WorldWideScience

Sample records for based auto-contoured target

  1. SU-C-BRB-05: Determining the Adequacy of Auto-Contouring Via Probabilistic Assessment of Ensuing Treatment Plan Metrics in Comparison with Manual Contours

    International Nuclear Information System (INIS)

    Nourzadeh, H; Watkins, W; Siebers, J; Ahmad, M

    2016-01-01

    Purpose: To determine if auto-contour and manual-contour—based plans differ when evaluated with respect to probabilistic coverage metrics and biological model endpoints for prostate IMRT. Methods: Manual and auto-contours were created for 149 CT image sets acquired from 16 unique prostate patients. A single physician manually contoured all images. Auto-contouring was completed utilizing Pinnacle’s Smart Probabilistic Image Contouring Engine (SPICE). For each CT, three different 78 Gy/39 fraction 7-beam IMRT plans are created; PD with drawn ROIs, PAS with auto-contoured ROIs, and PM with auto-contoured OARs with the manually drawn target. For each plan, 1000 virtual treatment simulations with different sampled systematic errors for each simulation and a different sampled random error for each fraction were performed using our in-house GPU-accelerated robustness analyzer tool which reports the statistical probability of achieving dose-volume metrics, NTCP, TCP, and the probability of achieving the optimization criteria for both auto-contoured (AS) and manually drawn (D) ROIs. Metrics are reported for all possible cross-evaluation pairs of ROI types (AS,D) and planning scenarios (PD,PAS,PM). Bhattacharyya coefficient (BC) is calculated to measure the PDF similarities for the dose-volume metric, NTCP, TCP, and objectives with respect to the manually drawn contour evaluated on base plan (D-PD). Results: We observe high BC values (BC≥0.94) for all OAR objectives. BC values of max dose objective on CTV also signify high resemblance (BC≥0.93) between the distributions. On the other hand, BC values for CTV’s D95 and Dmin objectives are small for AS-PM, AS-PD. NTCP distributions are similar across all evaluation pairs, while TCP distributions of AS-PM, AS-PD sustain variations up to %6 compared to other evaluated pairs. Conclusion: No significant probabilistic differences are observed in the metrics when auto-contoured OARs are used. The prostate auto-contour needs

  2. SU-C-BRB-05: Determining the Adequacy of Auto-Contouring Via Probabilistic Assessment of Ensuing Treatment Plan Metrics in Comparison with Manual Contours

    Energy Technology Data Exchange (ETDEWEB)

    Nourzadeh, H; Watkins, W; Siebers, J; Ahmad, M [University of Virginia Health Systems, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To determine if auto-contour and manual-contour—based plans differ when evaluated with respect to probabilistic coverage metrics and biological model endpoints for prostate IMRT. Methods: Manual and auto-contours were created for 149 CT image sets acquired from 16 unique prostate patients. A single physician manually contoured all images. Auto-contouring was completed utilizing Pinnacle’s Smart Probabilistic Image Contouring Engine (SPICE). For each CT, three different 78 Gy/39 fraction 7-beam IMRT plans are created; PD with drawn ROIs, PAS with auto-contoured ROIs, and PM with auto-contoured OARs with the manually drawn target. For each plan, 1000 virtual treatment simulations with different sampled systematic errors for each simulation and a different sampled random error for each fraction were performed using our in-house GPU-accelerated robustness analyzer tool which reports the statistical probability of achieving dose-volume metrics, NTCP, TCP, and the probability of achieving the optimization criteria for both auto-contoured (AS) and manually drawn (D) ROIs. Metrics are reported for all possible cross-evaluation pairs of ROI types (AS,D) and planning scenarios (PD,PAS,PM). Bhattacharyya coefficient (BC) is calculated to measure the PDF similarities for the dose-volume metric, NTCP, TCP, and objectives with respect to the manually drawn contour evaluated on base plan (D-PD). Results: We observe high BC values (BC≥0.94) for all OAR objectives. BC values of max dose objective on CTV also signify high resemblance (BC≥0.93) between the distributions. On the other hand, BC values for CTV’s D95 and Dmin objectives are small for AS-PM, AS-PD. NTCP distributions are similar across all evaluation pairs, while TCP distributions of AS-PM, AS-PD sustain variations up to %6 compared to other evaluated pairs. Conclusion: No significant probabilistic differences are observed in the metrics when auto-contoured OARs are used. The prostate auto-contour needs

  3. PET-CT-Based Auto-Contouring in Non-Small-Cell Lung Cancer Correlates With Pathology and Reduces Interobserver Variability in the Delineation of the Primary Tumor and Involved Nodal Volumes

    International Nuclear Information System (INIS)

    Baardwijk, Angela van; Bosmans, Geert; Boersma, Liesbeth; Buijsen, Jeroen; Wanders, Stofferinus; Hochstenbag, Monique; Suylen, Robert-Jan van; Dekker, Andre; Dehing-Oberije, Cary; Houben, Ruud; Bentzen, Soren M.; Kroonenburgh, Marinus van; Lambin, Philippe; Ruysscher, Dirk de

    2007-01-01

    Purpose: To compare source-to-background ratio (SBR)-based PET-CT auto-delineation with pathology in non-small-cell lung cancer (NSCLC) and to investigate whether auto-delineation reduces the interobserver variability compared with manual PET-CT-based gross tumor volume (GTV) delineation. Methods and Materials: Source-to-background ratio-based auto-delineation was compared with macroscopic tumor dimensions to assess its validity in 23 tumors. Thereafter, GTVs were delineated manually on 33 PET-CT scans by five observers for the primary tumor (GTV-1) and the involved lymph nodes (GTV-2). The delineation was repeated after 6 months with the auto-contour provided. This contour was edited by the observers. For comparison, the concordance index (CI) was calculated, defined as the ratio of intersection and the union of two volumes (A intersection B)/(A union B). Results: The maximal tumor diameter of the SBR-based auto-contour correlated strongly with the macroscopic diameter of primary tumors (correlation coefficient = 0.90) and was shown to be accurate for involved lymph nodes (sensitivity 67%, specificity 95%). The median auto-contour-based target volumes were smaller than those defined by manual delineation for GTV-1 (31.8 and 34.6 cm 3 , respectively; p = 0.001) and GTV-2 (16.3 and 21.8 cm 3 , respectively; p 0.02). The auto-contour-based method showed higher CIs than the manual method for GTV-1 (0.74 and 0.70 cm 3 , respectively; p 3 , respectively; p = 0.11). Conclusion: Source-to-background ratio-based auto-delineation showed a good correlation with pathology, decreased the delineated volumes of the GTVs, and reduced the interobserver variability. Auto-contouring may further improve the quality of target delineation in NSCLC patients

  4. Does atlas-based autosegmentation of neck levels require subsequent manual contour editing to avoid risk of severe target underdosage? A dosimetric analysis

    International Nuclear Information System (INIS)

    Voet, Peter W.J.; Dirkx, Maarten L.P.; Teguh, David N.; Hoogeman, Mischa S.; Levendag, Peter C.; Heijmen, Ben J.M.

    2011-01-01

    Background and purpose: To investigate the dosimetric impact of not editing auto-contours of the elective neck and organs at risk (OAR), generated with atlas-based autosegmentation (ABAS) (Elekta software) for head and neck cancer patients. Materials and methods: For nine patients ABAS auto-contours and auto-contours edited by two observers were available. Based on the non-edited auto-contours clinically acceptable IMRT plans were constructed (designated 'ABAS plans'). These plans were then evaluated for the two edited structure sets, by quantifying the percentage of the neck-PTV receiving more than 95% of the prescribed dose (V 95 ) and the near-minimum dose (D 99 ) in the neck PTV. Dice coefficients and mean contour distances were calculated to quantify the similarity of ABAS auto-contours with the structure sets edited by observer 1 and observer 2. To study the dosimetric importance of editing OAR auto-contours a new IMRT plan was generated for each patient-observer combination, based on the observer's edited CTV and the non-edited salivary gland auto-contours. For each plan mean doses for the non-edited glands were compared with doses for the same glands edited by the observer. Results: For both observers, edited neck CTVs were larger than ABAS auto-contours (p ≤ 0.04), by a mean of 8.7%. When evaluating ABAS plans on the PTVs of the edited structure sets, V 95 reduced by 7.2% ± 5.4% (1 SD) (p 99 was 14.2 Gy (range 1-54 Gy). Even for Dice coefficients >0.8 and mean contour distances 99 up to 11 Gy were observed. For treatment plans based on observer PTVs and non-edited auto-contoured salivary glands, the mean doses in the edited glands differed by only -0.6 Gy ± 1.0 Gy (p = 0.06). Conclusions: Editing of auto-contoured neck CTVs generated by ABAS is required to avoid large underdosages in target volumes. Often used similarity measures for evaluation of auto-contouring algorithms, such as dice coefficients, do not predict well for expected PTV underdose

  5. WE-G-BRD-07: Automated MR Image Standardization and Auto-Contouring Strategy for MRI-Based Adaptive Brachytherapy for Cervix Cancer

    International Nuclear Information System (INIS)

    Saleh, H Al; Erickson, B; Paulson, E

    2015-01-01

    Purpose: MRI-based adaptive brachytherapy (ABT) is an emerging treatment modality for patients with gynecological tumors. However, MR image intensity non-uniformities (IINU) can vary from fraction to fraction, complicating image interpretation and auto-contouring accuracy. We demonstrate here an automated MR image standardization and auto-contouring strategy for MRI-based ABT of cervix cancer. Methods: MR image standardization consisted of: 1) IINU correction using the MNI N3 algorithm, 2) noise filtering using anisotropic diffusion, and 3) signal intensity normalization using the volumetric median. This post-processing chain was implemented as a series of custom Matlab and Java extensions in MIM (v6.4.5, MIM Software) and was applied to 3D T2 SPACE images of six patients undergoing MRI-based ABT at 3T. Coefficients of variation (CV=σ/µ) were calculated for both original and standardized images and compared using Mann-Whitney tests. Patient-specific cumulative MR atlases of bladder, rectum, and sigmoid contours were constructed throughout ABT, using original and standardized MR images from all previous ABT fractions. Auto-contouring was performed in MIM two ways: 1) best-match of one atlas image to the daily MR image, 2) multi-match of all previous fraction atlas images to the daily MR image. Dice’s Similarity Coefficients (DSCs) were calculated for auto-generated contours relative to reference contours for both original and standardized MR images and compared using Mann-Whitney tests. Results: Significant improvements in CV were detected following MR image standardization (p=0.0043), demonstrating an improvement in MR image uniformity. DSCs consistently increased for auto-contoured bladder, rectum, and sigmoid following MR image standardization, with the highest DSCs detected when the combination of MR image standardization and multi-match cumulative atlas-based auto-contouring was utilized. Conclusion: MR image standardization significantly improves MR image

  6. WE-G-BRD-07: Automated MR Image Standardization and Auto-Contouring Strategy for MRI-Based Adaptive Brachytherapy for Cervix Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H Al; Erickson, B; Paulson, E [Medical College of Wisconsin, Milwaukee, WI (United States)

    2015-06-15

    Purpose: MRI-based adaptive brachytherapy (ABT) is an emerging treatment modality for patients with gynecological tumors. However, MR image intensity non-uniformities (IINU) can vary from fraction to fraction, complicating image interpretation and auto-contouring accuracy. We demonstrate here an automated MR image standardization and auto-contouring strategy for MRI-based ABT of cervix cancer. Methods: MR image standardization consisted of: 1) IINU correction using the MNI N3 algorithm, 2) noise filtering using anisotropic diffusion, and 3) signal intensity normalization using the volumetric median. This post-processing chain was implemented as a series of custom Matlab and Java extensions in MIM (v6.4.5, MIM Software) and was applied to 3D T2 SPACE images of six patients undergoing MRI-based ABT at 3T. Coefficients of variation (CV=σ/µ) were calculated for both original and standardized images and compared using Mann-Whitney tests. Patient-specific cumulative MR atlases of bladder, rectum, and sigmoid contours were constructed throughout ABT, using original and standardized MR images from all previous ABT fractions. Auto-contouring was performed in MIM two ways: 1) best-match of one atlas image to the daily MR image, 2) multi-match of all previous fraction atlas images to the daily MR image. Dice’s Similarity Coefficients (DSCs) were calculated for auto-generated contours relative to reference contours for both original and standardized MR images and compared using Mann-Whitney tests. Results: Significant improvements in CV were detected following MR image standardization (p=0.0043), demonstrating an improvement in MR image uniformity. DSCs consistently increased for auto-contoured bladder, rectum, and sigmoid following MR image standardization, with the highest DSCs detected when the combination of MR image standardization and multi-match cumulative atlas-based auto-contouring was utilized. Conclusion: MR image standardization significantly improves MR image

  7. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy.

