WorldWideScience

Sample records for based biodegradable polymer

  1. Starch-based completely biodegradable polymer materials

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Starch is a natural polymer which possesses many unique properties and some shortcoming simultaneously. Some synthetic polymers are biodegradable and can be tailor-made easily. Therefore, by combining the individual advantages of starch and synthetic polymers, starch-based completely biodegradable polymers (SCBP are potential for applications in biomedical and environmental fields. Therefore it received great attention and was extensively investigated. In this paper, the structure and characteristics of starch and some synthetic degradable polymers are briefly introduced. Then, the recent progress about the preparation of SCBP via physical blending and chemical modification is reviewed and discussed. At last, some examples have been presented to elucidate that SCBP are promising materials for various applications and their development is a good solution for reducing the consumption of petroleum resources and environmental problem.

  2. Biodegradation studies of rosin-based polymers.

    Science.gov (United States)

    Satturwar, P M; Mandaogade, P M; Darwhekar, G N; Fulzele, S V; Joshi, S B; Dorle, A K

    2003-07-01

    This study was designed to investigate two rosin-based polymers (R-1 and R-2) for their in vitro and in vivo biodegradation behavior. The in vitro hydrolytic degradation was carried out in buffer solutions of pH 4.4, 7.4, and 10.4 at 37 degrees C. Enzymatic degradation was studied using enzymes lipase, pancreatine, and pectinase. Free films of the two polymers were subcutaneously implanted in rabbits for the in vivo biodegradation. The extent of degradation was determined quantitatively by weight loss and was followed qualitatively by scanning electron microscopy. The extent and the rate of degradation was better in vivo than in vitro. The polymers showed poor enzymatic degradation and a highly pH-dependent hydrolytic degradation.

  3. Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Isabelle Vroman

    2009-04-01

    Full Text Available Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources or from biological resources (renewable resources. In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  4. New Biodegradable Peptide-based Polymer Constructs

    NARCIS (Netherlands)

    van Dijk, M.

    2009-01-01

    Peptide-based polymers are of increasing interest, since they can be applied for a variety of purposes such as drug delivery devices, scaffolds for tissue engineering and -repair, and as novel biomaterials. Peptide-based polymers are common in nature and often exhibit special characteristics. Howeve

  5. Bio-Based Polymers with Potential for Biodegradability

    Directory of Open Access Journals (Sweden)

    Thomas F. Garrison

    2016-07-01

    Full Text Available A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid (PLA, widely used in multiple commercial applications nowadays. There is an intrinsic expectation that bio-based polymers are also biodegradable, but in reality there is no guarantee that polymers prepared from biorenewable feedstock exhibit significant or relevant biodegradability. Biodegradability studies are therefore crucial in order to assess the long-term environmental impact of such materials. This review presents a brief overview of the different classes of bio-based polymers, with a strong focus on vegetable oil-derived resins and PLA. An entire section is dedicated to a discussion of the literature addressing the biodegradability of bio-based polymers.

  6. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  7. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  8. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    Science.gov (United States)

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect.

  9. Novel bio-based and biodegradable polymer blends

    Science.gov (United States)

    Yang, Shengzhe

    Most plastic materials, including high performance thermoplastics and thermosets are produced entirely from petroleum-based products. The volatility of the natural oil markets and the increasing cost of petroleum have led to a push to reduce the dependence on petroleum products. Together with an increase in environmental awareness, this has promoted the use of alternative, biorenewable, environmentally-friendly products, such as biomass. The growing interest in replacing petroleum-based products by inexpensive, renewable, natural materials is important for sustainable development into the future and will have a significant impact on the polymer industry and the environment. This thesis involved characterization and development of two series of novel bio-based polymer blends, namely polyhydroxyalkanoate (PHA)/polyamide (PA) and poly(lactic acid) (PLA)/soy protein. Blends with different concentrations and compatible microstructures were prepared using twin-screw extruder. For PHA/PA blends, the poor mechanical properties of PHA improved significantly with an excellent combination of strength, stiffness and toughness by adding PA. Furthermore, the effect of blending on the viscoelastic properties has been investigated using small-amplitude oscillatory shear flow experiments as a function of blend composition and angular frequency. The elastic shear modulus (G‧) and complex viscosity of the blends increased significantly with increasing the concentration of PHA. Blending PLA with soy protein aims at reducing production cost, as well as accelerating the biodegradation rate in soil medium. In this work, the mechanical, thermal and morphological properties of the blends were investigated using dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile tests.

  10. Bio-Based Polymers with Potential for Biodegradability

    OpenAIRE

    Thomas F. Garrison; Amanda Murawski; Rafael L. Quirino

    2016-01-01

    A variety of renewable starting materials, such as sugars and polysaccharides, vegetable oils, lignin, pine resin derivatives, and proteins, have so far been investigated for the preparation of bio-based polymers. Among the various sources of bio-based feedstock, vegetable oils are one of the most widely used starting materials in the polymer industry due to their easy availability, low toxicity, and relative low cost. Another bio-based plastic of great interest is poly(lactic acid) (PLA), wi...

  11. Study on the Antimicrobial Properties of Citrate-Based Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Lee-Chun eSu

    2014-07-01

    Full Text Available Citrate-based polymers possess unique advantages for various biomedical applications since citric acid is a natural metabolism product, which is biocompatible and antimicrobial. In polymer synthesis, citric acid also provides multiple functional groups to control the crosslinking of polymers and active binding sites for further conjugation of biomolecules. Our group recently developed a number of citrate-based polymers for various biomedical applications by taking advantage of their controllable chemical, mechanical, and biological characteristics. In this study, various citric acid derived biodegradable polymers were synthesized and investigated for their physicochemical and antimicrobial properties. Results indicate that citric acid derived polymers reduced bacterial proliferation to different degrees based on their chemical composition. Among the studied polymers, poly(octamethylene citrate (POC showed approximately 70-80% suppression to microbe proliferation, owing to its relatively higher ratio of citric acid contents. Crosslinked urethane-doped polyester elastomers (CUPEs and biodegradable photoluminescent polymers (BPLPs also exhibited significant bacteria reduction of ~20% and ~50% for Staphylococcus aureus and Escherichia coli, respectively. Thus, the intrinsic antibacterial properties in citrate-based polymers enable them to inhibit bacteria growth without incorporation of antibiotics, silver nanoparticles, and other traditional bacteria-killing agents suggesting that they are unique beneficial materials for wound dressing, tissue engineering, and other potential medical applications where antimicrobial property is desired.

  12. Synthesis and characterization of biodegradable peptide-based polymers prepared by microwave-assisted click chemistry.

    Science.gov (United States)

    van Dijk, Maarten; Nollet, Maria L; Weijers, Pascal; Dechesne, Annemarie C; van Nostrum, Cornelus F; Hennink, Wim E; Rijkers, Dirk T S; Liskamp, Rob M J

    2008-10-01

    In this study, the microwave-assisted copper(I)-catalyzed 1,3-dipolar cycloaddition reaction was used to synthesize peptide triazole-based polymers from two novel peptide-based monomers: azido-phenylalanyl-alanyl-lysyl-propargyl amide (1) and azido-phenylalanyl-alanyl-glycolyl-lysyl-propargyl amide (2). The selected monomers have sites for enzymatic degradation as well as for chemical hydrolysis to render the resulting polymer biodegradable. Depending on the monomer concentration in DMF, the molecular mass of the polymers could be tailored between 4.5 and 13.9 kDa (corresponding with 33-100 amino acid residues per polymer chain). As anticipated, both polymers can be enzymatically degraded by trypsin and chymotrypsin, whereas the ester bond in the polymer of 2 undergoes chemical hydrolysis under physiological conditions, as was shown by a ninhydrin-based colorimetric assay and MALDI-TOF analysis. In conclusion, the microwave-assisted copper(I)-catalyzed 1,3-dipolar cycloaddition reaction is an effective tool for synthesizing biodegradable peptide polymers, and it opens up new approaches toward the synthesis of (novel) designed biomedical materials.

  13. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials.

    Science.gov (United States)

    Fukushima, K

    2016-01-01

    Aliphatic polycarbonates have drawn attention as biodegradable polymers that can be applied to a broad range of resorbable medical devices. In particular, poly(trimethylene carbonate) (PTMC), its copolymers, and its derivatives are currently studied due to their unique degradation characteristics that are different from those of aliphatic polyesters. Furthermore, their flexible and hydrophobic nature has driven the application of PTMC-based polymers to soft tissue regeneration and drug delivery. This review presents the diverse applications and functionalization strategies of PTMC-based materials in relation to recent advances in medical technologies and their subsequent needs in clinical settings.

  14. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  15. Lithium ion conducting solid polymer blend electrolyte based on bio-degradable polymers

    Indian Academy of Sciences (India)

    Natarajan Rajeswari; Subramanian Selvasekarapandian; Moni Prabu; Shunmugavel Karthikeyan; C Sanjeeviraja

    2013-04-01

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance analyses. The XRD study reveals the amorphous nature of the polymer electrolyte. The FTIR study confirms the complex formation between the polymer and salt. The shifts in g values of 70 PVA–30 PVP blend and 70 PVA–30 PVP with different Mwt% of LiNO3 electrolytes shown by DSC thermograms indicate an interaction between the polymer and the salt. The dependence of g and conductivity upon salt concentration has been discussed. The ion conductivity of the prepared polymer electrolyte has been found by a.c. impedance spectroscopic analysis. The PVA–PVP blend system with a composition of 70 wt% PVA: 30 wt% PVP exhibits the highest conductivity of 1.58 × 10-6 Scm-1 at room temperature. Polymer samples of 70 wt% PVA–30 wt% PVP blend with different molecular weight percentage of lithium nitrate with DMSO as solvent have been prepared and studied. High conductivity of 6.828 × 10-4 Scm-1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activation energy 0.2673 eV. The conductivity is found to increase with increase in temperature. The temperature dependent conductivity of the polymer electrolyte follows the Arrhenius relationship which shows hopping of ions in the polymer matrix. The relaxation parameters () and () of the complexes have been calculated by using loss tangent spectra. The mechanical properties of polymer blend electrolyte such as tensile strength, elongation and degree of swelling have been measured and the results are presented.

  16. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development.

    Science.gov (United States)

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-12-29

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields.

  17. Biodegradable-Polymer-Blend-Based Surgical Sealant with Body-Temperature-Mediated Adhesion.

    Science.gov (United States)

    Behrens, Adam M; Lee, Nora G; Casey, Brendan J; Srinivasan, Priya; Sikorski, Michael J; Daristotle, John L; Sandler, Anthony D; Kofinas, Peter

    2015-12-22

    The development of practical and efficient surgical sealants has the propensity to improve operational outcomes. A biodegradable polymer blend is fabricated as a nonwoven fiber mat in situ. After direct deposition onto the tissue of interest, the material transitions from a fiber mat to a film. This transition promotes polymer-substrate interfacial interactions leading to improved adhesion and surgical sealant performance.

  18. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  19. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  20. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro

    OpenAIRE

    Zhang, Jian Ying; Beckman, Eric J.; Piesco, Nicholas P.; Agarwal, Sudha

    2000-01-01

    A novel non-toxic biodegradable lysine-di-isocyanate (LDI)-based urethane polymer was developed for use in tissue engineering applications. This matrix was synthesized with highly purified LDI made from the lysine diethylester. The ethyl ester of LDI was polymerized with glycerol to form a prepolymer. LDI–glycerol prepolymer when reacted with water foamed with the liberation of CO2 to provide a pliable spongy urethane polymer. The LDI–glycerol matrix degraded in aqueous solutions at 100, 37, ...

  1. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  2. Processing and characterization of solid and microcellular biobased and biodegradable PHBV-based polymer blends and composites

    Science.gov (United States)

    Javadi, Alireza

    Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique

  3. Different strategies to improve the functionality of biodegradable films based on starch and other polymers

    OpenAIRE

    2016-01-01

    [EN] In the present Doctoral Thesis, different strategies to improve functional properties of starch films for food packaging applications were analysed: study of the effect of amylose:amylopectin ratio, blend with other polymers poly(vinyl alcohol) (PVA), and incorporation of different fillers (rice bran and cellulose nanocrystals-CNCs) and antimicrobial agents (neem oil-N, oregano essential oil-O and silver nanoparticles-AgNPs). Likewise, a biodegradation study of the films as affected by a...

  4. PREPARATION OF BIODEGRADABLE FLAX SHIVE CELLULOSE-BASED SUPERABSORBENT POLYMER UNDER MICROWAVE IRRADIATION

    Directory of Open Access Journals (Sweden)

    Hao Feng

    2010-05-01

    Full Text Available Superabsorbent polymer was prepared by graft polymerization of acrylic acid onto the chain of cellulose from flax shive by using potassium persulfate (KPS as an initiator and N,N’-methylenebisacrylamide (MBA as a crosslinker under microwave irradiation. SEM photographs were also studied for more information about the shive, cellulose from shive, and the superabsorbent polymer. The structure of the graft copolymer was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TGA. The biodegradability in soil was measured at 32 and 40 oC. The polymer was porous, and thermal stability of the polymer was observed up to approximately 200 oC. FT-IR analysis indicated that acrylic acid in polymer was successfully grafted onto the cellulose. The graft copolymer was found to be an effective superabsorbent resin, rapidly absorbing water to almost 1000 times its own dry weight at pH around 7.3. The water absorbency in 0.9% NaCl, KCl, FeCl3 solutions and urine were 56.47 g/g, 54.71g/g, 9.89g/g and 797.21g/g, respectively. The product biologically degraded up to 40% at 40 oC in 54 days, which shows good biodegradability.

  5. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  6. Biodegradable polyester-based shape memory polymers: Concepts of (supramolecular architecturing

    Directory of Open Access Journals (Sweden)

    J. Karger-Kocsis

    2014-06-01

    Full Text Available Shape memory polymers (SMPs are capable of memorizing one or more temporary shapes and recovering to the permanent shape upon an external stimulus that is usually heat. Biodegradable polymers are an emerging family within the SMPs. This minireview delivers an overlook on actual concepts of molecular and supramolecular architectures which are followed to tailor the shape memory (SM properties of biodegradable polyesters. Because the underlying switching mechanisms of SM actions is either related to the glass transition (Tg or melting temperatures (Tm, the related SMPs are classified as Tg- or Tm-activated ones. For fixing of the permanent shape various physical and chemical networks serve, which were also introduced and discussed. Beside of the structure developments in one-way, also those in two-way SM polyesters were considered. Adjustment of the switching temperature to that of the human body, acceleration of the shape recovery, enhancement of the recovery stress, controlled degradation, and recycling aspects were concluded as main targets for the future development of SM systems with biodegradable polyesters.

  7. A new peptide-based urethane polymer: synthesis, biodegradation, and potential to support cell growth in vitro.

    Science.gov (United States)

    Zhang, J Y; Beckman, E J; Piesco, N P; Agarwal, S

    2000-06-01

    A novel non-toxic biodegradable lysine-di-isocyanate (LDI)-based urethane polymer was developed for use in tissue engineering applications. This matrix was synthesized with highly purified LDI made from the lysine diethylester. The ethyl ester of LDI was polymerized with glycerol to form a prepolymer. LDI-glycerol prepolymer when reacted with water foamed with the liberation of CO2 to provide a pliable spongy urethane polymer. The LDI-glycerol matrix degraded in aqueous solutions at 100, 37, 22, and 4 degrees C at a rate of 27.7, 1.8, 0.8, and 0.1 mM per 10 days, respectively. Its thermal stability in water allowed its sterilization by autoclaving. The degradation of the LDI-glycerol polymer yielded lysine, ethanol, and glycerol as breakdown products. The degradation products of LDI-glycerol polymer did not significantly affect the pH of the solution. The glass transition temperature (Tg) of this polymer was found to be 103.4 degrees C. The physical properties of the polymer network were found to be adequate to support the cell growth in vitro, as evidenced by the fact that rabbit bone marrow stromal cells (BMSC) attached to the polymer matrix and remained viable on its surface. Culture of BMSC on LDI-glycerol matrix for long durations resulted in the formation of multilayered confluent cultures, a characteristic typical of bone cells. Furthermore, cells grown on LDI-glycerol matrix did not differ phenotypically from the cells grown on the tissue culture polystyrene plates as assessed by the cell growth, and expression of mRNA for collagen type I, and transforming growth factor-beta1 (TGF-beta1). The observations suggest that biodegradable peptide-based urethane polymers can be synthesized which may pave their way for possible use in tissue engineering applications.

  8. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    Directory of Open Access Journals (Sweden)

    Tianwen Yuan

    2016-05-01

    Full Text Available Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone (PCL and poly(trimethylene carbonate (PTMC as the coated membrane on magnesium alloy stents for fabricating a fully biodegradable esophageal stent, which showed an ability to delay the degradation time and maintain mechanical performance in the long term. After 48 repeated compressions, the mechanical testing demonstrated that the PCL-PTMC-coated magnesium stents possess good flexibility and elasticity, and could provide enough support against lesion compression when used in vivo. According to the in vitro degradation evaluation, the PCL-PTMC membrane coated on magnesium was a good material combination for biodegradable stents. During the in vivo evaluation, the proliferation of the smooth muscle cells showed no signs of cell toxicity. Histological examination revealed the inflammation scores at four weeks in the magnesium-(PCL-PTMC stent group were similar to those in the control group (p > 0.05. The α-smooth muscle actin layer in the media was thinner in the magnesium-(PCL-PTMC stent group than in the control group (p < 0.05. Both the epithelial and smooth muscle cell layers were significantly thinner in the magnesium-(PCL-PTMC stent group than in the control group. The stent insertion was feasible and provided reliable support for at least four weeks, without causing severe injury or collagen deposition. Thus, this stent provides a new stent for the treatment of benign esophageal stricture and a novel research path in the development of temporary stents in other cases of benign stricture.

  9. Biodegradable and bio-based polymers: future prospects of eco-friendly plastics.

    Science.gov (United States)

    Iwata, Tadahisa

    2015-03-09

    Currently used plastics are mostly produced from petrochemical products, but there is a growing demand for eco-friendly plastics. The use of bio-based plastics, which are produced from renewable resources, and biodegradable plastics, which are degraded in the environment, will lead to a more sustainable society and help us solve global environmental and waste management problems.

  10. Preparation and degradation mechanisms of biodegradable polymer: a review

    Science.gov (United States)

    Zeng, S. H.; Duan, P. P.; Shen, M. X.; Xue, Y. J.; Wang, Z. Y.

    2016-07-01

    Polymers are difficult to degrade completely in Nature, and their catabolites may pollute the environment. In recent years, biodegradable polymers have become the hot topic in people's daily life with increasing interest, and a controllable polymer biodegradation is one of the most important directions for future polymer science. This article presents the main preparation methods for biodegradable polymers and discusses their degradation mechanisms, the biodegradable factors, recent researches and their applications. The future researches of biodegradable polymers are also put forward.

  11. Engineered biosynthesis of biodegradable polymers.

    Science.gov (United States)

    Jambunathan, Pooja; Zhang, Kechun

    2016-08-01

    Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.

  12. WILL FLUOROTELOMER ALCOHOL BASED POLYMER FORMULATIONS BIODEGRADE DURING AEROBIC BIOLOGICAL WASTEWATER TREATMENT?

    Science.gov (United States)

    The release of fluorotelomer alcohol (FTOH) based polymer formulations (PFs) to wastewater treatment plants (WWTPs) may be an important source of the perfluoroalkyl carboxylic acids (PFCAs) observed in many environmental matrices. Working with the Office of Pollution, Prevention,...

  13. Challenges and opportunities in using Life Cycle Assessment and Cradle to Cradle® for biodegradable bio-based polymers: a review

    DEFF Research Database (Denmark)

    Niero, Monia; Manat, Renil; Møller, Birger Lindberg

    2015-01-01

    Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from establis......Both Life Cycle Assessment (LCA) and Cradle to Cradle® (C2C) approaches can provide operative insightsin the design of biodegradable bio-based polymers. Some of the challenges shared by both LCA and C2Cthat need further investigation are the use of lab scale data versus primary data from...

  14. Biodegradable Nanoparticles Made of Amino-Acid-Based Ester Polymers: Preparation, Characterization, and In Vitro Biocompatibility Study

    Directory of Open Access Journals (Sweden)

    Temur Kantaria

    2016-12-01

    Full Text Available A systematic study of fabricating nanoparticles (NPs by cost-effective polymer deposition/solvent displacement (nanoprecipitation method has been carried out. Five amino acid based biodegradable (AABB ester polymers (four neutral and one cationic, four organic solvents miscible with water, and eight surfactants were tested for the fabrication of the goal NPs. Depending on the nature of the AABB polymers, organic solvents and surfactants, as well as on the fabrication conditions, the size (Mean Particle Diameter of the NPs could be tuned within 42 ÷ 398 nm, the zeta-potential within 12.5 ÷ +28 mV. The stability (resuspendability of the NPs upon storage (at room temperature and refrigerated was tested as well. In Vitro biocompatibility study of the NPs was performed with four different stable cell lines: A549, HeLa (human; RAW264.7, Hepa 1-6 (murine. Comparing the NPs parameters, their stability upon storage, and the data of biological examinations the best were found: As the AABB polymer, a poly(ester amide composed of l-leucine, 1,6-hexanediol and sebacic acid–8L6, as a solvent (organic phase—DMSO, and as a surfactant, Tween 20.

  15. Biodegradable Polymers in Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Leon E. Govaert

    2009-07-01

    Full Text Available The use ofdegradable polymers in medicine largely started around the mid 20th century with their initial use as in vivo resorbing sutures. Thorough knowledge on this topic as been gained since then and the potential applications for these polymers were, and still are, rapidly expanding. After improving the properties of lactic acid-based polymers, these were no longer studied only from a scientific point of view, but also for their use in bone surgery in the 1990s. Unfortunately, after implanting these polymers, different foreign body reactions ranging from the presence of white blood cells to sterile sinuses with resorption of the original tissue were observed. This led to the misconception that degradable polymers would, in all cases, lead to inflammation and/or osteolysis at the implantation site. Nowadays, we have accumulated substantial knowledge on the issue of biocompatibility of biodegradable polymers and are able to tailor these polymers for specific applications and thereby strongly reduce the occurrence of adverse tissue reactions. However, the major issue of biofunctionality, when mechanical adaptation is taken into account, has hitherto been largely unrecognized. A thorough understanding of how to improve the biofunctionality, comprising biomechanical stability, but also visualization and sterilization of the material, together with the avoidance of fibrotic tissue formation and foreign body reactions, may greatly enhance the applicability and safety of degradable polymers in a wide area of tissue engineering applications. This review will address our current understanding of these biofunctionality factors, and will subsequently discuss the pitfalls remaining and potential solutions to solve these problems.

  16. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

    NARCIS (Netherlands)

    Vaz, C.M.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity behavi

  17. Synthesis and characterization of polymers based on citric acid and glycerol: Its application in non-biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Jaime Alfredo Mariano-Torres

    2015-01-01

    Full Text Available El notable incremento mundial en el consumo de plásticos y su l argo tiempo de residencia en el ambiente muestran la gran neces idad de productos con caracterís ticas biodegradables. En este proyecto fueron desarrollados polímeros biodegradables a base del ácido cítrico y del glicerol. La síntesis de esto s se lleva a cabo a diferentes condiciones de concentración y a temperatura constante. Se des arrollaron mediante un proceso económicamente viable. Se caracterizaron p or medio de las siguientes técnicas: Numero ácido, espectroscop ia infrarroja FTIR, índice de refracc ión, viscosidad, análisis de impacto, ensayo de tensión, dure za, calorimetría, el % de Humed ad (método de la estufa con recirculación de aire, determinación de densi dad, además de pruebas cualitativas para corroborar su biodegra dabilidad. Los polímeros elaborados fueron mezclados con una formulación de PVC grado médico, obteniendo un polímero hibrido y se pudo observar que modifica sus propiedades mecánicas.

  18. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.

    Science.gov (United States)

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza; Kassaian, Seyed Ebrahim

    2016-04-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421-1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent.

  19. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  20. Biodegradable polymer based theranostic agents for photoacoustic imaging and cancer therapy

    Science.gov (United States)

    Wang, Yan J.; Strohm, Eric M.; Kolios, Michael C.

    2016-03-01

    In this study, multifunctional theranostic agents for photoacoustic (PA), ultrasound (US), fluorescent imaging, and for therapeutic drug delivery were developed and tested. These agents consisted of a shell made from a biodegradable Poly(lactide-co-glycolic acid) (PLGA) polymer, loaded with perfluorohexane (PFH) liquid and gold nanoparticles (GNPs) in the core, and lipophilic carbocyanines fluorescent dye DiD and therapeutic drug Paclitaxel (PAC) in the shell. Their multifunctional capacity was investigated in an in vitro study. The PLGA/PFH/DiD-GNPs particles were synthesized by a double emulsion technique. The average PLGA particle diameter was 560 nm, with 50 nm diameter silica-coated gold nano-spheres in the shell. MCF7 human breast cancer cells were incubated with PLGA/PFH/DiDGNPs for 24 hours. Fluorescent and PA images were recorded using a fluorescent/PA microscope using a 1000 MHz transducer and a 532 nm pulsed laser. For the particle vaporization and drug delivery test, MCF7 cells were incubated with the PLGA/PFH-GNPs-PAC or PLGA/PFH-GNPs particles for 6, 12 and 24 hours. The effects of particle vaporization and drug delivery inside the cells were examined by irradiating the cells with a laser fluence of 100 mJ/cm2, and cell viability quantified using the MTT assay. The PA images of MCF7 cells containing PLGA/PFH/DiD-GNPs were spatially coincident with the fluorescent images, and confirmed particle uptake. After exposure to the PLGA/PFHGNP- PAC for 6, 12 and 24 hours, the cell survival rate was 43%, 38%, and 36% respectively compared with the control group, confirming drug delivery and release inside the cells. Upon vaporization, cell viability decreased to 20%. The particles show potential as imaging agents and drug delivery vehicles.

  1. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.

    Science.gov (United States)

    Sharifi, Shahriar; van Kooten, Theo G; Kranenburg, Hendrik-Jan C; Meij, Björn P; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W

    2013-11-01

    Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) networks with shape-memory properties have been evaluated in order to prepare biodegradable AF closure devices that can be implanted minimally invasively. Four different macromers with (D,L-lactide) to trimethylene carbonate (DLLA:TMC) molar ratios of 80:20, 70:30, 60:40 and 40:60 with terminal methacrylate groups and molecular weights of approximately 30 kg mol(-1) were used to prepare the networks by photo-crosslinking. The mechanical properties of the samples and their shape-memory properties were determined at temperatures of 0 °C and 40 °C by tensile tests- and cyclic, thermo-mechanical measurements. At 40 °C all networks showed rubber-like behavior and were flexible with elastic modulus values of 1.7-2.5 MPa, which is in the range of the modulus values of human annulus fibrosus tissue. The shape-memory characteristics of the networks were excellent with values of the shape-fixity and the shape-recovery ratio higher than 98 and 95%, respectively. The switching temperatures were between 10 and 39 °C. In vitro culture and qualitative immunocytochemistry of human annulus fibrosus cells on shape-memory films with DLLA:TMC molar ratios of 60:40 showed very good ability of the networks to support the adhesion and growth of human AF cells. When the polymer network films were coated by adsorption of fibronectin, cell attachment, cell spreading, and extracellular matrix production was further improved. Annulus fibrosus closure devices were prepared from these AF cell-compatible materials by photo-polymerizing the reactive precursors in a mold. Insertion of the multifunctional implant in the disc of a cadaveric canine spine showed that these shape-memory devices could be

  2. Thermoplastic biodegradable elastomers based on ε-caprolactone and L-lactide block co-polymers: a new synthetic approach.

    Science.gov (United States)

    Lipik, Vitali T; Kong, Jen Fong; Chattopadhyay, Sujay; Widjaja, Leonardus K; Liow, Sing S; Venkatraman, Subbu S; Abadie, Marc J M

    2010-11-01

    Although biodegradable polymers have found extensive application in medical devices, there are very few commercially available elastomeric biodegradable polymers. In this work, starting with the well-known monomers L-lactide and ε-caprolactone, we developed elastomers using a multiblock co-polymer approach. This ensures that the degradation products of such elastomers are also acceptable from a cytotoxicity standpoint. A series of polymers with various structures was synthesized utilizing a design of experiment approach. The basic structure is that of a diblock, with each block being modified by the addition of co-monomer. The synthesized polymers exhibited a range of mechanical properties from a typical thermoplastic polymer to that approaching a good thermoplastic elastomer. 13C nuclear magnetic resonance analysis, size exclusion chromatography and differential scanning calorimetry measurements have been utilized to relate the observed range of mechanical properties to the structure. In addition, the elastomeric nature has been established with the use of creep and recovery measurements. Such elastomers may find a variety of biomedical applications, ranging from stent coatings to atrial septal defect occluders.

  3. Enhancement of the optical properties of a new radiochromic dosimeter based on aliphatic-aromatic biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Schimitberger, Thiago, E-mail: tschimitberger@ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Escola de Engenharia. Departamento de Engenharia Nuclear; Faria, Luiz O., E-mail: farialo@cdtn.br [Centro de desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The development of a dosimeter that is of low cost, easy to process without dependence on expensive complex instruments and environment friendly is a challenging in irradiation quality control. Recently, an aliphatic-aromatic biodegradable polymer has been proposed as radiochromic dosimeter. The dosimeter is based on biodegradable poly(butylene adipate-co-terephthalate) copolymers (PBAT). In order to improve the photoluminescence (PL) properties of PBAT, increasing its range of applicability (50 kGy to 1000 kGy), this work investigates the influence of solution concentration in the dose response. Films with thickness of c.a. 80 μm were produce by wirebar coating, a simple deposition method for preparing large areas of organic films at low cost. The irradiation of samples was performed at room temperature using a Co-60 source at dose rate of 20 kGy/h. The films were exposed to doses ranging from 501 kGy to 1000 kGy. A 405 nm LED light source was used to excite the films. The USB2000 spectrometer made by Ocean Optics was used to collect the emission spectra of the luminescent films. The photoluminescent intensity captured by the spectrometer present linear radiation dose dependence. The maximum PL for the film sample made from a 0.05 g.mL{sup -1} solution is 1.5 (a.u.) while it is about 3.5 (a.u.) for a film sample made from a 0.2 mg.mL{sup -1} solution, when irradiated with 1000 kGy. These results indicate that PBAT films have great potential to be used as a high gamma dose radiochromic dosimeter over a wide dose range, expanding its applicability for different radiations process. (author)

  4. Nanocomposites with biodegradable polymers synthesis properties and future perspectives

    CERN Document Server

    2011-01-01

    Polymers are used in practically every facet of daily life. Most polymers come from fossil fuels and are not biodegradable, causing long-term environmental hazards. Biodegradable polymers provide an alternative class of materials. Composites of such polymers have high potential within a wide spectrum of applications.

  5. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications.

    Science.gov (United States)

    Vaz, C M; Fossen, M; van Tuil, R F; de Graaf, L A; Reis, R L; Cunha, A M

    2003-04-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al(2)O(3)) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity behavior of the injection-molded thermoplastics were examined. It was possible to obtain materials and composites with a range of mechanical properties, which might allow for their application in the biomedical field. The incorporation of tricalcium phosphate into the soybean thermoplastic decreased its mechanical properties but lead to the nucleation of a bioactive calcium-phosphate film on their surface when immersed in a simulated body fluid solution. When compounded with 1% of a zirconate coupling agent, the nucleation and growth of the bioactive films on the surface of the referred to composites was accelerated. The materials degradation was studied for ageing periods up to 60 days in an isotonic saline solution. Both water uptake and weight loss were monitored as a function of the immersion time. After 1 month of immersion, the materials showed signal of chemical degradation, presenting weight losses up to 30%. However, further improvement on the mechanical performance and the enhancement of the hydrolytic stability of those materials will be highly necessary for applications in the biomedical field.

  6. Biodegradable polymers: emerging excipients for the pharmaceutical and medical device industries.

    Directory of Open Access Journals (Sweden)

    Bhavesh Patel

    2013-12-01

    Full Text Available Worldwide many researchers are exploring the potential use of biodegradable polymerics as carriers for a wide range of therapeutic applications. In the past two decades, considerable progress has been made in the development of biodegradable polymeric materials, mainly in the biomedical and pharmaceutical industries due to their versatility, biocompatibility and biodegradability properties. The present review focuses on the use of biodegradable polymers in various therapeutic areas like orthopedic and contraceptive device, surgical sutures, implants, depot parenteral injections, etc. Biodegradable polymers have also contributed significantly to the development of drug-eluting stents (DES used for the treatment of obstructive coronary artery disease, such as angioplasty. Biodegradable synthetic polymers have potential applications in orthopedic device fixation due to properties that impact bone healing, formation, regeneration or substitution in the human body. The present review also emphasizes areas such as the chemistry of polymer synthesis, factors affecting the biodegradation, methods for the production of biodegradable polymer based formulations, the application of biodegradable polymers in dental implants, nasal drug deliveries, contraceptive devices, immunology, gene, transdermal, ophthalmic and veterinary applications, as well as, the sterilization of biodegradable based formulations and regulatory considerations for product filing.

  7. Biocompatibility and Structural Features of Biodegradable Polymer Scaffolds.

    Science.gov (United States)

    Nasonova, M V; Glushkova, T V; Borisov, V V; Velikanova, E A; Burago, A Yu; Kudryavtseva, Yu A

    2015-11-01

    We performed a comparative analysis of physicochemical properties and biocompatibility of scaffolds of different composition on the basis of biodegradable polymers fabricated by casting and electrospinning methods. For production of polyhydroxyalkanoate-based scaffolds by electrospinning method, the optimal concentration of the polymer was 8-10%. Fiber diameter and properties of the scaffold produced by electrospinning method depended on polymer composition. Addition of polycaprolactone increased elasticity of the scaffolds. Bio- and hemocompatibility of the scaffolds largely depended on the composition formulation and method of scaffold fabrication. Polylactide introduced into the composition of polyhydroxybutyrate-oxyvalerate scaffolds accelerated degradation and increased adhesive properties of the scaffolds.

  8. Biodegradable polymer optical fiber (Conference Presentation)

    Science.gov (United States)

    Zhang, Chenji; Kalaba, Surge; Shan, Dingying; Xu, Kaitian; Yang, Jian; Liu, Zhiwen

    2016-10-01

    Biocompatible and even biodegradable polymers have unique advantages in various biomedical applications. Recent years, photonic devices fabricated using biocompatible polymers have been widely studied. In this work, we manufactured an optical fiber using biodegradable polymer POC and POMC. This step index optical fiber is flexible and easy to handle. Light was coupled into this polymer fiber by directly using objective. The fiber has a good light guiding property and an approximate loss of 2db/cm. Due to the two layer structure, our fiber is able to support applications inside biological tissue. Apart from remarkable optical performance, our fiber was also found capable of performing imaging. By measuring the impulse response of this multimode polymer fiber and using the linear inversion algorithm, concept proving experiments were completed. Images input into our fiber were able to be retrieved from the intensity distribution of the light at the output end. Experiment result proves the capability of our optical fiber to be used as a fiber endoscopy no needs to remove.

  9. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications.

  10. Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion.

    Science.gov (United States)

    Mendes, J F; Paschoalin, R T; Carmona, V B; Sena Neto, Alfredo R; Marques, A C P; Marconcini, J M; Mattoso, L H C; Medeiros, E S; Oliveira, J E

    2016-02-10

    Blends of thermoplastic cornstarch (TPS) and chitosan (TPC) were obtained by melt extrusion. The effect of TPC incorporation in TPS matrix and polymer interaction on morphology and thermal and mechanical properties were investigated. Possible interactions between the starch molecules and thermoplastic chitosan were assessed by XRD and FTIR techniques. Scanning Electron Microscopy (SEM) analyses showed a homogeneous fracture surface without the presence of starch granules or chitosan aggregates. Although the incorporation of thermoplastic chitosan caused a decrease in both tensile strength and stiffness, films with better extensibility and thermal stability were produced.

  11. Dual Functional Nanocarrier for Cellular Imaging and Drug Delivery in Cancer Cells Based on π-Conjugated Core and Biodegradable Polymer Arms.

    Science.gov (United States)

    Kulkarni, Bhagyashree; Surnar, Bapurao; Jayakannan, Manickam

    2016-03-14

    Multipurpose polymer nanoscaffolds for cellular imaging and delivery of anticancer drug are urgently required for the cancer therapy. The present investigation reports a new polymer drug delivery concept based on biodegradable polycaprolactone (PCL) and highly luminescent π-conjugated fluorophore as dual functional nanocarrier for cellular imaging and delivery vehicles for anticancer drug to cancer cells. To accomplish this goal, a new substituted caprolactone monomer was designed, and it was subjected to ring opening polymerization using a blue luminescent bishydroxyloligo-phenylenevinylene (OPV) fluorophore as an initiator. A series of A-B-A triblock copolymer building blocks with a fixed OPV π-core and variable chain biodegradable PCL arm length were tailor-made. These triblocks self-assembled in organic solvents to produce well-defined helical nanofibers, whereas in water they produced spherical nanoparticles (size ∼150 nm) with blue luminescence. The hydrophobic pocket of the polymer nanoparticle was found to be an efficient host for loading water insoluble anticancer drug such as doxorubicin (DOX). The photophysical studies revealed that there was no cross-talking between the OPV and DOX chromophores, and their optical purity was retained in the nanoparticle assembly for cellular imaging. In vitro studies revealed that the biodegradable PCL arm was susceptible to enzymatic cleavage at the intracellular lysosomal esterase under physiological conditions to release the loaded drugs. The nascent nanoparticles were found to be nontoxic to cancer cells, whereas the DOX-loaded nanoparticles accomplished more than 80% killing in HeLa cells. Confocal microscopic analysis confirmed the cell penetrating ability of the blue luminescent polymer nanoparticles and their accumulation preferably in the cytoplasm. The DOX loaded red luminescent polymer nanoparticles were also taken up by the cells, and the drug was found to be accumulated at the perinuclear environment

  12. Development of aliphatic biodegradable photoluminescent polymers

    Science.gov (United States)

    Yang, Jian; Zhang, Yi; Gautam, Santosh; Liu, Li; Dey, Jagannath; Chen, Wei; Mason, Ralph P.; Serrano, Carlos A.; Schug, Kevin A.; Tang, Liping

    2009-01-01

    None of the current biodegradable polymers can function as both implant materials and fluorescent imaging probes. The objective of this study was to develop aliphatic biodegradable photoluminescent polymers (BPLPs) and their associated cross-linked variants (CBPLPs) for biomedical applications. BPLPs are degradable oligomers synthesized from biocompatible monomers including citric acid, aliphatic diols, and various amino acids via a convenient and cost-effective polycondensation reaction. BPLPs can be further cross-linked into elastomeric cross-linked polymers, CBPLPs. We have shown representatively that BPLP-cysteine (BPLP-Cys) and BPLP-serine (BPLP-Ser) offer advantages over the traditional fluorescent organic dyes and quantum dots because of their preliminarily demonstrated cytocompatibility in vitro, minimal chronic inflammatory responses in vivo, controlled degradability and high quantum yields (up to 62.33%), tunable fluorescence emission (up to 725 nm), and photostability. The tensile strength of CBPLP-Cys film ranged from 3.25 ± 0.13 MPa to 6.5 ± 0.8 MPa and the initial Modulus was in a range of 3.34 ± 0.15 MPa to 7.02 ± 1.40 MPa. Elastic CBPLP-Cys could be elongated up to 240 ± 36%. The compressive modulus of BPLP-Cys (0.6) (1:1:0.6 OD:CA:Cys) porous scaffold was 39.60 ± 5.90 KPa confirming the soft nature of the scaffolds. BPLPs also possess great processability for micro/nano-fabrication. We demonstrate the feasibility of using BPLP-Ser nanoparticles (“biodegradable quantum dots”) for in vitro cellular labeling and noninvasive in vivo imaging of tissue engineering scaffolds. The development of BPLPs and CBPLPs represents a new direction in developing fluorescent biomaterials and could impact tissue engineering, drug delivery, bioimaging. PMID:19506254

  13. Effect of a biodegradable natural polymer on the properties of hardened lime-based mortars

    Directory of Open Access Journals (Sweden)

    Izaguirre, A.

    2011-06-01

    Full Text Available As an environmentally friendly and energy-saving alternative to cement-based materials and to some chemically obtained water-reducers, a commercialized starch was incorporated into aerial lime-based matrix. Different dosages were tested in order to study the influence that the amount of additive exerted on the properties of the material. Density, shrinkage, water absorption through capillarity, water vapour permeability, mechanical strengths, porosity, pore size distribution, and durability in the face of freezing-thawing cycles were studied in the mortars. The tested starch acted as a thickener for dosages up to 0.30%, and changed its behaviour for the largest dosage (0.50%: in that case it behaved as a plasticizer, dispersing the lime through the fresh mass and generating a more workable material. As a result, the matrix of the hardened mortar presented great coherence, owing to its large density and low porosity, characteristics which led to lower capillarity and permeability, better mechanical properties and durability.

    Como alternativa a los materiales con base cemento y a plastificantes obtenidos por vía química, se estudió el efecto de un almidón comercial incorporado a morteros de cal aérea. Se ensayaron dosificaciones diferentes para analizar su influencia sobre las propiedades del material. En los morteros se determinaron densidad, retracción, absorción de agua por capilaridad, permeabilidad, resistencias mecánicas, porosidad, distribución de tamaños de poro y durabilidad frente a ciclos de hielo-deshielo. El almidón actuó como espesante hasta la dosis de 0,30%, pero cambió al añadirlo en la dosis más alta (0,50%: en este caso, se comportó como un plastificante, dispersando la cal a través de la mezcla en fresco, dando lugar a un material más trabajable. Como resultado, en la dosis 0,50%, la matriz del mortero endurecido presentó gran coherencia, por su mayor densidad y menor porosidad, lo que implicó una

  14. Electrospun biodegradable polymers loaded with bactericide agents

    Directory of Open Access Journals (Sweden)

    Ramaz Katsarava

    2016-03-01

    Full Text Available Development of materials with an antimicrobial activity is fundamental for different sectors, including medicine and health care, water and air treatment, and food packaging. Electrospinning is a versatile and economic technique that allows the incorporation of different natural, industrial, and clinical agents into a wide variety of polymers and blends in the form of micro/nanofibers. Furthermore, the technique is versatile since different constructs (e.g. those derived from single electrospinning, co-electrospinning, coaxial electrospinning, and miniemulsion electrospinning can be obtained to influence the ability to load agents with different characteristics and stability and to modify the release behaviour. Furthermore, antimicrobial agents can be loaded during the electrospinning process or by a subsequent coating process. In order to the mitigate burst release effect, it is possible to encapsulate the selected drug into inorganic nanotubes and nanoparticles, as well as in organic cyclodextrine polysaccharides. In the same way, processes that involve covalent linkage of bactericide agents during surface treatment of electrospun samples may also be considered. The present review is focused on more recent works concerning the electrospinning of antimicrobial polymers. These include chitosan and common biodegradable polymers with activity caused by the specific load of agents such as metal and metal oxide particles, quaternary ammonium compounds, hydantoin compounds, antibiotics, common organic bactericides, and bacteriophages.

  15. Partial Discharge Degradation of Several Biodegradable Polymers

    Science.gov (United States)

    Fuse, Norikazu; Fujita, Shinjiro; Hirai, Naoshi; Tanaka, Toshikatsu; Kozako, Masahiro; Kohtoh, Masanori; Okabe, Shigemitsu; Ohki, Yoshimichi

    Partial discharge (PD) resistance was examined by applying a constant voltage for four kinds of biodegradable polymers, i.e. poly-L-lactic acid (PLLA), polyethylene terephthalate succinate (PETS), poly ε-caprolactone butylene succinate (PCL-BS), and polybutylene succinate (PBS), and the results were compared with those of low density polyethylene (LDPE) and crosslinked low density polyethylene (XLPE). The PD resistance is determined by the erosion depth and the surface roughness caused by PDs, and is ranked as LDPE ≅ XLPE > PLLA ≅ PETS > PBS > PCL-BS. This means that the sample with a lower permittivity has better PD resistance. Furthermore, observations of the sample surface by a polarization microscope and a laser confocal one reveal that crystalline regions with spherulites are more resistant to PDs than amorphous regions. Therefore, good PD resistance can be achieved by the sample with a high crystallinity and a low permittivity.

  16. Biodegradable and biocompatible polymers for tissue engineering application: a review.

    Science.gov (United States)

    Asghari, Fatemeh; Samiei, Mohammad; Adibkia, Khosro; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-03-01

    Since so many years ago, tissue damages that are caused owing to various reasons attract scientists' attention to find a practical way to treat. In this regard, many studies were conducted. Nano scientists also suggested some ways and the newest one is called tissue engineering. They use biodegradable polymers in order to replace damaged structures in tissues to make it practical. Biodegradable polymers are dominant scaffolding materials in tissue engineering field. In this review, we explained about biodegradable polymers and their application as scaffolds.

  17. Polymers from plants to develop biodegradable plastics.

    Science.gov (United States)

    Conrad, Udo

    2005-11-01

    Katrin Neumann et al. have recently shown that transgenic tobacco and potato plants can accumulate high levels of cyanophycin, a possible source for poly-aspartate. This work opens the way to the future production of biodegradable plastics using a plant-based production system. Several problems need to be overcome first, such as growth retardation as a result of cyanophycin accumulating in the cytosol, and a co-production system needs to be developed for economical reasons.

  18. Critical evaluation of biodegradable polymers used in nanodrugs

    Directory of Open Access Journals (Sweden)

    Marin E

    2013-08-01

    Full Text Available Edgar Marin,1–3 Maria Isabel Briceño,2 Catherina Caballero-George11Unit of Pharmacology, Center of Biodiversity and Drug Discovery, Institute of Scientific Research and High Technology Services, 2Nano Dispersions Technology, Panama, Republic of Panama; 3Department of Biotechnology, Archaria Nagarjuna University, Guntur, IndiaAbstract: Use of biodegradable polymers for biomedical applications has increased in recent decades due to their biocompatibility, biodegradability, flexibility, and minimal side effects. Applications of these materials include creation of skin, blood vessels, cartilage scaffolds, and nanosystems for drug delivery. These biodegradable polymeric nanoparticles enhance properties such as bioavailability and stability, and provide controlled release of bioactive compounds. This review evaluates the classification, synthesis, degradation mechanisms, and biological applications of the biodegradable polymers currently being studied as drug delivery carriers. In addition, the use of nanosystems to solve current drug delivery problems are reviewed.Keywords: biodegradable polymers, nanoparticles, drug delivery, cellular uptake, biomedical applications

  19. Methods for Evaluating the Biodegradability of Environmentally Degradable Polymers

    NARCIS (Netherlands)

    Zee, van der M.

    2014-01-01

    This chapter presents an overview of the current knowledge on experimental methods for monitoring the biodegradability of polymeric materials. The focus is, in particular, on the biodegradation of materials under environmental conditions. Examples of in vivo degradation of polymers used in biomedica

  20. Molecular Design of Synthetic Biodegradable Polymers as Cell Scaffold Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Shen-guo; WAN Yu-qing; CAI Qing; HE Bin; CHEN Wen-na

    2004-01-01

    Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.

  1. Modern mass spectrometry in the characterization and degradation of biodegradable polymers

    Energy Technology Data Exchange (ETDEWEB)

    Rizzarelli, Paola, E-mail: paola.rizzarelli@cnr.it; Carroccio, Sabrina

    2014-01-15

    time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid chromatography (HPLC)

  2. Biodegradable polymers for electrospinning: towards biomedical applications.

    Science.gov (United States)

    Kai, Dan; Liow, Sing Shy; Loh, Xian Jun

    2014-12-01

    Electrospinning has received much attention recently due to the growing interest in nano-technologies and the unique material properties. This review focuses on recent progress in applying electrospinning technique in production of biodegradable nanofibers to the emerging field of biomedical. It first introduces the basic theory and parameters of nanofibers fabrication, with focus on factors affecting the morphology and fiber diameter of biodegradable nanofibers. Next, commonly electrospun biodegradable nanofibers are discussed, and the comparison of the degradation rate of nanoscale materials with macroscale materials are highlighted. The article also assesses the recent advancement of biodegradable nanofibers in different biomedical applications, including tissue engineering, drug delivery, biosensor and immunoassay. Future perspectives of biodegradable nanofibers are discussed in the last section, which emphasizes on the innovation and development in electrospinning of hydrogels nanofibers, pore size control and scale-up productions.

  3. Modern mass spectrometry in the characterization and degradation of biodegradable polymers.

    Science.gov (United States)

    Rizzarelli, Paola; Carroccio, Sabrina

    2014-01-15

    In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid

  4. Biodegradable and bioabsorbable polymers. Seitai bunkaiter dot kyushu sei kobunshi

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Y. (Kyoto Inst. of Technology, Kyoto (Japan). Faculty of Textile Science)

    1991-08-20

    The relationship between biodegradability with the layout and structure of high polymers which are degraded and disintegrated by the contact with organism is investigated. Description is made also on a new polyurethane which is decomposed by the action of E. Coli. Vinyl polymers formed by carbon-carbon bonding is hard to be made biodegradable with a few exceptions. If the chemical structures are similar, the rates of the decomposition are in the order of crystalline high polymer < glass state high polymer < rubber state high polymer. Bioabsorbable polymers disappear in a short time even implanted in body, and are used ideally as temporary mending materials during the period of body{prime}s self recovery and as the carriers for slow release drugs. Development of biodegradable polymers which can be decomposed by microbes in soil and sea water are expected to be most likely. Non-absorbable degradable polymers which are decomposed, with the decomposed products remaining in body for a long time, can function well in dischargeable portions. 38 refs., 3 tabs.

  5. Micro fabrication of biodegradable polymer drug delivery devices

    DEFF Research Database (Denmark)

    Nagstrup, Johan

    The pharmaceutical industry is presently facing several obstacles in developing oral drug delivery systems. This is primarily due to the nature of the discovered drug candidates. The discovered drugs often have poor solubility and low permeability across the gastro intestinal epithelium. Furtherm...... the developed devices. Additionally, it has been shown that it is possible to control the release of drug by adding polymeric coatings........ Furthermore, they are often degraded before they can be absorbed. The result is low bioavailability of the drugs. To overcome these challenges, better drug delivery systems need to be developed. Recently, micro systems have emerged as promising candidates to solve the challenges of poor solubility, low...... permeability and degradation. These systems are for the majority based on traditional materials used in micro technology, such as SU-8, silicon, poly(methyl methacrylate). The next step in developing these new drug delivery systems is to replace classical micro fabrication materials with biodegradable polymers...

  6. Introduction of environmentally degradable parameters to evaluate the biodegradability of biodegradable polymers.

    Directory of Open Access Journals (Sweden)

    Wenbin Guo

    Full Text Available Environmentally Degradable Parameter ((EdK is of importance in the describing of biodegradability of environmentally biodegradable polymers (BDPs. In this study, a concept (EdK was introduced. A test procedure of using the ISO 14852 method and detecting the evolved carbon dioxide as an analytical parameter was developed, and the calculated (EdK was used as an indicator for the ultimate biodegradability of materials. Starch and polyethylene used as reference materials were defined as the (EdK values of 100 and 0, respectively. Natural soil samples were inoculated into bioreactors, followed by determining the rates of biodegradation of the reference materials and 15 commercial BDPs over a 2-week test period. Finally, a formula was deduced to calculate the value of (EdK for each material. The (EdK values of the tested materials have a positive correlation to their biodegradation rates in the simulated soil environment, and they indicated the relative biodegradation rate of each material among all the tested materials. Therefore, the (EdK was shown to be a reliable indicator for quantitatively evaluating the potential biodegradability of BDPs in the natural environment.

  7. Encapsulation of indomethacin in magnetic biodegradable polymer nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zavisova, Vlasta [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia)]. E-mail: zavisova@saske.sk; Koneracka, Martina [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Strbak, Oliver [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Tomasovicova, Natalia [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Kopcansky, Peter [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Timko, Milan [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Vavra, Ivo [Institute of Electrical Engineering, Slovak Academy of Science, Dubravska cesta 9, 841 04 Bratislava (Slovakia)

    2007-04-15

    In this study, indomethacin (IND), which is a poorly water-soluble anti-inflammatory drug, was encapsulated in magnetic biodegradable poly(D,L-lactide) polymer (PLA) by the nanoprecipitation method. The influence of aqueous phase pH on drug loading and maximum concentration of magnetic particles inside the polymer was investigated. Morphology and particle size of the prepared nanospheres were determined by atomic force microscopy and transmission electron microscopy. Drug release from the nanospheres was studied by external sink method. The diffusion and dissolution models were applied to the description of IND release from nanospheres.

  8. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O-H str...... absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed.......Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O......-H stretch) and 3.40 (C-H) mum light at macropulse fluences of 7.8 and 6.7 J/cm(2), respectively. Under these conditions, a 0.5-mum thick film can be grown in less than 5 min. Film structure was determined from infrared absorbance measurements and gel permeation chromatography (GPC). While the infrared...

  9. Synthesis and In Vitro Cancer Cell Targeting of Folate-Functionalized Biodegradable Amphiphilic Dendrimer-Like Star Polymers

    NARCIS (Netherlands)

    Cao, Weiqiang; Zhou, Jing; Wang, Yong; Zhu, Lei

    2010-01-01

    By coupling a well-defined PLLA star polymer with six carboxylic acid-terminated polyester dendrons based on 2,2-bis(hydroxymethyl)propionic acid, a biodegradable dendrimer-like star polymer (DLSP) with multiple carboxylic acid groups at the outer surface was successfully synthesized. Conjugation of

  10. Effect of electron beam irradiation on the enzymatic degradation of composites based on biodegradable polymers and coconut fiber

    Energy Technology Data Exchange (ETDEWEB)

    Kodama, Yasko; Bardi, Marcelo Augusto Goncalves; Machado, Luci Diva Brocardo, E-mail: ykodama@ipen.b, E-mail: marcelo.bardi@usp.b, E-mail: lmachado@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rosa, Derval dos Santos, E-mail: derval.rosa@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2011-07-01

    The development of polymeric materials that are susceptible to microbiological degradation and that have properties similar to the conventional polymers would reduce waste deposit. Degradable plastics suffer significant change on chemical structure when submitted to specific environmental condition. PCL and PLLA have been extensively investigated due to their bio-assimilation and because they are considered as eco-friendly. So the degradation of PCL and PLLA homopolymers, PCL:PLLA 20:80 (w:w) blend and coconut fiber-modified composites were studied by means of their degradation under lipase enzyme from Pseudomonas cepacia. Non-irradiated and EB-irradiated samples at 50 kGy and 100 kGy were exposed during 24, 72, 120 and 168 hours to the enzyme-buffer solution and the retained mass of dried samples was accompanied over time. The results were compared to the not submitted to the enzyme solution samples. Degradation rate of PCL was higher than PLLA in the presence of Pseudomonas lipase. PLLA presence reduced PCL's enzymatic degradation in the PCL:PLLA 20:80 w:w blend. After 120 h exposure, blend mass loss variation approached pure PLLA behavior. Composites degradation behavior through time was similar to the blend. Values of retained mass for composites were superior to the blends suggesting that coconut fiber did not significantly degrade in the period of test. Degradation rate of 50 kGy-irradiated PCL slightly reduced, and it was observed increase of degradation rate of samples irradiated with 100 kGy, probably attributed to its crystallinity decrease. Degradation rate of irradiated composite was similar to the blend, suggesting that fiber presence did not affect significantly this parameter. Samples tested during 168 h were affected by the water absorption by PLLA or coconut fibers through time testing. Studied samples degraded accentuatedly in the enzyme presence and were not negatively affected by the radiation processing. (author)

  11. Biodegradable star polymers functionalized with beta-cyclodextrin inclusion complexes.

    Science.gov (United States)

    Setijadi, Eki; Tao, Lei; Liu, Jingquan; Jia, Zhongfan; Boyer, Cyrille; Davis, Thomas P

    2009-09-14

    Three-armed biodegradable star polymers made from polystyrene (polySt) and poly (polyethylene glycol) acrylate (polyPEG-A) were synthesized via a "core first" methodology using a trifunctional RAFT agent, created by attaching RAFT agents to a core via their R-groups. The resultant three-armed polymeric structures were well-defined, with polydispersity indices less than 1.2. Upon aminolysis and further reaction with dithiodipyridine (DTDP), these three-armed polymers could be tailored with sulfhydryl and pyridyldisulfide (PDS) end functionalities, available for further reaction with any free-sulfhydryl group containing precursors to form disulfide linkages. Nuclear magnetic resonance (NMR) confirmed that more than 98% of the polymer arms retained integral trithiocarbonate active sites after polymerization. Intradisulfide linkages between the core and the arms conferred biodegradability on the star architectures. Subsequently, the arm-termini were attached to cholesterol also via disulfide linkages. The cholesterol terminated arms were then used to form supramolecular structures via inclusion complex formation with beta-cyclodextrin (beta-CD). The star architectures were found to degrade rapidly on treatment with DL-dithiothereitol (DTT). The star polymers and supramolecular structures were characterized using gel permation chromatography (GPC), static light scattering (SLS), 2D NMR, and fluorescence spectroscopy.

  12. Prazosin-Conjugated Matrices Based on Biodegradable Polymers and α-Amino Acids—Synthesis, Characterization, and in Vitro Release Study

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2015-08-01

    Full Text Available Novel and promising macromolecular conjugates of the α1-adrenergic blocker prazosin were directly synthesized by covalent incorporation of the drug to matrices composed of biodegradable polymers and α-amino acids for the development of a polymeric implantable drug delivery carrier. The cyto- and genotoxicity of the synthesized matrices were evaluated using a bacterial luminescence test, protozoan assay, and Salmonella typhimurium TA1535. A new urethane bond was formed between the hydroxyl end-groups of the synthesized polymer matrices and an amine group of prazosin, using 1,1′-carbonyldiimidazole (CDI as a coupling agent. The structure of the polymeric conjugates was characterized by various spectroscopy techniques. A study of hydrogen nuclear magnetic resonance (1H-NMR and differential scanning calorimetry (DSC thermodiagrams indicated that the presence of prazosin pendant groups in the macromolecule structures increased the polymer’s rigidity alongside increasing glass transition temperature. It has been found that the kinetic release of prazosin from the obtained macromolecular conjugates, tested in vitro under different conditions, is strongly dependent on the physicochemical properties of polymeric matrices. Furthermore, the presence of a urethane bond in the macromolecular conjugates allowed for obtaining a relatively controlled release profile of the drug. The obtained results confirm that the pharmacokinetics of prazosin might be improved through the synthesis of polymeric conjugates containing biomedical polymers and α-amino acids in the macromolecule.

