the choice of configurations used to calculate them is examined

  13. Welding of cobalt-based amorphous alloys with Nd: YAG laser

    International Nuclear Information System (INIS)

    The paper describes the results concerning the investigation of the welding of cobalt-based amorphous alloys with Nd:YAG laser. Five alloys with different chemical structure and dimensions in shape of amorphous metal foils were welded. The quality of the welded joints were tested by using a microstructure analysis with an optical microscope and SEM, when the metal graphic structure, the chemical structure and the microhardness of the welded joints were tested as well. (Author)

  14. Control of equiaxed grains in a complicated Cu-Ni based alloy prepared by centrifugal casting

    OpenAIRE

    Luo Zongqiang; Zhang Weiwen; Xin Baoliang

    2011-01-01

    A complicated Cu-Ni based alloy was developed to fabricate wear-resisting bush for high temperature application. The concern focuses on the control of equiaxed grains in the developed alloy ingot prepared by centrifugal casting. The results show that the equiaxed grains are determined by the pouring temperature of the melt, the cooling rate and the rotation speed of the mold. With the decrease in pouring temperature, the fraction of the equiaxed grains in the transverse section of the ingot i...

  15. Undercooling and demixing of copper-based alloys

    DEFF Research Database (Denmark)

    Kolbe, M.; Brillo, J.; Egry, I.; Herlach, D.M.; Ratke, L.; Chatain, D.; Tinet, N.; Antion, C.; Battezzati, L.; Curiotto, S.; Johnson, E.; Pryds, Nini

    Since the beginning of materials science research under microgravity conditions immiscible alloys have been an interesting subject. New possibilities to investigate such systems are offered by containerless processing techniques. Of particular interest is the ternary system Cu-Fe-Co, and its limi...

  16. SYNTHESIS AND PERFORMANCE OF FE-BASED AMORPHOUS ALLOYS FOR NUCLEAR WASTE REPOSITORY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, L; Perepezko, J; Hildal, K

    2007-02-08

    In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s that exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. Moreover, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys with increased cross-section for thermal neutron capture will be outlined to demonstrate that through careful design of alloy composition it is possible to tailor the material properties of the thermally spray-formed amorphous coating to accommodate the challenges anticipated in typical nuclear waste storage applications over tens of thousands of years in a variety of corrosive environments.

  17. Thermodynamic calculations in the development of high-temperature Co–Re-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gorr, Bronislava, E-mail: gorr@ifwt.mb.uni-siegen.de [University of Siegen, Institut für Werkstofftechnik, Siegen (Germany); Christ, Hans-Jürgen [University of Siegen, Institut für Werkstofftechnik, Siegen (Germany); Mukherji, Debashis; Rösler, Joachim [TU Braunschweig, Institut für Werkstoffe, Braunschweig (Germany)

    2014-01-05

    Highlights: • Phase diagram as a starting point for alloy development. • Design of pre-oxidation treatments by means of thermodynamic assessment. • Contribution of thermodynamic calculations to the general understanding of materials chemistry. -- Abstract: The experimental Co–Re-based alloys are being developed for high-temperature applications for service temperatures beyond 1100 °C. One of the main tasks of this research is to find the optimal chemical composition. Thermodynamic calculations are very helpful for composition selection and optimization. In this study, thermodynamic calculations were used to identify potential alloying elements and to determine suitable concentration ranges to improve properties, such as strength and oxidation resistance that are essential for high-temperature structural materials. The calculated ternary phase diagram of the Co–Re–Cr system was used to design the reference model alloy. Corrosion products formed under different atmospheric conditions were reliably predicted for a number of model Co–Re-based alloys. Pre-oxidation treatment, a common method used to improve the oxidation resistance of alloys in aggressive atmosphere, was successfully designed based on thermodynamic considerations.

  18. Improvement of Zr-base alloy for nuclear reactor core materials application by Mo addition

    International Nuclear Information System (INIS)

    The role of Mo in Zr-based alloys was studied in terms of the microstructure, texture and corrosion resistance. The base compositions of the experimental alloys were Zr-1Nb and Zr-1Nb-1Sn-0.1Fe to which Mo was added in varying amount up to 0.5%. Buttons of 300 g in weight have been produced by plasma arc remelting (PAR) and processed in sequence by hot forging, hot rolling, beta annealing, cold rolling and recrystallization annealing. It was confirmed that Mo addition resulted in grain refinement: beta grains as well as recrystallized alpha grains. This, in turn reduced the formation frequency and the size of twins and relaxed of the surface normal preferred orientation, fn. In the corrosion test in water containing 220 ppm LiOH (360 deg C, 17.9 MPa), the alloys with up to 0.2% Mo showed a good corrosion resistance whereas that with 0.5% Mo showed a degraded resistance. Apparently, the corrosion resistance was related to the density and morphology of the second phase particles. Alloys containing fine and uniformly distributed β-Nb particles showed good corrosion resistance whereas those containing excessive number or undesirable distribution of particles particularly in uncrystallized region showed degraded corrosion resistance. Overall, the present study suggests that alloying of up to 0.2% Mo should be favorably considered for improving the mechanical properties without impairing the corrosion resistance of Zr-based alloys for nuclear core applications. (author)

  19. Mechanisms of oxide layer formation and destruction on a chromia former nickel base alloy in HTR environment; Mecanismes de formation et de destruction de la couche d'oxyde sur un alliage chrominoformeur en milieu HTR

    Energy Technology Data Exchange (ETDEWEB)

    Rouillard, F

    2007-10-15

    Haynes 230 alloy which contains 22 wt.% chromium could be a promising candidate material for structures and heat exchangers (maximum operating temperature: 850-950 C) in Very High Temperature Reactors (VHTR). The feasibility demonstration involves to valid its corrosion resistance in the reactor specific environment namely impure helium. The alloys surface reactivity was investigated at temperatures between 850 and 1000 C. We especially focused on the influence of different parameters such as concentrations of impurities in the gas phase (carbon monoxide and methane, water vapour/hydrogen ratio), alloy composition (activities of Cr and C, alloying element contents) and temperature. Two main behaviours have been revealed: the formation of a Cr/Mn rich oxide layer at 900 C and its following reduction at higher temperatures. At 900 C, the water vapour is the main oxidizing gas. However in the initial times, the carbon monoxide reacts at the metal/oxide interface which involves a gaseous transport through the scale; CO mainly oxidizes the minor alloying elements aluminium and silicon. Above a critical temperature TA, the carbon in solution in the alloy reduces chromia. To ascribe the scale destruction, a model is proposed based on thermodynamic interfacial data for the alloy, oxide layer morphology and carbon monoxide partial pressure in helium; the model is then validated regarding experimental results and observations. (author)

  20. Sheet texture modification in magnesium-based alloys by selective rare earth alloying

    International Nuclear Information System (INIS)

    Research highlights: → Different RE elements gave distinct microstructures and imparted different properties. → Gd demonstrated the highest potential to modify the sheet texture of rolled Mg. → Gd yielded excellent mechanical properties despite a coarse-grained microstructure. → RE alloying seems to promote the hard deformation mechanisms in Mg. → Indications of PSN were found in the annealed microstructures of rolled sheets. - Abstract: The current study examines the influence of select rare earth elements; Gd, Nd, Ce, La and mischmetal (MM) on the sheet texture modification during warm rolling and annealing of a ZEK100 magnesium alloy, and the resulting formability and anisotropy during subsequent tensile testing at room temperature. It was found that all the investigated RE elements led to weak sheet textures and hence promoted enhanced ductility and reduced anisotropy over conventional Mg sheet. Gd was of a particular interest because it gave rise to a desired Mg sheet texture despite its coarsest grain size resulting in promising mechanical properties. It is suggested that solute related effects on the grain boundary migration and the relative strengths of different deformation mechanisms are responsible for altering the common concepts of recrystallization and grain growth during annealing, and the activation scenarios of slip and twinning during deformation.

  1. Bond strength of resin cements to noble and base metal alloys with different surface treatments.

    Directory of Open Access Journals (Sweden)

    Farkhondeh Raeisosadat

    2014-10-01

    Full Text Available The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen.Cylinders of light cured Z 250 composite were cemented to "Degubond 4" (Au Pd and "Verabond" (Ni Cr alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05.When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021 and Verabond (P< 0.001. No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291 and Verabond (P=0.899. Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003. The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011. The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59. RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035.The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2.

  2. Properties of thermally stable PM Al-Cr based alloy

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, D. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)], E-mail: Dalibor.Vojtech@vscht.cz; Verner, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Serak, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Simancik, F. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Balog, M. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia); Nagy, J. [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Racianska 75, 831 02 Bratislava 3 (Slovakia)

    2007-06-15

    The presented paper describes properties of Al-6.0 wt.%Cr-2.3 wt.%Fe-0.4 wt.%Ti-0.7 wt.%Si alloy produced by powder metallurgy (PM). The powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 {mu}m was then hot-extruded at 450 deg. C to produce a rod of 6 mm in diameter. Microstructure of the as-extruded material was composed of recrystallized {alpha}(Al) grains (the average grain size of 640 nm) and Al{sub 13}Cr{sub 2} spheroids (the average particle diameter of 130 nm and interparticle spacing of 290 nm). Metastable phases were not observed due to their decomposition on the hot extrusion. Hardness of the as-extruded material was 108 HV1, ultimate tensile strength, 327 MPa, yield strength, 258 MPa and elongation, 14%. Mechanical properties resulted mainly from Hall-Petch strengthening. The room-temperature mechanical properties were also measured after a long-term annealing at 400 deg. C. The investigated PM material was compared with the commercial Al-11.8 wt.%Si-0.9 wt.%Ni-1.2 wt.%Cu-1.2 wt.%Mg casting alloy generally applied at elevated temperatures. The PM alloy showed much higher thermal stability, since its room temperature hardness and tensile properties did not degradate significantly even after annealing at 400 deg. C/200 h. In contrast, the hardness and strength of the casting alloy reduced rapidly already after a 30 min annealing. The excellent thermal stability of the investigated PM material was a consequence of very slow diffusivities and low equilibrium solubilities of chromium and iron in solid aluminium.

  3. Properties of thermally stable PM Al-Cr based alloy

    International Nuclear Information System (INIS)

    The presented paper describes properties of Al-6.0 wt.%Cr-2.3 wt.%Fe-0.4 wt.%Ti-0.7 wt.%Si alloy produced by powder metallurgy (PM). The powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 μm was then hot-extruded at 450 deg. C to produce a rod of 6 mm in diameter. Microstructure of the as-extruded material was composed of recrystallized α(Al) grains (the average grain size of 640 nm) and Al13Cr2 spheroids (the average particle diameter of 130 nm and interparticle spacing of 290 nm). Metastable phases were not observed due to their decomposition on the hot extrusion. Hardness of the as-extruded material was 108 HV1, ultimate tensile strength, 327 MPa, yield strength, 258 MPa and elongation, 14%. Mechanical properties resulted mainly from Hall-Petch strengthening. The room-temperature mechanical properties were also measured after a long-term annealing at 400 deg. C. The investigated PM material was compared with the commercial Al-11.8 wt.%Si-0.9 wt.%Ni-1.2 wt.%Cu-1.2 wt.%Mg casting alloy generally applied at elevated temperatures. The PM alloy showed much higher thermal stability, since its room temperature hardness and tensile properties did not degradate significantly even after annealing at 400 deg. C/200 h. In contrast, the hardness and strength of the casting alloy reduced rapidly already after a 30 min annealing. The excellent thermal stability of the investigated PM material was a consequence of very slow diffusivities and low equilibrium solubilities of chromium and iron in solid aluminium

  4. Effects of the manufacturing process on fracture behaviour of cast TiAl intermetallic alloys

    OpenAIRE

    A. Brotzu; Felli, F.; D. Pilone

    2014-01-01

    The γ -TiAl based intermetallic alloys are interesting candidate materials for high-temperature applications with the efforts being directed toward the replacement of Ni-based superalloys. TiAl-based alloys are characterised by a density (3.5-4 g/cm3) which is less than half of that of Ni-based superalloys, and therefore these alloys have attracted broad attention as potential candidate for high-temperature structural applications. Specific composition/microstructure combinations should be ...

  5. Fully Pipelined Parallel Architecture for Candidate Block and Pixel-Subsampling-Based Motion Estimation

    Directory of Open Access Journals (Sweden)

    Reeba Korah

    2008-01-01

    Full Text Available This paper presents a low power and high speed architecture for motion estimation with Candidate Block and Pixel Subsampling (CBPS Algorithm. Coarse-to-fine search approach is employed to find the motion vector so that the local minima problem is totally eliminated. Pixel subsampling is performed in the selected candidate blocks which significantly reduces computational cost with low quality degradation. The architecture developed is a fully pipelined parallel design with 9 processing elements. Two different methods are deployed to reduce the power consumption, parallel and pipelined implementation and parallel accessing to memory. For processing 30 CIF frames per second our architecture requires a clock frequency of 4.5 MHz.

  6. Genetic relationships of some Citrus genotypes based on the candidate iron chlorosis genes

    OpenAIRE

    KAÇAR, Yıldız AKA; Özhan ŞİMŞEK; DÖNMEZ, Dicle; BONCUK, Melda; YEŞİLOĞLU, Turgut; Ollitrault, Patrick

    2014-01-01

    Iron is one of the most important elements in plant mineral nutrition. Fe deficiency is a critical abiotic stress factor for Mediterranean citriculture; the development of marker-assisted selection for this trait would greatly enhance rootstock breeding. In this study, DNA sequencing and single-stranded conformation polymorphism (SSCP) analyses were performed to determine the allelic diversity of genes associated with tolerance to iron chlorosis in citrus. Two candidate iron chlorosis toleran...

  7. Basic research for alloy design of Nb-base alloys as ultra high temperature structural materials; Chokoon kozoyo niobuki gokin no gokin sekkei no tame no kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Miura, E. [Tohoku University, Sendai (Japan); Yoshimi, K.; Hanada, S. [Tohoku Univ., Sendai (Japan). Research Inst. for Iron, Steel and Other Metals

    1997-02-01

    This paper describes an influence of additional elements on the high temperature deformation behavior of Nb-base solid solution alloys. Highly concentrated solid solution single crystals of Nb-Ta and Nb-Mo alloys were prepared. Compression test and strain rate sudden change test were conducted in the vacuum at temperatures ranging from 77 to 1773 K, to determine the strain rate sensitivity index. Yield stress of the Nb-Ta alloy was similar to that of Nb alloy at temperatures over 0.3{times}T{sub M}, where T{sub M} is fusing point of Nb. While, the yield stress increased with increasing the impurity oxygen concentration at temperatures below 0.3{times}T{sub M}. The yield stress became much higher than that of Nb alloy. The strain rate sensitivity index showed positive values in the whole temperature range. On the other hand, the yield stress of Nb-Mo alloy was higher than that of Nb alloy in the whole temperature range, and increased with increasing the Mo concentration. The strain rate sensitivity index showed negative values at the temperature range from 0.3{times}T{sub M} to 0.4{times}T{sub M}. It was found that serration occurred often for Nb-40Mo alloys. 1 ref., 4 figs., 1 tab.

  8. Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach

    International Nuclear Information System (INIS)

    Glioblastoma multiforme (GBM) is a brain tumour with a very high patient mortality rate, with a median survival of 47 weeks. This might be improved by the identification of novel diagnostic, prognostic and predictive therapy-response biomarkers, preferentially through the monitoring of the patient blood. The aim of this study was to define the impact of GBM in terms of alterations of the plasma protein levels in these patients. We used a commercially available antibody array that includes 656 antibodies to analyse blood plasma samples from 17 healthy volunteers in comparison with 17 blood plasma samples from patients with GBM. We identified 11 plasma proteins that are statistically most strongly associated with the presence of GBM. These proteins belong to three functional signalling pathways: T-cell signalling and immune responses; cell adhesion and migration; and cell-cycle control and apoptosis. Thus, we can consider this identified set of proteins as potential diagnostic biomarker candidates for GBM. In addition, a set of 16 plasma proteins were significantly associated with the overall survival of these patients with GBM. Guanine nucleotide binding protein alpha (GNAO1) was associated with both GBM presence and survival of patients with GBM. Antibody array analysis represents a useful tool for the screening of plasma samples for potential cancer biomarker candidates in small-scale exploratory experiments; however, clinical validation of these candidates requires their further evaluation in a larger study on an independent cohort of patients

  9. Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Gloria P. Monterrubio-López

    2015-01-01

    Full Text Available Tuberculosis (TB is a chronic infectious disease, considered as the second leading cause of death worldwide, caused by Mycobacterium tuberculosis. The limited efficacy of the bacillus Calmette-Guérin (BCG vaccine against pulmonary TB and the emergence of multidrug-resistant TB warrants the need for more efficacious vaccines. Reverse vaccinology uses the entire proteome of a pathogen to select the best vaccine antigens by in silico approaches. M. tuberculosis H37Rv proteome was analyzed with NERVE (New Enhanced Reverse Vaccinology Environment prediction software to identify potential vaccine targets; these 331 proteins were further analyzed with VaxiJen for the determination of their antigenicity value. Only candidates with values ≥0.5 of antigenicity and 50% of adhesin probability and without homology with human proteins or transmembrane regions were selected, resulting in 73 antigens. These proteins were grouped by families in seven groups and analyzed by amino acid sequence alignments, selecting 16 representative proteins. For each candidate, a search of the literature and protein analysis with different bioinformatics tools, as well as a simulation of the immune response, was conducted. Finally, we selected six novel vaccine candidates, EsxL, PE26, PPE65, PE_PGRS49, PBP1, and Erp, from M. tuberculosis that can be used to improve or design new TB vaccines.

  10. Fracture mechanics data and modeling of environmental cracking of nickel-base alloys in high temperature water

    International Nuclear Information System (INIS)

    This paper reports on environmental cracking of ductile nickel-base alloys which has occurred both in pressurized water reactors and boiling water reactor components such as pressure-vessel safe ends, weld butters, and filler metals for joining nickel-base alloys or dissimilar metals, and attachment welding pads on pressure vessels. Accurate assessment of the interrelated effects of material, environment, and mechanics on environmental cracking behavior of ductile nickel-base alloys in 288C water

  11. Computer Simulation and Experimental Validation on the Oxidation and Sulfate Corrosion Resistance of Novel Chromium Based High Temperature Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shizhong

    2013-02-28

    This report summarizes our recent works of ab initio molecular dynamics inter-atomic potentials development on dilute rare earth element yttrium (Y) etc. doped chromium (Cr) alloy systems, its applications in oxidation and corrosion resistance simulation, and experiment validation on the candidate systems. The simulation methods, experimental validation techniques, achievements already reached, students training, and future improvement are briefly introduced.

  12. Phylogeography, Salinity Adaptations and Metabolic Potential of the Candidate Division KB1 Bacteria Based on a Partial Single Cell Genome.

    Science.gov (United States)

    Nigro, Lisa M; Hyde, Andrew S; MacGregor, Barbara J; Teske, Andreas

    2016-01-01

    Deep-sea hypersaline anoxic basins and other hypersaline environments contain abundant and diverse microbial life that has adapted to these extreme conditions. The bacterial Candidate Division KB1 represents one of several uncultured groups that have been consistently observed in hypersaline microbial diversity studies. Here we report the phylogeography of KB1, its phylogenetic relationships to Candidate Division OP1 Bacteria, and its potential metabolic and osmotic stress adaptations based on a partial single cell amplified genome of KB1 from Orca Basin, the largest hypersaline seafloor brine basin in the Gulf of Mexico. Our results are consistent with the hypothesis - previously developed based on (14)C incorporation experiments with mixed-species enrichments from Mediterranean seafloor brines - that KB1 has adapted its proteins to elevated intracellular salinity, but at the same time KB1 apparently imports glycine betaine; this compatible solute is potentially not limited to osmoregulation but could also serve as a carbon and energy source. PMID:27597842

  13. Improvement on Hot Workability of γ-TiAl Base Alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    γ-TiAl base alloys have potential usage in aerospace engine fortheir high specific strength. In order to improve their poor hot workability, a new approach of hot deformation processing was investigated. The starting microstructure of Ti-46.5Al-2.5V-1.0Cr (atom percent, %) alloy is fully lamellar (FL) microstructure. The near gamma (NG) microstructure can be obtained through Nickel microalloying and heat treatment at 1 150 ℃. The isothermal compression tests were conducted on both materials using MTS machine at temperatures of 950 ℃, 1 000 ℃, and 1 050 ℃, and the strain rates of 0.01, 0.1 and 1 s-1. Compared with the γ-TiAl alloy with FL microstructure, the Ni-bearing alloy with NG microstructure has better hot workability, such as enlarged hot workable region, decreased flow stresses, more uniform and finer deformed microstructure.

  14. Effect of Sr on forming properties of Al-Mg-Si based alloy sheets

    Institute of Scientific and Technical Information of China (English)

    LU Guang-xi; CHEN Hai-jun; GUAN Shao-kang

    2006-01-01

    The effects of Sr element on the forming properties of the Al-Mg-Si based alloy sheets were studied by tensile test,metallograph, DSC, XRD, SEM and TEM. The results show that the tensile strength of aluminum alloy sheet added 0.033%(mass fraction)Sr increases comparing with that of free Sr. Simultaneously, the forming properties of sheets evidently increase, the elongation hardenability (n) and plastic strain ratio (r) and Erichsen number increase 27.8%, 11.1%, 10.8% and 12%, respectively,and the forming limit diagram increases evidently, too. The analysis shows that Sr is surface active element, which can refine grains of alloys, promote precipitation, reduce activation energy ofβ" phase, and lead the formation of α-(Al8Fe2Si) phase instead of β-(Al5FeSi) phase. As a result, the forming properties of the alloy sheet increase.

  15. Microstructure evolution model based on deformation mechanism of titanium alloy in hot forming

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-li; LI Miao-quan

    2005-01-01

    The microstructure evolution in hot forming will affect the mechanical properties of the formed product.However, the microstructure is sensitive to the process variables in deformation process of metals and alloys. A microstructure evolution model of a titanium alloy in hot forming, which included dislocation density rate and primary α phase grain size, was presented according to the deformation mechanism and driving forces, in which the effect of the dislocation density rate on the grain growth was studied firstly. Applying the model to the high temperature deformation process of a TC6 alloy with deformation temperature of 1 133 - 1 223 K, strain rate of 0.01 -50 s-1 and height reduction of 30%, 40% and 50%, the material constants in the present model were calculated by the genetic algorithm(GA) based objective optimization techniques. The calculated results of a TC6 alloy are in good agreement with the experimental ones.