    Science.gov (United States)

    Yang, Jinzhong; Beadle, Beth M; Garden, Adam S; Gunn, Brandon; Rosenthal, David; Ang, Kian; Frank, Steven; Williamson, Ryan; Balter, Peter; Court, Laurence; Dong, Lei

    2014-01-01

    To investigate atlas-based auto-segmentation methods to improve the quality of the delineation of low-risk clinical target volumes (CTVs) of unilateral tonsil cancers. Sixteen patients received intensity modulated radiation therapy for left tonsil tumors. These patients were treated by a total of 8 oncologists, who delineated all contours manually on the planning CT image. We chose 6 of the patients as atlas cases and used atlas-based auto-segmentation to map each the atlas CTV to the other 10 patients (test patients). For each test patient, the final contour was produced by combining the 6 individual segmentations from the atlases using the simultaneous truth and performance level estimation algorithm. In addition, for each test patient, we identified a single atlas that produced deformed contours best matching the physician's manual contours. The auto-segmented contours were compared with the physician's manual contours using the slice-wise Hausdorff distance (HD), the slice-wise Dice similarity coefficient (DSC), and a total volume overlap index. No single atlas consistently produced good results for all 10 test cases. The multiatlas segmentation achieved a good agreement between auto-segmented contours and manual contours, with a median slice-wise HD of 7.4 ± 1.0 mm, median slice-wise DSC of 80.2% ± 5.9%, and total volume overlap of 77.8% ± 3.3% over the 10 test cases. For radiation oncologists who contoured both the test case and one of the atlas cases, the best atlas for a test case had almost always been contoured by the oncologist who had contoured that test case, indicating that individual physician's practice dominated in target delineation and was an important factor in optimal atlas selection. Multiatlas segmentation may improve the quality of CTV delineation in clinical practice for unilateral tonsil cancers. We also showed that individual physician's practice was an important factor in selecting the optimal atlas for atlas-based auto

  8. Phantom study on three-dimensional target volume delineation by PET/CT-based auto-contouring

    International Nuclear Information System (INIS)

    Zhang, Tiejiao; Sakaguchi, Yuichi; Mitsumoto, Katsuhiko; Mitsumoto, Tatsuya; Sasaki, Masayuki; Tachiya, Yosuke; Ohya, Nobuyoshi

    2010-01-01

    The aim of this study was to determine an appropriate threshold value for delineation of the target volume in positron emission tomography (PET)/CT and to investigate whether we could delineate a target volume by phantom studies. A phantom consisted of six spheres (φ10-37 mm) filled with 18 F solution. Data acquisition was performed PET/CT in non-motion and motion status with high 18 F solution and in non-motion status with low 18 F solution. In non-motion phantom experiments, we determined two types of threshold value, an absolute SUV (T SUV ) and a percentage of the maximum SUV (T % ). Delineation using threshold values was applied for all spheres and for selected large spheres (a diameter of 22 mm or larger). In motion phantom experiments, data acquisition was performed in a static mode (sPET) and a gated mode (gPET). CT scanning was performed with helical CT (HCT) and 4-dimentional CT (4DCT). The appropriate threshold values were aT % =27% and aT SUV =2.4 for all spheres, and sT % =30% and sT SUV =4.3 for selected spheres. For all spheres in sPET/HCT in motion, the delineated volumes were 84%-129% by the aT % and 34%-127% by the aT SUV . In gPET/4DCT in motion, the delineated volumes were 94-103% by the aT % and 51-131% by the aT SUV . For low radioactivity spheres, the delineated volumes were all underestimated. A threshold value of T % =27% was proposed for auto-contouring of lung tumors. Our results also suggested that the respiratory gated data acquisition should be performed in both PET and CT for target volume delineation. (author)

  9. Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study.

    Science.gov (United States)

    Fast, Martin F; Eiben, Björn; Menten, Martin J; Wetscherek, Andreas; Hawkes, David J; McClelland, Jamie R; Oelfke, Uwe

    2017-12-01

    Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours

    International Nuclear Information System (INIS)

    Chebrolu, V.V.; Chebrolu, V.V.; Saenz, D.; Tewatia, D.; Paliwal, B.R.; Chebrolu, V.V.; Saenz, D.; Paliwal, B.R.; Sethares, W.A.; Cannon, G.

    2014-01-01

    To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing and successive localization (MPSL) algorithms were designed and implemented for achieving auto segmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix © and MIMV ista software). Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV) were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0 ±11.1 seconds per phase ( 512 ×512 resolution) as compared to 142.3±11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth) were 0.865 ± 0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation.

  11. TU-AB-202-10: How Effective Are Current Atlas Selection Methods for Atlas-Based Auto-Contouring in Radiotherapy Planning?

    Energy Technology Data Exchange (ETDEWEB)

    Peressutti, D; Schipaanboord, B; Kadir, T; Gooding, M [Mirada Medical Limited, Science and Medical Technology, Oxford (United Kingdom); Soest, J van; Lustberg, T; Elmpt, W van; Dekker, A [Maastricht University Medical Centre, Department of Radiation Oncology MAASTRO - GROW School for Oncology Developmental Biology, Maastricht (Netherlands)

    2016-06-15

    Purpose: To investigate the effectiveness of atlas selection methods for improving atlas-based auto-contouring in radiotherapy planning. Methods: 275 H&N clinically delineated cases were employed as an atlas database from which atlases would be selected. A further 40 previously contoured cases were used as test patients against which atlas selection could be performed and evaluated. 26 variations of selection methods proposed in the literature and used in commercial systems were investigated. Atlas selection methods comprised either global or local image similarity measures, computed after rigid or deformable registration, combined with direct atlas search or with an intermediate template image. Workflow Box (Mirada-Medical, Oxford, UK) was used for all auto-contouring. Results on brain, brainstem, parotids and spinal cord were compared to random selection, a fixed set of 10 “good” atlases, and optimal selection by an “oracle” with knowledge of the ground truth. The Dice score and the average ranking with respect to the “oracle” were employed to assess the performance of the top 10 atlases selected by each method. Results: The fixed set of “good” atlases outperformed all of the atlas-patient image similarity-based selection methods (mean Dice 0.715 c.f. 0.603 to 0.677). In general, methods based on exhaustive comparison of local similarity measures showed better average Dice scores (0.658 to 0.677) compared to the use of either template image (0.655 to 0.672) or global similarity measures (0.603 to 0.666). The performance of image-based selection methods was found to be only slightly better than a random (0.645). Dice scores given relate to the left parotid, but similar results patterns were observed for all organs. Conclusion: Intuitively, atlas selection based on the patient CT is expected to improve auto-contouring performance. However, it was found that published approaches performed marginally better than random and use of a fixed set of

  12. Contours, 2ft Contour Information in AutoCAD & ArcInfo formats. AutoCAD contains cut line information. NAD83, Nevada State Plane, West Zone, US Foot. Broken into Township, Range, and Section Grids, Published in 2006, City of Carson City Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Contours dataset current as of 2006. 2ft Contour Information in AutoCAD & ArcInfo formats. AutoCAD contains cut line information. NAD83, Nevada State Plane, West...

  13. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Ates, O; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2016-06-15

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed with CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.

  14. SU-C-BRA-03: An Automated and Quick Contour Errordetection for Auto Segmentation in Online Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Zhang, J; Ates, O; Li, X

    2016-01-01

    Purpose: To develop a tool that can quickly and automatically assess contour quality generated from auto segmentation during online adaptive replanning. Methods: Due to the strict time requirement of online replanning and lack of ‘ground truth’ contours in daily images, our method starts with assessing image registration accuracy focusing on the surface of the organ in question. Several metrics tightly related to registration accuracy including Jacobian maps, contours shell deformation, and voxel-based root mean square (RMS) analysis were computed. To identify correct contours, additional metrics and an adaptive decision tree are introduced. To approve in principle, tests were performed with CT sets, planned and daily CTs acquired using a CT-on-rails during routine CT-guided RT delivery for 20 prostate cancer patients. The contours generated on daily CTs using an auto-segmentation tool (ADMIRE, Elekta, MIM) based on deformable image registration of the planning CT and daily CT were tested. Results: The deformed contours of 20 patients with total of 60 structures were manually checked as baselines. The incorrect rate of total contours is 49%. To evaluate the quality of local deformation, the Jacobian determinant (1.047±0.045) on contours has been analyzed. In an analysis of rectum contour shell deformed, the higher rate (0.41) of error contours detection was obtained compared to 0.32 with manual check. All automated detections took less than 5 seconds. Conclusion: The proposed method can effectively detect contour errors in micro and macro scope by evaluating multiple deformable registration metrics in a parallel computing process. Future work will focus on improving practicability and optimizing calculation algorithms and metric selection.

  15. Auto-propagation of contours for adaptive prostate radiation therapy

    International Nuclear Information System (INIS)

    Chao Ming; Xie Yaoqin; Xing Lei

    2008-01-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future

  16. Auto-propagation of contours for adaptive prostate radiation therapy

    Science.gov (United States)

    Chao, Ming; Xie, Yaoqin; Xing, Lei

    2008-09-01

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  17. Auto-propagation of contours for adaptive prostate radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chao Ming; Xie Yaoqin; Xing Lei [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305-5847 (United States)], E-mail: lei@reyes.stanford.edu

    2008-09-07

    The purpose of this work is to develop an effective technique to automatically propagate contours from planning CT to cone beam CT (CBCT) to facilitate CBCT-guided prostate adaptive radiation therapy. Different from other disease sites, such as the lungs, the contour mapping here is complicated by two factors: (i) the physical one-to-one correspondence may not exist due to the insertion or removal of some image contents within the region of interest (ROI); and (ii) reduced contrast to noise ratio of the CBCT images due to increased scatter. To overcome these issues, we investigate a strategy of excluding the regions with variable contents by a careful design of a narrow shell signifying the contour of an ROI. For rectum, for example, a narrow shell with the delineated contours as its interior surface was constructed to avoid the adverse influence of the day-to-day content change inside the rectum on the contour mapping. The corresponding contours in the CBCT were found by warping the narrow shell through the use of BSpline deformable model. Both digital phantom experiments and clinical case testing were carried out to validate the proposed ROI mapping method. It was found that the approach was able to reliably warp the constructed narrow band with an accuracy better than 1.3 mm. For all five clinical cases enrolled in this study, the method yielded satisfactory results even when there were significant rectal content changes between the planning CT and CBCT scans. The overlapped area of the auto-mapped contours over 90% to the manually drawn contours is readily achievable. The proposed approach permits us to take advantage of the regional calculation algorithm yet avoiding the nuisance of rectum/bladder filling and provide a useful tool for adaptive radiotherapy of prostate in the future.