  13. Radiation processing of biodegradable polymer and hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Poly({epsilon}-caprolactone), PCL, (melting temperature 60degC) was gamma-irradiated in the solid state at 30 to 55degC, the molten state, and the supercooled state(irradiation at 45 to 55degC after melting, 80degC) under vacuum to improve its heat resistance. Irradiation of PCL in the supercooled state led to the highest gel content and this polymer has high heat resistance. On the other hand, relatively smaller doses such as 15 and 30 kGy were effective to improve processability of PCL by formation of branch structure during irradiation. It was found that carboxymethylcellulose with relatively high degree of substitution led crosslinking at high concentration in aqueous solution such as 10% by irradiation. (author)

  14. Colloidal gold-loaded, biodegradable, polymer-based stavudine nanoparticle uptake by macrophages: an in vitro study

    Directory of Open Access Journals (Sweden)

    Basu S

    2012-12-01

    Full Text Available Sumit Basu,1,2 Biswajit Mukherjee,1 Samrat Roy Chowdhury,1 Paramita Paul,1 Rupak Choudhury,3 Ajeet Kumar,1 Laboni Mondal,1 Chowdhury Mobaswar Hossain,1 Ruma Maji11Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India; 2Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA; 3Department of Biochemistry, Ballygunge Science College, Kolkata, IndiaObjective: We describe the development, evaluation, and comparison of colloidal gold-loaded, poly(d,l-lactic-co-glycolic acid-based nanoparticles containing anti-acquired immunodeficiency syndrome drug stavudine and uptake of these nanoparticles by macrophages in vitro.Methods: We used the following methods in this study: drug-excipient interaction by Fourier transform infrared spectroscopy, morphology of nanoparticles by field-emission scanning electron microscopy, particle size by a particle size analyzer, and zeta potential and polydispersity index by a zetasizer. Drug loading and in vitro release were evaluated for formulations. The best formulation was incorporated with fluorescein isothiocyanate. Macrophage uptake of fluorescein isothiocyanate nanoparticles was studied in vitro.Results: Variations in process parameters, such as speed of homogenization and amount of excipients, affected drug loading and the polydispersity index. We found that the drug was released for a prolonged period (over 63 days from the nanoparticles, and observed cellular uptake of stavudine nanoparticles by macrophages.Conclusion: Experimental nanoparticles represent an interesting carrier system for the transport of stavudine to macrophages, providing reduced required drug dose and improved drug delivery to macrophages over an extended period. The presence of colloidal gold in the particles decreased the drug content and resulted in comparatively faster drug release.Keywords: stavudine, poly(d,l-lactic-co-glycolic acid, nanoparticles

  15. Sustained Release of Antibacterial Lipopeptides from Biodegradable Polymers against Oral Pathogens

    Science.gov (United States)

    Eckhard, Lea H.; Houri-Haddad, Yael; Sol, Asaf; Zeharia, Rotem; Shai, Yechiel; Beyth, Shaul; Domb, Abraham J.

    2016-01-01

    The development of antibacterial drugs to overcome various pathogenic species, which inhabit the oral cavity, faces several challenges, such as salivary flow and enzymatic activity that restrict dosage retention. Owing to their amphipathic nature, antimicrobial peptides (AMPs) serve as the first line of defense of the innate immune system. The ability to synthesize different types of AMPs enables exploitation of their advantages as alternatives to antibiotics. Sustained release of AMPs incorporated in biodegradable polymers can be advantageous in maintaining high levels of the peptides. In this study, four potent ultra-short lipopeptides, conjugated to an aliphatic acid chain (16C) were incorporated in two different biodegradable polymers: poly (lactic acid co castor oil) (PLACO) and ricinoleic acid-based poly (ester-anhydride) (P(SA-RA)) for sustained release. The lipopeptide and polymer formulations were tested for antibacterial activity during one week, by turbidometric measurements of bacterial outgrowth, anti-biofilm activity by live/dead staining, biocompatibility by hemolysis and XTT colorimetric assays, mode of action by fluorescence-activated cell sorting (FACS) and release profile by a fluorometric assay. The results show that an antibacterial and anti-biofilm effect, as well as membrane disruption, can be achieved by the use of a formulation of lipopeptide incorporated in biodegradable polymer. PMID:27606830

  16. Orthopaedic applications for PLA-PGA biodegradable polymers.

    Science.gov (United States)

    Athanasiou, K A; Agrawal, C M; Barber, F A; Burkhart, S S

    1998-10-01

    Biodegradable polymers, especially those belonging to the family of polylactic acid (PLA) and polyglycolic acid (PGA), play an increasingly important role in orthopaedics. These polymers degrade by hydrolysis and enzymatic activity and have a range of mechanical and physical properties that can be engineered appropriately to suit a particular application. Their degradation characteristics depend on several parameters including their molecular structure, crystallinity, and copolymer ratio. These biomaterials are also rapidly gaining recognition in the fledging field of tissue engineering because they can be fashioned into porous scaffolds or carriers of cells, extracellular matrix components, and bioactive agents. Although their future appears to be bright, several questions regarding the biocompatibility of these materials linger and should be addressed before their wide-scale use. In the context of musculoskeletal tissue, this report provides a comprehensive review of properties and applications of biodegradable PLA/PGA polymers and their copolymers. Of special interest are orthopaedic applications, biocompatibility studies, and issues of sterilization and storage of these versatile biomaterials. Also discussed is the fact that terms such as PLA, PGA, or PLA-PGA do not denote one material, but rather a large family of materials that have a wide range of differing bioengineering properties and concomitant biological responses. An analysis of some misconceptions, problems, and potential solutions is also provided.

  17. The second green revolution? Production of plant-based biodegradable plastics.

    Science.gov (United States)

    Mooney, Brian P

    2009-03-01

    Biodegradable plastics are those that can be completely degraded in landfills, composters or sewage treatment plants by the action of naturally occurring micro-organisms. Truly biodegradable plastics leave no toxic, visible or distinguishable residues following degradation. Their biodegradability contrasts sharply with most petroleum-based plastics, which are essentially indestructible in a biological context. Because of the ubiquitous use of petroleum-based plastics, their persistence in the environment and their fossil-fuel derivation, alternatives to these traditional plastics are being explored. Issues surrounding waste management of traditional and biodegradable polymers are discussed in the context of reducing environmental pressures and carbon footprints. The main thrust of the present review addresses the development of plant-based biodegradable polymers. Plants naturally produce numerous polymers, including rubber, starch, cellulose and storage proteins, all of which have been exploited for biodegradable plastic production. Bacterial bioreactors fed with renewable resources from plants--so-called 'white biotechnology'--have also been successful in producing biodegradable polymers. In addition to these methods of exploiting plant materials for biodegradable polymer production, the present review also addresses the advances in synthesizing novel polymers within transgenic plants, especially those in the polyhydroxyalkanoate class. Although there is a stigma associated with transgenic plants, especially food crops, plant-based biodegradable polymers, produced as value-added co-products, or, from marginal land (non-food), crops such as switchgrass (Panicum virgatum L.), have the potential to become viable alternatives to petroleum-based plastics and an environmentally benign and carbon-neutral source of polymers.

  18. 3D structuring of biocompatible and biodegradable polymers via stereolithography.

    Science.gov (United States)

    Gill, Andrew A; Claeyssens, Frederik

    2011-01-01

    The production of user-defined 3D microstructures from biocompatible and biodegradable materials via free-form fabrication is an important step to create off-the-shelf technologies to be used as tissue engineering scaffolds. One method of achieving this is the microstereolithography of block copolymers, allowing high resolution microstructuring of materials with tuneable physical properties. A versatile protocol for the production and photofunctionalisation of pre-polymers for microstereolithography is presented along with a discussion of the possible microstereolithography set-ups and previous work in the field.

  19. Poly(dopamine) coating to biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Tsai, Wei-Bor; Chen, Wen-Tung; Chien, Hsiu-Wen; Kuo, Wei-Hsuan; Wang, Meng-Jiy

    2014-02-01

    In this study, a technique based on poly(dopamine) deposition to promote cell adhesion was investigated for the application in bone tissue engineering. The adhesion and proliferation of rat osteoblasts were evaluated on poly(dopamine)-coated biodegradable polymer films, such as polycaprolactone, poly(l-lactide) and poly(lactic-co-glycolic acid), which are commonly used biodegradable polymers in tissue engineering. Cell adhesion was significantly increased to a plateau by merely 15 s of dopamine incubation, 2.2-4.0-folds of increase compared to the corresponding untreated substrates. Cell proliferation was also greatly enhanced by poly(dopamine) deposition, indicated by shortened cell doubling time. Mineralization was also increased on the poly(dopamine)-deposited surfaces. The potential of poly(dopamine) deposition in bone tissue engineering is demonstrated in this study.

  20. A REVIEW ON BIODEGRADABLE STARCH BASED FILM

    Directory of Open Access Journals (Sweden)

    Hooman Molavi

    2015-04-01

    Full Text Available In recent years, biodegradable edible films have become very important in research related to food, due to their compatibility with the environment and their use in the food packaging industry. Various sources can be used in the production of biopolymers as biodegradable films that include polysaccharides, proteins and lipids. Among the various polysaccharides, starch due to its low price and its abundance in nature is of significant importance. Several factors affect the properties of starch films; such as the source which starch is obtained from, as well as the ratio of constituents of the starch. Starch films have advantages such as low thickness, flexibility and transparency though; there are some downsides to mention, such as the poor mechanical properties and water vapor permeability. Thus, using starch alone to produce the film will led to restrictions on its use. To improve the mechanical properties of starch films and also increases resistance against humidity, several methods can be used; including the starch modifying techniques such as cross linking of starch and combining starch with other natural polymers. Other methods such as the use of lipid in formulations of films to increase the resistance to moisture are possible, but lipids are susceptible to oxidation. Therefore, new approaches are based on the integration of different biopolymers in food packaging.

  1. Biodegradable Polymers and Stem Cells for Bioprinting

    OpenAIRE

    2016-01-01

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting a...

  2. Characterization of biodegradable polymers irradiated with swift heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Salguero, N.G. [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, TANDAR-CNEA, Av. Gral. Paz 1499 (B1650KNA) San Martin, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Duran, H. [CONICET, Av. Rivadavia 1917 C1033AAJ CABA (Argentina); Gerencia de Desarrollo Tecnologico y Proyectos Especiales, CNEA, Av. Gral. Paz 1499 (B1650KNA) San Mart Latin-Small-Letter-Dotless-I Acute-Accent n, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, H. Yrigoyen 3100, CP 1650, San Martin, UNSAM (Argentina); Peruzzo, P.J. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Amalvy, J.I. [CICPBA - Grupo de Materiales y Nanomateriales Polimericos, Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), CCT La Plata CONICET - Universidad Nacional de La Plata, La Plata (Argentina); Facultad de Ingenieria, Universidad Nacional de La Plata, Calle 116 y 48 (B1900TAG), La Plata (Argentina); Departamento de Ingenieria Quimica, Facultad Regional La Plata, Universidad Tecnologica Nacional, 60 y 124 (1900), La Plata (Argentina); and others

    2012-02-15

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly-L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  3. Radiation processing of biodegradable polymer hydrogel from cellulose derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Wach, Radoslaw A.; Mitomo, Hiroshi [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effects of high-energy radiation on ethers of cellulose: carboxymethyl-, hydroxypropyl- and hydroxyethylcellulose have been investigated. Polymers were irradiated in solid state and aqueous solution at various concentrations. Degree of substitution (DS), the concentration in the solution and irradiation conditions had a significant impact on the obtained products. Irradiation of polymers in solid and in diluted solution resulted in their degradation. A novel hydrogels of such natural polymers were synthesized, without using any additives, by irradiation at high concentration. It was found that high DS of CMC promoted crosslinking and, for all of the ethers, the gel formation occurred easier for more concentrated solutions. Paste-like form of the initial material, when water plasticised the bulk of polymer mass, along with the high dose rate and preventing oxygen accessibility to the sample during irradiation were favorable for hydrogel preparation. Up to 95% of gel fraction was obtained from 50 and 60% CMC solutions irradiated by gamma rays or by a beam of accelerated electrons (EB). The other polymers were more sensitive to the dose rate and formed gels with higher gel fraction while processed by EB. Moreover, polymers (except CMC) treated by gamma rays were susceptible to degradation after application of a dose over 50-100 kGy. The presence of oxygen in the system during irradiation limited a gel content and was prone to easier degradation of already formed gel. Produced hydrogels swelled markedly by absorption when paced in the solvent. Crosslinked polymers showed susceptibility to degradation by cellulase enzyme and by the action of microorganisms in compost or under natural conditions in soil thus could be included into the group of biodegradable materials. (author)

  4. Measuring the Biodegradability of Plastic Polymers in Olive-Mill Waste Compost with an Experimental Apparatus

    Directory of Open Access Journals (Sweden)

    Francesco Castellani

    2016-01-01

    Full Text Available The use of biodegradable polymers is spreading in agriculture to replace those materials derived from petroleum, thus reducing the environmental concerns. However, to issue a significant assessment, biodegradation rate must be measured in case-specific standardized conditions. In accordance with ISO 14855-1, we designed and used an experimental apparatus to evaluate the biodegradation rate of three biopolymers based on renewable resources, two poly(ε-caprolactone (PCL composites, and a compatibilized polylactic acid and polybutyrate (PLA/PBAT blend. Biodegradation tests were carried out under composting condition using mature olive-mill waste (OMW compost as inoculum. Carbon dioxide emissions were automatically recorded by infrared gas detectors and also trapped in saturated Ba(OH2 solution and evaluated via a standard titration method to check the results. Some of the samples reached more than 80% biodegradation in less than 20 days. Both the experimental apparatus and the OMW compost showed to be suitable for the cases studied.

  5. Development of a Sustainable Release System for a Ranibizumab Biosimilar Using Poly(lactic-co-glycolic acid) Biodegradable Polymer-Based Microparticles as a Platform.

    Science.gov (United States)

    Tanetsugu, Yusuke; Tagami, Tatsuaki; Terukina, Takayuki; Ogawa, Takaya; Ohta, Masato; Ozeki, Tetsuya

    2017-01-01

    Ranibizumab is a humanized monoclonal antibody fragment against vascular endothelial growth factor (VEGF)-A and is widely used to treat age-related macular degeneration (AMD) caused by angiogenesis. Ranibizumab has a short half-life in the eye due to its low molecular weight and susceptibility to proteolysis. Monthly intravitreal injection of a large amount of ranibizumab formulation is a burden for both patients and medical staff. We therefore sought to develop a sustainable release system for treating the eye with ranibizumab using a drug carrier. A ranibizumab biosimilar (RB) was incorporated into microparticles of poly(lactic-co-glycolic acid) (PLGA) biodegradable polymer. Ranibizumab was sustainably released from PLGA microparticles (80+% after 3 weeks). Assay of tube formation by endothelial cells indicated that RB released from PLGA microparticles inhibited VEGF-induced tube formation and this tendency was confirmed by a cell proliferation assay. These results indicate that RB-loaded PLGA microparticles are useful for sustainable RB release and suggest the utility of intraocular sustainable release systems for delivering RB site-specifically to AMD patients.

  6. Biodegradation study of some food packaging biopolymers based on PVA

    Directory of Open Access Journals (Sweden)

    Elena Elisabeta Tanase

    2016-03-01

    Full Text Available Abstract Polymers are a common choice as protective materials since they combine flexibility, variable sizes and shapes, relatively light weight, stability, resistance to breaking, barrier properties and perceived high-quality image with cost-effectiveness. Currently, mainly non-biodegradable petroleum-based synthetic polymers are used as packaging materials for foods, because of their availability, low cost and functionality. However, biopolymers can be made from renewable resources without the environmental issues of petroleum-based polymers and with the additional advantage of being available from renewable sources or as by-products or waste-products from the food and agriculture industries. The aim of this study was to test some food packaging biopolymers based on PVA. In this respect, some biopolymers for food packaging applications were subjected to biodegradation tests by covering the tested samples with soil. The samples were incubated in known temperature and humidity conditions. The experiment lasted 45 days, after that the samples were washed, weighed and the biodegradation degree was calculated. The obtained results shows that PVA is a promising material for food packaging usage, as it is made from renewable resources and it is environmentally friendly.

  7. Fabrication of pliable biodegradable polymer foams to engineer soft tissues.

    Science.gov (United States)

    Wake, M C; Gupta, P K; Mikos, A G

    1996-01-01

    We have fabricated pliable, porous, biodegradable scaffolds with poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) blends using a solvent-casting and particulate-leaching technique. Our study investigated the effects of four different processing parameters on pliability and pore morphology of the biodegradable scaffolds. The parameters investigated were the PLGA copolymer ratio, the PLGA/PEG blend ratio, the initial salt weight fraction, and the salt particle size. A wide range of shear moduli (0.59 to 9.55 MPa), porosities (0.798 to 0.942), and median pore diameters (71 to 154 microns) was able to be achieved by varying the combination of these parameters. Our study indicates that initial salt weight fraction and PLGA/PEG blend ratio have the most significant effects on the physico-mechanical properties of the scaffolds. Enhanced pliability of the three dimensional foams made with blends of PLGA and PEG is evidenced by the ability to roll them into a tube without macroscopic damage to the scaffold. Pliable polymer substrates hold great promise for regeneration of soft tissues such as skin, or those requiring a tubular conformation such as intestine or vascular grafts.

  8. Biolimus-eluting biodegradable polymer-coated stent versus durable polymer-coated sirolimus-eluting stent in unselected patients receiving percutaneous coronary intervention (SORT OUT V)

    DEFF Research Database (Denmark)

    Christiansen, Evald Høj; Jensen, Lisette Okkels; Thayssen, Per

    2013-01-01

    Third-generation biodegradable polymer drug-eluting stents might reduce the risk of stent thrombosis compared with first-generation permanent polymer drug-eluting stents. We aimed to further investigate the effects of a biodegradable polymer biolimus-eluting stent compared with a durable polymer...

  9. Panorama setorial e perspectivas na área de polímeros biodegradáveis Biodegradable polymers: sectorial overview and prospects

    Directory of Open Access Journals (Sweden)

    Daniele M. B. Falcone

    2007-03-01

    Full Text Available Neste trabalho, envolvendo polímeros biodegradáveis, buscou-se obter indicadores por meio da análise de patentes para avaliar as perspectivas e oportunidades de atuação da área de polímeros. Utilizou-se para tal a base de dados Espacenet e o software Vantage Point. São matéria desse estudo os polímeros: poli(hidroxibutirato - PHB, poli(hidroxibutirato-co-hidroxivalerato - PHBV, poli(ácido lático - PLA, poli(épsilon-caprolactona - PCL e os polihidroxialcanoatos (PHAs, tratados mais detalhadamente por serem a classe geral dos poliésteres microbiais. Verificou-se que a área de polímeros biodegradáveis, apesar de recente e em desenvolvimento, apresenta grande potencial mediante o panorama atual de consumo dos materiais poliméricos. Observou-se, de uma forma geral, uma grande diversidade de temas e oportunidades de estudo em compostos, blendas, biodegradação e aplicações.This work on biodegradable polymers involved an analysis of patents to identify indicators for evaluating the prospects and opportunities of action in the field of polymers. We used the Spacenet database and Vantage Point software. The study encompassed the following polymers: polyhydroxybutyrate - PHB, polyhydroxybutyrate-co-hydroxyvalerate - PHBV, polylactic acid - PLA, poly (epsilon-caprolactone - PCL and the polyhydroxyalkanoates (PHAs, dealt in greater detail because they represent the general class of microbial polyesters. We found that, although the field of biodegradable polymers is new and still under development, it holds great potential in view of present widespread use of polymeric materials. Overall we found a great diversity of themes and opportunities for studies on compounds, blends, biodegradation and applications.

  10. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Putri, Zufira; Arcana, I. Made

    2014-03-01

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO2 are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO2 compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO2 blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM).

  11. Biodegradation test of SPS-LS blends as polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Zufira, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: zufira.putri@gmail.com, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung (Indonesia)

    2014-03-24

    Sulfonated polystyrene (SPS) can be applied as a proton exchange membrane fuel cell due to its fairly good chemical stability. In order to be applied as polymer electrolyte membrane fuel cells (PEMFCs), membrane polymer should have a good ionic conductivity, high proton conductivity, and high mechanical strength. Lignosulfonate (LS) is a complex biopolymer which has crosslinks and sulfonate groups. SPS-LS blends with addition of SiO{sub 2} are used to increase the proton conductivity and to improve the mechanical properties and thermal stability. However, the biodegradation test of SPS-LS blends is required to determine whether the application of these membranes to be applied as an environmentally friendly membrane. In this study, had been done the synthesis of SPS, biodegradability test of SPS-LS blends with variations of LS and SiO{sub 2} compositions. The biodegradation test was carried out in solid medium of Luria Bertani (LB) with an activated sludge used as a source of microorganism at incubation temperature of 37°C. Based on the results obtained indicated that SPS-LS-SiO{sub 2} blends are more decomposed by microorganism than SPS-LS blends. This result is supported by analysis of weight reduction percentage, functional groups with Fourier Transform Infrared (FTIR) Spectroscopy, and morphological surface with Scanning Electron Microscopy (SEM)

  12. JTEC monograph on biodegradable polymers and plastics in Japan: Research, development, and applications

    Science.gov (United States)

    Lenz, Robert W.

    1995-01-01

    A fact-finding team of American scientists and engineers visited Japan to assess the status of research and development and applications in biodegradable polymers. The visit was sponsored by the National Science Foundation and industry. In Japan, the team met with representatives of 31 universities, government ministries and institutes, companies, and associations. Japan's national program on biodegradable polymers and plastics evaluates new technologies, testing methods, and potential markets for biodegradables. The program is coordinated by the Biodegradable Plastics Society of Japan, which seeks to achieve world leadership in biodegradable polymer technology and identify commercial opportunities for exploiting this technology. The team saw no major new technology breakthroughs. Japanese scientists and engineers are focusing on natural polymers from renewable resources, synthetic polymers, and bacterially-produced polymers such as polyhydroxyalkanoates, poly(amino acids), and polysaccharides. The major polymers receiving attention are the Zeneca PHBV copolymers, Biopol(registered trademark), poly(lactic acid) from several sources, polycaprolactone, and the new synthetic polyester, Bionolle(registered trademark), from Showa High Polymer. In their present state of development, these polymers all have major deficiencies that inhibit their acceptance for large-scale applications.

  13. Experimental degradation of polymer shopping bags (standard and degradable plastic, and biodegradable) in the gastrointestinal fluids of sea turtles.

    Science.gov (United States)

    Müller, Christin; Townsend, Kathy; Matschullat, Jörg

    2012-02-01

    The persistence of marine debris such as discarded polymer bags has become globally an increasing hazard to marine life. To date, over 177 marine species have been recorded to ingest man-made polymers that cause life-threatening complications such as gut impaction and perforation. This study set out to test the decay characteristics of three common types of shopping bag polymers in sea turtle gastrointestinal fluids (GIF): standard and degradable plastic, and biodegradable. Fluids were obtained from the stomachs, small intestines and large intestines of a freshly dead Green turtle (Chelonia mydas) and a Loggerhead turtle (Caretta caretta). Controls were carried out with salt and freshwater. The degradation rate was measured over 49 days, based on mass loss. Degradation rates of the standard and the degradable plastic bags after 49 days across all treatments and controls were negligible. The biodegradable bags showed mass losses between 3 and 9%. This was a much slower rate than reported by the manufacturers in an industrial composting situation (100% in 49 days). The GIF of the herbivorous Green turtle showed an increased capacity to break down the biodegradable polymer relative to the carnivorous Loggerhead, but at a much lower rate than digestion of natural vegetative matter. While the breakdown rate of biodegradable polymers in the intestinal fluids of sea turtles is greater than standard and degradable plastics, it is proposed that this is not rapid enough to prevent morbidity. Further study is recommended to investigate the speed at which biodegradable polymers decompose outside of industrial composting situations, and their durability in marine and freshwater systems.

  14. Green chemical synthesis of poly(lactic acid) based biodegradable polymers%聚乳酸降解材料的绿色化学合成

    Institute of Scientific and Technical Information of China (English)

    许文殊; 罗祥林

    2011-01-01

    背景:聚乳酸具有良好的生物相容性和生物降解性,广泛应用于药物缓释、手术缝合线、组织工程支架及骨修复材料等生物医用领域.但其常规合成方法需使用溶剂,生产效率较低且成本较高.目的:对非溶剂的绿色化学方法-乳酸熔融缩聚/二异氰酸酯熔融扩链,合成聚乳酸降解材料的研究进展进行综述.方法:应用计算机检索SCI-Expanded数据库(1995-01/2010-06),以"Poly(lactic acid),diisocyanate"为检索词;应用计算机检索中国期刊网络出版总库(1999-01/2010-06),以"聚乳酸,异氰酸酯"为检索词.共收集130篇关于乳酸熔融缩聚/二异氰酸酯熔融扩链的文献,中文39篇,英文91篇.排除发表内容重复、实验结果较差的文献,共32篇文献符合标准被纳入.结果与结论:采用非溶剂的绿色化学方法-乳酸熔融缩聚/二异氰酸酯熔融扩链,通过改变异氰酸酯和预聚物的种类和比例,就可以制备具有不同相对分子质量和性能的可降解聚乳酸基聚氨酯材料,有望在生物医用领域和日常生活中取得实际的应用.%BACKGROUND: Poly(lactic acid) has excellent biocompatibility and biodegradability, thus it has been widely used in many biomedical fields, such as drug delayed release, surgical suture, tissue engineering scaffold and bone substitutes. Routine synthesis requires the use of solvent, showing low production efficacy and high cost.OBJECTIVE: Non-solvent green chemical synthesis of poly(lactic acid) based biodegradable materials via direct condensation polymerization and chain extension in melt state were reviewed.METHODS: A computer-based online search of SCI-Expanded database (1995-01/2010-06) and China Academic Journal Network Publishing Database was performed for related articles with the key words of "poly (lactic acid), diisocyanate" in English and in Chinese. A total of 130 articles regarding the lactic acid polycondensation/diisocyanate chain extension in melt

  15. Mechanical, Thermomechanical and Reprocessing Behavior of Green Composites from Biodegradable Polymer and Wood Flour

    Directory of Open Access Journals (Sweden)

    Marco Morreale

    2015-11-01

    Full Text Available The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile, Dynamic-mechanical thermal (DMTA, differential scanning calorimetry (DSC and creep tests were performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance in comparison to the pristine polymer, without compromising other properties such as the tensile strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even allowed for improving some properties of the obtained green composites.

  16. Biodegradation of New Polymer Foundry Binders for the Example of the Composition Polyacrylic Acid/Starch

    Directory of Open Access Journals (Sweden)

    Beata Grabowska

    2011-04-01

    Full Text Available The investigations on the biodegradation process pathway of the new polymer binders for the example of water soluble compositionpolyacrylic acid/starch are presented in the hereby paper. Degradation was carried out in water environment and in a soil. Thedetermination of the total oxidation biodegradation in water environment was performed under laboratory conditions in accordance with the static water test system (Zahn-Wellens method, in which the mixture undergoing biodecomposition contained inorganic nutrient,activated sludge and the polymer composition, as the only carbon and energy source. The biodecomposition progress of the polymercomposition sample in water environment was estimated on the basis of the chemical oxygen demand (COD measurements and thedetermination the biodegradation degree, Rt, during the test. These investigations indicated that the composition polyacrylic acid/starchconstitutes the fully biodegradable material in water environment. The biodegradation degree Rt determined in the last 29th day of the test duration achieved 65%, which means that the investigated polymer composition can be considered to be fully biodegradable.During the 6 months biodegradation process of the cross-linked sample of the polymer composition in a garden soil several analysis ofsurface and structural changes, resulting from the sample decomposition, were performed. Those were: thermal analyses (TG-DSC,structural analyses (Raman spectroscopy and microscopic analyses (optical microscopy, AFM.

  17. Reversible thermosensitive biodegradable polymeric actuators based on confined crystallization.

    Science.gov (United States)

    Stroganov, Vladislav; Al-Hussein, Mahmoud; Sommer, Jens-Uwe; Janke, Andreas; Zakharchenko, Svetlana; Ionov, Leonid

    2015-03-11

    We discovered a new and unexpected effect of reversible actuation of ultrathin semicrystalline polymer films. The principle was demonstrated on the example of thin polycaprolactone-gelatin bilayer films. These films are unfolded at room temperature, fold at temperature above polycaprolactone melting point, and unfold again at room temperature. The actuation is based on reversible switching of the structure of the hydrophobic polymer (polycaprolactone) upon melting and crystallization. We hypothesize that the origin of this unexpected behavior is the orientation of polycaprolactone chains parallel to the surface of the film, which is retained even after melting and crystallization of the polymer or the "crystallization memory effect". In this way, the crystallization generates a directed force, which causes bending of the film. We used this effect for the design of new generation of fully biodegradable thermoresponsive polymeric actuators, which are highly desirable for bionano-technological applications such as reversible encapsulation of cells and design of swimmers.

  18. Micro and nano-fabrication of biodegradable polymers for drug delivery.

    Science.gov (United States)

    Lu, Y; Chen, S C

    2004-09-22

    This paper presents state-of-the-art micro and nano-fabrication techniques for biodegradable polymers. Replication molding, using a rigid or elastic master, can pattern structures on a polymer surface in a submicron resolution at a low cost. Layer-by-layer rapid prototyping methods are promising in producing controlled release units with complicated geometries, release mechanisms and the ability to control microstructure and composition. Special attention is paid to the fast, flexible, and non-invasive laser fabrication techniques that have great potential in the fabrication of biodegradable polymer drug delivery devices in both a laboratory and industry scale.

  19. Using polymer mats to biodegrade atrazine in groundwater: laboratory column experiments

    Science.gov (United States)

    Patterson, B. M.; Franzmann, P. D.; Davis, G. B.; Elbers, J.; Zappia, L. R.

    2002-02-01

    Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats to deliver oxygen into groundwater to induce biodegradation of the pesticides atrazine, terbutryn and fenamiphos contaminating groundwater in Perth, Western Australia. The polymer mats, composed of woven silicone (dimethylsiloxane) tubes and purged with air, were installed in 2-m-long flow-through soil columns. The polymer mats proved efficient in delivering dissolved oxygen to anaerobic groundwater. Dissolved oxygen concentrations increased from biodegradation rates, suggesting that organic carbon was not limiting biodegradation. Atrazine degradation rates estimated in the column experiments were similar to rates determined in laboratory culture experiments, using pure cultures of atrazine-mineralising bacteria. No significant degradation of terbutryn or fenamiphos was observed under the experimental conditions within the time frames of the study. Results from these experiments indicate that remediation of atrazine in a contaminated aquifer may be achievable by delivery of oxygen using an in situ polymer mat system.

  20. Impact of biodegradable versus durable polymer drug-eluting stents on clinical outcomes in patients with coronary artery disease: a meta-analysis of 15 randomized trials

    Institute of Scientific and Technical Information of China (English)

    Zhang Yaojun; Tian Nailiang; Dong Shengjie; Ye Fei; Li Minghui; Christos V.Bourantas; Javaid Iqbal

    2014-01-01

    Background Drug eluting stents (DESs) made with biodegradable polymer have been developed in an attempt to improve clinical outcomes.However,the impact of biodegradable polymers on clinical events and stent thrombosis (ST) remains controversial.Methods We searched Medline,the Cochrane Library and other internet sources,without language or date restrictions for articles comparing clinical outcomes between biodegradable polymer DES and durable polymer DES.Safety endpoints were ST (definite,definite/probable),mortality,and myocardial infarction (MI).Efficacy endpoints were major adverse cardiac event (MACE) and target lesion revascularization (TLR).Results We identified 15 randomized controlled trials (n=17 068) with a weighted mean follow-up of 20.6 months.There was no statistical difference in the incidence of definite/probable ST between durable polymer-and biodegradable polymerDES; relative risk (RR) 0.83; 95% confidence interval (CI) 0.62-1.11; P=0.22.Biodegradable polymer DES had similar rates of definite ST (RR 0.94,95% CI 0.66-1.33,P=0.72),mortality (RR 0.94,95% C/0.82-1.09,P=0.43),MI (RR 1.08,95% CI 0.92-1.26.P=0.35),MACE (RR 0.99,95% CI 0.91-1.09,P=0.85),and TLR (RR,0.94,95% CI 0.83-1.06,P=0.30) compared with durable polymer DES.Based on the stratified analysis of the included trials,the treatment effect on definite ST was different at different follow-up times:≤1 year favoring durable polymer DES and >1 year favoring biodegradable polymer DES.Conclusions Biodegradable polymer DES has similar safety and efficacy for treating patients with coronary artery disease compared with durable polymer DES.Further data with longer term follow-up are warranted to confirm the potential benefits of biodegradable polymer DES.

  1. Effect of degumming time on silkworm silk fibre for biodegradable polymer composites

    Science.gov (United States)

    Ho, Mei-po; Wang, Hao; Lau, Kin-tak

    2012-02-01

    Recently, many studies have been conducted on exploitation of natural materials for modern product development and bioengineering applications. Apart from plant-based materials (such as sisal, hemp, jute, bamboo and palm fibre), animal-based fibre is a kind of sustainable natural materials for making novel composites. Silkworm silk fibre extracted from cocoon has been well recognized as a promising material for bio-medical engineering applications because of its superior mechanical and bioresorbable properties. However, when producing silk fibre reinforced biodegradable/bioresorbable polymer composites, hydrophilic sericin has been found to cause poor interfacial bonding with most polymers and thus, it results in affecting the resultant properties of the composites. Besides, sericin layers on fibroin surface may also cause an adverse effect towards biocompatibility and hypersensitivity to silk for implant applications. Therefore, a proper pre-treatment should be done for sericin removal. Degumming is a surface modification process which allows a wide control of the silk fibre's properties, making the silk fibre possible to be used for the development and production of novel bio-composites with unique/specific mechanical and biodegradable properties. In this paper, a cleaner and environmentally friendly surface modification technique for tussah silk in polymer based composites is proposed. The effectiveness of different degumming parameters including degumming time and temperature on tussah silk is discussed through the analyses of their mechanical and morphological properties. Based on results obtained, it was found that the mechanical properties of tussah silk are affected by the degumming time due to the change of the fibre structure and fibroin alignment.

  2. Core-shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Science.gov (United States)

    Oka, Chiemi; Ushimaru, Kazunori; Horiishi, Nanao; Tsuge, Takeharu; Kitamoto, Yoshitaka

    2015-05-01

    Core-shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core-shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body.

  3. Biodegradable polyesters based on succinic acid

    Directory of Open Access Journals (Sweden)

    Nikolić Marija S.

    2003-01-01

    Full Text Available Two series of aliphatic polyesters based on succinic acid were synthesized by copolymerization with adipic acid for the first series of saturated polyesters, and with fumaric acid for the second series. Polyesters were prepared starting from the corresponding dimethyl esters and 1,4-butanediol by melt transesterification in the presence of a highly effective catalyst tetra-n-butyl-titanate, Ti(0Bu4. The molecular structure and composition of the copolyesters was determined by 1H NMR spectroscopy. The effect of copolymer composition on the physical and thermal properties of these random polyesters were investigated using differential scanning calorimetry. The degree of crystallinity was determined by DSC and wide angle X-ray. The degrees of crystallinity of the saturated and unsaturated copolyesters were generally reduced with respect to poly(butylene succinate, PBS. The melting temperatures of the saturated polyesters were lower, while the melting temperatures of the unsaturated copolyesters were higher than the melting temperature of PBS. The biodegradability of the polyesters was investigated by enzymatic degradation tests. The enzymatic degradation tests were performed in a buffer solution with Candida cylindracea lipase and for the unsaturated polyesters with Rhizopus arrhizus lipase. The extent of biodegradation was quantified as the weight loss of polyester films. Also the surface of the polyester films after degradation was observed using optical microscopy. It could be concluded that the biodegradability depended strongly on the degree of crystallinity, but also on the flexibility of the chain backbone. The highest biodegradation was observed for copolyesters containing 50 mol.% of adipic acid units, and in the series of unsaturated polyesters for copolyesters containing 5 and 10 mol.% of fumarate units. Although the degree of crystallinity of the unsaturated polyesters decreased slightly with increasing unsaturation, the biodegradation

  4. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    OpenAIRE

    Zhijian Tan; Yongjian Yi; Hongying Wang; Wanlai Zhou; Yuanru Yang; Chaoyun Wang

    2016-01-01

    The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability) and degradation characteristics (evaluated by micro-organic cultur...

  5. Preparation and Characterization of Lithium Ion Conducting Solid Polymer Electrolytes from Biodegradable Polymers Starch And PVA

    Directory of Open Access Journals (Sweden)

    B. Chatterjee,

    2015-06-01

    Full Text Available Solid Polymer electrolyte films have been prepared from Starch-Poly vinyl alcohol (PVA blend a well acknowledged biodegradable material. Solution cast technique was employed for the preparation of solid polymer electrolyte films added with Lithium Bromide (LiBr salt. X-ray diffraction (XRD studies of the prepared films portrayed the evolution of an amorphous structure with increasing content of salt which is an important factor that leads to the augmentation of conductivity. Electrochemical impedance spectroscopic analysis revealed noticeable ionic conductivity ~ 5x 10-3 S/cm for 20 wt% of salt at ambient conditions. Ionic conductivity showed an increasing trend with salt content at ambient conditions. Transference number measurements confirmed the ionic nature of the prepared solid polymer electrolyte films. Dielectric studies revealed a sharp increase in the number of charge carriers which contributed to enhancement in conductivity. Low values of activation energy extracted from temperature dependent conductivity measurements could be favorable for device applications. For the composition with highest conductivity a temperature independent relaxation mechanism was confirmed by electric modulus scaling.

  6. High barrier multilayer packaging by the coextrusion method: The effect of nanocomposites and biodegradable polymers on flexible film properties

    Science.gov (United States)

    Thellen, Christopher T.

    The objective of this research was to investigate the use of nanocomposite and multilayer co-extrusion technologies for the development of high gas barrier packaging that is more environmentally friendly than many current packaging system. Co-extruded bio-based and biodegradable polymers that could be composted in a municipal landfill were one direction that this research was aimed. Down-gauging of high performance barrier films using nanocomposite technology and co-extrusion was also investigated in order to reduce the amount of solid waste being generated by the packaging. Although the research is focused on military ration packaging, the technologies could easily be introduced into the commercial flexible packaging market. Multilayer packaging consisting of poly(m-xylylene adipamide) nanocomposite layers along with adhesive and tie layers was co-extruded using both laboratory and pilot-scale film extrusion equipment. Co-extrusion of biodegradable polyhydroxyalkanoates (PHA) along with polyvinyl alcohol (PVOH) and tie layers was also accomplished using similar co-extrusion technology. All multilayer films were characterized for gas barrier, mechanical, and thermal properties. The biodegradability of the PVOH and PHA materials in a marine environment was also investigated. The research has shown that co-extrusion of these materials is possible at a research and pilot level. The use of nanocomposite poly(m-xylylene adipamide) was effective in down-gauging the un-filled barrier film to thinner structures. Bio-based PHA/PVOH films required the use of a malefic anhydride grafted PHA tie layer to improve layer to layer adhesion in the structure to avoid delamination. The PHA polymer demonstrated a high rate of biodegradability/mineralization in the marine environment while the rate of biodegradation of the PVOH polymer was slower.

  7. Development and characterization of biodegradable polymer blends - PHBV/PCL irradiated with gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rosario, F. [Faculdade de Tecnologia da Zona Leste (FATEC-ZL), Sao Paulo, SP (Brazil). Centro Paulo Souza; Casarin, S.A.; Agnelli, J.A.M. [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais; Souza Junior, O.F. de [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2010-07-01

    This paper presents the results of a study that aimed to develop PHBV biodegradable polymer blends, in a major concentration with PCL, irradiate the pure polymers and blends in two doses of gamma radiation and to analyze the changes in chemical and mechanical properties. The blends used in this study were from natural biodegradable copolymer poly (hydroxybutyrate-valerate) (PHBV) and synthetic biodegradable polymer poly (caprolactone) (PCL 2201) with low molar mass (2,000 g/mol). Several samples were prepared in a co-rotating twin-screw extruder and afterwards, the tensile specimens were injected for the irradiation treatment with 50 kGy to 100 kGy doses and for the mechanical tests. The characterization of the samples before and after the irradiation treatments was performed through scanning electron microscopy (SEM), dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC) and mechanical tensile tests. (author)

  8. Sago Starch-Mixed Low-Density Polyethylene Biodegradable Polymer: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Md Enamul Hoque

    2013-01-01

    Full Text Available This research focuses on synthesis and characterization of sago starch-mixed LDPE biodegradable polymer. Firstly, the effect of variation of starch content on mechanical property (elongation at break and Young’s modulus and biodegradability of the polymer was studied. The LDPE was combined with 10%, 30%, 50%, and 70% of sago for this study. Then how the cross-linking with trimethylolpropane triacrylate (TMPTA and electron beam (EB irradiation influence the mechanical and thermal properties of the polymer was investigated. In the 2nd study, to avoid overwhelming of data LDPE polymer was incorporated with only 50% of starch. The starch content had direct influence on mechanical property and biodegradability of the polymer. The elongation at break decreased with increase of starch content, while Young’s modulus and mass loss (i.e., degradation were found to increase with increase of starch content. Increase of cross-linker (TMPTA and EB doses also resulted in increased Young’s modulus of the polymer. However, both cross-linking and EB irradiation processes rendered lowering of polymer’s melting temperature. In conclusion, starch content and modification processes play significant roles in controlling mechanical, thermal, and degradation properties of the starch-mixed LDPE synthetic polymer, thus providing the opportunity to modulate the polymer properties for tailored applications.

  9. Tubular array, dielectric, conductivity and electrochemical properties of biodegradable gel polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sudhakar, Y.N. [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Selvakumar, M., E-mail: chemselva78@gmail.com [Department of Chemistry, Manipal Institute of Technology, Manipal, Karnataka (India); Bhat, D. Krishna [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore (India)

    2014-02-15

    Highlights: • A new finding of tubular array of 10–20 μm in length and 1–2 μm in thickness of gel polymer electrolyte (GPE) having 2.2 × 10{sup −3} S cm{sup −1} conductivity is reported. • Thermal and electrochemical characterizations of GPEs show good interaction among the polymer, plasticizer and salt. • GPE based supercapacitor demonstrates high capacitance of 186 F g{sup −1}. • Low temperature studies did not influence much on capacitance values obtained from AC impedance studies. • Charge–discharge exhibits high capacity with excellent cyclic stability and energy density. -- Abstract: A supercapacitor based on a biodegradable gel polymer electrolyte (GPE) has been fabricated using guar gum (GG) as the polymer matrix, LiClO{sub 4} as the doping salt and glycerol as the plasticizer. The scanning electron microscopy (SEM) images of the gel polymer showed an unusual tubular array type surface morphology. FTIR, DSC and TGA results of the GPE indicated good interaction between the components used. Highest ionic conductivity and lowest activation energy values were 2.2 × 10{sup −3} S cm{sup −1} and 0.18 eV, respectively. Dielectric studies revealed ionic behavior and good capacitance with varying frequency of the GPE system. The fabricated supercapacitor showed a maximum specific capacitance value of 186 F g{sup −1} using cyclic voltammetry. Variation of temperature from 273 K to 293 K did not significantly influence the capacitance values obtained from AC impedance studies. Galvanostatic charge–discharge study of supercapacitor indicated that the device has good stability, high energy density and power density.

  10. [Development of biodegradable magnesium-based biomaterials].

    Science.gov (United States)

    Zhu, Shengfa; Xu, Li; Huang, Nan

    2009-04-01

    Magnesium is a macroelement which is indispensable to human bodies. As a lightweight metal with high specific strength and favorable biocompatibility, magnesium and its alloys have been introduced in the field of biomedical materials research and have a broad application prospect. It is possible to develop new type of biodegradable medical magnesium alloys by use of the poor corrosion resistance of magnesium. Bioabsorbable magnesium stents implanted in vivo could mechanically support the vessel in a short term, effectly prevent the acute coronary occlusion and in-stent restenosis, and then be gradully biodegraded and completely absorbed in a long term. Osteoconductive bioactivity in magnesium-based alloys could promote the apposition growth of bone tissue. This paper reviews the progress of magnesium and its alloys applied in bone tissue and cardiovascular stents, and the prospect of the future research of magnesium-based biomaterials is discussed.

  11. Biodegradable foam plastics based on castor oil.

    Science.gov (United States)

    Wang, Hong Juan; Rong, Min Zhi; Zhang, Ming Qiu; Hu, Jing; Chen, Hui Wen; Czigány, Tibor

    2008-02-01

    In this work, a simple but effective approach was proposed for preparing biodegradable plastic foams with a high content of castor oil. First of all, castor oil reacted with maleic anhydride to produce maleated castor oil (MACO) without the aid of any catalyst. Then plastic foams were synthesized through free radical initiated copolymerization between MACO and diluent monomer styrene. With changes in MACO/St ratio and species of curing initiator, mechanical properties of MACO foams can be easily adjusted. In this way, biofoams with comparable compressive stress at 25% strain as commercial polyurethane (PU) foams were prepared, while the content of castor oil can be as high as 61 wt %. The soil burial tests further proved that the castor oil based foams kept the biodegradability of renewable resources despite the fact that some petrol-based components were introduced.

  12. Robust and biodegradable polymer of cassava starch and modified natural rubber.

    Science.gov (United States)

    Riyajan, Sa-Ad

    2015-12-10

    The application of starch based materials for packaging purposes has attracted significant interest because they are both cheap and renewable resources. The study investigated the preparation and properties of a novel biopolymer sheet produced from a blend of maleated epoxidized natural rubber (MENR) and natural rubber-g-cassava starch (NR-g-CSt). The water resistance, toluene resistance and elongation at break of the polymer blend were enhanced after the addition of the MENR compared to pristine NR-g-CSt. The maximum tensile strength and thermal stability of the NR-g-CSt/MENR blend were found in the 100:50 NR-g-CSt:MENR blend. The novel films demonstrated good biodegradability in soil.

  13. Crystallization kinetics and thermal resistance of bamboo fiber reinforced biodegradable polymer composites

    Science.gov (United States)

    Thumsorn, S.; Srisawat, N.; On, J. Wong; Pivsa-Art, S.; Hamada, H.

    2014-05-01

    Bamboo fiber reinforced biodegradable polymer composites were prepared in this study. Biodegradable poly(butylene succinate) (PBS) was blended with bamboo fiber in a twin screw extruder with varied bamboo content from 20-0wt%. PBS/bamboo fiber composites were fabricated by compression molding process. The effect of bamboo fiber contents on properties of the composites was investigated. Non-isothermal crystallization kinetic study of the composites was investigated based on Avrami equation. The kinetic parameters indicated that bamboo fiber acted as heterogeneous nucleation and enhanced crystallinity of the composites. Bamboo fiber was well dispersed on PBS matrix and good adhered with the matrix. Tensile strength of the composites slightly deceased with adding bamboo fiber. However, tensile modulus and impact strength of the composites increased when increasing bamboo fiber contents. It can be noted that bamboo fiber promoted crystallization and crystallinity of PBS in the composites. Therefore, the composites were better in impact load transferring than neat PBS, which exhibited improving on impact performance of the composites.

  14. The anisotropic mechanical behaviour of electro-spun biodegradable polymer scaffolds: Experimental characterisation and constitutive formulation.

    Science.gov (United States)

    Limbert, Georges; Omar, Rodaina; Krynauw, Hugo; Bezuidenhout, Deon; Franz, Thomas

    2016-01-01

    Electro-spun biodegradable polymer fibrous structures exhibit anisotropic mechanical properties dependent on the degree of fibre alignment. Degradation and mechanical anisotropy need to be captured in a constitutive formulation when computational modelling is used in the development and design optimisation of such scaffolds. Biodegradable polyester-urethane scaffolds were electro-spun and underwent uniaxial tensile testing in and transverse to the direction of predominant fibre alignment before and after in vitro degradation of up to 28 days. A microstructurally-based transversely isotropic hyperelastic continuum constitutive formulation was developed and its parameters were identified from the experimental stress-strain data of the scaffolds at various stages of degradation. During scaffold degradation, maximum stress and strain in circumferential direction decreased from 1.02 ± 0.23 MPa to 0.38 ± 0.004 MPa and from 46 ± 11 % to 12 ± 2 %, respectively. In longitudinal direction, maximum stress and strain decreased from 0.071 ± 0.016 MPa to 0.010 ± 0.007 MPa and from 69 ± 24 % to 8 ± 2 %, respectively. The constitutive parameters were identified for both directions of the non-degraded and degraded scaffold for strain range varying between 0% and 16% with coefficients of determination r(2)>0.871. The six-parameter constitutive formulation proved versatile enough to capture the varying non-linear transversely isotropic behaviour of the fibrous scaffold throughout various stages of degradation.

  15. Randomized clinical trial comparing abluminal biodegradable polymer sirolimus-eluting stents with durable polymer sirolimus-eluting stents

    Science.gov (United States)

    Zhang, Haijun; Wang, Xiangfei; Deng, Wei; Wang, Shenguo; Ge, Junbo; Toft, Egon

    2016-01-01

    Abstract Background: The biodegradable polymer drug-eluting stents (DES) were developed to improve vascular healing. However, further data and longer-term follow-up are needed to confirm safety and efficacy of these stents. This randomized clinical trial aimed to compare safety and efficacy of 2 sirolimus-eluting stents (SES): Cordimax—a novel abluminal biodegradable polymer SES and Cypher Select—a durable polymer SES, at 9 months angiographic and 5-year clinical follow-up. Methods: We randomized 402 patients with coronary artery disease to percutaneous coronary intervention with Cordimax (n = 202) or Cypher select (n = 200). Angiographic follow-up was performed at 9 months after the index procedure and clinical follow-up annually up to 5 years. The primary endpoint was angiographic in-stent late luminal loss (LLL). Secondary endpoints included angiographic restenosis rate, target vessel revascularization (TVR), and major adverse cardiac events (MACEs; defined as cardiac death, myocardial infarction, or TVR) at 5-year follow-up. Results: Cordimax was noninferior to Cypher select for in-stent LLL (0.25 ± 0.47 vs 0.18 ± 0.49 mm; P = 0.587) and in-stent mean diameter stenosis (22.19 ± 12.21% vs 19.89 ± 10.79%; P = 0.064) at 9 months angiographic follow-up. The MACE rates were not different at 1 year (5.9% vs 4.0%, P = 0.376); however, MACE rates from 2 to 5 years were lower in the Cordimax group (6.8% vs 13.1%; P = 0.039). Conclusion: Abluminal biodegradable polymer SES is noninferior to durable polymer SES at 9-month angiographic and 1-year clinical follow-up. However, MACE rates from 2 to 5 years were less in the abluminal biodegradable polymer group. PMID:27661023

  16. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    Science.gov (United States)

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  17. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging

    Science.gov (United States)

    Biodegradable polylactic acid (PLA) polymer was evaluated for its application as a material for antimicrobial food packaging. PLA films were incorporated with nisin to provide slow release of the encapsulated antimicrobial for control of foodborne pathogens. Antimicrobial activity of PLA/nisin films...

  18. Synthesis of Biodegradable Polymer Micro- and Nanoparticles for Controlled Drug Delivery by Multiplexed Electrosprays

    Science.gov (United States)

    Almeria, Begona

    The goal of controlled drug delivery is to administer sustained amounts of a therapeutic agent over a prolonged period of time, improving the drug efficacy as compared to conventional, bolus doses that lead to variable concentrations of drug in blood. Although there are several systems capable to provide such a continuous-dose-based treatment, the use of biodegradable polymer micro- and, especially, nanoparticles offers multiple advantages with respect to other platforms. Their small size allows them to pass through physical barriers in the body and reach the site of treatment, allowing for a localized delivery, reducing side effects and toxicity. Polymer nanoparticles have lower clearance by the immune system, and are especially useful in intracellular delivery, delivery to the lymphatic system and the treatment of tumors, where the site of treatment is difficult to reach by larger particles. Conventional methods for biodegradable particle production rely predominately on batch, emulsion preparation methods and suffer from several shortcomings: low encapsulation efficiency (˜10% for hydrophilic drugs), difficulty to generate sufficiently small (dadvantages and overcomes all of these limitations. We demonstrate this process with the Poly(DL-lactic-co-glycolic acid) (PLGA) system encapsulating agents such as Doxorubicin, Rhodamine B and Rhodamine B octadecyl ester prechlorate. We also employ this method for the generation of theranostic systems that combine their therapeutic mission with imaging capabilities to detect the biodistribution of particles inside the body. PLGA microparticles in different sizes, morphologies and compactness are generated using the electrospray-drying route. The size of the synthesized particles is primarily controlled by the delicate tuning of the solution physical properties and the ES operational parameters. The compactness of the polymer matrix is defined by the competition between the solvent evaporation and polymer diffusion process

  19. Evaluation of behavior of biodegradable lubricants in the differential sticking coefficient of water based drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Amorim, L.V. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais], E-mail: luciana@dem.ufcg.edu.br; Nascimento, R.C.A.M. [Universidade Federal de Campina Grande (PPGCEMat/UFCG), PB (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais; Lira, D.S. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia Quimica; Magalhaes, J. [System Mud Fluidos de Perfuracao, Itajai, SC (Brazil). Dept. de Quimica

    2011-10-15

    This work aims to evaluate the behavior of four samples of biodegradable lubricants in the differential sticking coefficient of aqueous drilling fluids. Eighteen formulations of fluids containing bentonite clay, lubricants and biodegradable polymers in different concentrations were studied. The experiment focused on observing the samples' rheological properties, its filtration, the cake thickness, the lubricity coefficient, and, finally, the coefficient of the differential sticking. The results showed that the polymer additives improved rheological and filtration properties significantly. Also, the findings confirmed the idea that the presence of a lubricant leads to a reduction in lubricity, LC, and affects the differential sticking coefficient, DSC, of the fluids. However, the experiment observed a small variation on the LC as a result of an increase in the lubricant content. Overall, the results of the LC and the DSC of the fluids containing biodegradable lubricant additives were outstanding, being similar to the ones observed for oil-based fluids. (author)

  20. Preparation of Porous Biodegradable Polymer and Its Nanocomposites by Supercritical CO2 Foaming for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Xia Liao

    2012-01-01

    Full Text Available Using supercritical carbon dioxide (scCO2 as an alternative to conventional methods in the preparation of porous biodegradable polymer and polymer/nanocomposites for tissue engineering has attracted increasing interest in recent years due to the absence of using organic solvents and the ability to incorporate thermosensitive biologicals without loss of bioactivity. Additionally, scCO2 can exert a high level of control over porosity and morphology of scaffolds by tuning the processing parameters. This paper describes the newly achievements on the preparation of porous polymer materials using scCO2 foaming technology with focus on the porous biodegradable materials and its nanocomposites relevant to tissue engineering.

  1. USE OF POROUS BIODEGRADABLE POLYMER IMPLANTS IN MENISCUS RECONSTRUCTION .2. BIOLOGICAL EVALUATION OF POROUS BIODEGRADABLE POLYMER IMPLANTS IN MENISCI

    NARCIS (Netherlands)

    ELEMA, H; DEGROOT, JH; NIJENHUIS, AJ; PENNINGS, AJ; VETH, RPH; JANSEN, HWB

    1990-01-01

    Several series of porous, biodegradable PU/PLLA foams were used for meniscus reconstruction in dogs. PLLA-fiber reinforced PU/PLLA composites, PU/PLLA, and PU foams were implanted in severe meniscus lesions. The healing process was initiated as a result of blood vessels' and other cells' ingrowth in

  2. A phenomenological constitutive model for the nonlinear viscoelastic responses of biodegradable polymers

    KAUST Repository

    Khan, Kamran

    2012-11-09

    We formulate a constitutive framework for biodegradable polymers that accounts for nonlinear viscous behavior under regimes with large deformation. The generalized Maxwell model is used to represent the degraded viscoelastic response of a polymer. The large-deformation, time-dependent behavior of viscoelastic solids is described using an Ogden-type hyperviscoelastic model. A deformation-induced degradation mechanism is assumed in which a scalar field depicts the local state of the degradation, which is responsible for the changes in the material\\'s properties. The degradation process introduces another timescale (the intrinsic material clock) and an entropy production mechanism. Examples of the degradation of a polymer under various loading conditions, including creep, relaxation and cyclic loading, are presented. Results from parametric studies to determine the effects of various parameters on the process of degradation are reported. Finally, degradation of an annular cylinder subjected to pressure is also presented to mimic the effects of viscoelastic arterial walls (the outer cylinder) on the degradation response of a biodegradable stent (the inner cylinder). A general contact analysis is performed. As the stiffness of the biodegradable stent decreases, stress reduction in the stented viscoelastic arterial wall is observed. The integration of the proposed constitutive model with finite element software could help a designer to predict the time-dependent response of a biodegradable stent exhibiting finite deformation and under complex mechanical loading conditions. © 2012 Springer-Verlag Wien.

  3. Biodegradable polymers as encapsulation materials for cosmetics and personal care markets.

    Science.gov (United States)

    Ammala, Anne

    2013-04-01

    The topical and transdermal delivery of active cosmetic ingredients requires safe and non-toxic means of reaching the target sites without causing any irritation. Preservation of the active ingredients is also essential during formulation, storage and application of the final product. As many biologically active substances are not stable and sensitive to temperature, pH, light and oxidation, they require encapsulation to protect against unwanted degradation and also to target specific and controlled release of the active substance. The use of biodegradable polymers as encapsulation materials offers several advantages over other carrier materials. Encapsulation of active ingredients using biodegradable polymeric carriers can facilitate increased efficacy and bioavailability and they are also removed from the body via normal metabolic pathways. This article reviews current research on biodegradable polymers as carrier or encapsulation materials for cosmetic and personal care applications. Some of the challenges and limitations are also discussed. Examples of biodegradable polymers reviewed include polysaccharides, poly α-esters, polyalkylcyanoacrylates and polyamidoamine dendrimers.