  16. Effect of High Temperature Aging on the Corrosion Resistance of Iron Based Amorphous Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Day, S D; Haslam, J J; Farmer, J C; Rebak, R B

    2007-08-10

    Iron-based amorphous alloys can be more resistant to corrosion than polycrystalline materials of similar compositions. However, when the amorphous alloys are exposed to high temperatures they may recrystallize (or devitrify) thus losing their resistance to corrosion. Four different types of amorphous alloys melt spun ribbon specimens were exposed to several temperatures for short periods of time. The resulting corrosion resistance was evaluated in seawater at 90 C and compared with the as-prepared ribbons. Results show that the amorphous alloys can be exposed to 600 C for 1-hr. without losing the corrosion resistance; however, when the ribbons were exposed at 800 C for 1-hr. their localized corrosion resistance decreased significantly.

  17. Thermal analysis of selected tin-based lead-free solder alloys

    DEFF Research Database (Denmark)

    Palcut, Marián; Sopoušek, J.; Trnková, L.; Hodúlová, E.; Szewczyková, B.; Ožvold, M.; Turňa, M.; Janovec, J.

    2009-01-01

    The Sn-Ag-Cu alloys have favourable solderability and wetting properties and are, therefore, being considered as potential lead-free solder materials. In the present study, tin-based Sn-Ag-Cu and Sn-Ag-Cu-Bi alloys were studied in detail by a differential scanning calorimetry (DSC) and...... thermodynamic calculations using the CALPHAD approach. The amount of the alloying elements in the materials was chosen to be close to the respective eutectic composition and the nominal compositions were the following: Sn-3.7Ag-0.7Cu, Sn-1.0Ag-0.5Cu-1Bi (in wt.%). Thermal effects during melting and solidifying...... simulated using the Thermo-Calc software package. This approach enabled us to obtain the enthalpy of cooling for each alloy and to compare its temperature derivative with the experimental DSC curves....

  18. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    International Nuclear Information System (INIS)

    The average longevity of hip replacement devices is approximately 10–15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25–30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics

  19. Cobalt-based orthopaedic alloys: Relationship between forming route, microstructure and tribological performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Bhairav [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Favaro, Gregory [CSM Instruments SA, Rue de la Gare 4, Galileo Center, CH-2034 Peseux (Switzerland); Inam, Fawad [Advanced Composite Training and Development Centre and School of Mechanical and Aeronautical Engineering, Glyndwr University, Mold Road, Wrexham LL11 2AW (United Kingdom); School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Reece, Michael J. [School of Engineering and Materials Science and Nanoforce Technology Ltd, Queen Mary University of London, London E1 4NS (United Kingdom); Angadji, Arash [Orthopaedic Research UK, Furlong House, 10a Chandos Street, London W1G 9DQ (United Kingdom); Bonfield, William [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Huang, Jie [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Edirisinghe, Mohan, E-mail: m.edirisinghe@ucl.ac.uk [Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom)

    2012-07-01

    The average longevity of hip replacement devices is approximately 10-15 years, which generally depends on many factors. But for younger generation patients this would mean that revisions may be required at some stage in order to maintain functional activity. Therefore, research is required to increase the longevity to around 25-30 years; a target that was initially set by John Charnley. The main issues related to metal-on-metal (MoM) hip replacement devices are the high wear rates when malpositioned and the release of metallic ions into the blood stream and surrounding tissues. Work is required to reduce the wear rates and limit the amount of metallic ions being leached out of the current MoM materials, to be able to produce an ideal hip replacement material. The most commonly used MoM material is the cobalt-based alloys, more specifically ASTM F75, due to their excellent wear and corrosion resistance. They are either fabricated using the cast or wrought method, however powder processing of these alloys has been shown to improve the properties. One powder processing technique used is spark plasma sintering, which utilises electric current Joule heating to produce high heating rates to sinter powders to form an alloy. Two conventionally manufactured alloys (ASTM F75 and ASTM F1537) and a spark plasma sintered (SPS) alloy were evaluated for their microstructure, hardness, tribological performance and the release of metallic content. The SPS alloy with oxides and not carbides in its microstructure had the higher hardness, which resulted in the lowest wear and friction coefficient, with lower amounts of chromium and molybdenum detected from the wear debris compared to the ASTM F75 and ASTM F1537. In addition the wear debris size and size distribution of the SPS alloy generated were considerably small, indicating a material that exhibits excellent performance and more favourable compared to the current conventional cobalt based alloys used in orthopaedics. - Highlights

  20. Potentiality of the “Gum Metal” titanium-based alloy for biomedical applications

    International Nuclear Information System (INIS)

    In this study, the “Gum Metal” titanium-based alloy (Ti–23Nb–0.7Ta–2Zr–1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the “Gum Metal” titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices. - Highlights: • The Gum Metal alloy composition was synthesized by melting in this study. • Appropriate mechanical properties for biomedical applications were obtained. • High corrosion resistance in simulated body fluids was observed. • Excellent in-vitro cell response was evidenced

  1. Potentiality of the “Gum Metal” titanium-based alloy for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gordin, D.M. [Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), INSA Rennes, 20 Avenue des Buttes de Coësmes, F-35043 Rennes Cedex (France); Ion, R. [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vasilescu, C.; Drob, S.I. [Institute of Physical Chemistry “Ilie Murgulescu” of Romanian Academy, Spl. Independentei 202, 060021 Bucharest (Romania); Cimpean, A. [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Gloriant, T., E-mail: Thierry.Gloriant@insa-rennes.fr [Institut des Sciences Chimiques de Rennes (UMR CNRS 6226), INSA Rennes, 20 Avenue des Buttes de Coësmes, F-35043 Rennes Cedex (France)

    2014-11-01

    In this study, the “Gum Metal” titanium-based alloy (Ti–23Nb–0.7Ta–2Zr–1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the “Gum Metal” titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices. - Highlights: • The Gum Metal alloy composition was synthesized by melting in this study. • Appropriate mechanical properties for biomedical applications were obtained. • High corrosion resistance in simulated body fluids was observed. • Excellent in-vitro cell response was evidenced.

  2. Straining electrode behavior and corrosion resistance of nickel base alloys in high temperature acidic solution

    International Nuclear Information System (INIS)

    Repassivation behavior and IGA resistance of nickel base alloys containing 0∼30 wt% chromium was investigated in high temperature acid sulfate solution. (1) The repassivation rate was increased with increasing chromium content. And so the amounts of charge caused by the metal dissolution were decreased with increasing chromium content. (2) Mill-annealed Alloy 600 suffered IGA at low pH environment below about 3.5 at the fixed potentials above the corrosion potential in 10%Na2SO4+H2SO4 solution at 598K. On the other hand, thermally-treated Alloy 690 was hard to occur IGA at low pH environments which mill-annealed Alloy 600 occurred IGA. (3) It was considered that the reason, why nickel base alloys containing high chromium content such as Alloy 690 (60%Ni-30%Cr-10%Fe) had high IGA/SCC resistance in high temperature acidic solution containing sulfate ion, is due to both the promotion of the repassivation and the suppression of the film dissolution by the formation of the dense chromium oxide film

  3. Control of equiaxed grains in a complicated Cu-Ni based alloy prepared by centrifugal casting

    Directory of Open Access Journals (Sweden)

    Luo Zongqiang

    2011-02-01

    Full Text Available A complicated Cu-Ni based alloy was developed to fabricate wear-resisting bush for high temperature application. The concern focuses on the control of equiaxed grains in the developed alloy ingot prepared by centrifugal casting. The results show that the equiaxed grains are determined by the pouring temperature of the melt, the cooling rate and the rotation speed of the mold. With the decrease in pouring temperature, the fraction of the equiaxed grains in the transverse section of the ingot increases and the average length of columnar grain decreases. When the pouring temperature is confined below 1,250℃, complete equiaxed grains can be obtained. Based on the optimal centrifugal casting processing, the tensile strength of the developed alloy ingot with complete equiaxed grains reaches to 810 MPa and 435 MPa at room temperature and 500℃, respectively, which is 14% and 110% higher than that of common commercial QAl10-4-4 alloy. The wear rate of the developed alloy is 7.0 × 10-8 and 3.8 × 10-7 mm3•N-1•mm-1 at room temperature and 500℃, respectively, which is 5 times and 39 times lower than that of QAl10-4-4 alloy.

  4. Pack cementation diffusion coatings for Fe-base and refractory alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1998-03-10

    With the aid of computer-assisted calculations of the equilibrium vapor pressures in halide-activated cementation packs, processing conditions have been identified and experimentally verified for the codeposition of two or more alloying elements in a diffusion coating on a variety of steels and refractory metal alloys. A new comprehensive theory to treat the multi-component thermodynamic equilibria in the gas phase for several coexisting solid phases was developed and used. Many different processes to deposit various types of coatings on several types of steels were developed: Cr-Si codeposition for low- or medium-carbon steels, Cr-Al codeposition on low-carbon steels to yield either a Kanthal-type composition (Fe-25Cr-4Al in wt.%) or else a (Fe, Cr){sub 3}Al surface composition. An Fe{sub 3}Al substrate was aluminized to achieve an FeAl surface composition, and boron was also added to ductilize the coating. The developmental Cr-lean ORNL alloys with exceptional creep resistance were Cr-Al coated to achieve excellent oxidation resistance. Alloy wires of Ni-base were aluminized to provide an average composition of Ni{sub 3}Al for use as welding rods. Several different refractory metal alloys based on Cr-Cr{sub 2}Nb have been silicided, also with germanium additions, to provide excellent oxidation resistance. A couple of developmental Cr-Zr alloys were similarly coated and tested.

  5. Description of the capacity degradation mechanism in LaNi{sub 5}-based alloy electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spodaryk, Mariana, E-mail: poshtamary@ukr.net [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Shcherbakova, Larisa; Sameljuk, Anatoly [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Wichser, Adrian; Zakaznova-Herzog, Valentina; Holzer, Marco; Braem, Beat [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Khyzhun, Oleg [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Mauron, Philippe; Remhof, Arndt [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Solonin, Yurii [Institute for Problems of Materials Science, NAS of Ukraine, 3, Krzhyzhanovsky Str., 03680 Kyiv-142 (Ukraine); Züttel, Andreas [EMPA Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Ecole polytechnique fédérale de Lausanne (EPFL), Institut des sciences et ingénierie chimiques, CH-1015 Lausanne (Switzerland)

    2015-02-05

    Highlights: • Morphology of gas atomised powders depends on the alloy composition. • Co substituted alloy electrodes exhibit slow activation and slow degradation. • The corrosion mechanism depends on the alloy composition and solubility of metals. - Abstract: The mechanism of the capacity degradation of LaNi{sub 5}-based alloy electrodes was investigated with a special focus on the influence of the alloy and surface composition, as well as the unique structure obtained by gas atomisation. The electrochemical properties, especially the cycle life curve (i.e. the capacity as a function of the cycle number of LaNi{sub 4.5}Al{sub 0.5}, LaNi{sub 2.5}Co{sub 2.4}Al{sub 0.1}, (La + Mm)Ni{sub 3.5}Co{sub 0.7}Al{sub 0.35}Mn{sub 0.4}Zr{sub 0.05}, and MmNi{sub 4.3}Al{sub 0.2}Mn{sub 0.5} alloy electrodes), was analysed and modelled. The capacity degradation upon cycling is determined by the chemical state of the alloy elements and the solubility of their oxides. The cycle life curves for the alloy electrodes without Co exhibited a rapid activation (3–4 cycles to reach maximum capacity), as well as rapid degradation (130–180 cycles for 50% maximum discharge capacity). LaNi{sub 2.5}Co{sub 2.4}Al{sub 0.1} and (La + Mm)Ni{sub 3.5}Co{sub 0.7}Al{sub 0.35}Mn{sub 0.4}Zr{sub 0.05} alloy electrodes activated after 7–10 cycles and showed very stable discharge behaviour (more than 400 cycles). The Co-containing alloy electrodes primarily lose the cycle stability because of mechanical decrepitation, whereas the alloys without Co suffer from selective dissolution of the unstable elements in the potential window, which was shown by our model of alloy degradation and confirmed by means of SEM, WDX, and ICP-OES data.

  6. Creep strength and microstructure in 23Cr-45Ni-7W Alloy (HR6W) and Ni-base superalloys for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Semba, Hiroyuki; Okada, Hirokazu; Yonemura, Mitsuharu; Igarashi, Masaaki [Sumitomo metal Industries, Ltd., Hyogo (Japan). Corporate Research and Development Labs.

    2008-07-01

    Establishment of materials technologies on piping and tubing for advanced ultra super critical (A-USC) plants operated at steam temperatures above 700 C is a critical issue to achieve its hard target. 23Cr-45Ni-7W alloy (HR6W) has been developed in Japan, originally as a high strength tubing material for 650 C USC boilers. In order to clarify the capability of HR6W as a material applied to A-USC plants, creep strength and microstructure of HR6W were investigated in comparison with {gamma}'-strengthened Alloy 617 and other Ni-base superalloys, such as Alloy 263. It has been revealed that the amount of added W is intimately correlated with precipitation amount of Laves phase and thus it is a crucial factor controlling creep strength. Stability of long term creep strength and superior creep rupture ductility have been proved by creep rupture tests at 650-800 C up to 60000h. The 10{sup 5}h extrapolated creep rupture strengths are estimated to be 88MPa at 700 C and 64MPa at 750 C. Microstructural stability closely related with long term creep strength and toughness has also been confirmed by microstructural observations after creep tests and aging. Creep rupture strength of Alloy 617 has been found to be much higher than that of HR6W at 700 and 750 C, while comparable at 800 C. A thermodynamic calculation along with microstructural observation indicates that the amount of Laves phase in HR6W gradually decreases with increasing temperature, while that of {gamma}' in Alloy 617 rapidly decreases with increasing temperature and {gamma}' almost dissolves at 800 C. This may lead to an abrupt drop in creep strength of Alloy 617 above 750 C. Alloy 263, in which more {gamma}' precipitates than Alloy 617, shows much higher creep strength. However, it is suggested that inhomogeneous creep deformation is enhanced compared with HR6W and Alloy 617. Capability of HR6W as a material for A-USC plants was discussed in terms of creep properties, microstructural stability and other

  7. Atomic scale properties of magnetic Mn-based alloys probed by Emission Mössbauer spectroscopy

    CERN Multimedia

    Mn-based alloys are characterized by a wealth of properties, which are of interest both from fundamental physics point of view and particularly attractive for different applications in modern technology: from magnetic storage to sensing and spin-based electronics. The possibility to tune their magnetic properties through post-growth thermal processes and/or stoichiometry engineering is highly important in order to target different applications (i.e. Mn$_{x}$Ga) or to increase their Curie temperature above room temperature (i.e. off-stoichiometric MnSi). In this project, the Mössbauer effect will be applied at $^{57}$Fe sites following implantation of radioactive $^{57}$Mn, to probe the micro-structure and magnetism of Mn-based alloys at the most atomic-scale. The proposed experimental plan is devoted to establish a direct correlation between the local structure and bulk magnetism (and other physical properties) of Mn-based alloys.

  8. Thermodynamic Tuning of Mg-Based Hydrogen Storage Alloys: A Review

    Directory of Open Access Journals (Sweden)

    Min Zhu

    2013-10-01

    Full Text Available Mg-based hydrides are one of the most promising hydrogen storage materials because of their relatively high storage capacity, abundance, and low cost. However, slow kinetics and stable thermodynamics hinder their practical application. In contrast to the substantial progress in the enhancement of the hydrogenation/dehydrogenation kinetics, thermodynamic tuning is still a great challenge for Mg-based alloys. At present, the main strategies to alter the thermodynamics of Mg/MgH2 are alloying, nanostructuring, and changing the reaction pathway. Using these approaches, thermodynamic tuning has been achieved to some extent, but it is still far from that required for practical application. In this article, we summarize the advantages and disadvantages of these strategies. Based on the current progress, finding reversible systems with high hydrogen capacity and effectively tailored reaction enthalpy offers a promising route for tuning the thermodynamics of Mg-based hydrogen storage alloys.

  9. Establishing a Th17 based mouse model for preclinical assessment of the toxicity of candidate microbicides

    Institute of Scientific and Technical Information of China (English)

    LI Liang-zhu; YANG Yu; YUAN Song-hua; WAN Yan-min; QIU Chao; FENG Yan-ling; XU Jian-qing; ZHANG Xiao-yan

    2010-01-01

    one mouse (score: 8), which were significantly associated with both inflammatory cytokines IL-17A and IL-6 and anti-inflammatory cytokines IL-4 and IL-10. Interestingly, IL-17A showed significant positive association with inflammatory cytokine TNF-α (r=0.739; P <0.05), anti-inflammatory cytokines IL-10 (r=0.804; P <0.01) and IL-4 (r=0.668; P <0.05).Conclusions Our data demonstrate that a panel of cytokines (IL-17A, IL-6, IL-4 and IL-10) could be used as surrogate biomarkers to predict the histopathological damage. Th17 may play a central role in orchestrating inflammatory cytokine responses. This Th17 based mouse model is cost-effective and suitable to assess the toxicity of candidate microbicides in preclinical studies.

  10. The surface tension of liquid aluminium-based alloys

    International Nuclear Information System (INIS)

    In a systematic study, the surface tensions of the binary alloys Al-Fe and Al-Ni were investigated over a wide temperature and concentration range using electromagnetic levitation and the oscillating drop technique. Surface tensions were derived from the oscillation frequencies applying the formalism of Cummings and Blackburn. Temperature was measured by single-color pyrometry. Of particular interest in these alloys are melts corresponding to compositions of intermetallic phases, because potential ordering phenomena may influence all thermophysical properties. In both systems, an increase of the surface tension is observed at such concentrations. On the basis of partial excess Gibbs enthalpies, surface tensions can be calculated via the Butler equation and compared with experimental results. The agreement with our experimental data depends crucially on the quality of the thermodynamic potentials used. In addition, phenomenological models are also discussed, which describe the general trend correctly

  11. Dilatometer study of rapidly solidified aluminium-silicon based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Varga, B [University TRANSILVANIA, B-dul Eroilor nr. 29, 500036, Brasov (Romania); Fazakas, E; Hargitai, H [Inst. for Materials Science and Technology, Bay Z. Foundation, Fehervari ut, 130., H-1116 Budapest (Hungary); Varga, L K, E-mail: varga@szfki.h

    2009-01-01

    Aluminum-Silicon alloys are sought in a large number of automotive and aerospace applications due to their low coefficient of thermal expansion and high wear resistance. The present study focused on structural transformations as a function of the temperature of rapidly solidified hypereutectic Al{sub 100-x}Si{sub x} (x = 12, 22 and 40) alloys. Different structures out of equilibrium have been obtained after casting in sand, graphite and copper moulds and by melt spinning. The retained Si content in supersaturated alpha Al and the precipitation of Si is discussed in the light of the dilatometer studies [1, 2, 3] complemented by metallographic microscopy, XRD and DSC [4] measurements. A Kissinger analysis was used to determine the activation energy for the precipitation of supersaturated Si content.

  12. Assessment of potential solder candidates for high temperature applications

    DEFF Research Database (Denmark)

    package with different solders of different melting temperatures. High Pb containing alloys where the lead levels can be above 85% by weight, is one of the solders currently being used in this technology. Responding to market pressure i.e. need for green electronic products there is now an increasing...... pressure to eliminate lead containing materials despite the fact that materials for high Pb containing alloys are currently not affected by any legislations. A tentative assessment was carried out to determine the potential solder candidates for high temperature applications based on the solidification...

  13. Fracture of niobium-base silicide coated alloy

    International Nuclear Information System (INIS)

    Mechanical properties and character of fracture of Nb-W-Mo-Zr-C alloy composition with complex by composition and structure silicide coating under different states of stage-by-stage coating are studied. Structural features, character of fracture from ductile to quasibrittle transcrystalline one and, respectively, the composition plasticity level are defined by interrelation of fracture processes in coating, matrix plastic flow and possibility and way of stress relaxation on their boundary

  14. Development of rapidly solidified Al-Y-Ni-based alloys

    International Nuclear Information System (INIS)

    The present study is concerned with the effect of alloying additions (e.g. Co, Nb, Pd, La and Y) to the glass forming ability (GFA) of Al-Y-Ni alloys. Rapidly solidified ribbons of the following systems have been prepared by melt-spinning process: Al88Ni x/2Pd x/2Y12-x (x = 2, 5, 10), Al88Ni1Co1Y10-xLa x (x = 0, 5, 10), Al88Ni1Nb1Y10, and Al86Ni4-xCo xY10 (x = 1, 2, 3). Characterisation of the melt spun alloys was carried out through a combination of X-ray diffractometry, differential scanning calorimetry, and transmission electron microscopy. GFA in Al88Ni1TM1Y10 (where TM = Co, Nb, Pd) increases in the following order: Nb 88-Ni-Pd-Y systems the optimum quantity of yttrium is 10 at.%. A complete substitution of Y with La, or aluminium with 2 at.% of (Co,Ni) decreases the glass forming ability in Al88Ni1Co1Y10 but increases thermal stability of the residual amorphous phase. Partial replacement of Y with La significantly improves the thermal stability of the amorphous phase in Al-Ni-Co-Y

  15. Oxygen Behavior in Bulk Amorphous Zr-base Alloy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Bulk Zr55Al10Ni5Cu30 metallic glass plates with a dimension of 85 mm×35mm×4 mm and a complicated plate werefabricated by injecting casting method using spongy zirconium and industrial purity aluminum, nickel and copper asraw materials. It was shown that the holding time of liquid metals at elevated temperatures had a great influence onthe oxygen content of the plates due to the contamination resulting from the atmosphere. Increasing holding timeresulted in the increase of oxygen content in the injected alloy. The glass transition temperatures of the bulk metallicglass plates are higher than that reported in the literature and crystallization temperature is lower for the one withhigher oxygen content at the same heating rate. The extension of the undercooled liquid region △Tx reaching about87 K is 3 K higher than that previously reported and 26 K higher than that with oxygen content of 0.076 wt pct forthe one with oxygen content as high as 0.065 wt pct. Therefore the oxygen content of the alloy has a significantinfluence on the glass forming ability and thermal stability of bulk metal glass. It is suggested that direct correlationbetween high glass forming ability and large △Tx is only valid for a well-defined Iow oxygen concentration or has tobe reconsidered by incorporating oxygen as an additional alloying element.