  18. Evaluation of atlas based auto-segmentation for head and neck target volume delineation in adaptive/replan IMRT

    International Nuclear Information System (INIS)

    Speight, R; Lindsay, R; Harding, R; Sykes, J; Karakaya, E; Prestwich, R; Sen, M

    2014-01-01

    IMRT for head and neck patients requires clinicians to delineate clinical target volumes (CTV) on a planning-CT (>2hrs/patient). When patients require a replan-CT, CTVs must be re-delineated. This work assesses the performance of atlas-based autosegmentation (ABAS), which uses deformable image registration between planning and replan-CTs to auto-segment CTVs on the replan-CT, based on the planning contours. Fifteen patients with planning-CT and replan-CTs were selected. One clinician delineated CTVs on the planning-CTs and up to three clinicians delineated CTVs on the replan-CTs. Replan-CT volumes were auto-segmented using ABAS using the manual CTVs from the planning-CT as an atlas. ABAS CTVs were edited manually to make them clinically acceptable. Clinicians were timed to estimate savings using ABAS. CTVs were compared using dice similarity coefficient (DSC) and mean distance to agreement (MDA). Mean inter-observer variability (DSC>0.79 and MDA<2.1mm) was found to be greater than intra-observer variability (DSC>0.91 and MDA<1.5mm). Comparing ABAS to manual CTVs gave DSC=0.86 and MDA=2.07mm. Once edited, ABAS volumes agreed more closely with the manual CTVs (DSC=0.87 and MDA=1.87mm). The mean clinician time required to produce CTVs reduced from 169min to 57min when using ABAS. ABAS segments volumes with accuracy close to inter-observer variability however the volumes require some editing before clinical use. Using ABAS reduces contouring time by a factor of three.

  19. Comparison of Intensity-Modulated Radiotherapy Planning Based on Manual and Automatically Generated Contours Using Deformable Image Registration in Four-Dimensional Computed Tomography of Lung Cancer Patients

    International Nuclear Information System (INIS)

    Weiss, Elisabeth; Wijesooriya, Krishni; Ramakrishnan, Viswanathan; Keall, Paul J.

    2008-01-01

    Purpose: To evaluate the implications of differences between contours drawn manually and contours generated automatically by deformable image registration for four-dimensional (4D) treatment planning. Methods and Materials: In 12 lung cancer patients intensity-modulated radiotherapy (IMRT) planning was performed for both manual contours and automatically generated ('auto') contours in mid and peak expiration of 4D computed tomography scans, with the manual contours in peak inspiration serving as the reference for the displacement vector fields. Manual and auto plans were analyzed with respect to their coverage of the manual contours, which were assumed to represent the anatomically correct volumes. Results: Auto contours were on average larger than manual contours by up to 9%. Objective scores, D 2% and D 98% of the planning target volume, homogeneity and conformity indices, and coverage of normal tissue structures (lungs, heart, esophagus, spinal cord) at defined dose levels were not significantly different between plans (p = 0.22-0.94). Differences were statistically insignificant for the generalized equivalent uniform dose of the planning target volume (p = 0.19-0.94) and normal tissue complication probabilities for lung and esophagus (p = 0.13-0.47). Dosimetric differences >2% or >1 Gy were more frequent in patients with auto/manual volume differences ≥10% (p = 0.04). Conclusions: The applied deformable image registration algorithm produces clinically plausible auto contours in the majority of structures. At this stage clinical supervision of the auto contouring process is required, and manual interventions may become necessary. Before routine use, further investigations are required, particularly to reduce imaging artifacts

  20. Deep Learning Algorithm for Auto-Delineation of High-Risk Oropharyngeal Clinical Target Volumes With Built-In Dice Similarity Coefficient Parameter Optimization Function.

    Science.gov (United States)

    Cardenas, Carlos E; McCarroll, Rachel E; Court, Laurence E; Elgohari, Baher A; Elhalawani, Hesham; Fuller, Clifton D; Kamal, Mona J; Meheissen, Mohamed A M; Mohamed, Abdallah S R; Rao, Arvind; Williams, Bowman; Wong, Andrew; Yang, Jinzhong; Aristophanous, Michalis

    2018-06-01

    Automating and standardizing the contouring of clinical target volumes (CTVs) can reduce interphysician variability, which is one of the largest sources of uncertainty in head and neck radiation therapy. In addition to using uniform margin expansions to auto-delineate high-risk CTVs, very little work has been performed to provide patient- and disease-specific high-risk CTVs. The aim of the present study was to develop a deep neural network for the auto-delineation of high-risk CTVs. Fifty-two oropharyngeal cancer patients were selected for the present study. All patients were treated at The University of Texas MD Anderson Cancer Center from January 2006 to August 2010 and had previously contoured gross tumor volumes and CTVs. We developed a deep learning algorithm using deep auto-encoders to identify physician contouring patterns at our institution. These models use distance map information from surrounding anatomic structures and the gross tumor volume as input parameters and conduct voxel-based classification to identify voxels that are part of the high-risk CTV. In addition, we developed a novel probability threshold selection function, based on the Dice similarity coefficient (DSC), to improve the generalization of the predicted volumes. The DSC-based function is implemented during an inner cross-validation loop, and probability thresholds are selected a priori during model parameter optimization. We performed a volumetric comparison between the predicted and manually contoured volumes to assess our model. The predicted volumes had a median DSC value of 0.81 (range 0.62-0.90), median mean surface distance of 2.8 mm (range 1.6-5.5), and median 95th Hausdorff distance of 7.5 mm (range 4.7-17.9) when comparing our predicted high-risk CTVs with the physician manual contours. These predicted high-risk CTVs provided close agreement to the ground-truth compared with current interobserver variability. The predicted contours could be implemented clinically, with only

  1. Peripheral Contour Grouping and Saccade Targeting: The Role of Mirror Symmetry

    Directory of Open Access Journals (Sweden)

    Michaël Sassi

    2014-01-01

    Full Text Available Integrating shape contours in the visual periphery is vital to our ability to locate objects and thus make targeted saccadic eye movements to efficiently explore our surroundings. We tested whether global shape symmetry facilitates peripheral contour integration and saccade targeting in three experiments, in which observers responded to a successful peripheral contour detection by making a saccade towards the target shape. The target contours were horizontally (Experiment 1 or vertically (Experiments 2 and 3 mirror symmetric. Observers responded by making a horizontal (Experiments 1 and 2 or vertical (Experiment 3 eye movement. Based on an analysis of the saccadic latency and accuracy, we conclude that the figure-ground cue of global mirror symmetry in the periphery has little effect on contour integration or on the speed and precision with which saccades are targeted towards objects. The role of mirror symmetry may be more apparent under natural viewing conditions with multiple objects competing for attention, where symmetric regions in the visual field can pre-attentively signal the presence of objects, and thus attract eye movements.

  2. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    International Nuclear Information System (INIS)

    Martin, Spencer; Rodrigues, George; Gaede, Stewart; Brophy, Mark; Barron, John L; Beauchemin, Steven S; Palma, David; Louie, Alexander V; Yu, Edward; Yaremko, Brian; Ahmad, Belal

    2015-01-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development. (paper)

  3. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    Science.gov (United States)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  4. Creation of RTOG compliant patient CT-atlases for automated atlas based contouring of local regional breast and high-risk prostate cancers.

    Science.gov (United States)

    Velker, Vikram M; Rodrigues, George B; Dinniwell, Robert; Hwee, Jeremiah; Louie, Alexander V

    2013-07-25

    Increasing use of IMRT to treat breast and prostate cancers at high risk of regional nodal spread relies on accurate contouring of targets and organs at risk, which is subject to significant inter- and intra-observer variability. This study sought to evaluate the performance of an atlas based deformable registration algorithm to create multi-patient CT based atlases for automated contouring. Breast and prostate multi-patient CT atlases (n = 50 and 14 respectively) were constructed to be consistent with RTOG consensus contouring guidelines. A commercially available software algorithm was evaluated by comparison of atlas-predicted contours against manual contours using Dice Similarity coefficients. High levels of agreement were demonstrated for prediction of OAR contours of lungs, heart, femurs, and minor editing required for the CTV breast/chest wall. CTVs generated for axillary nodes, supraclavicular nodes, prostate, and pelvic nodes demonstrated modest agreement. Small and highly variable structures, such as internal mammary nodes, lumpectomy cavity, rectum, penile bulb, and seminal vesicles had poor agreement. A method to construct and validate performance of CT-based multi-patient atlases for automated atlas based auto-contouring has been demonstrated, and can be adopted for clinical use in planning of local regional breast and high-risk prostate radiotherapy.

  5. Creation of RTOG compliant patient CT-atlases for automated atlas based contouring of local regional breast and high-risk prostate cancers

    International Nuclear Information System (INIS)

    Velker, Vikram M; Rodrigues, George B; Dinniwell, Robert; Hwee, Jeremiah; Louie, Alexander V

    2013-01-01

    Increasing use of IMRT to treat breast and prostate cancers at high risk of regional nodal spread relies on accurate contouring of targets and organs at risk, which is subject to significant inter- and intra-observer variability. This study sought to evaluate the performance of an atlas based deformable registration algorithm to create multi-patient CT based atlases for automated contouring. Breast and prostate multi-patient CT atlases (n = 50 and 14 respectively) were constructed to be consistent with RTOG consensus contouring guidelines. A commercially available software algorithm was evaluated by comparison of atlas-predicted contours against manual contours using Dice Similarity coefficients. High levels of agreement were demonstrated for prediction of OAR contours of lungs, heart, femurs, and minor editing required for the CTV breast/chest wall. CTVs generated for axillary nodes, supraclavicular nodes, prostate, and pelvic nodes demonstrated modest agreement. Small and highly variable structures, such as internal mammary nodes, lumpectomy cavity, rectum, penile bulb, and seminal vesicles had poor agreement. A method to construct and validate performance of CT-based multi-patient atlases for automated atlas based auto-contouring has been demonstrated, and can be adopted for clinical use in planning of local regional breast and high-risk prostate radiotherapy

  6. Evaluation of atlas-based auto-segmentation software in prostate cancer patients

    International Nuclear Information System (INIS)

    Greenham, Stuart; Dean, Jenna; Fu, Cheuk Kuen Kenneth; Goman, Joanne; Mulligan, Jeremy; Tune, Deanna; Sampson, David; Westhuyzen, Justin; McKay, Michael

    2014-01-01

    The performance and limitations of an atlas-based auto-segmentation software package (ABAS; Elekta Inc.) was evaluated using male pelvic anatomy as the area of interest. Contours from 10 prostate patients were selected to create atlases in ABAS. The contoured regions of interest were created manually to align with published guidelines and included the prostate, bladder, rectum, femoral heads and external patient contour. Twenty-four clinically treated prostate patients were auto-contoured using a randomised selection of two, four, six, eight or ten atlases. The concordance between the manually drawn and computer-generated contours were evaluated statistically using Pearson's product–moment correlation coefficient (r) and clinically in a validated qualitative evaluation. In the latter evaluation, six radiation therapists classified the degree of agreement for each structure using seven clinically appropriate categories. The ABAS software generated clinically acceptable contours for the bladder, rectum, femoral heads and external patient contour. For these structures, ABAS-generated volumes were highly correlated with ‘as treated’ volumes, manually drawn; for four atlases, for example, bladder r = 0.988 (P < 0.001), rectum r = 0.739 (P < 0.001) and left femoral head r = 0.560 (P < 0.001). Poorest results were seen for the prostate (r = 0.401, P < 0.05) (four atlases); however this was attributed to the comparison prostate volume being contoured on magnetic resonance imaging (MRI) rather than computed tomography (CT) data. For all structures, increasing the number of atlases did not consistently improve accuracy. ABAS-generated contours are clinically useful for a range of structures in the male pelvis. Clinically appropriate volumes were created, but editing of some contours was inevitably required. The ideal number of atlases to improve generated automatic contours is yet to be determined

  7. SU-E-J-131: Augmenting Atlas-Based Segmentation by Incorporating Image Features Proximal to the Atlas Contours

    International Nuclear Information System (INIS)

    Li, Dengwang; Liu, Li; Kapp, Daniel S.; Xing, Lei

    2015-01-01

    Purpose: For facilitating the current automatic segmentation, in this work we propose a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. Methods: In setting up an atlas-based library, we include not only the coordinates of contour points, but also the image features adjacent to the contour. 139 planning CT scans with normal appearing livers obtained during their radiotherapy treatment planning were used to construct the library. The CT images within the library were registered each other using affine registration. A nonlinear narrow shell with the regional thickness determined by the distance between two vertices alongside the contour. The narrow shell was automatically constructed both inside and outside of the liver contours. The common image features within narrow shell between a new case and a library case were first selected by a Speed-up Robust Features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the images of the new patient by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy function within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by a physician. Results: Application of the technique to 30 liver cases suggested that the technique was capable of reliably segment organs such as the liver with little human intervention. Compared with the manual segmentation results by a physician, the average and discrepancies of the volumetric overlap percentage (VOP) was found to be 92.43%+2.14%. Conclusion: Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically

  8. SU-E-J-131: Augmenting Atlas-Based Segmentation by Incorporating Image Features Proximal to the Atlas Contours

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dengwang; Liu, Li [College of Physics and Electronics, Shandong Normal University, Jinan, Shandong (China); Kapp, Daniel S.; Xing, Lei [Department of Radiation Oncology, Stanford University, School of Medicine, Stanford, CA (United States)

    2015-06-15

    Purpose: For facilitating the current automatic segmentation, in this work we propose a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. Methods: In setting up an atlas-based library, we include not only the coordinates of contour points, but also the image features adjacent to the contour. 139 planning CT scans with normal appearing livers obtained during their radiotherapy treatment planning were used to construct the library. The CT images within the library were registered each other using affine registration. A nonlinear narrow shell with the regional thickness determined by the distance between two vertices alongside the contour. The narrow shell was automatically constructed both inside and outside of the liver contours. The common image features within narrow shell between a new case and a library case were first selected by a Speed-up Robust Features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the images of the new patient by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy function within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by a physician. Results: Application of the technique to 30 liver cases suggested that the technique was capable of reliably segment organs such as the liver with little human intervention. Compared with the manual segmentation results by a physician, the average and discrepancies of the volumetric overlap percentage (VOP) was found to be 92.43%+2.14%. Conclusion: Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically

  9. SU-E-J-220: Evaluation of Atlas-Based Auto-Segmentation (ABAS) in Head-And-Neck Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Liu, Q; Yan, D

    2014-01-01

    Purpose: Evaluate the accuracy of atlas-based auto segmentation of organs at risk (OARs) on both helical CT (HCT) and cone beam CT (CBCT) images in head and neck (HN) cancer adaptive radiotherapy (ART). Methods: Six HN patients treated in the ART process were included in this study. For each patient, three images were selected: pretreatment planning CT (PreTx-HCT), in treatment CT for replanning (InTx-HCT) and a CBCT acquired in the same day of the InTx-HCT. Three clinical procedures of auto segmentation and deformable registration performed in the ART process were evaluated: a) auto segmentation on PreTx-HCT using multi-subject atlases, b) intra-patient propagation of OARs from PreTx-HCT to InTx-HCT using deformable HCT-to-HCT image registration, and c) intra-patient propagation of OARs from PreTx-HCT to CBCT using deformable CBCT-to-HCT image registration. Seven OARs (brainstem, cord, L/R parotid, L/R submandibular gland and mandible) were manually contoured on PreTx-HCT and InTx-HCT for comparison. In addition, manual contours on InTx-CT were copied on the same day CBCT, and a local region rigid body registration was performed accordingly for each individual OAR. For procedures a) and b), auto contours were compared to manual contours, and for c) auto contours were compared to those rigidly transferred contours on CBCT. Dice similarity coefficients (DSC) and mean surface distances of agreement (MSDA) were calculated for evaluation. Results: For procedure a), the mean DSC/MSDA of most OARs are >80%/±2mm. For intra-patient HCT-to-HCT propagation, the Resultimproved to >85%/±1.5mm. Compared to HCT-to-HCT, the mean DSC for HCT-to-CBCT propagation drops ∼2–3% and MSDA increases ∼0.2mm. This Resultindicates that the inferior imaging quality of CBCT seems only degrade auto propagation performance slightly. Conclusion: Auto segmentation and deformable propagation can generate OAR structures on HCT and CBCT images with clinically acceptable accuracy. Therefore

  10. Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours

    Directory of Open Access Journals (Sweden)

    Venkata V. Chebrolu

    2014-01-01

    Full Text Available Purpose. To achieve rapid automated delineation of gross target volume (GTV and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D CT. Methods and Materials. Novel morphological processing and successive localization (MPSL algorithms were designed and implemented for achieving autosegmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix© and MIMVista software. Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0±11.1 seconds per phase (512×512 resolution as compared to 142.3±11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth were 0.865±0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation.

  11. Rapid Automated Target Segmentation and Tracking on 4D Data without Initial Contours.

    Science.gov (United States)

    Chebrolu, Venkata V; Saenz, Daniel; Tewatia, Dinesh; Sethares, William A; Cannon, George; Paliwal, Bhudatt R

    2014-01-01

    Purpose. To achieve rapid automated delineation of gross target volume (GTV) and to quantify changes in volume/position of the target for radiotherapy planning using four-dimensional (4D) CT. Methods and Materials. Novel morphological processing and successive localization (MPSL) algorithms were designed and implemented for achieving autosegmentation. Contours automatically generated using MPSL method were compared with contours generated using state-of-the-art deformable registration methods (using Elastix© and MIMVista software). Metrics such as the Dice similarity coefficient, sensitivity, and positive predictive value (PPV) were analyzed. The target motion tracked using the centroid of the GTV estimated using MPSL method was compared with motion tracked using deformable registration methods. Results. MPSL algorithm segmented the GTV in 4DCT images in 27.0 ± 11.1 seconds per phase (512 × 512 resolution) as compared to 142.3 ± 11.3 seconds per phase for deformable registration based methods in 9 cases. Dice coefficients between MPSL generated GTV contours and manual contours (considered as ground-truth) were 0.865 ± 0.037. In comparison, the Dice coefficients between ground-truth and contours generated using deformable registration based methods were 0.909 ± 0.051. Conclusions. The MPSL method achieved similar segmentation accuracy as compared to state-of-the-art deformable registration based segmentation methods, but with significant reduction in time required for GTV segmentation.

  12. [Development of a Software for Automatically Generated Contours in Eclipse TPS].

    Science.gov (United States)

    Xie, Zhao; Hu, Jinyou; Zou, Lian; Zhang, Weisha; Zou, Yuxin; Luo, Kelin; Liu, Xiangxiang; Yu, Luxin

    2015-03-01

    The automatic generation of planning targets and auxiliary contours have achieved in Eclipse TPS 11.0. The scripting language autohotkey was used to develop a software for automatically generated contours in Eclipse TPS. This software is named Contour Auto Margin (CAM), which is composed of operational functions of contours, script generated visualization and script file operations. RESULTS Ten cases in different cancers have separately selected, in Eclipse TPS 11.0 scripts generated by the software could not only automatically generate contours but also do contour post-processing. For different cancers, there was no difference between automatically generated contours and manually created contours. The CAM is a user-friendly and powerful software, and can automatically generated contours fast in Eclipse TPS 11.0. With the help of CAM, it greatly save plan preparation time and improve working efficiency of radiation therapy physicists.

  13. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    International Nuclear Information System (INIS)

    Aslian, Hossein; Sadeghi, Mahdi; Mahdavi, Seied Rabie; Babapour Mofrad, Farshid; Astarakee, Mahdi; Khaledi, Navid; Fadavi, Pedram

    2013-01-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer

  14. Magnetic Resonance Imaging-Based Target Volume Delineation in Radiation Therapy Treatment Planning for Brain Tumors Using Localized Region-Based Active Contour

    Energy Technology Data Exchange (ETDEWEB)

    Aslian, Hossein [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Sadeghi, Mahdi [Agricultural, Medical and Industrial Research School, Karaj (Iran, Islamic Republic of); Mahdavi, Seied Rabie [Department of Medical Physics, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Babapour Mofrad, Farshid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Astarakee, Mahdi, E-mail: M-Astarakee@Engineer.com [Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Khaledi, Navid [Department of Medical Radiation, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Fadavi, Pedram [Department of Radiation Oncology, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-09-01

    Purpose: To evaluate the clinical application of a robust semiautomatic image segmentation method to determine the brain target volumes in radiation therapy treatment planning. Methods and Materials: A local robust region-based algorithm was used on MRI brain images to study the clinical target volume (CTV) of several patients. First, 3 oncologists delineated CTVs of 10 patients manually, and the process time for each patient was calculated. The averages of the oncologists’ contours were evaluated and considered as reference contours. Then, to determine the CTV through the semiautomatic method, a fourth oncologist who was blind to all manual contours selected 4-8 points around the edema and defined the initial contour. The time to obtain the final contour was calculated again for each patient. Manual and semiautomatic segmentation were compared using 3 different metric criteria: Dice coefficient, Hausdorff distance, and mean absolute distance. A comparison also was performed between volumes obtained from semiautomatic and manual methods. Results: Manual delineation processing time of tumors for each patient was dependent on its size and complexity and had a mean (±SD) of 12.33 ± 2.47 minutes, whereas it was 3.254 ± 1.7507 minutes for the semiautomatic method. Means of Dice coefficient, Hausdorff distance, and mean absolute distance between manual contours were 0.84 ± 0.02, 2.05 ± 0.66 cm, and 0.78 ± 0.15 cm, and they were 0.82 ± 0.03, 1.91 ± 0.65 cm, and 0.7 ± 0.22 cm between manual and semiautomatic contours, respectively. Moreover, the mean volume ratio (=semiautomatic/manual) calculated for all samples was 0.87. Conclusions: Given the deformability of this method, the results showed reasonable accuracy and similarity to the results of manual contouring by the oncologists. This study shows that the localized region-based algorithms can have great ability in determining the CTV and can be appropriate alternatives for manual approaches in brain cancer.

  15. Technology assessment of automated atlas based segmentation in prostate bed contouring

    Directory of Open Access Journals (Sweden)

    Sexton Tracy

    2011-09-01

    Full Text Available Abstract Background Prostate bed (PB contouring is time consuming and associated with inter-observer variability. We evaluated an automated atlas-based segmentation (AABS engine in its potential to reduce contouring time and inter-observer variability. Methods An atlas builder (AB manually contoured the prostate bed, rectum, left femoral head (LFH, right femoral head (RFH, bladder, and penile bulb of 75 post-prostatectomy cases to create an atlas according to the recent RTOG guidelines. 5 other Radiation Oncologists (RO and the AABS contoured 5 new cases. A STAPLE contour for each of the 5 patients was generated. All contours were anonymized and sent back to the 5 RO to be edited as clinically necessary. All contouring times were recorded. The dice similarity coefficient (DSC was used to evaluate the unedited- and edited- AABS and inter-observer variability among the RO. Descriptive statistics, paired t-tests and a Pearson correlation were performed. ANOVA analysis using logit transformations of DSC values was calculated to assess inter-observer variability. Results The mean time for manual contours and AABS was 17.5- and 14.1 minutes respectively (p = 0.003. The DSC results (mean, SD for the comparison of the unedited-AABS versus STAPLE contours for the PB (0.48, 0.17, bladder (0.67, 0.19, LFH (0.92, 0.01, RFH (0.92, 0.01, penile bulb (0.33, 0.25 and rectum (0.59, 0.11. The DSC results (mean, SD for the comparison of the edited-AABS versus STAPLE contours for the PB (0.67, 0.19, bladder (0.88, 0.13, LFH (0.93, 0.01, RFH (0.92, 0.01, penile bulb (0.54, 0.21 and rectum (0.78, 0.12. The DSC results (mean, SD for the comparison of the edited-AABS versus the expert panel for the PB (0.47, 0.16, bladder (0.67, 0.18, LFH (0.83, 0.18, RFH (0.83, 0.17, penile bulb (0.31, 0.23 and rectum (0.58, 0.09. The DSC results (mean, SD for the comparison of the STAPLE contours and the 5 RO are PB (0.78, 0.15, bladder (0.96, 0.02, left femoral head (0.87, 0

  16. Impact of region contouring variability on image-based focal therapy evaluation

    Science.gov (United States)

    Gibson, Eli; Donaldson, Ian A.; Shah, Taimur T.; Hu, Yipeng; Ahmed, Hashim U.; Barratt, Dean C.