  4. Ultrastable Liquid-Liquid Interface as Viable Route for Controlled Deposition of Biodegradable Polymer Nanocapsules.

    Science.gov (United States)

    Vecchione, Raffaele; Iaccarino, Giulia; Bianchini, Paolo; Marotta, Roberto; D'autilia, Francesca; Quagliariello, Vincenzo; Diaspro, Alberto; Netti, Paolo A

    2016-06-01

    Liquid-liquid interfaces are highly dynamic and characterized by an elevated interfacial tension as compared to solid-liquid interfaces. Therefore, they are gaining an increasing interest as viable templates for ordered assembly of molecules and nanoparticles. However, liquid-liquid interfaces are more difficult to handle compared to solid-liquid interfaces; their intrinsic instability may affect the assembly process, especially in the case of multiple deposition. Indeed, some attempts have been made in the deposition of polymer multilayers at liquid-liquid interfaces, but with limited control over size and stability. This study reports on the preparation of an ultrastable liquid-liquid interface based on an O/W secondary miniemulsion and its possible use as a template for the self-assembly of polymeric multilayer nanocapsules. Such polymer nanocapsules are made of entirely biodegradable materials, with highly controlled size-well under 200 nm-and multi-compartment and multifunctional features enriching their field of application in drug delivery, as well as in other bionanotechnology fields.

  5. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  6. Synthesis, Characteristics and Potential Application of Poly(β-Amino Ester Urethane)-Based Multiblock Co-Polymers as an Injectable, Biodegradable and pH/Temperature-Sensitive Hydrogel System.

    Science.gov (United States)

    Huynh, Cong Truc; Nguyen, Minh Khanh; Jeong, In Ki; Kim, Sung Wan; Lee, Doo Sung

    2012-01-01

    Physical polymeric hydrogels have significant potential for use as injectable depot drug/protein-delivery systems. In this study, a series of novel injectable, biodegradable and pH/temperature-sensitive multiblock co-polymer physical hydrogels composed of poly(ethylene glycol) (PEG) and poly(β-amino ester urethane) (PEU) was synthesized by the polyaddition between the isocyanate groups of 1,6-diisocyanato hexamethylene and the hydroxyl groups of PEG and a synthesized monomer BTB (or ETE) in chloroform in the presence of dibutyltin dilaurate as a catalyst. The synthesized co-polymers were characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy and gel-permeation chromatography. Aqueous solutions of the co-polymers showed a sol-to-gel phase transition with increasing pH and a gel-to-sol phase transition with increasing temperature. The gel regions covered the physiological conditions (37°C, pH 7.4) and could be controlled by changing the molecular weight of PEG, PEG/PEU ratio and co-polymer solution concentration. A gel formed rapidly in situ after injecting the co-polymer solution subcutaneously into SD rats and remained for more than 2 weeks in the body. The cytotoxicity tests confirmed the non-cytotoxicity of this co-polymer hydrogel. The controlled in vitro release of the model anticancer drug, doxorubicin, from this hydrogel occurred over a 7-day period. This hydrogel is a potential candidate for biomedical applications and drug/protein-delivery systems.

  7. Effect of a biodegradable natural polymer on the properties of hardened lime-based mortars; Efecto de un polimero natural biodegradable en las propiedades de morteros de cal en estado endurecido

    Energy Technology Data Exchange (ETDEWEB)

    Izaguirre, A.; Lanas, J.; Alvarez, J. I.

    2011-07-01

    As an environmentally friendly and energy-saving alternative to cement-based materials and to some chemically obtained water-reducers, a commercialized starch was incorporated into aerial lime-based matrix. Different dosages were tested in order to study the influence that the amount of additive exerted on the properties of the material. Density, shrinkage, water absorption through capillarity, water vapour permeability, mechanical strengths, porosity, pore size distribution, and durability in the face of freezing-thawing cycles were studied in the mortars. The tested starch acted as a thickener for dosages up to 0.30%, and changed its behaviour for the largest dosage (0.50%): in that case it behaved as a plasticizer, dispersing the lime through the fresh mass and generating a more workable material. As a result, the matrix of the hardened mortar presented great coherence, owing to its large density and low porosity, characteristics which led to lower capillarity and permeability, better mechanical properties and durability. (Author) 46 refs.

  8. Biodegradable polymers and composites in biomedical applications : from catgut to tissue engineering - Part 1 - Available systems and their properties

    OpenAIRE

    Gomes, Manuela E.; Reis, R. L.

    2004-01-01

    Biodegradable polymers form a unique class of materials that created an entirely new concept when originally proposed as biomaterials. That is, for the first time, a material performing a structural application was designed to be completely resorbed and to become weaker over time. This concept was first applied successfully with catgut sutures and later, with more arguable results, on bone fixation plates and pins. Current research on new and improved biodegradable polymers is focused on more...

  9. Investigation of an Optimum Method of Biodegradation Process for Jute Polymer Composites

    Directory of Open Access Journals (Sweden)

    Kh. Mumtahenah Siddiquee

    2016-07-01

    Full Text Available - Natural fiber reinforced polymer composites are currently being developed as an alternative for plastic material because of having some environmental benefits such as biodegradability, reduced dependence on non-renewable material, greenhouse gas emissions and enhanced energy recovery. This study focuses on the fabrication of jute polymer composites, biodegradation and the investigation of an optimum method of biodegradation. Polyethylene and Polypropylene were reinforced with 5%, 10% and 15% of fiber. Jute fiber of 1mm and 3mm fiber length were used to fabricate composites using compression molding. Degradation behavior of composites was studied in terms of percentage weight loss. Samples are kept in compost heap and in soil burial to observe the degradation of the specimens. In weather degradation the effect of natural phenomena were observed. The biodegradability of composites was enhanced in compost condition with respect to soil burial and weather degradation. Degradation rate were higher in compost condition considering natural weather and soil and higher fiber reinforced ratio shows higher degradation.

  10. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  11. The Ultimaster Biodegradable-Polymer Sirolimus-Eluting Stent: An Updated Review of Clinical Evidence.

    Science.gov (United States)

    Chisari, Alberto; Pistritto, Anna Maria; Piccolo, Raffaele; La Manna, Alessio; Danzi, Gian Battista

    2016-09-06

    The Ultimaster coronary stent system (Terumo Corporation, Tokyo, Japan) represents a new iteration in drug-eluting stent (DES) technology that has recently received the Conformité Européenne (CE) mark approval for clinical use. The Ultimaster is a thin-strut, cobalt chromium, biodegradable-polymer, sirolimus-eluting coronary stent. The high elasticity of the biodegradable-polymer (PDLLA-PCL) and the abluminal gradient coating technology are additional novel features of this coronary device. The Ultimaster DES has undergone extensive clinical evaluation in two studies: The CENTURY I and II trials. Results from these two landmark studies suggested an excellent efficacy and safety profile of the Ultimaster DES across several lesion and patient subsets, with similar clinical outcomes to contemporary, new-generation DES. The aim of this review is to summarize the rationale behind this novel DES technology and to provide an update of available evidence about the clinical performance of the Ultimaster DES.

  12. Efficacy and safety of biodegradable polymer biolimus-eluting stents versus durable polymer drug-eluting stents: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yicong Ye

    Full Text Available BACKGROUNDS: Drug-eluting stents (DES with biodegradable polymers have been developed to address the risk of thrombosis associated with first-generation DES. We aimed to determine the efficacy and safety of biodegradable polymer biolimus-eluting stents (BES versus durable polymer DES. METHODS: Systematic database searches of MEDLINE (1950 to June 2013, EMBASE (1966 to June 2013, the Cochrane Central Register of Controlled Trials (Issue 6 of 12, June 2013, and a review of related literature were conducted. All randomized controlled trials comparing biodegradable polymer BES versus durable polymer DES were included. RESULTS: Eight randomized controlled trials investigating 11,015 patients undergoing percutaneous coronary interventions were included in the meta-analysis. The risk of major adverse cardiac events did not differ significantly between the patients treated with the biodegradable polymer BES and the durable polymer DES (Relative risk [RR], 0.970; 95% CI, 0.848-1.111; p = 0.662. However, biodegradable polymer BES was associated with reduced risk of very late ST compared with the durable polymer DES, while the risk of early or late ST was similar (RR for early or late ST, 1.167; 95% CI 0.755-1.802; p = 0.487; RR 0.273; 95% CI 0.115-0.652; p = 0.003; p for interaction = 0.003. CONCLUSIONS: In this meta-analysis of randomized controlled trials, treatments with biodegradable polymer BES did not significantly reduce the risk of major adverse cardiac events, but demonstrated a significantly lower risk of very late ST when compared to durable polymer DES. This conclusion requires confirmation by further studies with long-term follow-up. PROSPERO REGISTER NUMBER: http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42013004364#.UnM2lfmsj6J.

  13. Biolimus-eluting stents with biodegradable polymer versus bare-metal stents in acute myocardial infarction

    DEFF Research Database (Denmark)

    Räber, Lorenz; Kelbæk, Henning; Taniwaki, Masanori

    2014-01-01

    BACKGROUND: This study sought to determine whether the 1-year differences in major adverse cardiac event between a stent eluting biolimus from a biodegradable polymer and bare-metal stents (BMSs) in the COMFORTABLE trial (Comparison of Biolimus Eluted From an Erodible Stent Coating With Bare Meta...... to improve cardiovascular events compared with BMS beyond 1 year. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NTC00962416....

  14. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

    Science.gov (United States)

    Bedair, Tarek M; Cho, Youngjin; Joung, Yoon Ki; Han, Dong Keun

    2014-10-01

    Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs.

  15. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Science.gov (United States)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-05-01

    An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO-PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (Rp) of the PEO-PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (icorr) of the pure Mg was reduced by 65% with the PEO coating, the PEO-PLLA coating reduced the icorr by almost 100%. As expected, the Rp of the PEO-PLLA Mg decreased with increase in exposure time. However, it was noted that the Rp of the PEO-PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  16. Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio E-mail: yoshii@taka.jaeri.go.jp; Suhartini, Meri; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu

    2003-08-01

    Poly({epsilon}-caprolactone) (PCL) and poly(butylene succinate-co-adipate) (PBSA) were electron beam-irradiated in the presence of five different polyfunctional monomers at ambient temperature. Trimethallyl isocyanurate (TMAIC) has been found to greatly enhance the radiation crosslinking of PCL and PBSA. It was pointed out that the optimum yield of gel fraction can be achieved when the polymers were irradiated at a dose of 50 kGy in the presence of 1% TMAIC. High gel fraction largely improves heat stability of PBSA, while biodegradability evaluated by soil burial test of the crosslinked polymers is slightly retarded, however they are effectively destroyed with a slightly smaller rate.

  17. Modification of biodegradable polymers by radiation crosslinking technique with polyfunctional monomers

    Science.gov (United States)

    Yoshii, Fumio; Suhartini, Meri; Nagasawa, Naotsugu; Mitomo, Hiroshi; Kume, Tamikazu

    2003-08-01

    Poly(ɛ-caprolactone) (PCL) and poly(butylene succinate-co-adipate) (PBSA) were electron beam-irradiated in the presence of five different polyfunctional monomers at ambient temperature. Trimethallyl isocyanurate (TMAIC) has been found to greatly enhance the radiation crosslinking of PCL and PBSA. It was pointed out that the optimum yield of gel fraction can be achieved when the polymers were irradiated at a dose of 50 kGy in the presence of 1% TMAIC. High gel fraction largely improves heat stability of PBSA, while biodegradability evaluated by soil burial test of the crosslinked polymers is slightly retarded, however they are effectively destroyed with a slightly smaller rate.

  18. Fabrication of biodegradable polymer (PLGA) microstructures and applications in controlled drug delivery

    Science.gov (United States)

    Yang, Ren; Chen, Tianning; Chen, Hualing; Wang, Wanjun

    2004-01-01

    Using biodegradable polymers for implantable drug delivery purposes has been a very important research area and industry for many years. Polymers, such as PLGA, have been the most attractive one because it does not require removal after the drug has been released. We report a research effort to microfabricate high aspect ratio microstructures of PLGA and its potential applications in implantable drug delivery. The prototypes of packaged cells with dyes have also been made and currently under test for linear release of sample dyes.

  19. Performance of Biodegradable Polymers used in Mechanically Loaded Implants

    DEFF Research Database (Denmark)

    Andersen, Lonnie Ulrich

    to be oriented in a 45° angle to the direction of deformation. From the model the initial strain region was predicted to lie between 35-40%, and the tensile force that the fabric can withstand, without going into plastic deformation was between 2000-5000 N. From the analysis and the material tests it was found...... predisposing for early dislocation have not been completely established, making it difficult to take successful preventative measures. The objective of this PhD thesis was to design an implantable, biodegradable device to guard against these dislocations. The hip dislocation preventer should allow for easy...... adaptation, and mounting onto most types of hip implants, without changing the basic design of the present implant. The objective is to have a structure, which will put a restrain on the artificial hip implant as it moves into the extreme positions associated with dislocation, without further affecting...

  20. A study on thermal properties of biodegradable polymers using photothermal methods

    Science.gov (United States)

    Siqueira, A. P. L.; Poley, L. H.; Sanchez, R.; da Silva, M. G.; Vargas, H.

    2005-06-01

    In this work is reported the use of photothermal techniques applied to the thermal characterization of biodegradable polymers of Polyhydroxyalkanoates (PHAs) family. This is a family of polymer produced by bacteria using renewable resources. It exhibits thermoplastic properties and therefore it can be an alternative product for engineering plastics, being also applied as packages for food industry and fruits. Thermal diffusivities were determined using the open photoacoustic cell (OPC) configuration. Specific heat capacity measurements were performed monitoring temperature of the samples under white light illumination against time. Typical values obtained for the thermal properties are in good agreement with those found in the literature for other polymers. Due to the incorporation of hydroxyvalerate in the monomer structure, the thermal diffusivity and thermal conductivity increase reaching a saturation value, otherwise the specific thermal capacity decreases as the concentration of the hydroxyvalerate (HV) increases. These results can be explained by polymers internal structure and are allowing new applications of these materials.

  1. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration.

    Science.gov (United States)

    Zhang, Ze; Rouabhia, Mahmoud; Wang, Zhaoxu; Roberge, Christophe; Shi, Guixin; Roche, Phillippe; Li, Jiangming; Dao, Lê H

    2007-01-01

    Normal and electrically stimulated PC12 cell cultures and the implantation of nerve guidance channels were performed to evaluate newly developed electrically conductive biodegradable polymer composites. Polypyrrole (PPy) doped by butane sulfonic acid showed a significantly higher number of viable cells compared with PPy doped by polystyrenesulfonate after a 6-day culture. The PC12 cells were left to proliferate for 6 days, and the PPy-coated membranes, showing less initial cell adherence, recorded the same proliferation rate as did the noncoated membranes. Direct current electricity at various intensities was applied to the PC12 cell-cultured conductive membranes. After 7 days, the greatest number of neurites appeared on the membranes with a current intensity approximating 1.7-8.4 microA/cm. Nerve guidance channels made of conductive biodegradable composite were implanted into rats to replace 8 mm of sciatic nerve. The implants were harvested after 2 months and analyzed with immunohistochemistry and transmission electron microscopy. The regenerated nerve tissue displayed myelinated axons and Schwann cells that were similar to those in the native nerve. Electrical stimulation applied through the electrically conductive biodegradable polymers therefore enhanced neurite outgrowth in a current-dependent fashion. The conductive polymers also supported sciatic nerve regeneration in rats.

  2. Interpenetrating polymer network hydrogels based on polysaccharides for biomedical applications

    NARCIS (Netherlands)

    Pescosolido, L.

    2011-01-01

    The main theme of this thesis is the development and the characterization of interpenetrating polymer network hydrogels (IPNs) based on biodegradable and biocompatible polysaccharides, in particular alginate, hyaluronic acid and dextran. The suitability of these novel systems as pharmaceutical and b

  3. Biomedical Applications of Biodegradable Polyesters

    OpenAIRE

    Iman Manavitehrani; Ali Fathi; Hesham Badr; Sean Daly; Ali Negahi Shirazi; Fariba Dehghani

    2016-01-01

    The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have be...

  4. Biodegradability of plastics.

    Science.gov (United States)

    Tokiwa, Yutaka; Calabia, Buenaventurada P; Ugwu, Charles U; Aiba, Seiichi

    2009-08-26

    Plastic is a broad name given to different polymers with high molecular weight, which can be degraded by various processes. However, considering their abundance in the environment and their specificity in attacking plastics, biodegradation of plastics by microorganisms and enzymes seems to be the most effective process. When plastics are used as substrates for microorganisms, evaluation of their biodegradability should not only be based on their chemical structure, but also on their physical properties (melting point, glass transition temperature, crystallinity, storage modulus etc.). In this review, microbial and enzymatic biodegradation of plastics and some factors that affect their biodegradability are discussed.

  5. Preparation of hybrid scaffold from fibrin and biodegradable polymer fiber.

    Science.gov (United States)

    Hokugo, Akishige; Takamoto, Tomoaki; Tabata, Yasuhiko

    2006-01-01

    A biodegradable hybrid scaffold was prepared from fibrin and poly(glycolic acid) (PGA) fiber. Mixed fibrinogen and thrombin solution homogeneously dispersed in the presence of various amounts (0, 1.5, 3.0, and 6.0mg) of PGA fiber was freeze-dried to obtain fibrin sponges with or without PGA fiber incorporation. By scanning electron microscopy observation, the fibrin sponges had an interconnected pore structure, irrespective of the amount of PGA fiber incorporated. PGA fiber incorporation enabled the fibrin sponges to significantly enhance their compression strength. In vitro cell culture studies revealed that the number of L929 fibroblasts initially attached was significantly larger for any fibrin sponge with PGA fiber incorporation than for the fibrin sponge without PGA fiber. The shrinkage of sponges after cell seeding was suppressed by fiber incorporation. It is possible that the shrinkage suppression of sponges maintains their intraspace, resulting in the superior cell attachment of a sponge with PGA fiber incorporation. After subcutaneous implantation into the backs of mice, the residual volume of a fibrin sponge with PGA fiber incorporation was significant compared with that of a fibrin sponge without PGA fiber. Larger number of cells infiltrated deep inside the fibrin sponges with PGA fiber incorporation implanted subcutaneously. It is concluded that the fibrin sponge reinforced by fiber incorporation is a promising three-dimensional scaffold of cells for tissue engineering.

  6. Preparation of a novel biodegradable β-cyclodextrin-containing polymer

    Institute of Scientific and Technical Information of China (English)

    朱久进

    2009-01-01

    A novel cyclodextrin-containing polymer was prepared by graftingβ-cyclodextrin onto the backbone of poly(D,L-lactic acid)(PLA).First,mono(6-(2-aminoethyl)amino-6-deoxy)-β-cyclodextrin(β-CD-6-en)was prepared by sulfonylation and amination ofβ-cyclodextrin and modified poly(D,L-lactic acid)(MPLA)was prepared by free radical polymerization of maleic anhydride and PLA.Then,grafting ofβ-cyclodextrin derivative to MPLA backbone was carried out by N-acylation reaction of MPLA andβ-CD-6-en in dimethyl formamide.The...

  7. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating.

    Science.gov (United States)

    Xu, Liping; Yamamoto, Akiko

    2012-05-01

    In recent years, magnesium and its alloys have been investigated as biodegradable metallic materials in cardiovascular stents and bone implants. However, rapid corrosion rate in the early stage of the degradation process greatly influences the cytocompatibility and hinters their application. In this research, biodegradable polymer films are prepared under same coating condition by spin coating in order to improve the early corrosion resistance and cytocompatibility of Mg. The results present that uniform, nonporous, amorphous PLLA and semi-crystalline PCL films are coated on Mg. PLLA film shows better adhesion strength to Mg substrate than that of PCL film. For both PLLA and PCL, low molecular weight (LMW) film is thinner and exhibits better adhesion strength than high molecular weight (HMW) one. SaOS-2 cells show significantly good attachment and high growth on the polymer-coated Mg, demonstrating that all the polymer films can significantly improve the cytocompatibility in the 7-day incubation. The pH measurement of the immersion medium and the quantification of released Mg(2+) during the cell culture clearly indicate that the corrosion resistance of Mg substrate is improved by the polymer films to different extents. It can be concluded that both PLLA and PCL films are promising protective coatings for improving the initial corrosion resistance and cytocompatibility.

  8. Biodegradable Polymers Influence the Effect of Atorvastatin on Human Coronary Artery Cells.

    Science.gov (United States)

    Strohbach, Anne; Begunk, Robert; Petersen, Svea; Felix, Stephan B; Sternberg, Katrin; Busch, Raila

    2016-01-22

    Drug-eluting stents (DES) have reduced in-stent-restenosis drastically. Yet, the stent surface material directly interacts with cascades of biological processes leading to an activation of cellular defense mechanisms. To prevent adverse clinical implications, to date almost every patient with a coronary artery disease is treated with statins. Besides their clinical benefit, statins exert a number of pleiotropic effects on endothelial cells (ECs). Since maintenance of EC function and reduction of uncontrolled smooth muscle cell (SMC) proliferation represents a challenge for new generation DES, we investigated the effect of atorvastatin (ATOR) on human coronary artery cells grown on biodegradable polymers. Our results show a cell type-dependent effect of ATOR on ECs and SMCs. We observed polymer-dependent changes in IC50 values and an altered ATOR-uptake leading to an attenuation of statin-mediated effects on SMC growth. We conclude that the selected biodegradable polymers negatively influence the anti-proliferative effect of ATOR on SMCs. Hence, the process of developing new polymers for DES coating should involve the characterization of material-related changes in mechanisms of drug actions.

  9. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerization initiators.

    Science.gov (United States)

    Zhong, Zhiyuan; Dijkstra, Pieter J; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the polymerization reactions, has continuously been an important topic. Here, we will address the recent advances in the ring-opening polymerization of lactides, with an emphasis on the highly versatile in situ generated initiator systems and single-site stereoselective initiators. The in situ generated initiators including in situ formed yttrium, calcium and zinc alkoxides all have been shown to bring about a rapid and living polymerization of lactides under mild conditions, which facilitated the preparation of a variety of advanced lactide-based biomaterials. For example, well-defined di- and tri-block copolymers consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic polyester blocks, which form novel biodegradable polymersomes or biodegradable thermosensitive hydrogels, have been prepared. In the past few years, significant progress has also been made in the area of stereoselective polymerization of lactides. This new generation of initiators has enabled the production of polylactide materials with novel microstructures and/or properties, such as heterotactic (--RRSSRRSSRRSS--) polylactide, crystalline syndiotactic (--RSRSRSRSRSRS--) polylactide and isotactic stereoblock (--Rn Sn Rn Sn--) polylactide, exhibiting a high melting temperature. The recently developed polymerizations using in situ generated initiators and stereoselective polymerizations have no doubt opened a brand-new avenue for the design and exploration of polylactides and their copolymers.

  10. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration

    Science.gov (United States)

    Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve

  11. Biodegradable Polycaprolactone as Ion Solvating Polymer for Solution-Processed Light-Emitting Electrochemical Cells

    Science.gov (United States)

    Jürgensen, Nils; Zimmermann, Johannes; Morfa, Anthony John; Hernandez-Sosa, Gerardo

    2016-11-01

    In this work, we demonstrate the use of the biodegradable polymer polycaprolactone (PCL) as the ion solvating polymer in solution-processed light-emitting electrochemical cells (LEC). We show that the inclusion of PCL in the active layer yields higher ionic conductivities and thus contributes to a rapid formation of the dynamic p-i-n junction and reduction of operating voltages. PCL shows no phase separation with the emitter polymer and reduces film roughness. The devices show light-emission at voltages as low as 3.2 V and lifetimes on the order of 30 h operating above 150 cd m‑2 with turn-on times <20 s and current and luminous efficacies of 3.2 Cd A‑1 and 1.5 lm W‑1 respectively.

  12. Evaluation of Artificial Intelligence Based Models for Chemical Biodegradability Prediction

    Directory of Open Access Journals (Sweden)

    Aleksandar Sabljic

    2004-12-01

    Full Text Available This study presents a review of biodegradability modeling efforts including a detailed assessment of two models developed using an artificial intelligence based methodology. Validation results for these models using an independent, quality reviewed database, demonstrate that the models perform well when compared to another commonly used biodegradability model, against the same data. The ability of models induced by an artificial intelligence methodology to accommodate complex interactions in detailed systems, and the demonstrated reliability of the approach evaluated by this study, indicate that the methodology may have application in broadening the scope of biodegradability models. Given adequate data for biodegradability of chemicals under environmental conditions, this may allow for the development of future models that include such things as surface interface impacts on biodegradability for example.

  13. SIFAT POLIMER DAN KEMAMPUAN TERBIODEGRADASI BLEND BIODEGRADABLE POLYMER POLI (L-ASAM LAKTAT (PLLA

    Directory of Open Access Journals (Sweden)

    Johnner P Sitompul

    2014-12-01

    Full Text Available  Poly(D,L-lactic acid (PDLLA and poly(ethylene glycol (PEG was used to modify mechanical and biodegradability properties of poly(L-lactic acid (PLLA through solution blending method using solvent mixture of dichloromethane-ethanol. Polymer samples were then characterized using FTIR, DSC, UTM, and enzymatic degradation test. FTIR spectrum of pure PLLA showed specific IR absorption peaks at wavenumber of 3504 cm-1 (-OH, 1757 cm-1 (-C=O, and 1381 cm-1 (-CH3 symmetric. Further, polymer blend samples showed absorption peak shifts at 1755 cm-1 and 1382 cm-1 for PLLA/PDLLA due to stereocomplex interaction and at 3429 cm-1 due to hydrogen bond interaction. DSC results showed that there was melting temperature depression for all polymer blend samples compared to pure PLLA with increasing of either PDLLA or PEG composition. In PLLA/PDLLA, two melting points were discovered because of homocrystallite and stereocomplex phase formation. While PLLA/PEG samples showed increasing crystallinity to 69% at 20%-wt PEG composition. Mechanical analysis showed that 10%-wt of PDLLA addition in PLLA produced better mechanical performance than pure PLLA while 20%-wt of PEG addition showed highest elongation at break with the value of 89%. Polymer blend samples were degradable during enzymatic degradation test represented by percent weight loss with maximum value of 21% for PLLA/PEG sample. Keywords: polymer properties, solution-blending, Poly(lactic acid, polymer blend, enzymatic degradation

  14. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    Science.gov (United States)

    Litviakov, N. V.; Tverdokhlebov, S. I.; Perelmuter, V. M.; Kulbakin, D. E.; Bolbasov, E. N.; Tsyganov, M. M.; Zheravin, A. A.; Svetlichnyi, V. A.; Cherdyntseva, N. V.

    2016-08-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats' iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant's influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  15. Biodegradation of toluene using Candida tropicalis immobilized on polymer matrices in fluidized bed bioreactors.

    Science.gov (United States)

    Song, JiHyeon; Namgung, HyeongKyu; Ahmed, Zubair

    2012-11-30

    A yeast strain, Candida tropicalis, was whole-cell-immobilized on polymer matrices of polyethylene glycol (PEG) and polyethylene glycol/activated carbon/alginate (PACA). The polymer matrices were used as fluidized materials in bubble-column bioreactors for the biodegradation of toluene. Simultaneously, another bubble-column bioreactor using granular activated carbon (GAC) and a conventional compost biofilter were operated for comparison. In the compost biofilter, the toluene removal efficiency gradually deteriorated due to the limitation of microbial activity. The toluene removal in the GAC bioreactor was relatively high because of an increase of toluene mass transfer. However, low toluene removal efficiencies were observed in the PEG bioreactor, presumably because the synthetic polymer alone was not suitable for yeast cell immobilization. In the PACA bioreactor, toluene removal was found to be greater than 95% overall. The CO(2) yield coefficient calculated at the highest toluene loading condition for the PACA bioreactor was found to be higher than those observed in the other bioreactors. Furthermore, almost complete elimination capacities were observed in the PACA bioreactor at short-term toluene loading up to 180 g/m(3)/h. In conclusion, the immobilization of C. tropicalis in the PACA matrix resulted in enhanced toluene biodegradation because of the increases of both mass transfer and microbial activity.

  16. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Mehjabeen, Afrin [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Ye, Qingsong [Discipline of Dentistry, James Cook University, Townsville 4811, Queensland (Australia); Blawert, Carsten [Magnesium Innovation Centre, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-05-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R{sub p}) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i{sub corr}) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i{sub corr} by almost 100%. As expected, the R{sub p} of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R{sub p} of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  17. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering.

    Science.gov (United States)

    Lalwani, Gaurav; Henslee, Allan M; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F Kurtis; Mikos, Antonios G; Sitharaman, Balaji

    2013-09-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt.%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental group. Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as the baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus and flexural yield strength) of WSNT-reinforced PPF nanocomposites compared to the baseline control. In comparison to the positive controls, significant improvements in the mechanical properties of WSNT nanocomposites were also observed at various concentrations. In general, the inorganic nanotubes (WSNTs) showed mechanical reinforcement better than (up to 127%) or equivalent to that of carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt.%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron-sized aggregates. The trend in the surface area of nanostructures obtained by Brunauer-Emmett-Teller (BET) surface area analysis was SWCNTs>MWCNTs>WSNTs. The BET surface area analysis, TEM analysis and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), the presence of functional groups (such as sulfide and oxysulfide) and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters

  18. Polymer/hemoglobin assemblies: biodegradable oxygen carriers for artificial red blood cells.

    Science.gov (United States)

    Li, Taihang; Jing, Xiabin; Huang, Yubin

    2011-07-07

    In routine clinical procedures, blood transfusion is now suffering from the defects of the blood products, like cross-matching, short storage time and virus infection. Various blood substitutes have been designed by researchers through continual efforts. With recent progress in nanotechnology, new types of artificial red blood cells with cellular structure are available. This article aims to describe some artificial red blood cells which encapsulate or conjugate hemoglobin molecules through various approaches, especially the nanoscale self-assembly technique, to mitigate the adverse effects of free hemoglobin molecules. These types of artificial red blood cell systems, which make use of biodegradable polymers as matrix materials, show advantages over the traditional types.

  19. Development of Micro Lancet Needle Made of Biodegradable Polymer for Medical Treatment

    Science.gov (United States)

    Aoyagi, Seiji; Izumi, Hayato; Aoki, Toshiro; Fukuda, Mitsuo

    The aim of this paper is development of micro lancet needle made of biodegradable polymer (Poly Lactic Acid, called as PLA). This device is applicable to a blood test system for diabetics. Since PLA naturally degrades itself in tissues, this material is safe for human body. To achieve the purpose of this study, we focused on wet chemical anisotropic etching process of silicon negative groove, and micromolding process of PLA. Resistance force during inserting a fabricated needle to an artificial skin of silicone rubber is investigated experimentally. The effects of thinning needle, sharpening tip, vibrating it during insertion, pitching out the inserted object surface, etc., for decreasing the resistance force are confirmed.

  20. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amides

    Directory of Open Access Journals (Sweden)

    Angélica Díaz

    2014-04-01

    Full Text Available Poly(alkylene dicarboxylates constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amides derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  1. Early vascular healing with rapid breakdown biodegradable polymer sirolimus-eluting versus durable polymer everolimus-eluting stents assessed by optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tada, Tomohisa, E-mail: tomohisa@dhm.mhn.de [Deutsches Herzzentrum, Technische Universität, München (Germany); Byrne, Robert A. [Deutsches Herzzentrum, Technische Universität, München (Germany); Schuster, Tibor [Institut für Medizinische Statistik und Epidemiologie, München (Germany); Cuni, Rezarta [Deutsches Herzzentrum, Technische Universität, München (Germany); Kitabata, Hironori [Wakayama Medical University, Wakayama (Japan); Tiroch, Klaus [Deutsches Herzzentrum, Technische Universität, München (Germany); Dirninger, Alfred; Gratze, Franz; Kaspar, Klaus; Zenker, Gerald [Landeskrankenhaus Bruck/Mur (Austria); Joner, Michael; Schömig, Albert; Kastrati, Adnan [Deutsches Herzzentrum, Technische Universität, München (Germany)

    2013-03-15

    Background: Differences in early arterial healing patterns after stent implantation between biodegradable and durable polymer based new generation drug-eluting stents are not well understood. The aim of this study was to compare the healing patterns of a novel rapid breakdown (≤ 8 weeks) biodegradable polymer sirolimus-eluting stent (BP-SES) with a durable polymer everolimus-eluting stent (EES) using intravascular optical coherence tomography (OCT) at 4 months. Methods: A total of 20 patients were randomly assigned to stenting with BP-SES (n = 11) or EES (n = 9). Overall intravascular imaging was available for 15 (75%) patients. The primary endpoint was the difference in rate of uncovered struts between BP-SES and EES. To account for strut-level clustering, the results in both treatment groups were compared using a generalized linear mixed model approach. Results: Regarding the primary endpoint, BP-SES as compared to EES showed similar rates of uncovered struts (37 [6.8%] versus 167 [17.5%], odds ratio (OR) 0.45 (95% CI 0.09-2.24), p = 0.33). There were no malapposed struts in BP-SES group and 14 malapposed struts in EES group (p = 0.97). No difference in percent neointimal volume (14.1 ± 8.2% vs. 11.4 ± 6.4%, p = 0.56) was observed. Conclusions: Although rapid-breakdown BP-SES as compared to EES showed signs of improved early tissue coverage, after adjustment for strut-level clustering these differences were not statistically significant. No differences in ability to suppress neointimal hyperplasia after stent implantation between 2 stents were observed.

  2. A new biodegradable and biocompatible gadolinium (III) -polymer for liver magnetic resonance imaging contrast agent.

    Science.gov (United States)

    Xiao, Yan; Xue, Rong; You, Tianyan; Li, Xiaojing; Pei, Fengkui

    2015-07-01

    A new biodegradable and biocompatible gadolinium (III) -copolymer (ACL-A2-DOTA-Gd) has been developed as a potential liver magnetic resonance imaging (MRI) contrast agent. ACL-A2-DOTA-Gd consisted of a poly (aspartic acid-co-leucine) unit bound with 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid-gadolinium (Gd-DOTA) via the linkage of ethylenediamine. In vitro, the biodegradable experiment and cytotoxicity assay showed the biodegradability and biocompatibility of this gadolinium-polymer. ACL-A2-DOTA-Gd presented an increase in relaxivity of 2.4 times than the clinical Gd-DOTA. In vivo, gadolinium (III)-copolymer was mainly accumulated in the liver, and it could be excreted via the renal and hepatobiliary mechanism. The average enhancement of ACL-A2-DOTA-Gd (60.71±5.93%, 50-80 min) in liver was 2.62-fold greater than that of Gd-DOTA (23.16±3.55%, 10-30 min). ACL-A2-DOTA-Gd could be as a potential liver MRI contrast agent with a long time-window.

  3. Release of bovine serum albumin from a hydrogel-cored biodegradable polymer fiber.

    Science.gov (United States)

    Crow, B B; Nelson, K D

    2006-04-15

    We have developed a novel biodegradable, polymeric fiber construct that is coextruded using a wet-spinning process into a core-sheath format with a polysaccharide pre-hydrogel solution as the core fluid and poly(L-lactic acid) (PLLA) as the sheath. The biodegradable, biocompatible fibers were extruded from polymeric emulsions comprised of solutions of various molecular weights of PLLA dissolved in chloroform and containing dispersed, protein-free aqueous phases comprising up to 10% of the emulsion volume. Biologically sensitive agents can be loaded via a dispersed aqueous phase in the polymer, and/or directly into the polysaccharide. We show that this core-sheath fiber format will load a model protein that can be delivered for extended periods in vitro. Bovine serum albumin (BSA) was loaded into the fiber core as a model protein. We have shown that the greater the volume of the protein-free aqueous phase dispersed into the polymeric continuous-phase emulsion, the greater the total release of BSA encapsulated by a core gel comprised of 1% sodium alginate solution. We conclude this fiber format provides a promising vehicle for in vivo delivery of biological molecules. Its biocompatibility and biodegradability also allow for its use as a possible substrate for tissue engineering applications.

  4. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.

    Science.gov (United States)

    Nikodinovic-Runic, Jasmina; Guzik, Maciej; Kenny, Shane T; Babu, Ramesh; Werker, Alan; O Connor, Kevin E

    2013-01-01

    Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show

  5. [Denitrification and kinetic characteristics using biodegradable polymers as carbon source and biofilm carrier].

    Science.gov (United States)

    Lai, Cai-sheng; Tan, Hong-xin; Luo, Guo-zhi; Ruan, Yun-jie; Zhou, Wei; Sun, Da-chuan

    2010-08-01

    The PBS material that in the form of insoluble biodegradable polymers pellets was investigated as the solid carbon source and the biofilm carrier for nitrate removal from wastewater. The denitrification of nitrate removal and kinetic process were carried out in a packed-bed reactor in order to remove nitrate in recirculation aquaculture system. The experimental results indicated that the optimal influent loading rate was in the range of 0.107-1.098 kg/(m3 x d), when the water temperature was (29 +/- 1) degrees C and the influent nitrate concentration was in the range of 25-334 mg/L. The maximum nitrate volumetric removal rate of 0.577 kg/(m3 x d) was achieved at the influent loading rate of 1.098 kg/(m3 x d). When the influent loading rate exceeded 1.098 kg/(m3 x d), the nitrate volumetric removal rate was declined. The kinetic experimental results show that the denitrification rate of PBS as the solid carbon source and the biofilm carrier corresponds to first-order kinetics. Based on the kinetics characteristics, constants n and K used in Eckenfelder model were deduced, which can be successfully applied for the prediction of effluent nitrate concentration. The two groups' predictive values and actual values were analyzed by using SPSS 16.0 software for Paired-Samples t test analysis. The Paired-Samples t test analysis indicates that the corresponding p > 0.05 values are 0.553 and 0.632, which proved that no significant differences exist between the predictive values and actual values of the model.

  6. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.

    Science.gov (United States)

    Juriga, Dávid; Nagy, Krisztina; Jedlovszky-Hajdú, Angéla; Perczel-Kovách, Katalin; Chen, Yong Mei; Varga, Gábor; Zrínyi, Miklós

    2016-09-14

    Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine). Disulfide bridges were cleaved to thiol groups and the polymer backbone was further modified with RGD sequence. Biodegradability of the hydrogels was evaluated by experiments on the base of enzymes and cell culture medium. Poly(aspartic acid) hydrogels possessing only disulfide bridges as cross-links proved to be degradable by collagenase I. The MG-63 cells showed healthy, fibroblast-like morphology on the double cross-linked and RGD modified hydrogels. Thiolated poly(aspartic acid) based hydrogels provide ideal conditions for adhesion, survival, proliferation, and migration of osteoblast-like cells. The highest viability was found on the thiolated PASP gels while the RGD motif had influence on compacted cluster formation of the cells. These biodegradable and biocompatible poly(aspartic acid)-based hydrogels are promising scaffolds for cell cultivation.

  7. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  8. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  9. A prospective multicenter parallel-controlled trial of TIVOLI biodegradable-polymer-based sirolimus-eluting stent compared to ENDEAVOR zotarolimus-eluting stent for the treatment of coronary artery disease: 8-month angiographic and 2-year clinical follow-up results

    Institute of Scientific and Technical Information of China (English)

    XU Bo; LI Wei-min; CHEN Ji-yan; WANG Lei; WANG Yong; GE Jun-bo; LI Wei; GAO Run-lin; DOU Ke-fei; HAN Ya-ling; L(U) Shu-zheng; YANG Yue-jin; HUO Yong; WANG Le-feng; CHEN Yun-dai; WANG Hai-chang

    2011-01-01

    Background Available drug-eluting stents (DES) have achieved great success in reducing restenosis rates. Recently,investigators have demonstrated that the durable polymer carrier plays a significant role in DES-related hypersensitive reaction and delays vessel healing. TIVOLI stent is a novel sirolimus-eluting coronary stent with biodegradable coating containing sirolimus and polylactic-co-glycolic acid (PLGA) polymer. The present study sought to evaluate the effectiveness and safety of the TIVOLI biodegradable-polymer-based sirolimus-eluting stent in treating patients with coronary artery disease.Methods A prospective, multicenter clinical trial comparing TIVOLI biodegradable coated sirolimus-eluting stent with ENDEAVOR zotarolimus-eluting stent was conducted in 324 patients (TIVOLI group: 168 patients; ENDEAVOR group:156 patients) at 12 centers in China to demonstrate the non-inferiority of in-stent late loss with TIVOLI stent compared to ENDEAVOR stent in subjects with a maximum of two de novo native coronary artery lesions (lesion length ≤40 mm,reference vessel diameter 2.25-4.00 mm). The primary end point was angiographic in-stent late loss at 8-month. The secondary end points were clinical outcomes at 2 years,including major adverse cardiac events (cardiac death,myocardial infarction, or target-lesion revascularization) and stent thrombosis.Results Angiographic late lumen loss at 8 months in the TIVOLI group was superior to the ENDEAVOR group (in-stent (0.25±0.33) mm vs. (0.57±0.55) mm, diff (95% CI)-0.23 (-0.32, -0.14), P <0.0001; in-segment (0.25±-0.33) mm vs. (0.42±-0.55) mm, diff (95% CI) -0.13 (-0.23, -0.02),P=0.0083). The rate of in-stent binary restenosis at 8 months was reduced from 8.6% in the ENDEAVOR group to 2.9% in the TIVOLI group (P=0.0229). Compared to ENDEAVOR stent, TIVOLI stent resulted in a significant reduction in target-lesion revascularization (4.2% vs. 9.6%, P=0.0495) at 2 years. The two-year major adverse cardiac events (MACE

  10. Performance and environmental impact of biodegradable polymers as agricultural mulching films.

    Science.gov (United States)

    Touchaleaume, François; Martin-Closas, Lluís; Angellier-Coussy, Hélène; Chevillard, Anne; Cesar, Guy; Gontard, Nathalie; Gastaldi, Emmanuelle

    2016-02-01

    In the aim of resolving environmental key issues such as irreversible soil pollution by non-biodegradable and non-recoverable polyethylene (PE) fragments, a full-scale field experiment was set up to evaluate the suitability of four biodegradable materials based on poly(butylene adipate-co-terephtalate) (PBAT) to be used as sustainable alternatives to PE for mulching application in vineyard. Initial ultimate tensile properties, functional properties during field ageing (water vapour permeability and radiometric properties), biodegradability and agronomical performance of the mulched vines (wood production and fruiting yield) were studied. In spite of their early loss of physical integrity that occurred only five months after vine planting, the four materials satisfied all the requested functional properties and led to agronomic performance as high as polyethylene. In the light of the obtained results, the mulching material lifespan was questioned in the case of long-term perennial crop such as grapevine. Taking into account their mulching efficiency and biodegradability, the four PBAT-based studied materials are proven to constitute suitable alternatives to the excessively resistant PE material.

  11. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    OpenAIRE

    Saruchi; B. S. Kaith; Vaneet Kumar; R. Jindal

    2016-01-01

    A novel interpenetrating polymer network (IPN) has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial meth...

  12. Synthesis and characterization of biodegradable polymer: Poly (ethene maleic acid ester-co-D,L-lactide acid)

    Institute of Scientific and Technical Information of China (English)

    Mei Na Huang; Yan Feng Luo; Jia Chen; Yong Gang Li; Chun Hua Fu; Yuan Liang Wang

    2007-01-01

    A novel biodegradable polymer-poly (ethene maleic acid ester-co-D,L-lactide acid) was synthesized by copolymerizing lactide and prepolymer, which was prepared by the condensation of maleic anhydride and glycol, using p-toluene sulphonic acid as a catalyst, attempting to improve the hydrophilicity, increase flexibility and modulate the degradation rate. FTIR, 1H NMR, MALLS and DSC were employed to characterize these polymers.

  13. Stimuli-Responsive Biodegradable Hyperbranched Polymer-Gadolinium Conjugates as Efficient and Biocompatible Nanoscale Magnetic Resonance Imaging Contrast Agents.

    Science.gov (United States)

    Sun, Ling; Li, Xue; Wei, Xiaoli; Luo, Qiang; Guan, Pujun; Wu, Min; Zhu, Hongyan; Luo, Kui; Gong, Qiyong

    2016-04-27

    The efficacy and biocompatibility of nanoscale magnetic resonance imaging (MRI) contrast agents depend on optimal molecular structures and compositions. Gadolinium [Gd(III)] based dendritic macromolecules with well-defined and tunable nanoscale sizes are excellent candidates as multivalent MRI contrast agents. Here, we propose a novel alternate preparation of biodegradable hyperbranched polymer-gadolinium conjugates via a simple strategy and report potentially efficient and biocompatible nanoscale MRI contrast agents for cancer diagnosis. The enzyme-responsive hyperbranched poly(oligo-(ethylene glycol) methacrylate)-gadolinium conjugate (HB-POEGMA-Gd) was prepared via one-step reversible addition-fragmentation chain transfer (RAFT) polymerization and Gd(III) chelating, and the cRGDyK functionalized polymer (HB-POEGMA-cRGD-Gd) was obtained via click chemistry. By using an enzyme similar to lysosomal cathepsin B, hyperbranched conjugates of high molecular weights (MW) (180 and 210 kDa) and nanoscale sizes (38 and 42 nm) were degraded into low MW (25 and 30 kDa) and smaller products (4.8 and 5.2 nm) below the renal threshold. Conjugate-based nanoscale systems had three-fold more T1 relaxivity compared to clinical agent diethylenediaminepentaacetic acid (DTPA)-Gd. Animal studies with the nanoscale system offered greater tumor accumulation and enhanced signal intensity (SI) in mouse U87 tumors of which the greatest activity was conferred by the cRGDyK moiety functionalized hyperbranched conjugate. In vitro cytotoxicity, hemocompatibility and in vivo toxicity studies confirmed no adverse events. This design strategy for multifunctional Gd(III)-labeled biodegradable dendritic macromolecules may have significant potential as future efficient, biocompatible polymeric nanoscale MRI diagnostic contrast agents for cancer.

  14. Eco-Challenges of Bio-Based Polymer Composites

    Directory of Open Access Journals (Sweden)

    Anita Grozdanov

    2009-08-01

    Full Text Available In recent years bio-based polymer composites have been the subject of many scientific and research projects, as well as many commercial programs. Growing global environmental and social concern, the high rate of depletion of petroleum resources and new environmental regulations have forced the search for new composites and green materials, compatible with the environment. The aim of this article is to present a brief review of the most suitable and commonly used biodegradable polymer matrices and NF reinforcements in eco-composites and nanocomposites, with special focus on PLA based materials.

  15. Processing and quantitative analysis of biodegradable polymers (PLLA and PCL) thermal bonding

    Science.gov (United States)

    Boutry, C. M.; Kiran, R.; Umbrecht, F.; Hierold, C.

    2010-08-01

    A quantitative analysis of the bond strength and microstructure integrity achieved when bonding the biodegradable polymers poly(L-lactide) (PLLA) and poly(ɛ-caprolactone) (PCL) has been performed using the response surface methodology. The respective influence of the bonding parameters (temperature, pressure, duration) on the bond strength and microchannel integrity was investigated. PLLA and PCL were identified as suitable candidates for packaging materials for bioelectronic circuits of conductive biodegradable polymers. For a future packaging application, the bonding parameters were adapted to optimize the bond strength; the estimated values for the bond strength and channel integrity that were predicted by the surface plots were 2.32 ± 0.26 MPa and 33.7 ± 12.9% for PLLA, and 0.81 ± 0.11 MPa and 50.9 ± 5.7% for PCL. These values were in good agreement with the experimentally determined bond strength of 2.00 ± 1.10 MPa (PLLA) and 0.67 ± 0.22 MPa (PCL) and deformation of 31.4 ± 7.0% (PLLA) and 52.9 ± 4.1% (PCL). Microchannels with an aspect ratio of 1:12.5 were successfully fabricated. The impact of the fabrication process on the PLLA and PCL chemical properties was also investigated through differential scanning calorimetry and gel permeation chromatography measurements. It was observed that the weight average molecular weight Mw decreases after each fabrication step, as much as 68% for PLLA and 59% for PCL. The strongest reduction was observed after the compression molding (above the melting temperature) which should be kept as short as possible. An annealing step allowed increasing the crystallinity and improved the overall polymer stiffness.

  16. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.

    Science.gov (United States)

    Belibel, R; Avramoglou, T; Garcia, A; Barbaud, C; Mora, L

    2016-02-01

    Biodegradable and bioassimilable poly((R,S)-3,3 dimethylmalic acid) (PDMMLA) derivatives were synthesized and characterized in order to develop a new coating for coronary endoprosthesis enabling the reduction of restenosis. The PDMMLA was chemically modified to form different custom groups in its side chain. Three side groups were chosen: the hexyl group for its hydrophobic nature, the carboxylic acid and alcohol groups for their acid and neutral hydrophilic character, respectively. The sessile drop method was applied to characterize the wettability of biodegradable polymer film coatings. Surface energy and components were calculated. The van Oss approach helped reach not only the dispersive and polar acid-base components of surface energy but also acid and basic components. Surface topography was quantified by atomic force microscopy (AFM) and subnanometer average values of roughness (Ra) were obtained for all the analyzed surfaces. Thus, roughness was considered to have a negligible effect on wettability measurements. In contrast, heterogeneous surfaces had to be corrected by the Cassie-Baxter equation for copolymers (10/90, 20/80 and 30/70). The impact of this correction was quantified for all the wettability parameters. Very high relative corrections (%) were found, reaching 100% for energies and 30% for contact angles.

  17. Radiation processing of indigenous natural polymers. Properties of radiation modified blends from sago-starch for biodegradable composite

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Z.; Dahlan, K.Z. [Malaysian Institute for Nuclear and Technology Research (MINT), Bangi, Kajang (Malaysia); Wongsuban, B.; Idris, S.; Muhammad, K. [Universiti Putra Malaysia, Faculty of Food Science and Biotechnology, Department of Food Science, Serdang (Malaysia)

    2001-03-01

    Research and development on biodegradable polymer blends and composites have gained wider interest to offer alternative eco-friendly products. Natural polysaccharide such as sago-starch offers the most promising raw material for the production of biodegradable composites. The potential of sago, which is so abundant in Malaysia, to produce blends for subsequent applications in composite material, was evaluated and explored. Blends with various formulations of sago starch and polyvinyl alcohol (PVA), and polyvinyl pyrrolidone (PVP) polymers were prepared and subjected to radiation modification using electron beam irradiation. The effect of irradiation on the sago and its blends was evaluated and their properties were characterized. The potential of producing composite from sago blends was explored. Foams from these blends were produced using microwave oven while films were produced through casting method. The properties such as mechanical, water absorption, expansion ratio, and biodegradability were characterized and reported in this paper. (author)

  18. Microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release.

    Science.gov (United States)

    Fattahi, Pouria; Borhan, Ali; Abidian, Mohammad Reza

    2013-09-06

    This paper describes microencapsulation of antitumor agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine) into biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) using an electrojetting technique. The resulting BCNU-loaded PLGA microcapsules have significantly higher drug encapsulation efficiency, more tunable drug loading capacity, and (3) narrower size distribution than those generated using other encapsulation methods.

  19. Controlled synthesis of biodegradable lactide polymers and copolymers using novel in situ generated or single-site stereoselective polymerization initiators

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan

    2004-01-01

    Polylactides and their copolymers are key biodegradable polymers used widely in biomedical, pharmaceutical and ecological applications. The development of synthetic pathways and catalyst/initiator systems to produce pre-designed polylactides, as well as the fundamental understanding of the polymeriz

  20. Polymer-based solar cells

    Directory of Open Access Journals (Sweden)

    Alex C. Mayer

    2007-11-01

    Full Text Available A significant fraction of the cost of solar panels comes from the photoactive materials and sophisticated, energy-intensive processing technologies. Recently, it has been shown that the inorganic components can be replaced by semiconducting polymers capable of achieving reasonably high power conversion efficiencies. These polymers are inexpensive to synthesize and can be solution-processed in a roll-to-roll fashion with high throughput. Inherently poor polymer properties, such as low exciton diffusion lengths and low mobilities, can be overcome by nanoscale morphology. We discuss polymer-based solar cells, paying particular attention to device design and potential improvements.

  1. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    Science.gov (United States)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  2. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.

    Science.gov (United States)

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-06-02

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm² and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  3. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jongsung Park

    2016-06-01

    Full Text Available This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm2 and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  4. The prospects of biodegradable magnesium-based alloys in osteosynthesis

    Directory of Open Access Journals (Sweden)

    V. N. Chorny

    2013-12-01

    various types of implants for osteosynthesis in traumatology and orthopedics. As the analysis of scientific papers over the past decade, the number of scientific articles devoted to the study of the properties of magnesium alloys and their effect on bone formation, as well as their use in osteosynthesis has grown significantly. Implants which are based on magnesium, may have several advantages over bioinert metal alloys, polymers, and bioceramics. They are not toxic, not carcinogenic, the mechanical properties of a structure close to the cortical bone, and may have osteoinductive and anti-bacterial action. Also, there is no need for a second surgical intervention. The main problems to be addressed, in our view, are as follows. 1. Need to examine the nature of -bone formation in the fracture in the presence of the implant based on magnesium alloy. 2. To examine the impact of products of magnesium degradation on the surrounding tissue and the body as a whole. 3. Loss of rigidity of the implant magnesium based alloy in the process of biodegradation.

  5. Development and characterization of an intraocular biodegradable polymer system containing cyclosporine-A for the treatment of posterior uveitis

    Directory of Open Access Journals (Sweden)

    Juliana Barbosa Saliba

    2008-06-01

    Full Text Available The aim of this study was to synthesize and characterize the biodegradable intraocular implants based on poly (D,L-lactide-co-glycolide (PLGA 75:25 with Cyclosporine-A (CyA and to evaluate their in vitro drug delivery profile. Thermal analysis was conducted by using Thermogravimetry (TG and Differential Scanning Calorimetry (DSC. Phase analysis and crystallinity of the polymer-CyA samples were assessed through X ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR. Finally, microstructure and morphology of the systems were investigated by Scanning Electron Microscopy (SEM. The results showed that CyA was successfully incorporated into PLGA network with drug loading of approximately 31.6%. Also, based on FTIR and thermal analyses (TGA/DSC no significant physical-chemical interaction was detected at the micro-nanoscale level between polymer/drug. SEM micrographs have indicated a uniform drug distribution in PLGA matrix. XRD patterns have showed that the incorporated semi-crystalline structure of CyA has not significantly altered the polymeric mainly amorphous network. In addition, the results have confirmed the chemical and biological drug stability, the drug distribution into the polymeric matrix and the possibility of cyclosporine prolonged delivery system profile.

  6. Factors influencing the biodegradability of biocomposites based on ethylene-octene copolymer (EOC) and vegetable fillers

    Science.gov (United States)

    Zykova, A. K.; Pantyukhov, P. V.; Monakhova, T. V.; Kolesnikova, N. N.; Popov, A. A.; Ramos, C. C.

    2016-11-01

    In this study the role of the content of filler, its nature (particle geometry in particular) and the type of the copolymer matrix were examined. For the study three grades of ethylene-octene copolymer were chosen. Composites were mixed in proportion from 70 to 30 wt % of the polymer matrix content. Water absorption was determined; thermal oxidative degradation was studied; and a biodegradation test on recovered soil was carried out. It was concluded that water absorption and weight loss correlate with the filler content. It was found that biocomposites with oil flax straw are more prone to water absorption and weight loss than the same ones with wood flour. The most stable matrix to oxidation was Lucene 370, then Lucene 670 and Lucene 760. Therefore, biocomposites based on Lucene 760 should be more biodegradable than others.

  7. Synthesis and Characterization of Biodegradable Ultrasonicated Films made from Chitosan/al2o3 Polymer Nanocomposites

    Science.gov (United States)

    Prakash, B.; Jothirajan, M. A.; Umapathy, S.; Amala, Viji

    Chitosan is a biopolymer which is biodegradable, biocompatible, non toxic and cationic in nature. Due to these interesting properties, it finds advanced applications in sensors, drug delivery vehicle and gene therapy etc., In this present work, the biocompatible Al2O3 Nano particles were embedded into Chitosan Polymer matrix by ultrasonication route. XRD and FTIR studies confirm the presence of Al2O3 nanoparticle in the Chitosan polymer matrix. The morphological, optical, electrical properties of the polymer nano composite films are carried out by employing scanning electron microscopy (SEM), UV- Vis, LCR and Impedance studies.

  8. Polymer-Based Therapeutics

    OpenAIRE

    Liu, Shuang; Maheshwari, Ronak; Kiick, Kristi L.

    2009-01-01

    Polymeric materials have been applied in therapeutic applications, such as drug delivery and tissue regeneration, for decades owing to their biocompatibility and suitable mechanical properties. In addition, select polymer–drug conjugates have been used as bioactive pharmaceuticals owing to their increased drug efficacy, solubility, and target specificity compared with small-molecule drugs. Increased synthetic control of polymer properties has permitted the production of polymer assemblies for...

  9. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016.

  10. Biodegradable thermogels.

    Science.gov (United States)

    Park, Min Hee; Joo, Min Kyung; Choi, Bo Gyu; Jeong, Byeongmoon

    2012-03-20

    All living creatures respond to external stimuli. Similarly, some polymers undergo conformational changes in response to changes in temperature, pH, magnetic field, electrical field, or the wavelength of light. In one type of stimuli-responsive polymer, thermogel polymers, the polymer aqueous solution undergoes sol-to-gel transition as the temperature increases. Drugs or cells can be mixed into the polymer aqueous solution when it is in its lower viscosity solution state. After injection of the solution into a target site, heating prompts the formation of a hydrogel depot in situ, which can then act as a drug releasing system or a cell growing matrix. In this Account, we describe key materials developed in our laboratory for the construction of biodegradable thermogels. We particularly emphasize recently developed polypeptide-based materials where the secondary structure and nanoassembly play an important role in the determining the material properties. This Account will provide insights for controlling parameters, such as the sol-gel transition temperature, gel modulus, critical gel concentration, and degradability of the polymer, when designing a new thermogel system for a specific biomedical application. By varying the stereochemistry of amino acids in polypeptides, the molecular weight of hydrophobic/hydrophilic blocks, the composition of the polypeptides, the hydrophobic end-capping of the polypeptides, and the microsequences of a block copolymer, we have controlled the thermosensitivity and nanoassembly patterns of the polymers. We have investigated a series of thermogel biodegradable polymers. Polymers such as poly(lactic acid-co-glycolic acid), polycaprolactone, poly(trimethylene carbonate), polycyanoacrylate, sebacic ester, polypeptide were used as hydrophobic blocks, and poly(ethylene glycol) and poly(vinyl pyrrolidone) were used as hydrophilic blocks. To prepare a polymer sensitive to pH and temperature, carboxylic acid or amine groups were introduced

  11. Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices.