  16. Possibility to use high-chromium nickel base alloys in accordance with criteria of operational capability of materials for ITEP first wall

    International Nuclear Information System (INIS)

    Experimental data on corrosion resistance, strength and plastic properties are presented for alloy KhNM-1 and steel 00Kh16N15M3B. It is shown that alloy KhNM substantially surpasses austenitic stainless steel in processing (weldability) and operational (tendency to corrosion cracking) properties as a candidate material for ITER first wall and blanket

  17. Corrosion of candidate container materials by Yucca Mountain bacteria

    International Nuclear Information System (INIS)

    Several candidate container materials have been studied in modified Yucca Mountain (YM) ground water in the presence or absence of YM bacteria. YM bacteria increased corrosion rates by 5--6 fold in UNS G10200 carbon steel, and nearly 100-fold in UNS N04400 Ni-Cu alloy. YM bacteria caused microbiologically influenced corrosion (MIC) through de-alloying or Ni-depletion of Ni-Cu alloy as evidenced by scanning electronic microscopy (SEM) and inductively coupled plasma spectroscopy (ICP) analysis. MIC rates of more corrosion-resistant alloys such as UNS N06022 Ni-Cr-Mo- W alloy, UNS N06625 Ni-Cr-Mo alloy, and UNS S30430 stainless steel were measured below 0.05 microm/yr, however YM bacteria affected depletion of Cr and Fe relative to Ni in these materials. The chemical change on the metal surface caused by depletion was characterized in anodic polarization behavior. The anodic polarization behavior of depleted Ni-based alloys was similar to that of pure Ni

  18. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    International Nuclear Information System (INIS)

    Three iron- to nickel-based austenitic alloys and three copper-based alloys are being considered as candidate materials for the fabrication of high-level radioactive-waste disposal containers. The austenitic alloys are Types 304L and 316L stainless steels and the high-nickel material Alloy 825. The copper-based alloys are CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). Waste in the forms of both spent fuel assemblies from reactors and borosilicate glass will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides will result in the generation of substantial heat and gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including undesirable phase transformations due to a lack of phase stability; atmospheric oxidation; general aqueous corrosion; pitting; crevice corrosion; intergranular stress corrosion cracking; and transgranular stress corrosion cracking. Problems specific to welds, such as hot cracking, may also occur. A survey of the literature has been prepared as part of the process of selecting, from among the candidates, a material that is adequate for repository conditions. The modes of degradation are discussed in detail in the survey to determine which apply to the candidate alloys and the extent to which they may actually occur. The eight volumes of the survey are summarized in Sections 1 through 8 of this overview. The conclusions drawn from the survey are also given in this overview

  19. Ageing dependence and martensite stabilization in copper based shape memory alloys

    International Nuclear Information System (INIS)

    Shape memory alloys exhibit a peculiar property called shape memory effect based on a first order solid state phase transformation, martensitic transformation which occurs in thermal manner on cooling the materials. Martensitic transformation is evaluated by the structural changes in microscopic scale. Copper-based ternary alloys exhibit shape memory effect in metastable beta phase region. These alloys have bcc-based ordered structures at high temperature, and transform martensiticaly to the long-period layered structures on cooling. The material atoms move cooperatively on (110)-type close packed planes of parent phase by means of a shear-like mechanism, and structural and fundamental properties of these alloys are altered by aging in the martensitic state. Therefore, the ageing gives rise to the structural changes in both long and short-range order in material. X-ray powder diffraction studies carried out in a long time interval on copper based shape memory alloys reveal that peak locations and intensities chance with ageing duration in martensitic condition, and these changes lead to the martensite stabilization in the redistribution or disordering manner, and stabilization proceeds by a diffusion-controlled process. (author)

  20. Ageing dependence and martensite stabilization in copper based shape memory alloys

    International Nuclear Information System (INIS)

    Shape memory alloys exhibit a peculiar property called shape memory effect based on a first order solid state phase transformation, martensitic transformation which occurs in thermal manner on cooling the materials. Martensitic transformation is evaluated by the structural changes in microscopic scale. Copper-based ternary alloys exhibit shape memory effect in metastable beta phase region. These alloys have bcc-based ordered structures at high temperature, and transform martensiticaly to the long-period layered structures on cooling. The material atoms move cooperatively on {110}-type close packed planes of parent phase by means of a shear-like mechanism, and structural and fundamental properties of these alloys are altered by aging in the martensitic state. Therefore, the ageing gives rise to the structural changes in both long and short-range order in material. X-ray powder diffraction studies carried out in a long time interval on copper based shape memory alloys reveal that peak locations and intensities chance with ageing duration in martensitic condition, and these changes lead to the martensite stabilization in the redistribution or disordering manner, and stabilization proceeds by a diffusion-controlled process

  1. Formation and crystallization kinetics of Nd-Fe-B-based bulk amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Ge, Hongliang; Zhang, Pengyue; Li, Dongyun; Wang, Zisheng [China Jiliang University, Magnetism Key Laboratory of Zhejiang Province, Hangzhou (China)

    2014-06-15

    In order to improve the glass-forming ability (GFA) of Nd-Fe-B ternary alloys to obtain fully amorphous bulk Nd-Fe-B-based alloy, the effects of Mo and Y doping on GFA of the alloys were investigated. It was found that the substitution of Mo for Fe and Y for Nd enhanced the GFA of the Nd-Y-Fe-Mo-B alloys. It was also revealed that the GFA of the samples was optimized by 4 at.% Mo doping and increased with theYcontent. The fully amorphous structures were all formed in the Nd{sub 6-x}Y{sub x}Fe{sub 68}Mo{sub 4}B{sub 22} (x =1-5) alloy rods with 1.5 mm-diameter. After subsequent crystallization, the devitrified Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} alloy rod exhibited a uniform distribution of grains with a coercivity of 364.1 kA/m. The crystallization behavior of Nd{sub 3}Y{sub 3}Fe{sub 68}Mo{sub 4}B{sub 22} BMG was investigated in isothermal situation. The Avrami exponent n determined by JAM plot is lower than 2.5, implying that the crystallization is mainly governed by a growth of particles with decreasing nucleation rate. (orig.)

  2. Structure and mechanical properties of Ti-5Cr based alloy with Mo addition

    International Nuclear Information System (INIS)

    The effects of molybdenum (Mo) on the structure and mechanical properties of a Ti-5Cr-based alloy were studied with an emphasis on improving its strength/modulus ratio. Commercially pure titanium (c.p. Ti) was used as a control. As-cast Ti-5Cr and a series of Ti-5Cr-xMo (x = 1, 3, 5, 7, 9 and 11 wt.%) alloys were prepared by using a commercial arc-melting vacuum-pressure casting system, and investigated with X-ray diffraction (XRD) for phase analysis. Three-point bending tests were performed to evaluate the mechanical properties of all specimens and their fractured surfaces were observed by using scanning electron microscopy (SEM). The experimental results indicated that Ti-5Cr-7Mo, Ti-5Cr-9Mo and Ti-5Cr-11Mo alloys exhibited ductile properties, and the β-phase Ti-5Cr-9Mo alloy exhibited the lowest bending modulus. However, the Ti-5Cr-3Mo and Ti-5Cr-5Mo alloys had much higher bending moduli due to the formation of the ω phase during quenching. It is noteworthy that the Ti-5Cr-9Mo alloy exhibited the highest bending strength/modulus ratios at 26.0, which is significantly higher than those of c.p. Ti (8.5) and Ti-5Cr (13.3). Furthermore, the elastically recoverable angle of the Ti-5Cr-9Mo alloy (30o) was greater than that of c.p. Ti (2.7o). The reasonably high strength (or high strength/modulus ratio) β-phase Ti-5Cr-9Mo alloy exhibited a low modulus, ductile property, and excellent elastic recovery capability, which qualifies it as a novel implant materials.

  3. A PSF-based approach to Kepler/K2 data. II. Exoplanet candidates in Praesepe (M 44)

    Science.gov (United States)

    Libralato, M.; Nardiello, D.; Bedin, L. R.; Borsato, L.; Granata, V.; Malavolta, L.; Piotto, G.; Ochner, P.; Cunial, A.; Nascimbeni, V.

    2016-08-01

    In this work we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a PSF-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.

  4. A PSF-based approach to Kepler/K2 data. II. Exoplanet candidates in Praesepe (M 44)

    CERN Document Server

    Libralato, M; Bedin, L R; Borsato, L; Granata, V; Malavolta, L; Piotto, G; Ochner, P; Cunial, A; Nascimbeni, V

    2016-01-01

    In this work we keep pushing K2 data to a high photometric precision, close to that of the Kepler main mission, using a PSF-based, neighbour-subtraction technique, which also overcome the dilution effects in crowded environments. We analyse the open cluster M 44 (NGC 2632), observed during the K2 Campaign 5, and extract light curves of stars imaged on module 14, where most of the cluster lies. We present two candidate exoplanets hosted by cluster members and five by field stars. As a by-product of our investigation, we find 1680 eclipsing binaries and variable stars, 1071 of which are new discoveries. Among them, we report the presence of a heartbeat binary star. Together with this work, we release to the community a catalogue with the variable stars and the candidate exoplanets found, as well as all our raw and detrended light curves.

  5. Candidate evaluation system: Documentation of the data base design and application software for the prototype expert support system

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, H.G.; Loffman, R.S.; Sexton, F.L.; Rush, R.M.

    1988-06-01

    The US Department of the Army established the Candidate Evaluation Prototype Project, Project Management Office to analyze the current procedure for filing Army civilian jobs and to develop improved automated procedures to meet this need. The Army Civilian Personnel Center (now the Civilian Information Directorate) tasked The Oak Ridge National Laboratory (ORNL) to provide technical support, research, and development to the Project Management Office and deliver a prototype of a Candidate Evaluation System that would run on the minicomputer hardware and software being delivered to personnel offices located throughout the world. This report discusses the background of the project, including constraints and requirements; describes the data base design and program code developed to implement the prototype; documents known limitations of the prototype; and contains recommendations to be considered in future development. The objective of this report is to document the prototype software system for use by Army programmers/analysts who will maintain or further develop the prototype software.

  6. An Experimental Study on Rate-sensitive Tensile Deformation Behaviour of Fe-based Shape Memory Alloy

    OpenAIRE

    Iwamoto Takeshi; Fujita Kazuki

    2015-01-01

    Recently, it is attempted to apply high manganese steel including Fe-based shape memory alloy to vibration dampers. Especially, the alloy indicates a special characteristic as a well-known shape memory effect. By coupling between this effect and its plastic deformation, it can be considered that its deformation behaviour at higher deformation rate becomes quite complicated and still unclear. In this study, tensile tests of Fe-based shape memory alloy at different rate of deformation are condu...

  7. The mode of stress corrosion cracking in Ni-base alloys in high temperature water containing lead

    International Nuclear Information System (INIS)

    The mode of stress corrosion cracking (SCC) in Ni-base alloys in high temperature aqueous solutions containing lead was studied using C-rings and slow strain rate testing (SSRT). The lead concentration, pH and the heat treatment condition of the materials were varied. TEM work was carried out to observe the dislocation behavior in thermally treated (TT) and mill annealed (MA) materials. As a result of the C-ring test in 1M NaOH+5000 ppm lead solution, intergranular stress corrosion cracking (IGSCC) was found in Alloy 600MA, whereas transgranular stress corrosion cracking (TGSCC) was found in Alloy 600TT and Alloy 690TT. In most solutions used, the SCC resistance increased in the sequence Alloy 600MA, Alloy 600TT and Alloy 690TT. The number of cracks that was observed in alloy 690TT was less than in Alloy 600TT. However, the maximum crack length in Alloy 690TT was much longer than in Alloy 600TT. As a result of the SSRT, at a nominal strain rate of 1 x 10-7/s, it was found that 100 ppm lead accelerated the SCC in Alloy 600MA (0.01%C) in pH 10 at 340 C. IGSCC was found in a 100 ppm lead condition, and some TGSCC was detected on the fracture surface of Alloy 600MA cracked in the 10000 ppm lead solution. The mode of cracking for Alloy 600 and Alloy 690 changed from IGSCC to TGSCC with increasing grain boundary carbide content in the material and lead concentration in the solution. IGSCC seemed to be retarded by stress relaxation around the grain boundaries, and TGSCC in the TT materials seemed to be a result of the crack blunting at grain boundary carbides and the enhanced Ni dissolution with an increase of the lead concentration. (orig.)

  8. Synthesis and Performance of Fe-based Amorphous Alloys for Nuclear Waste Applications

    International Nuclear Information System (INIS)

    Recent developments in multi-component Fe-based amorphous alloys have shown that these novel materials exhibit outstanding corrosion resistance compared to typical crystalline alloys such as high-performance stainless steels and Ni-based C-22 alloy. During the past decade, amorphous alloy synthesis has advanced to allow for the casting of bulk metallic glasses. In several Fe-based alloy systems it is possible to produce glasses with cooling rates as low as 100 K/s. At such low cooling rates, there is an opportunity to produce amorphous solids through industrial processes such as thermal spray-formed coatings. Moreover, since cooling rates in typical thermal spray processing exceed 1000 K/s, novel alloy compositions can be synthesized to maximize corrosion resistance (i.e. adding Cr and Mo) and to improve radiation compatibility (adding B) and still maintain glass forming ability. The applicability of Fe-based amorphous coatings in typical environments where corrosion resistance and thermal stability are critical issues has been examined in terms of amorphous phase stability and glass-forming ability through a coordinated computational analysis and experimental validation. For example, a wedge casting technique has been applied to examine bulk glass forming alloys by combining multiple thermal probes with a measurement based kinetics analysis and a computational thermodynamics evaluation to elucidate the phase selection competition and critical cooling rate conditions. Based upon direct measurements and kinetics modeling it is evident that a critical cooling rate range should be considered to account for nucleation behavior and that the relative heat flow characteristics as well as nucleation kinetics are important in judging ease of glass formation. Similarly, a novel computational thermodynamics approach has been developed to explore the compositional sensitivity of glass-forming ability and thermal stability. Also, the synthesis and characterization of alloys

  9. Interface structure and formation mechanism of diffusion-bonded joints of TiAl-based alloy to titanium alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Vacuum diffusion bonding of a TiAl-based alloy (TAD) to a titanium alloy (TC2) was carried out at 1 273 K for 15~120 min under a pressure of 25 MPa. The kinds of the reaction products and the interface structures of the joints were investigated by SEM, EPMA and XRD. Based on this, a formation mechanism of the interface structure was elucidated. Experimental and analytical results show that two reaction layers have formed during the diffusion bonding of TAD to TC2. One is Al-rich α(Ti)layer adjacent to TC2,and the other is (Ti3Al+TiAl)layer adjacent to TAD,thus the interface structure of the TAD/TC2 joints is TAD/(Ti3Al+TiAl)/α(Ti)/TC2.This interface structure forms according to a three-stage mechanism,namely(a)the occurrence of a single-phase α(Ti)layer;(b)the occurrence of a duplex-phase(Ti3Al+TiAl)layer;and(c)the growth of the α(Ti)and (Ti3Al+TiAl)layers.

  10. Design and development of powder processed Fe-P based alloys

    International Nuclear Information System (INIS)

    Highlights: → The forming technique does not require any binder. Thus the system remains uncontaminated. → The use of ceramic protective coating eliminates the need of hydrogen protective atmosphere during heating. → Combined application of glassy ceramic coating and use of graphite as a reducing agent has lead to economy in P/M processing. → The technology developed in the present investigation showed very low coercivity and total loss values. -- Abstract: The present investigation deals with designing Fe, Fe-P binary and Fe-P-Si ternary alloys produced by an in-house developed powder metallurgical technique based on 'Hot Powder Preform Forging'. Proper soaking of preforms at high temperature (1050 oC) eliminates iron-phosphide eutectic and brings entire phosphorus into solution in iron. Attempting hot forging thereafter completely eliminates hot as well as cold shortness and thereby helps to form these preforms (alloys) into very thin sheets of 0.5 mm. The use of costly hydrogen atmosphere during sintering has been eliminated by the addition of carbon as a reducing agent to form CO gas within the compact by reacting with oxygen of iron powder particles. The glassy ceramic coating applied over the compact serves as a protective coating to avoid atmospheric oxygen attack over the compact held at high temperature. These alloys so formed were subjected to density examination at various stages. Microstructural study has been carried out to estimate the grain size, volume percentage of porosity in the alloys, and uniform distribution of phosphorus and silicon in an iron matrix. X-ray diffraction studies of these alloys revealed the presence of only ferrite as product phase. Addition of alloying elements such as P and Si has improved the resistivity and magnetic properties of iron. Fe-0.07C-0.2O-0.3P-0.5Si alloy showed a resistivity as high as 31.7 μΩ cm. Coercivity values of the alloys ranged from 0.51 to 1.98 Oe. The total magnetic loss of Fe-0.07C-0.2O-0.3P

  11. Room temperature synthesis of Ni-based alloy nanoparticles by radiolysis.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Berry, Donald T.; Lu, Ping; Leung, Kevin; Provencio, Paula Polyak; Stumpf, Roland Rudolph; Huang, Jian Yu; Zhang, Zhenyuan

    2009-09-01

    Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W

  12. Globular clusters hosting intermediate-mass black-holes: no mass-segregation based candidates

    CERN Document Server

    Pasquato, Mario; Sohn, Bong Won; Lee, Young-Wook

    2016-01-01

    Recently, both stellar mass-segregation and binary-fractions were uniformly measured on relatively large samples of Galactic Globular Clusters (GCs). Simulations show that both sizeable binary-star populations and Intermediate-Mass Black Holes (IMBHs) quench mass-segregation in relaxed GCs. Thus mass-segregation in GCs with a reliable binary-fraction measurement is a valuable probe to constrain IMBHs. In this paper we combine mass-segregation and binary-fraction measurements from the literature to build a sample of 33 GCs (with measured core-binary fractions), and a sample of 43 GCs (with a binary fraction measurement in the area between the core radius and the half-mass radius). Within both samples we try to identify IMBH-host candidates. These should have relatively low mass-segregation, a low binary fraction (< 5%), and short (< 1 Gyr) relaxation time. Considering the core binary fraction sample, no suitable candidates emerge. If the binary fraction between the core and the half-mass radius is consid...

  13. The size-effect on the formation enthalpy of nanosized binary ti based alloy

    International Nuclear Information System (INIS)

    The effects of grain size and composition on the formation enthalpy of nano binary Ti-based alloy are investigated by taking the surface effect into account within the modified Miedema model. It is demonstrated that the formation enthalpy of binary Ti based alloy with nano grains is size-dependent and exhibits evident size-effects. The formation enthalpy increases with the size decrease, and its value turns from negative to positive at a critical size, which will weaken the thermal stability of the nano grains. Furthermore, the composition segregation taking place in the nano grains of the Ti based alloy is obvious when the grain size is less than 10 nm and the tendency of segregation is dependent on the surface formation enthalpy of nanoparticle. (authors)

  14. An X-ray Fourier line shape analysis in cold-worked hexagonal titanium base alloys

    International Nuclear Information System (INIS)

    X-ray diffraction is an established technique for the analysis of microstructural parameters such as domain sizes, microstrains within the domains, and deformation fault densities in the deformed state of metals and alloys. These microstructural parameters influence the flow of dislocation in the lattice under deformation and thus regulate the strength and hardenability of the materials. The evaluation of such microdefects is this necessary for understanding the mechanical behavior of materials. In the present study, considering the wide applicability of titanium-base alloys in aviation industry, two alloy systems, i.e., titanium-base aluminum and titanium-base zirconium, have been selected. A number of X-ray diffraction profiles belonging to both fault-affected (H - K = 3N ± 1) and fault-unaffected (H - K = 3N) reflections have been recorded by a SIEMENS Kristolloflex-4 diffractometer using Cu Kα radiation, and the profiles have been analyzed to evaluate the microstructural parameters

  15. The Candidate

    OpenAIRE

    Osborn, John C

    2013-01-01

    ABSTRACT   The Candidate is an attempt to marry elements of journalism and gaming into a format that both entertains and educates the player. The Google-AP Scholarship, a new scholarship award that is given to several journalists a year to work on projects at the threshold of technology and journalism, funded the project. The objective in this prototype version of the game is to put the player in the shoes of a congressional candidate during an off-year election, specificall...

  16. Vanadium alloys: development strategy

    International Nuclear Information System (INIS)

    A strategy for the development of vanadium alloys for use in radiation environments is outlined. An attractive reference alloy (V-15Cr-5Ti) has been identified. The critical issues in developing vanadium base alloys are summarized

  17. Rare earth-Mg-Ni-based hydrogen storage alloys as negative electrode materials for Ni/MH batteries

    International Nuclear Information System (INIS)

    Research highlights: → State-of-the-art of new R-Mg-Ni-based hydrogen storage electrode alloys is reviewed. → Electrode performances of the R-Mg-Ni-based alloys depend strongly on the stoichiometric ratio, alloy components and microstructure. → Optimized alloy compositions contain mainly metallic elements of La, Mg, Ni, Co, Mn and Al. → Pulverization of particles and oxidation/corrosion of active components are responsible for the fast capacity degradation. → Low-Co or Co-free R-Mg-Ni-based electrode alloys should be developed. - Abstract: This review is devoted to new rare earth-Mg-Ni-based (R-Mg-Ni-based) hydrogen storage alloys that have been developed over the last decade as the most promising next generation negative electrode materials for high energy and high power Ni/MH batteries. Preparation techniques, structural characteristics, gas-solid reactions and electrochemical performances of this system alloy are systematically summarized and discussed. The improvement in electrochemical properties and their degradation mechanisms are covered in detail. Optimized alloy compositions with high discharge capacities, good electrochemical kinetics and reasonable cycle lives are described as well. For their practical applications in Ni/MH batteries, however, it is essential to develop an industrial-scale homogeneous preparation technique, and a low-cost R-Mg-Ni-based electrode alloy (low-Co or Co-free) with high discharge capacity, long cycle life and good kinetics.