    2016-03-01

    Motivation: Focal therapy is an emerging low-morbidity treatment option for low-intermediate risk prostate cancer; however, challenges remain in accurately delivering treatment to specified targets and determining treatment success. Registered multi-parametric magnetic resonance imaging (MPMRI) acquired before and after treatment can support focal therapy evaluation and optimization; however, contouring variability, when defining the prostate, the clinical target volume (CTV) and the ablation region in images, reduces the precision of quantitative image-based focal therapy evaluation metrics. To inform the interpretation and clarify the limitations of such metrics, we investigated inter-observer contouring variability and its impact on four metrics. Methods: Pre-therapy and 2-week-post-therapy standard-of-care MPMRI were acquired from 5 focal cryotherapy patients. Two clinicians independently contoured, on each slice, the prostate (pre- and post-treatment) and the dominant index lesion CTV (pre-treatment) in the T2-weighted MRI, and the ablated region (post-treatment) in the dynamic-contrast- enhanced MRI. For each combination of clinician contours, post-treatment images were registered to pre-treatment images using a 3D biomechanical-model-based registration of prostate surfaces, and four metrics were computed: the proportion of the target tissue region that was ablated and the target:ablated region volume ratio for each of two targets (the CTV and an expanded planning target volume). Variance components analysis was used to measure the contribution of each type of contour to the variance in the therapy evaluation metrics. Conclusions: 14-23% of evaluation metric variance was attributable to contouring variability (including 6-12% from ablation region contouring); reducing this variability could improve the precision of focal therapy evaluation metrics.

  17. Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuhan Yang

    2013-01-01

    Full Text Available Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are employed in the strategy: the Speeded-Up Robust Features (SURF, Thin-Plate Spline (TPS, and an adapted active contour (Snake, used to refine and modify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance in the pulmonary CT images. Jaccard similarity (JS mean is about 0.88 and the maximum of Hausdorff distance (HD is about 90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in the automatic contour propagation improves the delineation efficiency significantly.

  18. The relative pose estimation of aircraft based on contour model

    Science.gov (United States)

    Fu, Tai; Sun, Xiangyi

    2017-02-01

    This paper proposes a relative pose estimation approach based on object contour model. The first step is to obtain a two-dimensional (2D) projection of three-dimensional (3D)-model-based target, which will be divided into 40 forms by clustering and LDA analysis. Then we proceed by extracting the target contour in each image and computing their Pseudo-Zernike Moments (PZM), thus a model library is constructed in an offline mode. Next, we spot a projection contour that resembles the target silhouette most in the present image from the model library with reference of PZM; then similarity transformation parameters are generated as the shape context is applied to match the silhouette sampling location, from which the identification parameters of target can be further derived. Identification parameters are converted to relative pose parameters, in the premise that these values are the initial result calculated via iterative refinement algorithm, as the relative pose parameter is in the neighborhood of actual ones. At last, Distance Image Iterative Least Squares (DI-ILS) is employed to acquire the ultimate relative pose parameters.

  19. Automatic contour propagation using deformable image registration to determine delivered dose to spinal cord in head-and-neck cancer radiotherapy

    Science.gov (United States)

    Yeap, P. L.; Noble, D. J.; Harrison, K.; Bates, A. M.; Burnet, N. G.; Jena, R.; Romanchikova, M.; Sutcliffe, M. P. F.; Thomas, S. J.; Barnett, G. C.; Benson, R. J.; Jefferies, S. J.; Parker, M. A.

    2017-08-01

    To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is 0.759 +/- 0.003 , and the median DBC is (0.87 +/- 0.01 ) mm. An intra-observer comparison for the same scans gives a median CI of 0.820 +/- 0.002 and a DBC of (0.64 +/- 0.01 ) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.

  20. Automatic contour propagation using deformable image registration to determine delivered dose to spinal cord in head-and-neck cancer radiotherapy.

    Science.gov (United States)

    Yeap, P L; Noble, D J; Harrison, K; Bates, A M; Burnet, N G; Jena, R; Romanchikova, M; Sutcliffe, M P F; Thomas, S J; Barnett, G C; Benson, R J; Jefferies, S J; Parker, M A

    2017-07-12

    To determine delivered dose to the spinal cord, a technique has been developed to propagate manual contours from kilovoltage computed-tomography (kVCT) scans for treatment planning to megavoltage computed-tomography (MVCT) guidance scans. The technique uses the Elastix software to perform intensity-based deformable image registration of each kVCT scan to the associated MVCT scans. The registration transform is then applied to contours of the spinal cord drawn manually on the kVCT scan, to obtain contour positions on the MVCT scans. Different registration strategies have been investigated, with performance evaluated by comparing the resulting auto-contours with manual contours, drawn by oncologists. The comparison metrics include the conformity index (CI), and the distance between centres (DBC). With optimised registration, auto-contours generally agree well with manual contours. Considering all 30 MVCT scans for each of three patients, the median CI is [Formula: see text], and the median DBC is ([Formula: see text]) mm. An intra-observer comparison for the same scans gives a median CI of [Formula: see text] and a DBC of ([Formula: see text]) mm. Good levels of conformity are also obtained when auto-contours are compared with manual contours from one observer for a single MVCT scan for each of 30 patients, and when they are compared with manual contours from six observers for two MVCT scans for each of three patients. Using the auto-contours to estimate organ position at treatment time, a preliminary study of 33 patients who underwent radiotherapy for head-and-neck cancers indicates good agreement between planned and delivered dose to the spinal cord.

  1. Kepler Planet Detection Metrics: Per-Target Detection Contours for Data Release 25

    Science.gov (United States)

    Burke, Christopher J.; Catanzarite, Joseph

    2017-01-01

    A necessary input to planet occurrence calculations is an accurate model for the pipeline completeness (Burke et al., 2015). This document describes the use of the Kepler planet occurrence rate products in order to calculate a per-target detection contour for the measured Data Release 25 (DR25) pipeline performance. A per-target detection contour measures for a given combination of orbital period, Porb, and planet radius, Rp, what fraction of transit signals are recoverable by the Kepler pipeline (Twicken et al., 2016; Jenkins et al., 2017). The steps for calculating a detection contour follow the procedure outlined in Burke et al. (2015), but have been updated to provide improved accuracy enabled by the substantially larger database of transit injection and recovery tests that were performed on the final version (i.e., SOC 9.3) of the Kepler pipeline (Christiansen, 2017; Burke Catanzarite, 2017a). In the following sections, we describe the main inputs to the per-target detection contour and provide a worked example of the python software released with this document (Kepler Planet Occurrence Rate Tools KeplerPORTs)1 that illustrates the generation of a detection contour in practice. As background material for this document and its nomenclature, we recommend the reader be familiar with the previous method of calculating a detection contour (Section 2 of Burke et al.,2015), input parameters relevant for describing the data quantity and quality of Kepler targets (Burke Catanzarite, 2017b), and the extensive new transit injection and recovery tests of the Kepler pipeline (Christiansen et al., 2016; Burke Catanzarite, 2017a; Christiansen, 2017).

  2. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    International Nuclear Information System (INIS)

    Zhou, R; Yang, J; Pan, T; Milgrom, S; Pinnix, C; Shi, A; Yang, J; Liu, Y; Nguyen, Q; Gomez, D; Dabaja, B; Balter, P; Court, L; Liao, Z

    2015-01-01

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fused using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need

  3. SU-E-T-595: Design of a Graphical User Interface for An In-House Monte Carlo Based Treatment Planning System: Planning and Contouring Tools

    International Nuclear Information System (INIS)

    EMAM, M; Eldib, A; Lin, M; Li, J; Chibani, O; Ma, C

    2014-01-01

    Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systems (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process

  4. Diffusion tensor driven contour closing for cell microinjection targeting.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2010-01-01

    This article introduces a novel approach to robust automatic detection of unstained living cells in bright-field (BF) microscope images with the goal of producing a target list for an automated microinjection system. The overall image analysis process is described and includes: preprocessing, ridge enhancement, image segmentation, shape analysis and injection point definition. The developed algorithm implements a new version of anisotropic contour completion (ACC) based on the partial differential equation (PDE) for heat diffusion which improves the cell segmentation process by elongating the edges only along their tangent direction. The developed ACC algorithm is equivalent to a dilation of the binary edge image with a continuous elliptic structural element that takes into account local orientation of the contours preventing extension towards normal direction. Experiments carried out on real images of 10 to 50 microm CHO-K1 adherent cells show a remarkable reliability in the algorithm along with up to 85% success for cell detection and injection point definition.

  5. SU-E-J-208: Fast and Accurate Auto-Segmentation of Abdominal Organs at Risk for Online Adaptive Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V; Wang, Y; Romero, A; Heijmen, B; Hoogeman, M [Erasmus MC Cancer Institute, Rotterdam (Netherlands); Myronenko, A; Jordan, P [Accuray Incorporated, Sunnyvale, United States. (United States)

    2014-06-01

    Purpose: Various studies have demonstrated that online adaptive radiotherapy by real-time re-optimization of the treatment plan can improve organs-at-risk (OARs) sparing in the abdominal region. Its clinical implementation, however, requires fast and accurate auto-segmentation of OARs in CT scans acquired just before each treatment fraction. Autosegmentation is particularly challenging in the abdominal region due to the frequently observed large deformations. We present a clinical validation of a new auto-segmentation method that uses fully automated non-rigid registration for propagating abdominal OAR contours from planning to daily treatment CT scans. Methods: OARs were manually contoured by an expert panel to obtain ground truth contours for repeat CT scans (3 per patient) of 10 patients. For the non-rigid alignment, we used a new non-rigid registration method that estimates the deformation field by optimizing local normalized correlation coefficient with smoothness regularization. This field was used to propagate planning contours to repeat CTs. To quantify the performance of the auto-segmentation, we compared the propagated and ground truth contours using two widely used metrics- Dice coefficient (Dc) and Hausdorff distance (Hd). The proposed method was benchmarked against translation and rigid alignment based auto-segmentation. Results: For all organs, the auto-segmentation performed better than the baseline (translation) with an average processing time of 15 s per fraction CT. The overall improvements ranged from 2% (heart) to 32% (pancreas) in Dc, and 27% (heart) to 62% (spinal cord) in Hd. For liver, kidneys, gall bladder, stomach, spinal cord and heart, Dc above 0.85 was achieved. Duodenum and pancreas were the most challenging organs with both showing relatively larger spreads and medians of 0.79 and 2.1 mm for Dc and Hd, respectively. Conclusion: Based on the achieved accuracy and computational time we conclude that the investigated auto

  6. SU-E-J-208: Fast and Accurate Auto-Segmentation of Abdominal Organs at Risk for Online Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Gupta, V; Wang, Y; Romero, A; Heijmen, B; Hoogeman, M; Myronenko, A; Jordan, P

    2014-01-01

    Purpose: Various studies have demonstrated that online adaptive radiotherapy by real-time re-optimization of the treatment plan can improve organs-at-risk (OARs) sparing in the abdominal region. Its clinical implementation, however, requires fast and accurate auto-segmentation of OARs in CT scans acquired just before each treatment fraction. Autosegmentation is particularly challenging in the abdominal region due to the frequently observed large deformations. We present a clinical validation of a new auto-segmentation method that uses fully automated non-rigid registration for propagating abdominal OAR contours from planning to daily treatment CT scans. Methods: OARs were manually contoured by an expert panel to obtain ground truth contours for repeat CT scans (3 per patient) of 10 patients. For the non-rigid alignment, we used a new non-rigid registration method that estimates the deformation field by optimizing local normalized correlation coefficient with smoothness regularization. This field was used to propagate planning contours to repeat CTs. To quantify the performance of the auto-segmentation, we compared the propagated and ground truth contours using two widely used metrics- Dice coefficient (Dc) and Hausdorff distance (Hd). The proposed method was benchmarked against translation and rigid alignment based auto-segmentation. Results: For all organs, the auto-segmentation performed better than the baseline (translation) with an average processing time of 15 s per fraction CT. The overall improvements ranged from 2% (heart) to 32% (pancreas) in Dc, and 27% (heart) to 62% (spinal cord) in Hd. For liver, kidneys, gall bladder, stomach, spinal cord and heart, Dc above 0.85 was achieved. Duodenum and pancreas were the most challenging organs with both showing relatively larger spreads and medians of 0.79 and 2.1 mm for Dc and Hd, respectively. Conclusion: Based on the achieved accuracy and computational time we conclude that the investigated auto