    Science.gov (United States)

    Kim, B S; Putnam, A J; Kulik, T J; Mooney, D J

    1998-01-05

    The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 x 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 +/- 0.8 x 10(8) cells/cm3 after 5 weeks, compared to 2.0 +/- 1.1 x 10(8) cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 +/- 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were

  12. Biodegradable coordination polymer: Polycondensation of glutaraldehyde and starch in complex formation with transition metals Mn(II, Co(II, Ni(II, Cu(II and Zn(II

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-11-01

    Full Text Available Starch a biopolymer, possesses many unique characteristics features accompanied with some shortcoming simultaneously. Some synthetic compounds are of great help to these demerits of starch and so by an addition of all these alternatively may acquire the tailor made features of starch-based compounds. By combining the individual advantages of starch and some other compounds and elements, starch-based biodegradable polymers were prepared for potential applications in biomedical and environmental fields. In this research, the structural analysis and characterization studies of starch glutaraldehyde polycondensed polymer were undertaken, and then the formation of polymer metal complexes with transition metal in coordinated form are carried out. FT-IR spectroscopy and 1H NMR and 13C NMR spectroscopy were used to analyze the functionality of the synthesized compound. CHN of the synthesized compound was supported by FT-IR and NMR which again proved helpful for structural analysis. Electronic spectroscopy confirmed the geometry of the synthesized compounds. Thermal studies were carried out by thermogravimetric analysis (TGA and differential scanning calorimetry (DSC. Besides this the biodegradable studies were carried out by ASTM standards of biodegradable materials by CO2 evolution in respirometric titration method. All the polymers showed good thermal strength and reduced biodegradation on attachment of transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II.

  13. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  14. Selenium-Substituted Hydroxyapatite/Biodegradable Polymer/Pamidronate Combined Scaffold for the Therapy of Bone Tumour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2015-09-01

    Full Text Available The present study evaluated a new concept of combined scaffolds as a promising bone replacement material for patients with a bone tumour or bone metastasis. The scaffolds were composed of hydroxyapatite doped with selenium ions and a biodegradable polymer (linear or branched, and contained an active substance—bisphosphonate. For this purpose, a series of biodegradable polyesters were synthesized through a ring-opening polymerization of ε-caprolactone or d,l-lactide in the presence of 2-hydroxyethyl methacrylate (HEMA or hyperbranched 2,2-bis(hydroxymethylpropionic acid polyester-16-hydroxyl (bis-MPA initiators, substances often used in the synthesis of medical materials. The polymers were obtained with a high yield and a number-average molecular weight up to 45,300 (g/mol. The combined scaffolds were then manufactured by a direct compression of pre-synthesized hydroxyapatite doped with selenite or selenate ions, obtained polymer and pamidronate as a model drug. It was found that the kinetic release of the drug from the scaffolds tested in vitro under physiological conditions is strongly dependent on the physicochemical properties and average molecular weight of the polymers. Furthermore, there was good correlation with the hydrolytic biodegradation results of the scaffolds fabricated without drug. The preliminary findings suggest that the fabricated combined scaffolds could be effectively used for the sustained delivery of bioactive molecules at bone defect sites.

  15. Selenium-Substituted Hydroxyapatite/Biodegradable Polymer/Pamidronate Combined Scaffold for the Therapy of Bone Tumour.

    Science.gov (United States)

    Oledzka, Ewa; Sobczak, Marcin; Kolmas, Joanna; Nalecz-Jawecki, Grzegorz

    2015-09-14

    The present study evaluated a new concept of combined scaffolds as a promising bone replacement material for patients with a bone tumour or bone metastasis. The scaffolds were composed of hydroxyapatite doped with selenium ions and a biodegradable polymer (linear or branched), and contained an active substance-bisphosphonate. For this purpose, a series of biodegradable polyesters were synthesized through a ring-opening polymerization of ε-caprolactone or d,l-lactide in the presence of 2-hydroxyethyl methacrylate (HEMA) or hyperbranched 2,2-bis(hydroxymethyl)propionic acid polyester-16-hydroxyl (bis-MPA) initiators, substances often used in the synthesis of medical materials. The polymers were obtained with a high yield and a number-average molecular weight up to 45,300 (g/mol). The combined scaffolds were then manufactured by a direct compression of pre-synthesized hydroxyapatite doped with selenite or selenate ions, obtained polymer and pamidronate as a model drug. It was found that the kinetic release of the drug from the scaffolds tested in vitro under physiological conditions is strongly dependent on the physicochemical properties and average molecular weight of the polymers. Furthermore, there was good correlation with the hydrolytic biodegradation results of the scaffolds fabricated without drug. The preliminary findings suggest that the fabricated combined scaffolds could be effectively used for the sustained delivery of bioactive molecules at bone defect sites.

  16. Damage-induced hydrolyses modelling of biodegradable polymers for tendons and ligaments repair.

    Science.gov (United States)

    Vieira, André C; Guedes, Rui M; Tita, Volnei

    2015-09-18

    The use of biodegradable synthetic grafts to repair injured ligaments may overcome the disadvantages of other solutions. Apart from biological compatibility, these devices shall also be functionally compatible and temporarily displayed, during the healing process, adequate mechanical support. Laxity of these devices is an important concern. This can cause failure since it may result in joint instability. Laxity results from a progressive accumulation of plastic strain during the cyclic loading. The functional compatibility of a biodegradable synthetic graft and, therefore, the global mechanical properties of the scaffold during degradation, can be optimised using computer-aiding and numerical tools. Therefore, in this work, the ability of numerical tools to predict the mechanical behaviour of the device during its degradation is discussed. Computational approaches based on elastoplastic and viscoplastic constitutive models are also presented. These models enable to simulate the plastic strain accumulation. These computational approaches, where the material model parameters depend on the hydrolytic degradation damage, are calibrated using experimental data measured from biodegradable suture fibres at different degradation steps. Due to durability requirements the selected materials are polydioxone (PDO) and polylactic acid and poly-caprolactone blend (PLA-PCL). Computational approaches investigated are able to predict well the experimental results for both materials, in full strain range until rupture and for different degradation steps. These approaches can be further used in more complex fibrous structures, to predict its global mechanical behaviour during degradation process.

  17. Control of enzymatic degradation of biodegradable polymers by treatment with biosurfactants, mannosylerythritol lipids, derived from Pseudozyma spp. yeast strains.

    Science.gov (United States)

    Fukuoka, Tokuma; Shinozaki, Yukiko; Tsuchiya, Wataru; Suzuki, Ken; Watanabe, Takashi; Yamazaki, Toshimasa; Kitamoto, Dai; Kitamoto, Hiroko

    2016-02-01

    Cutinase-like esterase from the yeasts Pseudozyma antarctica (PaE) shows strong degradation activity in an agricultural biodegradable plastic (BP) model of mulch films composed of poly(butylene succinate-co-adipate) (PBSA). P. antarctica is known to abundantly produce a glycolipid biosurfactant, mannosylerythritol lipid (MEL). Here, the effects of MEL on PaE-catalyzed degradation of BPs were investigated. Based on PBSA dispersion solution, the degradation of PBSA particles by PaE was inhibited in the presence of MEL. MEL behavior on BP substrates was monitored by surface plasmon resonance (SPR) using a sensor chip coated with polymer films. The positive SPR signal shift indicated that MEL readily adsorbed and spread onto the surface of a BP film. The amount of BP degradation by PaE was monitored based on the negative SPR signal shift and was decreased 1.7-fold by MEL pretreatment. Furthermore, the shape of PBSA mulch films in PaE-containing solution was maintained with MEL pretreatment, whereas untreated films were almost completely degraded and dissolved. These results suggest that MEL covering the surface of BP film inhibits adsorption of PaE and PaE-catalyzed degradation of BPs. We applied the above results to control the microbial degradation of BP mulch films. MEL pretreatment significantly inhibited BP mulch film degradation by both PaE solution and BP-degradable microorganism. Moreover, the degradation of these films was recovered after removal of the coated MEL by ethanol treatment. These results demonstrate that the biodegradation of BP films can be readily and reversibly controlled by a physical approach using MEL.

  18. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging.

    Science.gov (United States)

    Jin, T; Zhang, H

    2008-04-01

    Biodegradable polylactic acid (PLA) polymer was evaluated for its application as a material for antimicrobial food packaging. PLA films were incorporated with nisin to for control of foodborne pathogens. Antimicrobial activity of PLA/nisin films against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Enteritidis were evaluated in culture media and liquid foods (orange juice and liquid egg white). Scanned electron micrograph and confocal laser microscopy revealed that nisin particles were evenly distributed in PLA polymer matrix on the surface and inside of the PLA/nisin films. PLA/nisin significantly inhibited growth of L. monocytogenes in culture medium and liquid egg white. The greatest inhibition occurred at 24 h when the cell counts of L. monocytogenes in the PLA/nisin samples were 4.5 log CFU/mL less than the controls. PLA/nisin reduced the cell population of E. coli O157:H7 in orange juice from 7.5 to 3.5 log at 72 h whereas the control remained at about 6 log CFU/mL. PLA/nisin treatment resulted in a 2 log reduction of S. Enteritidis in liquid egg white at 24 degrees C. After 21 d at 4 degrees C the S. Enteritidis population from PLA/nisin treated liquid egg white (3.5 log CFU/mL) was significantly less than the control (6.8 log CFU/mL). E. coli O157:H7 in orange juice was more sensitive to PLA/nisin treatments than in culture medium. The results of this research demonstrated the retention of nisin activity when incorporated into the PLA polymer and its antimicrobial effectiveness against foodborne pathogens. The combination of a biopolymer and natural bacteriocin has potential for use in antimicrobial food packaging.

  19. The immobilization of proteins on biodegradable polymer fibers via click chemistry.

    Science.gov (United States)

    Shi, Quan; Chen, Xuesi; Lu, Tiancheng; Jing, Xiabin

    2008-03-01

    A facile and efficient method to immobilize bioactive proteins onto polymeric substrate was established. Testis-specific protease 50 (TSP50) was immobilized on ultrafine biodegradable polymer fibers, i.e., (1) to prepare a propargyl-containing polymer P(LA90-co-MPC10) by introducing propargyl group into a cyclic carbonate monomer (5-methyl-5-propargyloxycarbonyl-1,3-dioxan-2-one, MPC) and copolymerizing it with l-lactide; (2) to electrospin the functionalized polymer into ultrafine fibers; (3) to azidize the TSP50, and (4) to perform the click reaction between the propargyl groups on the fibers and the azido groups on the protein. The TSP50-immobilized fibers can resist non-specific protein adsorptions but preserve specific recognition and combination with anti-TSP50. ELISA tests were carried out by using HRP-goat-anti-mouse-IgG(H+L) as secondary antibody and o-phenylenediamine (OPDA)/H(2)O(2) as substrate to detect the combination of immobilized TSP50 with anti-TSP50. The results showed that anti-TSP50 can be selectively adsorbed from its solution onto the TSP50-immobilized fibers in the presence of BSA of as high as 10(4) times concentration. TSP50 immobilized on the fiber and anti-TSP50 combined to the fiber were also quantitatively determined. Anti-TSP50 can be then eluted off from the fiber when pH changes. The eluted fiber can re-combine anti-TSP50 at an efficiency of 75% compared to the original TSP50-immobilized fiber. Therefore, the TSP50-immobilized fibers can be used in the detection, separation, and purification of anti-TSP50. The "click" method can lead to a universal strategy to protein immobilization.

  20. Biodegradable shape-memory block co-polymers for fast self-expandable stents.

    Science.gov (United States)

    Xue, Liang; Dai, Shiyao; Li, Zhi

    2010-11-01

    Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents.

  1. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    Science.gov (United States)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  2. Solid protein solder-doped biodegradable polymer membranes for laser-assisted tissue repair

    Science.gov (United States)

    Hodges, Diane E.; McNally-Heintzelman, Karen M.; Welch, Ashley J.

    2000-05-01

    Solid protein solder-doped polymer membranes have been developed for laser-assisted tissue repair. Biodegradable polymer films of controlled porosity were fabricated with poly(L-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) using a solvent-casting and particulate-leaching technique. The films provided a porous scaffold that readily absorbed the traditional protein solder mix composed of bovine serum albumin (BSA) and indocyanine green (ICG) dye. In vitro investigations were conducted to assess the influence of various processing parameters on the strength of tissue repairs formed using the new membranes. These parameters included the PLGA copolymer and PLGA/PEG blend ratio, the salt particle size, the initial bovine serum albumin (BSA) weight fraction, and the laser irradiance used to denature the solder. Altering the PLGA copolymer ratio had little effect on repair strength, however, it influenced the membrane degradation rate. Repair strength increased with increased membrane pore size and BSA concentration. The addition of PEG during the film casting stage increased the flexibility of the membranes but not necessarily the repair strength. The repair strength increased with increasing irradiance from 12 W/cm2 to 15 W/cm2. The new solder-doped polymer membranes provide all of the benefits associated with solid protein solders including high repair strength and improved edge coaptation. In addition, the flexible and moldable nature of the new membranes offer the capability of tailoring the membranes to a wide range of tissue geometries, and consequently, improved clinical applicability of laser- assisted tissue repair.

  3. MAPLE-based method to obtain biodegradable hybrid polymeric thin films with embedded antitumoral agents.

    Science.gov (United States)

    Dinca, Valentina; Florian, Paula E; Sima, Livia E; Rusen, Laurentiu; Constantinescu, Catalin; Evans, Robert W; Dinescu, Maria; Roseanu, Anca

    2014-02-01

    In this work, antitumor compounds, lactoferrin [recombinant iron-free (Apo-rLf)], cisplatin (Cis) or their combination were embedded within a biodegradable polycaprolactone (PCL) polymer thin film, by a modified approach of a laser-based technique, matrix-assisted pulsed laser evaporation (MAPLE). The structural and morphological properties of the deposited hybrid films were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The in vitro effect on the cells' morphology and proliferation of murine melanoma B16-F10 cells was investigated and correlated with the films' surface chemistry and topography. Biological assays revealed decreased viability and proliferation, lower adherence, and morphological modifications in the case of melanoma cells cultured on both Apo-rLf and Cis thin films. The antitumor effect was enhanced by deposition of Apo-rLf with Cis within the same film. The unique capability of the new approach, based on MAPLE, to embed antitumor active factors within a biodegradable matrix for obtaining novel biodegradable hybrid platform with increased antitumor efficiency has been demonstrated.

  4. High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids

    OpenAIRE

    Tarek M. Madkour; Samar Fadl; M.M. Dardir; Mohamed A. Mekewi

    2016-01-01

    Multi-walled carbon nanotube (MWCNT) and graphene nanoplatelet reinforced thermoplastic poly(lactic acid) (PLA) biodegradable nanocomposites were designed and prepared using solution casting techniques. The prepared biodegradable polymers are expected to provide an environmentally friendly alternative to petroleum-based polymers. Both nanocomposite systems exhibited better thermal stability and improved mechanical performance over the unreinforced polymer exhibiting excellent strength and deg...

  5. Biodegradable and Multifunctional Polymer Micro-Tubes for Targeting Photothermal Therapy

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2014-07-01

    Full Text Available We describe an innovative form of polymer micro-tubes with diverse functions including biodegradation, magnetic manipulation, and photothermal effect that employs and activates photothermal therapy to target cancer cells. The micro-tube comprised soybean protein isolate, poly-l-glutamic acid, magnetite nanoparticles, plus gold nanoparticles. Through electrostatic force, these components, with opposite charges, formed pairs of layers in the pores of the template, various bilayers of soybean protein isolate and poly-l-glutamic acid served as the biodegradable building wall to each micro-tube. The layers of magnetite nanoparticle functionalized micro-tubes enabled the micro-tube manipulate to target the cancer cells by using an external magnetic field. The photo-thermal effect of the layer of gold nanoparticles on the outer surface of the micro-tubes, when under irradiation and when brought about by the near infrared radiation, elevated each sample’s temperature. In addition, and when under the exposure of the near infrared radiation, the elevated temperature of the suspension of the micro-tubes, likewise with a concentration of 0.2 mg/mL, and similarly with a power of 2 W and as well maintained for 10 min, elevated the temperature of the suspension beyond 42 °C. Such temperatures induced apoptosis of target cancer cells through the effect of photothermal therapy. The findings assert that structured micro-tubes have a promising application as a photothermal agent. From this assertion, the implications are that this multifunctional agent will significantly improve the methodology for cancer diagnosis and therapy.

  6. Electrochemical deposition and evaluation of electrically conductive polymer coating on biodegradable magnesium implants for neural applications.

    Science.gov (United States)

    Sebaa, Meriam A; Dhillon, Shan; Liu, Huinan

    2013-02-01

    In an attempt to develop biodegradable, mechanically strong, biocompatible, and conductive nerve guidance conduits, pure magnesium (Mg) was used as the biodegradable substrate material to provide strength while the conductive polymer, poly(3,4-ethylenedioxythiophene) (PEDOT) was used as a conductive coating material to control Mg degradation and improve cytocompatibility of Mg substrates. This study explored a series of electrochemical deposition conditions to produce a uniform, consistent PEDOT coating on large three-dimensional Mg samples. A concentration of 1 M 3,4-ethylenedioxythiophene in ionic liquid was sufficient for coating Mg samples with a size of 5 × 5 × 0.25 mm. Both cyclic voltammetry (CV) and chronoamperometry coating methods produced adequate coverage and uniform PEDOT coating. Low-cost stainless steel and copper electrodes can be used to deposit PEDOT coatings as effectively as platinum and silver/silver chloride electrodes. Five cycles of CV with the potential ranging from -0.5 to 2.0 V for 200 s per cycle were used to produce consistent coatings for further evaluation. Scanning electron micrographs showed the micro-porous structure of PEDOT coatings. Energy dispersive X-ray spectroscopy showed the peaks of sulfur, carbon, and oxygen, indicating sufficient PEDOT coating. Adhesion strength of the coating was measured using the tape test following the ASTM-D 3359 standard. The adhesion strength of PEDOT coating was within the classifications of 3B to 4B. Tafel tests of the PEDOT coated Mg showed a corrosion current (I(CORR)) of 6.14 × 10(-5) A as compared with I(CORR) of 9.08 × 10(-4) A for non-coated Mg. The calculated corrosion rate for the PEDOT coated Mg was 2.64 mm/year, much slower than 38.98 mm/year for the non-coated Mg.

  7. Conductive polymer-based material

    Science.gov (United States)

    McDonald, William F.; Koren, Amy B.; Dourado, Sunil K.; Dulebohn, Joel I.; Hanchar, Robert J.

    2007-04-17

    Disclosed are polymer-based coatings and materials comprising (i) a polymeric composition including a polymer having side chains along a backbone forming the polymer, at least two of the side chains being substituted with a heteroatom selected from oxygen, nitrogen, sulfur, and phosphorus and combinations thereof; and (ii) a plurality of metal species distributed within the polymer. At least a portion of the heteroatoms may form part of a chelation complex with some or all of the metal species. In many embodiments, the metal species are present in a sufficient concentration to provide a conductive material, e.g., as a conductive coating on a substrate. The conductive materials may be useful as the thin film conducting or semi-conducting layers in organic electronic devices such as organic electroluminescent devices and organic thin film transistors.

  8. Polyphosphazine-based polymer materials

    Science.gov (United States)

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2010-05-25

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  9. Designing polymers with sugar-based advantages for bioactive delivery applications

    OpenAIRE

    Zhang, Yingyue; Chan, Jennifer W.; Moretti, Alysha; Uhrich, Kathryn E.

    2015-01-01

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems’ biocompatibility and biodegradation. Here, we review the use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli-responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to s...

  10. Zotarolimus-eluting durable-polymer-coated stent versus a biolimus-eluting biodegradable-polymer-coated stent in unselected patients undergoing percutaneous coronary intervention (SORT OUT VI)

    DEFF Research Database (Denmark)

    Raungaard, Bent; Jensen, Lisette Okkels; Tilsted, Hans-Henrik

    2015-01-01

    BACKGROUND: New-generation drug-eluting coronary stents have reduced the risk of coronary events, especially in patients with complex disease or lesions. To what extent different stent platforms, polymers, and antiproliferative drugs affect outcomes, however, is unclear. We investigated the safety...... and efficacy of a third-generation stent by comparing a highly biocompatible durable-polymer-coated zotarolimus-eluting stent with a biodegradable-polymer-coated biolimus-eluting stent. METHODS: This open-label, randomised, multicentre, non-inferiority trial was done at three sites across western Denmark. All...... patients who presented with stable coronary artery disease or acute coronary syndromes and at least one coronary artery lesion (more than 50% stenosis) from March, 2011, to August, 2012, were assessed for eligibility. Patients were randomly assigned in a 1:1 ratio to receive either the durable-polymer...

  11. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

    Directory of Open Access Journals (Sweden)

    Balazs Farkas

    2015-11-01

    Full Text Available We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL. Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene fumarate (PPF, a photo-polymerizable, biodegradable material. The polymer is blended with diethyl fumarate in 7:3 w/w to adjust the resin viscosity. The evaluation of the structural and mechanical properties of the fabricated hybrid thin film was performed by means of SEM and nanoindentation, respectively, while the chemical and degradation studies were conducted through thermogravimetric analysis, and FTIR. The photocuring efficiency was found to be dependent on the nanoparticle concentration. The MPExSL process yielded PPF thin films with a stable and homogenous dispersion of the embedded HA nanoparticles. Here, it was not possible to tune the stiffness and hardness of the scaffolds by varying the laser parameters, although this was observed for regular PPF scaffolds. Finally, the gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported.

  12. Clinical outcomes of biodegradable polymer drug-eluting stents for percutaneous coronary intervention: an updated meta-analysis of randomized controlled trials.

    Science.gov (United States)

    Kwong, Joey S W; Yu, Cheuk-Man

    2014-07-01

    Biodegradable polymer drug-eluting stents (DES) are innovative concepts in the era of percutaneous coronary intervention. We systematically reviewed the latest randomized evidence on the efficacy and safety of biodegradable polymer DES as compared to durable polymer DES. MEDLINE, Embase, and the Cochrane database were searched in August 2013 for eligible randomized controlled trials (RCTs) comparing biodegradable polymer DES with durable polymer DES. Clinical outcomes of interest were mortality, myocardial infarction (MI), target lesion revascularization (TLR), target vessel revascularization (TVR), and stent thrombosis. A total of 20 RCTs randomizing 20 021 participants were included, of whom 11 045 were allocated to biodegradable polymer DES and 8976 to durable polymer DES. Treatment of biodegradable polymer DES was not associated with a significant reduction of any of the clinical outcomes (all-cause mortality, odds ratio [OR]: 0.94, 95% confidence interval [CI]: 0.80 to 1.10, P = 0.42; cardiovascular mortality, OR: 0.97, 95% CI: 0.79 to 1.19, P = 0.74; MI, OR: 1.07, 95% CI: 0.91 to 1.26, P = 0.41; TLR, OR: 0.87, 95% CI: 0.69 to 1.08, P = 0.20; TVR, OR: 1.05, 95% CI: 0.85 to 1.28, P = 0.67; definite/probable stent thrombosis, OR: 0.80, 95% CI: 0.59 to 1.07, P = 0.14). Current randomized data indicate that clinical efficacy and safety profiles of biodegradable polymer DES are comparable to those of durable polymer DES. Findings from large-scale studies with rigorous methodology and long follow-up duration are needed.

  13. Molecularly Imprinted Biodegradable Nanoparticles

    Science.gov (United States)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization. PMID:28071745

  14. Molecularly Imprinted Biodegradable Nanoparticles

    Science.gov (United States)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  15. Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pau Turon

    2017-01-01

    Full Text Available Composites of hydroxyapatite (HAp are widely employed in biomedical applications due to their biocompatibility, bioactivity and osteoconductivity properties. In fact, the development of industrially scalable hybrids at low cost and high efficiency has a great impact, for example, on bone tissue engineering applications and even as drug delivery systems. New nanocomposites constituted by HAp nanoparticles and synthetic or natural polymers with biodegradable and biocompatible characteristics have constantly been developed and extensive works have been published concerning their applications. The present review is mainly focused on both the capability of HAp nanoparticles to encapsulate diverse compounds as well as the preparation methods of scaffolds incorporating HAp. Attention has also been paid to the recent developments on antimicrobial scaffolds, bioactive membranes, magnetic scaffolds, in vivo imaging systems, hydrogels and coatings that made use of HAp nanoparticles.

  16. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    Science.gov (United States)

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect.

  17. Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer.

    Science.gov (United States)

    Satturwar, Prashant M; Fulzele, Suniket V; Dorle, Avinash K

    2003-10-22

    The specific aim of the present study was to investigate the biodegradation and biocompatibility characteristics of rosin, a natural film-forming polymer. Both in vitro as well as in vivo methods were used for assessment of the same. The in vitro degradation of rosin films was followed in pH 7.4 phosphate buffered saline at 37 degrees C and in vivo by subdermal implantation in rats for up to 90 days. Initial biocompatibility was followed on postoperative days 7, 14, 21, and 28 by histological observations of the surrounding tissues around the implanted films. Poly (DL-lactic-co-glycolic acid) (PLGA) (50:50) was used as reference material for biocompatibility. Rate and extent of degradation were followed in terms of dry film weight loss, molecular weight (MW) decline, and surface morphological changes. Although the rate of in vitro degradation was slow, rosin-free films showed complete degradation between 60 and 90 days following subdermal implantation in rats. The films degraded following different rates, in vitro and in vivo, but the mechanism followed was primarily bulk degradation. Rosin films demonstrated inflammatory reactions similar to PLGA, indicative of good biocompatibility. Good biocompatibility comparable to PLGA is demonstrated by the absence of necrosis or abscess formation in the surrounding tissues. The study provides valuable insight, which may lead to new applications of rosin in the field of drug delivery.

  18. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2017-04-01

    Full Text Available Seaweed and cellulose are promising natural polymers. This article reviews the basic information and recent developments of both seaweed and cellulose biopolymer materials as well as analyses the feasible formation of seaweed/cellulose composite films. Seaweed and cellulose both exhibit interesting film-forming properties. Nevertheless, seaweed has poor water vapour barrier and mechanical properties, whereas cellulose is neither meltable nor soluble in water or common organic solvents due to its highly crystalline structure. Therefore, modification of these hydrocolloids has been done to exploit their useful properties. Blending of biopolymers is a must recommended approach to improve the desired characteristics. From the review, seaweed is well compatible with cellulose, which possesses excellent mechanical strength and water resistance properties. Moreover, seaweed/cellulose composite films can prolong a product’s shelf life while maintaining its biodegradability. Additionally, the films show potential in contributing to the bioeconomy. In order to widen seaweed and cellulose in biocomposite application across various industries, some of the viewpoints are highlighted to be focused for future developments and applications.

  19. New administration model of trans-chalcone biodegradable polymers for the treatment of experimental leishmaniasis.

    Science.gov (United States)

    Piñero, Jose; Temporal, Rosane M; Silva-Gonçalves, Antonio J; Jiménez, I A; Bazzocchi, Isabel L; Oliva, Alexis; Perera, Antonio; Leon, Leonor L; Valladares, Basilio

    2006-04-01

    The present study was designed to investigate a new administration model and the antileishmanial activity of a semi-synthetic chalcone, benzylideneacetophenone (trans-chalcone). The antileishmanial activity of this product was first tested in vitro against promastigotes of L. braziliensis, L. tropica, L. infantum and L. amazonensis. An in vivo experiment was carried out using subcutaneous administration of trans-chalcone and implants of synthetic biodegradable polymers, polylactic acid (PLA) and polylactic/glycolic acid (PLGA). This compound showed potent inhibitory effects on the growth of all Leishmania strains examinated. Subcutaneous administration of trans-chalcone at a single dose of 4 mg/kg of body weight reduced lesion development in mice infected with L. amazonensis. A similar inhibition of the lesion growth in mice treated with trans-chalcone and pentamidine was observed. PLA and PGLA implants of trans-chalcone at 4 mg/kg were administered to mice infected with L. amazonensis. PLGA implants induced a highest reduction in the lesion size (31.25%) than PLA implants (10.75%). Treatment in vitro with trans-chalcone at IC50, completely inhibited the pathogenicity of this parasite in vivo. The development of this model provides a new practical technique for delivering drugs and can be useful for experimental leishmaniasis treatment.

  20. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers.

    Science.gov (United States)

    Xiong, Xi; Li, Qiang; Lu, Jian-Wei; Guo, Zhao-Xia; Sun, Zhao-Hui; Yu, Jian

    2012-01-01

    Soluble eggshell membrane protein (SEP), isolated from natural eggshell membrane, was co-electrospun with biodegradable synthetic polymers poly(propylene carbonate) (PPC) and poly(lactic acid) (PLA) in various proportions from 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solutions in order to prepare fibrous scaffolds having simultaneously good mechanical properties and biocompatibility. The fiber morphology was observed by field emission scanning electron microscopy, showing uniform fibers with diameter of 1.2-1.0 and 1.3-0.7 um for PPC/SEP and PLA/SEP blend fibers, respectively. Transmission electron microscopy observation shows that the blend fibers have domain-matrix phase morphology with fiber-like SEP domains in the PPC or PLA matrix, indicating the occurrence of phase separation, although interaction exists between PPC (or PLA) and SEP, as revealed by attenuated total reflectance Fourier transform infrared spectroscopy. The mechanical properties were evaluated by uniaxial tensile tests and showed that both the tensile strength and elongation at break increase with increasing incorporation of PPC (or PLA). The surface composition was investigated by X-ray photoelectron spectroscopy and SEP was found on the fiber surfaces, and as a result the surfaces of the fibrous scaffolds are superhydrophilic. NIH3T3 cell culture tests demonstrate that the PPC/SEP and PLA/SEP blend fibrous scaffolds have a much improved biocompatibility compared to pure PPC or PLA fibrous scaffolds.

  1. Tissue soldering with biodegradable polymer films: in-vitro investigation of hydration effects on weld strength

    Science.gov (United States)

    Sorg, Brian S.; Welch, Ashley J.

    2001-05-01

    Previous work demonstrated increased breaking strengths of tissue repaired with liquid albumin solder reinforced with a biodegradable polymer film compared to unreinforced control specimens. It was hypothesized that the breaking strength increase was due to reinforcement of the liquid solder cohesive strength. Immersion in a moist environment can decrease the adhesion of solder to tissue and negate any strength benefits gained from reinforcement. The purpose of this study was to determine if hydrated specimens repaired with reinforced solder would still be stronger than unreinforced controls. A 50%(w/v) bovine serum albumin solder with 0.5 mg/mL Indocyanine Green dye was used to repair an incision in bovine aorta. The solder was coagulated with 806-nm diode laser light. A poly(DL-lactic- co-glycolic acid) film was used to reinforce the solder (the controls had no reinforcement). The repaired tissues were immersed in phosphate buffered saline for time periods of 1 and 2 days. The breaking strengths of all of the hydrated specimens decreased compared to the acute breaking strengths. However, the reinforced specimens still had larger breaking strengths than the unreinforced controls. These results indicate that reinforcement of a liquid albumin solder may have the potential to improve the breaking strength in a clinical setting.

  2. Natural Fiber-Reinforced Hybrid Polymer Nanocomposites: Effect of Fiber Mixing and Nanoclay on Physical, Mechanical, and Biodegradable Properties

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2015-01-01

    Full Text Available Combining two kinds of fibers is a potential way to improve the essential properties of natural fiber-reinforced hybrid polymer composites. Biocomposites produced from natural resources are experiencing an increase in interest due to their high demand in the market for manufacturing, in addition to environmental and sustainability issues. In this study, natural fiber-reinforced hybrid polymer nanocomposites were prepared from coir fiber, wood fiber, polypropylene, and montmorillonite nanoclay using a hot press technique. The effects of fiber mixing and montmorillonite on their physico-mechanical and biodegradable properties were subsequently investigated. Before being used, both the wood and the coir fibers were alkali-treated to reduce their hydrophilicity. The mechanical properties of the fabricated composites were measured using a universal tensile testing machine and found to be enhanced after fiber mixing and nanoclay incorporation. Fourier transform infrared spectra indicated that the characteristic peaks of the composites shifted after fiber mixing. A new peak around 470 cm-1 was observed in the case of the nanocomposites, which confirmed the interaction between the fiber, polymer, and montmorillonite (MMT. Scanning electron microscopic analysis revealed that MMT strongly improved the adhesion and compatibility between the fiber and polymer matrix. The combining of fibers improved the biodegradability and water absorption properties, while MMT addition had the reverse effect on the same properties of the composites.

  3. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Farooq, Ariba [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna; Khan, Abdul Samad [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ (United Kingdom)

    2016-07-01

    Periodontal disease is associated with the destruction of periodontal tissues, along with other disorders/problems including inflammation of tissues and severe pain. This paper reports the synthesis of meloxicam (MX) immobilized biodegradable chitosan (CS)/poly(vinyl alcohol) (PVA)/hydroxyapatite (HA) based electrospun (e-spun) fibers and films. Electrospinning was employed to produce drug loaded fibrous mats, whereas films were generated by solvent casting method. In-vitro drug release from materials containing varying concentrations of MX revealed that the scaffolds containing higher amount of drug showed comparatively faster release. During initial first few hours fast release was noted from membranes and films; however after around 5 h sustained release was achieved. The hydrogels showed good swelling property, which is highly desired for soft tissue engineered implants. To investigate the biocompatibility of our synthesized materials, VERO cells (epithelial cells) were selected and cell culture results showed that these all materials were non-cytotoxic and also these cells were very well proliferated on these synthesized scaffolds. These properties along with the anti-inflammatory potential of our fabricated materials suggest their effective utilization in periodontital treatments. - Highlights: • NSAIDs releasing scaffolds for periodontal regeneration applications • Meloxicam immobilized biodegradable nanocomposite electrospun membranes and films • Good swelling properties • Controlled drug release • VERO cells were very well proliferated and synthesized materials were found to be non-cytotoxic.

  4. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    Science.gov (United States)

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  5. Biodegradation of pitch-based high performance carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (Yamaguchi Univ., Yamaguchi, (Japan). Faculty of Education)

    1992-09-10

    Although carbon fibers are widely used in various purposes because of their excellent mechanical properties, their behavior under biodegradation by microorganisms has not been elucidated. To elucidate the process of biodegradation of carbon fibers is important for understanding thoroughly the durability and the functionality of the fibers. In this article, a study has been made on biodegradation of pitch-based high performance carbon fibers by microorganisms. The fiber which was degraded has been examined with a scanning electron microscope. Aspergillus flavus has broken surface areas of high performance carbon fibers in 60 days and the fibril structure under the surface layer of the fiber has been exfoliated by degradation. The fibrils on the second layer have been 100-110nm wide. The fibrils have been in line nearly parallel to the fiber axis. The above carbon fibers are carbon type, but in case of graphite type high performance carbon fibers, its broken areas have not been shown and they have shown much stronger resistance against microbial attacks. 11 refs., 8 figs., 2 tabs.

  6. A randomized, open-label clinical trial using optical coherence tomography to compare two sirolimus-eluting stents, one with a biodegradable polymer and the other with a permanent polymer.

    Science.gov (United States)

    Tian, Feng; Chen, Yundai; Liu, Changfu; Jin, Qinhua; Chen, Lian; Sun, Zhijun; Liu, Hongbin; Guo, Jun; Gai, Luyue

    2013-04-01

    Intimal hyperplasia appears to differ after implanting a drug-eluting stent (DES) with a biodegradable or a permanent polymer. The aim of the present study was to compare biodegradable with permanent polymer DES, since the available data are limited. One hundred patients with de novo coronary artery stenosis were included in this study. The patients were classified into 2 groups: DES with a biodegradable polymer (n=50) and DES with a permanent polymer (n=50). Optical coherence tomography (OCT) examination was performed before and after stent implantation. A follow‑up OCT, performed 1 year after stent implantation, compared the morphologies of intimal hyperplasia in the 2 groups. The frequencies of uncovered stent struts (2.27 vs. 1.87%, P=0.145) and stent strut malapposition (1.9 vs. 2.02%, P=0.655) upon the first-year follow-up were not significantly different. Average neointimal thickness was lower in the biodegradable compared with the permanent polymer group (106.12±80.65 vs. 181.20±146.96 µm, Pbiodegradable compared with the permanent polymer group (62.1 vs. 35.9%, Pbiodegradable compared with the permanent polymer group (57.7±24.6 vs. 67.6±22.4 µm, Pbiodegradable polymer DES resulted in significantly lower intimal hyperplasia and had well-proportioned intimal coverage compared with permanent polymer DES.

  7. Hyperbranched Polymer-Based Electrolyte for Lithium Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    Takahito Itoh

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted much attention as electrolyte materials for all solid-state recharge able lithium batteries, and poly ( ethylene oxide) ( PEO)-based polymer electrolytes are among the most intensively studied systems[1-3]. Hyperbranched polymers have unique properties such as completely amorphous, highly soluble in common organic solvent and processible because of the highly branched nature[4,5].

  8. Matrix-assisted laser desorption/ionization mass spectrometric analysis of aliphatic biodegradable photoluminescent polymers using new ionic liquid matrices.

    Science.gov (United States)

    Serrano, Carlos A; Zhang, Yi; Yang, Jian; Schug, Kevin A

    2011-05-15

    In this study, two novel ionic liquid matrices (ILMs), N,N-diisopropylethylammonium 3-oxocoumarate and N,N-diisopropylethylammonium dihydroxymonooxoacetophenoate, were tested for the structural elucidation of recently developed aliphatic biodegradable polymers by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The polymers, formed by a condensation reaction of three components, citric acid, octane diol, and an amino acid, are fluorescent, but the exact mechanism behind their luminescent properties has not been fully elucidated. In the original studies, which introduced the polymer class (J. Yang et al., Proc. Natl. Acad. Sci. USA 2009, 106, 10086-10091), a hyper-conjugated cyclic structure was proposed as the source for the photoluminescent behavior. With the use of the two new ILMs, we present evidence that supports the presence of the proposed cyclization product. In addition, the new ILMs, when compared with a previously established ILM, N,N-diisopropylethylammonium α-cyano-3-hydroxycinnimate, provided similar signal intensities and maintained similar spectral profiles. This research also established that the new ILMs provided good spot-to-spot reproducibility and high ionization efficiency compared with corresponding crystalline matrix preparations. Many polymer features revealed through the use of the ILMs could not be observed with crystalline matrices. Ultimately, the new ILMs highlighted the composition of the synthetic polymers, as well as the loss of water that was expected for the formation of the proposed cyclic structure on the polymer backbone.

  9. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  10. Polymers Based on Renewable Raw Materials – Part I

    Directory of Open Access Journals (Sweden)

    2013-09-01

    Full Text Available This paper gives an overview of the production and application of polymer materials based on renewable raw materials – biopolymers. It is pointed out that, investment of resources in the study of renewable raw materials in the last twenty years has led to the improvement of old and development of completely new chemical and biochemical processes for using biomass for the production of low molecular weight chemical substances, and especially for the production of biopolymers, which are biodegradable and compostable, and biopolymers which are nonbiodegradable. In the same period, producers of polymers based on fossil raw materials have also developed biopolymers that are biodegradable and some of them compostable and, most important, compatible with biopolymers based on renewable raw materials. The facts considering the state of biopolymers based on renewable raw materials on the market, and prediction of production increase over the next five years are also stated. Additionally, the main renewable raw materials and the biopolymers made from them that are already present in the world market are briefly listed. A short review of biopolymers based on cellulose from wood and annual plants is also given.

  11. Castor Oil-Based Biodegradable Polyesters.

    Science.gov (United States)

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible.

  12. Recent progress in studies of biodegradable shape memory polymer alloys%生物可降解高分子形状记忆合金的研究和进展

    Institute of Scientific and Technical Information of China (English)

    曾超; 张乃文; 任杰

    2011-01-01

    Shape memory polymers have attracted increasing attention from researchers worldwide. Because of their low cost, remarkable recovery, advantageous mechanical and physical properties, and excellent processing performance, there has been rapid development of these materials in recent years. However, the usage of non-renewable petroleum-based chemicals for the synthesis and manufacture of commercial polymers has caused serious environmental pollution, and biodegradable and renewable materials are urgently required for industrial use. PolyQactic acid) (PLA), a biodegradable aliphatic polyester, has the advantage of being not only biodegradable but also renewable because the raw material, lactic acid, can be produced by microbial fermentation of biomass. PLA has attracted increasing attention from both academic researchers and technologists because of its potential applications as both a biomedical material and an environmentally friendly polymer. This paper focuses mainly on the development of biodegradable shape memory polymers. The shape memory mechanism, materials selection, and the latest research progress in biodegradable shape memory polymer alloys are also discussed. In addition, we offer suggestions for future studies of PLA-based biodegradable shape memory polymer alloys.%高分子形状记忆材料近年来吸引了许多研究者的目光,因其低廉的成本、优异的加工性能、良好的回复性、多变的力学和物理性能等优势迅速地发展起来.但随着石油紧缺和全球暖化等问题,开发绿色、可降解的生物高分子形状记忆材料成为新的发展趋势.其中,绿色材料聚乳酸以其优异的力学强度、生物降解性和生物相容性,在可降解的生物高分子形状记忆材料的研究和应用方面有很大的发展前景.本文主要就生物可降解高分子形状记忆材料的发展现状、形状记忆机理、材料选择和国内外最新研究进展等进行了介绍、评述和展望.

  13. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers

    Science.gov (United States)

    Ishaug-Riley, S. L.; Crane-Kruger, G. M.; Yaszemski, M. J.; Mikos, A. G.

    1998-01-01

    Neonatal rat calvarial osteoblasts were cultured in 90% porous, 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) foam scaffolds for up to 56 days to examine the effects of the cell seeding density, scaffold pore size, and foam thickness on the proliferation and function of the cells in this three-dimensional environment. Osteoblasts were seeded at either 11.1 x 10(5) or 22.1 x 10(5) cells per cm2 onto PLGA scaffolds having pore sizes in the range of 150-300 or 500-710 microm with a thickness of either 1.9 or 3.2 mm. After 1 day in culture, 75.6 and 68.6% of the seeded cells attached and proliferated on the 1.9 mm thick scaffolds of 150-300 microm pore size for the low and high seeding densities, respectively. The number of osteoblasts continued to increase throughout the study and eventually leveled off near 56 days, as indicated by a quantitative DNA assay. Osteoblast/foam constructs with a low cell seeding density achieved comparable DNA content and alkaline phosphatase (ALPase) activity after 14 days, and mineralization results after 56 days to those with a high cell seeding density. A maximum penetration depth of osseous tissue of 220+/-40 microm was reached after 56 days in the osteoblast/foam constructs of 150-300 microm pore size initially seeded with a high cell density. For constructs of 500-710 microm pore size, the penetration depth was 190+/-40 microm under the same conditions. Scaffold pore size and thickness did not significantly affect the proliferation or function of osteoblasts as demonstrated by DNA content, ALPase activity, and mineralized tissue formation. These data show that comparable bone-like tissues can be engineered in vitro over a 56 day period using different rat calvarial osteoblast seeding densities onto biodegradable polymer scaffolds with pore sizes in the range of 150-710 microm. When compared with the results of a previous study where similar polymer scaffolds were seeded and cultured with marrow stromal cells, this study

  14. Chitosan and gelatin based biodegradable packaging films with UV-light protection.

    Science.gov (United States)

    Ahmed, Shakeel; Ikram, Saiqa

    2016-10-01

    Biopolymers are polymers obtained from biological origins and used for various biological and industrial applications. A biopolymer should be non-toxic, non-antigenic, non-irritant, non-carcinogenic, sterilisable and adequately available for their widespread applications. In this study, chitosan (CS) and gelatin (GL) based films were prepared to be used as biodegradable packaging films. CS was blended with GL to improve various physicochemical properties. The blended CSGL films were crosslinked with boric acid (BA) to improve various properties viz. light barrier properties, Water Vapour Permeability (WVP), moisture content (%), Total Solubility Matter (TSM), most important to improve the strength. The studies of transparency, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and optical microscopy confirms that the synthesized films were found to be transparent and homogenous indicating good compatibility among different components. The synthesized CS and GL based films showed UV-light barrier properties as supported by data. The tensile strength of films increases, decreases water solubility, moisture content (%) and WVP on crosslinking. In order to make the crosslinked films more flexible, Polyethylene glycol was used as plasticizer, making the films more flexible and transparent. This study indicates that these biodegradable CS and GL based films are potent to be used as packing films.

  15. Modified hydrotalcite-like compounds as active fillers of biodegradable polymers for drug release and food packaging applications.

    Science.gov (United States)

    Costantino, Umberto; Nocchetti, Morena; Tammaro, Loredana; Vittoria, Vittoria

    2012-11-01

    This review treats the recent patents and related literature, mainly from the Authors laboratories, on biomedical and food packaging applications of nano-composites constituted of biodegradable polymers filled with micro or nano crystals of organically modified Layered Double Hydroxides of Hydrotalcite type. After a brief outline of the chemical and structural aspects of Hydrotalcite-like compounds (HTlc) and of their manipulation via intercalation of functional molecular anions to obtain materials for numerous, sometime unexpected applications, the review approaches the theme in three separated parts. Part 1 deals with the synthetic method used to prepare the pristine Mg-Al and Zn-Al HTlc and with the procedures of their functionalization with anti-inflammatory (diclofenac), antibacterial (chloramphenicol hemisuccinate), antifibrinolytic (tranexamic acid) drugs and with benzoates with antimicrobial activity. Procedures used to form (nano) composites of polycaprolactone, used as an example of biodegradable polymer, and functionalized HTlc are also reported. Part 2 discusses a patent and related papers on the preparation and biomedical use of a controlled delivery system of the above mentioned pharmacologically active substances. After an introduction dealing with the recent progress in the field of local drug delivery systems, the chemical and structural aspects of the patented system constituted of a biodegradable polymer and HTlc loaded with the active substances will be presented together with an extensive discussion of the drug release in physiological medium. Part 3 deals with a recent patent and related papers on chemical, structural and release property of antimicrobial species of polymeric films containing antimicrobial loaded HTlc able to act as active packaging for food products prolonging their shelf life.

  16. Combinatorial Matrix Assisted Pulsed Laser Evaporation of a biodegradable polymer and fibronectin for protein immobilization and controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Sima, F., E-mail: felix.sima@inflpr.ro [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Axente, E.; Iordache, I.; Luculescu, C. [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania); Gallet, O. [ERRMECE, Cergy-Pontoise University, Cergy-Pontoise (France); Anselme, K. [IS2M, CNRS UMR7361, Haute-Alsace University, Mulhouse (France); Mihailescu, I.N. [Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, Măgurele (Romania)

    2014-07-01

    Defined protein quantities were embedded in situ in a biodegradable polymer coating during simultaneous laser vaporization of two targets. Fibronectin (FN) and poly-DL-lactide (PDLLA) were transferred and immobilized concomitantly by Combinatorial Matrix Assisted Pulsed Laser Evaporation onto solid substrates. The film surface with gradient of composition was characterized by optical, scanning electron microscopy and profilometry. Micrometric FN packages were visualized in the polymeric matrix by confocal microscopy. The composition of FN was investigated by FTIR and μFTIR analyses in a polymeric matrix with different thickness.

  17. Cytocompatibility of novel extracellular matrix protein analogs of biodegradable polyester polymers derived from α-hydroxy amino acids.

    Science.gov (United States)

    Lecht, Shimon; Cohen-Arazi, Naomi; Cohen, Gadi; Ettinger, Keren; Momic, Tatjana; Kolitz, Michal; Naamneh, Majdi; Katzhendler, Jehoshua; Domb, Abraham J; Lazarovici, Philip; Lelkes, Peter I

    2014-01-01

    One of the challenges in regenerative medicine is the development of novel biodegradable materials to build scaffolds that will support multiple cell types for tissue engineering. Here we describe the preparation, characterization, and cytocompatibility of homo- and hetero-polyesters of α-hydroxy amino acid derivatives with or without lactic acid conjugation. The polymers were prepared by a direct condensation method and characterized using gel permeation chromatography, (1)H-nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, optical activity, and solubility. The surface charge of the polymers was evaluated using zeta potential measurements. The polymers were coated onto glass cover slips followed by characterization using nano-surface profiler, thin film reflectometry, and atomic force microscopy (AFM). Their interaction with endothelial and neuronal cells was assessed using adhesion, proliferation, and differentiation assays. Of the characterized polymers, Poly-HOVal-LA, but not Poly-(D)HOPhe, significantly augmented nerve growth factor (NGF)-induced neuronal differentiation of the PC12 pheochromcytoma cells. In contrast, Poly-HOLeu increased by 20% the adhesion of endothelial cells, but did not affect PC12 cell differentiation. NGF-induced Erk1/2 phosphorylation in PC12 cells grown on the different polymers was similar to the effect observed for cells cultured on collagen type I. While no significant association could be established between charge and the differentiative/proliferative properties of the polymers, AFM analysis indicated augmentation of NGF-induced neuronal differentiation on smooth polymer surfaces. We conclude that overall selective cytocompatibility and bioactivity might render α-hydroxy amino acid polymers useful as extracellular matrix-mimicking materials for tissue engineering.

  18. Produção biotecnológica de poli-hidroxialcanoatos para a geração de polímeros biodegradáveis no Brasil Biotechnological production of polyhydroxyalkanoates in brazil for biodegradable polymers

    Directory of Open Access Journals (Sweden)

    Luiziana Ferreira da Silva

    2007-01-01

    Full Text Available In recent years, several studies have been developed in Brazil to produce biodegradable materials. A particular family of bacterial polymers, the polyhydroxyalkanoates (PHA, has received special attention. PHAs are thermoplastic, biodegradable, biocompatible, are synthesised from renewable resources and can substitute petrochemical plastics in some applications. Different aspects have been focused to increase productivity and to reduce the cost of PHA production: bacterial improvement, use of industrial by-products as raw material, bioreactor design, process operation strategies, downstream process, mathematical modelling, polymer characterisation, application and biodegradability of blends. A production process was transferred to industry and studies to produce new PHA by controlling monomer composition are in progress. All these aspects are presented in this review.

  19. Synthesis of biodegradable amphiphilic Y-shaped block co-polymers via ring-opening polymerization for drug delivery.

    Science.gov (United States)

    Jia, Lin; Yan, Lifeng; Li, Yang

    2011-01-01

    A series of novel Y-shaped biodegradable block co-polymers of poly(ε-caprolactone) (PCL) and poly(ethyl ethylene phosphate) (PEEP) (PCL-(PEEP)2) were synthesized via ring-opening polymerization (ROP) of EEP with bis-hydroxy-functional ROP initiator (init-PCL-(OH)2). The init-PCL-(OH)2 was synthesized by ROP of CL using 4-hydroxybutyl acrylate (HBA) as initiator and L-tartaric acid as catalyst in bulk, and subsequently the resulting vinyl-terminated PCL was end-capped by acetyl chloride, followed by Michael addition using excess diethanolamine. The Y-shaped co-polymers and their intermediates were characterized by (1)H-, (13)C-, (31)P-NMR, FT-IR and gel-permeation chromatography. The results indicated that the molecular weight of the Y-shaped co-polymers increased with the increasing of the molar ratios of EEP to init-PCL-(OH)2 in the feed, while the PCL chain length was kept constant. The amphiphilic block co-polymers could self-assemble into micelles in aqueous solution, which was demonstrated by dynamic light scattering, (1)H-NMR and atomic force microscopy. A study of controlled release of indomethacin indicated that the amphiphilic block co-polymers could potentially provide novel vehicles for drug delivery.

  20. TGF-beta1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function

    Science.gov (United States)

    Lu, L.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    BACKGROUND: Controlled release of transforming growth factor-beta1 (TGF-beta1) to a bone defect may be beneficial for the induction of a bone regeneration cascade. The objectives of this work were to assess the feasibility of using biodegradable polymer microparticles as carriers for controlled TGF-beta1 delivery and the effects of released TGF-beta1 on the proliferation and differentiation of marrow stromal cells in vitro. METHODS: Recombinant human TGF-beta1 was incorporated into microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG). Fluorescein isothiocynate-labeled bovine serum albumin (FITC-BSA) was co-encapsulated as a porogen. The effects of PEG content (0, 1, or 5% by weight [wt%]) and buffer pH (3, 5, or 7.4) on the protein release kinetics and the degradation of PLGA were determined in vitro for as long as 28 days. Rat marrow stromal cells were seeded on a biodegradable poly(propylene fumarate) (PPF) substrate. The dose response and biological activity of released TGF-beta1 was determined after 3 days in culture. The effects of TGF-beta1 released from PLGA/PEG microparticles on marrow stromal cell proliferation and osteoblastic differentiation were assessed during a 21-day period. RESULTS: TGF-beta1 was encapsulated along with FITC-BSA into PLGA/PEG blend microparticles and released in a multiphasic fashion including an initial burst for as long as 28 days in vitro. Increasing the initial PEG content resulted in a decreased cumulative mass of released proteins. Aggregation of FITC-BSA occurred at lower buffer pH, which led to decreased release rates of both proteins. The degradation of PLGA was increased at higher PEG content and significantly accelerated at acidic pH conditions. Rat marrow stromal cells cultured on PPF substrates showed a dose response to TGF-beta1 released from the microparticles similar to that of added TGF-beta1, indicating that the activity of TGF-beta1 was retained during microparticle

  1. Tuning the color and photostability of perylene diimides inside polymer nanoparticles: towards biodegradable substitutes of quantum dots

    Science.gov (United States)

    Trofymchuk, Kateryna; Reisch, Andreas; Shulov, Ievgen; Mély, Yves; Klymchenko, Andrey S.

    2014-10-01

    Fluorescent organic nanoparticles (NPs) are attractive alternatives to quantum dots due to their potential biodegradability. However, preparation of fluorescent organic NPs is challenging due to the problem of self-quenching of the encapsulated dyes. Moreover, the photostability of organic dyes is much lower than that of quantum dots. To address both problems, we studied encapsulation into biodegradable polymer PLGA NPs of perylene diimide (PDI) derivatives, which are among the most photostable dyes reported to date. Two PDIs were tested, one bearing bulky hydrophobic groups at the imides, while the other was substituted in both imide and bay regions (Lumogen Red). Encapsulation of the former resulted in aggregation, which was accompanied by the emission color change from green to red, some decrease in the fluorescence quantum yield and a significant drop in the photostability, unexpected for PDI dyes. In contrast, Lumogen Red showed nearly no aggregation inside polymer NPs and maintained high quantum yield and photostability. According to wide-field fluorescence microscopy with a 532 nm excitation laser, our 40 nm PLGA NPs loaded with 1 wt% Lumogen Red were >10-fold brighter than quantum dots (QD-585). These NPs were stable in biological media, including serum, and entered spontaneously into HeLa cells by endocytosis showing no sign of cytotoxicity. Due to excellent photostability, these nanoparticles could be considered as biodegradable substitutes of quantum dots in bioimaging.Fluorescent organic nanoparticles (NPs) are attractive alternatives to quantum dots due to their potential biodegradability. However, preparation of fluorescent organic NPs is challenging due to the problem of self-quenching of the encapsulated dyes. Moreover, the photostability of organic dyes is much lower than that of quantum dots. To address both problems, we studied encapsulation into biodegradable polymer PLGA NPs of perylene diimide (PDI) derivatives, which are among the most

  2. Biodegradable Composites Based on Starch/EVOH/Glycerol Blends and Coconut Fibers

    Science.gov (United States)

    Unripe coconut fibers were used as fillers in a biodegradable polymer matrix of starch/Ethylene vinyl alcohol (EVOH)/glycerol. The effects of fiber content on the mechanical, thermal and structural properties were evaluated. The addition of coconut fiber into starch/EVOH/glycerol blends reduced the ...

  3. Biodegradable synthetic bone composites

    Science.gov (United States)

    Liu, Gao; Zhao, Dacheng; Saiz, Eduardo; Tomsia, Antoni P.

    2013-01-01

    The invention provides for a biodegradable synthetic bone composition comprising a biodegradable hydrogel polymer scaffold comprising a plurality of hydrolytically unstable linkages, and an inorganic component; such as a biodegradable poly(hydroxyethylmethacrylate)/hydroxyapatite (pHEMA/HA) hydrogel composite possessing mineral content approximately that of human bone.

  4. Synthesis of cyanopyridine based conjugated polymer

    Directory of Open Access Journals (Sweden)

    B. Hemavathi

    2016-06-01

    Full Text Available This data file contains the detailed synthetic procedure for the synthesis of two new cyanopyridine based conjugated polymer P1 and P2 along with the synthesis of its monomers. The synthesised polymers can be used for electroluminescence and photovoltaic (PV application. The physical data of the polymers are provided in this data file along with the morphological data of the polymer thin films. The data provided here are in association with the research article entitled ‘Cyanopyridine based conjugated polymer-synthesis and characterisation’ (Hemavathi et al., 2015 [3].

  5. Peptide-Based Polymer Therapeutics

    Directory of Open Access Journals (Sweden)

    Aroa Duro-Castano

    2014-02-01

    Full Text Available Polypeptides are envisaged to achieve a major impact on a number of different relevant areas such as biomedicine and biotechnology. Acquired knowledge and the increasing interest on amino acids, peptides and proteins is establishing a large panel of these biopolymers whose physical, chemical and biological properties are ruled by their controlled sequences and composition. Polymer therapeutics has helped to establish these polypeptide-based constructs as polymeric nanomedicines for different applications, such as disease treatment and diagnostics. Herein, we provide an overview of the advantages of these systems and the main methodologies for their synthesis, highlighting the different polypeptide architectures and the current research towards clinical applications.

  6. Biodegradable Pectin/clay Aerogels

    Science.gov (United States)

    Biodegradable, foamlike materials based on renewable pectin and sodium montmorillonite clay were fabricated through a simple, environmentally friendly freeze-drying process. Addition of multivalent cations (Ca2+ and Al3+) resulted in apparent crosslinking of the polymer, and enhancement of aerogel p...

  7. Engineering Flame Retardant Biodegradable Nanocomposites

    Science.gov (United States)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  8. Applying Raman spectroscopy to the assessment of the biodegradation of industrial polyurethanes wastes.

    Science.gov (United States)

    Cregut, Mickael; Bedas, Marion; Assaf, Ali; Durand-Thouand, Marie-José; Thouand, Gérald

    2014-01-01

    Polyether-based polyurethanes (PBP) are extremely problematic polymers due to their long persistence in the environment. Moreover, the assessment of PBP biodegradation remains biased due to the inability of conventional methods to determine how their diverse subunits are degraded. To improve our knowledge of PBP biodegradation, we used Raman spectroscopy to identify patterns of PBP biodegradation. Specifically, PBP biodegradation was assessed using a microbial inoculum isolated from an industrial soil in which polyurethanes have been buried for 40 years. During a 28-day biodegradation assay, the PBP biodegradation level reached 27.5% (w/w), in addition to undergoing profound alteration of the PBP composition as identified by chemical analyses. After microbial degradation, Raman analyses revealed the disappearance of the polymer's amorphous region, which contains a high polyol content, whereas the isocyanate-rich crystalline regions were preserved. The use of Raman spectroscopy appears to be a particularly useful tool to enhance our assessment of polymer biodegradation.