  18. Comparative evaluation of the effect of simulated porcelain firing cycle on the mechanical properties and microstructure of base metal ceramic alloys.

    OpenAIRE

    Singla A; Shetty P; Joseph M; Kotian R

    1999-01-01

    A comparison of mechanical properties and microstructure of four metal ceramic alloys in as-cast and heat-treated conditions resulted in significant differences. The alloys that were tested included two nickel-based and two cobalt-based metal ceramic alloys. Mechanical properties tested included strength, percent elongation and hardness. Ten tensile bars were cast for each alloy. Five of the ten bars for each alloy were randomly selected for heat treatment with the simulated porcelain firing ...

  19. Effects of can parameters on canned-forging process of TiAl base alloy(Ⅰ)--Microstructural analyses

    Institute of Scientific and Technical Information of China (English)

    刘咏; 韦伟峰; 黄伯云; 何双珍; 周科朝; 贺跃辉

    2002-01-01

    By using thermal simulation technique, the conventional canned-forging process of TiAl based alloy was studied. The effect of can parameters on the microstruct ures of TiAl alloy was analyzed in this process. The results show that, the defo rmation microstructure of TiAl based alloy without canning is inhomogeneous. In lateral area, crack and shearing lines can be found; while in central area, fine -grained shearing zone can be found. The effect of can is to reduce the seconda ry tensile stress. However, only when the deformation of the steel can is coinci dental with that of TiAl alloy ingot, can this effect be effective. Moreover, a thick can would enhance the microstructural homogeneity in TiAl based alloy. With the H/D ratio of the ingot increasing, the deformation of TiAl alloy would be more unsteady, therefore, a thicker can should be needed.

  20. Influence of Cumulative Plastic Deformation on Microstructure of the Fe-Al Intermetallic Phase Base Alloy

    Directory of Open Access Journals (Sweden)

    Bednarczyk I.

    2014-10-01

    Full Text Available This article is part of the research on the microstructural phenomena that take place during hot deformation of intermetallic phase-based alloy. The research aims at design an effective thermo - mechanical processing technology for the investigated intermetallic alloy. The iron aluminides FeAl have been among the most widely studied intermetallics because their low cost, low density, good wear resistance, easy of fabrication and resistance to oxidation and corrosion. There advantages create wide prospects for their industrial applications for components of machines working at a high temperature and in corrosive environment. The problem restricting their application is their low plasticity and their brittle cracking susceptibility, hampers their development as construction materials. Consequently, the research of intermetallic-phase-based alloys focuses on improvement their plasticity by hot working proceses. The study addresses the influence of deformation parameters on the structure of an Fe-38% at. Al alloy with Zr, B Mo and C microadditions, using multi – axis deformation simulator. The influence of deformation parameters on microstructure and substructure was determined. It was revealed that application of cumulative plastic deformation method causes intensive reduction of grain size in FeAl phase base alloy.

  1. Effects of AI Addition on the Thermoelectric Properties of Zn-Sb Based Alloys

    Institute of Scientific and Technical Information of China (English)

    CUI Jiaolin; LIU Xianglian; YANG Wei; CHEN Dongyong; MAO Liding; QIAN Xin

    2009-01-01

    The β-Zn4Sb3, emerged as a compelling p-type thermoelectric material, is widely used in heat-electricity conversion in the 400-650 K range. In order to probe the effects of slight doping on the crystal structure and physical properties, we prepared the samples of Al-added Zn-Sb based alloys by spark plasma sintering and evaluated their microstructures and thermoelectric properties. After a limited Al addition into the Zn-Sb based alloys we observed many phases in the alloys, which include a major phase β-Zn4Sb3,intermetallic phases ZnSb and AISb. The major β-Zn4Sb3 phase plays a fundamental role in controlling the thermoelectric performance, the precipitated phases ZnSb and AISb are of great importance to tailor the transport properties, such as the gradual enhancement of lattice thermal conductivity, in spite of an increased phonon scattering in additional grain boundaries. The highest thermoelectric figure of merit of 0.55 is obtained for the alloy with a limited AI addition at 653 K, which is 0.08 higher than that of un-doped β-Zn4Sb3 at the corresponding temperature. Physical property experiments indicate that there is a potentiality for the improvement of thermoelectric properties if a proper elemental doping is carried out into the Zn-Sb based alloys, which was confirmed by AI addition in the present work.

  2. Shear bond strength of a ceromer to noble and base metal alloys

    Directory of Open Access Journals (Sweden)

    Dorriz H.

    2006-08-01

    Full Text Available Background and Aim: The improvement of the physical and chemical properties of resins as well as great advances achieved in the field of chemical bonding of resin to metal has changed the trend of restorative treatments. Today the second generation of laboratory resins have an important role in the restoration of teeth. The clinical bond strength should be reliable in order to gain successful results. In this study the shear bond strength (SBS between targis (a ceromer and two alloys (noble and base metal was studied and the effect of thermocycling on the bond investigated. Materials and Methods: In this experimental study, alloys samples were prepared according to the manufacturer. After sandblasting of bonding surfaces with 50µ AI2o3 Targis was bonded to the alloy using Targis I link. All of the samples were placed in 37°C water for a period of 24 hours. Then half of the samples were subjected to 1000 cycles of thermocycling at temperatures of 5°C and 55°C. Planear shear test was used to test the bond strength in the Instron machine with the speed rate of 0.5mm/min. Data were analyzed by SPSS software. Two-way analysis of variance was used to compare the bond strength among the groups. T test was used to compare the alloys. The influence of thermocycling and alloy type on bond strength was studied using Mann Whitney test. P<0.05 was considered as the limit of significance. Result: The studied alloys did not differ significantly, when the samples were not thermocycled (P=0.136 but after thermocycling a significant difference was observed in SBS of resin to different alloys (P=000.1. Thermal stress and alloy type had significant interaction, with regard to shear bond strength (P=0.003. There was a significant difference in SBS before and after thermocycling in noble alloys (P=0.009, but this was not true in base metals (P=0.29. Maximum SBS (19.09 Mpa belonged to Degubond 4, before thermocycling. Minimum SBS (8.21 Mpa was seen in Degubond 4

  3. High Temperature Oxidation and Electrochemical Investigations on Ni-base Alloys

    OpenAIRE

    Obigodi-Ndjeng, Marthe Georgia

    2011-01-01

    This study examined high-temperature oxidation behavior of different Ni-base alloys. In addition, electrochemical characterization of the alloy’s corrosion behavior was carried out, including comparison of the properties of native passive films grown at room temperature and high temperature oxide scales. PWA 1483 (single-crystalline Ni-base superalloy) and model alloys Ni-Cr-X (where X is either Co or Al) were oxidized at 800 and 900 °C in air for different time periods. The superalloy showed...

  4. AFM research on the mechanism of Fe-based alloy stress annealed inducing magnetic anisotropy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The cross-section of the Fe-based alloy (Fe73.5Cu1Nb3Si13.5B9) ribbon annealed at 540℃ under various tensile stress was investigated with atomic force microscope (AFM). The stress effect mechanism in Fe-based alloy ribbon tensile stress an-nealed inducing transverse magnetic anisotropy field was studied using the X-ray diffraction spectra and longitudinal drive giant magneto-impedance effect curves, and the model of direction dominant in encapsulated grain agglomeration was es-tablished. The relationship between the direction dominant in encapsulated grain agglomeration and magnetic anisotropy field was disclosed.

  5. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    International Nuclear Information System (INIS)

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  6. A corrosion resistant cerium oxide based coating on aluminum alloy 2024 prepared by brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Tang Junlei; Han Zhongzhi [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.cn [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Tang Yuming [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Cerium oxide based coatings were prepared on AA2024 Al alloy by brush plating. The characteristic of this technology is that hydrogen peroxide, which usually causes the plating solution to be unstable, is not necessary in the plating electrolyte. The coating showed laminated structures and good adhesive strength with the substrate. X-ray diffraction and X-ray photoelectron spectroscopy analysis showed that the coatings were composed of Ce(III) and Ce(IV) oxides. The brush plated coatings on Al alloys improved corrosion resistance. The influence of plating parameters on structure and corrosion resistance of the cerium oxide based coating was studied.

  7. Formation and Oxidation Resistance of Silicide Coatings for Mo and Mo-Based Alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The forming process of silicide coatings on pure Mo and Mo-base alloys, obtained by the gasphase deposition method, has been studied by examining the microstructure of coatings and the relationship between coating thickness and process parameters. It was shown that the growth of coatings was diffusion-controlled, the diffusion of silicon to be coated into Mo or Mo-base alloys was mainly responsible for the formation of silicide. The relationship between initial silicide thickness and oxidation resistance was also investigated, and the equation of service life of the coatings at high temperature in air is presented.

  8. Thermodynamic properties of lanthanum in gallium-indium eutectic based alloys

    OpenAIRE

    Shchetinskiy, A. V.; Dedyukhin, A. S.; Volkovich, V. A.; Yamshchikov, L. F.; Maisheva, A. I.; Osipenko, A. G.; Kormilitsyn, M. V.

    2013-01-01

    Activity and activity coefficients of lanthanum were determined for the first time in gallium-indium eutectic based alloys in a wide temperature range employing electromotive force method. Activity of β-La and super cooled liquid lanthanum in Ga-In eutectic based alloys between 573 and 1073 K linearly depends on the reciprocal temperature: lgaβ-La(Ga-In)=5.660-15, 352T±0.093 lgaLa(Ga-In)=6.074-15,839T±0.093 Activity coefficients of β-La and super cooled liquid lanthanum in this system at 617-...

  9. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications. PMID:27062241

  10. Preparation and characterization of aluminum based alloy - mica composites

    International Nuclear Information System (INIS)

    In this work, six pallets each of 2.0 cm dia and 0.5 cm thickness were prepared by powder metallurgy; half of them also contained 1% mica-powder to form a composite. Inclusion of mica resulted in a decreased density and an increased porosity of the sample. Brinell hardness was found to be 21% less for the composite than for the pure alloy. Micro-graphs of different areas of the sample show uniform distribution of mica particles and avoids around them. (author)

  11. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J.C.; Van Konynenburg, R.A.; McCright, R.D. (Lawrence Livermore National Lab., CA (USA)); Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-04-01

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion; sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs.

  12. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    International Nuclear Information System (INIS)

    Three iron- to nickel-based austenitic alloys (Types 304L and 316L stainless steels and Alloy 825) are being considered as candidate materials for the fabrication of high-level radioactive-waste containers. Waste will include fuel assemblies from reactors as well as high-level waste in borosilicate glass forms, and will be sent to the prospective repository at Yucca Mountain, Nevada. The decay of radionuclides in the repository will result in the generation of substantial heat and in fluences of gamma radiation. Container materials may undergo any of several modes of degradation in this environment, including atmospheric oxidation; uniform aqueous phase corrosion; pitting; crevice corrosion; sensitization and intergranular stress corrosion cracking (IGSCC); and transgranular stress corrosion cracking (TGSCC). This report is an analysis of data relevant to the pitting, crevice corrosion, and stress corrosion cracking (SCC) of the three austenitic candidate alloys. The candidates are compared in terms of their susceptibilities to these forms of corrosion. Although all three candidates have demonstrated pitting and crevice corrosion in chloride-containing environments, Alloy 825 has the greatest resistance to these types of localized corrosion (LC); such resistance is important because pits can penetrate the metal and serve as crack initiation sites. Both Types 304L and 316L stainless steels are susceptible to SCC in acidic chloride media. In contrast, SCC has not been documented in Alloy 825 under comparable conditions. Gamma radiation has been found to enhance SCC in Types 304 and 304L stainless steels, but it has no detectable effect on the resistance of Alloy 825 to SCC. Furthermore, while the effects of microbiologically induced corrosion have been observed for 300-series stainless steels, nickel-based alloys such as Alloy 825 seem to be immune to such problems. 211 refs., 49 figs., 10 tabs

  13. A recombinant, chimeric tetravalent dengue vaccine candidate based on a dengue virus serotype 2 backbone.

    Science.gov (United States)

    Osorio, Jorge E; Wallace, Derek; Stinchcomb, Dan T

    2016-04-01

    Dengue fever is caused by infection with one of four dengue virus (DENV) serotypes (DENV-1-4), necessitating tetravalent dengue vaccines that can induce protection against all four DENV. Takeda's live attenuated tetravalent dengue vaccine candidate (TDV) comprises an attenuated DENV-2 strain plus chimeric viruses containing the prM and E genes of DENV-1, -3 and -4 cloned into the attenuated DENV-2 'backbone'. In Phase 1 and 2 studies, TDV was well tolerated by children and adults aged 1.5-45 years, irrespective of prior dengue exposure; mild injection-site symptoms were the most common adverse events. TDV induced neutralizing antibody responses and seroconversion to all four DENV as well as cross-reactive T cell-mediated responses that may be necessary for broad protection against dengue fever. PMID:26635182

  14. Globular Clusters Hosting Intermediate-Mass Black Holes: No Mass-Segregation Based Candidates

    Science.gov (United States)

    Pasquato, Mario; Miocchi, Paolo; Won, Sohn Bong; Lee, Young-Wook

    2016-06-01

    Recently, both stellar mass segregation and binary fractions were uniformly measured on relatively large samples of Galactic globular clusters (GCs). Simulations show that both sizable binary-star populations and intermediate-mass black holes (IMBHs) quench mass segregation in relaxed GCs. Thus mass segregation in GCs with a reliable binary-fraction measurement is a valuable probe to constrain IMBHs. In this paper we combine mass-segregation and binary-fraction measurements from the literature to build a sample of 33 GCs (with measured core binary fractions), and a sample of 43 GCs (with binary-fraction measurements in the area between the core radius and the half-mass radius). Within both samples we try to identify IMBH-host candidates. These should have relatively low mass segregation, a low binary fraction (segregated (and show a larger binary fraction), confirming the theoretical expectation that the energy sources responsible for the large core are also quenching mass segregation.

  15. Candidate lesion-based criteria for defining a positive sacroiliac joint MRI in two cohorts of patients with axial spondyloarthritis

    DEFF Research Database (Denmark)

    Weber, Ulrich; Østergaard, Mikkel; Lambert, Robert G W;

    2015-01-01

    OBJECTIVE: To determine candidate lesion-based criteria for a positive sacroiliac joint (SIJ) MRI based on bone marrow oedema (BMO) and/or erosion in non-radiographic axial spondyloarthritis (nr-axSpA); to compare the performance of lesion-based criteria with global evaluation by expert readers...... clinical examination, pelvic radiography and laboratory values as having nr-axSpA (n=51), ankylosing spondylitis (n=34) or non-specific back pain (n=72). Four blinded readers assessed SIJ MRI, recording the presence/absence of SpA by concomitant global evaluation of T1-weighted spin echo (T1SE) and short τ...... inversion recovery (STIR) scans and, thereafter, whether BMO and/or erosion were present/absent in each SIJ quadrant of each MRI slice. We derived candidate lesion-based criteria based on the number of SIJ quadrants with BMO and/or erosion and calculated mean sensitivity and specificity for SpA. RESULTS...

  16. Comparison of lithium and the eutectic lead-lithium alloy, two candidate liquid metal breeder materials for self-cooled blankets

    International Nuclear Information System (INIS)

    Liquid metals are attractive candidates for both near-term and long-term fusion applications. The subjects of this comparison are the differences between the two candidate liquid metal breeder materials Li and LiPb for use in breeding blankets in the areas of neutronics, magnetohydrodynamics, tritium control, compatibility with structural materials, heat extraction system, safety and required research and development program. Both candidates appear to be promising for use in self-cooled breeding blankets which have inherent simplicity with the liquid metal serving as both breeder and coolant. Each liquid metal breeder has advantages and concerns associated with it, and further development is needed to resolve these concerns. The remaining feasibility question for both breeder materials is the electrical insulation between the liquid metal and the duct walls. Different ceramic coatings are required for the two breeders, and their crucial issues, namely self-healing of insulator cracks and tolerance to radiation-induced electrical degradation, have not yet been demonstrated. (orig.)

  17. Glass forming ability of iron based amorphous alloys depending on Mo, Cr and Co content

    International Nuclear Information System (INIS)

    The Fe41Co7Cr15Mo14C15B6Y2 multicomponent Fe-based alloy is known to be one of the best glass formers in iron-based systems and shows a critical casting thickness of 16 mm. The elements constituting the alloy have different influences on the glass forming ability. Therefore, the content of Mo, Cr and Co was systematically changed in the master alloy Fe77-x(Co,Cr,Mo)xC15B6Y2 to investigate how these three elements support the glassy microstructure. It was found that a certain content of Mo, Cr, and Co leads to a microstructure of amorphous matrix and α-Fe precipitates without any carbides.

  18. Crack growth rates for Ni--base alloys with the application to an operating BWR

    International Nuclear Information System (INIS)

    To perform adequate safety assessments of primary components in operating BWRs Crack Growth Rates (CGR) for Stress Corrosion Cracking in Normal Water Chemistry (NWC) as well as Hydrogen Water Chemistry (HWC) are needed. The data behind NUREG 0313 rev 2 was based on laboratory testing of sensitized stainless steels in oxygenated water. This so called NUREG-line overestimates CGRs for operating BWRs with respect to todays specification for water chemistry. In order to suggest new CGRs for Ni-base-alloys in the span from NWC to HWV we performed a literature review. Alloy 600 and welding alloys 182 and 82 were included in the search. The environments were NWC, 'partial' HWC and HWC

  19. Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation

    International Nuclear Information System (INIS)

    A surface severe plastic deformation (S2PD) method has been applied to bulk specimens of HASTELLOY C-2000 alloy, a nickel-base alloy. The mechanical properties of the processed C-2000 alloy were determined via tensile tests and Vickers hardness measurements, whereas the microstructure was characterized using scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. The improved tensile strength was related to the nanostructure at the surface region, the residual compressive stresses, and the work-hardened surface layer, all of which resulted from the S2PD process. To understand the contributions of these three factors, finite element modeling was performed. It was found that the improved tensile strength could be interpreted based on the contributions of nano-grains, residual stresses, and work hardening

  20. Cobalt base alloy surfacing. Influence of welding process on residual stress level

    International Nuclear Information System (INIS)

    Influence of welding conditions on alloy characteristics for wear resistant valves, cocks and fittings of nuclear power plants is studied. Three welding methods: oxyacetylene torch (OAT), plasma arc welding (PAW) and gas tungsten arc welding (TIG) are tested for welding hard cobalt base alloy (stellite 6) on two substrates (304 L and A 37). Parameters investigated are preheating temperature for PAW and TIG, dilution for PAW and flame type for OAT. Microstructure is dendritic with a solid solution Co Cr W and an interdentritic eutectic (the hard part). Hardness is more or less dilution dependent and slightly temperature dependent for preheating. Residual stress is measured by X-ray diffraction but application of this method is sometimes difficult because of grain size or cobalt base alloy texture

  1. Electron-phonon coupling in Ni-based binary alloys with application to displacement cascade modeling.

    Science.gov (United States)

    Samolyuk, G D; Béland, L K; Stocks, G M; Stoller, R E

    2016-05-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron-phonon (el-ph) coupling. The el-ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el-ph coupling. Thus, the el-ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10-20% in the alloys under consideration. PMID:27033732

  2. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    Science.gov (United States)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium–indium binary alloy (EGaIn) and gallium–indium–tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  3. Effect of boron addition on hydrogen embrittlement sensitivity in Fe-Ni based alloys

    International Nuclear Information System (INIS)

    In Fe-Ni based alloys, hydrogen embrittlement sensitivity is thought to correlate well with microstructure. The effect of boron addition on microstructure of Fe-Ni austenitic alloys has been investigated. It is found that 0.002 wt.% boron addition can significantly retard the formation of η phase, and only a few continuous carbides precipitate at the grain boundaries. As the boron content increases to 0.006 wt.%, carbides at grain boundaries become discontinuous, and are finer in size than that in the alloy with 0.002 wt.% boron. Significant decrease of the percent loss of reduction of area (RA) are seen in the alloys with boron contents lower than 0.006 wt.%. However, when further increasing the boron concentration to 0.01 wt.%, an increase in the percent loss of RA is found, due to the re-appearance of η phase and boride precipitation. Appropriate addition of boron can be an effective way of lowering hydrogen embrittlement sensitivity in Fe-Ni based alloys.

  4. Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    International Nuclear Information System (INIS)

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration. (paper)

  5. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  6. Cerium-Based, Intermetallic-Strengthened Aluminum Casting Alloy: High-Volume Co-product Development

    Science.gov (United States)

    Sims, Zachary C.; Weiss, D.; McCall, S. K.; McGuire, M. A.; Ott, R. T.; Geer, Tom; Rios, Orlando; Turchi, P. A. E.

    2016-07-01

    Several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanical properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.

  7. Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    Science.gov (United States)

    Samolyuk, G. D.; Béland, L. K.; Stocks, G. M.; Stoller, R. E.

    2016-05-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.

  8. Gilbert damping and anisotropic magnetoresistance in iron-based alloys

    Science.gov (United States)

    Berger, L.

    2016-07-01

    We use the two-current model of Campbell and Fert to understand the compositional dependence of the Gilbert damping parameter in certain iron alloys. In that model, spin-up and spin-down carriers have different resistivities ρ↑ and ρ↓. We emphasize the part of the Gilbert parameter, called Gsf, generated by spin-flip interband processes. Both Gsf and the anisotropic magnetoresistance Δρ are proportional to the square of the spin-orbit parameter, and also proportional to ρ↑. In bcc alloys of iron with V, Cr, Mo, etc. solutes on the left of iron in the periodic table, ρ↑ is increased by a scattering resonance (Gomes and Campbell, 1966, 1968). Then ρ↑, Δρ, and Gsf all exhibit a peak at the same moderate concentration of the solute. We find the best fit between this theory and existing experimental data of Gilbert damping for Fe-V epitaxial films at room temperature (Cheng, 2006; Scheck et al., 2007). At room temperature, the predicted Gsf peak is masked by a background arising from non-flip intraband processes. At elevated temperatures, the peak is expected to become more prominent, and less hidden in the background.