  7. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    McCarroll, R [UT MD Anderson Cancer Center, Houston, TX (United States); UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX (United States); Beadle, B; Yang, J; Zhang, L; Kisling, K; Balter, P; Stingo, F; Nelson, C; Followill, D; Court, L [UT MD Anderson Cancer Center, Houston, TX (United States); Mejia, M [University of Santo Tomas Hospital, Manila, Metro Manila (Philippines)

    2016-06-15

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrect contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to

  8. Comparison of Computed Tomography– and Magnetic Resonance Imaging–based Clinical Target Volume Contours at Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Swanick, Cameron W. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Castle, Katherine O. [Southeast Louisiana Radiation Oncology Group, Baton Rouge, Louisiana (United States); Vedam, Sastry [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Munsell, Mark F. [Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Turner, Lehendrick M. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rauch, Gaiane M. [Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jhingran, Anuja; Eifel, Patricia J. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Klopp, Ann H., E-mail: aklopp@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2016-11-15

    Purpose: We prospectively compared computed tomography (CT)– and magnetic resonance imaging (MRI)–based high-risk clinical target volume (HR-CTV) contours at the time of brachytherapy for cervical cancer in an effort to identify patients who might benefit most from MRI-based planning. Methods and Materials: Thirty-seven patients who had undergone a pretreatment diagnostic MRI scan were included in the analysis. We delineated the HR-CTV on the brachytherapy CT and brachytherapy MRI scans independently for each patient. We then calculated the absolute volumes for each HR-CTV and the Dice coefficient of similarity (DC, a measure of spatial agreement) for the HR-CTV contours. We identified the clinical and tumor factors associated with (1) a discrepancy in volume between the CT HR-CTV and MRI HR-CTV contours; and (2) DC. The mean values were compared using 1-way analysis of variance or paired or unpaired t tests, as appropriate. Simple and multivariable linear regression analyses were used to model the effects of covariates on the outcomes. Results: Patients with International Federation of Gynecology and Obstetrics stage IB to IVA cervical cancer were treated with intracavitary brachytherapy using tandem and ovoid (n=33) or tandem and cylinder (n=4) applicators. The mean CT HR-CTV volume (44.1 cm{sup 3}) was larger than the mean MRI HR-CTV volume (35.1 cm{sup 3}; P<.0001, paired t test). On multivariable analysis, a higher body mass index (BMI) and tumor size ≥5 cm with parametrial invasion on the MRI scan at diagnosis were associated with an increased discrepancy in volume between the HR-CTV contours (P<.02 for both). In addition, the spatial agreement (as measured by DC) between the HR-CTV contours decreased with an increasing BMI (P=.013). Conclusions: We recommend MRI-based brachytherapy planning for patients with tumors >5 cm and parametrial invasion on MRI at diagnosis and for those with a high BMI.

  9. A treatment planning comparison of four target volume contouring guidelines for locally advanced pancreatic cancer radiotherapy

    International Nuclear Information System (INIS)

    Fokas, Emmanouil; Eccles, Cynthia; Patel, Neel; Chu, Kwun-Ye; Warren, Samantha; McKenna, W. Gillies; Brunner, Thomas B.

    2013-01-01

    Background and purpose: Contouring of target volumes varies significantly in radiotherapy of pancreatic ductal adenocarcinoma (PDAC). There is a lack of consensus as to whether elective lymph nodes (eLN’s) should be included or not in the planning target volume (PTV). In the present study we analyzed the dosimetric coverage of the eLN’s and organs at risk (OAR) by comparing four different contouring guidelines. Methods and materials: PTVs were delineated with (Oxford and RTOG guidelines) or without (Michigan and SCALOP guidelines) including the eLNs in eleven patients with PDAC. eLNs included the peripancreatic, paraaortic, paracaval, celiac trunk, superior mesenteric and portal vein clinical target volumes (CTVs). A 3D-CRT plan (50.40 Gy in 28 fractions) was performed to analyze and compare the dosimetric coverage of all eLNs and OAR between the 4 contouring guidelines. Results: The size of Oxford and RTOG PTVs was comparable and significantly larger than the SCALOP and Michigan PTVs. Interestingly the eLNs received a significant amount of incidental dose irradiation by PTV-based plans that only aimed to treat the tumor without the eLNs. The dosimetric coverage of eLN presented a large variability according to the respective contouring methods. The difference in the size of the 4 PTVs was reflected to the dose distribution at the OAR. Conclusions: Our study provides important information regarding the impact of different contouring guidelines on the dose distribution to the eLNs and the OAR in patients with locally advanced PDAC treated with radiotherapy

  10. Atlas-Based Segmentation Improves Consistency and Decreases Time Required for Contouring Postoperative Endometrial Cancer Nodal Volumes

    International Nuclear Information System (INIS)

    Young, Amy V.; Wortham, Angela; Wernick, Iddo; Evans, Andrew; Ennis, Ronald D.

    2011-01-01

    Purpose: Accurate target delineation of the nodal volumes is essential for three-dimensional conformal and intensity-modulated radiotherapy planning for endometrial cancer adjuvant therapy. We hypothesized that atlas-based segmentation ('autocontouring') would lead to time savings and more consistent contours among physicians. Methods and Materials: A reference anatomy atlas was constructed using the data from 15 postoperative endometrial cancer patients by contouring the pelvic nodal clinical target volume on the simulation computed tomography scan according to the Radiation Therapy Oncology Group 0418 trial using commercially available software. On the simulation computed tomography scans from 10 additional endometrial cancer patients, the nodal clinical target volume autocontours were generated. Three radiation oncologists corrected the autocontours and delineated the manual nodal contours under timed conditions while unaware of the other contours. The time difference was determined, and the overlap of the contours was calculated using Dice's coefficient. Results: For all physicians, manual contouring of the pelvic nodal target volumes and editing the autocontours required a mean ± standard deviation of 32 ± 9 vs. 23 ± 7 minutes, respectively (p = .000001), a 26% time savings. For each physician, the time required to delineate the manual contours vs. correcting the autocontours was 30 ± 3 vs. 21 ± 5 min (p = .003), 39 ± 12 vs. 30 ± 5 min (p = .055), and 29 ± 5 vs. 20 ± 5 min (p = .0002). The mean overlap increased from manual contouring (0.77) to correcting the autocontours (0.79; p = .038). Conclusion: The results of our study have shown that autocontouring leads to increased consistency and time savings when contouring the nodal target volumes for adjuvant treatment of endometrial cancer, although the autocontours still required careful editing to ensure that the lymph nodes at risk of recurrence are properly included in the target volume.

  11. Auto Code Generation for Simulink-Based Attitude Determination Control System

    Science.gov (United States)

    MolinaFraticelli, Jose Carlos

    2012-01-01

    This paper details the work done to auto generate C code from a Simulink-Based Attitude Determination Control System (ADCS) to be used in target platforms. NASA Marshall Engineers have developed an ADCS Simulink simulation to be used as a component for the flight software of a satellite. This generated code can be used for carrying out Hardware in the loop testing of components for a satellite in a convenient manner with easily tunable parameters. Due to the nature of the embedded hardware components such as microcontrollers, this simulation code cannot be used directly, as it is, on the target platform and must first be converted into C code; this process is known as auto code generation. In order to generate C code from this simulation; it must be modified to follow specific standards set in place by the auto code generation process. Some of these modifications include changing certain simulation models into their atomic representations which can bring new complications into the simulation. The execution order of these models can change based on these modifications. Great care must be taken in order to maintain a working simulation that can also be used for auto code generation. After modifying the ADCS simulation for the auto code generation process, it is shown that the difference between the output data of the former and that of the latter is between acceptable bounds. Thus, it can be said that the process is a success since all the output requirements are met. Based on these results, it can be argued that this generated C code can be effectively used by any desired platform as long as it follows the specific memory requirements established in the Simulink Model.

  12. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, C [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX (United States); Wong, A [Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); School of Medicine, The University of Texas Health Sciences Center at San Antonio, San Antonio, TX (United States); Mohamed, A; Fuller, C [Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Yang, J; Court, L; Aristophanous, M [Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Rao, A [Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results in non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate

  13. SU-C-BRA-05: Delineating High-Dose Clinical Target Volumes for Head and Neck Tumors Using Machine Learning Algorithms

    International Nuclear Information System (INIS)

    Cardenas, C; Wong, A; Mohamed, A; Fuller, C; Yang, J; Court, L; Aristophanous, M; Rao, A

    2016-01-01

    Purpose: To develop and test population-based machine learning algorithms for delineating high-dose clinical target volumes (CTVs) in H&N tumors. Automating and standardizing the contouring of CTVs can reduce both physician contouring time and inter-physician variability, which is one of the largest sources of uncertainty in H&N radiotherapy. Methods: Twenty-five node-negative patients treated with definitive radiotherapy were selected (6 right base of tongue, 11 left and 9 right tonsil). All patients had GTV and CTVs manually contoured by an experienced radiation oncologist prior to treatment. This contouring process, which is driven by anatomical, pathological, and patient specific information, typically results in non-uniform margin expansions about the GTV. Therefore, we tested two methods to delineate high-dose CTV given a manually-contoured GTV: (1) regression-support vector machines(SVM) and (2) classification-SVM. These models were trained and tested on each patient group using leave-one-out cross-validation. The volume difference(VD) and Dice similarity coefficient(DSC) between the manual and auto-contoured CTV were calculated to evaluate the results. Distances from GTV-to-CTV were computed about each patient’s GTV and these distances, in addition to distances from GTV to surrounding anatomy in the expansion direction, were utilized in the regression-SVM method. The classification-SVM method used categorical voxel-information (GTV, selected anatomical structures, else) from a 3×3×3cm3 ROI centered about the voxel to classify voxels as CTV. Results: Volumes for the auto-contoured CTVs ranged from 17.1 to 149.1cc and 17.4 to 151.9cc; the average(range) VD between manual and auto-contoured CTV were 0.93 (0.48–1.59) and 1.16(0.48–1.97); while average(range) DSC values were 0.75(0.59–0.88) and 0.74(0.59–0.81) for the regression-SVM and classification-SVM methods, respectively. Conclusion: We developed two novel machine learning methods to delineate

  14. Comparison of Computed Tomography– and Magnetic Resonance Imaging–based Clinical Target Volume Contours at Brachytherapy for Cervical Cancer

    International Nuclear Information System (INIS)

    Swanick, Cameron W.; Castle, Katherine O.; Vedam, Sastry; Munsell, Mark F.; Turner, Lehendrick M.; Rauch, Gaiane M.; Jhingran, Anuja; Eifel, Patricia J.; Klopp, Ann H.

    2016-01-01

    Purpose: We prospectively compared computed tomography (CT)– and magnetic resonance imaging (MRI)–based high-risk clinical target volume (HR-CTV) contours at the time of brachytherapy for cervical cancer in an effort to identify patients who might benefit most from MRI-based planning. Methods and Materials: Thirty-seven patients who had undergone a pretreatment diagnostic MRI scan were included in the analysis. We delineated the HR-CTV on the brachytherapy CT and brachytherapy MRI scans independently for each patient. We then calculated the absolute volumes for each HR-CTV and the Dice coefficient of similarity (DC, a measure of spatial agreement) for the HR-CTV contours. We identified the clinical and tumor factors associated with (1) a discrepancy in volume between the CT HR-CTV and MRI HR-CTV contours; and (2) DC. The mean values were compared using 1-way analysis of variance or paired or unpaired t tests, as appropriate. Simple and multivariable linear regression analyses were used to model the effects of covariates on the outcomes. Results: Patients with International Federation of Gynecology and Obstetrics stage IB to IVA cervical cancer were treated with intracavitary brachytherapy using tandem and ovoid (n=33) or tandem and cylinder (n=4) applicators. The mean CT HR-CTV volume (44.1 cm"3) was larger than the mean MRI HR-CTV volume (35.1 cm"3; P 5 cm and parametrial invasion on MRI at diagnosis and for those with a high BMI.