  9. 合成高分子聚合物生物降解研究进展%Research Progress on Biodegradation of Synthetic Polymers

    Institute of Scientific and Technical Information of China (English)

    高佳; 李琳琳; 杨翔华; 王战勇

    2012-01-01

    概述了目前常见的各类合成聚合物以及生物降解塑科的生物降解研究成果和进展,着重介绍了合成聚酯类化合物的生物降解情况,并为将来可降解高分子聚合物的开发研究提供了参考.%The research progresses and results in degradation of biodegradable plastics and all kinds of common synthetic polymers at present were reviewed, and the biodegradation situation of polyester compounds was introduced in detail.Besides, some references for the development research of biodegradable polymers in the future were provided.

  10. Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets

    Directory of Open Access Journals (Sweden)

    Loreto M. Valenzuela

    2016-01-01

    Full Text Available Prediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R2>0.78 for test set but very low accuracy on cross-validation sets (less than 19% of experimental points within experimental error. Instead, using consolidated parameters like equilibrium water uptake a good model is obtained (R2=0.78 for test set, with accurate predictions for 50% of tested polymers. The semiempirical model was applied to the 56-polymer library of L-tyrosine-derived polyarylates, identifying groups of polymers that are likely to satisfy design criteria for water uptake. This research demonstrates that a surrogate modeling effort can reduce the number of polymers that must be synthesized and characterized to identify an appropriate polymer that meets certain performance criteria.

  11. Ultrasonic motors with polymer-based vibrators.

    Science.gov (United States)

    Wu, Jiang; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-12-01

    With their characteristics of low density and elastic moduli, polymers are promising materials for making ultrasonic motors (USMs) with high energy density. Although it has been believed for a long time that polymers are too lossy to be applied to high-amplitude vibrators, there are several new polymers that exhibit excellent vibration characteristics. First, we measure the damping coefficients of some functional polymers to explore the applicability of polymers as vibrators for USMs. Second, to investigate the vibration characteristics, we fabricate bimorph vibrators using several kinds of polymers that have low attenuation. Third, a bending mode USM is fabricated with a polymer rod and four piezoelectric plates bonded on the rod as a typical example of a USM. Through an experimental investigation of the motor performance, it was found that the polymer-based USMs exhibited higher rotation velocity than the aluminum-based USM under a light preload, although the maximum torque of the polymer-based USMs was smaller than the aluminum-based USM. Among the tested polymers, polyphenylenesulfide was a prospective material for USMs under light preloads because of the high amplitude and lightweight of polyphenylenesulfide.

  12. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material.

    Science.gov (United States)

    Nakajima, Yu; Kawase, Tomoyuki; Kobayashi, Mito; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2012-01-01

    Owing to the necessity for the immediate preparation from patients' blood, autologous platelet-rich plasma (PRP) limits its clinical applicability. To address this concern and respond to emergency care and other unpredictable uses, we have developed a freeze-dried PRP in an adsorbed form on a biodegradable polymer material (Polyglactin 910). On the polymer filaments of PRP mesh, which was prepared by coating the polymer mesh with human fresh PRP and subsequent freeze-drying, platelets were incorporated, and related growth factors were preserved at high levels. This new PRP mesh preparation significantly and reproducibly stimulated the proliferation of human periodontal ligament cells in vitro and neovascularization in a chorioallantoic membrane assay. A full-thickness skin defect model in a diabetic mouse demonstrated the PRP mesh, although prepared from human blood, substantially facilitated angiogenesis, granulation tissue formation, and re-epithelialization without inducing severe inflammation in vivo. These data demonstrate that our new PRP mesh preparation functions as a bioactive material to facilitate tissue repair/regeneration. Therefore, we suggest that this bioactive material, composed of allogeneic PRP, could be clinically used as a promising alternative in emergency care or at times when autologous PRP is not prepared immediately before application.

  13. Biodegradation study of enzymatically catalyzed interpenetrating polymer network: Evaluation of agrochemical release and impact on soil fertility

    Directory of Open Access Journals (Sweden)

    Saruchi

    2016-03-01

    Full Text Available A novel interpenetrating polymer network (IPN has been synthesized through enzymatic initiation using lipase as initiator, glutaraldehyde as cross-linker, acrylic acid as primary monomer and acrylamide as secondary monomer. Biodegradability of synthesized interpenetrating polymer network was studied through soil burial and composting methods. Synthesized hydrogel was completely degraded within 70 days using composting method, while it was 86.03% degraded within 77 days using soil burial method. This was confirmed by Fourier transform Infrared spectroscopy (FTIR and Scanning electron microscopy (SEM techniques. Synthesized interpenetrating polymer network hydrogel was used as a device for controlled release of urea and also act as water releasing device. Their impact on soil fertility and plant growth was also studied. The initial diffusion coefficient has a greater value than the later diffusion coefficient indicating a higher fertilizer release rate during the early stage. Fertilizer release kinetic was also studied which showed Non-Fickian diffusion behavior, as the rate of fertilizer release was comparable to the relaxation time of the synthesized matrix. Synthesized IPN enhance the water uptake capacity up to 6.2% and 7.2% in sandy loam and clay soil, respectively.

  14. Biodegradable and compostable alternatives to conventional plastics.

    Science.gov (United States)

    Song, J H; Murphy, R J; Narayan, R; Davies, G B H

    2009-07-27

    Packaging waste forms a significant part of municipal solid waste and has caused increasing environmental concerns, resulting in a strengthening of various regulations aimed at reducing the amounts generated. Among other materials, a wide range of oil-based polymers is currently used in packaging applications. These are virtually all non-biodegradable, and some are difficult to recycle or reuse due to being complex composites having varying levels of contamination. Recently, significant progress has been made in the development of biodegradable plastics, largely from renewable natural resources, to produce biodegradable materials with similar functionality to that of oil-based polymers. The expansion in these bio-based materials has several potential benefits for greenhouse gas balances and other environmental impacts over whole life cycles and in the use of renewable, rather than finite resources. It is intended that use of biodegradable materials will contribute to sustainability and reduction in the environmental impact associated with disposal of oil-based polymers. The diversity of biodegradable materials and their varying properties makes it difficult to make simple, generic assessments such as biodegradable products are all 'good' or petrochemical-based products are all 'bad'. This paper discusses the potential impacts of biodegradable packaging materials and their waste management, particularly via composting. It presents the key issues that inform judgements of the benefits these materials have in relation to conventional, petrochemical-based counterparts. Specific examples are given from new research on biodegradability in simulated 'home' composting systems. It is the view of the authors that biodegradable packaging materials are most suitable for single-use disposable applications where the post-consumer waste can be locally composted.

  15. Bio-Degradable Plastics Impact On Environment

    Directory of Open Access Journals (Sweden)

    T.SUBRAMANI

    2014-06-01

    Full Text Available The potential of biodegradable polymers and more particularly that of polymers obtained from renewable resources such as the polysaccharides (e.g., starch have long been recognized. However, these biodegradable polymers have been largely used in some applications (e.g., food industry and have not found extensive applications in the packaging industries to replace conventional plastic materials, although they could be an interesting way to overcome the limitation of the petrochemical resources in the future. The fossil fuel and gas could be partially replaced by greener agricultural sources, which should participate in the reduction of CO2 emissions. Bio-based and biodegradable plastics can form the basis for environmentally preferable, sustainable alternative to current materials based exclusively on petroleum feed stocks. These bio-based materials offer value in the sustainability/life-cycle equation by being a part of the biological carbon cycle, especially as it relates to carbon-based polymeric materials such as plastics, water soluble polymers and other carbon based products like lubricants, biodiesel, and detergents. Identification and quantification of bio based content uses radioactive C-14 signature. Biopolymers are generally capable of being utilized by living matter (biodegraded, and so can be disposed in safe and ecologically sound ways through disposal processes (waste management like composting, soil application, and biological wastewater treatment. Single use, short-life, disposable products can be engineered to be bio-based and biodegradable.

  16. Molecular Design and Evaluation of Biodegradable Polymers Using a Statistical Approach

    OpenAIRE

    Lewitus, Dan; Rios, Fabian; Rojas, Ramiro; Kohn, Joachim

    2013-01-01

    The challenging paradigm of bioresorbable polymers, whether in drug delivery or tissue engineering, states that a fine-tuning of the interplay between polymer properties (e.g., thermal, degradation), and the degree of cell/tissue replacement and remodeling is required. In this paper we describe how changes in the molecular architecture of a series of terpolymers allow for the design of polymers with varying glass transition temperatures and degradation rates. The effect of each component in t...

  17. Nanoporous materials modified with biodegradable polymers as models for drug delivery applications

    DEFF Research Database (Denmark)

    Gruber, Mathias F; Schulte, Lars; Ndoni, Sokol

    2013-01-01

    Polymers play a central role in the development of carriers for diagnostic and therapeutic agents. Especially the use of either degradable polymers or porous materials to encapsulate drug compounds in order to obtain steady drug release profiles has received much attention. We present here a proof...... of principle for a system combining these two encapsulation methods and consisting of a nanoporous polymer (NP) with the pores filled with a degradable polymer mixed with a drug model. Rhodamine 6G (R6G) mixed with Poly(l-Lactic Acid) (PLLA) were confined within the 14nm pores of a NP with gyroid morphology...

  18. Biodegradation Study of Nanocomposites of Phenol Novolac Epoxy/Unsaturated Polyester Resin/Egg Shell Nanoparticles Using Natural Polymers

    Directory of Open Access Journals (Sweden)

    S. M. Mousavi

    2015-01-01

    Full Text Available Nanocomposite materials refer to those materials whose reinforcing phase has dimensions on a scale from one to one hundred nanometers. In this study, the nanocomposite biodegradation of the phenol Novolac epoxy and the unsaturated polyester resins was investigated using the egg shell nanoparticle as bioceramic as well as starch and glycerin as natural polymers to modify their properties. The phenol Novolac epoxy resin has a good compatibility with the unsaturated polyester resin. The prepared samples with different composition of materials for specified time were buried under soil and their biodegradation was studied using FTIR and SEM. The FTIR results before and after degradation showed that the presence of the hydroxyl group increased the samples degradation. Also adding the egg shell nanoparticle to samples had a positive effect on its degradation. The SEM results with and without the egg shell nanoparticle also showed that use of the egg shell nanoparticle increases the samples degradation. Additionally, increasing the amount of starch, and glycerol and the presence of egg shell nanoparticles can increase water adsorption.

  19. Biosorption Performance of Biodegradable Polymer Powders for the Removal of Gallium(III ions from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Lee Ching-Hwa

    2015-09-01

    Full Text Available Gallium (Ga is considered an important element in the semiconducting industry and as the lifespan of electronic products decrease annually Ga-containing effluent has been increasing. The present study investigated the use of biodegradable polymer powders, crab shell and chitosan, in the removal of Ga(III ions from aqueous solution. Ga(III biosorption was modeled to Lagergren-first, pseudo-second order and the Weber-Morris models. Equilibrium data was modeled to the Langmuir, Freundlich and Langmuir-Freundlich adsorption isotherms to determine the probable biosorption behavior of Ga(III with the biosorbents. The biosorbents were investigated by Fourier Transform Infrared Spectroscopy, X-ray Diffraction and Scanning Electron Microscopy/Energy Dispersive Spectra analysis.

  20. Electrospinning process: Versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery

    Science.gov (United States)

    Rogina, Anamarija

    2014-03-01

    Over the past two decades, the electrospinning process has shown a great potential in various applications, such as membrane filtration, catalytic processes, fibrous-sensor applications, drug delivery and tissue engineering, due to ability of facile producing high surface-to-volume fibrous structure. The most appealing electrospinning characteristic has shown to be the mimicking nano-scale fibrous topography of extracellular matrix (ECM) in tissue engineering field. The wide range of electrospinnable synthetic biodegradable and natural polymers offers fabrication of fibrous nano-structures with specific biological responses and mechanical properties. Conducting different processing parameters (needle geometry, tip-to-collector distance, electric field strength, collector composition and geometry) allows the altering of fiber size, density, alignment and overall morphology. So far, electrospinning process has shown limitless application in tissue engineering and drug delivery. The following review has been focused on studies of electrospinning process as the most promising fabrication technique for tissue engineering and drug delivery applications.

  1. Preparation and performance of Ecobras/bentonite biodegrading films; Preparacao e desempenho de filmes polimericos biodegradaveis a base de Ecobras e bentonita

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Ana Nery M.; Melo, Nadja M.C.; Canedo, Eduardo L.; Carvalho, Laura H., E-mail: laura@dema.ufcg.edu.br [Unidade Academica de Engenharia de Materiais, Universidade Federal de Campina Grande (UAEMa/UFCG) Campina Grande, PB (Brazil); Araujo, Arthur R.A. [Felinto Industria e Comercio Ltda., Campina Grande, PB (Brazil)

    2011-07-01

    Compounds based on the biodegradable polymer Ecobras and bentonite clay in its pristine, sonicated, and organically modified with a quaternary ammonium salt forms were prepared as flat films. Clays and compounds were characterized by x-ray diffraction and scanning electron microscopy. Mechanical properties of the films were determined according to pertinent ASTM standards. Reasonable properties, higher than those of the matrix, were obtained with compounds prepared with purified clays and organoclays, particularly for low clay loading. (author)

  2. In vivo bone biocompatibility and degradation of porous fumarate-based polymer/alumoxane nanocomposites for bone tissue engineering.

    NARCIS (Netherlands)

    Mistry, A.S.; Pham, Q.P.; Schouten, C.; Yeh, T.; Christenson, E.M.; Mikos, A.G.; Jansen, J.A.

    2010-01-01

    The objective of this study was to determine how the incorporation of surface-modified alumoxane nanoparticles into a biodegradable fumarate-based polymer affects in vivo bone biocompatibility (characterized by direct bone contact and bone ingrowth) and in vivo degradability. Porous scaffolds were f

  3. Six-month results of a biodegradable polymer and rapamycin-coating stent for coronary artery disease

    Institute of Scientific and Technical Information of China (English)

    Yuxiao ZHANG; Caiyi LU; Qiao XUE; Peng LIU; Wei YAN; Rui CHEN

    2006-01-01

    Objective To assess the safety and efficacy of a novel biodegradable polymer and rapamycin-coating stent, the EXCEL stent, in the treatment of coronary artery disease (CAD), as compared with the CypherTM stent. Methods In this prospective, non-randomized study, 60 consecutive patients with symptomatic CAD received either an EXCEL stent (n=32), or a CypherTM stent(n=28),according to their respective treatment intention. Follow-up angiography was performed at a mean of 180±40 days. The primary endpoint of the study was the occurrence of a major adverse cardiac event (MACE), including death, myocardial infarction, or target-vessel revascularization during the 6 months after stenting. The secondary end points included the in-stent late luminal loss (LLL), percentage of in-stent stenosis of the luminal diameter, and the rate of restenosis (luminal narrowing of 50 percent or more) at 6 months. Results There were no significant differences between the two groups in baseline characteristics, including the distribution of target vessel and lesion types. During the follow up period of 6 months, there were no occurrences of MACE in either group. Twenty-seven patients(84%) in the EXCEL group and 10 (36 %) in the CypherTM group underwent quantitative coronary angiography at 6 months. For these patients, no restenosis occurred, and there were no differences in the in-stent stenosis of the luminal diameter (5.98±5.52% vs 5.21 ±6.3%,P>0.05) and the LLL (-0.02±0.09 mm vs -0.01±0.07 mm, P>0.05). Conclusions Compared with the CypherTM stent, the EXCEL Stent with biodegradable polymer and rapamycin-coating showed similar efficacy in the prevention of neointimal proliferation, restenosis, and associated clinical events in CAD patients.

  4. Photoluminescent and biodegradable polycitrate-polyethylene glycol-polyethyleneimine polymers as highly biocompatible and efficient vectors for bioimaging-guided siRNA and miRNA delivery.

    Science.gov (United States)

    Wang, Min; Guo, Yi; Yu, Meng; Ma, Peter X; Mao, Cong; Lei, Bo

    2017-02-20

    Development of biodegradable and biocompatible non-viral vectors with intrinsical multifunctional properties such as bioimaging ability for highly efficient nucleic acids delivery still remains a challenge. Here, a biodegradable poly (1,8-octanedio-citric acid)-co-polyethylene glycol grafted with polyethyleneimine (PEI) (POCG-PEI) polymers with the photoluminescent capacity were synthesized for nucleic acids delivery (siRNA and miRNA). POCG-PEI polymers can efficiently bind various nucleic acids, protect them against enzymatic degradation and release the genes in the presence of polyanionic heparin. POCG-PEI also showed a significantly low cytotoxicity, enhanced cellular uptake and high transfection efficiency of nucleic acids, as compared to commercial transfection agents, lipofectamine 2000 (Lipo) and polyethylenimine (PEI 25K). POCG-PEI polymers demonstrate an excellent photostability, which allows for imaging the cells and real-time tracking the nucleic acids delivery. The photoluminescent property, low cytotoxicity, biodegradation, good gene binding and protection ability and high genes delivery efficiency make POCG-PEI highly competitive as a non-virus vector for genes delivery and real-time bioimaging applications. Our results may be also an important step for designing biodegradable biomaterials with multifunctional properties towards bioimaging-guided genes therapeutic applications.

  5. BIODEGRADABLE MICROSPHERES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Kaur Dupinder

    2012-12-01

    Full Text Available Microspheres are characteristically free flowing powders consisting of proteins or synthetic polymers having a particle size ranging from 1-1000 μm. The range of techniques for the preparation of microspheres offers a variety of opportunities to control aspects of drug administration and enhance the therapeutic efficacy of a given drug. Of the many polymeric drug delivery systems, biodegradable polymers have been used widely as drug delivery systems because of their biocompatibility and biodegradability. The majority of biodegradable polymers have been used in the form of microparticles, from which the incorporated drug is released to the environment in a controlled manner. They can be employed to deliver medication in a rate-controlled and sometimes targeted manner. Medication is released from a microsphere by drug leaching from the polymer or by degradation of the polymer matrix. This review discusses characteristics and degradation behaviors of biodegradable polymers which are currently used in drug delivery.

  6. Biodegradability and mechanical properties of PP/HMSPP and natural polymers bio-composites in function of gamma-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Parra, Duclerc F.; Lugao, Ademar B., E-mail: eclcardo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    PP, expressed as C{sub n}H{sub 2n}, is one of the most widely used linear hydrocarbon polymers; its versatility arises from the fact that it is made from cheap petrochemical feed stocks through efficient catalytic polymerization process and easy processing to various products. Thus, enormous production and utilization of polymers, in general, lead to their accumulation in the environment, since they are not easily degraded by microorganisms, presenting a serious source of pollution affecting both flora and fauna. These polymers are very bio-resistant due to the involvement of only carbon atoms in main chain with no hydrolyzable functional group. Non-degradable plastics accumulate in the environment at a rate of 25 million tons per year. In recent years, as a result of growing environmental awareness, natural polymers have been increasingly used as reinforcing fillers in thermoplastic composite materials. Sugarcane bagasse was used as reinforcing filler, considering that Brazil is the largest world producer of this crop, with a 101 Mt main agro-industrial residue of sugarcane processing from 340 Mt of sugarcane. Bio-composites were compounded on a twin-screw extruder and samples collected directly from the die. This study aims to investigate mechanical properties of PP/HMSPP-sugarcane bagasse 10, 15, 30 and 50% blends gamma-irradiated at 50, 100, 150 and 200 kGy doses. Degradation essays will comprise DSC and TGA tests and biodegradability behavior will be indicated by Laboratory Soil Burial Test. The main objective of this work is to support the application of these composites as environmentally friendly materials, without prejudicing mechanicals properties, in spite of applied gamma-irradiation. (author)

  7. Polymer based nanocomposites with tailorable optical properties

    Science.gov (United States)

    Colombo, Annalisa; Simonutti, Roberto

    2014-09-01

    Transparent polymers are extensively used in everyday life, from windows to computer displays, from food packaging to lenses. A possible approach for modulating their optical properties (refractive index, transparency, color and luminescence) is to change the chemical structure of the polymer, however this option is in many cases economically prohibitive. Our approach, instead, relies in the use of standard polymers with the supplement of specific nanostructured additives able to tune the final property of the material. Among others, the cases of luminescent solar concentrators based on poly(methylmethacrylate) containing luminescent quantum dots and highly transparent polymer nanocomposites with high refractive index will be presented.

  8. Designing polymers with sugar-based advantages for bioactive delivery applications.

    Science.gov (United States)

    Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E

    2015-12-10

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.

  9. Stable Biodegradable Polymers for Delivery of Both Polar and Non-Polar Drugs. Phase I

    Science.gov (United States)

    1996-10-01

    with respect to personnel maintenance. A long-acting HMI/PLGA implant, easily implanted via a loaded trocar , could provide systemic relief from pain...author and are not, necessarily endorsned by the US, Where COPYrighted mnaterial is quote-d, pemi simn has been co-nanred to use SUC3 materI al. Where...METHODS AND MATERIALS 10 2.1 Materials 10 2.2 Polymer Purification 10 2.3 Polymer Molecular Weight Analysis 10 2.4 Preparation of Polymer Foam

  10. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    Science.gov (United States)

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  11. Soy-Based Polymers and Their Applications

    Science.gov (United States)

    Polymers from natural resources have attracted important attention in the last few years because of increasing social emphasis on issues concerning the environment, waste disposal, and the depletion of non-renewable resources that has stimulated research on renewable materials. Soy-based polymers f...

  12. Modification of polylactide bioplastic using hyperbranched polymer based nanostructures

    Science.gov (United States)

    Bhardwaj, Rahul

    Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The

  13. Solutions for lipophilic drugs: a biodegradable polymer acting as solvent, matrix, and carrier to solve drug delivery issues.

    Science.gov (United States)

    Asmus, Lutz R; Gurny, Robert; Möller, Michael

    2011-02-01

    The purpose of this study was to investigate the polyester hexylsubstituted poly(lactide) (hexPLA) as a possible solvent for lipophilic substances and excipient for pharmaceutical formulations. HexPLA is a biodegradable and semi-solid polymer, which allows the incorporation of active substances by simple mixing and local or systemic application to the patient through injection. The solvent behavior of hexPLA was investigated by adding the lipophilic dye Sudan III to the polymer matrix and optical monitoring of the dissolution process over time by microscopy. As a drug, the antipsychotic compound haloperidol was analyzed for its solubility in hexPLA of different molecular weights by preparing saturated solutions, and measuring the amount of incorporated drug with UV spectroscopy. The influence of the rate of solubilized to suspended drug on the burst release behavior of haloperidol from hexPLA-formulations was investigated in release tests. It is demonstrated that hexPLA dissolves both lipophilic substances, Sudan III and Haloperidol. In the molecular weight range between 2,000 g/mol and 10,000 g/mol, a lower molecular weight hexPLA resulted in a higher incorporation capacity for haloperidol. By changing from a suspension formulation of haloperidol to a solution formulation, the initial burst release established for classical PLA and PLGA systems could be minimized. HexPLA is shown to be a potent solvent and excipient for lipophilic drugs, allowing the initial burst of drug release to be modified and controlled.

  14. Biomedical Applications of Biodegradable Polyesters

    Directory of Open Access Journals (Sweden)

    Iman Manavitehrani

    2016-01-01

    Full Text Available The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.

  15. Molecular design and evaluation of biodegradable polymers using a statistical approach.

    Science.gov (United States)

    Lewitus, Dan Y; Rios, Fabian; Rojas, Ramiro; Kohn, Joachim

    2013-11-01

    The challenging paradigm of bioresorbable polymers, whether in drug delivery or tissue engineering, states that a fine-tuning of the interplay between polymer properties (e.g., thermal, degradation), and the degree of cell/tissue replacement and remodeling is required. In this paper we describe how changes in the molecular architecture of a series of terpolymers allow for the design of polymers with varying glass transition temperatures and degradation rates. The effect of each component in the terpolymers is quantified via design of experiment (DoE) analysis. A linear relationship between terpolymer components and resulting Tg (ranging from 34 to 86 °C) was demonstrated. These findings were further supported with mass-per-flexible-bond analysis. The effect of terpolymer composition on the in vitro degradation of these polymers revealed molecular weight loss ranging from 20 to 60 % within the first 24 h. DoE modeling further illustrated the linear (but reciprocal) relationship between structure elements and degradation for these polymers. Thus, we describe a simple technique to provide insight into the structure property relationship of degradable polymers, specifically applied using a new family of tyrosine-derived polycarbonates, allowing for optimal design of materials for specific applications.

  16. Molecular Design and Evaluation of Biodegradable Polymers Using a Statistical Approach

    Science.gov (United States)

    Lewitus, Dan; Rios, Fabian; Rojas, Ramiro; Kohn, Joachim

    2013-01-01

    The challenging paradigm of bioresorbable polymers, whether in drug delivery or tissue engineering, states that a fine-tuning of the interplay between polymer properties (e.g., thermal, degradation), and the degree of cell/tissue replacement and remodeling is required. In this paper we describe how changes in the molecular architecture of a series of terpolymers allow for the design of polymers with varying glass transition temperatures and degradation rates. The effect of each component in the terpolymers is quantified via design of experiment (DoE) analysis. A linear relationship between terpolymer components and resulting Tg (ranging from 34 to 86 °C) was demonstrated. These findings were further supported with mass-per-flexible-bond (MPFB) analysis. The effect of terpolymer composition on the in vitro degradation of these polymers revealed molecular weight loss ranging from 20 to 60% within the first 24 hours. DoE modeling further illustrated the linear (but reciprocal) relationship between structure elements and degradation for these polymers. Thus, we describe a simple technique to provide insight into the structure property relationship of degradable polymers, specifically applied using a new family of tyrosine-derived polycarbonates, allowing for optimal design of materials for specific applications. PMID:23888354

  17. Preparation and properties of cyclic acetal based biodegradable gel by thiol-ene photopolymerization.

    Science.gov (United States)

    Wang, Kemin; Lu, Jian; Yin, Ruixue; Chen, Lu; Du, Shuang; Jiang, Yan; Yu, Qiang

    2013-04-01

    Synthetic, hydrolytically degradable biomaterials have been widely developed for biomedical use; however, most of them will form acidic products upon degradation of polymer backbone. In order to address this concern, we proposed to fabricate a biodegradable gel based on the crosslinking of a cyclic acetal monomer with reactable diallyl group and multifunctional thiols by thiol-ene photopolymerization. This gel produces diols and carbonyl end groups upon hydrolytic degradation and could be entirely devoid of acidic by-products. Real time infrared spectroscopy was employed to investigate the effect of different light intensities and concentrations of photoinitiator on the polymerization kinetics. With the increase of the concentration of photoinitiator and light intensity, both the rate of polymerization and final double bond conversion increased. Degradation of cyclic acetal based networks was investigated in PBS medium so as to simulate physiological conditions. The remaining mass of the materials after 25 days incubation was 84%. TGA analysis showed that the gels exhibited a typical weight loss (97.2%) at around 378 °C. In vitro cytotoxicity showed that the cyclic acetal based gels had non-toxicity to cell L-929 and had good biocompatibility.

  18. The frame retardant, mechanical properties, thermal properties and permeability of biodegradable polymers

    Science.gov (United States)

    Zuo, Xianghao

    Nano-particles are great additives to the thermal properties of the polymers, however, they sometimes have some disadvantages on the mechanical properties. The mixing of polymers and nano-particles such as cloisite clays, graphene, melamine polyphosphate and molybdenum disulfide, are mostly physical reactions between them. Therefore, the dispersion of the nano-particles inside the polymers is very important. As for the frame retardant of the polymers, the additives are used as three most important components during the mixing, i.e. the acid source, the carbonization agent (or char forming agent), and a blowing agent. The better the particles disperse in the polymer, the easier the material will blow and form chars during the combustion. Some of the nano-particles are used for heat conduction, which means if they have a better thermal conductivity and are better dispersed in the polymer, will certainly be benefit for the frame retardant. On the other hand, as for the gas permeability of the material, which means the gas diffuses through the polymer. Permeation is something that must be regarded highly in various polymer applications, due to their high permeability. Permeability depends on the temperature of the interaction as well as the characteristics of both the material and the permeant component. For pure polymers, since there is no additives and due to their own defects of the microstructure, gas will easily diffuse via the defects of the polymers. However, when nano-particles are mixed with the polymer, they will form barriers in the polymer and will make the gas to go a further path when it diffuses in a polymer. Hence, the well disperse of the nano-particles will be one of the key elements to reduce the gas permeation of the polymer and another factor which will impact the results will be the length over the width of the barriers. During the whole research, we focused on the most popular polymers like high density polyethylene (HDPE), low density

  19. Local delivery of siRNA using a biodegradable polymer application to enhance BMP-induced bone formation.

    Science.gov (United States)

    Manaka, Tomoya; Suzuki, Akinobu; Takayama, Kazushi; Imai, Yuuki; Nakamura, Hiroaki; Takaoka, Kunio

    2011-12-01

    Small interfering RNA (siRNA) is useful tool for specific and efficient knockdown of disease-related genes. However, in vivo applications of siRNA are limited due to difficulty in its efficient delivery to target cells. In this study, we investigated the efficacy of a biodegradable hydrogel, poly-d,l-lactic acid-p-dioxanone-polyethylene glycol block co-polymer (PLA-DX-PEG), as a siRNA carrier. PLA-DX-PEG pellets with or without fluorescein-labeled dsRNA were implanted into mouse dosal muscle pouches. The cellular uptake of dsRNA surround the polymer was confirmed by fluorescent microscopy. The fluorescence intensity was dose-dependent of the dsRNA, and exhibited a time-dependent decrease. To investigate its biological efficiency, noggin (antagonoist to BMPs) gene-silencing with siRNA (siRNA/Noggin) was examined by the amount of suppression of BMP-2-induced noggin expression and the level of performance of BMP, indicated by ectopic bone formation. Noggin gene expression induced by BMP-2 was suppressed by addition of siRNA/Noggin to the implant, and the ectopic bone formation induced by implants with both BMP-2 and siRNA/Noggin was significantly greater than those induced by implants with BMP-2 alone. These results indicate the efficacy of local delivery of siRNAs by PLA-DX-PEG polymer, which intensified bone-inducing effects of BMP and promoted new bone formation by suppressing gene expression of Noggin.

  20. An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements.

    Science.gov (United States)

    Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David

    2015-11-01

    Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide).

  1. A biodegradable thermoset polymer made by esterification of citric acid and glycerol.

    Science.gov (United States)

    Halpern, Jeffrey M; Urbanski, Richard; Weinstock, Allison K; Iwig, David F; Mathers, Robert T; von Recum, Horst A

    2014-05-01

    A new biomaterial, a degradable thermoset polymer, was made from simple, economical, biocompatable monomers without the need for a catalyst. Glycerol and citric acid, nontoxic and renewable reagents, were crosslinked by a melt polymerization reaction at temperatures from 90 to 150°C. Consistent with a condensation reaction, water was determined to be the primary byproduct. The amount of crosslinking was controlled by the reaction conditions, including temperature, reaction time, and ratio between glycerol and citric acid. Also, the amount of crosslinking was inversely proportional to the rate of degradation. As a proof-of-principle for drug delivery applications, gentamicin, an antibiotic, was incorporated into the polymer with preliminary evaluations of antimicrobial activity. The polymers incorporating gentamicin had significantly better bacteria clearing of Staphylococcus aureus compared to non-gentamicin gels for up to 9 days.

  2. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold.

    Science.gov (United States)

    Hong, Yi; Huber, Alexander; Takanari, Keisuke; Amoroso, Nicholas J; Hashizume, Ryotaro; Badylak, Stephen F; Wagner, William R

    2011-05-01

    A biohybrid composite consisting of extracellular matrix (ECM) gel from porcine dermal tissue and biodegradable elastomeric fibers was generated and evaluated for soft tissue applications. ECM gel possesses attractive biocompatibility and bioactivity with weak mechanical properties and rapid degradation, while electrospun biodegradable poly(ester urethane)urea (PEUU) has good mechanical properties but limited cellular infiltration and tissue integration. A concurrent gel electrospray/polymer electrospinning method was employed to create ECM gel/PEUU fiber composites with attractive mechanical properties, including high flexibility and strength. Electron microscopy revealed a structure of interconnected fibrous layers embedded in ECM gel. Tensile mechanical properties could be tuned by altering the PEUU/ECM weight ratio. Scaffold tensile strengths for PEUU/ECM ratios of 67/33, 72/28 and 80/20 ranged from 80 to 187 kPa in the longitudinal axis (parallel to the collecting mandrel axis) and 41-91 kPa in the circumferential axis with 645-938% breaking strains. The 72/28 biohybrid composite and a control scaffold generated from electrospun PEUU alone were implanted into Lewis rats, replacing a full-thickness abdominal wall defect. At 4 wk, no infection or herniation was found at the implant site. Histological staining showed extensive cellular infiltration into the biohybrid scaffold with the newly developed tissue well integrated with the native periphery, while minimal cellular ingress into the electrospun PEUU scaffold was observed. Mechanical testing of explanted constructs showed evidence of substantial remodeling, with composite scaffolds adopting properties more comparable to the native abdominal wall. The described elastic biohybrid material imparts features of ECM gel bioactivity with PEUU strength and handling to provide a promising composite biomaterial for soft tissue repair and replacement.

  3. Polímeros biodegradáveis - uma solução parcial para diminuir a quantidade dos resíduos plásticos Biodegradable polymers - a partial way for decreasing the amount of plastic waste

    Directory of Open Access Journals (Sweden)

    Sandra Mara Martins Franchetti

    2006-07-01

    Full Text Available The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.

  4. Ultrasonic atomization and subsequent polymer desolvation for peptide and protein microencapsulation into biodegradable polyesters.

    Science.gov (United States)

    Felder, Ch B; Blanco-Príeto, M J; Heizmann, J; Merkle, H P; Gander, B

    2003-01-01

    Peptide and protein microencapsulation into poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) microspheres continues to represent a technological challenge in terms of product sterility and up-scaling. The primary objective of this study was to examine the feasibility of a novel method for peptide and protein entrapment into PLA and PLGA microspheres, particularly suitable for up-scaling and aseptic processing. The method involves ultrasonic atomization of an organic polymer solution combined with subsequent organic solvent extraction by a hardening agent. The study evaluated the critical atomization conditions, the required molecular cohesion parameters of polymer solvents and hardening agent for particle preparation as well as the quality of entrapment and release as a function of polymer and peptide/protein type. Suitable polymer solvents and hardening agents were restricted to defined domains of fractional cohesion parameters: f(p) = 0.2-0.35 and f(h) = 0.2-0.4 for the polymer solvents, and f(p) = 0-0.1 and f(h) = 0-0.25 for the hardening agents. Microsphere size (0.1-100 micro m) was largely controlled by the viscosity of the atomized solution. Microencapsulation of the freely water-soluble bovine serum albumin and tetrapeptide thymocartin yielded modest efficiencies of 12-35%, whereas the slightly water-soluble octapeptide vapreotide pamoate was entrapped with 63-93% efficiency. Drug release was mainly governed by the polymer type, lasting over 100 days for BSA entrapped in PLA microspheres and; 20 days for vapreotide pamoate in PLGA 50 : 50 and for thymocartin in PLA. Very importantly, the novel method was readily accommodated within a laminar air-flow cabinet. Under aseptic conditions, sterile microspheres could be prepared. In conclusion, the novel method described may have potential in industrial environments.

  5. Comparison of polyurethane foam and biodegradable polymer as carriers in moving bed biofilm reactor for treating wastewater with a low C/N ratio.

    Science.gov (United States)

    Chu, Libing; Wang, Jianlong

    2011-03-01

    This paper presents a comparison between two different materials used as carriers: inert polyurethane (PU) foam and biodegradable polymer polycaprolactone (PCL) particles for the removal of organics and nitrogen from wastewater with a low C/N ratio using moving bed biofilm reactors. The results, during a monitoring period of four months, showed that TOC and ammonium removal efficiency was higher in reactor 2 filled with PU carriers than in reactor 1 filled with PCL carriers (90% and 65% in the former, compared with 72% and 56% in the latter at an hydraulic retention time of 14 h). Reactor 1 showed good behavior in terms of total nitrogen removal as the biodegradable polymer was an effective substrate providing reducing power for denitrification. From three-dimensional excitation-emission matrix analysis, it was shown that the effluent from reactor 1 contained mainly protein-like and soluble microbial product-like substances.

  6. Research Progress of Electrospun Biodegradable Synthetic Polymer Fibers%可降解合成高分子静电纺纤维的研究进展

    Institute of Scientific and Technical Information of China (English)

    江乙逵; 赖明河; 陈向标; 陈海宏

    2012-01-01

    The principle of electrospinning and the research progress of biodegradable synthetic polymer nanofibers prepared by electrospinning were introduced. The research progress of several major electrospun biodegradable synthetic polymer fibers such as poly-carboxylic acid, polylactic acid, polycaprolactone and their copolymers, etc was mainly described. The important application in biomedical field was pointedout.%介绍了静电纺丝的原理及利用静电纺丝方法制备生物可降解合成高分子纳米纤维的最新研究进展,主要讲述聚羧基乙酸、聚乳酸、聚己内酯及其共聚物等几种主要的生物可降解合成高分子电纺纤维的研究进展,并指出它们在生物医学领域的重要应用.

  7. Research Progress on Biodegradation of Several Polymer Materials%几种高分子材料的生物降解研究进展

    Institute of Scientific and Technical Information of China (English)

    冯静; 施庆珊; 欧阳友生; 陈仪本

    2011-01-01

    介绍了高分子材料的生物降解机理和降解不同材料的主要微生物种类;详细阐述了聚羟基脂肪酸酯(PHA)、聚乙烯、淀粉共混聚合物(如淀粉/聚乙烯、淀粉/PCL及淀粉/PBS)的生物降解情况.%The biodegradation mechanism of polymers and main microorganisms to degrade different polymers were introduced. The biodegradation of polyhydroxyalkanoates (PHA), PE, and the starch/plastics blends (such as starchtPE, starch/PCL, and starch/PBS) were introduced in detail.

  8. Design of biobased and biodegradable - compostable engineered plastics based on poly(lactide)

    Science.gov (United States)

    Schneider, Jeffrey Samuelson

    Poly(lactide) (PLA) is a biobased and biodegradable - compostable plastic that is derived from renewable resources such as corn and sugar cane. It possesses excellent strength and stiffness properties and is recognized as safe for biomedical and food packaging applications. Commercially, it costs $1/lb and is now competitive with petroleum based polymers that have dominated the industry for decades. However, the material has some inherently weak properties that prevent it from certain applications - most notably, its rheological properties, brittleness, and poor high temperature performance. Cost effective modifications of the polymer to enhance these deficiencies could allow for increased applications and further its commercial growth. Multiple synthetic strategies have been developed to address PLA's performance property deficiencies. PLA typically exhibits poor melt strength and does not have the ability to strain harden, partially a result of its highly linear nature. Strain hardening and high melt strength are crucial elements of a material when producing blown films, a large untapped market for PLA. By increasing molecular weight and introducing long-chain branching into the material, these properties can be improved. Epoxy-functionalized PLA (EF-PLA) was synthesized by reacting PLA with a multifunctional epoxy polymer (MEP) using reactive extrusion processing (REX). These modified PLA polymers can function as a rheology modifier for PLA and a compatibilizer for blends with other biopolyesters. The modified PLA showed an increased melt strength and exhibited significant strain hardening, thus making it more suited for blown film applications. Blown films comprised of PLA and poly(butylene adipate-co-terephthalate) (PBAT) were produced using EF-PLA as a reactive modifier for rheological enhancement and compatibilization. This resulted in films with better processability (as seen by increased bubble stability) and improved mechanical properties, compared to a

  9. Tissue ingrowth polymers and degradation of two biodegradable porous with different porosities and pore sizes

    NARCIS (Netherlands)

    van Tienen, TG; Heijkants, RGJC; Buma, P; de Groot, JH; Pennings, AJ; Veth, RPH

    2002-01-01

    Commonly, spontaneous repair of lesions in the avascular zone of the knee meniscus does not occur. By implanting a porous polymer scaffold in a knee meniscus defect, the lesion is connected with the abundantly vascularized knee capsule and heating can be realized. Ingrowth of fibrovascular tissue an

  10. Tissue ingrowth and degradation of two biodegradable porous polymers with different porosities and pore sizes.

    NARCIS (Netherlands)

    Tienen, Tony van; Heijkants, R.G.J.C.; Buma, P.; Groot, J.H. de; Pennings, A.J.; Veth, R.P.H.

    2002-01-01

    Commonly, spontaneous repair of lesions in the avascular zone of the knee meniscus does not occur. By implanting a porous polymer scaffold in a knee meniscus defect, the lesion is connected with the abundantly vascularized knee capsule and healing can be realized. Ingrowth of fibrovascular tissue an

  11. Processing and characterization of extruded zein-based biodegradable films

    Science.gov (United States)

    Wang, Ying

    The objectives of this study were to prepare biodegradable zein films by extrusion processing and to evaluate relevant physical properties of resulting films with respect to their potential as packaging materials. The manufacture of protein-based packaging films by extrusion has remained a challenge. In this study, a zein resin was prepared by combining zein and oleic acid. This resin was formed into films by blown extrusion at the bench-top scale. Resin moisture content and extruder barrel temperature profile were identified as major parameters controlling the process. The optimum temperature of the blowing head was determined to be 40--45°C, while optimum moisture at film collection was 14--15%. Physico-chemical properties of the extruded products were characterized. Extruded products exhibited plastic behavior and ductility. Morphology characterization by SEM showed micro voids in extruded zein sheets, caused by entrapped air bubbles or water droplets. DSC characterization showed that zein was effectively plasticized by oleic acid as evidenced by the lowered glass transition temperature of zein films. X-ray scattering was used to investigate changes in zein molecular aggregation during processing. It was observed that higher mechanical energy treatment progressively disrupted zein molecular aggregates, resulting in a more uniform distribution of individual zein molecules. With the incorporation of oleic acid as plasticizer and monoglycerides as emulsifier, zein formed structures with long-range periodicity which varied depending on the formulation and processing methods. Processing methods for film formation affected the binding of oleic acid to zein with higher mechanical energy treatment resulting in better interaction between the two components. The moisture sorption capacity of extruded zein films was reduced due to the compact morphology caused by extrusion. Plasticization with oleic acid further reduced moisture sorption of zein films. The overall

  12. The catalytic microwave synthesis of biodegradable polyester polyols based on castor oil and l-lactide

    Science.gov (United States)

    Kojić, D.; Erceg, T.; Vukić, N.; Teofilović, V.; Ristić, I.; Budinski-Simendić, J.; Aleksić, V.

    2017-01-01

    Various strategies for achieving a functional poly(lactic acid) (PLA) have been developed such as ring-opening copolymerization with a functional monomer, the use of functional initiator and various post polymerization modifications. It is possible to obtain the star shaped polymer using natural oil with at least three OH groups as an initiator. It was estimated that despite of low-molecular mass of star-shaped PLA, the hydrophobic castor oil central core influenced the slow degradation rate in the case of injectable biomedical application. The star-shaped polymers with low-molecular-mass have a lower melt viscosity correlated with linear counterparts. In soft tissue reparation the polymer viscosity increases with fluid body contact and the solid implant can be formed. To ensure liquid state at injection temperature the low molar mass polymer is favorable. There is a particular size for each macromolecular chains at which chain entanglement occurs. In this work the influence of the l-lactide (LA) and the castor oil (CO) contents on the size of biodegradable branched polyester polyols was studied. The average molecular masses of synthesized polymers were estimated by GPC procedure. In sample formulations the [LA]/[CO] ratios were from to 113 to 533. Mn values for obtained polymers were from 5000 to 20000 Da. The molecular mass distribution for the resulting polymers was between 1.09 and 1.37.

  13. Friction and wear in polymer-based materials

    CERN Document Server

    Bely, V A; Petrokovets, M I

    1982-01-01

    Friction and Wear in Polymer-Based Materials discusses friction and wear problems in polymer-based materials. The book is organized into three parts. The chapters in Part I cover the basic laws of friction and wear in polymer-based materials. Topics covered include frictional interaction during metal-polymer contact and the influence of operating conditions on wear in polymers. The chapters in Part II discuss the structure and frictional properties of polymer-based materials; the mechanism of frictional transfer when a polymer comes into contact with polymers, metals, and other materials; and

  14. Biodegradability and toxicity of sulphonate-based surfactants in aerobic and anaerobic aquatic environments.

    Science.gov (United States)

    García, M T; Campos, E; Marsal, A; Ribosa, I

    2009-02-01

    Four types of commonly used sulphonate-based surfactants (alkane sulphonates, alpha-olefin sulphonates, sulphosuccinates and methyl ester sulphonates) were tested for their aerobic and anaerobic biodegradability as well as for their toxicity to Daphnia magna and Photobacterium phosphoreum to assess the effect of the surfactant structure on those properties. Aerobic biodegradation was evaluated by means of the CO2 headspace test and anaerobic biodegradation was assessed by a method based on the ECETOC test. All the surfactants tested were readily biodegraded under aerobic conditions. No clear effect of the surfactant structures on the toxicity to the aquatic organisms tested was found. The most significant differences in the surfactants studied were observed in their behaviour under anaerobic conditions. Alkane sulphonates, alpha-olefin sulphonates and methyl ester sulphonates were not mineralized in lab anaerobic digesters despite the fact that the last one showed a certain degree of primary degradation. Nevertheless, these surfactants did not significantly inhibit methanogenic activity at concentrations up to 15 g surfactant/kg dry sludge, a concentration that is much higher than the expected concentrations of these surfactants in real anaerobic digesters. Sulphosuccinates showed a high level of primary biodegradation in anaerobic conditions. However, linear alkyl sulphosuccinates were completely mineralized whereas branched alkyl sulphosuccinates achieved percentages of ultimate biodegradation < or =50%.

  15. Recent developments in Inorganic polymers: A Review with focus on Si-Al based inorganic polymers

    Directory of Open Access Journals (Sweden)

    Shrray Srivastava

    2015-12-01

    Full Text Available Inorganic polymers are a unique classification of polymers. They contain inorganic atoms in the main chain. Hybrids with organic polymers as well as those chains that contain metals as pendant groups are considered in a special sub-classification as organo-metallic polymers. The networks containing only inorganic elements in main chain are called inorganic polymers. The silicone rubber is the most commercial inorganic polymer. The organo-metallic and inorganic polymers have a different set of applications. The current paper is a review of current applications of polymers with inorganic back-bone networks, especially focusing on Si and Al based inorganic polymeric materials.

  16. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  17. Biopolymer-based thermoplastic mixture for producing solid biodegradable shaped bodies and its photo degradation stability

    Science.gov (United States)

    Sulong, Nurulsaidatulsyida; Rus, Anika Zafiah M.

    2013-12-01

    In recent years, biopolymers with controllable lifetimes have become increasingly important for many applications in the areas of agriculture, biomedical implants and drug release, forestry, wild life conservation and waste management. Natural oils are considered to be the most important class of renewable sources. They can be obtained from naturally occurring plants, such as sunflower, cotton, linseed and palm oil. In Malaysia, palm oil is an inexpensive and commodity material. Biopolymer produced from palm oil (Bio-VOP) is a naturally occurring biodegradable polymer and readily available from agriculture. For packaging use however, Bio-VOP is not thermoplastic and its granular form is unsuitable for most uses in the plastics industry, mainly due to processing difficulties during extrusion or injection moulding. Thus, research workers have developed several methods to blend Bio-VOP appropriately for industrial uses. In particular, injections moulding processes, graft copolymerisation, and preparation of blends with thermoplastic polymers have been studied to produce solid biodegradable shaped bodies. HDPE was chosen as commercial thermoplastic materials and was added with 10% Bio-VOP for the preparation of solid biodegradable shaped bodies named as HD-VOP. The UV light exposure of HD-VOP at 12 minutes upon gives the highest strength of this material that is 17.6 MPa. The morphological structure of HD-VOP shows dwi structure surface fracture which is brittle and ductile properties.

  18. Biodegradability of immidazolium, pyridinium, piperidinium and pyrrolidinium based ionic liquid in different water source

    Science.gov (United States)

    Krishnan, S.; Quraishi, K. S.; Aminuddin, N. F.; Mazlan, F. A.; Leveque, J.-M.

    2016-11-01

    Ionic Liquid (IL), combination of an organic cation with an organic or inorganic cation, possess some remarkable physical chemical properties such as no virtual vapor pressure (allowing recyclability and reusability), wide liquid range, high thermal and chemical stability, ease to choose hydrophobic/hydrophilic character and wide electrochemical window. Owing to that, they have become increasingly popular as green solvents/additives/catalysts for organic synthetic chemistry, extraction, electrochemistry, catalysis, biomass conversion, biotechnologies and pharmaceutical applications. This is acknowledged by the exponential number of yearly published articles related to them. However, even if these are very widely studied in the international scientific community, they are not or very little used on an industrial scale, particularly because of the lack of data on their toxicity and biodegradability. Notably hydrophobic ILs seems to display higher toxicity towards microorganisms and lower biodegradability compared to their hydrophilic analogues since they are not readily disassociated in water. This present work aims to explore the biodegradability of 8 different insoluble ILs in different sources of water bearing varied amount of microorganisms to study the impact of the used water on the biodegradability assessment. The water sources used are Type III Water, Pond water and filtered Sewage Water. Based on the results obtained, it can be concluded that the type of water has a very minor influence on the biodegradability effect of insoluble ILs. However, there is still some degree of influence on the type of water with the biodegradability.

  19. Iota-Carrageenan-based biodegradable Ag0 nanocomposite hydrogels for the inactivation of bacteria.

    Science.gov (United States)

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Ramam, Koduri; Raju, Konduru Mohana

    2013-06-05

    In this paper, we report the synthesis and characterization of Iota-Carrageenan based on a novel biodegradable silver nanocomposite hydrogels. The aim of study was to investigate whether these hydrogels have the potential to be used in bacterial inactivation applications. Biodegradable silver nanocomposite hydrogels were prepared by a green process using acrylamide (AM) with I-Carrageenan (IC). The silver nanoparticles were prepared as silver colloid by reducing AgNO3 with leaf extracts of Azadirachta indica (neem leaf) that (Ag(0)) formed the hydrogel network. The formation of biodegradable silver nanoparticles in the hydrogels was characterized using UV-vis spectroscopy, thermo gravimetrical analysis, X-ray diffractometry studies, scanning electron microscopy and transmission electron microscopy studies. In addition, swelling behavior and degradation properties were systematically investigated. Furthermore, the biodegradable silver nanoparticle composite hydrogels developed were tested for antibacterial activities. The antibacterial activity of the biodegradable silver nanocomposite hydrogels was studied by inhibition zone method against Bacillus and Escherichia coli, which suggested that the silver nanocomposite hydrogels developed were effective as potential candidates for antimicrobial applications. Therefore, the inorganic biodegradable hydrogels developed can be used effectively for biomedical application.

  20. Enhancement of the optical response in a biodegradable polymer/azo-dye film by the addition of carbon nanotubes

    Science.gov (United States)

    Díaz Costanzo, Guadalupe; Ribba, Laura; Goyanes, Silvia; Ledesma, Silvia

    2014-04-01

    A new biodegradable photoresponsive material was developed using poly(lactic acid) (PLA) as the matrix material and Disperse Orange 3 (DO3) as photoisomerizable azo-dye. It was observed that the addition of multi-walled carbon nanotubes (MWCNTs) leads to a new phenomenon consisting of an enhancement of the optical anisotropy in a wide range of temperatures. In particular, the optical anisotropy increases 100% at room temperature. Moreover, the material containing MWCNTs shows a faster optical response that is evidenced as an increase in the growth rate of optical anisotropy. Spectroscopic data is provided to study the interaction among DO3, MWCNTs and PLA. The enhancement of optical anisotropy obtained with the addition of MWCNTs was related to the glass transition temperature (Tg) of each material. Maximum optical anisotropy was obtained 15 °C below the Tg for both materials. Results are interpreted in terms of the interactions among DO3, MWCNTs and PLA and the packing density of the dye into the polymer chains. In memory of Professor Iñaki Mondragon.

  1. Direct electrospray ionization mass spectrometry quantitative analysis of sebacic and terephthalic acids in biodegradable polymers.

    Science.gov (United States)

    Rizzarelli, Paola; Zampino, Daniela; Ferreri, Loredana; Impallomeni, Giuseppe

    2011-02-01

    A direct, rapid, and easy electrospray ionization mass spectrometry (ESI-MS) method to determine concentrations of sebacic acid (SA) and terephthalic acid (TA) residues in biodegradable copolymers was developed. Copolyester samples were synthesized from 1,4-butanediol and sebacic and terephthalic acids by melt polymerization. Extraction of monomers was performed in methanol. Their concentrations were determined by direct infusion ESI-MS, without chromatographic separation, using 1,12-dodecanedioic acid (DDA) as an internal standard. Calibration curves were obtained by plotting the ratio of the areas of the peaks relative to monomers and DDA standard as a function of their concentration ratio. We validated the method by determining the concentration of TA residue using both the ESI-MS protocol and high-performance liquid chromatography (HPLC) analysis with UV detection. The linearity range and the detection limit of this assay were 0.1-5.0 and 0.01 ppm for SA and 0.1-6.0 and 0.03 ppm for TA. This assay represents a useful alternative to conventional methods currently employed for acid quantification, resulting advantageous for its speed and high sensitivity.

  2. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications.

    Science.gov (United States)

    Valence, Sarra de; Tille, Jean-Christophe; Chaabane, Chiraz; Gurny, Robert; Bochaton-Piallat, Marie-Luce; Walpoth, Beat H; Möller, Michael

    2013-09-01

    Biodegradable synthetic scaffolds are being evaluated by many groups for the application of vascular tissue engineering. In addition to the choice of the material and the structure of the scaffold, tailoring the surface properties can have an important effect on promoting adequate tissue regeneration. The objective of this study was to evaluate the effect of an increased hydrophilicity of a polycaprolactone vascular graft by treatment with a cold air plasma. To this end, treated and untreated scaffolds were characterized, evaluated in vitro with smooth muscle cells, and implanted in vivo in the rat model for 3 weeks, both in the subcutaneous location and as an aortic replacement. The plasma treatment significantly increased the hydrophilicity of the scaffold, with complete wetting after a treatment of 60 sec, but did not change fiber morphology or mechanical properties. Smooth muscle cells cultured on plasma treated patches adopt a spread out morphology compared to a small, rounded morphology on untreated patches. Subcutaneous implantation revealed a low foreign body reaction for both types of scaffolds and a more extended and dense cellular infiltrate in the plasma treated scaffolds. In the vascular position, the plasma treatment induced a better cellularization of the graft wall, while it did not affect endothelialization rate or intimal hyperplasia. Plasma treatment is therefore an accessible tool to easily increase the biocompatibility of a scaffold and accelerate tissue regeneration without compromising mechanical strength, which are valuable advantages for vascular tissue engineering.

  3. Synthesis of biodegradable polymer-mesoporous silica composite microspheres for DNA prime-protein boost vaccination.

    Science.gov (United States)

    Ho, Jenny; Huang, Yi; Danquah, Michael K; Wang, Huanting; Forde, Gareth M

    2010-03-18

    DNA vaccines or proteins are capable of inducing specific immunity; however, the translation to the clinic has generally been problematic, primarily due to the reduced magnitude of immune response and poor pharmacokinetics. Herein we demonstrate a composite microsphere formulation, composed of mesoporous silica spheres (MPS) and poly(D,L-lactide-co-glycolide) (PLGA), enables the controlled delivery of a prime-boost vaccine via the encapsulation of plasmid DNA (pDNA) and protein in different compartments. Method with modified dual-concentric-feeding needles attached to a 40 kHz ultrasonic atomizer was studied. These needles focus the flow of two different solutions, which passed through the ultrasonic atomizer. The process synthesis parameters, which are important to the scale-up of composite microspheres, were also studied. These parameters include polymer concentration, feed flowrate, and volumetric ratio of polymer and pDNA-PEI/MPS-BSA. This fabrication technique produced composite microspheres with mean D[4,3] ranging from 6 to 34 microm, depending upon the microsphere preparation. The resultant physical morphology of composite microspheres was largely influenced by the volumetric ratio of pDNA-PEI/MPS-BSA to polymer, and this was due to the precipitation of MPS at the surface of the microspheres. The encapsulation efficiencies were predominantly in the range of 93-98% for pDNA and 46-68% for MPS. In the in vitro studies, the pDNA and protein showed different release kinetics in a 40 day time frame. The dual-concentric-feeding in ultrasonic atomization was shown to have excellent reproducibility. It was concluded that this fabrication technique is an effective method to prepare formulations containing a heterologous prime-boost vaccine in a single delivery system.

  4. Biodegradable polymer Biolimus-eluting stent (Nobori® for the treatment of coronary artery lesions: review of concept and clinical results

    Directory of Open Access Journals (Sweden)

    Schurtz G

    2014-02-01

    Full Text Available Guillaume Schurtz,1,2 Cédric Delhaye,1 Christopher Hurt,1,2 Henri Thieuleux,1,2 Gilles Lemesle1–3 1Centre Hémodynamique et Unité des Soins Intensifs de Cardiologie, Hôpital Cardiologique, Centre Hospitalier Régional et Universitaire de Lille, Lille, France; 2Faculté de Médecine de Lille, Lille, France; 3Unité INSERM UMR744, Institut Pasteur de Lille, Lille, France Abstract: First-generation drug-eluting stents have raised concerns regarding the risk of late and very late stent thrombosis compared with bare metal stents and require prolonged dual antiplatelet therapy. Despite extensive investigations, the physiopathology of these late events remains incompletely understood. Aside from patient- and lesion-related risk factors, stent polymer has been cited as one of the potential causes. In fact, the persistence of durable polymer after complete drug release has been shown to be responsible for local hypersensitivity and inflammatory reactions. Third-generation drug-eluting stents with more biocompatible or biodegradable polymers have subsequently been developed to address this problem. In this article, we evaluate and discuss the concept and clinical results (safety and efficacy of a third-generation drug-eluting stent with biodegradable polymer: the Nobori® stent. Keywords: percutaneous coronary intervention, stent thrombosis, antiplatelet therapy

  5. Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles

    Science.gov (United States)

    Cha, Kyoung Je; Kim, Taewan; Jea Park, Sung; Kim, Dong Sung

    2014-11-01

    Polymer microneedle arrays (MNAs) have received much attention for their use in transdermal drug delivery and microneedle therapy systems due to the advantages they offer, such as low cost, good mechanical properties, and a versatile choice of materials. Here, we present a simple and cost-effective method for the fabrication of a biodegradable polymer MNA in which the aspect ratio of each microneedle is adjustable using commercially available acupuncture microneedles. In our process, a master template with acupuncture microneedles, whose shape will be the final MNA, was carefully prepared by fixing them onto a plastic substrate with selectively drilled holes which, in turn, determine the aspect ratios of the microneedles. A polylactic acid (PLA; a biodegradable polymer) MNA was fabricated by a micromolding process with a polydimethylsiloxane (PDMS) mold containing the cavity of the microneedles, which was obtained by the PDMS replica molding against the master template. The mechanical force and degradation behavior of the replicated PLA MNA were characterized with the help of a compression test and an accelerated degradation test, respectively. Finally, the transdermal drug delivery performance of the PLA MNA was successfully simulated by two different methods of penetration and staining, using the skin of a pig cadaver. These results indicated that the proposed method can be effectively used for the fabrication of polymer MNAs which can be used in various microneedle applications.