  9. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    International Nuclear Information System (INIS)

    Six alloys are being considered as possible materials for the fabrication of containers for the disposal of high-level radioactive waste. Three of these candidate materials are copper-based alloys: CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The other three are iron- to nickel-based austenitic materials: Types 304L and 316L stainless steels and Alloy 825. Radioactive waste will include spent-fuel assemblies from reactors as well as waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, the containers must be retrievable from the disposal site. Shortly after emplacement of the containers in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This radiation will promote the radiolytic decomposition of moist air to hydrogen. This volume surveys the available data on the effects of hydrogen on the six candidate alloys for fabrication of the containers. For copper, the mechanism of hydrogen embrittlement is discussed, and the effects of hydrogen on the mechanical properties of the copper-based alloys are reviewed. The solubilities and diffusivities of hydrogen are documented for these alloys. For the austenitic materials, the degradation of mechanical properties by hydrogen is documented. The diffusivity and solubility of hydrogen in these alloys are also presented. For the copper-based alloys, the ranking according to resistance to detrimental effects of hydrogen is: CDA 715 (best) > CDA 613 > CDA 102 (worst). For the austenitic alloys, the ranking is: Type 316L stainless steel ∼ Alloy 825 > Type 304L stainless steel (worst). 87 refs., 19 figs., 8 tabs

  10. Survey of degradation modes of candidate materials for high-level radioactive-waste disposal containers

    Energy Technology Data Exchange (ETDEWEB)

    Gdowski, G.E.; Bullen, D.B. (Science and Engineering Associates, Inc., Pleasanton, CA (USA))

    1988-08-01

    Six alloys are being considered as possible materials for the fabrication of containers for the disposal of high-level radioactive waste. Three of these candidate materials are copper-based alloys: CDA 102 (oxygen-free copper), CDA 613 (Cu-7Al), and CDA 715 (Cu-30Ni). The other three are iron- to nickel-based austenitic materials: Types 304L and 316L stainless steels and Alloy 825. Radioactive waste will include spent-fuel assemblies from reactors as well as waste in borosilicate glass and will be sent to the prospective site at Yucca Mountain, Nevada, for disposal. The waste-package containers must maintain substantially complete containment for at least 300 yr and perhaps as long as 1000 yr. During the first 50 yr after emplacement, the containers must be retrievable from the disposal site. Shortly after emplacement of the containers in the repository, they will be exposed to high temperatures and high gamma radiation fields from the decay of high-level waste. This radiation will promote the radiolytic decomposition of moist air to hydrogen. This volume surveys the available data on the effects of hydrogen on the six candidate alloys for fabrication of the containers. For copper, the mechanism of hydrogen embrittlement is discussed, and the effects of hydrogen on the mechanical properties of the copper-based alloys are reviewed. The solubilities and diffusivities of hydrogen are documented for these alloys. For the austenitic materials, the degradation of mechanical properties by hydrogen is documented. The diffusivity and solubility of hydrogen in these alloys are also presented. For the copper-based alloys, the ranking according to resistance to detrimental effects of hydrogen is: CDA 715 (best) > CDA 613 > CDA 102 (worst). For the austenitic alloys, the ranking is: Type 316L stainless steel {approx} Alloy 825 > Type 304L stainless steel (worst). 87 refs., 19 figs., 8 tabs.

  11. Equation of state and phase diagram of Fe-16Si alloy as a candidate component of Earth's core

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Rebecca A.; Campbell, Andrew J.; Caracas, Razvan; Reaman, Daniel M.; Dera, Przymyslaw; Prakapenka, Vitali B. (Ecole); (UC)

    2016-07-29

    The outer core of the Earth contains several weight percent of one or more unknown light elements, which may include silicon. Therefore it is critical to understand the high pressure–temperature properties and behavior of an iron–silicon alloy with a geophysically relevant composition (16 wt% silicon). We experimentally determined the melting curve, subsolidus phase diagram, and equations of state of all phases of Fe–16 wt%Si to 140 GPa, finding a conversion from the D03 crystal structure to a B2+hcp mixture at high pressures. The melting curve implies that 3520 K is a minimum temperature for the Earth's outer core, if it consists solely of Fe–Si alloy, and that the eutectic composition in the Fe–Si system is less than 16 wt% silicon at core–mantle boundary conditions. Comparing our new equation of state to that of iron and the density of the core, we find that for an Fe–Ni–Si outer core, 11.3±1.5 wt% silicon would be required to match the core's observed density at the core–mantle boundary. We have also performed first-principles calculations of the equations of state of Fe3Si with the D03 structure, hcp iron, and FeSi with the B2 structure using density-functional theory.

  12. Nickel based alloys compatibility with fuel salts for molten salt reactor with thorium and uranium support

    International Nuclear Information System (INIS)

    R and D on molten salt reactors (MSR) in Europe are concentrated now on fast/intermediate spectrum concepts which were recognised as long-term alternative to solid fuelled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarises results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salts on tellurium attack and to develop means of controlling tellurium cracking in the special Ni - based alloys recently developed for large power units: molten salt actinide recycler and transmuter (MOSART) and molten salt fast reactor (MSFR). Tellurium corrosion of Ni-based alloys was tested in the temperature range from 730 deg. C up to 800 deg. C in stressed and unloaded conditions with fuel LiF-BeF2-UF4 and LiF-BeF2-ThF4-UF4 salt mixtures at different [U(IV)]/[U(III)] ratios from 0.7 up to 500. Following Russian and French Ni-based alloys (in mass%): HN80M-VI (Mo-12, Cr-7.6, Nb-1.5), HN80MTY (Mo-13, Cr-6.8, Al-1.1, Ti-0.9), HN80MTW (Mo-9.4, Cr-7.0, Ti-1.7, W-5.5) and EM-721 (W-25.2, Cr-5.7, Ti-0.17) were used for the study in the corrosion facility. The HN80MTY alloy has shown the best resistance against Te cracking and after test mechanical properties. (authors)

  13. Quaternary alloys based on II-VI semiconductors

    CERN Document Server

    Tomashyk, Vasyl

    2014-01-01

    Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystems Based on CdSeSystems Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  14. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  15. The influence of thermomechanical treatment on structure of FeAl intermetallic phase-based alloys

    Directory of Open Access Journals (Sweden)

    I. Bednarczyk

    2008-08-01

    Full Text Available Purpose: The major problem restricting universal employment of intermetallic phase base alloy is their low plasticity which leads to hampering their development as construction materials. The following work concentrates on the analysis of microstructure and plasticity of ordered FeAl (B2 alloy during cold and hot deformation and rolling process.Design/methodology/approach: After casting and annealing, alloy specimens were subjected to axial-symmetric compression in the Gleeble 3800 simulator at temperatures ranging from 800, 900 and 1000°C at 0.1s-1 strain rate. In order to analyse the processes which take place during deformation, the specimens after deformation were intensely cooled with water. The process was conducted on the K -350 quarto rolling mill used for hot rolling of flat products. The process was conducted in some stages at temperature ranging from 1200-1000°C: Structural examination was carried out using light microscopy. The examination of the substructure was carried out by transmission electron microscopy (TEM.Findings: The research carried out enabled the understanding of the phenomena taking place during hot rolling of the investigated alloy. which has been also confirmed in plastometric studies conducted in the form of hot compression tests. The microstructure analyses applying optic and electron microscopy have revealed the structure reconstruction processes occurring in FeAl alloys during cold and hot deformation.Practical implications: The research carried out enabled the understanding of the phenomena taking place during deformation and annealing of the investigated alloy. The obtained sheets can be used as constructional elements working in complex stress fields, at a high temperature and corrosive environments. The results will constitute the basis for modelling the structural changes.Originality/value: The obtained results are vital for designing an effective thermo - mechanical processing technology for the

  16. A new web-based data mining tool for the identification of candidate genes for human genetic disorders.

    Science.gov (United States)

    van Driel, Marc A; Cuelenaere, Koen; Kemmeren, Patrick P C W; Leunissen, Jack A M; Brunner, Han G

    2003-01-01

    To identify the gene underlying a human genetic disorder can be difficult and time-consuming. Typically, positional data delimit a chromosomal region that contains between 20 and 200 genes. The choice then lies between sequencing large numbers of genes, or setting priorities by combining positional data with available expression and phenotype data, contained in different internet databases. This process of examining positional candidates for possible functional clues may be performed in many different ways, depending on the investigator's knowledge and experience. Here, we report on a new tool called the GeneSeeker, which gathers and combines positional data and expression/phenotypic data in an automated way from nine different web-based databases. This results in a quick overview of interesting candidate genes in the region of interest. The GeneSeeker system is built in a modular fashion allowing for easy addition or removal of databases if required. Databases are searched directly through the web, which obviates the need for data warehousing. In order to evaluate the GeneSeeker tool, we analysed syndromes with known genesis. For each of 10 syndromes the GeneSeeker programme generated a shortlist that contained a significantly reduced number of candidate genes from the critical region, yet still contained the causative gene. On average, a list of 163 genes based on position alone was reduced to a more manageable list of 22 genes based on position and expression or phenotype information. We are currently expanding the tool by adding other databases. The GeneSeeker is available via the web-interface (http://www.cmbi.kun.nl/GeneSeeker/). PMID:12529706

  17. Magnetic properties of two new uranium-based alloys: UAuCu4 and UPdCu4

    International Nuclear Information System (INIS)

    Two new uranium-based alloys UAuCu4 and UPdCu4 have been prepared and their magnetic properties studied. The NMR of the isotope 63Cu in these alloys suggests that they are well ordered ternary materials. There is a strong correlation between the occupancy of the (4c) sites in the structure and the relative size of the two non-uranium atoms in these alloys. (author)

  18. The (w)hole survey: An unbiased sample study of transition disk candidates based on Spitzer catalogs

    Science.gov (United States)

    van der Marel, N.; Verhaar, B. W.; van Terwisga, S.; Merín, B.; Herczeg, G.; Ligterink, N. F. W.; van Dishoeck, E. F.

    2016-08-01

    Understanding disk evolution and dissipation is essential for studies of planet formation. Transition disks, i.e., disks with large dust cavities and gaps, are promising candidates of active evolution. About two dozen candidates, selected by their spectral energy distribution (SED), have been confirmed to have dust cavities through millimeter interferometric imaging, but this sample is biased toward the brightest disks. The Spitzer surveys of nearby low-mass star-forming regions have resulted in more than 4000 young stellar objects. Using color criteria, we selected a sample of ~150 candidates and an additional 40 candidates and known transition disks from the literature. The Spitzer data were complemented by new observations at longer wavelengths, including new JCMT and APEX submillimeter photometry, and WISE and Herschel-PACS mid- and far-infrared photometry. Furthermore, optical spectroscopy was obtained and stellar types were derived for 85% of the sample, including information from the literature. The SEDs were fit to a grid of RADMC-3D disk models with a limited number of parameters: disk mass, inner disk mass, scale height and flaring, and disk cavity radius, where the latter is the main parameter of interest. About 72% of our targets possibly have dust cavities based on the SED. The derived cavity sizes are consistent with imaging/modeling results in the literature, where available. Trends are found with Ldisk over L∗ ratio and stellar mass and a possible connection with exoplanet orbital radii. A comparison with a previous study where color observables are used reveals large overlap between their category of planet-forming disks and our transition disks with cavities. A large number of the new transition disk candidates are suitable for follow-up observations with ALMA. Full Tables 4, 5, A.1-A.3, C.1, and D.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  19. Hydrogen-plasticity interactions in nickel and nickel base alloys

    International Nuclear Information System (INIS)

    We evaluate the different contributions of the hydrogen-dislocation interactions to the plasticity of fcc materials in order to feed predictive models of stress corrosion cracking. Static strain ageing experiments are used to quantify the hardening contribution of solute drag by dislocations to the flow stress. We demonstrate the role of hydrogen transport by dislocations on the fracture mechanism. We model the influence of the screening of the elastic field of dislocations by hydrogen on elementary plasticity mechanisms and we conclude that the decrease of the cross slip ability arises from the combined action of elastic and core effects. The testing of single crystals shows that the major effect is on the cross slip mechanism. Tensile tests on polycrystals enlighten the diversity of macroscopic responses observed in alloys. (author)

  20. Superconducting state parameters of indium-based binary alloys

    Indian Academy of Sciences (India)

    A M Vora; Minal H Patel; P N Gajjar; A R Jani

    2002-05-01

    Our well-recognized pseudopotential is used to investigate the superconducting state parameters viz; electron–phonon coupling strength , Coulomb pseudopotentialµ *, transition temperature c, isotope effective exponent and interaction strength 0 for the In1-Zn and In1-Sn binary alloys. We have incorporated six different types of local field correction functions, proposed by Hartree, Taylor, Vashistha–Singwi, Ichimaru–Utsumi, Farid et al and Sarkar et al to show the effect of exchange and correlation on the aforesaid properties. Very strong influence of the various exchange and correlation functions is concluded from the present study. The comparison with other such theoretical values is encouraging, which confirms the applicability of our model potential in explaining the superconducting state parameters of binary mixture.

  1. Characterization of hydrogen barrier coatings for titanium-base alloys

    International Nuclear Information System (INIS)

    The purpose of this study was to investigate the barrier efficiency of a thick thermal spray deposit on the α-titanium alloy, Ti-5Al-2.4Sn against hydrogen penetration. Therefore, a duplex coating has been applied by plasma spraying using a Sulzer Metco F4 gun. The selected duplex coating system consisted of a 0.1-0.2 mm thick tantalum bond layer and a chromium oxide top layer doped with 3 wt% titanium oxide. The achieved thickness of the top layer was about 0.6 mm. The coated specimens have been characterized with regard to bond strength, hardness and microstructure. Hydrogen charging experiments were performed in a Sievert's apparatus

  2. Experimental and Theoretical Investigation of Three Alloy 690 Mockup Components: Base Metal and Welding Induced Changes

    Directory of Open Access Journals (Sweden)

    Rickard R. Shen

    2014-01-01

    Full Text Available The stress corrosion cracking (SCC resistance of cold deformed thermally treated (TT Alloy 690 has been questioned in recent years. As a step towards understanding its relevancy for weld deformed Alloy 690 in operating plants, Alloy 690 base metal and heat affected zone (HAZ microstructures of three mockup components have been studied. All mockups were manufactured using commercial heats and welding procedures in order to attain results relevant to the materials in the field. Thermodynamic calculations were performed to add confidence in phase identification as well as understanding of the evolution of the microstructure with temperature. Ti(C,N banding was found in all materials. Bands with few large Ti(C,N precipitates had negligible effect on the microstructure, whereas bands consisting of numerous small precipitates were associated with locally finer grains and coarser M23C6 grain boundary carbides. The Ti(C,N remained unaffected in the HAZ while the M23C6 carbides were fully dissolved close to the fusion line. Cold deformed solution annealed Alloy 690 is believed to be a better representation of this region than cold deformed TT Alloy 690.

  3. Strengthening of Mg based alloy through grain refinement for orthopaedic application.

    Science.gov (United States)

    Nayak, Soumyaranjan; Bhushan, Bharat; Jayaganthan, R; Gopinath, P; Agarwal, R D; Lahiri, Debrupa

    2016-06-01

    Magnesium is presently attracting a lot of interest as a replacement to clinically used orthopaedic implant materials, due to its ability to solve the stress shielding problems, biodegradability and osteocompatibility. However, the strength of Mg is still lower than the requirement and it becomes worse after it starts degrading fast, while being exposed in living body environment. This research explores the effectiveness of 'grain refinement through deformation', as a tool to modify the strength (while keeping elastic modulus unaffected) of Mg based alloys in orthopaedic application. Hot rolled Mg-3wt% Zn alloy (MZ3) has been investigated for its potential in orthopaedic implant. Microstructure, mechanical properties, bio-corrosion properties and biocompatibility of the rolled samples are probed into. Grain size gets refined significantly with increasing amount of deformation. The alloy experiences a marked improvement in hardness, yield strength, ultimate tensile strength, strain and toughness with finer grain size. An increment in accelerated corrosion rate is noted with decreasing grain size, which is correlated to the increased grain boundary area and mechano-chemical dissolution. However, immersion test in simulated body fluid (SBF) reveals reduction in corrosion rate after third day of immersion. This was possible owing to precipitation of protective hydroxyapatite (HA) layer, formed out of the interaction of SBF and the alloy. More nucleation sites at the grain boundary for fine grained samples help in forming more HA and thus reduce the corrosion rate. Human osteosarcoma cells show less viability and adhesion on grain refined alloy. PMID:26745721

  4. Hydrogen absorption/desorption properties in the TiCrV based alloys

    Directory of Open Access Journals (Sweden)

    A. Martínez

    2012-10-01

    Full Text Available Three different Ti-based alloys with bcc structure and Laves phase were studied. The TiCr1.1V0.9, TiCr1.1V0.45Nb0.45 and TiCr1.1V0.9 + 4%Zr7Ni10 alloys were melted in arc furnace under argon atmosphere. The hydrogen absorption capacity was measured by using aparatus type Sievert's. Crystal structures, and the lattice parameters were determined by using X-ray diffraction, XRD. Microestructural analysis was performed by scanning electron microscope, SEM and electron dispersive X-ray, EDS. The hydrogen storage capacity attained a value of 3.6 wt. (% for TiCr1.1V0.9 alloy in a time of 9 minutes, 3.3 wt. (% for TiCr1.1V0.45Nb0.45 alloy in a time of 7 minutes and 3.6 wt. (% TiCr1.1V0.9 + 4%Zr7Ni10 with an increase of the hydrogen absorption kinetics attained in 2 minutes. This indicates that the addition of Nb and 4%Zr7Ni10 to the TiCrV alloy acts as catalysts to accelerate the hydrogen absorption kinetics.

  5. New high strength technologically ecological and expedient economically advantageous alloys on Fe-C base

    International Nuclear Information System (INIS)

    The paper presents framework a part of by now obtained results of the authors studies in the period 1967(68) - 2002 about possibilities for obtaining new high-strength and wear resistant cast alloys on, Fe-C base (complex alloyed steels and cast irons of different systems with different structure, reflected in over 125 articles, 15 inventions (patents) and other scientific studies. The paper includes summarized results and discussion. Key words: new austenite steels and cast irons, mechanical characteristics, wear resistance. (Original)

  6. An X-ray diffraction study of defect parameters in a Ti-base alloy

    Indian Academy of Sciences (India)

    G Karmaker; P Mukherjee; A K Meikap; S K Chattopadhyay; S K Chatterjee

    2001-12-01

    Detailed studies based on the well established method of Fourier line shape analysis have been made on the X-ray diffraction profile of hexagonal titanium alloy of nominal composition Ti–6.58% Al–3.16% Mo–1.81% Zr–0.08% Fe–0.012% N–0.0078% C. While deformation fault probability, , has been found to be quite high compared to that of pure titanium, the deformation growth fault parameter, , shows a negative value ruling out the presence of growth fault in this alloy in the deformed state.

  7. Low cycle fatigue life of two nickel-base casting alloys in a hydrogen environment

    International Nuclear Information System (INIS)

    Results of low cycle fatigue tests on alloy Mar-M-246 and Inconel 713 are presented. Based on the limited data, it was concluded that the Mar-M-246 material had a cyclic life in hydrogen that averaged three times higher than the alloy 713LC material for similar strain ranges. The hydrogen environment reduced life for both materials. The life reduction was more than an order of magnitude for the 713LC material. Porosity content of the cast specimens was as expected and was an important factor governing low cycle fatigue life

  8. Chemical durability and degradation mechanisms of HT9 based alloy waste forms with variable Zr content

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-30

    In Corrosion studies were undertaken on alloy waste forms that can result from advanced electrometallurgical processing techniques to better classify their durability and degradation mechanisms. The waste forms were based on the RAW3-(URe) composition, consisting primarily of HT9 steel and other elemental additions to simulate nuclear fuel reprocessing byproducts. The solution conditions of the corrosion studies were taken from an electrochemical testing protocol, and meant to simulate conditions in a repository. The alloys durability was examined in alkaline and acidic brines.

  9. Effect of TBC on oxidation behaviour of γ-TiAl based alloy

    OpenAIRE

    G. Moskal

    2007-01-01

    Purpose: The purpose of the research was identification of the influence of TBC coating system on oxidation resistance of TiAl based alloy during oxidation at temperature of 900°C and 950°C for 500h and 200h respectively.Design/methodology/approach: The APS technique was used to modify and improvement of oxidation resistance of TiAl intermetallic alloy. As a bond coat the NiCrAlY overlay coating was applied. The bond-coat provided a good bonding strength between matrix and ceramic top coat. T...

  10. Effect of cold work on initiation stage crack growth rate of nickel based alloys

    International Nuclear Information System (INIS)

    To investigate the effect of cold work on initiation stage crack growth rates of nickel based alloy, initiation stage crack growth rates were measured for simulated PWR primary water conditions using flat type specimens which were prepared from three different heats of alloy 600 and then 20 and 40% cold worked. Almost all data showed the stress had an increasing linear dependency on crack growth rate ; however there was some scattering of data and some materials showed a different tendency. Since yield strength was increased by cold work, for the same stress, the initiation stage crack growth rates were restrained or were not changed significantly by cold work. (author)

  11. Integrated Design and Rapid Development of Refractory Metal Based Alloys for Fossil Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, O.N.; King, P.E.; Gao, M.C.

    2008-07-01

    One common barrier in the development of new technologies for future energy generating systems is insufficiency of existing materials at high temperatures (>1150oC) and aggressive atmospheres (e.g., steam, oxygen, CO2). To overcome this barrier, integrated design methodology will be applied to the development of refractory metal based alloys. The integrated design utilizes the multi-scale computational methods to design materials for requirements of processing and performance. This report summarizes the integrated design approach to the alloy development and project accomplishments in FY 2008.