  15. Active contour-based visual tracking by integrating colors, shapes, and motions.

    Science.gov (United States)

    Hu, Weiming; Zhou, Xue; Li, Wei; Luo, Wenhan; Zhang, Xiaoqin; Maybank, Stephen

    2013-05-01

    In this paper, we present a framework for active contour-based visual tracking using level sets. The main components of our framework include contour-based tracking initialization, color-based contour evolution, adaptive shape-based contour evolution for non-periodic motions, dynamic shape-based contour evolution for periodic motions, and the handling of abrupt motions. For the initialization of contour-based tracking, we develop an optical flow-based algorithm for automatically initializing contours at the first frame. For the color-based contour evolution, Markov random field theory is used to measure correlations between values of neighboring pixels for posterior probability estimation. For adaptive shape-based contour evolution, the global shape information and the local color information are combined to hierarchically evolve the contour, and a flexible shape updating model is constructed. For the dynamic shape-based contour evolution, a shape mode transition matrix is learnt to characterize the temporal correlations of object shapes. For the handling of abrupt motions, particle swarm optimization is adopted to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame.

  16. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, Elizabeth H., E-mail: ebaldini@partners.org [Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, Massachusetts (United States); Abrams, Ross A. [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States); Bosch, Walter [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Roberge, David [Department of Radiation Oncology, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Haas, Rick L.M. [Department of Radiotherapy, Netherlands Cancer Institute, Amsterdam (Netherlands); Catton, Charles N. [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Indelicato, Daniel J. [Department of Radiation Oncology, University of Florida Medical Center, Jacksonville, Florida (United States); Olsen, Jeffrey R. [Department of Radiation Oncology, Washington University, St. Louis, Missouri (United States); Deville, Curtiland [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Chen, Yen-Lin [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Finkelstein, Steven E. [Translational Research Consortium, 21st Century Oncology, Scottsdale, Arizona (United States); DeLaney, Thomas F. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Wang, Dian [Department of Radiation Oncology, Rush University Medical Center, Chicago, Illinois (United States)

    2015-08-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed.

  17. Retroperitoneal Sarcoma Target Volume and Organ at Risk Contour Delineation Agreement Among NRG Sarcoma Radiation Oncologists

    International Nuclear Information System (INIS)

    Baldini, Elizabeth H.; Abrams, Ross A.; Bosch, Walter; Roberge, David; Haas, Rick L.M.; Catton, Charles N.; Indelicato, Daniel J.; Olsen, Jeffrey R.; Deville, Curtiland; Chen, Yen-Lin; Finkelstein, Steven E.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose: The purpose of this study was to evaluate the variability in target volume and organ at risk (OAR) contour delineation for retroperitoneal sarcoma (RPS) among 12 sarcoma radiation oncologists. Methods and Materials: Radiation planning computed tomography (CT) scans for 2 cases of RPS were distributed among 12 sarcoma radiation oncologists with instructions for contouring gross tumor volume (GTV), clinical target volume (CTV), high-risk CTV (HR CTV: area judged to be at high risk of resulting in positive margins after resection), and OARs: bowel bag, small bowel, colon, stomach, and duodenum. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results: Ten radiation oncologists contoured both RPS cases, 1 contoured only RPS1, and 1 contoured only RPS2 such that each case was contoured by 11 radiation oncologists. The first case (RPS 1) was a patient with a de-differentiated (DD) liposarcoma (LPS) with a predominant well-differentiated (WD) component, and the second case (RPS 2) was a patient with DD LPS made up almost entirely of a DD component. Contouring agreement for GTV and CTV contours was high. However, the agreement for HR CTVs was only moderate. For OARs, agreement for stomach, bowel bag, small bowel, and colon was high, but agreement for duodenum (distorted by tumor in one of these cases) was fair to moderate. Conclusions: For preoperative treatment of RPS, sarcoma radiation oncologists contoured GTV, CTV, and most OARs with a high level of agreement. HR CTV contours were more variable. Further clarification of this volume with the help of sarcoma surgical oncologists is necessary to reach consensus. More attention to delineation of the duodenum is also needed

  18. Orientation-crowding within contours.

    Science.gov (United States)

    Glen, James C; Dakin, Steven C

    2013-07-15

    We examined how crowding (the breakdown of object recognition in the periphery caused by interference from "clutter") depends on the global arrangement of target and distracting flanker elements. Specifically we probed orientation discrimination using a near-vertical target Gabor flanked by two vertical distractor Gabors (one above and one below the target). By applying variable (opposite-sign) horizontal offsets to the positions of the two flankers we arranged the elements so that on some trials they formed contours with the target and on others they did not. While the presence of flankers generally elevated orientation discrimination thresholds for the target we observe maximal crowding not when flanker and targets were co-aligned but when a small spatial offset was applied to flanker location, so that contours formed between flanker and targets only when the target orientation was cued. We also report that observers' orientation judgments are biased, with target orientation appearing either attracted or repulsed by the global/contour orientation. A second experiment reveals that the sign of this effect is dependent both on observer and on eccentricity. In general, the magnitude of repulsion is reduced with eccentricity but whether this becomes attraction (of element orientation to contour orientation) is dependent on observer. We note however that across observers and eccentricities, the magnitude of repulsion correlates positively with the amount of release from crowding observed with co-aligned targets and flankers, supporting the notion of fluctuating bias as the basis for elevated crowding within contours.

  19. Myocarditis in auto-immune or auto-inflammatory diseases.

    Science.gov (United States)

    Comarmond, Cloé; Cacoub, Patrice

    2017-08-01

    Myocarditis is a major cause of heart disease in young patients and a common precursor of heart failure due to dilated cardiomyopathy. Some auto-immune and/or auto-inflammatory diseases may be accompanied by myocarditis, such as sarcoidosis, Behçet's disease, eosinophilic granulomatosis with polyangiitis, myositis, and systemic lupus erythematosus. However, data concerning myocarditis in such auto-immune and/or auto-inflammatory diseases are sparse. New therapeutic strategies should better target the modulation of the immune system, depending on the phase of the disease and the type of underlying auto-immune and/or auto-inflammatory disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. NSCT BASED LOCAL ENHANCEMENT FOR ACTIVE CONTOUR BASED IMAGE SEGMENTATION APPLICATION

    Directory of Open Access Journals (Sweden)

    Hiren Mewada

    2010-08-01

    Full Text Available Because of cross-disciplinary nature, Active Contour modeling techniques have been utilized extensively for the image segmentation. In traditional active contour based segmentation techniques based on level set methods, the energy functions are defined based on the intensity gradient. This makes them highly sensitive to the situation where the underlying image content is characterized by image nonhomogeneities due to illumination and contrast condition. This is the most difficult problem to make them as fully automatic image segmentation techniques. This paper introduces one of the approaches based on image enhancement to this problem. The enhanced image is obtained using NonSubsampled Contourlet Transform, which improves the edges strengths in the direction where the illumination is not proper and then active contour model based on level set technique is utilized to segment the object. Experiment results demonstrate that proposed method can be utilized along with existing active contour model based segmentation method under situation characterized by intensity non-homogeneity to make them fully automatic.

  1. Daily dose monitoring with atlas-based auto-segmentation on diagnostic quality CT for prostate cancer

    International Nuclear Information System (INIS)

    Li, Wen; Vassil, Andrew; Xia, Ping; Zhong, Yahua

    2013-01-01

    Purpose: To evaluate the feasibility of daily dose monitoring using a patient specific atlas-based autosegmentation method on diagnostic quality verification images.Methods: Seven patients, who were treated for prostate cancer with intensity modulated radiotherapy under daily imaging guidance of a CT-on-rails system, were selected for this study. The prostate, rectum, and bladder were manually contoured on the first six and last seven sets of daily verification images. For each patient, three patient specific atlases were constructed using manual contours from planning CT alone (1-image atlas), planning CT plus first three verification CTs (4-image atlas), and planning CT plus first six verification CTs (7-image atlas). These atlases were subsequently applied to the last seven verification image sets of the same patient to generate the auto-contours. Daily dose was calculated by applying the original treatment plans to the daily beam isocenters. The autocontours and manual contours were compared geometrically using the dice similarity coefficient (DSC), and dosimetrically using the dose to 99% of the prostate CTV (D99) and the D5 of rectum and bladder.Results: The DSC of the autocontours obtained with the 4-image atlases were 87.0%± 3.3%, 84.7%± 8.6%, and 93.6%± 4.3% for the prostate, rectum, and bladder, respectively. These indices were higher than those from the 1-image atlases (p 0.05). Daily prostate D99 of the autocontours was comparable to those of the manual contours (p= 0.55). For the bladder and rectum, the daily D5 were 95.5%± 5.9% and 99.1%± 2.6% of the planned D5 for the autocontours compared to 95.3%± 6.7% (p= 0.58) and 99.8%± 2.3% (p < 0.01) for the manual contours.Conclusions: With patient specific 4-image atlases, atlas-based autosegmentation can adequately facilitate daily dose monitoring for prostate cancer

  2. Daily dose monitoring with atlas-based auto-segmentation on diagnostic quality CT for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen; Vassil, Andrew; Xia, Ping [Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, Ohio 44106 (United States); Zhong, Yahua [Department of Radiation Oncology, Zhongnan Hospital, Wuhan 430071 (China)

    2013-11-15

    Purpose: To evaluate the feasibility of daily dose monitoring using a patient specific atlas-based autosegmentation method on diagnostic quality verification images.Methods: Seven patients, who were treated for prostate cancer with intensity modulated radiotherapy under daily imaging guidance of a CT-on-rails system, were selected for this study. The prostate, rectum, and bladder were manually contoured on the first six and last seven sets of daily verification images. For each patient, three patient specific atlases were constructed using manual contours from planning CT alone (1-image atlas), planning CT plus first three verification CTs (4-image atlas), and planning CT plus first six verification CTs (7-image atlas). These atlases were subsequently applied to the last seven verification image sets of the same patient to generate the auto-contours. Daily dose was calculated by applying the original treatment plans to the daily beam isocenters. The autocontours and manual contours were compared geometrically using the dice similarity coefficient (DSC), and dosimetrically using the dose to 99% of the prostate CTV (D99) and the D5 of rectum and bladder.Results: The DSC of the autocontours obtained with the 4-image atlases were 87.0%± 3.3%, 84.7%± 8.6%, and 93.6%± 4.3% for the prostate, rectum, and bladder, respectively. These indices were higher than those from the 1-image atlases (p < 0.01) and comparable to those from the 7-image atlases (p > 0.05). Daily prostate D99 of the autocontours was comparable to those of the manual contours (p= 0.55). For the bladder and rectum, the daily D5 were 95.5%± 5.9% and 99.1%± 2.6% of the planned D5 for the autocontours compared to 95.3%± 6.7% (p= 0.58) and 99.8%± 2.3% (p < 0.01) for the manual contours.Conclusions: With patient specific 4-image atlases, atlas-based autosegmentation can adequately facilitate daily dose monitoring for prostate cancer.