  6. Photocurable biodegradable liquid copolymers: synthesis of acrylate-end-capped trimethylene carbonate-based prepolymers, photocuring, and hydrolysis.

    Science.gov (United States)

    Matsuda, Takehisa; Kwon, Il Keun; Kidoaki, Satoru

    2004-01-01

    Various photocurable liquid biodegradable trimethylene carbonate (TMC)-based (co)oligomers were prepared by ring-opening (co)polymerization of TMC with or without L-lactide (LL) using low molecular weight poly(ethylene glycol) (PEG) (mol wt 200, 600, or 1000) or trimethylolpropane (TMP) as an initiator. Resultant (co)oligomers were pastes, viscous liquids, or liquids at room temperature, depending on the monomer composition and monomer/initiator ratio. Liquid (co)oligomers were subsequently end-capped with acrylate groups. Upon visible-light irradiation in the presence of camphorquinone as a radical generator, rapid liquid-to-solid transformation occurred to produce photocured solid. The photocuring yield increased with photoirradiation time, photointensity, and camphorquinone concentration. The photocured polymers derived from low molecular weight PEG (PEG200) and TMP exhibited much reduced hydrolysis potential compared with PEG1000-derived polymers in terms of weight loss, water uptake, and swelling depth. Force-distance curve measurements by nanoindentation using atomic force microscopy clearly showed that Young's moduli of the photocured polymer films decreased with increasing hydrolysis time. Their potential biomedical applications are discussed.

  7. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Koneracka, M; Zavisova, V; Tomasovicova, N; Kopcansky, P; Timko, M; JurIkova, A; Csach, K; Kavecansky, V; Lancz, G [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Muckova, M [Hameln rds a.s., Horna 36, Modra (Slovakia)], E-mail: konerack@saske.sk

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  8. Biodegradable polymer nanocarriers for therapeutic antisense microRNA delivery in living animals

    Science.gov (United States)

    Paulmurugan, Ramasamy; Sekar, Narayana M.; Sekar, Thillai V.

    2012-03-01

    MicroRNAs are endogenous regulators of gene expression, deregulated in several cellular diseases including cancer. Altering the cellular microenvironment by modulating the microRNAs functions can regulate different genes involved in major cellular processes, and this approach is now being investigated as a promising new generation of molecularly targeted anti-cancer therapies. AntagomiRs (Antisense-miRNAs) are a novel class of chemically modified stable oligonucleotides used for blocking the functions of endogenous microRNAs, which are overexpressed. A key challenge in achieving effective microRNAbased therapeutics lies in the development of an efficient delivery system capable of specifically delivering antisense oligonucleotides and target cancer cells in living animals. We are now developing an effective delivery system designed to selectively deliver antagomiR- 21 and antagomiR-10b to triple negative breast cancer cells, and to revert tumor cell metastasis and invasiveness. The FDA-approved biodegradable PLGA-nanoparticles were selected as a carrier for antagomiRs delivery. Chemically modified antagomiRs (antagomiR-21 and antagomiR-10b) were co-encapsulated in PEGylated-PLGA-nanoparticles by using the double-emulsification (W/O/W) solvent evaporation method, and the resulting average particle size of 150-200nm was used for different in vitro and in vivo experiments. The antagomiR encapsulated PLGA-nanoparticles were evaluated for their in vitro antagomiRs delivery, intracellular release profile, and antagomiRs functional effects, by measuring the endogenous cellular targets, and the cell growth and metastasis. The xenografts of tumor cells in living mice were used for evaluating the anti-metastatic and anti-invasive properties of cells. The results showed that the use of PLGA for antagomiR delivery is not only efficient in crossing cell membrane, but can also maintain functional intracellular antagomiRs level for a extended period of time and achieve

  9. USE OF POROUS BIODEGRADABLE POLYMER IMPLANTS IN MENISCUS RECONSTRUCTION .1. PREPARATION OF POROUS BIODEGRADABLE POLYURETHANES FOR THE RECONSTRUCTION OF MENISCUS LESIONS

    NARCIS (Netherlands)

    DEGROOT, JH; NIJENHUIS, AJ; BRUIN, P; PENNINGS, AJ; VETH, RPH; JANSEN, HWB

    1990-01-01

    Porous biodegradable poly(urethanes) for reconstructing menisci have been prepared using two different combinations of techniques: freeze-drying/salt-leaching and in-situ polymerization/salt-leaching. Using these methods, homogenous porous materials with a controllable and reproducible morphology ca

  10. Long-Term Efficacy and Safety of Biodegradable-Polymer Biolimus-Eluting Stents

    DEFF Research Database (Denmark)

    Kaiser, Christoph; Galatius, Søren; Jeger, Raban

    2015-01-01

    risk difference, 0.78%; -1.93% to 3.50%; P for noninferiority 0.042; per protocol P=0.09) and superior to BMS (absolute risk difference, -5.16; -8.32 to -2.01; P=0.0011). The 3 stent groups did not differ in the combined safety end point, with no decrease in events >1 year, particularly VLST with BP......-DES. CONCLUSIONS: In large vessel stenting, BP-DES appeared barely noninferior compared with DP-DES and more effective than thin-strut BMS, but without evidence for better safety nor lower VLST rates >1 year. Findings challenge the concept that durable polymers are key in VLST formation. CLINICAL TRIAL...

  11. Solid-liquid two-phase partitioning bioreactors (TPPBs) operated with waste polymers. Case study: 2,4-dichlorophenol biodegradation with used automobile tires as the partitioning phase.

    Science.gov (United States)

    Tomei, M Concetta; Annesini, M Cristina; Daugulis, Andrew J

    2012-11-01

    Used automobile tire pieces were tested for their suitability as the sequestering phase in a two-phase partitioning bioreactor to treat 2,4-dichlorophenol (DCP). Abiotic sorption tests and equilibrium partitioning tests confirmed that tire "crumble" possesses very favourable properties for this application with DCP diffusivity (4.8 × 10(-8) cm(2)/s) and partition coefficient (31) values comparable to those of commercially available polymers. Biodegradation tests further validated the effectiveness of using waste tires to detoxify a DCP solution, and allow for enhanced biodegradation compared to conventional single-phase operation. These results establish the potential of using a low-cost waste material to assist in the bioremediation of a toxic aqueous contaminant.

  12. Tissue Equivalents Based on Cell-Seeded Biodegradable Microfluidic Constructs

    Directory of Open Access Journals (Sweden)

    Sarah L. Tao

    2010-03-01

    Full Text Available One of the principal challenges in the field of tissue engineering and regenerative medicine is the formation of functional microvascular networks capable of sustaining tissue constructs. Complex tissues and vital organs require a means to support oxygen and nutrient transport during the development of constructs both prior to and after host integration, and current approaches have not demonstrated robust solutions to this challenge. Here, we present a technology platform encompassing the design, construction, cell seeding and functional evaluation of tissue equivalents for wound healing and other clinical applications. These tissue equivalents are comprised of biodegradable microfluidic scaffolds lined with microvascular cells and designed to replicate microenvironmental cues necessary to generate and sustain cell populations to replace dermal and/or epidermal tissues lost due to trauma or disease. Initial results demonstrate that these biodegradable microfluidic devices promote cell adherence and support basic cell functions. These systems represent a promising pathway towards highly integrated three-dimensional engineered tissue constructs for a wide range of clinical applications.

  13. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy

    Science.gov (United States)

    Shao, Jundong; Xie, Hanhan; Huang, Hao; Li, Zhibin; Sun, Zhengbo; Xu, Yanhua; Xiao, Quanlan; Yu, Xue-Feng; Zhao, Yuetao; Zhang, Han; Wang, Huaiyu; Chu, Paul K.

    2016-09-01

    Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The in vitro and in vivo experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential.

  14. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy

    Science.gov (United States)

    Shao, Jundong; Xie, Hanhan; Huang, Hao; Li, Zhibin; Sun, Zhengbo; Xu, Yanhua; Xiao, Quanlan; Yu, Xue-Feng; Zhao, Yuetao; Zhang, Han; Wang, Huaiyu; Chu, Paul K.

    2016-01-01

    Photothermal therapy (PTT) offers many advantages such as high efficiency and minimal invasiveness, but clinical adoption of PTT nanoagents have been stifled by unresolved concerns such as the biodegradability as well as long-term toxicity. Herein, poly (lactic-co-glycolic acid) (PLGA) loaded with black phosphorus quantum dots (BPQDs) is processed by an emulsion method to produce biodegradable BPQDs/PLGA nanospheres. The hydrophobic PLGA not only isolates the interior BPQDs from oxygen and water to enhance the photothermal stability, but also control the degradation rate of the BPQDs. The in vitro and in vivo experiments demonstrate that the BPQDs/PLGA nanospheres have inappreciable toxicity and good biocompatibility, and possess excellent PTT efficiency and tumour targeting ability as evidenced by highly efficient tumour ablation under near infrared (NIR) laser illumination. These BP-based nanospheres combine biodegradability and biocompatibility with high PTT efficiency, thus promising high clinical potential. PMID:27686999

  15. Biodegradable Oxamide-Phenylene-Based Mesoporous Organosilica Nanoparticles with Unprecedented Drug Payloads for Delivery in Cells

    KAUST Repository

    Croissant, Jonas

    2016-06-03

    We describe biodegradable mesoporous hybrid NPs in the presence of proteins, and its application for drug delivery. We synthesized oxamide-phenylene-based mesoporous organosilica nanoparticles (MON) in the absence of silica source which had a remarkably high organic content with a high surface area. Oxamide functions provided biodegradability in the presence of trypsin model proteins. MON displayed exceptionally high payloads of hydrophilic and hydrophobic drugs (up to 84 wt%), and a unique zero premature leakage without the pore capping, unlike mesoporous silica. MON were biocompatible and internalized into cancer cells for drug delivery.

  16. Through Lignin Biodegradation to Lignin-based Plastics

    Science.gov (United States)

    Wang, Yun-Yan

    The consequences of strong noncovalent intermolecular interactions between oligomeric and/or polymeric lignin components are encountered during enzyme-catalyzed lignin degradation and in the properties of lignin-based plastics. A new chapter in the 30-year quest for functional lignin-depolymerizing enzymes has been opened. The lignin-degrading capacity of the flavin-dependent monooxygenase, salicylate hydroxylase acting as a putative lignin depolymerase, has been characterized using a water-soluble native softwood lignin substrate under mildly acidic aqueous conditions. When macromolecular lignins undergo lignin-depolymerase catalyzed degradation, the cleaved components tend to associate with one another, or with nearby associated lignin complexes, through processes mediated by the enzyme acting in a non-catalytic capacity. As a result, the radius of gyration (Rg) falls rapidly to approximately constant values, while the weight-average molecular weight (Mw) of the substrate rises more slowly to an extent dependent on enzyme concentration. Xylanase, when employed in an auxiliary capacity, is able to facilitate dissociation of the foregoing complexes through its interactions with the lignin depolymerase. The flavin-dependent lignin depolymerase must be reduced before reaction with oxygen can occur to form the hydroperoxy intermediate that hydroxylates the lignin substrate prior to cleavage. In the absence of the cofactor, NADH, the necessary reducing power can be provided (albeit more slowly) by the lignin substrate itself. Under such conditions, a simultaneous decrease in R g and Mw is initially observed during the enzymatic process through which the lignin is cleaved. The partially degraded product-lignins arising from lignin depolymerase activity can be readily converted into polymeric materials with mechanical properties that supersede those of polystyrene. Methylation and blending of ball-milled softwood lignins with miscible low-Tg polymers, or simple low

  17. Soil burial biodegradation studies of palm oil-based UV-curable films

    Energy Technology Data Exchange (ETDEWEB)

    Tajau, Rida, E-mail: rida@nuclearmalaysia.gov.my; Salleh, Mek Zah, E-mail: mekzah@nuclearmalaysia.gov.my; Salleh, Nik Ghazali Nik, E-mail: nik-ghazali@nuclearmalaysia.gov.my; Abdurahman, Mohamad Norahiman, E-mail: iman5031@yahoo.com [Division of Radiation Processing Technology, Malaysia Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Salih, Ashraf Mohammed, E-mail: ashraf.msalih@gmail.com [Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum, 1111 Sudan (Sudan); Fathy, Siti Farhana, E-mail: farhana811@hotmail.com [Laboratory of Molecular Biomedicine, Institute of Bioscience (IBS), Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor (Malaysia); Azman, Anis Asmi, E-mail: anisasmi18@gmail.com; Hamidi, Nur Amira, E-mail: amirahamidi93@yahoo.com [School of Chemical Sciences, Universiti Sains Malaysia (USM), 11800 USM, Pulau Pinang (Malaysia)

    2016-01-22

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia’s Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  18. Soil burial biodegradation studies of palm oil-based UV-curable films

    Science.gov (United States)

    Tajau, Rida; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Abdurahman, Mohamad Norahiman; Salih, Ashraf Mohammed; Fathy, Siti Farhana; Azman, Anis Asmi; Hamidi, Nur Amira

    2016-01-01

    The palm oil-based ultraviolet (uv)-curable films were subjected to an outdoor soil burial test to investigate the biodegradation under natural environment. The films were burial in the soil experiment plot at the Nuclear Malaysia's Dengkil complex. The uv-curable films were synthesized from the epoxidized palm oil acrylated (EPOLA) resin and the polyurethane palm oil (POBUA) resin, respectively. Biodegradation tests are more specific to burial film in soil experiments for 12 months under natural conditions. The biodegradability of palm oil resin based uv-curable films were investigated and compared with the petrochemical resin based film. The films properties were compared with respect to properties of the thermal characteristic, the crystallinity, the morphology and the weight loss which are analyzed using the thermogravimetric analysis (TGA), the differential scanning calorimetry (DSC), the scanning electron microscope (SEM), an optical microscope and the weight loss of film calculation. These findings suggested that the palm oil-based uv-curable films show quite satisfactory biodegradation levels.

  19. Highly sensitive biosensors based on water-soluble conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin

    2004-01-01

    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  20. Preparation and evaluation of biodegradable molecularly imprinted polymers%生物可降解分子印迹聚合物的制备及评价

    Institute of Scientific and Technical Information of China (English)

    李曼; 朱全红; 李敏婷; 王文娜; 戴娇娇; 殷勇冠

    2013-01-01

    BACKGROUND:The cross-linking reagent is the main unit to support the skeleton of molecularly imprinted polymers, which is closely related to the bio-friendly adaption of polymers. The biocompatible and biodegradable capacities of common crosslinking agents are unclear. OBJECTIVE:To prepare a novel biodegradable molecularly imprinted polymer and to evaluate the adsorption and biodegradability properties of the polymer. METHODS:The biodegradable molecularly imprinted polymer was synthesized with the acrylated polyε-caprolactone as the cross-linking reagent under the UV polymerization. The adsorption of the polymer was evaluated by adsorption isotherm, Scatchard analysis and kinetic curves. The biodegradation of the polymer was observed in the simulated physiological environment system in vitro. RESULTS AND CONCLUSION:Both the molecularly imprinted polymer and non-molecularly imprinted polymer showed an adsorption effect on theophyl ine, the template. But the adsorption amount of the molecularly imprinted polymer was significantly more than that of the non-molecularly imprinted polymer. The drug loading and encapsulation efficiency of the molecularly imprinted polymer were 1.54%and 12.48%, respectively. The degradation rates of molecularly imprinted polymer and poly(ε-caprolactone) diol were 6.60%and 1.33%, respectively, within the observation time in vitro. The obtained molecularly imprinted polymer not only exhibited specific adsorption to certain molecules but also showed good biodegradable properties in the simulated physiological environment system, which is necessary to be a potent drug carrier.%背景:交联剂是支撑分子印迹聚合物骨架的主要单元,分子印迹聚合物是否生物友好与交联剂的性能密不可分,但目前常用交联剂的生物相容性和生物降解性还不明确。  目的:制备新型生物可降解分子印迹聚合物,分析其吸附性能和可降解性能。  方法:以丙烯酰化的聚ε-

  1. 40 CFR 721.10036 - Acetaldehyde based polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetaldehyde based polymer (generic... Specific Chemical Substances § 721.10036 Acetaldehyde based polymer (generic). (a) Chemical substance and... based polymer (PMN P-02-406) is subject to reporting under this section for the significant new...

  2. Synthesis, spectral characterization thermal stability, antimicrobial studies and biodegradation of starch–thiourea based biodegradable polymeric ligand and its coordination complexes with [Mn(II, Co(II, Ni(II, Cu(II, and Zn(II] metals

    Directory of Open Access Journals (Sweden)

    Nahid Nishat

    2016-09-01

    Full Text Available A biodegradable polymer was synthesized by the modification reaction of polymeric starch with thiourea which is further modified by transition metals, Mn(II, Co(II, Ni(II, Cu(II and Zn(II. All the polymeric compounds were characterized by (FT-IR spectroscopy, 1H NMR spectroscopy, 13C NMR spectroscopy, UV–visible spectra, magnetic moment measurements, thermogravimetric analysis (TGA and antibacterial activities. Polymer complexes of Mn(II, Co(II and Ni(II show octahedral geometry, while polymer complexes of Cu(II and Zn(II show square planar and tetrahedral geometry, respectively. The TGA revealed that all the polymer metal complexes are more thermally stable than their parental ligand. In addition, biodegradable studies of all the polymeric compounds were also carried out through ASTM-D-5338-93 standards of biodegradable polymers by CO2 evolution method which says that coordination decreases biodegradability. The antibacterial activity was screened with the agar well diffusion method against some selected microorganisms. Among all the complexes, the antibacterial activity of the Cu(II polymer–metal complex showed the highest zone of inhibition because of its higher stability constant.

  3. Laser transmission welding of poly(ethylene terephthalate) and biodegradable poly(ethylene terephthalate) - Based blends

    Science.gov (United States)

    Gisario, Annamaria; Veniali, Francesco; Barletta, Massimiliano; Tagliaferri, Vincenzo; Vesco, Silvia

    2017-03-01

    Joining of Poly(Ethylene Terephthalate) PET and its biodegradable derivatives is of high relevance to ensure good productive rate, low cost and operational safety for fabrication of medical and electronic devices, sport equipments as well as for manufacturing of food and drug packaging solutions. In the present investigation, granules of PET and PETs modified by organic additives, which promote biodegradation of the polymeric chains, were prepared by extrusion compounding. The achieved granules were subsequently re-extruded to shape thin (330 μm) flat sheets. Substrates cut from these sheets were joined by Laser Transmission Welding (LTW) with a continuous wave High Power Diode Laser (cw-HPDL). First, based on a qualitative evaluation of the welded joints, the most suitable operational windows for PETs laser joining were identified. Second, characterization of the mechanical properties of the welded joints was performed by tensile tests. Accordingly, Young's modulus of PET and biodegradable PET blends was studied by Takayanagi's model and, based on the experimental results, a novel predicting analytical model derived from the mixture rule was developed. Lastly, material degradation of the polymeric joints was evaluated by FT-IR analysis, thus allowing to identify the main routes to thermal degradation of PET and, especially, of biodegradable PET blends during laser processing.

  4. Fabrication of a three-dimensional tissue model microarray using laser foaming of a gas-impregnated biodegradable polymer.

    Science.gov (United States)

    Ock, JinGyu; Li, Wei

    2014-06-01

    A microarray containing three-dimensional (3D) tissue models is a promising substitute for the two-dimensional (2D) cell-based microarrays currently available for high throughput, tissue-based biomedical assays. A cell culture microenvironment similar to in vivo conditions could be achieved with biodegradable porous scaffolds. In this study, a laser foaming technique is developed to create an array of micro-scale 3D porous scaffolds. The effects of major process parameters and the morphology of the resulting porous structure were investigated. For comparison, cell culture studies were conducted with both foamed and unfoamed samples using T98G cells. The results show that by laser foaming gas-impregnated polylactic acid it is possible to generate an array of inverse cone shaped wells with porous walls. The size of the foamed region can be controlled with laser power and exposure time, while the pore size of the scaffold can be manipulated with the saturation pressure. T98G cells grow well in the foamed scaffolds, forming clusters that have not been observed in 2D cell cultures. Cells are more viable in the 3D scaffolds than in the 2D cell culture cases. The 3D porous microarray could be used for parallel studies of drug toxicity, guided stem cell differentiation, and DNA binding profiles.

  5. In vitro study of a new biodegradable nanocomposite based on poly propylene fumarate as bone glue.

    Science.gov (United States)

    Shahbazi, S; Moztarzadeh, F; Sadeghi, G Mir Mohamad; Jafari, Y

    2016-12-01

    A novel poly propylene fumarate (PPF)-based glue which is reinforced by nanobioactive glass (NBG) particles and promoted by hydroxyethyl methacrylate (HEMA) as crosslinker agent, was developed and investigated for bone-to-bone bonding applications. In-vitro bioactivity, biodegradability, biocompatibility, and bone adhesion were tested and the results have verified that it can be used as bone glue. In an in-vitro condition, the prepared nanocomposite (PPF/HEMA/NBG) showed improved adhesion to wet bone surfaces. The combined tension and shear resistance between two wet bone surfaces was measured, and its maximum value was 9±59MPa. To investigate the bioactivity and biodegradability of the nanocomposite, it has been immersed in simulated body fluid (SBF). After 14days exposure to SBF, a hydroxyapatite (HA) layer formed on the surface of the composite confirms the bioactivity of this material. In the XRD pattern of the nanocomposite surface, the HA characteristic diffraction peak at θ=26 and 31.8 were observed. Also, by monitoring the weight change after 8weeks immersion in SBF, the mass loss was about 16.46wt%. It has been confirmed that this nanocomposite is a biodegradable material. Also, bioactivity and biodegradability of nanocomposite have been proved by SEM images. It has been showed that by using NBG particles and HEMA precursor, mechanical properties increased significantly. The ultimate tensile strength (UTS) of nanocomposite which contains 20% NBG and the ratio of 70/30wt% PPF/HEMA (PHB.732) was approximately 62MPa, while the UTS in the pure PPF/HEMA was about 32MPa. High cell viability in this nanocomposite (MTT assays, 85-95%) can be attributed to the NBG nature which contains calcium phosphate and is similar to physiological environment. Furthermore, it possesses biomineralization and biodegradation which significantly affected by impregnation of hydrophilic HEMA in the PPF-based polymeric matrix. The results indicated that the new synthesized

  6. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds

    Science.gov (United States)

    Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Culture of seeded osteoblastic cells in three-dimensional osteoconductive scaffolds in vitro is a promising approach to produce an osteoinductive material for repair of bone defects. However, culture of cells in scaffolds sufficiently large to bridge critical-sized defects is a challenge for tissue engineers. Diffusion may not be sufficient to supply nutrients into large scaffolds and consequently cells may grow preferentially at the periphery under static culture conditions. Three alternative culturing schemes that convect media were considered: a spinner flask, a rotary vessel, and a perfusion flow system. Poly(DL-lactic-co-glycolic acid) (PLGA) foam discs (12.7 mm diameter, 6.0 mm thick, 78.8% porous) were seeded with osteoblastic marrow stromal cells and cultured in the presence of dexamethasone and L-ascorbic acid for 7 and 14 days. Cell numbers per foam were found to be similar with all culturing schemes indicating that cell growth could not be enhanced by convection, but histological analysis indicated that the rotary vessel and flow system produced a more uniform distribution of cells throughout the foams. Alkaline phosphatase (ALP) activity per cell was higher with culture in the flow system and spinner flask after 7 days, while no differences in osteocalcin (OC) activity per cell were observed among culturing methods after 14 days in culture. Based on the higher ALP activity and better cell uniformity throughout the cultured foams, the flow system appears to be the superior culturing method, although equally important is the fact that in none of the tests did any of the alternative culturing techniques underperform the static controls. Thus, this study demonstrates that culturing techniques that utilize fluid flow, and in particular the flow perfusion system, improve the properties of the seeded cells over those maintained in static culture.

  7. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    Science.gov (United States)

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap.

  8. Nanometrization of Lanthanide-Based Coordination Polymers.

    Science.gov (United States)

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers.

  9. Polymer gratings based on photopolymerization for low-order distributed feedback polymer lasers

    Institute of Scientific and Technical Information of China (English)

    Xuanke Zhao; Qingwu Zhao; Qinghua Zhang

    2008-01-01

    Novel polymer distributed feedback(DFB)gratings are fabricated based on photopolymerization to reduce lasing threshold of polymer lasers.A photopolymer formulation sensitive to 355-nm ultraviolet(UV)light is proposed for the fabrication of polymer gratings and it can be used to form polymer films by spin-coating process.A very low surface-relief depth ranging from 12.5 to about 1.0 nm has been demonstrated with a refractive-index modulation of about 0.012.The experimental results indicate that such polymer gratings have promising potentials for the fabrication of low-order DFB organic semiconductor lasers.

  10. Biodegradable intestinal stents:A review

    Institute of Scientific and Technical Information of China (English)

    Zhanhui Wang; Nan Li; Rui Li; Yawei Li; Liqun Ruan

    2014-01-01

    Biodegradable stents are an attractive alternative to self-expanding metal stents in the treatment of intestinal strictures. Biodegradable stent can be made of biodegradable polymers and biodegradable metals (magnesium alloys). An overview on current biodegradable intestinal stents is presented. The future trends and perspectives in the development of biodegradable intestinal stents are proposed. For the biodegradable polymer intestinal stents, the clinical trials have shown promising results, although improved design of stents and reduced migration rate are expected. For the biodegradable magnesium intestinal stents, results of preliminary studies indicate magnesium alloys to have good biocompatibility. With many of the key fundamental and practical issues resolved and better methods for adjusting corrosion resistance and progressing biocompatibilities of magnesium alloys, it is possible to use biodegradable intestinal stents made of magnesium alloys in hospital in the not too distant future.

  11. Synthesis, characterisation, and evaluation of a cross-linked disulphide amide-anhydride-containing polymer based on cysteine for colonic drug delivery.

    Science.gov (United States)

    Lim, Vuanghao; Peh, Kok Khiang; Sahudin, Shariza

    2013-12-18

    The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5-1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon.

  12. Synthesis, Characterisation, and Evaluation of a Cross-Linked Disulphide Amide-Anhydride-Containing Polymer Based on Cysteine for Colonic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Vuanghao Lim

    2013-12-01

    Full Text Available The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide-3-mercapto propionic anhydride (trithiol monomers using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5–1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon.

  13. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  14. Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds.

    Science.gov (United States)

    Beke, S; Anjum, F; Tsushima, H; Ceseracciu, L; Chieregatti, E; Diaspro, A; Athanassiou, A; Brandi, F

    2012-11-01

    We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young's moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine.

  15. Biodegradability of poly(lactic-co-glycolic acid) after femtosecond laser irradiation

    Science.gov (United States)

    Shibata, Akimichi; Yada, Shuhei; Terakawa, Mitsuhiro

    2016-06-01

    Biodegradation is a key property for biodegradable polymer-based tissue scaffolds because it can provide suitable space for cell growth as well as tailored sustainability depending on their role. Ultrashort pulsed lasers have been widely used for the precise processing of optically transparent materials, including biodegradable polymers. Here, we demonstrated the change in the biodegradation of a poly(lactic-co-glycolic acid) (PLGA) following irradiation with femtosecond laser pulses at different wavelengths. Microscopic observation as well as water absorption and mass change measurement revealed that the biodegradation of the PLGA varied significantly depending on the laser wavelength. There was a significant acceleration of the degradation rate upon 400 nm-laser irradiation, whereas 800 nm-laser irradiation did not induce a comparable degree of change. The X-ray photoelectron spectroscopy analysis indicated that laser pulses at the shorter wavelength dissociated the chemical bonds effectively, resulting in a higher degradation rate at an early stage of degradation.

  16. Polyester-Based, Biodegradable Core-Multishell Nanocarriers for the Transport of Hydrophobic Drugs

    Directory of Open Access Journals (Sweden)

    Karolina A. Walker

    2016-05-01

    Full Text Available A water-soluble, core-multishell (CMS nanocarrier based on a new hyperbranched polyester core building block was synthesized and characterized towards drug transport and degradation of the nanocarrier. The hydrophobic drug dexamethasone was encapsulated and the enzyme-mediated biodegradability was investigated by NMR spectroscopy. The new CMS nanocarrier can transport one molecule of dexamethasone and degrades within five days at a skin temperature of 32 °C to biocompatible fragments.

  17. Designing of superporous cross-linked hydrogels containing acrylic-based polymer network

    Directory of Open Access Journals (Sweden)

    Ray Debajyoti

    2008-01-01

    Full Text Available Biodegradable cross-linked polymer, 2-hydroxyethyl methacrylate-co-acrylic acid was synthesized by free radical polymerization technique using N,N"-methylene-bis-acrylamide as cross-linker and benzoyl peroxide as reaction initiator. FT-IR, 1 H-NMR, scanning electron microscopy (SEM, and thermogravimetric analysis (TGA studies of the copolymer along with homopolymers were carried out. FT-IR studies showed no interactions on copolymerization. SEM studies of the copolymer were carried out and mean particle size was found to be 50 µm. TGA analysis indicated an increase in thermal stability by cross-linking the polymer network. Swelling behavior of the copolymer showed more swelling by increasing pH of the medum and the prepared polymer was found to be biodegradable. The prepared cross-linked polymer system holds good for further drug delivery studies in connection to its super swelling and biodegradability.

  18. Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and a homogeneous structure for biomedical applications.

    Science.gov (United States)

    Barrioni, Breno Rocha; de Carvalho, Sandhra Maria; Oréfice, Rodrigo Lambert; de Oliveira, Agda Aline Rocha; Pereira, Marivalda de Magalhães

    2015-01-01

    Synthetic biodegradable polymers are considered strategic in the biomaterials field and are used in various applications. Among the polymers used as biomaterials, polyurethanes (PUs) feature prominently due to their versatility and the ability to obtain products with a wide range of physical and mechanical properties. In this work, new biodegradable polyurethane films were developed based on hexamethylene diisocyanate (HDI) and glycerol as the hard segment (HS), and poly(caprolactone) triol (PCL triol) and low-molecular-weight poly(ethylene glycol) PEG as the soft segment (SS) without the use of a catalyst. The films obtained were characterized by structural, mechanical and biological testing. A highly connected network with a homogeneous PU structure was obtained due to crosslinked bonds. The films showed amorphous structures, high water uptake, hydrogel behavior, and susceptibility to hydrolytic degradation. Mechanical tests indicated that the films reached a high deformation at break of up to 425.4%, an elastic modulus of 1.6 MPa and a tensile strength of 3.6 MPa. The materials presented a moderate toxic effect on MTT assay and can be considered potential materials for biomedical applications.

  19. Biodegradation of aliphatic and aromatic polycarbonates.

    Science.gov (United States)

    Artham, Trishul; Doble, Mukesh

    2008-01-01

    Polycarbonate is one of the most widely used engineering plastics because of its superior physical, chemical, and mechanical properties. Understanding the biodegradation of this polymer is of great importance to answer the increasing problems in waste management of this polymer. Aliphatic polycarbonates are known to biodegrade either through the action of pure enzymes or by bacterial whole cells. Very little information is available that deals with the biodegradation of aromatic polycarbonates. Biodegradation is governed by different factors that include polymer characteristics, type of organism, and nature of pretreatment. The polymer characteristics such as its mobility, tacticity, crystallinity, molecular weight, the type of functional groups and substituents present in its structure, and plasticizers or additives added to the polymer all play an important role in its degradation. The carbonate bond in aliphatic polycarbonates is facile and hence this polymer is easily biodegradable. On the other hand, bisphenol A polycarbonate contains benzene rings and quaternary carbon atoms which form bulky and stiff chains that enhance rigidity. Even though this polycarbonate is amorphous in nature because of considerable free volume, it is non-biodegradable since the carbonate bond is inaccessible to enzymes because of the presence of bulky phenyl groups on either side. In order to facilitate the biodegradation of polymers few pretreatment techniques which include photo-oxidation, gamma-irradiation, or use of chemicals have been tested. Addition of biosurfactants to improve the interaction between the polymer and the microorganisms, and blending with natural or synthetic polymers that degrade easily, can also enhance the biodegradation.

  20. Polymer and small molecule based hybrid light source

    Science.gov (United States)

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  1. ACID-BASE INTERACTIONS BETWEEN POLYMERS AND FILLERS

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; CHEN Fute; HUANG Yuanfu; ZHOU Qingli

    1987-01-01

    Inverse gas chromatography(IGC) and Fourier-transform infrared (FT-IR) techniques were applied to determining the relative acid-base strength of polymers and coupling agents. The acid-base characteristics of fillers such as CaCO3 could be altered by treatment with different coupling agents. It was shown that some mechanical properties of filled polymers were obviously associated with acid-base interactions between polymers and fillers.

  2. Solid polymer MEMS-based fuel cells

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  3. Bio-based biodegradable film to replace the standard polyethylene cover for silage conservation.

    Science.gov (United States)

    Borreani, Giorgio; Tabacco, Ernesto

    2015-01-01

    The research was aimed at studying whether the polyethylene (PE) film currently used to cover maize silage could be replaced with bio-based biodegradable films, and at determining the effects on the fermentative and microbiological quality of the resulting silages in laboratory silo conditions. Biodegradable plastic film made in 2 different formulations, MB1 and MB2, was compared with a conventional 120-μm-thick PE film. A whole maize crop was chopped; ensiled in MB1, MB2, and PE plastic bags, 12.5kg of fresh weight per bag; and opened after 170d of conservation. At silo opening, the microbial and fermentative quality of the silage was analyzed in the uppermost layer (0 to 50mm from the surface) and in the whole mass of the silo. All the silages were well fermented with little differences in fermentative quality between the treatments, although differences in the mold count and aerobic stability were observed in trial 1 for the MB1 silage. These results have shown the possibility of successfully developing a biodegradable cover for silage for up to 6mo after ensiling. The MB2 film allowed a good silage quality to be obtained even in the uppermost part of the silage close to the plastic film up to 170d of conservation, with similar results to those obtained with the PE film. The promising results of this experiment indicate that the development of new degradable materials to cover silage till 6mo after ensiling could be possible.

  4. Long-term effects of biodegradable versus durable polymer-coated sirolimus-eluting stents on coronary arterial wall morphology assessed by virtual histology intravascular ultrasound

    Institute of Scientific and Technical Information of China (English)

    LIU Hui-liang; ZHANG Jiao; JIN Zhi-geng; LUO Jian-ping; MA Dong-xing; YANG Sheng-li; LIU Ying; HAN Wei; JING Li-min; MENG Rong-ying

    2011-01-01

    Background The durable presence of polymer coating on drug-eluting stent (DES) surface may be one of the principal reasons for stent thrombosis. The long-term coronary arterial response to biodegradable polymer-coated sirolimus-eluting stent (BSES) in vivo remained unclear.Methods Forty-one patients were enrolled in this study and virtual histology intravascular ultrasound (VH-IVUS) was performed to assess the native artery vascular responses to BSES compared with durable polymer-coated SES (DSES) during long-term follow-up (median: 8 months). The incidence of necrotic core abutting to the lumen was evaluated at follow-up.Results With similar in-stent late luminal loss (0.15 mm (0.06-0.30 mm) vs. 0.19 mm (0.03-0.30 mm), P=0.772), the overall incidence of necrotic core abutting to the lumen was significantly less in BSES group than in DSES group (44% vs.63%, P <0.05) (proximal 18%, stented site 14% and distal 12% in BSES group, proximal 19%, stented site 28% and distal 16% in DSES group). The DSES-treated segments had a significant higher incidence of necrotic core abutting to the lumen through the stent struts (73% vs. 36%, P <0.01). In addition, more multiple necrotic core abutting to the lumen was observed in DSES group (overall: 63% vs. 36%, P <0.05). Furthermore, when the stented segments with necrotic core abutting to the lumen had been taken into account only, DSES-treated lesions tended to contain more multiple necrotic core abutting to the lumen through the stent struts than BSES-treated lesions (74% vs. 33%), although there was no statistically significant difference between them (P=0.06).Conclusions By VH-IVUS analysis at follow-up, a greater frequency of stable lesion morphometry was shown in lesions treated with BSESs compared with lesions treated with DSESs. The major reason was BSES produced less toxicity to the arterial wall and facilitated neointimal healing as a result of polymer coating on DES surface biodegraded as time went by.

  5. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    Science.gov (United States)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  6. Aerobic biodegradation of amphoteric amine-oxide-based surfactants: Effect of molecular structure, initial surfactant concentration and pH.

    Science.gov (United States)

    Ríos, Francisco; Lechuga, Manuela; Fernández-Serrano, Mercedes; Fernández-Arteaga, Alejandro

    2017-03-01

    The present study was designed to provide information regarding the effect of the molecular structure of amphoteric amine-oxide-based surfactants and the initial surfactant concentration on their ultimate biodegradation. Moreover, given this parameter's pH-dependence, the effect of pH was also investigated. Three amine-oxide-based surfactants with structural differences in their hydrophobic alkyl chain were tested: Lauramine oxide (AO-R12), Myristamine oxide (AO-R14) and Cocamidopropylamine oxide (AO-Cocoamido). We studied the ultimate biodegradation using the Modified OECD Screening Test at initial surfactant concentrations ranged from 5 to 75 mg L(-1) and at pH levels from 5 to 7.4. The results demonstrate that at pH 7.4, amine-oxide-based surfactants are readily biodegradable. In this study, we concluded that ω-oxidation can be assumed to be the main biodegradation pathway of amine-oxides and that differences in the biodegradability between them can be explained by the presence of an amide group in the alkyl chain of AO-Cocoamido; the CN fission of the amide group slows down their mineralization process. In addition, the increase in the concentration of the surfactant from 5 to 75 mg L(-1) resulted in an increase in the final biodegradation of AO-R12 and AO-R14. However, in the case of AO-Cocoamido, a clear relationship between the concentration and biodegradation cannot be stated. Conversely, the biodegradability of AO-R12 and AO-R14 was considerably lower in an acid condition than at a pH of 7.4, whereas AO-Cocoamido reached similar percentages in acid conditions and at a neutral pH. However, microorganisms required more time to acclimate.

  7. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries.

  8. Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery

    Science.gov (United States)

    Phan, V. H. Giang; Thambi, Thavasyappan; Duong, Huu Thuy Trang; Lee, Doo Sung

    2016-07-01

    In this study, a new pH-/temperature-sensitive, biocompatible, biodegradable, and injectable hydrogel based on poly(ethylene glycol)-poly(amino carbonate urethane) (PEG-PACU) copolymers has been developed for the sustained delivery of human growth hormone (hGH). In aqueous solutions, PEG-PACU-based copolymers existed as sols at low pH and temperature (pH 6.0, 23 °C), whereas they formed gels in the physiological condition (pH 7.4, 37 °C). The physicochemical characteristics, including gelation rate, mechanical strength and viscosity, of the PEG-PACU hydrogels could be finely tuned by varying the polymer weight, pH and temperature of the copolymer. An in vivo injectable study in the back of Sprague-Dawley (SD) rats indicated that the copolymer could form an in situ gel, which exhibited a homogenous porous structure. In addition, an in vivo biodegradation study of the PEG-PACU hydrogels showed controlled degradation of the gel matrix without inflammation at the injection site and the surrounding tissue. The hGH-loaded PEG-PACU copolymer solution readily formed a hydrogel in SD rats, which subsequently inhibited the initial hGH burst and led to the sustained release of hGH. Overall, the PEG-PACU-based copolymers prepared in this study are expected to be useful biomaterials for the sustained delivery of hGH.

  9. 食品包装材料生态化发展下的非石油基降解塑料%Non-Petroleum Based Biodegradable Plastic with the Development of Ecologicalization in Food Packaging Materials

    Institute of Scientific and Technical Information of China (English)

    戴宏民; 戴佩燕

    2015-01-01

    目前常用的非石油基降解塑料可分为全淀粉型、化学(人工)合成型和天然高分子(以淀粉为主)与合成高分子共混型3种类型。淀粉基生物降解塑料能完全生物降解,制成的薄膜具有良好的透明度、柔韧性、抗张强度,不溶于水,无毒,故市场占有率高,被广泛应用于食品包装、食品容器和一次性餐饮具等;聚乳酸生物降解塑料力学性能与聚丙烯相似,并具有与聚苯乙烯相似的光泽度、清晰度和加工性,同时具有无毒、无刺激性、强度高、易加工成型和优良的生物相容性等特点,是一种能够真正实现生态和经济双重效益的、发展速度最快的生物降解塑料;聚丁二酸丁二醇酯生物降解塑料综合性能优良,性价比合理,故在食品包装、一次性餐具、药品包装瓶、生物医用高分子材料以及汽车零部件等领域均具有良好的应用前景。非石油基降解塑料作为包装材料是必然趋势,其得到广泛应用的关键在于提高材料的改性技术与控制成本,同时须保证其对人体无毒无害,强调个性化,并注重提高市场接受度。%The current non-petroleum based biodegradable plastics could be divided into three types of starch, chemical (artificial) synthetic and natural polymers (based on starch), and synthetic polymer blend. Starch based biodegrad-able plastics could be completely biodegradable and be made into thin film with the advantages of good transparency, flexibility, tensile strength, water-insoluble and non-toxic features. Therefore the market share of starch based biodegrad-able plastics is big, and it is widely used in food packaging as food containers and disposable tableware. The biodegradable plastic mechanical property of polylactic acid is similar to that of polypropylene, and it has the glossiness, clarity and workability similar to those of poly propylene with characteristics of non

  10. Biodegradable and radically polymerized elastomers with enhanced processing capabilities.

    Science.gov (United States)

    Ifkovits, Jamie L; Padera, Robert F; Burdick, Jason A

    2008-09-01

    The development of biodegradable materials with elastomeric properties is beneficial for a variety of applications, including for use in the engineering of soft tissues. Although others have developed biodegradable elastomers, they are restricted by their processing at high temperatures and under vacuum, which limits their fabrication into complex scaffolds. To overcome this, we have modified precursors to a tough biodegradable elastomer, poly(glycerol sebacate) (PGS) with acrylates to impart control over the crosslinking process and allow for more processing options. The acrylated-PGS (Acr-PGS) macromers are capable of crosslinking through free radical initiation mechanisms (e.g., redox and photo-initiated polymerizations). Alterations in the molecular weight and % acrylation of the Acr-PGS led to changes in formed network mechanical properties. In general, Young's modulus increased with % acrylation and the % strain at break increased with molecular weight when the % acrylation was held constant. Based on the mechanical properties, one macromer was further investigated for in vitro and in vivo degradation and biocompatibility. A mild to moderate inflammatory response typical of implantable biodegradable polymers was observed, even when formed as an injectable system with redox initiation. Moreover, fibrous scaffolds of Acr-PGS and a carrier polymer, poly(ethylene oxide), were prepared via an electrospinning and photopolymerization technique and the fiber morphology was dependent on the ratio of these components. This system provides biodegradable polymers with tunable properties and enhanced processing capabilities towards the advancement of approaches in engineering soft tissues.

  11. Study of thermal and mechanical properties of nanocomposites, synthesized from the organoclays and biodegradable polymers; Estudo das propriedades termicas e mecanicas de nanocompositos, formados a partir de argilas organofilicas e polimeros biodegradaveis

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, K.T.; Wiebeck, H.; Valenzuela-Diaz, F.R., E-mail: kilca_tanaka@hotmail.com [Universidade de Sao Paulo (LMPSOL/USP), Sao Paulo, SP (Brazil). Departamento de Engenharia Metalurgica e Materiais. Lab. de Materias Primas Particuladas e Solidos nao Metalicos

    2011-07-01

    The smectitic clays (MMT-Na{sup +}) have a broad range of industrial applications. The smectitic clays which the exchangeable cation sodium predominates have much more applications in this class of mineral. The sodium smectitic clays are hydrophilic in character with a high water Foster swelling. For uses in organic medium, where a high hydrophobicity and swelling are necessary, we must transform them in the organoclay form. This is accomplished by the cation exchange reaction of the sodium smectitic clay water dispersion with quaternary ammonium salts. In this paper, it was used the smectitic clays (MMT-Na{sup +}) from Argentina with CEC of 120meq/100g and swelling in water close to 20mL. Its modification was made using five quaternary ammonium salts. We characterize both sodium smectitic clay and the organoclay by X-ray diffraction (XRD) providing that occurred a basal expansion at the MMT-Na{sup +} for the five quaternary ammonium salts, Foster swelling and Infrared Spectra. After the synthesis, was done extrusion the two biodegradable plastics with the aim to incorporate the organoclay in these polymers. For characterization the biodegradable polymers, the proper choice is the thermal analysis and the mechanical test. Such analysis was effectuated in to pure plastic and the polymers nanocomposite, to proven of the resistance to the high temperature and the increased the mechanical properties of the modificated polymers when compared with the pure biodegradable plastics. (author)

  12. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  13. First report of a novel abluminal groove filled biodegradable polymer rapamycin-eluting stent in de novo coronary artery disease: results of the first in man FIREHAWK trial

    Institute of Scientific and Technical Information of China (English)

    QIAN Jie; Gary S.Mintz; Martin B.Leon; GAO Run-lin; XU Bo; Alexandra J.Lansky; YANG Yue-jin; QIAO Shu-bin; WU Yong-jian; CHEN Jue; HU Feng-huan; YANG Wei-xian

    2012-01-01

    Background Durable polymers used for first-generation drug-eluting stents (DES) potentially contribute to persistent inflammation and late DES thrombosis.We report the first in human experience with the rapamycin-eluting biodegradable polymer coated cobalt-chromium FIREHAWK stent with abluminal groove.Methods A total of 21 patients with stable or unstable angina,or prior myocardial infarction,with single de novo native coronary stenoses <30 mm in length in vessel sizes ranging from 2.25 to 4.0 mm were enrolled.The primary endpoint was major adverse cardiac events (MACE) at 30 days defined as the composite of cardiac death,myocardial infarction (Q and non-Q),or ischemia-driven target lesion revascularization.Secondary endpoints include device,lesion,and clinical success rates,4-month in-stent late lumen loss by quantitative coronary angiography (QCA),proportion of uncovered or malapposed stent struts by optical coherence tomograpphy (OCT) at 4 months,and MACE at 4,12,24 and 36-month follow-up.Results Device success was 95.7%,lesion and clinical success was 100.0%.There were no MACE events at 30 days.One patient died of non-cardiac hemorrhagic stroke 5 days after index procedure.At 4 months,in-stent late loss was (0.13±0.18) mm,and complete strut coverage was 96.2% by OCT with 0.1% strut malapposition.At 4-month follow-up there was no additional MACE events,and a single target vessel (non-target lesion) revascularization.Conclusions The FIREHAWK abluminal groove biodegradable polymer rapamycin-eluting stent demonstrated feasibility,safety and efficacy in this first in human experience.OCT findings indicated excellent stent strut coverage 4months after implantation.Larger studies are required to confirm whether the early FIREHAWK stent results translate into longer term restenosis and thrombosis benefits.

  14. Preclinical investigation for developing injectable fiducial markers using a mixture of BaSO{sub 4} and biodegradable polymer for proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang Hee [Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of); Gil, Moon Soo; Lee, Doo Sung [Sungkyunkwan University School of Chemical Engineering, Suwon 440-746 (Korea, Republic of); Han, Youngyih, E-mail: youngyih@skku.edu, E-mail: Hee.ro.Park@samsung.com; Park, Hee Chul, E-mail: youngyih@skku.edu, E-mail: Hee.ro.Park@samsung.com; Yu, Jeong Il; Noh, Jae Myoung; Cho, Jun Sang; Ahn, Sung Hwan; Choi, Doo Ho [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Sohn, Jason W. [Department of Radiation Oncology, Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 (United States); Kim, Hye Yeong; Shin, Eun Hyuk [Department of Radiation Oncology, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2015-05-15

    Purpose: The aim of this study is to investigate the use of mixture of BaSO{sub 4} and biodegradable polymer as an injectable nonmetallic fiducial marker to reduce artifacts in x-ray images, decrease the absorbed dose distortion in proton therapy, and replace permanent metal markers. Methods: Two samples were made with 90 wt. % polymer phosphate buffer saline (PBS) and 10 wt. % BaSO{sub 4} (B1) or 20 wt. % BaSO{sub 4} (B2). Two animal models (mice and rats) were used. To test the injectability and in vivo gelation, a volume of 200 μl at a pH 5.8 were injected into the Sprague-Dawley rats. After sacrificing the rats over time, the authors checked the gel morphology. Detectability of the markers in the x-ray images was tested for two sizes (diameters of 1 and 2 mm) for B1 and B2. Four samples were injected into BALB/C mice. The polymer mixed with BaSO{sub 4} transform from SOL at 20 °C with a pH of 6.0 to GEL in the living body at 37 °C with a pH of 7.4, so the size of the fiducial marker could be controlled by adjusting the injected volume. The detectability of the BaSO{sub 4} marker was measured in x-ray images of cone beam CT (CBCT), on-board imager [anterior–posterior (AP), lateral], and fluoroscopy (AP, lateral) using a Novalis-TX (Varian Medical Systems, Palo Alto, CA) repeatedly over 4 months. The volume, HU, and artifacts for the markers were measured in the CBCT images. Artifacts were compared to those of gold marker by analyzing the HU distribution. The dose distortion in proton therapy was computed by using a Monte Carlo (MC) code. A cylindrical shaped marker (diameter: 1 or 2 mm, length: 3 mm) made of gold, stainless-steel [304], titanium, and 20 wt. % BaSO{sub 4} was positioned at the center of the spread-out Bragg peak (SOBP) in parallel or perpendicular to the beam entrance. The dose distortion was measured on the depth dose profile across the markers. Results: Transformation to GEL and the biodegradation were verified. All BaSO{sub 4} markers

  15. Antibacterial Efficiency of Hydroxyapatite Biomaterials with Biodegradable Polylactic Acid and Polycaprolactone Polymers Saturated with Antibiotics / Bionoārdāmu Polimēru Saturošu Un Ar Antibiotiskajām Vielām Piesūcinātu Biomateriālu Antibakteriālās Efektivitātes Noteikšana

    Directory of Open Access Journals (Sweden)

    Kroiča Juta

    2016-08-01

    Full Text Available Infections continue to spread in all fields of medicine, and especially in the field of implant biomaterial surgery, and not only during the surgery, but also after surgery. Reducing the adhesion of bacteria could decrease the possibility of biomaterial-associated infections. Bacterial adhesion could be reduced by local antibiotic release from the biomaterial. In this in vitro study, hydroxyapatite biomaterials with antibiotics and biodegradable polymers were tested for their ability to reduce bacteria adhesion and biofilm development. This study examined the antibacterial efficiency of hydroxyapatite biomaterials with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa. The study found that hydroxyapatite biomaterials with antibiotics and biodegradable polymers show longer antibacterial properties than hydroxyapatite biomaterials with antibiotics against both bacterial cultures. Therefore, the results of this study demonstrated that biomaterials that are coated with biodegradable polymers release antibiotics from biomaterial samples for a longer period of time and may be useful for reducing bacterial adhesion on orthopedic implants.

  16. Progress of biodegradable polylactic acid based composite material%生物可降解聚乳酸基复合材料研究进展

    Institute of Scientific and Technical Information of China (English)

    吕闪闪; 谭海彦; 左迎峰; 顾继友; 张彦华

    2014-01-01

    生物可降解高分子材料的研究开发是解决石油基塑料对环境污染的有效方法之一。其中,聚乳酸(PLA)具有可完全生物降解、可加工、可再生、力学性能优良等特点,是代替石油基塑料的必然趋势。但是PLA的疏水性大、性脆、价格贵等缺点限制了其应用和发展。论文主要综述了近年来国内外有关聚乳酸与天然高分子共混、合成高分子共混改性的研究进展,介绍了加工工艺、表面处理、添加剂等对复合体系性能的影响。在现有研究成果的基础上,可以通过加入柔性高分子、表面活性剂、纤维等以改善复合材料的脆性、相容性以及强度,以推动聚乳酸基复合材料的广泛发展。%Research and development of biodegradable materials is one of the effective approaches to solving the environmental pollution problems which come from the traditional petroleum-based plastics. Polylactic acid (PLA) has so many good properties such as full biodegradability,good thermal processibility,renewablility,high mechanical performance and so on. It is an inevitable trend to replace the petroleum-based plastics. However,the properties of hydrophobicity,poor toughness and high price are obstacles for the application of PLA. All of these result in attracting much attention in the research of modification of PLA. In this paper,the recent research on biodegradable PLA system including blending with natural polymer and synthetic polymer is summarized. The effect of processing technology,surface treatment and additives on the composite material is presented. Further research could be flexible polymer,surfactant,and various fibers to improve the brittleness,compatibility, and strength of the cromposite material.

  17. Development of controlled drug release systems based on thiolated polymers.

    Science.gov (United States)

    Bernkop-Schnürch, A; Scholler, S; Biebel, R G

    2000-05-03

    The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.

  18. Choline-based biodegradable ionic liquid catalyst for Mannich-type reaction

    Indian Academy of Sciences (India)

    PENG HUAN; HU YULIN; XING RONG; FANG DONG

    2016-12-01

    A three-component Mannich-type reaction of aromatic aldehydes, ketones, and amines was catalyzed by a novel choline-based acidic ionic liquid. The proposed catalyst was a Lewis-BrØnsted dual acid catalyst as well as water-tolerant. The β-amino carbonyl compounds were obtained at room temperature in reasonable to good yields ranging from 63 to 98%. After the reaction, the catalyst could be recycled and reused for 5 times without obvious decrease of the yield. Further, the catalyst was environment-friendly with a significant biodegradation rate.

  19. Development of mold for biodegradable materials

    Energy Technology Data Exchange (ETDEWEB)

    Japitana, F.H.; Jabrica, A.M. [Metals Industry Research and Develeopment Center, Manila (Philippines). Dept. of Science and Technology; Komatsu, M. [Komatsu Consulting Engineer Office, Iwaki City, Fukushima (Japan); Takeuchi, Y. [Osaka Univ., Osaka (Japan). Dept. of Mechanical Engineering

    2008-07-01

    The improper disposal of non-biodegradable plastics adversely affect global environmental factors, principles of sustainability, industrial ecology and ecoefficiency. Therefore, a new generation of bio-based polymeric products has been developed. These polylactides (PLA), cellulose esters, starch plastics and polyhydroxyalkanoates (PHAs) are made from renewable natural resources and are biodegradable. They meet environmental conditions and can compete with their petrochemical counterparts. Among them, PLA is particularly attractive as a sustainable alternative to synthetic polymers and a potential candidate for the fabrication of biocomposites. Certain blends have proved successful in medical implants, sutures and drug delivery systems because of their capacity to dissolve away with time. However, widespread use of PLA is limited because of cost. Biodegradable plastic products are currently 6 to 10 times more expensive than traditional plastics. Environmentalists argue that the cheaper price of traditional plastics does not reflect their true cost when their impact is considered. This paper presented a solution to reduce the production cost of biodegradable plastics. In particular, it described a newly developed plastic injection mold for biodegradable materials which can produce a scrapless product. The system reduces processing time because it is not necessary to remove any gating or runners after the injection process. Takeout robots ensure that the quality of the product is maintained. 12 figs.

  20. Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif.

    Science.gov (United States)

    Kim, Yu Jin; Lee, Yun-Ji; Kim, Yun-Hi; Park, Chan Eon

    2016-07-21

    Donor molecular structures, and their packing aspects in donor:acceptor active blends, play a crucial role in the photovoltaic performance of polymer solar cells. We systematically investigated a series of isoindigo-based donor polymers within the framework of a three-dimensional (3D) crystalline motif by modifying their chemical structures, thereby affecting device performances. Although our isoindigo-based polymer series contained polymers that differed only by their alkyl side chains and/or donating units, they showed quite different nanoscale morphological properties, which resulted in significantly different device efficiencies. Notably, blends of our isoindigo-based donor polymer systems with an acceptor compound, whereby the blends had more intermixed network morphologies and stronger face-on orientations of the polymer crystallites, provided better-performing photovoltaic devices. This behavior was analyzed using atomic force microscopy (AFM) and two-dimensional grazing incidence wide angle X-ray diffraction (2D-GIWAXD). To the best of our knowledge, no correlation has been reported previously between 3D nano-structural donor crystallites and device performances, particularly for isoindigo-based polymer systems.

  1. Study on Moulding Technology of Starch-Based Totally-Biodegradable Plastic Products

    Institute of Scientific and Technical Information of China (English)

    MA Tao; LIU Chang-jiang

    2005-01-01

    Based on monofactorial comparison experiment,the following two excellent technological formations are derived for the production of starch-based totally-biodegradable tray via extruding,pelleting,slicing,and sucking molding:The first formulation:40% of starch,12.5% of DOP,5% of EVA,15% of polyvinyl alcohol,20%of talc power and calcium carbonate,and 7.5% of other materials. The material temperature in high-speed kneader is about 90℃,rotation velocity is 600 r/min,kneading duration is 5 ~ 10 minutes,diameter of screw stem of extruder is 90 mm,ratio of length versus diameter of screw stem (L/D) is 44,rotation velocity of the screws stem is 40 ~ 50 r/min. Temperature in four segments of extruder is 145 ℃,155 ℃,150℃,and 160 ℃ respectively,and temperature in extruder head is 170 ℃; the material rod extruded is set while passing a cold water bath,and then is cut to pellets whose size is 3 mm × 3 mm; the latter is transformed into slices and subject to sucking molding after predrying; temperature of sucking molding is 180~190 ℃,and sucking molding duration is 15~20 seconds.The second formulation:60% of starch,15% of DOP,5% of PHB,15% of polyvinyl alcohol,and 5 % of other materials. All technological parameters are the same with that for the first formulation.According to the test result of Chinese Institute of Plastic Processing,the biodegradation ratio of the tray made through the above treatment 1 and 2 in 30 days amounted to 54.2 % and 70.6 % respectively,which shows that a satisfied biodegradation effect is realized.