  12. Electronic aspects of the martensitic transition in Ni-Mn based Heusler alloys

    International Nuclear Information System (INIS)

    The martensitic transformation temperature Ms depends linearly on the valence electron concentration for Ni-Mn-X Heusler systems where X is a group III-group V element. However, the slopes of the linearity are different for alloys with different X species and increases either as X changes from Al to In (isoelectronic) or from In to Sb (increase in number of p electrons). We discuss the features in the Ms vs e/a diagram and the relative stability of the various crystallographic phases of Ni-Mn based Heusler alloys

  13. Structural and mechanical characteristics of some lead-free Cu-Sn based solder alloys

    OpenAIRE

    Mitovski Aleksandra M.; Balanović Ljubiša T.; Živković Dragana T.; Marjanović Šaša R.; Marjanović Bata R.; Novaković Slađana O.

    2008-01-01

    The results of structural and mechanical characteristics of lead-free Cu-Sn based solder alloys, produced in Company "11. mart" AD Srebrenica (Republic of Srpska), are presented in this paper. The results of investigation of samples - alloys CuSnl4, CuSnlFelAlO.5, CuSnlOFelAllMnO.5 and CuA110Fe3Mn produced by different processing methods, include the data obtained by optical microscopy and measurements of hardness, micro hardness and electroconductivity, in order to characterize mentioned all...

  14. Niobium-aluminum base alloys having improved, high temperature oxidation resistance

    Science.gov (United States)

    Hebsur, Mohan G. (Inventor); Stephens, Joseph R. (Inventor)

    1991-01-01

    A niobium-aluminum base alloy having improved oxidation resistance at high temperatures and consisting essentially of 48%-52% niobium, 36%-42% aluminum, 4%-10% chromium, 0%-2%, more preferably 1%-2%, silicon and/or tungsten with tungsten being preferred, and 0.1%-2.0% of a rare earth selected from the group consisting of yttrium, ytterbium and erbium. Parabolic oxidation rates, k.sub.p, at 1200.degree. C. range from about 0.006 to 0.032 (mg/cm.sup.2).sup.2 /hr. The new alloys also exhibit excellent cyclic oxidation resistance.

  15. Electrochemical machining of hard tungsten carbide base alloys in neutral solutions using anodal pulses imposition

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A.D.; Klepikov, R.P.; Moroz, I.I.

    1981-01-01

    The experiments carried out show that activating pulses of higher amplitude imposition on constant comparatively low voltage extends the possibility of anodic dissolution process control. It proves to be possible to select pulse and constant voltage parameters, allowing to decrease the passivation effect and conduct the process of electrochemical machining of hard tungsten carbide base alloys in neutral water solutions.

  16. Electrochemical machining of hard tungsten carbide base alloys in neutral solutions using anodal pulses imposition

    International Nuclear Information System (INIS)

    The experiments carried out show that activating pulses of higher amplitude imposition on constant comparatively low voltage extends the possibility of anodic dissolution process control. It proves to be possible to select pulse and constant voltage parameters, allowing to decrease the passivation effect and conduct the process of electrochemical machining of hard tungsten carbide base alloys in neutral water solutions

  17. Property enhancement of orthorhombic Ti2AlNb-based intermetallic alloys

    International Nuclear Information System (INIS)

    This paper provides an overview of our research efforts aimed at improving the room and high temperature mechanical properties of an orthorhombic Ti2AlNb-based Ti-22Al-27Nb intermetallic alloy by the microstructural and compositional modifications, and the dispersion of fine TiB particulates. Challenges in each of the activities is highlighted and discussed. (orig.)

  18. Heterogeneous Nb-Based Nuclei for the Grain Refinement of Al-Si Alloys

    Science.gov (United States)

    Bolzoni, L.; Hari Babu, N.

    2016-05-01

    Nb-based intermetallics are, generally, low-density high-temperature materials used for structural applications or cryogenic superconductors. In this work, we report the development of an Al(96)-Nb(2)-B(2) master alloy where in situ-formed micrometric Nb-based intermetallics (i.e. NbB2 and Al3Nb) are used for a completely different purpose: to promote the refinement of Al-Si alloys by taking advantage of enhanced heterogeneous nucleation. Nb-based intermetallics have the right characteristics, like low density, stability at high temperature and good lattice match, to be used as heterogeneous nucleation substrates. It was found that the addition of these Nb-based intermetallics permits the significant refinement of the microstructural features of the Al-Si alloy studied. The enhanced heterogeneous nucleation makes the grain size of the material far less dependent on the cooling rate, which is one of the critical parameters influencing the variation of the properties of the alloy.

  19. A distributed optical fiber sensor for hydrogen detection based on Pd, and Mg alloys

    NARCIS (Netherlands)

    Perrotton, C.; Slaman, M.; Javahiraly, N.; Schreuders, H.; Dam, B.; Meyrueis, P.

    2010-01-01

    An optical fiber containing structured hydrogen sensing points, consisting of Palladium and/or Magnesium alloys is proposed and characterized. The sensitive layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The sensor is based on a measurement technique whi

  20. Corrosion properties of plasma deposited nickel and nickel-based alloys

    Czech Academy of Sciences Publication Activity Database

    Voleník, Karel; Pražák, M.; Kalabisová, E.; Kreislová, K.; Had, J.; Neufuss, Karel

    2003-01-01

    Roč. 48, č. 3 (2003), s. 215-226. ISSN 0001-7043 R&D Projects: GA ČR GA106/99/0298 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma deposits, nickel , nickel -based alloys Subject RIV: JK - Corrosion ; Surface Treatment of Materials

  1. Magnetic damping constant in Co-based full heusler alloy epitaxial films

    International Nuclear Information System (INIS)

    Co-based full-Heusler alloys, such as Co2MnSi and Co2MnGe, are expected to be used as half-metallic ferromagnetic material, which has complete spin polarization. They are the most promising materials for realizing half-metallicity at room temperature due to their high Curie temperature. The optimization of the magnetic damping constant of ferromagnetic materials is extremely important for achieving high-speed magnetization switching and reducing critical current density for spin torque transfer switching. We have systematically investigated the magnetic damping constant in Co-based full Heusler alloy epitaxial films. We found that the Gilbert damping constant seems to be roughly proportional to the total density of states at the Fermi level (EF) by first principle calculation. A very small magnetic damping constant of 0.003 in the Co2Fe0.4Mn0.6Si epitaxial film was demonstrated. The small magnetic damping constant in Co2FexMn1−xSi films with x < 0.6 can be attributed to the half-metallicity of Heusler alloys. Co-based full Heusler alloys with both half-metallicity and small magnetic damping will be very useful for future applications based on spintronic devices. (paper)

  2. Hard recharging. Metallurgical characteristics and use properties of hard recharging deposited by based cobalt alloys melting

    International Nuclear Information System (INIS)

    Hard recharging with cobalt base alloys are used in different parts of nuclear power plants. This paper presents mechanical properties, wear, thermal shock and corrosion resistances of hard coatings according to RCC-M S8000 rules, and explains relations between code recommendations and uses characteristics. (A.B.). 9 figs., 4 tabs

  3. Corrosion behaviour, microstructure and phase transitions of Zn-based alloys

    Indian Academy of Sciences (India)

    A K Yildiz; M Kaplan

    2004-08-01

    This paper is aimed at investigating the corrosion behaviour, microstructure and phase transitions of Zn-based alloys with different compositions. The corrosion tests are carried out both in acidic medium using 1 N HCl solution and in temperature dependence of thermogravimetric analysis (TGA). In the two different media, in particular, the corrosion behaviour of Zn-based alloys with respect to Al and Si contents is examined, and microstructure in acidic and TGA and phase transformations in TGA are also studied. Corrosion mechanism in TGA is also examined in terms of oxidation parameters and activation energies. The study reveals that corrosion behaviour of Zn-based alloys in acidic medium shows sometimes an increase and sometimes a decrease with time due to Al content which assists in delaying the corrosion by forming a oxide layer on the surface of Zn-based alloys. This property does not appear in temperature dependence of TGA. Further, Si content appears to remain in main matrix without being affected by acidic solution. On the other hand, it is observed that in microstructure, AlO(Al2O3), ZnO oxides and Zn–Cu phase precipitations are formed in main matrix, grain boundaries and partially inside the grains.

  4. The analysis of Al-based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics

    OpenAIRE

    Starink, M.J.

    2004-01-01

    Differential scanning calorimetry (DSC) and isothermal calorimetry have been applied extensively to the analysis of light metals, especially Al based alloys. Isothermal calorimetry and differential scanning calorimetry are used for analysis of solid state reactions, such as precipitation, homogenisation, devitrivication and recrystallisation; and solid–liquid reactions, such as incipient melting and solidification, are studied by differential scanning calorimetry. In producing repeatable calo...

  5. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  6. Application of feal intermetallic phase matrix based alloys in the turbine components of a turbocharger

    Directory of Open Access Journals (Sweden)

    J. Cebulski

    2015-01-01

    Full Text Available This paper presents a possible application of the state-of-the-art alloys based on the FeAl intermetallic phases as materials for the manufacture of heat-proof turbine components in an automobile turbocharger. The research was aimed at determining the resistance to corrosion of Fe40Al5CrTiB alloy in a gaseous environment containing 9 % O2 + 0,2 % HCl + 0,08 % SO2 + N2. First the kinetics of corrosion processes for the considered alloy were determined at the temperatures of 900 °C, 1 000 °C and 1 100 °C, which was followed by validation under operating conditions. To do so, the tests were carried out over a distance of 20 000 km. The last stage involved examination of the surfaces after the test drive. The obtained results are the basis for further research in this field.

  7. The Degradation Interface of Magnesium Based Alloys in Direct Contact with Human Primary Osteoblast Cells.

    Directory of Open Access Journals (Sweden)

    Nezha Ahmad Agha

    Full Text Available Magnesium alloys have been identified as a new generation material of orthopaedic implants. In vitro setups mimicking physiological conditions are promising for material / degradation analysis prior to in vivo studies however the direct influence of cell on the degradation mechanism has never been investigated. For the first time, the direct, active, influence of human primary osteoblasts on magnesium-based materials (pure magnesium, Mg-2Ag and Mg-10Gd alloys is studied for up to 14 days. Several parameters such as composition of the degradation interface (directly beneath the cells are analysed with a scanning electron microscope equipped with energy dispersive X-ray and focused ion beam. Furthermore, influence of the materials on cell metabolism is examined via different parameters like active mineralisation process. The results are highlighting the influences of the selected alloying element on the initial cells metabolic activity.

  8. EFFECT OF TESTING ENVIRONMENT ON FRACTURING BEHAVIOR OF Fe3Si BASED ALLOY

    Institute of Scientific and Technical Information of China (English)

    J.H. Peng; G.L. Chen

    2003-01-01

    The mechanical behavior of Fe3Si based alloy with B2 structure was studied by tensionand fracture toughness test in various testing media. The fracture strength σb ofFe3Si alloy decreased in the following order: oxygen, air and hydrogen respectively.The fracture toughness in different testing environment showed that KiC in oxygenis 11.5±0.3MPa. m1/2, and is 8.6±0.4MPa. m1/2 in distilled water. The reductionof fracture toughness is contributed to the environmental reaction of Si with water.Addition of Al element in Fe3Si is not beneficial to improve the intrinsic ductility ofFe-14Si-3Al alloy. The scattering phenomenon of fracture strength was found, andexplained by fracture mechanics. It was found by means of SEM that the fracture modechanged from transgranular in oxygen to intergranular in hydrogen gas and distilledwater.

  9. Thermodynamics of several lewis-acid-base stabilized transition metal alloys

    Science.gov (United States)

    Gibson, John K.; Brewer, Leo; Gingerich, Karl A.

    1984-11-01

    High-temperature (1425 to 2750 K) thermodynamic activities of one or both components of twenty-five binary alloys of a group IVB-VIB element (Ti, Zr, Hf, Nb, Ta, or W) with a platinum group element (Ru, Os, Ir, Pd, Pt, or Au) have been determined by equilibrating the alloy with the appropriate carbide and graphite, equilibrating with the nitride and nitrogen gas, or measuring the partial vapor pressure(s) thermogravimetrically or mass spectrometrically. The extraordinary stability of this class of transition metal alloy is attributed to a generalized Lewis-acid-base interaction involving valence d electrons, and the results of these investigations are interpreted within the context of this effect. Among the conclusions made are that a non-spherically-symmetrical crystal field significantly reduces the bonding effectiveness of certain valence d orbitals; the effect of the extent of derealization of these orbitals is also considered.

  10. Brazeability of a 3003 Aluminum alloy with Al-Si-Cu-based filler metals

    Science.gov (United States)

    Tsao, L. C.; Weng, W. P.; Cheng, M. D.; Tsao, C. W.; Chuang, T. H.

    2002-08-01

    Al-Si-Cu-based filler metals have been used successfully for brazing 6061 aluminum alloy as reported in the authors’ previous studies. For application in heat exchangers during manufacturing, the brazeability of 3003 aluminum alloy with these filler metals is herein further evaluated. Experimental results show that even at such a low temperature as 550 °C, the 3003 alloys can be brazed with the Al-Si-Cu fillers and display bonding strengths that are higher than 77 MPa as well. An optimized 3003 joint is attained in the brazements with the innovative Al-7Si-20Cu-2Sn-1Mg filler metal at 575 °C for 30 min, which reveals a bonding strength capping the 3003 Al matrix.

  11. Oxidation behavior of multiphase Mo5SiB2 (T2)-based alloys at high temperatures

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two Mo5SiB2 (T2)-based alloys with nominal compositions of Mo-12.5Si-25B and Mo-14Si-28B (molar fraction, %)were prepared in an arc-melting furnace, and their oxidation kinetics from 1 000 to 1 300 ℃ were studied. The microstructures of the alloys were characterized by X-ray diffractometry(XRD) and scanning electron microscopy(SEM) with energy dispersive spectroscopy (EDS). The oxide scales of both alloys oxidized at 1 200 ℃ for 10 min, 2 h and 100 h were investigated by surface XRD and cross-sectional SEM-EDS. The results show that the matrix of both alloys consists of T2. The dispersions of Mo-12.5Si-25B alloy are Mo and Mo3Si, and the dispersions of Mo-14Si-28B alloy are Mo5Si3 (T1) and MoB. The cyclic oxidation kinetics data exhibit initial rapid mass loss followed by slow mass loss. The mass loss of Mo-12.5Si-25B alloy is much faster than that of Mo-14Si-28B alloy at 1 200 and 1 300 ℃. For 10 min exposure, both alloys form irregular and porous thin scale. For 2 h exposure, Mo-12.5Si-25B alloy forms irregular thin scale and the scale contains large cracks, and Mo-14Si-28B alloy forms sound and continuous scale. For 100 h exposure, Mo-12.5Si-25B and Mo-14Si-28B alloys form sound and continuous scale about 50-75 μm and 40-45 μm in thickness, respectively. The better oxidation resistance of Mo-14Si-28B alloy is due to a sound and continuous B-SiO2 layer formation in the early stage of oxidation.

  12. Identification of candidate target genes of pituitary adenomas based on the DNA microarray.

    Science.gov (United States)

    Zhou, Wei; Ma, Chun-Xiao; Xing, Ya-Zhou; Yan, Zhao-Yue

    2016-03-01

    The present study aimed to explore molecular mechanisms involved in pituitary adenomas (PAs) and to discover target genes for their treatment. The gene expression profile GSE4488 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using the Limma package and analyzed by two‑dimensional hierarchical clustering. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions of DEGs. Subsequently, the protein‑protein interaction (PPI) network was constructed using Cytoscape software. DEGs were then mapped to the connectivity map database to identify molecular agents associated with the underlying mechanisms of PAs. A total of 340 upregulated and 49 downregulated DEGs in PA samples compared with those in normal controls were identified. Hierarchical clustering analysis showed that DEGs were highly differentially expressed, indicating their aptness for distinguishing PA samples from normal controls. Significant gene ontology terms were positive regulation of immune system-associated processes for downregulated DEGs and skeletal system development for upregulated DEGs. Pathways significantly enriched by DEGs included extracellular matrix (ECM)‑receptor interaction, the Hedgehog (Hh) signaling pathway and neuroactive ligand‑receptor interaction. The PPI network was constructed with 117 nodes, 123 edges and CD44 and Gli2 as hub nodes. Furthermore, depudecin, a small molecule drug, was identified to be mechanistically associated with PA. The genes CD44 and Gli2 have important roles in the progression of PAs via ECM‑receptor interaction and the Hh signaling pathway and are therefore potential target genes of PA. In addition, depudecin may be a candidate drug for the treatment of PAs. PMID:26782791

  13. Ambient-temperature high damping capacity in TiPd-based martensitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dezhen [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Zhou, Yumei, E-mail: zhouyumei@mail.xjtu.edu.cn [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ding, Xiangdong [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Otsuka, Kazuhiro [Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan); Lookman, Turab [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Sun, Jun [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ren, Xiaobing [Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Ferroic Physics Group, National Institute for Materials Science, Tsukuba 305-0047, Ibaraki (Japan)

    2015-04-24

    Shape memory alloys (SMAs) have attracted considerable attention for their high damping capacities. Here we investigate the damping behavior of Ti{sub 50}(Pd{sub 50−x}D{sub x}) SMAs (D=Fe, Co, Mn, V) by dynamic mechanical analysis. We find that these alloys show remarkably similar damping behavior. There exists a sharp damping peak associated with the B2–B19 martensitic transformation and a high damping plateau (Q{sup −1}~0.02–0.05) over a wide ambient-temperature range (220–420 K) due to the hysteretic twin boundary motion. After doping hydrogen into the above alloys, a new relaxation-type damping peak appears in the martensite phase over 270–360 K. Such a peak is considered to originate from the interaction of hydrogen atoms with twin boundaries and the corresponding damping capacity (Q{sup −1}~0.05–0.09) is enhanced by roughly twice that of the damping plateau for each alloy. Moreover, the relaxation peaks are at higher temperatures for the TiPd-based alloys (270–370 K) than for the TiNi-based alloys (190–260 K). We discuss the influence of hydrogen diffusion, mobility of twin boundaries and hydrogen–twin boundary interaction on the temperature range of the relaxation peak. Our results suggest that a martensite, with appropriate values for twinning shear and hydrogen doping level, provides a route towards developing high damping SMAs for applications in desired temperature ranges.

  14. Unusual glass-forming ability of new Zr-Cu-based bulk glassy alloys containing an immiscible element pair

    International Nuclear Information System (INIS)

    We herein report the unusual glass-forming ability (GFA) of a new series of quinary Zr48Cu36-xNixAg8Al8 (048Cu36Ag8Al8 alloy. By cooper mold casting, an as-cast glassy rod with a diameter of 30 mm can be easily obtained for the representative alloy Zr48Cu32Ni4Ag8Al8. The possible reasons for the excellent GFA of the new quinary alloys with an immiscible element pair are discussed based on the atomic size distribution, chemical compatibility among the components and atomic structure of glassy alloys. (author)

  15. Qualification loop tests of cobalt-free hardfacing alloys

    International Nuclear Information System (INIS)

    AECL is conducting endurance tests on valves hard-faced with four cobalt-free alloys. The first phase of the program, in which PWR primary heat transport conditions were simulated in AECL's valve test loop, has reached the 1400 cycle mark. This represents approximately 70% of the target value of 2000 cycles. The candidate alloys are NOREM 01, NOREM 04, EB 5183 and EVERIT 50. One valve with Stellite 6 trim serves as the standard. Prior to loop testing, a baseline inaugural inspection was performed. During testing the loop was shut down at approximately 500 cycle intervals, and the valves were disassembled for examination. The examinations included seat leak tests, profilometry and nondestructive inspection. Corrosion coupons in the loop were used to monitor any material loss due solely to corrosion mechanisms. This interim progress report summarizes the examination results and the relative performance of the candidate alloys. The results to date indicate that, based upon the sliding were damage assessment and seat leakage test results, all the candidate alloys perform better than the Stellite 6 control sample. On the same basis, NOREM 04 and EB 5183 are the best of the candidate alloys; although there are only minor differences in performance among the four alloys at this time. A final assessment can only be made after the cycling tests are complete and the seats and discs have been destructively examined. 3 refs., 31 figs., 9 tabs

  16. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  17. Tsunami-HySEA: A GPU based model for the Italian candidate Tsunami Service Provider

    Science.gov (United States)

    Gonzalez Vida, Jose Manuel; Macias, Jorge; Castro, Manuel; de la Asuncion, Marc; Melini, Daniele; Romano, Fabrizio; Tonini, Roberto; Lorito, Stefano; Piatanesi, Alessio; Molinari, Irene

    2015-04-01

    Tsunami Service Providers (TSP), providing tsunami warnings in the framework of the systems coordinated by IOC/UNESCO worldwide, and other national tsunami warning centers, are striving to complement, or replace, decision matrices and pre-calculated tsunami scenario databases with FTRT (Faster Than Real Time) tsunami simulations. The aim is to increase the accuracy of tsunami forecast by assimilating the largest possible amount of data in quasi real time, and performing simulations in a few minutes wall-clock time, possibly including the coastal inundation stage. This strategy of direct real time computation, that could seem unfeasible a decade ago, it is now foreseeable thanks to the astonishingly recent increase in the computational power and bandwidth evolution of modern GPUs. The INGV in collaboration with the EDANYA Group (University of Málaga) are developing and implementing a FTRT Tsunami Simulation approach for the Italian candidate TSP, namely the Centro Allerta Tsunami (CAT), which is in pre-operational stage starting from 1 October 2014, in the 24/7 seismic monitoring room at INGV. The mandate of CAT is to provide warnings for potential tsunamis within the Mediterranean basin to its subscribers, in the framework of NEAMTWS (http://www.ioc-tsunami.org/index.php?option=com_content&view=article&id=70:neamtws-home&catid=9&Itemid=14&lang=es). CAT also performs global monitoring, for continuous testing, training, and validation purposes. The tsunami-HySEA model, developed by EDANYA Group, implements in the same code the three phases of an earthquake generated tsunami: generation, propagation and coastal inundation. At the same time it is implemented in nested meshes with different resolution and multi-GPU environment, which allows much faster than real time simulations. The challenge set by the Italian TSP for warning in the NEAMTWS region is twofold: to be able to reasonably constrain the earthquake source in the absence of deep sea tsunami sensors, and to

  18. Recognition-Based Pedagogy: Teacher Candidates' Experience of Deficit

    Science.gov (United States)

    Parkison, Paul T.; DaoJensen, Thuy

    2014-01-01

    This study seeks to introduce what we call "recognition-based pedagogy" as a conceptual frame through which teachers and instructors can collaboratively develop educative experiences with students. Recognition-based pedagogy connects the theories of critical pedagogy, identity politics, and the politics of recognition with the educative…

  19. Ni-Cr based dental alloys; Ni release, corrosion and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Reclaru, L., E-mail: lucien.reclaru@pxgroup.com [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Unger, R.E.; Kirkpatrick, C.J. [Institute for Pathology, REPAIR Lab, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr.1, D-55101 Mainz (Germany); Susz, C.; Eschler, P.-Y.; Zuercher, M.-H. [PX Holding S.A., Dep R and D Corrosion and Biocompatibility Group, Bd. des Eplatures 42, CH-2304 La Chaux-de-Fonds (Switzerland); Antoniac, I. [Materials Science and Engineering Faculty, Politehnica of Bucharest, 060042 Bucharest (Romania); Luethy, H. [Institute of Dental Materials Science and Technology, University of Basel, Hebelstrasse 3, CH-4056 Basel (Switzerland)

    2012-08-01

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10-15% for female adults and 1-3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni-Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni-Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: Black-Right-Pointing-Pointer Nickel released was higher than the limits imposed in EU in contact with the skin. Black-Right-Pointing-Pointer No direct relationship between the

  20. Ni–Cr based dental alloys; Ni release, corrosion and biological evaluation

    International Nuclear Information System (INIS)

    In the last years the dental alloy market has undergone dramatic changes for reasons of economy and biocompatibility. Nickel based alloys have become widely used substitute for the much more expensive precious metal alloys. In Europe the prevalence of nickel allergy is 10–15% for female adults and 1–3% for male adults. Despite the restrictions imposed by the EU for the protection of the general population in contact dermatitis, the use of Ni–Cr dental alloys is on the increase. Some questions have to be faced regarding the safety risk of nickel contained in dental alloys. We have collected based on many EU markets, 8 Ni–Cr dental alloys. Microstructure characterization, corrosion resistance (generalized, crevice and pitting) in saliva and the quantities of cations released in particular nickel and CrVI have been evaluated. We have applied non parametric classification tests (Kendall rank correlation) for all chemical results. Also cytotoxicity tests and an evaluation specific to TNF-alpha have been conducted. According to the obtained results, it was found that their behavior to corrosion was weak but that nickel release was high. The quantities of nickel released are higher than the limits imposed in the EU concerning contact with the skin or piercing. Surprisingly the biological tests did not show any cytotoxic effect on Hela and L929 cells or any change in TNF-alpha expression in monocytic cells. The alloys did not show any proinflammatory response in endothelial cells as demonstrated by the absence of ICAM-1 induction. We note therefore that there is really no direct relationship between the in vitro biological evaluation tests and the physico-chemical characterization of these dental alloys. Clinical and epidemiological studies are required to clarify these aspects. - Highlights: ► Nickel released was higher than the limits imposed in EU in contact with the skin. ► No direct relationship between the biological evaluation and chemical degradation.