  2. Impact of solvents and supercritical CO{sub 2} drying on the morphology and structure of polymer-based biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Causa, Andrea; Acierno, Domenico; Filippone, Giovanni [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale V. Tecchio, 80, 80125 Napoli (Italy); Salerno, Aurelio; Domingo, Concepción [Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2014-05-15

    In the present work, two-dimensional systems based on biodegradable polymers such as poly(ε-caprolactone) (PCL), poly(ethylene oxide) (PEO) and polylactic acid (PLA) are fabricated by means of a sustainable approach which consists in inducing phase separation in solutions of such polymers and “green” solvents, namely ethyl lactate (EL) and ethyl acetate (EA). The extraction of the solvent is promoted by a controlled drying process, which is performed in either air or supercritical CO{sub 2}. The latter can indeed act as both an antisolvent, which favors the deposition of the polymer by forming a mixture with EL and EA, and a plasticizing agent, whose solvation and transport properties may considerably affect the microstructure and crystallinity of the polymer films. The morphological, topographical and crystalline properties of the films are tailored through a judicial selection of the materials and the processing conditions and assessed by means of thermal analyses, polarized optical microscopy, scanning electron microscopy and confocal interferometric microscopy. The results show that the morphological and crystalline properties of the films are strongly dependent on the choice of both the polymer/solvent system and the operating conditions during the drying step. In particular, the morphological, topographical and thermal properties of films prepared starting from highly crystalline polymers, namely PCL and PEO, are greatly affected by the crystallization of the material. Conversely, the less crystalline PLA forms almost completely amorphous films.

  3. Gas Sensors Based on Polymer Field-Effect Transistors.

    Science.gov (United States)

    Lv, Aifeng; Pan, Yong; Chi, Lifeng

    2017-01-22

    This review focuses on polymer field-effect transistor (PFET) based gas sensor with polymer as the sensing layer, which interacts with gas analyte and thus induces the change of source-drain current (ΔISD). Dependent on the sensing layer which can be semiconducting polymer, dielectric layer or conducting polymer gate, the PFET sensors can be subdivided into three types. For each type of sensor, we present the molecular structure of sensing polymer, the gas analyte and the sensing performance. Most importantly, we summarize various analyte-polymer interactions, which help to understand the sensing mechanism in the PFET sensors and can provide possible approaches for the sensor fabrication in the future.

  4. Gas Sensors Based on Polymer Field-Effect Transistors

    Science.gov (United States)

    Lv, Aifeng; Pan, Yong; Chi, Lifeng

    2017-01-01

    This review focuses on polymer field-effect transistor (PFET) based gas sensor with polymer as the sensing layer, which interacts with gas analyte and thus induces the change of source-drain current (ΔISD). Dependent on the sensing layer which can be semiconducting polymer, dielectric layer or conducting polymer gate, the PFET sensors can be subdivided into three types. For each type of sensor, we present the molecular structure of sensing polymer, the gas analyte and the sensing performance. Most importantly, we summarize various analyte–polymer interactions, which help to understand the sensing mechanism in the PFET sensors and can provide possible approaches for the sensor fabrication in the future. PMID:28117760

  5. Study of a thiophene-based polymer for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cheylan, S. [ICFO, Institut de Ciencies Fotoniques, Edificio NEXUS II, c. Jordi Girona 29, 08034 Barcelona (Spain)]. E-mail: Stephanie.cheylan@icfo.es; Fraleoni-Morgera, A. [Department of Industrial and Materials Chemistry, University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy); Puigdollers, J. [Departamento de Ingenieria Electronica, Universidad Politecnica de Cataluna, UPC, Campus Nord Edifici C4, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Voz, C. [Departamento de Ingenieria Electronica, Universidad Politecnica de Cataluna, UPC, Campus Nord Edifici C4, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Setti, L. [Department of Industrial and Materials Chemistry, University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy); Alcubilla, R. [Departamento de Ingenieria Electronica, Universidad Politecnica de Cataluna, UPC, Campus Nord Edifici C4, c/ Jordi Girona 1-3, 08034 Barcelona (Spain); Badenes, G. [ICFO, Institut de Ciencies Fotoniques, Edificio NEXUS II, c. Jordi Girona 29, 08034 Barcelona (Spain); Costa-Bizzarri, P. [Department of Industrial and Materials Chemistry, University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy); Lanzi, M. [Department of Industrial and Materials Chemistry, University of Bologna, V. Risorgimento 4, 40136 Bologna (Italy)

    2006-02-21

    A thiophene-based conjugated polymer bearing a cyano group (-CN) as a side chain substituent was successfully synthesized. The polymer evidences an excellent film ability from various organic solvents as well as an enhanced photoluminescence. The polymer has been characterized optically (Fourier Transformed Infrared spectroscopy, absorption and photoluminescence) in solution and in film, while X-ray diffraction measurements (XRD) of thin films were performed to investigate its bulk morphological features. From the absorption edge of the spectrum of a thin polymer film, the optical band gap of the polymer is estimated to be 2.0 eV, which corresponds to orange emission. Furthermore, a single layer light emitting diode (LED) was fabricated. The device produced bright stable electroluminescence at room temperature. All of the results indicate that this polymer is a promising emissive material for application in polymeric LEDs.

  6. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.

    Science.gov (United States)

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton

    2015-11-01

    Atomic simulations were undertaken to analyse the effect of polymer chain scission on amorphous poly(lactide) during degradation. Many experimental studies have analysed mechanical properties degradation but relatively few computation studies have been conducted. Such studies are valuable for supporting the design of bioresorbable medical devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young's modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness polymer may exist around chain scissions. In the Effective Cavity Theory, each chain scission is considered to instantiate an effective cavity. Finite Element Analysis simulations were conducted to model the effect of the cavities on Young's modulus. Since polymer crystallinity affects mechanical properties, the effect of increases in crystallinity during degradation on Young's modulus is also considered. To demonstrate the ability of the Effective Cavity Theory, it was fitted to several sets of experimental data for Young's modulus in the literature.

  7. Polymer based interfaces as bioinspired 'smart skins'.

    Science.gov (United States)

    De Rossi, Danilo; Carpi, Federico; Scilingo, Enzo Pasquale

    2005-11-30

    This work reports on already achieved results and ongoing research on the development of complex interfaces between humans and external environment, based on organic synthetic materials and used as smart 'artificial skins'. They are conceived as wearable and flexible systems with multifunctional characteristics. Their features are designed to mimic or augment a broad-spectrum of properties shown by biological skins of humans and/or animals. The discussion is here limited to those properties whose mimicry/augmentation is achievable with currently available technologies based on polymers and oligomers. Such properties include tactile sensing, thermal sensing/regulation, environmental energy harvesting, chromatic mimetism, ultra-violet protection, adhesion and surface mediation of mobility. Accordingly, bioinspired devices and structures, proposed as suitable functional analogous of natural architectures, are analysed. They consist of organic piezoelectric sensors, thermoelectric and pyroelectric sensors and generators, photoelectric generators, thermal and ultra-violet protection systems, electro-, photo- and thermo-chromic devices, as well as structures for improved adhesion and reduced fluid-dynamic friction.

  8. Characteristics of starch-based biodegradable composites reinforced with date palm and flax fibers.

    Science.gov (United States)

    Ibrahim, Hamdy; Farag, Mahmoud; Megahed, Hassan; Mehanny, Sherif

    2014-01-30

    The aim of this work is to study the behavior of completely biodegradable starch-based composites containing date palm fibers in the range from 20 to 80 wt%. Hybrid composites containing date palm and flax fibers, 25 wt% each, were also examined. The composites were preheated and then hot pressed at 5 MPa and 160°C for 30 min. SEM investigation showed strong adhesion between fibers and matrix. Density measurements showed very small void fraction (less than 0.142%) for composites containing up to 50 wt% fiber content. Increasing fiber weight fraction up to 50 wt% increased the composite static tensile and flexural mechanical properties (stiffness and strength). Composite thermal stability, water uptake and biodegradation improved with increasing fiber content. The present work shows that starch-based composites with 50 wt% fibers content have the optimum mechanical properties. The hybrid composite of flax and date palm fibers, 25 wt% each, has good properties and provides a competitive eco-friendly candidate for various applications.

  9. A note on the use of the CEC L-33-A-93 test to predict the potential biodegradation of mineral oil based lubricants in soil.

    Science.gov (United States)

    Battersby, N S; Morgan, P

    1997-10-01

    The biodegradabilities of five unformulated mineral oils (brightstock, 150 SN base oil, white oil and two gas oils) were determined in the CEC L-33-A-93 test and during 20 weeks incubation in nutrient-supplemented soil microcosms. Biodegradation in both studies was measured as the loss of extractable hydrocarbon ('primary' biodegradation). There was a statistically significant (P test systems. The results indicate that the CEC method could be used as a relatively simple, quick and inexpensive test for assessing the potential biodegradation of mineral oil based lubricants in soil.

  10. MANUFACTURING BIODEGRADABLE COMPOSITE MATERIALS BASED ON POLYETHYLENE AND FUNCTIONALIZED BY ALCOHOLYSIS OF ETHYLENE-VINYL ACETATE COPOLYMER

    Directory of Open Access Journals (Sweden)

    Aleksandr A. Shabarin

    2016-06-01

    Full Text Available Introduction. The continuous growth of production and consumption of plastic packaging creates a serious problem of disposal of package. This problem has ecological character, because the contents of the landfills decompose for decades, emit toxic com¬pounds and pollute the environment. The work is devoted to obtaining and investigation mechanical and rheological properties of biodegradable composite materials based on polyethylene and starch. Materials and Methods. In this work the author used polyethylene grade HDPE 273- 83 (GOST 16338-85, Sevilen brand 12206-007 (TU 6-05-1636-97 and potato starch (GOST 53876-2010 as a filler. Functionalization of sevilen was carried in the 30 % ethanol solution KOH at a temperature 80 °C during 3 hours. Compounding components was carried out at the laboratory of the two rotary mixer HAAKE PolyLab Rheomix 600 OS with rotors Banbury. Formation of plates for elastic strength and rheological studies were carried out on a hydraulic press Gibitre. Elastic and strength tests were carried out on the tensile machine the UAI-7000 M. Rheology tests were carried out on the rheometer Haake MARS III. The humidity filler (starch authors determined by the thermogravimetric method on the analyzer of moisture “Evlas-2M”. Results. It is shown, that the filler should not contain more than 7% moisture. Functionalization of ethylene with vinyl acetate copolymer (sevilen has performed by the method of alkaline alcoholysis. By the method of IC – spectroscopy the authors confirmed the presence of hydroxyl groups in the polymer. Using as a compatibilizer functionalized by the method of alcoholises has greatly ( significantly improved physical, mechanical and rheological properties of composite materials. Optimal content of sevilen (F in the compound according to the results of experiments amount 10 %. Discussion and Conclusions. Using of functionalized by the method of alcoholysis ethy-lene-vinyl acetate copolymer as a

  11. Biodegradable block poly(ester-urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers.

    Science.gov (United States)

    Ou, Wenfeng; Qiu, Handi; Chen, Zhifei; Xu, Kaitian

    2011-04-01

    A series of block poly(ester-urethane)s (abbreviated as PU3/4HB) based on biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3/4HB) segments were synthesized by a facile way of melting polymerization using 1,6-hexamethylene diisocyanate (HDI) as the coupling agent and stannous octanoate (Sn(Oct)(2)) as catalyst, with different 4HB contents and segment lengths. The chemical structure, molecular weight and distribution were systematically characterized by (1)H nuclear magnetic resonance spectrum (NMR), Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). The thermal property was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The hydrophilicity was investigated by static contact angle of deionized water and CH(2)I(2). DSC curves revealed that the PU3/4HB polyurethanes have their T(g) from -25.6 °C to -4.3 °C, and crystallinity from 2.5% to 25.3%, being almost amorphous to semi-crystalline. The obtained PU3/4HBs are hydrophobic (water contact angle 77.4°-95.9°), and their surface free energy (SFE) were studied. The morphology of platelets adhered on the polyurethane film observed by scanning electron microscope (SEM) showed that platelets were activated on the PU3/4HB films which would lead to blood coagulation. The lactate dehydrogenase (LDH) assay revealed that the PU3/4HBs displayed higher platelet adhesion property than raw materials and biodegradable polymer polylactic acid (PLA) and would be potential hemostatic materials. Crystallinity degree, hydrophobicity, surface free energy and urethane linkage content play important roles in affecting the LDH activity and hence the platelet adhesion. CCK-8 assay showed that the PU3/4HB is non-toxic and well for cell growth and proliferation of mouse fibroblast L929. It showed that the hydrophobicity is an important factor for cell growth while 3HB content of the PU3/4HB is important for the cell proliferation. Through changing the

  12. Superacid-Based Lithium Salts For Polymer Electrolytes

    Science.gov (United States)

    Nagasubramanian, Ganesan; Prakash, Surya; Shen, David H.; Surampudi, Subbarao; Olah, George

    1995-01-01

    Solid polymer electrolytes exhibiting high lithium-ion conductivities made by incorporating salts of superacids into thin films of polyethylene oxide (PEO). These and other solid-polymer electrolytes candidates for use in rechargeable lithium-based electrochemical cells. Increases in room-temperature lithium-ion conductivities of solid electrolytes desirable because they increase achievable power and energy densities.

  13. Occurrence, degradation, and effect of polymer-based materials in the environment.

    Science.gov (United States)

    Lambert, Scott; Sinclair, Chris; Boxall, Alistair

    2014-01-01

    There is now a plethora of polymer-based materials (PBMs) on the market, because of the increasing demand for cheaper consumable goods, and light-weight industrial materials. Each PBM constitutes a mixture of their representative polymer/sand their various chemical additives. The major polymer types are polyethylene, polypropylene,and polyvinyl chloride, with natural rubber and biodegradable polymers becoming increasingly more important. The most important additives are those that are biologically active, because to be effective such chemicals often have properties that make them resistant to photo-degradation and biodegradation. During their lifecycle,PBMs can be released into the environment form a variety of sources. The principal introduction routes being general littering, dumping of unwanted waste materials,migration from landfills and emission during refuse collection. Once in the environment,PBMs are primarily broken down by photo-degradation processes, but due to the complex chemical makeup of PBMs, receiving environments are potentially exposed to a mixture of macro-, meso-, and micro-size polymer fragments, leached additives, and subsequent degradation products. In environments where sunlight is absent (i.e., soils and the deep sea) degradation for most PBMs is minimal .The majority of literature to date that has addressed the environmental contamination or disposition of PBMs has focused on the marine environment. This is because the oceans are identified as the major sink for macro PBMs, where they are known to present a hazard to wildlife via entanglement and ingestion. The published literature has established the occurrence of microplastics in marine environment and beach sediments, but is inadequate as regards contamination of soils and freshwater sediments. The uptake of microplastics for a limited range of aquatic organisms has also been established, but there is a lack of information regarding soil organisms, and the long-term effects of

  14. The cytotoxic effect of denture base polymers.

    Science.gov (United States)

    Hensten-Pettersen, A; Wictorin, L

    1981-01-01

    The cytotoxic potential of autopolymerized pour and dough type resins and heat cured resins was studied by in vitro cell culture techniques. Human epithelial cells (NCTC 2544) were grown in Eagle's minimal essential medium on the surface of the polymer disks. The cell multiplication on the surface of the specimens was measured. One heat cured resin and one pour type resin demonstrated a slight cytotoxic effect. The other polymers gave a moderate cytotoxic effect. The study did not indicate any difference in the cytotoxicity of the polymers when manufactured by alternate processing methods.

  15. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties.

    Science.gov (United States)

    Garcia, M Teresa; Kaczerewska, Olga; Ribosa, Isabel; Brycki, Bogumił; Materna, Paulina; Drgas, Małgorzata

    2016-07-01

    Aerobic biodegradability and aquatic toxicity of five types of quaternary ammonium-based gemini surfactants have been examined. The effect of the spacer structure and the head group polarity on the ecological properties of a series of dimeric dodecyl ammonium surfactants has been investigated. Standard tests for ready biodegradability assessment (OECD 310) were conducted for C12 alkyl chain gemini surfactants containing oxygen, nitrogen or a benzene ring in the spacer linkage and/or a hydroxyethyl group attached to the nitrogen atom of the head groups. According to the results obtained, the gemini surfactants examined cannot be considered as readily biodegradable compounds. The negligible biotransformation of the gemini surfactants under the standard biodegradation test conditions was found to be due to their toxic effects on the microbial population responsible for aerobic biodegradation. Aquatic toxicity of gemini surfactants was evaluated against Daphnia magna. The acute toxicity values to Daphnia magna, IC50 at 48 h exposure, ranged from 0.6 to 1 mg/L. On the basis of these values, the gemini surfactants tested should be classified as toxic or very toxic to the aquatic environment. However, the dimeric quaternary ammonium-based surfactants examined result to be less toxic than their corresponding monomeric analogs. Nevertheless the aquatic toxicity of these gemini surfactants can be reduced by increasing the molecule hydrophilicity by adding a heteroatom to the spacer or a hydroxyethyl group to the polar head groups.

  16. Gender difference on five-year outcomes of EXCEL biodegradable polymer-coated sirolimus-eluting stents implantation: results from the CREATE study

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; QIAO Bing; HAN Ya-ling; LI Yi; XU Kai; ZHANG Quan-yu; YANG Li-xia

    2013-01-01

    Background The gender difference on long-term outcome in unselected patients after percutaneous coronary intervention (PCI) has not yet been fully investigated.This study aimed to evaluate the gender difference on five-year outcomes following EXCEL biodegradable polymer-coated sirolimus-eluting stenting in patients with coronary disease.Methods A total of 2077 "all comers",consisting of 1528 (73.6%) men and 549 (26.4%) women,who were exclusively treated with EXCEL coronary stents were enrolled in the prospective CREATE study at 59 centers from four countries.After propensity score matching,the baseline characteristics of the two groups were well matched.Recommended antiplatelet regimen was clopidogrel and aspirin for six months followed by chronic aspirin therapy.The primary outcome that was the rate of major adverse cardiac events (MACE),defined as a composite of cardiac mortality,non-fatal myocardial infarction (MI) and target lesion revascularization (TLR),and stent thrombosis (ST) at five years were compared between the two gender groups.Results In the two groups,women had higher proportions of clinical risk factors,such as being elderly,diabetes mellitus,hypertension and hyperlipidemia,compared to men.Besides,the mean target vessel number per patient was higher and the mean reference vessel diameter smaller for women.Men had higher risks of cardiac death (3.7% vs.1.6%,P=0.021) and MACE (8.4% vs.4.7%,P=0.004) at five years compared with women.However,the cumulative hazards of non-fatal MI and TLR were similar between men and women.The incidence of Academic Research Consortium (ARC) definite or probable stent thrombosis was similar between the two groups (1.3% vs.1.0%,P=0.639).Prolonged clopidogrel therapy (>6 months) did not reduce the cumulative hazards of ST from six months to five years in both men (x2=0.098,log rank P=0.754) and women (x2=2.043,log rank P=0.153) patients.Conclusions Women had a lower MACE and cardiac death rate than men

  17. Structure and properties of cotton-based biodegradable/compostable nonwovens

    Science.gov (United States)

    Rong, Haoming

    Cotton-based biodegradable nonwoven products have been receiving increasing attention in recent years with the growing environmental awareness throughout the world. A majority of the cotton-based nonwoven products are processed by carding with the binder fibers, and then point-bonding using a thermal calender. In this work, different biodegradable binder fibers were used to produce cotton-based nonwovens. The structure and the properties of the resulting fabrics were studied. The effect of bonding temperature and binder fiber content on the bond morphology was investigated. The fracture and failure mechanisms of the fabrics produced with different binder fiber content and at different bonding temperature were analyzed. Binder fiber distribution was determined by both qualitative and quantitative methods. The results show that DSC is a useful method to quantitatively characterize the binder fiber distribution in the carded cotton-based nonwovens. By determining the specific enthalpy from crystallization of one of the binder fiber components in the fabrics, it is possible to calculate the fiber composition. Tensile properties of the resultant nonwovens under different processing conditions were studied. The optimal processing conditions for the nonwovens processed using different binder fibers were determined based on their tensile properties. Consequently, effects of binder fiber type, binder fiber content, and bonding temperature on the tensile property of the nonwoven fabrics are discussed. The best binder fiber under the experimental conditions was selected based on the tensile property of the resulting fabrics. Based on the interactions of binder fiber composition and bonding temperature, empirical models have been developed to predict the breaking load of the webs bonded by the best binder fiber using the General Linear Models Procedure in JMP 5.0 statistical analysis software. The absorbent behavior and flexural rigidity of the nonwoven fabrics bonded by one

  18. Trehalose and Trehalose-based Polymers for Environmentally Benign, Biocompatible and Bioactive Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Shibata

    2008-08-01

    Full Text Available Abstract: Trehalose is a non-reducing disaccharide that is found in many organisms but not in mammals. This sugar plays important roles in cryptobiosis of selaginella mosses, tardigrades (water bears, and other animals which revive with water from a state of suspended animation induced by desiccation. The interesting properties of trehalose are due to its unique symmetrical low-energy structure, wherein two glucose units are bonded face-to-face by 1→1-glucoside links. The Hayashibara Co. Ltd., is credited for developing an inexpensive, environmentally benign and industrial-scale process for the enzymatic conversion of α-1,4-linked polyhexoses to α,α-D-trehalose, which made it easy to explore novel food, industrial, and medicinal uses for trehalose and its derivatives. Trehalosechemistry is a relatively new and emerging field, and polymers of trehalose derivatives appear environmentally benign, biocompatible, and biodegradable. The discriminating properties of trehalose are attributed to its structure, symmetry, solubility, kinetic and thermodynamic stability and versatility. While syntheses of trehalose-based polymer networks can be straightforward, syntheses and characterization of well defined linear polymers with tailored properties using trehalose-based monomers is challenging, and typically involves protection and deprotection of hydroxyl groups to attain desired structural, morphological, biological, and physical and chemical properties in the resulting products. In this review, we will overview known literature on trehalose’s fascinating involvement in cryptobiology; highlight its applications in many fields; and then discuss methods we used to prepare new trehalose-based monomers and polymers and explain their properties.

  19. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers; Desenvolvimento de espumas parcialmente biodegradaveis a partir de blendas de PP/HMSPP com polimeros naturais e sinteticos

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Elizabeth Carvalho Leite

    2014-07-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  20. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  1. Conducting polymer based biomolecular electronic devices

    Indian Academy of Sciences (India)

    B D Malhotra; Rahul Singhal

    2003-08-01

    Biomolecular electronics is rapidly evolving from physics, chemistry, biology, electronics and information technology. Organic materials such as proteins, pigments and conducting polymers have been considered as alternatives for carrying out the functions that are presently being performed by semiconductor silicon. Conducting polymers such as polypyrroles, polythiophenes and polyanilines have been projected for applications for a wide range of biomolecular electronic devices such as optical, electronic, drug-delivery, memory and biosensing devices. Our group has been actively working towards the application of conducting polymers to Schottky diodes, metal–insulator–semiconductor (MIS) devices and biosensors for the past 10 years. This paper is a review of some of the results obtained at our laboratory in the area of conducting polymer biomolecular electronics.

  2. Porous polymers based on aryleneethynylene building blocks.

    Science.gov (United States)

    Bunz, Uwe H F; Seehafer, Kai; Geyer, Florian L; Bender, Markus; Braun, Ingo; Smarsly, Emanuel; Freudenberg, Jan

    2014-09-01

    Porous conjugated polymers are synthesized by metal-catalyzed coupling reactions. The progress for porous polymers when planar or tetrahedral building blocks are connected by alkyne units into novel materials is highlighted. The most prominent reaction for the buildup of the microporous alkyne-bridged polymers is the Sonogashira reaction, connecting alkynes to aromatic iodides or bromides. The availability of the building blocks and the potency of the Sonogashira reaction allow preparing a large variety of intrinsically porous polymeric materials, in which rigid struts connect multipronged centers. The microporous polymers are used as catalysts and as storage materials for gases and sensors. Postfunctionalization schemes, understanding of structure-property relationships, and the quest for high porosity are pertinent.

  3. Biodegradation Mechanisms of Patulin in Candida guilliermondii: An iTRAQ-Based Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Yong Chen

    2017-02-01

    Full Text Available Patulin, a potent mycotoxin, contaminates fruits and derived products worldwide, and is a serious health concern. Several yeast strains have shown the ability to effectively degrade patulin. However, the mechanisms of its biodegradation still remain unclear at this time. In the present study, biodegradation and involved mechanisms of patulin by an antagonistic yeast Candida guilliermondii were investigated. The results indicated that C. guilliermondii was capable of not only multiplying to a high population in medium containing patulin, but also effectively reducing patulin content in culture medium. Degradation of patulin by C. guilliermondii was dependent on the yeast cell viability, and mainly occurred inside cells. E-ascladiol was the main degradation product of patulin. An iTRAQ-based proteomic analysis revealed that the responses of C. guilliermondii to patulin were complex. A total of 30 differential proteins involved in 10 biological processes were identified, and more than two-thirds of the differential proteins were down-accumulated. Notably, a short-chain dehydrogenase (gi|190348612 was markedly induced by patulin at both the protein and mRNA levels. Our findings will provide a foundation to help enable the commercial development of an enzyme formulation for the detoxification of patulin in fruit-derived products.

  4. Biodegradation Mechanisms of Patulin in Candida guilliermondii: An iTRAQ-Based Proteomic Analysis

    Science.gov (United States)

    Chen, Yong; Peng, Huai-Min; Wang, Xiao; Li, Bo-Qiang; Long, Man-Yuan; Tian, Shi-Ping

    2017-01-01

    Patulin, a potent mycotoxin, contaminates fruits and derived products worldwide, and is a serious health concern. Several yeast strains have shown the ability to effectively degrade patulin. However, the mechanisms of its biodegradation still remain unclear at this time. In the present study, biodegradation and involved mechanisms of patulin by an antagonistic yeast Candida guilliermondii were investigated. The results indicated that C. guilliermondii was capable of not only multiplying to a high population in medium containing patulin, but also effectively reducing patulin content in culture medium. Degradation of patulin by C. guilliermondii was dependent on the yeast cell viability, and mainly occurred inside cells. E-ascladiol was the main degradation product of patulin. An iTRAQ-based proteomic analysis revealed that the responses of C. guilliermondii to patulin were complex. A total of 30 differential proteins involved in 10 biological processes were identified, and more than two-thirds of the differential proteins were down-accumulated. Notably, a short-chain dehydrogenase (gi|190348612) was markedly induced by patulin at both the protein and mRNA levels. Our findings will provide a foundation to help enable the commercial development of an enzyme formulation for the detoxification of patulin in fruit-derived products. PMID:28208714

  5. Controlled release profiles of dipyridamole from biodegradable microspheres on the base of poly(3-hydroxybutyrate.

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Novel biodegradable microspheres on the base of poly(3-hydroxybutyrate (PHB designed for controlled release of antithrombotic drug, namely dipyridamole (DPD, have been kinetically studied. The profiles of release from the microspheres with different diameters 4, 9, 63, and 92 µm present the progression of nonlinear and linear stages. Diffusionkinetic equation describing both linear (PHB hydrolysis and nonlinear (diffusion stages of the DPD release profiles from the spherical subjects has been written down as the sum of two terms: desorption from the homogeneous sphere in accordance with diffusion mechanism and the zero-order release. In contrast to the diffusivity dependence on microsphere size, the constant characteristics (k of linearity are scarcely affected by the diameter of PHB microparticles. The view of the kinetic profiles as well as the low rate of DPD release are in satisfactory agreement with kinetics of weight loss measured in vitro for the PHB films. Taking into account kinetic results, we suppose that the degradation of both films and PHB microspheres is responsible for the linear stage of DPD release profiles. In the nearest future, combination of biodegradable PHB and DPD as a representative of proliferation cell inhibitors will give possibility to elaborate the novel injectable therapeutic system for a local, long-term, antiproliferative action.

  6. Norbornene-Based Polymer Electrolytes for Lithium Cells

    Science.gov (United States)

    Cheung, Iris; Smart, Marshall; Prakash, Surya; Miyazawa, Akira; Hu, Jinbo

    2007-01-01

    Norbornene-based polymers have shown promise as solid electrolytes for lithium-based rechargeable electrochemical cells. These polymers are characterized as single-ion conductors. Single-ion-conducting polymers that can be used in lithium cells have long been sought. Single-ion conductors are preferred to multiple-ion conductors as solid electrolytes because concentration gradients associated with multiple-ion conduction lead to concentration polarization. By minimizing concentration polarization, one can enhance charge and discharge rates. Norbornene sulfonic acid esters have been synthesized by a ring-opening metathesis polymerization technique, using ruthenium-based catalysts. The resulting polymer structures (see figure) include sulfonate ionomers attached to the backbones of the polymer molecules. These molecules are single-ion conductors in that they conduct mobile Li+ ions only; the SO3 anions in these polymers, being tethered to the backbones, do not contribute to ionic conduction. This molecular system is especially attractive in that it is highly amenable to modification through functionalization of the backbone or copolymerization with various monomers. Polymers of this type have been blended with poly(ethylene oxide) to lend mechanical integrity to free-standing films, and the films have been fabricated into solid polymer electrolytes. These electrolytes have been demonstrated to exhibit conductivity of 2 10(exp -5)S/cm (which is high, relative to the conductivities of other solid electrolytes) at ambient temperature, plus acceptably high stability. This type of norbornene-based polymeric solid electrolyte is in the early stages of development. Inasmuch as the method of synthesis of these polymers is inherently flexible and techniques for the fabrication of the polymers into solid electrolytes are amenable to optimization, there is reason to anticipate further improvements.

  7. Toward flexible polymer and paper-based energy storage devices.

    Science.gov (United States)

    Nyholm, Leif; Nyström, Gustav; Mihranyan, Albert; Strømme, Maria

    2011-09-01

    All-polymer and paper-based energy storage devices have significant inherent advantages in comparison with many currently employed batteries and supercapacitors regarding environmental friendliness, flexibility, cost and versatility. The research within this field is currently undergoing an exciting development as new polymers, composites and paper-based devices are being developed. In this report, we review recent progress concerning the development of flexible energy storage devices based on electronically conducting polymers and cellulose containing composites with particular emphasis on paper-based batteries and supercapacitors. We discuss recent progress in the development of the most commonly used electronically conducting polymers used in flexible device prototypes, the advantages and disadvantages of this type of energy storage devices, as well as the two main approaches used in the manufacturing of paper-based charge storage devices.

  8. Durability of Starch Based Biodegradable Plastics Reinforced with Manila Hemp Fibers

    Directory of Open Access Journals (Sweden)

    Shinji Ochi

    2011-02-01

    Full Text Available The biodegradability of Manila hemp fiber reinforced biodegradable plastics was studied for 240 days in a natural soil and 30 days in a compost soil. After biodegradability tests, weights were measured and both tensile strength tests and microscopic observation were performed to evaluate the biodegradation behavior of the composites. The results indicate that the tensile strength of the composites displays a sharp decrease for up to five days, followed by a gradual decrease. The weight loss and the reduction in tensile strength of biodegradable composite materials in the compost soil are both significantly greater than those buried in natural soil. The biodegradability of these composites is enhanced along the lower portion because this area is more easily attacked by microorganisms.

  9. A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material.

    Science.gov (United States)

    Wen, Zhaohui; Zhang, Liming; Chen, Chao; Liu, Yibo; Wu, Changjun; Dai, Changsong

    2013-04-01

    Slow corrosion rate and poor bioactivity restrict iron-based implants in biomedical application. In this study, we design a new iron-foam-based calcium phosphate/chitosan coating biodegradable composites offering a priority mechanical and bioactive property for bone tissue engineering through electrophoretic deposition (EPD) followed by a conversion process into a phosphate buffer solution (PBS). Tensile test results showed that the mechanical property of iron foam could be regulated through altering the construction of polyurethane foam. The priority coatings were deposited from 40% nano hydroxyapatite (nHA)/ethanol suspension mixed with 60% nHA/chitosan-acetic acid aqueous solution. In vitro immersion test showed that oxidation-iron foam as the matrix decreased the amount of iron implanted and had not influence on the bioactivity of this implant, obviously. So, this method could also be a promising method for the preparation of a new calcium phosphate/chitosan coating on foam construction.

  10. Manufacturing of biodegradable polyurethane scaffolds based on polycaprolactone using a phase separation method: physical properties and in vitro assay

    Directory of Open Access Journals (Sweden)

    Asefnejad A

    2011-10-01

    Full Text Available Azadeh Asefnejad1, Mohammad Taghi Khorasani2, Aliasghar Behnamghader3, Babak Farsadzadeh1, Shahin Bonakdar4 1Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran; 2Iran Polymers and Petrochemical Institute, Tehran, Iran; 3Materials and Energy Research Center, Tehran, Iran; 4National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran Background: Biodegradable polyurethanes have found widespread use in soft tissue engineering due to their suitable mechanical properties and biocompatibility. Methods: In this study, polyurethane samples were synthesized from polycaprolactone, hexamethylene diisocyanate, and a copolymer of 1,4-butanediol as a chain extender. Polyurethane scaffolds were fabricated by a combination of liquid–liquid phase separation and salt leaching techniques. The effect of the NCO:OH ratio on porosity content and pore morphology was investigated. Results: Scanning electron micrographs demonstrated that the scaffolds had a regular distribution of interconnected pores, with pore diameters of 50–300 µm, and porosities of 64%–83%. It was observed that, by increasing the NCO:OH ratio, the average pore size, compressive strength, and compressive modulus increased. L929 fibroblast and chondrocytes were cultured on the scaffolds, and all samples exhibited suitable cell attachment and growth, with a high level of biocompatibility. Conclusion: These biodegradable polyurethane scaffolds demonstrate potential for soft tissue engineering applications. Keywords: polyurethane, tissue engineering, biodegradable, fibroblast cells

  11. Conducting-polymer-based supercapacitor devices and electrodes

    Science.gov (United States)

    Snook, Graeme A.; Kao, Pon; Best, Adam S.

    Supercapacitor electrodes and devices that utilise conducting polymers are envisaged to bridge the gap between existing carbon-based supercapacitors and batteries to form units of intermediate specific energy. This review looks at the major conducting polymer materials, namely, polyaniline, polypyrrole, polythiophene and derivatives of polythiophene, as well as composites of these materials with carbon nanotubes and inorganic battery materials. Various treatments of the conducting polymer materials to improve their properties are considered and comparisons are made with other supercapacitor materials such as carbon and with inorganic battery materials. Conducting polymers are pseudo-capacitive materials, which means that the bulk of the material undergoes a fast redox reaction to provide the capacitive response and they exhibit superior specific energies to the carbon-based supercapacitors (double-layer capacitors). In general conducting polymers are more conductive than the inorganic battery materials and consequently have greater power capability. On the downside, conducting polymers swell and contract substantially on charge and discharge, respectively. Consequently, cycle-life is poor compared with carbon-based supercapacitors which generally only charge via adsorption and desorption of ions (giving typically a few thousand cycles for conducting polymers compared with >500 000 cycles for carbon-based devices).

  12. Clinical Outcomes from Unselected “Real-World” Patients with Long Coronary Lesion Receiving 40 mm Biodegradable Polymer Coated Sirolimus-Eluting Stent

    Directory of Open Access Journals (Sweden)

    Anurag Polavarapu

    2015-01-01

    Full Text Available Background. Long lesions being implanted with drug-eluting stents (DES are associated with relatively high restenosis rates and higher incidences of adverse events. Objectives. We aimed to examine the safety and efficacy of the long (40 mm biodegradable polymer coated Indolimus sirolimus-eluting stent (SES in real-world patients with long coronary lesions. Methods. This study was observational, nonrandomized, retrospective, and carried out in real-world patients. A total of 258 patients were enrolled for the treatment of long coronary lesions, with 40 mm Indolimus. The primary endpoints in the study were incidence of major adverse cardiac events (MACE, a miscellany of cardiac death, myocardial infarction (MI, target lesion revascularization (TLR or target vessel revascularization (TVR, and stent thrombosis (ST up to 6-month follow-up. Results. The study population included higher proportion of males (74.4% and average age was 53.2 ± 11.0 years. A total of 278 lesions were intervened successfully with 280 stents. The observed MACE at 6-month follow-up was 2.0%, which included 0.8% cardiac death and 1.2% MI. There were no TLR or TVR and ST observed during 6-month follow-up. Conclusions. The long (40 mm Indolimus stent demonstrated low MACE rate and was proven to be safe and effective treatment for long lesions in “real-world” patients.

  13. Favorable Outcomes after Implantation of Biodegradable Polymer Coated Sirolimus-Eluting Stents in Diabetic Population: Results from INDOLIMUS-G Diabetic Registry

    Directory of Open Access Journals (Sweden)

    Anurag Polavarapu

    2015-01-01

    Full Text Available Objective. The main aim is to evaluate safety, efficacy, and clinical performance of the Indolimus (Sahajanand Medical Technologies Pvt. Ltd., Surat, India sirolimus-eluting stent in high-risk diabetic population with complex lesions. Methods. It was a multicentre, retrospective, non-randomized, single-arm study, which enrolled 372 diabetic patients treated with Indolimus. The primary endpoint of the study was major adverse cardiac events (MACE, which is a composite of cardiac death, target lesion revascularization (TLR, target vessel revascularization (TVR, myocardial infarction (MI, and stent thrombosis (ST. The clinical follow-ups were scheduled at 30 days, 6 months, and 9 months. Results. The mean age of the enrolled patients was 53.4 ± 10.2 years. A total of 437 lesions were intervened successfully with 483 stents (1.1 ± 0.3 per lesion. There were 256 (68.8% male patients. Hypertension and totally occluded lesions were found in 202 (54.3% and 45 (10.3% patients, respectively. The incidence of MACE at 30 days, 6 months and 9 months was 0 (0%, 6 (1.6%, and 8 (2.2%, respectively. The event-free survival at 9-month follow-up by Kaplan Meier method was found to be 97.8%. Conclusion. The use of biodegradable polymer coated sirolimus-eluting stent is associated with favorable outcomes. The results demonstrated in our study depict its safety and efficacy in diabetic population.

  14. Alternating current organic light emitting diodes based on polymer heterojunction

    Institute of Scientific and Technical Information of China (English)

    Yewen Jiang(蒋业文); Haishu Tan(谭海曙); Jianquan Yao(姚建铨)

    2003-01-01

    Most alternating current (ac) polymer EL (electroluminescent) devices to date are based on symmetricalstructure. Here novel alternating current EL devices with asymmetric structure are successfully fabricatedby using a hole type polymer PDDOPV [poly (2,5-bis (dodecyloxy)-phenylenevinylene)] and an electrontype polymer PPQ [poly (phenyl quinoxaline)]. We report that performance of polymer devices withheterojunction in ac operation is not so sensitive to thickness of the two polymer layers as in direct current(dc) operation. This new advantage of ac operation mode over dc means easy production and cheapfacilities in large-scale production in the near future. Different emission spectra are obtained when ourac devices operate in ac mode, forward and reverse bias. Emission spectrum at reverse bias includes twoparts: one is from PDDOPV, the other is from PPQ.

  15. Poly(hydroxyethyl methacrylate) based networked solid polymer electrolyte.

    Science.gov (United States)

    Lee, A-Ran; Kim, Young-Deok; Lee, Sang-Keol; Jo, Nam-Ju

    2013-10-01

    Solid polymer electrolytes (SPEs) have good safety for lithium battery compared to liquid electrolytes, but they have low ionic conductivity. To solve the problem, the polymer-in-salt system was introduced which has higher ionic conductivity than salt-in-polymer system. However, polymer-in-salt system has disadvantages that are poor mechanical properties with increasing salt concentration. In this study, networked polymer electrolytes consisting of poly(hydroxyethyl methacrylate) (P(HEMA)), lithium triflate (LiCF3SO3, LiTf) and hydrochloric acid (HCl) were prepared. And the electrochemical and mechanical properties of P(HEMA) based SPEs were investigated by using ac impedance analyzer and universal testing machine, respectively.

  16. Polymer Based Biosensors for Medical Applications

    DEFF Research Database (Denmark)

    Cherré, Solène; Rozlosnik, Noemi

    2015-01-01

    The objective of this chapter is to give an overview about the newest developments in biosensors made of polymers for medical applications. Biosensors are devices that can recognize and detect a target with high selectivity. They are widely used in many fields such as medical diagnostic......, environmental monitoring and food safety. The detected element varies from a single molecule (such as glucose), a biopolymer (such as DNA or a protein) to a whole organism (such as bacteria). Due to their easy use and possible miniaturization, biosensors have a high potential to come out of the lab...... and be available for use by everybody. To fulfil these purposes, polymers represent very appropriate materials. Many nano- and microfabrication methods for polymers are available, allowing a fast and cheap production of devices. This chapter will present the general concept of a biosensor in a first part...

  17. Polymer-based symmetric electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Arbizzani, Catia; Cerroni, Maria Grazia [Department of Chemistry `G. Ciamician`, University of Bologna, via Selmi 2, 40126 Bologna (Italy); Mastragostino, Marina [Department of Physical Chemistry, University of Palermo, via Archirafi 26, 20123 Palermo (Italy)

    1998-12-30

    The fact that conjugated polymers repeatedly undergo electrochemical doping/undoping processes, which are accompanied by color changes, makes these materials very attractive, and much effort has been devoted to their use in advanced devices. There is renewed interest in electroactive polymers that reversibly undergo both p- and n-doping because of their potential application in symmetric electrochemical devices. We employed fused molecules, dithienothiophenes, as monomers to obtain polymers with a narrow band gap suitable for n- and p-doping. The performance results of two symmetric electrochromic devices having as electrodes both poly(dithieno[3,4-b:3`,4`-d]thiophene) (pDTT1) and poly(dithieno[3,4-b:2`,3`-d]thiophene) (pDTT3) are reported and discussed

  18. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect.

    Science.gov (United States)

    Petisco-Ferrero, S; Fernández, J; Fernández San Martín, M M; Santamaría Ibarburu, P A; Sarasua Oiz, J R

    2016-08-01

    The shape memory effect (SME) has long been the focus of interest of many research groups that have studied many facets of it, yet to the authors' knowledge some molecular parameters, such as the molecular weight, have been skipped. Thus, the aim of this work is to offer further insight into the shape memory effect, by disclosing the importance of the molecular weight as the relevant parameter dictating the extension of the rubbery plateau, which is the scenario where the entropic network of entanglements manifests. For this, a set of biodegradable amorphous poly(rac-d,l)lactides have been synthesised by ring opening copolymerization of a racemic mixture of L-and D-lactide. The analysis performed on the synthesised enantiomeric copolylactides includes the determination of molecular weights by means of Gel Permeation Chromatography (GPC), thermal properties by Differential Scanning Calorimetry (DSC), dynamic mechanical analysis (DMA) and rheological tests using small amplitude oscillatory flow analysis. Shape memory properties have been determined by means of specific cyclic thermo-mechanic test protocol. It has been shown that the recovery capacity of amorphous PDLLA is linked to the disentanglement time through an exponential law.

  19. Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production's flocculation and dewatering potential.

    Science.gov (United States)

    Li, Ruijing; Ning, Xun-an; Sun, Jian; Wang, Yujie; Liang, Jieying; Lin, Meiqing; Zhang, Yaping

    2015-10-01

    The strain Acinetobacter baumannii YNWH 226 was utilized to degrade Congo red (CR) under aerobic conditions. CR was employed as the sole carbon source to produce extracellular polymeric substances (EPS) used as potent bioflocculants in this strain. A total of 98.62% CR was removed during the 48-h decoloration experiments using CR (100 mg/L). A total of 83% bioadsorption and 65% biodegradation were responsible for the decoloration and degradation of CR through the strain. The bioflocculant showed high flocculation activity and dewaterability on textile dyeing sludge. A maximum flocculation of 78.62% with a minimum SBF of 3.07×10(9) s(2)/g and a CST of 58.4 s were achieved. We investigated the internal relationship between the decolorization efficiency of YNWH 226 and the flocculation activity and dewatering capacity of its EPS. The components and structure of the EPS highly influenced the decolorization efficiency of CR and the flocculation activity and dewatering capacity on sludge.

  20. Short-term in vitro and in vivo biocompatibility of a biodegradable polyurethane foam based on 1,4-butanediisocyanate

    NARCIS (Netherlands)

    Van Minnen, B; Van Leeuwen, MBM; Stegenga, B; Zuidema, J; Hissink, CE; Van Kooten, TG; Bos, RRM

    2005-01-01

    In this study short-term in vitro and in vivo biocompatibility apects of a biodegradable polyurethane (PU) foam were evaluated. The PU consists of hard urethane segments and amorphous soft segments based on a copolyester of dl-lactide and epsilon-caprolactone. The urethane segments are of uniform le

  1. Sorption kinetics and microbial biodegradation activity of hydrophobic chemicals in sewage sludge: Model and measurements based on free concentrations

    NARCIS (Netherlands)

    Artola-Garicano, E.; Borkent, I.; Damen, K.; Jager, T.; Vaes, W.H.J.

    2003-01-01

    In the current study, a new method is introduced with which the rate-limiting factor of biodegradation processes of hydrophobic chemicals in organic and aqueous systems can be determined. The novelty of this approach lies in the combination of a free concentration-based kinetic model with measuremen

  2. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins

    NARCIS (Netherlands)

    Seck, Tetsu M.; Melchels, Ferry P. W.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibi

  3. Polymers based on renewable raw materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2002-01-01

    Full Text Available The basic raw materials for the chemical industry, which also means for polymer production, are mineral oil and natural gas. Mineral oil and natural gas resources are limited so that sooner or later they will be consumed. For this reason alternative, renewable raw materials for the chemical industry have become the object of intensive investigation all over the world. Some of the results of these investigations concerning renewable raw materials for the production of polymer materials are presented in this paper.

  4. White Polymer Light-Emitting Diodes Based on Exciplex Electroluminescence from Polymer Blends and a Single Polymer.

    Science.gov (United States)

    Liang, Junfei; Zhao, Sen; Jiang, Xiao-Fang; Guo, Ting; Yip, Hin-Lap; Ying, Lei; Huang, Fei; Yang, Wei; Cao, Yong

    2016-03-01

    In this Article, we designed and synthesized a series of polyfluorene derivatives, which consist of the electron-rich 4,4'-(9-alkyl-carbazole-3,6-diyl)bis(N,N-diphenylaniline) (TPA-Cz) in the side chain and the electron-deficient dibenzothiophene-5,5-dioxide (SO) unit in the main chain. The resulting copolymer PF-T25 that did not comprise the SO unit exhibited blue light-emission with the Commission Internationale de L'Eclairage coordinates of (0.16, 0.10). However, by physically blending PF-T25 with a blue light-emitting SO-based oligomer, a novel low-energy emission correlated to exciplex emerged due to the appropriate energy level alignment of TPA-Cz and the SO-based oligomers, which showed extended exciton lifetime as confirmed by time-resolved photoluminescent spectroscopy. The low-energy emission was also identified in copolymers consisting of SO unit in the main chain, which can effectively compensate for the high-energy emission to produce binary white light-emission. Polymer light-emitting diodes based on the exciplex-type single greenish-white polymer exhibit the peak luminous efficiency of 2.34 cd A(-1) and the maximum brightness of 12 410 cd m(-2), with Commission Internationale de L'Eclairage color coordinates (0.27, 0.39). The device based on such polymer showed much better electroluminescent stability than those based on blending films. These observations indicated that developing a single polymer with the generated exciplex emission can be a novel and effective molecular design strategy toward highly stable and efficient white polymer light-emitting diodes.

  5. Evaluation of biodegradable polymer conduits--poly(L-lactic acid)--for guiding sciatic nerve regeneration in mice.

    Science.gov (United States)

    Goulart, Camila Oliveira; Lopes, Fátima Rosalina Pereira; Monte, Zulmira Oliveira; Dantas, Severino Valentim; Souto, Allana; Oliveira, Júlia Teixeira; Almeida, Fernanda Martins; Tonda-Turo, Chiara; Pereira, Cristina Cardoso; Borges, Cristiano Piacsek; Martinez, Ana Maria Blanco

    2016-04-15

    Polymeric biomaterials are often used for stimulating nerve regeneration. Among different conduits, poly(lactide acid) - PLA polymer is considered to be a good substrate due to its biocompatibility and resorbable characteristics. This polymer is an aliphatic polyester which has been mostly used in biomedical application. It is an organic compound with low allergenic potential, low toxicity, high biocompatibility and predictable kinetics of degradation. In this study we fabricated and evaluated a PLA microporous hollow fiber as a conduit for its ability to bridge a nerve gap in a mouse sciatic nerve injury model. The PLA conduit was prepared from a polymer solution, throughout extrusion technique. The left sciatic nerve of C57BL/6 mouse was transected and the nerve stumps were placed into a resorbable PLA (PLA group) or a PCL conduit (PCL group), n=5 each group. We have also used another group in which the nerves were repaired by autograft (autograft group, n=5). Motor function was analyzed according to sciatic functional index (SFI). After 56days, the regenerated nerves were processed for light and electron microscopy and morphometric analyses were performed. A quantitative analysis of regenerated nerves showed significant increase in the number of myelinated fibers and blood vessels in animals that received PLA conduit. The PLA group exhibited better overall tissue organization compared to other groups. Presenting well-organized bundles, many regenerating clusters composed of preserved nerve fibers surrounded by layers of compacted perineurium-like cells. Also the SFI revealed a significant improvement in functional recovery. This work suggests that PLA conduits are suitable substrate for cell survival and it provides an effective strategy to be used to support axonal growth becoming a potential alternative to autograft.

  6. Choline-based ionic liquids-enhanced biodegradation of azo dyes.

    Science.gov (United States)

    Sekar, Sudharshan; Surianarayanan, Mahadevan; Ranganathan, Vijayaraghavan; MacFarlane, Douglas R; Mandal, Asit Baran

    2012-05-01

    Industrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater. In this study, several choline-based salts originally developed for use as biocompatible hydrated ionic liquids (i.e., choline sacchrinate (CS), choline dihydrogen phosphate (CDP), choline lactate (CL), and choline tartarate (CT)) have been successfully employed as the cosubstrate with S. lentus in the biodegradation of an azo dye in aqueous solution. We also demonstrate that the azo dye has been degraded to less toxic components coupled with low biomass formation.

  7. Isolation and characterization of a bacterium that degrades various polyester-based biodegradable plastics.

    Science.gov (United States)

    Teeraphatpornchai, T; Nakajima-Kambe, T; Shigeno-Akutsu, Y; Nakayama, M; Nomura, N; Nakahara, T; Uchiyama, H

    2003-01-01

    Microorganisms isolated from soil samples were screened for their ability to degrade various biodegradable polyester-based plastics. The most active strain, designated as strain TB-13, was selected as the best strain for degrading these plastics. From its phenotypic and genetic characteristics, strain TB-13 was closely related to Paenibacillus amyloyticus. It could degrade poly(lactic acid), poly(butylene succinate), poly(butylene succinate-co-adipate), poly(caprolactone) and poly(ethylene succinate) but not poly(hydroxybutylate-co-valerate). However, it could not utilize these plastics as sole carbon sources. Both protease and esterase activities, which may be involved in the degradation of plastic, were constitutively detected in the culture broth.

  8. Differences between graphene and graphene oxide in gelatin based systems for transient biodegradable energy storage applications

    Science.gov (United States)

    Landi, G.; Sorrentino, A.; Iannace, S.; Neitzert, H. C.

    2017-02-01

    A comparison between graphene flakes and graphene oxide as filler in gelatin based systems for low-cost transient biodegradable energy storage applications has been carried out. The two bio-composites have been prepared and characterized by rheological measurements, cyclic voltammetry measurements, chronopotentiometry measurements and impedance spectroscopy. Differences in dielectric and mechanical properties have been correlated to the different structural organizations determinate by the hydrophobic/hydrophilic character of the used filler. In particular, the addition of the graphene oxide to the gelatin causes an increase in the elastic modulus with a parallel increase in the mechanical stability with time as compared to the composites obtained by adding graphene. Conversely, the surface capacitance is slightly increased by the graphene oxide addition compared to the pure gelatin sample. On the other hand, the introduction of the graphene flakes into the gelatin leads to a marked increase of the dielectric properties of the resulting bio-composite.

  9. VSMP for Modeling the Biodegradability of Substituted Benzenes Based on Electrotopological State Indices for Atom Types

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-Shen; YIN Da-Qiang; CUI Shi-Hai; WANG Lian-Sheng

    2005-01-01

    The electrotopological state (E-state) index was employed to characterize the structures of 51 substituted benzenes. Eleven E-state indices of the compounds were calculated by the computer program developed in our laboratory. The method for variable selection and modeling based on prediction (VSMP) was used to select an optimal combination of the variables from 11 E-state descriptors. Then the optimal descriptors were employed to model the relationship between the relative biodegradability of the substituted benzenes and their molecular structures. A novel 5-descriptor linear model was developed and the model has a high quality with the correlation coefficient and the root mean square error in estimation step being 0.9378 and 0.35, respectively, and these in leave-one-out cross-validation procedure being 0.9210 and 0.39, respectively.

  10. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.

    Science.gov (United States)

    Mostaed, E; Sikora-Jasinska, M; Mostaed, A; Loffredo, S; Demir, A G; Previtali, B; Mantovani, D; Beanland, R; Vedani, M

    2016-07-01

    The search for a degradable metal simultaneously showing mechanical properties equal or higher to that of stainless steel and uniform degradation is still an open challenge. Several magnesium-based alloys have been studied, but their degradation rate has proved to be too fast and rarely homogeneous. Fe-based alloys show appropriate mechanical properties but very low degradation rate. In the present work, four novel Zn-Mg and two Zn-Al binary alloys were investigated as potential biodegradable materials for stent applications. The alloys were developed by casting process and homogenized at 350°C for 48h followed by hot extrusion at 250°C. Tube extrusion was performed at 300°C to produce tubes with outer/inner diameter of 4/1.5mm as precursors for biodegradable stents. Corrosion tests were performed using Hanks׳ modified solution. Extruded alloys exhibited slightly superior corrosion resistance and slower degradation rate than those of their cast counterparts, but all had corrosion rates roughly half that of a standard purity Mg control. Hot extrusion of Zn-Mg alloys shifted the corrosion regime from localized pitting to more uniform erosion, mainly due to the refinement of second phase particles. Zn-0.5Mg is the most promising material for stent applications with a good combination of strength, ductility, strain hardening exponent and an appropriate rate of loss of mechanical integrity during degradation. An EBSD analysis in the vicinity of the laser cut Zn-0.5Mg tube found no grain coarsening or texture modification confirming that, after laser cutting, the grain size and texture orientation of the final stent remains unchanged. This work shows the potential for Zn alloys to be considered for stent applications.

  11. A critical comparison of respirometric biodegradation tests based on OECD 301 and related test methods.

    Science.gov (United States)

    Reuschenbach, Peter; Pagga, Udo; Strotmann, Uwe

    2003-04-01

    Biodegradation studies of organic compounds in the aquatic environment gain important information for the final fate of chemicals in the environment. A decisive role play tests for ready biodegradability (OECD 301) and in this context, the respirometric test (OECD 301F). Two different respirometric systems (Oxitop and Sapromat) were compared and in two of ten cases (diethylene glycol and 2-ethylhexylacrylate) differences were observed indicating that the test systems are not always equivalent. For 2-ethylhexylacrylate and cyclohexanone we could not state differences in the extent of biodegradation with a municipal and industrial inoculum whereas for cyclohexanone the degradation rate was faster with a municipal inoculum. Allylthiourea (ATU) proved to be an effective inhibitor of nitrification processes and did not affect the heterotrophic biodegradation activity. Modelling of biodegradation processes could be successfully performed with a first-order and a modified logistic plot.

  12. Development of novel biodegradable Au nanocomposite hydrogels based on wheat: for inactivation of bacteria.

    Science.gov (United States)

    Jayaramudu, Tippabattini; Raghavendra, Gownolla Malegowd; Varaprasad, Kokkarachedu; Sadiku, Rotimi; Raju, Konduru Mohana

    2013-02-15

    The design and fabrication of novel biodegradable gold nanocomposites hydrogels were developed as antibacterial agent. Biodegradable gold nanocomposite hydrogels were developed by using acrylamide (AM) and wheat protein isolate (WPI). The gold nanoparticles were prepared as a gold colloid by reducing HAuCl(4)·XH(2)O with leaf extracts of Azadirachta indica (neem leaf) that formed hydrogel network. The characterization of developed biodegradable hydrogels were studied using fourier transforms infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The biodegradable gold nanoparticle composite hydrogels developed were tested for antibacterial properties. The results indicate that these biodegradable gold nanocomposite hydrogels can be used as potential candidates for antibacterial applications.

  13. Nanoparticles from Renewable Polymers

    Science.gov (United States)

    Wurm, Frederik; Weiss, Clemens

    2014-07-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  14. Biodegradable and edible gelatine actuators for use as artificial muscles

    Science.gov (United States)

    Chambers, L. D.; Winfield, J.; Ieropoulos, I.; Rossiter, J.

    2014-03-01

    The expense and use of non-recyclable materials often requires the retrieval and recovery of exploratory robots. Therefore, conventional materials such as plastics and metals in robotics can be limiting. For applications such as environmental monitoring, a fully biodegradable or edible robot may provide the optimum solution. Materials that provide power and actuation as well as biodegradability provide a compelling dimension to future robotic systems. To highlight the potential of novel biodegradable and edible materials as artificial muscles, the actuation of a biodegradable hydrogel was investigated. The fabricated gelatine based polymer gel was inexpensive, easy to handle, biodegradable and edible. The electro-mechanical performance was assessed using two contactless, parallel stainless steel electrodes immersed in 0.1M NaOH solution and fixed 40 mm apart with the strip actuator pinned directly between the electrodes. The actuation displacement in response to a bias voltage was measured over hydration/de-hydration cycles. Long term (11 days) and short term (1 hour) investigations demonstrated the bending behaviour of the swollen material in response to an electric field. Actuation voltage was low (biodegradable and edible artificial muscles could help to drive the development of environmentally friendly robotics.