  1. On the nature of the variation of martensitic transformation hysteresis and SME characteristics in Fe-Ni-base alloys

    International Nuclear Information System (INIS)

    The purpose of this paper is to summarize the various investigations, both by the authors and other works, concerning with the martensitic transformation and SME in Fe-Ni-base alloys. The thermal hysteresis dependence on the alloying elements and thermal treatments are surveyed. The contribution and effect on SME characteristics of widely used alloying elements such as Ti, Nb, Ni, Al, Co, Ta and peculiarities of thermal treatment are discussed. It is noted the main goal of these treatments is to reduce the symmetry of transformation by the ordering or precipitation of a fine coherent phase. The physical principles of transformation hysteresis manipulation in Fe-base alloys is discussed and it concluded that the thermal cycling behavior of Fe-base alloys is very complex and is not clearly understood at present. On the other hand, it is pointed out that thermal cycling is an effective method for control and improvement of SME in these alloys. It is concluded that Fe-base alloys are highly evolved shape memory materials-having a wide working range, good workability and are relatively cheap. In addition, the properties are easily controlled by suitably alloying, aging and thermal cycling. (orig.)

  2. Frenkel defects in Ni and Ni-base alloys

    International Nuclear Information System (INIS)

    The defect structure produced by low temperature (4K) electron irradiation in single crystals of Ni, Ni62Cu38 and Ni3 Fe was investigated by measurements of the diffuse scattering of X-rays (Huang Diffuse Scattering), the change of the lattice parameter and the change of the electrical resistivity: The volume relaxation and the structure of the self interstitial atom (SIA) is very similar for the alloys and the pure fcc metals. The interstitial clustering processes during stage I and II proceed progressively more slowly in Cu, Ni, NiCu and Ni3Fe respectively. In Ni3Fe even the di-interstitial seems immobile up to stage III. The formation of large vacancy agglomerates during stage III annealing is only observed with the pure metals Ni and Cu. Interstitial mobility during annealing in stage II contributes to the decomposition of NiCu but not to the ordering of Ni3Fe. There is an increase of order for highly ordered Ni3Fe (S = 0.7) during annealing in stage III and, within the errors, no change for samples with S = 0. (author)

  3. Hydrogen distribution in amorphous silicon and silicon based alloys

    International Nuclear Information System (INIS)

    The results of hydrogen evolution experiments on amorphous silicon alloys prepared by high frequency PECVD of gas mixtures containing SiH4, NH3, PH2, B2H6 are compared. Using a very low heating rate of 5 degree/min it is possible to resolve fine structure on the exodiffusion spectra. Three evolution processes are observed: (a) low temperature effusion due to included gas (b) mid temperature effusion due to 'clustered' hydrogen bonds (c) high temperature effusion due to 'isolated' hydrogen bonds In addition it is possible to oberve very fine structure 'puffing' due to the release of molecular hydrogen at mid to high temperature. Silicon and silicon nitride films have been annealed at low temperatures before the exodiffusion experiments and changes in the evolution spectra are observed, dependent on the annealing process. A scanning electron microscope study of the effect of high temperature heat treatment has also been undertaken. These results are correlated with infra-red absorption measurements and the influence of doping concentration and substrate character discussed. Under certain preparation conditions the films blister on heating and finally burst forming circular craters, and these effects are shown to be dependent on substrate material and intrinsic stress of the as-grown films

  4. The surface layer degradation of γ-TiAl phase based alloy

    Directory of Open Access Journals (Sweden)

    J. Małecka

    2013-05-01

    Full Text Available Purpose: The aim of the present research is to describe the chemical composition and microstructure of the surface layer of Ti-46Al-7Nb-0.7Cr-0,1Si-0.2Ni alloy after the test of isothermal oxidation in 9%O2+0.2%HCl+0.08%SO2+N2 during 250 h. Design/methodology/approach: The objectives were achieved using several techniques including conventional metallography, SEM, BSE, EDX. The oxides scales and their effects were investigated at temperatures 750ºC.Findings: This investigation confirms that the better protection of the substrate was determined using AlCrN coating.Research limitations/implications: The basic limitations concern alloys in a higher temperature and establish the oxidation kinetics of the analysed alloy as a function of time and temperature.Practical implications: One of practical outcomes is to select the coatings which guarantee the reduction of oxidation behavior. It is recommended to use alloys with AlCrN coating.Originality/value: Original value of the paper is assessing of the oxidation resistance of Ti-46Al-7Nb-0.7Cr-0.1Si–0.2Ni-based intermetallic alloy at the conditions combining high temperature and sulphur and chlorine compounds-containing atmosphere. The novelty of this research deals with the mechanism of oxidation at such boundary conditions. This knowledge can support the design of parts made of the intermetallic alloy. The problem considered is currently important for aeroplane and automotive industry, especially for gas turbine manufacturers.

  5. Research on CMT welding of nickel-based alloy with stainless steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Cold Metal Transfer (CMT) welding technique is a new welding technique introduced by Fronius company. CMT welding of nickel-based alloy with stainless steel was carried out using CuSi3 filler wire in this paper. Effects of welding parameters, including welding current, welding speed, etc, on weld surface appearance were tested. Microstructure and mechanical properties of CMT weld were studied. The results show that the thickness of interface reaction layer of the nickel-based alloy is 14.3μm, which is only 4.33% of base material. The weld is made up of two phases,α-copper and iron-based solid solution. Rupture occurs initially at the welded seam near the edge of stainless steel in shear test. The maximum shear strength of the CuSi3 welded joint is 184.9MPa.

  6. Evaluation of Candidate Measures for Home-Based Screening of Sleep Disordered Breathing in Taiwanese Bus Drivers

    Directory of Open Access Journals (Sweden)

    Hua Ting

    2014-05-01

    Full Text Available Background: Sleepiness-at-the-wheel has been identified as a major cause of highway accidents. The aim of our study is identifying the candidate measures for home-based screening of sleep disordered breathing in Taiwanese bus drivers, instead of polysomnography. Methods: Overnight polysomnography accompanied with simultaneous measurements of alternative screening devices (pulse oximetry, ApneaLink, and Actigraphy, heart rate variability, wake-up systolic blood pressure and questionnaires were completed by 151 eligible participants who were long-haul bus drivers with a duty period of more than 12 h a day and duty shifting. Results: 63.6% of professional bus drivers were diagnosed as having sleep disordered breathing and had a higher body mass index, neck circumference, systolic blood pressure, arousal index and desaturation index than those professional bus drivers without evidence of sleep disordered breathing. Simple home-based candidate measures: (1 Pulse oximetry, oxygen-desaturation indices by ≥3% and 4% (r = 0.87~0.92; (2 Pulse oximetry, pulse-rising indices by ≥7% and 8% from a baseline (r = 0.61~0.89; and (3 ApneaLink airflow detection, apnea-hypopnea indices (r = 0.70~0.70, based on recording-time or Actigraphy-corrected total sleep time were all significantly correlated with, and had high agreement with, corresponding polysomnographic apnea-hypopnea indices [(1 94.5%~96.6%, (2 93.8%~97.2%, (3 91.1%~91.3%, respectively]. Conversely, no validities of SDB screening were found in the multi-variables apnea prediction questionnaire, Epworth Sleepiness Scale, night-sleep heart rate variability, wake-up systolic blood pressure and anthropometric variables. Conclusions: The indices of pulse oximetry and apnea flow detection are eligible criteria for home-based screening of sleep disordered breathing, specifically for professional drivers.

  7. Application of a kernel-based online learning algorithm to the classification of nodule candidates in computer-aided detection of CT lung nodules

    International Nuclear Information System (INIS)

    Classification of the nodule candidates in computer-aided detection (CAD) of lung nodules in CT images was addressed by constructing a nonlinear discriminant function using a kernel-based learning algorithm called the kernel recursive least-squares (KRLS) algorithm. Using the nodule candidates derived from the processing by a CAD scheme of 100 CT datasets containing 253 non-calcified nodules or 3 mm or larger as determined by the consensus of two thoracic radiologists, the following trial were carried out 100 times: by randomly selecting 50 datasets for training, a nonlinear discriminant function was obtained using the nodule candidates in the training datasets and tested with the remaining candidates; for comparison, a rule-based classification was tested in a similar manner. At the number of false positives per case of about 5, the nonlinear classification method showed an improved sensitivity of 80% (mean over the 100 trials) compared with 74% of the rule-based method. (orig.)

  8. The electronic mechanism of the γ/γ' interface strength of Ir-based alloys

    International Nuclear Information System (INIS)

    The electronic structures of the γ/γ' interface for two-phase Ir-based alloys (Ir/Ir3Ta and Ir/Ir3Ti) have been investigated by performing first-principles quantum mechanics DMol3 (a type of density functional theory for molecules) calculations. The Mayer bond order (MBO) is used to represent the shear and cohesion strengths of the interface by a local sum of the horizontal and vertical MBOs. By comparison with those for single-crystal Ir, the results show that both the cohesive and shear strengths of the γ/γ' interface for the Ir/Ir3Ta alloy increase. The cohesive strength of the interface for the Ir/Ir3Ti alloy increases, whereas the shear strength of the interface for Ir/Ir3Ti decreases. The electron charge density, the Hirshfeld charge, and orbital charge transfers are also calculated and analysed. An electronic mechanism for the γ/γ' interface strength of Ir-based alloys is then suggested

  9. Fundamental aspects of corrosion on zirconium base alloys in water reactor environments

    International Nuclear Information System (INIS)

    The purpose of this meeting was to discuss the state of knowledge of zirconium alloy corrosion mechanisms. Forty-five participants from 16 countries attended the meeting, and 25 papers were presented and discussed. One additional paper was provided only in written form. The papers were presented in seven sub-sessions under the following headings: Electrochemistry, Coolant Chemistry Effects, Irradiation Effects, Characteristics of Zirconium Oxide, Effects of Alloying on Corrosion, Corrosion Modeling and Effect of Zirconium Base Metal Properties on Corrosion. There is still a need for a laboratory corrosion test that reliably predicts in-pile corrosion in BWR's and PWR's. This holds particularly if out-of-pile tests are used for developing new Zr base alloy compositions. The role of the precipitates and of the solute elements in the matrix has still to be clarified. As it appears, a combination of both influences is necessary to explain the mechanistic aspect of the corrosion of Zircaloy. It is clear that mechanistic understanding of zirconium alloy corrosion is still some way off, although a significant amount of progress has been made toward experimental determination of the micro-scale phenomena. The papers presented a status report of our knowledge of these corrosion mechanisms, but they also served to illustrate the fact that much of the work done to date has been phenomenological rather than mechanistic. The summaries of individual sessions detail the specific conclusions and recommendations made at the meeting. Refs, figs and tabs

  10. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N2, H2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  11. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  12. Potential and limits of water cooled divertor concepts based on monoblock design as possible candidates for a DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Richou, Marianne; Magaud, Philippe; Missirlian, Marc [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Visca, Eliseo [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, IT-00044 Frascati (Italy); Ridolfini, Vincenzo Pericoli [EFDA-CSU Garching, PPPT department, D-85748 Garching bei München (Germany)

    2013-10-15

    In this paper water-cooled divertor concepts based on tungsten monoblock design identified in previous studies as candidate for fusion power plant have been reviewed to assess their potential and limits as possible candidates for a DEMO concept deliverable in a short to medium term (“conservative baseline design”). The rationale and technology development assumptions that have led to their selection are revisited taking into account present factual information on reactor parameters, materials properties and manufacturing technologies. For that purpose, main parameters impacting the divertor design are identified and their relevance discussed. The state of the art knowledge on materials and relevant manufacturing techniques is reviewed. Particular attention is paid to material properties change after irradiation; phenomenon thresholds (if any) and possible operating ranges are identified (in terms of temperature and damage dose). The suitability of various proposed heat sink/structural and sacrificial layer materials, as proposed in the past, are re-assessed (e.g. with regard to the possibility of reducing peak heat flux and/or neutron radiation damages). As a result, potential and limits of various proposed concepts are highlighted, ranges in which they could operate (if any) defined and possible improvements are proposed. Identified missing point in materials database and/or manufacturing techniques knowledge that should be uppermost investigated in future R and D activities are reported. This work has been carried out in the frame of EFDA PPPT Work Programme activities.

  13. Potential and limits of water cooled divertor concepts based on monoblock design as possible candidates for a DEMO reactor

    International Nuclear Information System (INIS)

    In this paper water-cooled divertor concepts based on tungsten monoblock design identified in previous studies as candidate for fusion power plant have been reviewed to assess their potential and limits as possible candidates for a DEMO concept deliverable in a short to medium term (“conservative baseline design”). The rationale and technology development assumptions that have led to their selection are revisited taking into account present factual information on reactor parameters, materials properties and manufacturing technologies. For that purpose, main parameters impacting the divertor design are identified and their relevance discussed. The state of the art knowledge on materials and relevant manufacturing techniques is reviewed. Particular attention is paid to material properties change after irradiation; phenomenon thresholds (if any) and possible operating ranges are identified (in terms of temperature and damage dose). The suitability of various proposed heat sink/structural and sacrificial layer materials, as proposed in the past, are re-assessed (e.g. with regard to the possibility of reducing peak heat flux and/or neutron radiation damages). As a result, potential and limits of various proposed concepts are highlighted, ranges in which they could operate (if any) defined and possible improvements are proposed. Identified missing point in materials database and/or manufacturing techniques knowledge that should be uppermost investigated in future R and D activities are reported. This work has been carried out in the frame of EFDA PPPT Work Programme activities

  14. The creep Kinetics of sand cat zinc-based alloys no. 2, ACuZinc5, and ACuzinc10

    International Nuclear Information System (INIS)

    Compressive creep tests have been carried out on three sand cast zinc-rich alloys No. 2 (Zn-4% Al-2.8% Cu 0.03% Mg), ACuZinc5 (Zn-3% Al-5.2% Cu-0.04% Mg) and ACuZinc10 (Zn-3.5% Al-9.3% Cu-0.03% Mg) in the stress range 20 to 100 MPa, and at temperatures from 70 to 160 deg. centigrade. The tests were performed on a standard weight lever arm compressive creep machine. Alloy No. 2 is a conventional zinc alloy, whereas ACuZinc5 and ACuZinc10 belong to a family of new, GM-patented, high performance ternary zin-copper-aluminium alloys which are suitable for manufacturing net shape die castings. Along with creep, other properties of ACuZinc alloys are claimed to be better than conventional zinc alloys No. 3 and No. 5 and ZA alloys, i.e. ZA.8, ZA.12 and ZA.27. A parametric relationship was obeyed, of the form:In t=C-n(In sigma)+Q/RTm where C is a constant, sigma the applied stress, t time of test, n the stress exponent, Q the activation energy, R the gas constant, and T is the absolute temperature. The primary creep contraction was generally found to increase with increasing copper content, but in a non-linear fashion. The secondary creep rates of alloy No. 2 were slightly lower than those of ACuZinc5 and ACuZinc10. Based on the above equation, continuous design stresses were calculated under different testing conditions which showed that both ACuZinc alloys were inferior in creep strength to alloy No.2 due to its lower secondary creep rates. The results and microstructure of alloys also showed that in all three alloys, the creep-controlling mechanism is the dislocation climb over second-phase (Epsilon) particles. (author)

  15. Development of an Electromagnetic Wave Shielding Textile by Electroless Ni-Based Alloy Plating

    OpenAIRE

    Sonehara, Makoto; Noguchi, Shin; Kurashina, Tadashi; Sato, Toshiro; YAMASAWA, Kiyohito; Miura, Yoshimasa

    2009-01-01

    A polyester nonwoven textile with Ni-based alloy coating was fabricated, and the effect of electromagnetic wave shielding was evaluated. The Ni-based was coated by electroless plating on the textile. The electromagnetic wave shielding effect of the textile with Ni-B coating was about 99.98% over the induction range of 6-13 GHz. Because the textile has thin, light, flexible, and breathable characteristics, it will be versatile for the various electromagnetic wave shielding applications.

  16. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    Science.gov (United States)

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  17. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    Science.gov (United States)

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-08-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  18. Thermodynamic prediction of thixoformability in alloys based on the Al-Si-Cu and Al-Si-Cu-Mg systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Atkinson, H.V. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Jones, H. [Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2005-08-15

    Most commercial semi-solid processing (of which thixoforming is one type) utilises the conventional casting alloys A356 and A357. There is, however, a demand to widen the range of alloys, including those with higher performance which tend to show poor characteristics for thixoforming. Thermodynamic calculation packages, such as MTDATA, provide a tool for predicting thixoformability. Here, the effects of compositional variations, in particular the effect of added copper on the thixoformability of alloy A356 and the effect of added silicon on the thixoformability of alloy 2014, have been investigated using MTDATA thermodynamic and phase equilibrium software combined with the MTAL database. Criteria for thixoformability are identified and a range of alloy compositions based on Al-Si-Cu and Al-Si-Cu-Mg evaluated in relation to these criteria. Compositions which satisfy these criteria include: 308 (Al-5.5Si-4.5Cu); 319 (Al-6Si-3.5Cu); 238 (Al-10Cu-4Si-0.3Mg); 355 (Al-5Si-1.3Cu-0.5Mg); 2014 based alloys Al-4.4Cu-0.5Mg-(4-6)Si; and a range of alloys (7.5 Si + Cu 9 and 1.5 Si/Cu 2.33) and alloys (9 < Si + Cu 10 and Si/Cu = 1.5) based on the Al-Si-Cu-Mg system.

  19. The kinetics of phase transformations of undercooled austenite of the Mn-Ni iron based model alloy

    Directory of Open Access Journals (Sweden)

    E. Rożniata

    2011-12-01

    Full Text Available Purpose: Present work corresponds to the research on the kinetics of phase transformations of undercooled austenite of Mn-Ni iron based model alloy. The kinetics of phase transformations of undercooled austenite of investigated alloy was presented on CCT diagram (continuous cooling transformation. Also the methodology of a dilatometric samples preparation and the method of the critical points determination were described.Design/methodology/approach: The austenitising temperature was defined in a standard way i.e. 30-50°C higher than Ac3 temperature for model alloy. A technique of full annealing was proposed for the model alloy. The CCT diagrams were made on the basis of dilatograms recorded for samples cooled at various rates. The microstructure of each dilatometric sample was photographed after its cooling to the room temperature and the hardness of the samples was measured.Findings: The test material was a Mn-Ni hypoeutectoid iron based alloy. The microstructure of test Mn-Ni alloy on CCT diagram changes depending on the cooling rate. At the cooling rates of 10°C/s and 5°C/s there is ferrite in Widmannstätten structure present in the structure of tested alloy.Research limitations/implications: The new Mn-Ni iron based model alloy and a new CCT diagram.Practical implications: The paper contains a description of one from a group of iron based model alloys with 0.35-0.40% carbon content. According to PN-EN 10027 standard this steel should have a symbol 38MnNi6-4.Originality/value: The new Mn-Ni iron based model alloy.