  15. Formulation of caesium based and caesium containing geo-polymers

    Energy Technology Data Exchange (ETDEWEB)

    Berger, S.; Joussot-Dubien, C.; Frizon, F. [CEA Valrho, Dir. de l' Energie Nucleaire, DEN, Decontamination and Conditioning Department, DEN/DTCD/SPDE/L2ED, 30 - Marcoule (France)

    2009-10-15

    Cement encapsulation is widely used as a low- and intermediate level radioactive waste immobilisation process. Among these wastes, caesium ions are poorly immobilised by Portland cement based materials. This work consists of an experimental investigation into the ability of geo-polymers to effectively encapsulate this chemical species and to determine the impact of caesium incorporation on the geo-polymer properties. Geo-polymers were synthesised with several compositions based on the activation of metakaolin with an alkali hydroxide solution containing caesium. The setting time, mineralogy, porosity and mechanical properties of the samples were examined for one month. Leach tests were conducted during the same period to determine the immobilisation efficiency. The results depend to a large extent on the composition of the activation solution in terms of soluble silica content and alkali used. These parameters determine both the degree of condensation and the geo-polymer composition. (authors)

  16. Safe biodegradable fluorescent particles

    Science.gov (United States)

    Martin, Sue I.; Fergenson, David P.; Srivastava, Abneesh; Bogan, Michael J.; Riot, Vincent J.; Frank, Matthias

    2010-08-24

    A human-safe fluorescence particle that can be used for fluorescence detection instruments or act as a safe simulant for mimicking the fluorescence properties of microorganisms. The particle comprises a non-biological carrier and natural fluorophores encapsulated in the non-biological carrier. By doping biodegradable-polymer drug delivery microspheres with natural or synthetic fluorophores, the desired fluorescence can be attained or biological organisms can be simulated without the associated risks and logistical difficulties of live microorganisms.

  17. Fabrication of Biodegradable Polyester Nanocomposites by Electrospinning for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Zhi-Cai Xing

    2011-01-01

    Full Text Available Recently, nanocomposites have emerged as an efficient strategy to upgrade the structural and functional properties of synthetic polymers. Polyesters have attracted wide attention because of their biodegradability and biocompatibility. A logic consequence has been the introduction of natural extracellular matrix (ECM molecules, organic or inorganic nanostructures to biodegradable polymers to produce nanocomposites with enhanced properties. Consequently, the improvement of the interfacial adhesion between biodegradable polymers and natural ECM molecules or nanostructures has become the key technique in the fabrication of nanocomposites. Electrospinning has been employed extensively in the design and development of tissue engineering scaffolds to generate nanofibrous substrates of synthetic biodegradable polymers and to simulate the cellular microenvironment. In this paper, several types of biodegradable polyester nanocomposites were prepared by electrospinning, with the aim of being used as tissue engineering scaffolds. The combination of biodegradable nanofibrous polymers and natural ECM molecules or nanostructures opens new paradigms for tissue engineering applications.

  18. Recent progress in polymer-based gene delivery vectors

    Institute of Scientific and Technical Information of China (English)

    HUANG Shiwen; ZHUO Renxi

    2003-01-01

    The gene delivery system is one of the three components of a gene medicine, which is the bottle neck of current gene therapy. Nonviral vectors offer advantages over the viral system of safety, ease of manufacturing, etc. As important nonviral vectors, polymer gene delivery systems have gained increasing attention and have begun to show increasing promising. In this review, the fundamental and recent progress of polymer-based gene delivery vectors is reviewed.

  19. Investigation on poly (vinylidene fluoride) based gel polymer electrolytes

    Indian Academy of Sciences (India)

    S Rajendran; P Sivakumar; Ravi Shanker Babu

    2006-12-01

    An investigation is carried out on gel polymer electrolytes consisting of poly (vinylidene fluoride) (PVdF) as a host polymer, lithium perchlorate (LiClO4), lithium triflate (LiCF3SO3) as salts and mixture of ethylene carbonate (EC) and propylene carbonate (PC) as plasticizers. Polymer thin films were prepared by solvent casting technique and the obtained films were subjected to different characterizations, to confirm their structure, complexation and thermal changes. X-ray diffraction revealed that the salts and plasticizers disrupted the crystalline nature of PVdF based polymer electrolytes and converted them into an amorphous phase. TG/DTA studies showed the thermal stability of the polymer electrolytes. The role of interaction between polymer hosts on conductivity is discussed using the results of a.c. impedance studies. Room temperature (28°C) conductivity of 2.786 × 10-3 Scm-1 was observed in PVdF (24)–EC/PC (68)–LiCF3SO3 (2)/LiClO4 (6) polymer system.

  20. Biodegradation of Polypropylene Nonwovens

    Science.gov (United States)

    Keene, Brandi Nechelle

    -irradiated polypropylene nonwovens with pro-oxidants were invisible to the naked eye after 30 days of composting suggesting microbial attack was achieved. The final phase of the project encompasses the extrusion of bicomponent fibers. Because microorganisms desire to feed on hydrophilic molecules, commercially available starch-based polymers were spun with polypropylene resins in a sheath/core configuration. Similar to the previously discussed nonwovens studies, the bicomponent filaments were pretreated with heat (Chapter 6) and gamma-rays (Chapter 7) before evaluating the biodegradability under composting studies. The results from these chapters were reviewed to determine if bicomponent nonwovens under the same conditions could be manufactured.

  1. Manufacturing Techniques and Surface Engineering of Polymer Based Nanoparticles for Targeted Drug Delivery to Cancer

    Directory of Open Access Journals (Sweden)

    Yichao Wang

    2016-02-01

    Full Text Available The evolution of polymer based nanoparticles as a drug delivery carrier via pharmaceutical nano/microencapsulation has greatly promoted the development of nano- and micro-medicine in the past few decades. Poly(lactide-co-glycolide (PLGA and chitosan, which are biodegradable and biocompatible polymers, have been approved by both the Food & Drug Administration (FDA and European Medicine Agency (EMA, making them ideal biomaterials that can be advanced from laboratory development to clinical oral and parental administrations. PLGA and chitosan encapsulated nanoparticles (NPs have successfully been developed as new oral drug delivery systems with demonstrated high efficacy. This review aims to provide a comprehensive overview of the fabrication of PLGA and chitosan particulate systems using nano/microencapsulation methods, the current progress and the future outlooks of the nanoparticulate drug delivery systems. Especially, we focus on the formulations and nano/micro-encapsulation techniques using top-down techniques. It also addresses how the different phases including the organic and aqueous ones in the emulsion system interact with each other and subsequently influence the properties of the drug delivery system. Besides, surface modification strategies which can effectively engineer intrinsic physicochemical properties are summarised. Finally, future perspectives and potential directions of PLGA and chitosan nano/microencapsulated drug systems are outlined.

  2. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2017-02-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  3. Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites

    Science.gov (United States)

    Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.

    2016-10-01

    Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material

  4. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Aras, Neny Rasnyanti M., E-mail: neny.rasnyanti@gmail.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  5. Estimation of critical conditions of polymers based on monitoring the polymer recovery.

    Science.gov (United States)

    Bhati, S S; Macko, T; Brüll, R

    2016-06-17

    Liquid chromatography at critical conditions (LCCC) is a very attractive chromatographic technique on the border between the size exclusion and liquid adsorption mode of the liquid chromatography. The strong interest in LCCC arises from the fact that it is well suited to analyze the block lengths in segmented copolymers or the heterogeneities with regard to end groups present, for example, in functionalized polymers e.g., telechelics. In this paper a new method for identification of the critical conditions of synthetic polymers is proposed, which requires only one polymer sample with higher molar mass. The method is based on monitoring the recovery of the polymer sample from a column. The composition of the mobile phase is modified until the polymer sample is fully recovered from the column. The corresponding composition of the mobile phase is composition corresponding to LCCC. This new method was applied for the determination of critical conditions for polyethylene, syndiotactic polypropylene and isotactic polypropylene. The results of the new method will be compared to those of classical approaches and advantages will be pointed out.

  6. Drug-eluting stents with biodegradable polymer for the treatment of patients with diabetes mellitus: clinical outcome at 2 years in a large population of patients

    Directory of Open Access Journals (Sweden)

    Wiemer M

    2015-02-01

    Full Text Available Marcus Wiemer,1 Gian Battista Danzi,2 Nick West,3 Vassilios Voudris,4 René Koning,5 Stefan Hoffmann,6 Mario Lombardi,7 Josepa Mauri,8 Rade Babic,9 Fraser Witherow10On behalf of the NOBORI 2 Investigators 1Department of Cardiology, Heart and Diabetes Center North Rhine–Westphalia, Ruhr University Bochum, Bad Oeynhausen, Germany; 2Ospedale Maggiore Policlinico, Milan, Italy; 3Papworth Hospital, Cambridge, UK; 4Onassis Cardiac Surgery Center, Athens, Greece; 5Clinique Saint Hilaire, Rouen, France; 6Vivantes Netzwerk für Gesundheit GmbH, Berlin, Germany; 7Azienda Ospedaliera Villa Sofia, Palermo, Italy; 8Hospital Universitari Germans Trias i Pujol, Badalona, Spain; 9Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia; 10Dorset County Hospital, Dorchester, UK Objective: This study investigates the safety and efficacy of a third-generation drug-eluting stent (DES with biodegradable polymer in the complex patient population of diabetes mellitus (DM. Clinical trial registration: ISRCTN81649913. Background: Percutaneous coronary interventions in patients with DM are associated with a higher incidence of death, restenosis, and stent thrombosis as compared to non-diabetic patients. The use of a DES has been shown to improve outcomes in diabetic patients. Methods: Out of 3,067 patients, enrolled in 126 centers worldwide in the NOBORI 2 registry, 888 patients suffered from DM, 213 of them (14% being insulin-dependent DM (IDDM. Two years’ follow-up has been completed in this study. Results: At 1- and 2-year follow-up, 97% and 95% of the patients, respectively, were available. The reported target lesion failure (TLF rates at 1- and 2-year follow-up were 6.0% and 7.2% in the DM group, respectively, and 3.0% and 4.2% in the non-DM group, respectively (P<0.001 for both years. Inside the DM group, the TLF rates of 9.9% and 11.7% at the 1- and 2-year follow-ups, respectively, in patients with IDDM were significantly higher than the TLF rates of 4

  7. Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries

    Science.gov (United States)

    Kang, Yongku; Kim, Hee Jung; Kim, Eunkyoung; Oh, Bookeun; Cho, Jae Hyun

    A solid polymer electrolyte (SPE) based on polyethylene oxide (PEO) is prepared by photocuring of polyethylene glycol acrylates. The conductivity is greatly enhanced by adding low molecular weight poly(ethylene glycol) dimethylether (PEGDME). The maximum conducticity is 5.1×10 -4 S cm -1 at 30°C. These electrolytes display oxidation stability up to 4.5 V against a lithium reference electrode. Reversible electrochemical plating/stripping of lithium is observed on a stainless steel electrode. Li/SPE/LiMn 2O 4 as well as C(Li)/SPE/LiCoO 2 cells have been fabricated and tested to demonstrate the applicability of the resulting polymer electrolytes in lithium-polymer batteries.

  8. Drug Delivery Vehicles Based on Albumin-Polymer Conjugates.

    Science.gov (United States)

    Jiang, Yanyan; Stenzel, Martina

    2016-06-01

    Albumin has been a popular building block to create nanoparticles for drug delivery purposes. The performance of albumin as a drug carrier can be enhanced by combining protein with polymers, which allows the design of carriers to encompass a broader spectrum of drugs while features unique to synthetic polymers such as stimuli-responsiveness are introduced. Nanoparticles based on polymer-albumin hybrids can be divided into two classes: one that carries album as a bioactive surface coating and the other that uses albumin as biocompatible, although nonbioactive, building block. Nanoparticles with bioactive albumin surface coating can either be prepared by self-assembly of albumin-polymer conjugates or by postcoating of existing nanoparticles with albumin. Albumin has also been used as building block, either in its native or denatured form. Existing albumin nanoparticles are coated with polymers, which can influence the degradation of albumin or impact on the drug release. Finally, an alternative way of using albumin by denaturing the protein to generate a highly functional chain, which can be modified with polymer, has been presented. These albumin nanoparticles are designed to be extremely versatile so that they can deliver a wide variety of drugs, including traditional hydrophobic drugs, metal-based drugs and even therapeutic proteins and siRNA.

  9. Development and characterization of rosin-based polymer and its application as a cream base.

    Science.gov (United States)

    Dhanorkar, V T; Gawande, R S; Gogte, B B; Dorle, A K

    2002-01-01

    The literature contains many references to the wide range of uses of rosin-based polymers, but little has appeared in the area of rosin-based polymers used as cream bases. Various rosin polymers based on glycerol, sorbitol, and pentaerythritol were prepared and screened for efficacy as cream bases. Among these polymers, polymer 2 (glycerol-based) is reported in the present study as it produced creams with a better stability and release profile as compared to other creams. The creams were formulated employing polymer 2 (P2) and Tween 60 as surfactants. The stability of the prepared creams, as well as the diclofenac diethylammonium release pattern, was investigated using particle size analysis, conductivity, relative dielectric constant, spreadability, and irritation potential measurement, and was compared with that of creams containing Tween 60 (RT) prepared in the laboratory. The release of the drug, diclofenac diethylammonium, was measured after eight hours and compared with a standard cream (RT) and a marketed cream (RM).

  10. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Jeong Rae Kim [Hanyang University, Seoul (France). Applied Chemical Engineering Division; Korea Institute of Science and Technology, Seoul (Korea). Polymer Hybrid Research Center; Sung Won Choi [Yonsei University, Seoul (Korea). Department of Chemistry; Seong Mu Jo; Wha Seop Lee [Korea Institute of Science and Technology, Seoul (Korea). Polymer Hybrid Research Center; Byung Chul Kim [Hanyang University, Seoul (France). Applied Chemical Engineering Division

    2004-11-15

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 {mu}m have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 {mu}m, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10{sup -3} s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF{sub 6}-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD. The interfacial resistance (R{sub i}) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO{sub 2}) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 {sup o}C. (author)

  11. Electrospun PVdF-based fibrous polymer electrolytes for lithium ion polymer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Rae [Applied Chemical Engineering Division, Hanyang University, 17, Haengdang-dong, Seongdong-Ku, Seoul 133-791 (Korea, Republic of); Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Choi, Sung Won [Department of Chemistry, Yonsei University, 134, Sinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Jo, Seong Mu [Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: smjo@kist.re.kr; Lee, Wha Seop [Polymer Hybrid Research Center, Korea Institute of Science and Technology, 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Byung Chul [Applied Chemical Engineering Division, Hanyang University, 17, Haengdang-dong, Seongdong-Ku, Seoul 133-791 (Korea, Republic of)

    2004-11-15

    This paper discusses the preparation of microporous fibrous membranes from PVdF solutions with different polymer contents, using the electrospinning technique. Electrospun PVdF-based fibrous membranes with average fiber diameters (AFD's) of 0.45-1.38 {mu}m have an apparent porosity and a mean pore size (MPS) of 80-89% and 1.1-4.3 {mu}m, respectively. They exhibited a high uptake of the electrolyte solution (320-350%) and a high ionic conductivity of above 1 x 10{sup -3} s/cm at room temperature. Their ionic conductivity increased with the decrease in the AFD of the fibrous membrane due to its high electrolyte uptake. The interaction between the electrolyte molecules and the PVdF with a high crystalline content may have had a minor effect on the lithium ion transfer in the fibrous polymer electrolyte, unlike in a nanoporous gel polymer electrolyte. The fibrous polymer electrolyte that contained a 1 M LiPF{sub 6}-EC/DMC/DEC (1/1/1 by weight) solution showed a high electrochemical stability of above 5.0 V, which increased with the decrease in the AFD The interfacial resistance (R{sub i}) between the polymer electrolyte and the lithium electrode slightly increased with the storage time, compared with the higher increase in the interfacial resistance of other gel polymer electrolytes. The prototype cell (MCMB/PVdF-based fibrous electrolyte/LiCoO{sub 2}) showed a very stable charge-discharge behavior with a slight capacity loss under constant current and voltage conditions at the C/2-rate of 20 and 60 deg. C.

  12. Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers.

    Science.gov (United States)

    Lasheras-Zubiate, M; Navarro-Blasco, I; Fernández, J M; Alvarez, J I

    2012-09-30

    Cement mortars loaded with Cr, Pb and Zn were modified by polymeric admixtures [chitosans with low (LMWCH), medium (MMWCH) and high (HMWCH) molecular weight and hydroxypropylchitosan (HPCH)]. The influence of the simultaneous presence of the heavy metal and the polymeric additive on the fresh properties (consistency, water retention and setting time) and on the compressive strength of the mortars was assessed. Leaching patterns as well as properties of the cement mortars were related to the heavy metals-bearing solid phases. Chitosan admixtures lessened the effect of the addition of Cr and Pb on the setting time. In all instances, chitosans improved the compressive strength of the Zn-bearing mortars yielding values as high as 15 N mm(-2). A newly reported Zn phase, dietrichite (ZnAl(2)(SO(4))(4)·22H(2)O) was identified under the presence of LMWCH: it was responsible for an improvement by 24% in Zn retention. Lead-bearing silicates, such as plumalsite (Pb(4)Al(2)(SiO(3))(7)), were also identified by XRD confirming that Pb was mainly retained as a part of the silicate network after Ca ion exchange. Also, the presence of polymer induced the appearance and stabilization of some Pb(IV) species. Finally, diverse chromate species were identified and related to the larger leaching values of Cr(VI).

  13. EFRC: Polymer-Based Materials for Harvesting Solar Energy (stimulus)"

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P. [Univ. of Massachusetts, Amherst, MA (United States)

    2016-12-08

    The University of Massachusetts Amherst is proposing an Energy Frontier Research Center (EFRC) on Polymer-Based Materials for Harvesting Solar Energy that will integrate the widely complementary experimental and theoretical expertise of 23 faculty at UMass-Amherst Departments with researchers from the University of Massachusetts Lowell, University of Pittsburgh, the Pennsylvania State University and Konarka Technologies, Inc. Collaborative efforts with researchers at the Oak Ridge National Laboratory, the University of Bayreuth, Seoul National University and Tohoku University will complement and expand the experimental efforts in the EFRC. Our primary research aim of this EFRC is the development of hybrid polymer-based devices with efficiencies more than twice the current organic-based devices, by combining expertise in the design and synthesis of photoactive polymers, the control and guidance of polymer-based assemblies, leadership in nanostructured polymeric materials, and the theory and modeling of non-equilibrium structures. A primary goal of this EFRC is to improve the collection and conversion efficiency of a broader spectral range of solar energy using the directed self-assembly of polymer-based materials so as to optimize the design and fabrication of inexpensive devices.

  14. Biopolymers Versus Synthetic Polymers

    Directory of Open Access Journals (Sweden)

    Florentina Adriana Cziple

    2008-10-01

    Full Text Available This paper present an overview of important synthetic and natural polymers with emphasis on polymer structure, the chemistry of polymer formation. an introduction to polymer characterization. The biodegradation process can take place aerobically and anaerobically with or without the presence of light. These factors allow for biodegradation even in landfill conditions which are normally inconducive to any degradation. The sheeting used to make these packages differs significantly from other “degradable plastics” in the market as it does not attempt to replace the current popular materials but instead enhances them by rendering them biodegradable.

  15. Tribology of natural fiber polymer composites

    CERN Document Server

    Chand, N

    2008-01-01

    Environmental concerns are driving demand for bio-degradable materials such as plant-based natural fiber reinforced polymer composites. These composites are fast replacing conventional materials in many applications, especially in automobiles, where tribology (friction, lubrication and wear) is important. This book covers the availability and processing of natural fiber polymer composites and their structural, thermal, mechanical and, in particular, tribological properties.Chapter 1 discusses sources of natural fibers, their extraction and surface modification. It also reviews the ther

  16. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers

    NARCIS (Netherlands)

    Chen, Wei; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z.

    2014-01-01

    Biodegradable polymeric nanocarriers are one of the most promising systems for targeted and controlled drug and gene delivery. They have shown several unique advantages such as excellent biocompatibility, prolonged circulation time, passive tumor targeting via the enhanced permeability and retention

  17. Dual responsive polymeric nanoparticles prepared by direct functionalization of polylactic acid-based polymers via graft-from ring opening metathesis polymerization.

    Science.gov (United States)

    Veccharelli, Kate M; Tong, Venus K; Young, Jennifer L; Yang, Jerry; Gianneschi, Nathan C

    2016-01-11

    Polylactic acid (PLA) has found widespread use in plastics and in biomedical applications due to its biodegradability into natural benign products. However, PLA-based materials remain limited in usefulness due to difficulty of incorporating functional groups into the polymer backbone. In this paper, we report a strategy for PLA functionalization that establishes the preparation of highly derivatized materials in which ring opening metathesis polymerization (ROMP) is employed as a graft-from polymerization technique utilizing a norbornene-modified handle incorporated into the PLA backbone. As a demonstration of this new synthetic methodology, a PLA-derived nanoparticle bearing imidazole units protected with a photolabile group was prepared. The morphology of this material could be controllably altered in response to exposure of UV light or acidic pH as a stimulus. We anticipate that this graft-from approach to derivatization of PLA could find broad use in the development of modified, biodegradable PLA-based materials.

  18. Phenothiazine based polymers for energy and data storage application

    Energy Technology Data Exchange (ETDEWEB)

    Golriz, Seyed Ahmad Ali

    2013-03-15

    charge and discharge cycles. In addition to applications in batteries the bistability of phenothiazine polymers for high density data storage purposes was studied. Using the conductive mode of scanning force microscopy (SFM), nano-scaled patterning of spin-coated polymer films induced by electrochemical oxidation was successfully demonstrated. The scanning probe experiments revealed differences in the conductive states of written patterns before and after oxidation with no significant change in topography. Remarkably, the patterns were stable with respect to the storage time as well as mechanical wear. Finally, new synthetic approaches towards mechanically nanowear stable and redox active surfaces were established. Via grafting from methods based on Atom Transfer Radical Polymerization (ATRP), redox active polymer brushes with phenothiazine moieties were prepared and characterized by SFM and X-ray techniques. In particular, a synthetic route based on polymer brush structures with activated ester functionality appeared as a very promising and versatile fabrication method. The activated ester brushes were used for attachment of phenothiazine moieties in a successive step. By using crosslinkable diamine moieties, polymer brushes with redox functionalities and with increased surface wear resistance were successfully synthesized. In summary, this work offers deep insights into the electronic properties of polymers with phenothiazine redox active moieties. Furthermore, the applicability of phenothiazine polymers for electronic devices was explored and improved from synthetic polymer chemistry point of view.

  19. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  20. Influence of different glass fiber reinforcements on denture base polymer strength (Fiber reinforcements of dental polymer)

    OpenAIRE

    Ketij Mehulić,; Asja Čelebić,; Zdravko Schauperl,; Dragutin Komar,; Denis Vojvodić,; Domagoj Žabarović

    2009-01-01

    Aim Assessment of flexural strength values of dental base polymersreinforced with different glass fibers (“dental” and “industrial”origin) after performed artificial ageing procedures.Methods Three hundred specimens (dimensions 18 x 10 x 3 mm)were produced of denture base polymers reinforced with differentglass fibers. The “short beam” testing method was used to determinethe flexural strength of the specimens after polymerization,immersion in water of temperature 37oC for 28 days, and thermoc...

  1. Recent developments in polyurethane-based conducting polymer composites

    OpenAIRE

    Njuguna, James A. K.; Pielichowski, Krzysztof

    2004-01-01

    Polyurethane-based conducting composites with polyaniline, polythiophene or polypyrrole are in the class of modern macromolecular materials that combine the toughness and elasticity of polyurethane matrix with conductivity of intrinsically conducting polymers. Since the methods of preparation strongly influence the structure and properties of resulting composite/blend, this works aim at systematic description of polyurethane based conducting composites. This review has been ...

  2. Investigation of the Biodegradation of Chlorinated Ethenes at the Pore-Scale Using Silicon- Based Micromodels

    Science.gov (United States)

    Nambi, I. M.; Werth, C. J.; Sanford, R. A.

    2001-05-01

    Groundwater contamination by chlorinated ethenes is a matter of serious concern in industrialized countries due to the hazardous nature of these solvents. Biodegradation of these contaminants has proved to be the most cost-effective remediation technology to solve this problem. One of the most common degradation pathways is anaerobic reductive dechlorination, in which chlorinated ethenes are successively reduced from PCE to TCE to DCE to Vinyl chloride and finally to ethene, an environmentally benign substance. The success rates of this degradation with batch cultures are not often repeatable in column or field scale experiments due to the complexities associated with the heterogeneous porous medium. Hence it is important to understand degradation phenomena at the pore-scale in order to devise successful remediation techniques at a larger scale. In this study, 1 cm2 silicon based micromodels were used to simulate the subsurface at the pore-scale. The microbial culture used was Dehalospirillum multivorans. A solution of PCE (0.2 mM) and lactate (1 mM) was fed continuously into the micromodel at a rate of 0.001ml/min, which translated to a Darcy velocity in the porous matrix of 9.6m/day. Micromodels were observed with epi-fluorescence and DIC microscopy with a microscope equipped with an automated stage, CCD camera and an image analysis system. Activity within the micromodel was verified by the presence of cis-DCE in the effluent, which indicated that 95% of the PCE had been degraded. Visible biomass was also observed within a few weeks of starting PCE feeding both by DIC and fluorescence microscopy. The active and inactive zones of degradation were identified by the use of pH sensitive fluorescent dyes. The aggregates of cell biomass were quantified based on their area and perimeter in the images. These measurements indicated that after a few weeks, the biomass had reached a steady-state with new cells growing at the same rate as the sloughing of old biomass. This

  3. Coaxial electrospinning of P(LLA-CL)/heparin biodegradable polymer nanofibers: potential vascular graft for substitution of femoral artery.

    Science.gov (United States)

    Zhai, Wei; Qiu, Li-Jun; Mo, Xiu-Mei; Wang, Sheng; Xu, Yun-Fei; Peng, Bo; Liu, Min; Huang, Jun-Hua; Wang, Guang-Chun; Zheng, Jun-Hua

    2013-06-07

    Electrospinning is one of the most simple and effective methods to prepare polymer fibers with the diameters ranging from nanometer to several micrometers. Poly(L-lactide)-co-poly (ɛ-caprolactone) (P(LLA-CL)) fibers and P(LLA-CL)/heparin coaxial composite fibers herein were successfully prepared by single electrospinning and coaxial electrospinning, respectively. The prepared endothelialized P(LLA-CL) and P(LLA-CL)/heparin vascular grafts were used in the Beagle dogs experiment to evaluate the feasibility of thus made different scaffolds for substitution of dog femoral artery in early period, medium term, and long term, meanwhile the pure P(LLA-CL) vascular graft was used as the control group during all the experiments. The animal model was established by using the graft materials to anastomose both femoral arteries of dogs. The vascular grafts patency rates (i.e., the unobstructed capacity of blood vessel) were detected by color Doppler flow imaging technology and digital subtraction angiography. To observe the histological morphology at different periods, the vascular grafts were removed after 7, 14, and 30 days, and the corresponding histological changes were evaluated by hematoxylin and eosin staining. The experimental results show that in the early period, the patency rates of pure P(LLA-CL) graft, endothelial P(LLA-CL) graft, and P(LLA-CL)/heparin graft were 75%, 75%, and 100%, respectively; in the medium term, the patency rates of pure P(LLA-CL) graft and endothelial P(LLA-CL) graft were 25%, whereas that of P(LLA-CL)/heparin graft was 50%; the patency rates of pure P(LLA-CL) graft and endothelial P(LLA-CL) graft were down to 0%, whereas the patency rate of P(LLA-CL)/heparin graft was 25% in the long term. This preliminary study has demonstrated that P(LLA-CL)/heparin coaxial composite fiber maybe a reliable artificial graft for the replacement of femoral artery. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.

  4. Polymer-based stress sensor with integrated readout

    DEFF Research Database (Denmark)

    Thaysen, Jacob; Yalcinkaya, Arda Deniz; Vettiger, P.;

    2002-01-01

    We present a polymer-based mechanical sensor with an integrated strain sensor element. Conventionally, silicon has been used as a piezoresistive material due to its high gauge factor and thereby high sensitivity to strain changes in the sensor. By using the fact that the polymer SU-8 [1] is much...... softer than silicon and that a gold resistor is easily incorporated in SU-8, we have proven that a SU-8-based cantilever sensor is almost as sensitive to stress changes as the silicon piezoresistive cantilever. First, the surface stress sensing principle is discussed, from which it can be shown...

  5. Significantly elevated dielectric permittivity of Si-based semiconductor/polymer 2-2 composites induced by high polarity polymers

    Science.gov (United States)

    Feng, Yefeng; Gong, Honghong; Xie, Yunchuan; Wei, Xiaoyong; Zhang, Zhicheng

    2016-02-01

    To disclose the essential influence of polymer polarity on dielectric properties of polymer composites filled with semiconductive fillers, a series of Si-based semiconductor/polymer 2-2 composites in a series model was fabricated. The dielectric permittivity of composites is highly dependant on the polarity of polymer layers as well as the electron mobility in Si-based semiconductive sheets. The huge dielectric permittivity achieved in Si-based semiconductive sheets after being coated with high polarity polymer layers is inferred to originate from the strong induction of high polarity polymers. The increased mobility of the electrons in Si-based semiconductive sheets coated by high polarity polymer layers should be responsible for the significantly enhanced dielectric properties of composites. This could be facilely achieved by either increasing the polarity of polymer layers or reducing the percolative electric field of Si-based semiconductive sheets. The most promising 2-2 dielectric composite was found to be made of α-SiC with strong electron mobility and poly(vinyl alcohol) (PVA) with high polarity, and its highest permittivity was obtained as 372 at 100 Hz although the permittivity of α-SiC and PVA is 3-5 and 15, respectively. This work may help in the fabrication of high dielectric constant (high-k) composites by tailoring the induction effect of high polarity polymers to semiconductors.

  6. Polymer/Carbon-Based Hybrid Aerogels: Preparation, Properties and Applications

    Directory of Open Access Journals (Sweden)

    Lizeng Zuo

    2015-10-01

    Full Text Available Aerogels are synthetic porous materials derived from sol-gel materials in which the liquid component has been replaced with gas to leave intact solid nanostructures without pore collapse. Recently, aerogels based on natural or synthetic polymers, called polymer or organic aerogels, have been widely explored due to their porous structures and unique properties, such as high specific surface area, low density, low thermal conductivity and dielectric constant. This paper gives a comprehensive review about the most recent progresses in preparation, structures and properties of polymer and their derived carbon-based aerogels, as well as their potential applications in various fields including energy storage, adsorption, thermal insulation and flame retardancy. To facilitate further research and development, the technical challenges are discussed, and several future research directions are also suggested in this review.

  7. Polymer-based vehicles for therapeutic peptide delivery.

    Science.gov (United States)

    Zhang, Jinjin; Desale, Swapnil S; Bronich, Tatiana K

    2015-01-01

    During the last decades increasing attention has been paid to peptides as potential therapeutics. However, clinical applications of peptide drugs suffer from susceptibility to degradation, rather short circulation half-life, limited ability to cross physiological barriers and potential immunogenicity. These challenges can be addressed by using polymeric materials as peptide delivery systems, owing to their versatile structures and properties. A number of polymer-based vehicles have been developed to stabilize the peptides and to control their release rates. Unfortunately, no single polymer or formulation strategy has been considered ideal for all types of peptide drugs. In this review, currently used and potential polymer-based systems for the peptide delivery will be discussed.

  8. Biodegradable elastomers for biomedical applications and regenerative medicine

    NARCIS (Netherlands)

    Bat, Erhan; Zhang, Zheng; Feijen, Jan; Grijpma, Dirk W.; Poot, Andre A.

    2014-01-01

    Synthetic biodegradable polymers are of great value for the preparation of implants that are required to reside only temporarily in the body. The use of biodegradable polymers obviates the need for a second surgery to remove the implant, which is the case when a nondegradable implant is used. After

  9. Bio-based and biodegradable plastics for use in crop production.

    Science.gov (United States)

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  10. Cationic content effects of biodegradable amphoteric chitosan-based flocculants on the flocculation properties.

    Science.gov (United States)

    Yang, Zhen; Shang, Yabo; Huang, Xin; Chen, Yichun; Lu, Yaobo; Chen, Aimin; Jiang, Yuxiang; Gu, Wei; Qian, Xiaozhi; Yang, Hu; Cheng, Rongshi

    2012-01-01

    A series of biodegradable amphoteric chitosan-based flocculants (3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA) modified carboxymethyl chitosan, denoted as CMC-CTA) with different substitution degrees of CTA were prepared successfully. The content of carboxymethyl groups in each CMC-CTA sample was kept almost constant. The solubility of the various flocculants showed that, higher cationic content of flocculants caused a better solubility. The flocculation experiments using kaolin suspension as synthetic water at the laboratory scale indicated that the substitution degree of CTA was one of the key factors for the flocculation properties. With the increase of cationic content, the flocculants were demonstrated better flocculation performance and lower dosage requirement. Flocculation kinetics model of particles collisions combining zeta potential and turbidity measurements was employed to investigate the effects of the cationic content of the flocculants on the flocculation properties from the viewpoint of flocculation mechanism in detail. Furthermore, flocculation performance using raw water from Zhenjiang part of Yangtze River at the pilot scale showed the similar effects to those at the laboratory scale.

  11. Synthesis and characterization of enzymatically biodegradable PEG and peptide-based hydrogels prepared by click chemistry.

    Science.gov (United States)

    van Dijk, Maarten; van Nostrum, Cornelus F; Hennink, Wim E; Rijkers, Dirk T S; Liskamp, Rob M J

    2010-06-14

    Herein we describe the synthesis and rheological characterization of a series of enzymatically sensitive PEG and peptide-based hydrogels by the Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction. The hydrogels were synthesized by a combination of alkyne-functionalized star-shaped PEG molecules (two 4-armed PEGs with M(w) 10 and 20 kDa, respectively, and one 8-armed PEG of 20 kDa) and the protease-sensitive bis-azido peptide, N(alpha)-(azido)-D-alanyl-phenylalanyl-lysyl-(2-azidoethyl)-amide (6) in the presence of CuSO(4) and sodium ascorbate in aqueous solution. The swelling ratio and the storage modulus (G') of the hydrogels could be tailored by several parameters, for example, the initial solid content of the hydrogel, the molecular weight of the PEG derivative, and by the architecture of the PEG molecule (4- versus 8-armed PEG derivative). The peptide sequence, D-Ala-Phe-Lys, was sensitive toward the proteases plasmin and trypsin to render the hydrogels biodegradable.

  12. PLA-based biodegradable and tunable soft elastomers for biomedical applications.

    Science.gov (United States)

    Harrane, Amine; Leroy, Adrien; Nouailhas, Hélène; Garric, Xavier; Coudane, Jean; Nottelet, Benjamin

    2011-12-01

    Although desirable for biomedical applications, soft degradable elastomers having balanced amphiphilic behaviour are rarely described in the literature. Indeed, mainly highly hydrophobic elastomers or very hydrophilic elastomers with hydrogel behaviours are found. In this work, we developed thermoset degradable elastomers based on the photo-cross-linking of poly(lactide)-poly(ethylene glycol)-poly(lactide) (PLA-PEG-PLA) triblock prepolymers. The originality of the proposed elastomers comes from the careful choice of the prepolymer amphiphilicity and from the possible modulation of their mechanical properties and degradation rates provided by cross-linkers of different nature. This is illustrated with the hydrophobic and rigid 2,4,6-triallyloxy-1,3,5-triazine compared to the hydrophilic and soft pentaerythritol triallyl ether. Thermal properties, mechanical properties, swelling behaviours, degradation rates and cytocompatibility have been evaluated. Results show that it is possible to generate a family of degradable elastomers covering a broad range of properties from a single biocompatible and biodegradable prepolymer.

  13. Cationic content effects of biodegradable amphoteric chitosan-based flocculants on the flocculation properties

    Institute of Scientific and Technical Information of China (English)

    Zhen Yang; Hu Yang; Rongshi Cheng; Yabo Shang; Xin Huang; Yichun Chen; Yaobo Lu; Aimin Chen; Yuxiang Jiang; Wei Gu; Xiaozhi Qian

    2012-01-01

    A series of biodegradable amphoteric chitosan-based flocculants(3-chloro-2-hydroxypropyl trimethyl ammonium chloride(CTA)modified carboxymethyl chitosan,denoted as CMC-CTA)with different substitution degrees of CTA were prepared successfully.The content of carboxymethyl groups in each CMC-CTA sample was kept almost constant.The solubility of the various flocculants showed that,higher cationic content of flocculants caused a better solubility.The flocculation experiments using kaolin suspension as synthetic water at the laboratory scale indicated that the substitution degree of CTA was one of the key factors for the flocculation properties.With the increase of cationic content,the flocculants were demonstrated better flocculation performance and lower dosage requirement.Flocculation kinetics model of particles collisions combining zeta potential and turbidity measurements was employed to investigate the effects of the cationic content of the flocculants on the flocculation properties from the viewpoint of flocculation mechanism in detail.Furthermore,flocculation performance using raw water from Zhenjiang part of Yangtze River at the pilot scale showed the similar effects to those at the laboratory scale.

  14. Biodegradation of high molecular weight polylactic acid

    Science.gov (United States)

    Stloukal, Petr; Koutny, Marek; Sedlarik, Vladimir; Kucharczyk, Pavel

    2012-07-01

    Polylactid acid seems to be an appropriate replacement of conventional non-biodegradable synthetic polymer primarily due to comparable mechanical, thermal and processing properties in its high molecular weight form. Biodegradation of high molecular PLA was studied in compost for various forms differing in their specific surface area. The material proved its good biodegradability under composting conditions and all investigated forms showed to be acceptable for industrial composting. Despite expectations, no significant differences in resulting mineralizations were observed for fiber, film and powder sample forms with different specific surface areas. The clearly faster biodegradation was detected only for the thin coating on porous material with high specific surface area.

  15. Triptycene-based ladder monomers and polymers, methods of making each, and methods of use

    KAUST Repository

    Pinnau, Ingo

    2015-02-05

    Embodiments of the present disclosure provide for a triptycene-based A-B monomer, a method of making a triptycene-based A-B monomer, a triptycene-based ladder polymer, a method of making a triptycene-based ladder polymers, a method of using triptycene-based ladder polymers, a structure incorporating triptycene-based ladder polymers, a method of gas separation, and the like.

  16. Conductive polymer-based sensors for biomedical applications.

    Science.gov (United States)

    Nambiar, Shruti; Yeow, John T W

    2011-01-15

    A class of organic polymers, known as conducting polymers (CPs), has become increasingly popular due to its unique electrical and optical properties. Material characteristics of CPs are similar to those of some metals and inorganic semiconductors, while retaining polymer properties such as flexibility, and ease of processing and synthesis, generally associated with conventional polymers. Owing to these characteristics, research efforts in CPs have gained significant traction to produce several types of CPs since its discovery four decades ago. CPs are often categorised into different types based on the type of electric charges (e.g., delocalized pi electrons, ions, or conductive nanomaterials) responsible for conduction. Several CPs are known to interact with biological samples while maintaining good biocompatibility and hence, they qualify as interesting candidates for use in a numerous biological and medical applications. In this paper, we focus on CP-based sensor elements and the state-of-art of CP-based sensing devices that have potential applications as tools in clinical diagnosis and surgical interventions. Representative applications of CP-based sensors (electrochemical biosensor, tactile sensing 'skins', and thermal sensors) are briefly discussed. Finally, some of the key issues related to CP-based sensors are highlighted.

  17. EFFICIENT POLYMER PHOTOVOLTAIC DEVICES BASED ON POLYMER D-A BLENDS

    Institute of Scientific and Technical Information of China (English)

    Xian-yu Deng; Li-ping Zheng; Yue-qi Mo; Gang Yu; Wei Yang; Wen-hua Weng; Yong Cao

    2001-01-01

    Recent work demonstrated that efficient solar-energy conversion could be achieved in polymer photovoltaic cells (PVCs) based on interpenetrating bi-continuous networks[1,2]. In this paper we present a comprehensive study on improving energy conversion efficiencies of PVCs based on composite films of MEHPPV and fullerene derivatives. Carrier collection efficiency of ca. 30% el/ph and energy conversion efficiency of 3.9% were achieved at 500 nm. At reverse bias of 15 V, the photosensitivity reached 0.8 A/W, corresponding to a quantum efficiency over 100% el/ph. These results suggest that high efficiency photoelectric conversion can be achieved in polymer devices with M-P-M structure. These devices are promising for practical applications such as plastic solar cells and plastic photodetectors.

  18. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries in ......Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil......-batteries in 'coffee bag arrangement' were assembled and tested. The electrolyte works as separator and binder for the cathodes. Self-diffusion NMR studies on the system (EC/PC/Li+N(SO2CF3)(2)(-)/ORMOCER(R)) resulted in cationic transport numbers t(+)) of 0.42 for the EC/PC/salt system and 0.35 for the ternary...

  19. Research Progress on Environmentally Friendly Biodegradable Polymer of PVA%环保型高分子可降解材料聚乙烯醇的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭乃妮

    2012-01-01

    This paper summarized the types and properties of biodegradable polyvinyl alcohol polymer, discussed the application research progress of PVA in the field of textile, paper, oilfield, functional polymer materials, coatings, surface active agents, etc. And predicted the research direction in modification of polyvinyl alcohol.%综述了高分子可降解材料聚乙烯醇的种类和性能,探讨了聚乙烯醇在纺织、造纸、油田、功能性高分子材料、涂料、表面活性剂等方面的应用研究进展,对聚乙烯醇的改性研究方向进行了展望.

  20. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    OpenAIRE

    Bat, Erhan

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to exhibit a wide range of physical- and biological properties and a range of degradation profiles. Interest in biodegradable elastomers is increasing, particularly for the engineering of soft and elastic t...

  1. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.

    Science.gov (United States)

    Yu, Weijiang; Jiang, Guohua; Liu, Depeng; Li, Lei; Chen, Hua; Liu, Yongkun; Huang, Qin; Tong, Zaizai; Yao, Juming; Kong, Xiangdong

    2017-02-01

    To reduce the inconvenience and pain of subcutaneous needle injection, the calcium sulfate and gelatin biodegradable composite microneedle patches with high aspect-ratio microneedles (MNs) and a flexible substrate have been developed. The microneedles with an aspect-ratio approximate 6:1 exhibit excellent mechanical property which can achieve 0.4N for each needle. The cross-section views show the inside of microneedles that have abundant pores and channels which offer potential for different drug-release profiles. The preparation procedures, degradable property for the biodegradable composite microneedle patches are described in the paper. Insulin, the drug to control blood glucose levels in diabetic patients, has been embedded into the biodegradable composite MNs. The hypoglycemic effect for transdermal delivery of insulin is studied using diabetic Sprague-Dawley (SD) rats as models in vivo. After transdermal administration to the diabetic rats, the released insulin from biodegradable composite MNs exhibit an obvious and effective hypoglycemic effect for longer time compared with that of subcutaneous injection route. This work suggests that biodegradable composite MNs containing of insulin have a potential application in diabetes treatment via transdermal ingestion.

  2. Adhesion of biocompatible and biodegradable micropatterned surfaces

    NARCIS (Netherlands)

    Kaiser, J.S.; Kamperman, M.M.G.; Souza, E.J.; Schick, B.; Arzt, E.

    2011-01-01

    We studied the effects of pillar dimensions and stiffness of biocompatible and biodegradable micropatterned surfaces on adhesion on different compliant substrates. The micropatterned adhesives were based on biocompatible polydimethylsiloxane (PDMS) and biodegradable poly(lactic-co-glycolic) acid (PL

  3. Biomechanical properties of a novel biodegradable magnesium-based interference screw

    Directory of Open Access Journals (Sweden)

    Marco Ezechieli

    2016-06-01

    Full Text Available Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57. Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05. Stiffness was 121.1±13.8 N/mm for the magnesiumbased screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32. MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future.

  4. A biodegradable and biocompatible gecko-inspired tissue adhesive.

    Science.gov (United States)

    Mahdavi, Alborz; Ferreira, Lino; Sundback, Cathryn; Nichol, Jason W; Chan, Edwin P; Carter, David J D; Bettinger, Chris J; Patanavanich, Siamrut; Chignozha, Loice; Ben-Joseph, Eli; Galakatos, Alex; Pryor, Howard; Pomerantseva, Irina; Masiakos, Peter T; Faquin, William; Zumbuehl, Andreas; Hong, Seungpyo; Borenstein, Jeffrey; Vacanti, Joseph; Langer, Robert; Karp, Jeffrey M

    2008-02-19

    There is a significant medical need for tough biodegradable polymer adhesives that can adapt to or recover from various mechanical deformations while remaining strongly attached to the underlying tissue. We approached this problem by using a polymer poly(glycerol-co-sebacate acrylate) and modifying the surface to mimic the nanotopography of gecko feet, which allows attachment to vertical surfaces. Translation of existing gecko-inspired adhesives for medical applications is complex, as multiple parameters must be optimized, including: biocompatibility, biodegradation, strong adhesive tissue bonding, as well as compliance and conformability to tissue surfaces. Ideally these adhesives would also have the ability to deliver drugs or growth factors to promote healing. As a first demonstration, we have created a gecko-inspired tissue adhesive from a biocompatible and biodegradable elastomer combined with a thin tissue-reactive biocompatible surface coating. Tissue adhesion was optimized by varying dimensions of the nanoscale pillars, including the ratio of tip diameter to pitch and the ratio of tip diameter to base diameter. Coating these nanomolded pillars of biodegradable elastomers with a thin layer of oxidized dextran significantly increased the interfacial adhesion strength on porcine intestine tissue in vitro and in the rat abdominal subfascial in vivo environment. This gecko-inspired medical adhesive may have potential applications for sealing wounds and for replacement or augmentation of sutures or staples.

  5. A Simple Birefringent Terahertz Waveguide Based on Polymer Elliptical Tube

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-Li; YAO Jian-Quan; CHEN He-Ming; LI Zhong-Yang

    2011-01-01

    We propose a simple birefringent terahertz (THz) waveguide which is a polymer elliptical tube with a cross section of elliptical ring structure. It can be achieved by stretching a normal circular-tube in one direction. Simulations based on the full-vector finite element method (FEM) show that this kind of waveguides exhibits high birefringence on a level of 10-2 over a wide THz frequency range. Moreover, as a majority of modal power is trapped in the air core inside the polymer elliptical tube, the THz waveguide guiding loss caused by material absorption can be reduced effectively.

  6. Proton-Exchange Membranes Based on Sulfonated Polymers

    Directory of Open Access Journals (Sweden)

    Yulia Sergeevna Sedesheva

    2016-10-01

    Full Text Available Review is dedicated to discussion of different types of proton-exchange membranes used in fuel cells (FC. One of the most promising electrolytes is polymer electrolyte membrane (PEM. In recent years, researchers pay great attention to various non-fluorinated or partially fluorinated hydrocarbon polymers, which may become a real alternative to Nafion. Typical examples are sulfonatedpolyetheretherketones, polyarylene ethers, polysulphones, polyimides. A class of polyimides-based hydrocarbon proton-exchange membranes is separately considered as promising for widespread use in fuel cell, such membranes are of interest for our further experimental development.

  7. High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu;

    2012-01-01

    We report on the fabrication and characterization of the first accelerometer based on a polymer optical fiber Bragg grating (FBG) for operation at both 850 and 1550 nm. The devices have a flat frequency response over a 1-kHz bandwidth and a resonance frequency of about 3 kHz. The response is linear...... very strong accelerations. We compare with corresponding silica FBG accelerometers and demonstrate that using polymer FBGs improves the sensitivity by more than a factor of four and increases the figure of merit, defined as the sensitivity times the resonance frequency squared....

  8. Morphology of Polyvinylidene Fluoride Based Gel Polymer Electrolytes

    Institute of Scientific and Technical Information of China (English)

    田立颖; 黄小彬; 唐小真

    2004-01-01

    Two series of polyvinylidene fluoride (PVDF) based gel polymer electrolytes, with different LiClO4 or propylene carbonate (PC) content, were prepared and analyzed by infrared spectrometer, differential scanning calorimetry, scanning electron microscope and complex impedance spectrometer. The results show that there are great interactions between PVDF, PC and lithium cations. Both LiClO4 and PC content lead to evident change of the morphology of the gel polymer electrolytes. The content of LiClO4 and PC also influences the ionic conductivity of the samples,and an ionic conductivity of above 10-3S·cm-1 can be reached at room temperature.

  9. Development of a polymer based fiberoptic magnetostrictive metal detector system.

    Science.gov (United States)

    Hua, Wei Shu; Hooks, Joshua Rosenberg; Wu, Wen Jong; Wang, Wei Chih

    2010-10-01

    This paper presents a new metal detector using a fiberoptic magnetostriction sensor. The metal sensor uses a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing material. This polymeric magnetostrictive fiberoptic metal sensor is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is based on disruption of the magnetic flux density across the magnetostriction sensor. In this paper, characteristics of the material being sensed and magnetic properties of the ferromagnetic polymers will be discussed.

  10. Locoregional cancer therapy using polymer-based drug depots

    NARCIS (Netherlands)

    Ramazani, Farshad; van Nostrum, Cornelis F.; Storm, G; Kiessling, Fabian; Lammers, Twan; Hennink, Wim E.; Kok, Robbert J.

    2016-01-01

    Locoregional delivery of anticancer drugs is an attractive approach to minimize adverse effects associated with intravenous chemotherapy. Polymer-based drug depots injected or implanted intratumorally or adjacent to the tumor can provide long-term local drug exposure. This review highlights studies

  11. Performance of Lithium Polymer Cells with Polyacrylonitrile based Electrolyte

    DEFF Research Database (Denmark)

    Perera, Kumudu; Skaarup, Steen; West, Keld

    2006-01-01

    The performance of lithium polymer cells fabricated with Polyacrylonitrile (PAN) based electrolytes was studied using cycling voltammetry and continuous charge discharge cycling. The electrolytes consisted of PAN, ethylene carbonate (EC), propylene carbonate (PC) and lithium...... trifluoromethanesulfonate (LiCF3SO3 – LiTF). The polymer electrode material was polypyrrole (PPy) doped with dodecyl benzene sulfonate (DBS). The cells were of the form, Li / PAN : EC : PC : LiCF3SO3 / PPy : DBS. Polymer electrodes of three different thicknesses were studied using cycling at different scan rates. All cells...... voltammetry at slow scan rates were similar. The charge factor remained close to unity. These results show the fact that satisfactory cell performance can be achieved with thin electrode films and cycling at slow scan rates....

  12. An easily fabricated high performance ionic polymer based sensor network

    Science.gov (United States)

    Zhu, Zicai; Wang, Yanjie; Hu, Xiaopin; Sun, Xiaofei; Chang, Longfei; Lu, Pin

    2016-08-01

    Ionic polymer materials can generate an electrical potential from ion migration under an external force. For traditional ionic polymer metal composite sensors, the output voltage is very small (a few millivolts), and the fabrication process is complex and time-consuming. This letter presents an ionic polymer based network of pressure sensors which is easily and quickly constructed, and which can generate high voltage. A 3 × 3 sensor array was prepared by casting Nafion solution directly over copper wires. Under applied pressure, two different levels of voltage response were observed among the nine nodes in the array. For the group producing the higher level, peak voltages reached as high as 25 mV. Computational stress analysis revealed the physical origin of the different responses. High voltages resulting from the stress concentration and asymmetric structure can be further utilized to modify subsequent designs to improve the performance of similar sensors.

  13. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed.

  14. Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer

    DEFF Research Database (Denmark)

    Reisberg, S; Dang, L A; Nguyen, Q A;

    2008-01-01

    An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probe is presented. PNA were attached covalently onto a quinone-based electroactive polymer. Changes in flexibility of the PNA probe strand upon hybridization generates electrochemical changes at the polymer...

  15. Polymer waveguide based hybrid opto-electric integration technology

    Science.gov (United States)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  16. Polymer-based chips for surface plasmon resonance sensors

    Science.gov (United States)

    Obreja, Paula; Cristea, Dana; Kusko, Mihai; Dinescu, Adrian

    2008-06-01

    This paper presents a design and low-cost techniques for polymer-based chips for surface plasmon resonance (SPR) sensors. To obtain a polymer chip with a prism, microchannels and a chamber at microscale dimensions, replication techniques in polymers with controlled refractive index have been developed. Photoresist, polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA) and epoxy resin were used. Silicon dioxide/silicon-based molds have been obtained by anisotropic etching of silicon, and glass prisms were used as masters for replication. The photoresist molds were obtained by optical lithography and were used to obtain the microchannels and the chamber. A liquid prepolymer (PDMS, Sylgard 184) with curing agent at a ratio of 10:1 was used, and a special technique was developed in order to fabricate the components of the structure at the same time. For the deposition and direct patterning of the metallic layers onto the polymer surface, different methods were experimented with, including sputtering. The materials and techniques used to achieve SPR sensors are presented, and the possibilities and limitations of the technology are discussed.

  17. Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Salmiah Ibrahim

    2015-04-01

    Full Text Available Castor oil-based polyurethane as a renewable resource polymer has been synthesized for application as a host in polymer electrolyte for electrochemical devices. The polyurethane was added with LiI and NaI in different wt% to form a film of polymer electrolytes. The films were characterized by using attenuated total reflectance-Fourier transform infrared spectroscopy, dynamic mechanical analysis, electrochemical impedance spectroscopy, linear sweep voltammetry and transference number measurement. The highest conductivity of 1.42 × 10−6 S cm−1 was achieved with the addition of 30 wt% LiI and 4.28 × 10−7 S·cm−1 upon addition of 30 wt% NaI at room temperature. The temperature dependence conductivity plot indicated that both systems obeyed Arrhenius law. The activation energy for the PU-LiI and PU-NaI systems were 0.13 and 0.22 eV. Glass transition temperature of the synthesized polyurethane decreased from −15.8 °C to ~ −26 to −28 °C upon salts addition. These characterizations exhibited the castor oil-based polyurethane polymer electrolytes have potential to be used as alternative membrane for electrochemical devices.

  18. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration.

    Science.gov (United States)

    Xu, Guohui; Wang, Xiaolin; Deng, Chao; Teng, Xiaomei; Suuronen, Erik J; Shen, Zhenya; Zhong, Zhiyuan

    2015-03-01

    Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.

  19. Stable trifluorostyrene containing compounds grafted to base polymers, and their use as polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhen-Yu (Hockessin, DE); Roelofs, Mark Gerrit (Hockessin, DE)

    2010-11-09

    A fluorinated ion exchange polymer prepared by grafting at least one grafting monomer on to at least one base polymer, wherein the grafting monomer comprises structure 1a or 1b: wherein Z comprises S, SO.sub.2, or POR wherein R comprises a linear or branched perfluoroalkyl group of 1 to 14 carbon atoms optionally containing oxygen or chlorine, an alkyl group of 1 to 8 carbon atoms, an aryl group of 6 to 12 carbon atoms or a substituted aryl group of 6 to 12 carbon atoms; RF comprises a linear or branched perfluoroalkene group of 1 to 20 carbon atoms, optionally containing oxygen or chlorine; Q is chosen from F, --OM, NH.sub.2, --N(M)SO.sub.2R.sup.2.sub.F, and C(M)(SO.sub.2R.sup.2.sub.F).sub.2, wherein M comprises H, an alkali cation, or ammonium; R.sup.2.sub.F groups comprises alkyl of 1 to 14 carbon atoms which may optionally include ether oxygens or aryl of 6 to 12 carbon atoms where the alkyl or aryl groups may be perfluorinated or partially fluorinated; and n is 1 or 2 for 1a, and n is 1, 2, or 3 for 1b. These ion exchange polymers are useful in preparing catalyst coated membranes and membrane electrode assemblies used in fuel cells.

  20. Biodegradable polymer based ternary blends for removal of trace metals from simulated industrial wastewater.

    Science.gov (United States)

    Prakash, N; Arungalai Vendan, S

    2016-02-01

    The ternary blends consisting of Chitosan (CS), Nylon 6 (Ny 6) and Montmorillonite clay (MM clay) were prepared by the solution blending method with glutaraldehyde. The prepared ternary blends were characterization by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo gravimetric analysis (TGA), Differential scanning calorimetry (DSC) and Scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bondings were established between chitosan, nylon 6 and montmorillonite clay. TGA showed the thermal stability of the blend is enhanced by glutaraldehyde as Crosslink agent. Results of XRD indicated that the relative crystalline of the pure chitosan film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend was rough and heterogenous. Further, it confirms the interaction between the functional groups of the blend components. The extent of removal of the trace metals was found to be almost the same. The removal of these metals at different pH was also done and the maximum removal of the metals was observed at pH 4.5 for both trace metals. Adsorption studies and kinetic analysis have also been made. Moreover, the protonation of amine groups is induced an electrostatic repulsion of cations. When the pH of the solution was more than 5.5, the sorption rate began to decrease. Besides, the quantity of adsorbate on absorbent was fitted as a function in Langmuir and Freundlich isotherm. The sorption kinetics was tested for pseudo first order and pseudo second order reaction. The kinetic experimental data correlated with the second order kinetic model and rate constants of sorption for kinetic models were calculated and accordingly, the correlation coefficients were obtained.

  1. Biodegradable polymer based encapsulation of neem oil nanoemulsion for controlled release of Aza-A.

    Science.gov (United States)

    Jerobin, Jayakumar; Sureshkumar, R S; Anjali, C H; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-11-01

    Azadirachtin a biological compound found in neem have medicinal and pesticidal properties. The present work reports on the encapsulation of neem oil nanoemulsion using sodium alginate (Na-Alg) by cross linking with glutaraldehyde. Starch and polyethylene glycol (PEG) were used as coating agents for smooth surface of beads. The SEM images showed beads exhibited nearly spherical shape. Swelling of the polymeric beads reduced with coating which in turn decreased the rate of release of Aza-A. Starch coated encapsulation of neem oil nanoemulsion was found to be effective when compared to PEG coated encapsulation of neem oil nanoemulsion. The release rate of neem Aza-A from the beads into an aqueous environment was analyzed by UV-visible spectrophotometer (214 nm). The encapsulated neem oil nanoemulsion have the potential for controlled release of Aza-A. Neem oil nanoemulsion encapsulated beads coated with PEG was found to be toxic in lymphocyte cells.

  2. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network

    NARCIS (Netherlands)

    Sharifi, Shahriar; van Kooten, Theo G.; Kranenburg, Hendrik-Jan C.; Meij, Bjorn P.; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W.

    2013-01-01

    Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) ne

  3. Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.

    Science.gov (United States)

    Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin

    2007-05-18

    Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.

  4. Reconfigurable biodegradable shape-memory elastomers via Diels-Alder coupling.

    Science.gov (United States)

    Ninh, Chi; Bettinger, Christopher J

    2013-07-08

    Synthetic biodegradable elastomers are a class of polymers that have demonstrated far-reaching utility as biomaterials for use in many medical applications. Biodegradable elastomers can be broadly classified into networks prepared by either step-growth or chain-growth polymerization. Each processing strategy affords distinct advantages in terms of capabilities and resulting