  20. Problem-Based Learning in the Educational Psychology Classroom: Bahraini Teacher Candidates' Experience

    Science.gov (United States)

    Razzak, Nina Abdul

    2012-01-01

    There was a concern from faculty at Bahrain Teachers' College that undergraduate Bahraini students lack the necessary competencies needed for success in educational contexts that are conducive to active, student-centered learning. It was decided that the students be introduced to a problem-based learning (PBL) strategy in one of their educational…

  1. Usability of a Web-Based School Experience System: Opinions of IT Teachers and Teacher Candidates

    Science.gov (United States)

    Genç, Zülfü

    2015-01-01

    With advances in information and communication technologies, the classical nature of educational institutions has changed. One innovative effort within teacher training is the Web-Based School Experience System (WBSES) developed by the researcher. In this study, the usability of an existing WBSES is evaluated from both teachers' (n = 13) and…

  2. The resistance to embrittlement by a hydrogen environment of selected high strength iron-manganese base alloys

    Science.gov (United States)

    Benson, R. B., Jr.; Kim, D. K.; Atteridge, D.; Gerberich, W. W.

    1974-01-01

    Fe-16Mn and Fe-25Mn base alloys, which had been cold worked to yield strength levels of 201 and 178 KSI, were resistant to degradation of mechanical properties in a one atmosphere hydrogen environment at ambient temperature under the loading conditions employed in this investigation. Transmission electron microscopy established that bands of epsilon phase martensite and fcc mechanical twins were formed throughout the fcc matrix when these alloys were cold worked. In the cold worked alloys a high density of crystal defects were observed associated with both types of strain induced structures, which should contribute significantly to the strengthening of these alloys. High strength iron base alloys can be produced which appear to have some resistance to degradation of mechanical properties in a hydrogen environment under certain conditions.

  3. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    International Nuclear Information System (INIS)

    Heulser alloys Fe2Cr1−xCoxSi (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 106 erg/cm3. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe2CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application

  4. High tunneling magnetoresistance ratio in perpendicular magnetic tunnel junctions using Fe-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Pu, E-mail: Vicky-sg1015@hotmail.com [Department of Electrical and Computer Engineering, National University of Singapore (Singapore); Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Lim, Sze-Ter; Han, Gu-Chang, E-mail: HAN-Guchang@dsi.a-star.edu.sg [Data Storage Institute, Agency for Science, Technology and Research - A*STAR (Singapore); Teo, Kie-Leong, E-mail: eleteokl@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore (Singapore)

    2015-12-21

    Heulser alloys Fe{sub 2}Cr{sub 1−x}Co{sub x}Si (FCCS) with different Co compositions x have been predicted to have high spin polarization. High perpendicular magnetic anisotropy (PMA) has been observed in ultra-thin FCCS films with magnetic anisotropy energy density up to 2.3 × 10{sup 6 }erg/cm{sup 3}. The perpendicular magnetic tunnel junctions (p-MTJs) using FCCS films with different Co compositions x as the bottom electrode have been fabricated and the post-annealing effects have been investigated in details. An attractive tunneling magnetoresistance ratio as high as 51.3% is achieved for p-MTJs using Fe{sub 2}CrSi (FCS) as the bottom electrode. The thermal stability Δ can be as high as 70 for 40 nm dimension devices using FCS, which is high enough to endure a retention time of over 10 years. Therefore, Heusler alloy FCS is a promising PMA candidate for p-MTJ application.

  5. Candidate Materials Evaluation for Supercritical Water-Cooled Reactor

    International Nuclear Information System (INIS)

    Final technical report on the corrosion, stress corrosion cracking, and radiation response of candidate materials for the supercritical water-cooled reactor concept. The objective of the proposed research was to investigate degradation of materials in the supercritical water environment (SCW). First, representative alloys from the important classes of candidate materials were studied for their corrosion and stress-corrosion cracking (SCC) resistance in supercritical water. These included ferritic/martensitic (F/M) steels, austenitic stainless steels, and Ni-base alloys. Corrosion and SCC tests were conducted at various temperatures and exposure times, as well as in various water chemistries. Second, emerging plasma surface modification and grain boundary engineering technologies were applied to modify the near surface chemistry, microstructure, and stress-state of the alloys prior to corrosion testing. Third, the effect of irradiation on corrosion and SCC of alloys in the as-received and modified/engineered conditions were examined by irradiating samples using high-energy protons and then exposing them to SCW

  6. Qualification of new filler metal made of high chromium content nickel base alloy

    International Nuclear Information System (INIS)

    A study has been carried out by EDF and FRAMATOME in the context of the French Association for design and manufacturing rules of nuclear power boiler's equipment, to research then qualify filler metals dedicated to the welding of the new nickel base including 30 % chromium alloy components of PWR. The aim is to assess their weldability and their stress corrosion behaviour in the conditions prevailing in the primary cooling system of PWR and to compare with products generally used. Moreover, numerous qualification tests have been carried out to verify that such metals meet the criteria accepted in the RCC-M code. Results allowed to qualify some filler metals made of nickel base alloy of qualify equivalent to the one of NC30Fe including 30 % chromium base metals. These metals are at present time used in manufacturing. (authors). 5 figs

  7. Amplicon-based metagenomics identified candidate organisms in soils that caused yield decline in strawberry.

    Science.gov (United States)

    Xu, Xiangming; Passey, Thomas; Wei, Feng; Saville, Robert; Harrison, Richard J

    2015-01-01

    A phenomenon of yield decline due to weak plant growth in strawberry was recently observed in non-chemo-fumigated soils, which was not associated with the soil fungal pathogen Verticillium dahliae, the main target of fumigation. Amplicon-based metagenomics was used to profile soil microbiota in order to identify microbial organisms that may have caused the yield decline. A total of 36 soil samples were obtained in 2013 and 2014 from four sites for metagenomic studies; two of the four sites had a yield-decline problem, the other two did not. More than 2000 fungal or bacterial operational taxonomy units (OTUs) were found in these samples. Relative abundance of individual OTUs was statistically compared for differences between samples from sites with or without yield decline. A total of 721 individual comparisons were statistically significant - involving 366 unique bacterial and 44 unique fungal OTUs. Based on further selection criteria, we focused on 34 bacterial and 17 fungal OTUs and found that yield decline resulted probably from one or more of the following four factors: (1) low abundance of Bacillus and Pseudomonas populations, which are well known for their ability of supressing pathogen development and/or promoting plant growth; (2) lack of the nematophagous fungus (Paecilomyces species); (3) a high level of two non-specific fungal root rot pathogens; and (4) wet soil conditions. This study demonstrated the usefulness of an amplicon-based metagenomics approach to profile soil microbiota and to detect differential abundance in microbes. PMID:26504572

  8. High-entropy alloy: challenges and prospects

    Directory of Open Access Journals (Sweden)

    Y.F. Ye

    2016-07-01

    Full Text Available High-entropy alloys (HEAs are presently of great research interest in materials science and engineering. Unlike conventional alloys, which contain one and rarely two base elements, HEAs comprise multiple principal elements, with the possible number of HEA compositions extending considerably more than conventional alloys. With the advent of HEAs, fundamental issues that challenge the proposed theories, models, and methods for conventional alloys also emerge. Here, we provide a critical review of the recent studies aiming to address the fundamental issues related to phase formation in HEAs. In addition, novel properties of HEAs are also discussed, such as their excellent specific strength, superior mechanical performance at high temperatures, exceptional ductility and fracture toughness at cryogenic temperatures, superparamagnetism, and superconductivity. Due to their considerable structural and functional potential as well as richness of design, HEAs are promising candidates for new applications, which warrants further studies.

  9. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Seyyed Aghamiri, S.M. [Department of Materials Engineering, Tarbiat Modares University, Tehran 14115-143 (Iran, Islamic Republic of); Shahverdi, H.R., E-mail: Shahverdi@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, Tehran 14115-143 (Iran, Islamic Republic of); Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S. [Material Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo 060-8626 (Japan); Okuda, T. [Kobelco Research Institute Ltd., Kobe 651-2271 (Japan)

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  10. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement

    International Nuclear Information System (INIS)

    Cobalt–chromium–molybdenum (CoCrMo) alloys are widely used in total hip and knee joint replacement, due to high mechanical properties and resistance to wear and corrosion. They are able to form efficient artificial joints by means of coupling metal-on-polymer or metal-on-metal contacts. However, a high concentration of stress and direct friction between surfaces leads to the formation of polyethylene wear debris and the release of toxic metal ions into the human body, limiting, as a consequence, the lifetime of implants. The aim of this research is a surface modification of CoCrMo alloys in order to improve their biocompatibility and to decrease the release of metal ions and polyethylene debris. Thermal treatment in molten salts was the process employed for the deposition of tantalum-enriched coating. Tantalum and its compounds are considered biocompatible materials with low ion release and high corrosion resistance. Three different CoCrMo alloys were processed as substrates. An adherent coating of about 1 μm of thickness, with a multilayer structure consisting of two tantalum carbides and metallic tantalum was deposited. The substrates and modified layers were characterized by means of structural, chemical and morphological analysis. Moreover nanoindentation, scratch and tribological tests were carried out in order to evaluate the mechanical behavior of the substrates and coating. The hardness of the coated samples increases more than double than the untreated alloys meanwhile the presence of the coating reduced the wear volume and rate of about one order of magnitude. - Highlights: ► Thermal treatment in molten salts deposits a Ta-based coating on Co-based alloys. ► Coating is composed by one or two tantalum carbides and/or metallic tantalum. ► The coating structure depends on thermal temperature and substrates carbon content. ► Coating is able to enhance biocompatibility, wear resistance and hardness.

  11. Novel bioactive Co-based alloy/FA nanocomposite for dental applications

    Directory of Open Access Journals (Sweden)

    Mohammadhossein Fathi

    2012-01-01

    Full Text Available Background: Dental cobalt base alloys are biocompatible dental materials and have been widely used in dentistry. However, metals are bioinert and may not present bioactivity in human body. Bioactivity is the especial ability to interact with human body and make a bonding to soft and hard tissues. The aim of the present research was fabrication and bioactivity evaluation of novel cobalt alloy/Fluorapatite nanocomposite (CoA/FaNC with different amounts of Fluorapatite (FA nanopowder. Materials and Methods: Co-Cr-Mo alloy (ASTM F75 powder was prepared and mixed in a planetary ball mill with different amounts of FA nanopowders (10, 15, 20% wt. Prepared composite powders were cold pressed and sintered at 1100°C for 4 h. X-ray diffraction (XRD, scanning electron microscopy and transition electron microscopy techniques were used for phase analysis, crystallite size determination of FA and also for phase analysis and evaluation of particle distribution of composites. Bioactivity behavior of prepared nanocomposites was evaluated in simulated body fluid (SBF for 1 up to 28 days. Results: Results showed that nucleus of apatite were formed on the surface of the prepared CoA/FaNC during 1 up to 28 days immersion in the SBF solution. On the other hand, CoA/FaNC unlike Co-base alloy possessed bone-like apatite-formation ability. Conclusion: It was concluded that bioinert Co-Cr-Mo alloy could be successfully converted into bioactive nanocomposite by adding 10, 15, 20 wt% of FA nano particles.

  12. Stress corrosion cracking of nickel base alloys in PWR primary water

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) of nickel base alloys and associated weld metals in primary water is one of the major concerns for pressurized water reactors (PWR). Since the 90's, highly cold-worked stainless steels (non-sensitized) were also found to be susceptible to SCC in PWR primary water ([1], [2], [3]). In the context of the life extension of pressurized water reactors, laboratory studies are performed in order to evaluate the SCC behaviour of components made of nickel base alloys and of stainless steels. Some examples of these laboratory studies performed at CEA will be given in the talk. This presentation deals with both initiation and propagation of stress corrosion cracks. The aims of these studies is, on one hand, to obtain more data regarding initiation time or crack growth rate and, one the other hand, to improve our knowledge of the SCC mechanisms. The aim of these approaches is to model SCC and to predict components life duration. Crack growth rate (CGR) tests on Alloy 82 with and without post weld heat treatment are performed in PWR primary water (Figure 1). The heat treatment seems to be highly beneficial by decreasing the CGR. This result could be explained by the effect of thermal treatment on the grain boundary nano-scopic precipitation in Alloy 82 [4]. The susceptibility to SCC of cold worked austenitic stainless steels is also studied. It is shown that for a given cold-working procedure, SCC susceptibility increases with increasing cold-work ([2], [5]). Despite the fact that the SCC behaviour of Alloy 600 has been widely studied for many years, recent laboratory experiments and analysis ([6], [7], [8]) showed that oxygen diffusion is not a rate-limiting step in the SCC mechanism and that chromium diffusion in the bulk close the crack tip could be a key parameter. (authors)

  13. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement

    Energy Technology Data Exchange (ETDEWEB)

    Balagna, C., E-mail: cristina.balagna@polito.it [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy); Faga, M.G. [Istituto di Scienza e Tecnologia dei Materiali Ceramici, Consiglio Nazionale delle Ricerche, Strada delle Cacce 73, 10135 Torino (Italy); Spriano, S. [Institute of Materials Engineering and Physics, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24,10129 Torino (Italy)

    2012-05-01

    Cobalt-chromium-molybdenum (CoCrMo) alloys are widely used in total hip and knee joint replacement, due to high mechanical properties and resistance to wear and corrosion. They are able to form efficient artificial joints by means of coupling metal-on-polymer or metal-on-metal contacts. However, a high concentration of stress and direct friction between surfaces leads to the formation of polyethylene wear debris and the release of toxic metal ions into the human body, limiting, as a consequence, the lifetime of implants. The aim of this research is a surface modification of CoCrMo alloys in order to improve their biocompatibility and to decrease the release of metal ions and polyethylene debris. Thermal treatment in molten salts was the process employed for the deposition of tantalum-enriched coating. Tantalum and its compounds are considered biocompatible materials with low ion release and high corrosion resistance. Three different CoCrMo alloys were processed as substrates. An adherent coating of about 1 {mu}m of thickness, with a multilayer structure consisting of two tantalum carbides and metallic tantalum was deposited. The substrates and modified layers were characterized by means of structural, chemical and morphological analysis. Moreover nanoindentation, scratch and tribological tests were carried out in order to evaluate the mechanical behavior of the substrates and coating. The hardness of the coated samples increases more than double than the untreated alloys meanwhile the presence of the coating reduced the wear volume and rate of about one order of magnitude. - Highlights: Black-Right-Pointing-Pointer Thermal treatment in molten salts deposits a Ta-based coating on Co-based alloys. Black-Right-Pointing-Pointer Coating is composed by one or two tantalum carbides and/or metallic tantalum. Black-Right-Pointing-Pointer The coating structure depends on thermal temperature and substrates carbon content. Black-Right-Pointing-Pointer Coating is able to

  14. X-ray residual stress measurement on weld metal of nickel based alloy

    International Nuclear Information System (INIS)

    Residual stress on the weld metal of nickel based alloy was evaluated through x-ray diffraction and metallurgical study of the microstructure. Weld metal specimens were prepared from Alloy182 (JIS DNiCrFe-3) and Alloy132 (JIS DNiCrFe-1J) deposited on a steel plate. X-ray diffraction results show a strong [100] preferred orientation nearly normal to the surface of the weld metal. Crystallographic consideration predicts that dominant 311 diffractions appear around 25.2 and 72.5 degrees of ψ angle. For each diffraction, the peak shift was measured at the ψ angle showing the maximum diffraction intensity, using the side-inclination method (ψ-goniometer method) with a Mn x-ray tube and a PSPC (position sensitive proportional counter). The residual stress was determined by the peak shifts according to the two tilt method. The x-ray stress constant, K, on Alloy182 was determined experimentally. The depth profile of the residual stress was measured on the ground specimens with and without laser peening. Tensile residual stress due to the grinding work is observed in the surface layer of the unpeened specimen; however it changes to compressive after laser peening. The overall behavior of the depth profile of laser peened material agrees well with that of Alloy600 base metal measured in the previous studies, where the compressive residual stress with several hundred MPa at the surface gradually decreases and reaches to around 0 MPa at the depth of about 1 mm. (author)

  15. Thermodynamic Considerations of Contamination by Alloying Elements of Remelted End-of-Life Nickel- and Cobalt-Based Superalloys

    Science.gov (United States)

    Lu, Xin; Matsubae, Kazuyo; Nakajima, Kenichi; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2016-06-01

    Cobalt and nickel are high-value commodity metals and are mostly used in the form of highly alloyed materials. The alloying elements used may cause contamination problems during recycling. To ensure maximum resource efficiency, an understanding of the removability of these alloying elements and the controllability of some of the primary alloying elements is essential with respect to the recycling of end-of-life (EoL) nickel- and cobalt-based superalloys by remelting. In this study, the distribution behaviors of approximately 30 elements that are usually present in EoL nickel- and cobalt-based superalloys in the solvent metal (nickel, cobalt, or nickel-cobalt alloy), oxide slag, and gas phases during the remelting were quantitatively evaluated using a thermodynamic approach. The results showed that most of the alloying elements can be removed either in the slag phase or into the gas phase. However, the removal of copper, tin, arsenic, and antimony by remelting is difficult, and they remain as tramp elements during the recycling. On the other hand, the distribution tendencies of iron, molybdenum, and tungsten can be controlled by changing the remelting conditions. To increase the resource efficiency of recycling, preventing contamination by the tramp elements and identifying the alloying compositions of EoL superalloys are significantly essential, which will require the development of efficient prior alloy-sorting systems and advanced separation technologies.

  16. Chemical extraction of refractory inclusions from iron- and nickel-base alloys

    International Nuclear Information System (INIS)

    Most iron- and nickel-base alloys contain certain refractory inclusions, which affect the physical properties of the alloy. Carbides are the predominant inclusion, but oxides, nitrides, sulfides, borides, and phosphides may also be present. A chemical extraction has been developed which effectively separates these inclusions from the matrix without the application of an external potential. The refractory inclusions are quantitatively extracted by chemical dissolution of the matrix at 250C with a solution 0.9 M in copper(II) potassium chloride and hydrochloric acid. The reagent also contains 0.1 M tartaric acid to avoid contamination of the insoluble inclusion with matrix hydrolysis products. The chemical extractant is identified as the Berzelius reagent. The solvent is a general reagent for the isolation of most refractory phases: carbides, nitrides, phosphides, sulfides, oxides, and certain intermetallic compounds. The reagent dissolves alloys which are predominantly aluminum, cobalt, copper, iron, nickel, or zinc. The separation requires up to 24 hours to dissolve the alloys' matrix

  17. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    Science.gov (United States)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  18. Airfoil-based piezoelectric energy harvesting by exploiting the pseudoelastic hysteresis of shape memory alloy springs

    Science.gov (United States)

    de Sousa, Vagner Candido; De Marqui Junior, Carlos

    2015-12-01

    The modeling and analysis of an electromechanically coupled typical aeroelastic section with shape memory alloy springs for wind energy harvesting is addressed in this paper. An airfoil with two-degrees-of-freedom, namely pitch and plunge, is considered and piezoelectric coupling is added to the plunge degree-of-freedom. A load resistance is assumed in the electrical domain of the problem in order to estimate the electrical power output. Shape memory alloy coil springs are modeled in the pitch degree-of-freedom of the typical section. A nickel-titanium alloy that exhibits pseudoelasticity at room temperature is assumed. The constitutive model for the shape memory alloy is based on classical phenomenological models. The unsteady aerodynamic loads are obtained by Jones’ approximation to Wagner’s indicial function. The resulting nonlinear electroaeroelastic model is cast into a state-space representation and solved with a Runge-Kutta method. The effects of preload values of the shape memory springs and resistive power generation on the aeroelastic behavior of the wind energy harvester are investigated at the flutter boundary and in a post-flutter regime. The nonlinear kinetics of the austenite-to-martensite phase transformation changes the typical linear flutter behavior to stable limit-cycle oscillations over a range of airflow speeds. Such nonlinear aeroelastic behavior introduced by the hysteretic behavior of the SMA springs provides an important source of persistent electrical power.

  19. Stress corrosion cracking mechanisms of Fe-based alloys in hydrogenated hot water

    International Nuclear Information System (INIS)

    It is generally accepted that carbon steel resists Stress Corrosion Cracking (SCC) in hot water provided the oxygen content is low enough; however, isolated cracking events have occurred, apparently in fully reducing conditions, and these may or may not be true SCC. There are also occasional reports of SCC of austenitic stainless steel in reducing conditions where cold work may play a critical role. SCC though originally seen in sensitized material at oxidizing potentials persists to low potentials and in cold-worked but unsensitized material. We suspect from the literature that alloying with Ni introduces a susceptibility to SCC in reducing hot water as well as in caustic solution. Our hypothesis is that Ni causes SCC, and Cr retards it; so stainless steel has just enough Cr to protect against SCC under most conditions. We are examining this using model Fe-based materials and environments designed to separate the effects of different parameters. Early results suggest that Fe-Ni alloys and austenitic SS both undergo de-alloying and SCC in reducing caustic solutions. It is hypothesised that if these alloys are indeed susceptible to dealloying (and hence to SCC) in this environment then we can reasonably project that their behaviour in reducing, hot pure water may be similar. This is pertinent to understanding recent failures in high temperature, high pressure aqueous systems. As a first step we have investigated the surface reactions that occur in caustic solutions and in hot water. (author)

  20. Creep Rupture Properties for Base and Weld Metals of Alloy 617

    International Nuclear Information System (INIS)

    The allowable deformation in the welds is also restricted to half the deformation permitted for the base metal, since the ductility of the welds at elevated temperatures is generally low. For a design use, the data of the tensile and creep properties for Alloy 617 WM should be sufficiently provided, and in particular, to develop a design code of Alloy 617 WM. However, the data for the WM are very rare and limited until now, although the data for the BM are available in the ASME draft code case, which was suspended at the end of the 1980s owing to a lack of support and interes. In this report, the creep data for Alloy 617 WM, which was fabricated by a gas tungsten arc welding (GTAW) procedure, were obtained by a series of creep tests at 800 .deg. C, and the creep properties of the WM were compared with those of the BM. The high-temperature creep properties for Alloy 617 WM, fabricated by a gas tungsten arc welding (GTAW) procedure, were investigated by a series of creep tests with different stress levels at 800 .deg. C, and the creep test data for the WM were compared with those of the BM. From the results, it was found that the WM had a slightly longer creep rupture life and lower creep rate than the BM, and a particularly lower rupture elongation. The lower creep rate in the WM was due to the lower rupture elongation than the BM