  3. Reflector automatic acquisition and pointing based on auto-collimation theodolite

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  4. Clinical Validation of Atlas-Based Auto-Segmentation of Multiple Target Volumes and Normal Tissue (Swallowing/Mastication) Structures in the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Teguh, David N. [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Levendag, Peter C., E-mail: p.levendag@erasmusmc.nl [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Voet, Peter W.J.; Al-Mamgani, Abrahim [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Han Xiao; Wolf, Theresa K.; Hibbard, Lyndon S. [Elekta-CMS Software, Maryland Heights, MO 63043 (United States); Nowak, Peter; Akhiat, Hafid; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus Medical Center-Daniel den Hoed Cancer Center, Rotterdam (Netherlands)

    2011-11-15

    Purpose: To validate and clinically evaluate autocontouring using atlas-based autosegmentation (ABAS) of computed tomography images. Methods and Materials: The data from 10 head-and-neck patients were selected as input for ABAS, and neck levels I-V and 20 organs at risk were manually contoured according to published guidelines. The total contouring times were recorded. Two different ABAS strategies, multiple and single subject, were evaluated, and the similarity of the autocontours with the atlas contours was assessed using Dice coefficients and the mean distances, using the leave-one-out method. For 12 clinically treated patients, 5 experienced observers edited the autosegmented contours. The editing times were recorded. The Dice coefficients and mean distances were calculated among the clinically used contours, autocontours, and edited autocontours. Finally, an expert panel scored all autocontours and the edited autocontours regarding their adequacy relative to the published atlas. Results: The time to autosegment all the structures using ABAS was 7 min/patient. No significant differences were observed in the autosegmentation accuracy for stage N0 and N+ patients. The multisubject atlas performed best, with a Dice coefficient and mean distance of 0.74 and 2 mm, 0.67 and 3 mm, 0.71 and 2 mm, 0.50 and 2 mm, and 0.78 and 2 mm for the salivary glands, neck levels, chewing muscles, swallowing muscles, and spinal cord-brainstem, respectively. The mean Dice coefficient and mean distance of the autocontours vs. the clinical contours was 0.8 and 2.4 mm for the neck levels and salivary glands, respectively. For the autocontours vs. the edited autocontours, the mean Dice coefficient and mean distance was 0.9 and 1.6 mm, respectively. The expert panel scored 100% of the autocontours as a 'minor deviation, editable' or better. The expert panel scored 88% of the edited contours as good compared with 83% of the clinical contours. The total editing time was 66 min

  5. Clinical Validation of Atlas-Based Auto-Segmentation of Multiple Target Volumes and Normal Tissue (Swallowing/Mastication) Structures in the Head and Neck

    International Nuclear Information System (INIS)

    Teguh, David N.; Levendag, Peter C.; Voet, Peter W.J.; Al-Mamgani, Abrahim; Han Xiao; Wolf, Theresa K.; Hibbard, Lyndon S.; Nowak, Peter; Akhiat, Hafid; Dirkx, Maarten L.P.; Heijmen, Ben J.M.; Hoogeman, Mischa S.

    2011-01-01

    Purpose: To validate and clinically evaluate autocontouring using atlas-based autosegmentation (ABAS) of computed tomography images. Methods and Materials: The data from 10 head-and-neck patients were selected as input for ABAS, and neck levels I-V and 20 organs at risk were manually contoured according to published guidelines. The total contouring times were recorded. Two different ABAS strategies, multiple and single subject, were evaluated, and the similarity of the autocontours with the atlas contours was assessed using Dice coefficients and the mean distances, using the leave-one-out method. For 12 clinically treated patients, 5 experienced observers edited the autosegmented contours. The editing times were recorded. The Dice coefficients and mean distances were calculated among the clinically used contours, autocontours, and edited autocontours. Finally, an expert panel scored all autocontours and the edited autocontours regarding their adequacy relative to the published atlas. Results: The time to autosegment all the structures using ABAS was 7 min/patient. No significant differences were observed in the autosegmentation accuracy for stage N0 and N+ patients. The multisubject atlas performed best, with a Dice coefficient and mean distance of 0.74 and 2 mm, 0.67 and 3 mm, 0.71 and 2 mm, 0.50 and 2 mm, and 0.78 and 2 mm for the salivary glands, neck levels, chewing muscles, swallowing muscles, and spinal cord-brainstem, respectively. The mean Dice coefficient and mean distance of the autocontours vs. the clinical contours was 0.8 and 2.4 mm for the neck levels and salivary glands, respectively. For the autocontours vs. the edited autocontours, the mean Dice coefficient and mean distance was 0.9 and 1.6 mm, respectively. The expert panel scored 100% of the autocontours as a “minor deviation, editable” or better. The expert panel scored 88% of the edited contours as good compared with 83% of the clinical contours. The total editing time was 66 min

  6. Hand-Geometry Recognition Based on Contour Parameters

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Booij, W.D.T.; Hendrikse, A.J.; Jain, A.K.; Ratha, N.K.

    This paper demonstrates the feasibility of a new method of hand-geometry recognition based on parameters derived from the contour of the hand. The contour is completely determined by the black-and-white image of the hand and can be derived from it by means of simple image-processing techniques. It

  7. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study

    International Nuclear Information System (INIS)

    Tao, Chang-Juan; Yi, Jun-Lin; Chen, Nian-Yong; Ren, Wei; Cheng, Jason; Tung, Stewart; Kong, Lin; Lin, Shao-Jun; Pan, Jian-Ji; Zhang, Guang-Shun; Hu, Jiang; Qi, Zhen-Yu; Ma, Jun; Lu, Jia-De; Yan, Di; Sun, Ying

    2015-01-01

    Background and purpose: To assess whether consensus guideline-based atlas-based auto-segmentation (ABAS) reduces interobserver variation and improves dosimetric parameter consistency for organs at risk (OARs) in nasopharyngeal carcinoma (NPC). Materials and methods: Eight radiation oncologists from 8 institutes contoured 20 OARs on planning CT images of 16 patients via manual contouring and manually-edited ABAS contouring. Interobserver variation [volume coefficient of variation (CV), Dice similarity coefficient (DSC), three-dimensional isocenter difference (3D-ICD)] and dosimetric parameters were compared between the two methods of contouring for each OAR. Results: Interobserver variation was significant for all OARs in manual contouring, resulting in significant dosimetric parameter variation (P < 0.05). Edited ABAS significantly improved multiple metrics and reduced dosimetric parameter variation for most OARs; brainstem, spinal cord, cochleae, temporomandibular joint (TMJ), larynx and pharyngeal constrictor muscle (PCM) obtained most benefit (range of mean DSC, volume CV and main ICD values was 0.36–0.83, 12.1–84.3%, 2.2–5.0 mm for manual contouring and 0.42–0.86, 7.2–70.6%, 1.2–3.5 mm for edited ABAS contouring, respectively; range of dose CV reduction: 1.0–3.0%). Conclusion: Substantial objective interobserver differences occur during manual contouring, resulting in significant dosimetric parameter variation. Edited ABAS reduced interobserver variation and improved dosimetric parameter consistency, particularly for brainstem, spinal cord, cochleae, TMJ, larynx and PCM

  8. Variations in Target Volume Definition for Postoperative Radiotherapy in Stage III Non-Small-Cell Lung Cancer: Analysis of an International Contouring Study

    International Nuclear Information System (INIS)

    Spoelstra, Femke; Senan, Suresh; Le Pechoux, Cecile; Ishikura, Satoshi; Casas, Francesc; Ball, David; Price, Allan; De Ruysscher, Dirk; Soernsen de Koste, John R. van

    2010-01-01

    Purpose: Postoperative radiotherapy (PORT) in patients with completely resected non-small-cell lung cancer with mediastinal involvement is controversial because of the failure of earlier trials to demonstrate a survival benefit. Improved techniques may reduce toxicity, but the treatment fields used in routine practice have not been well studied. We studied routine target volumes used by international experts and evaluated the impact of a contouring protocol developed for a new prospective study, the Lung Adjuvant Radiotherapy Trial (Lung ART). Methods and Materials: Seventeen thoracic radiation oncologists were invited to contour their routine clinical target volumes (CTV) for 2 representative patients using a validated CD-ROM-based contouring program. Subsequently, the Lung ART study protocol was provided, and both cases were contoured again. Variations in target volumes and their dosimetric impact were analyzed. Results: Routine CTVs were received for each case from 10 clinicians, whereas six provided both routine and protocol CTVs for each case. Routine CTVs varied up to threefold between clinicians, but use of the Lung ART protocol significantly decreased variations. Routine CTVs in a postlobectomy patient resulted in V 20 values ranging from 12.7% to 54.0%, and Lung ART protocol CTVs resulted in values of 20.6% to 29.2%. Similar results were seen for other toxicity parameters and in the postpneumectomy patient. With the exception of upper paratracheal nodes, protocol contouring improved coverage of the required nodal stations. Conclusion: Even among experts, significant interclinician variations are observed in PORT fields. Inasmuch as contouring variations can confound the interpretation of PORT results, mandatory quality assurance procedures have been incorporated into the current Lung ART study.

  9. A Voronoi interior adjacency-based approach for generating a contour tree

    Science.gov (United States)

    Chen, Jun; Qiao, Chaofei; Zhao, Renliang

    2004-05-01

    A contour tree is a good graphical tool for representing the spatial relations of contour lines and has found many applications in map generalization, map annotation, terrain analysis, etc. A new approach for generating contour trees by introducing a Voronoi-based interior adjacency set concept is proposed in this paper. The immediate interior adjacency set is employed to identify all of the children contours of each contour without contour elevations. It has advantages over existing methods such as the point-in-polygon method and the region growing-based method. This new approach can be used for spatial data mining and knowledge discovering, such as the automatic extraction of terrain features and construction of multi-resolution digital elevation model.

  10. SU-C-BRA-01: Interactive Auto-Segmentation for Bowel in Online Adaptive MRI-Guided Radiation Therapy by Using a Multi-Region Labeling Algorithm

    International Nuclear Information System (INIS)

    Lu, Y; Chen, I; Kashani, R; Wan, H; Maughan, N; Muccigrosso, D; Parikh, P

    2016-01-01

    Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graph cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.

  11. SU-C-BRA-01: Interactive Auto-Segmentation for Bowel in Online Adaptive MRI-Guided Radiation Therapy by Using a Multi-Region Labeling Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y; Chen, I; Kashani, R; Wan, H; Maughan, N; Muccigrosso, D; Parikh, P [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: In MRI-guided online adaptive radiation therapy, re-contouring of bowel is time-consuming and can impact the overall time of patients on table. The study aims to auto-segment bowel on volumetric MR images by using an interactive multi-region labeling algorithm. Methods: 5 Patients with locally advanced pancreatic cancer underwent fractionated radiotherapy (18–25 fractions each, total 118 fractions) on an MRI-guided radiation therapy system with a 0.35 Tesla magnet and three Co-60 sources. At each fraction, a volumetric MR image of the patient was acquired when the patient was in the treatment position. An interactive two-dimensional multi-region labeling technique based on graph cut solver was applied on several typical MRI images to segment the large bowel and small bowel, followed by a shape based contour interpolation for generating entire bowel contours along all image slices. The resulted contours were compared with the physician’s manual contouring by using metrics of Dice coefficient and Hausdorff distance. Results: Image data sets from the first 5 fractions of each patient were selected (total of 25 image data sets) for the segmentation test. The algorithm segmented the large and small bowel effectively and efficiently. All bowel segments were successfully identified, auto-contoured and matched with manual contours. The time cost by the algorithm for each image slice was within 30 seconds. For large bowel, the calculated Dice coefficients and Hausdorff distances (mean±std) were 0.77±0.07 and 13.13±5.01mm, respectively; for small bowel, the corresponding metrics were 0.73±0.08and 14.15±4.72mm, respectively. Conclusion: The preliminary results demonstrated the potential of the proposed algorithm in auto-segmenting large and small bowel on low field MRI images in MRI-guided adaptive radiation therapy. Further work will be focused on improving its segmentation accuracy and lessening human interaction.

  12. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer.

    Science.gov (United States)

    Lustberg, Tim; van Soest, Johan; Gooding, Mark; Peressutti, Devis; Aljabar, Paul; van der Stoep, Judith; van Elmpt, Wouter; Dekker, Andre

    2018-02-01

    Contouring of organs at risk (OARs) is an important but time consuming part of radiotherapy treatment planning. The aim of this study was to investigate whether using institutional created software-generated contouring will save time if used as a starting point for manual OAR contouring for lung cancer patients. Twenty CT scans of stage I-III NSCLC patients were used to compare user adjusted contours after an atlas-based and deep learning contour, against manual delineation. The lungs, esophagus, spinal cord, heart and mediastinum were contoured for this study. The time to perform the manual tasks was recorded. With a median time of 20 min for manual contouring, the total median time saved was 7.8 min when using atlas-based contouring and 10 min for deep learning contouring. Both atlas based and deep learning adjustment times were significantly lower than manual contouring time for all OARs except for the left lung and esophagus of the atlas based contouring. User adjustment of software generated contours is a viable strategy to reduce contouring time of OARs for lung radiotherapy while conforming to local clinical standards. In addition, deep learning contouring shows promising results compared to existing solutions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. GPU based contouring method on grid DEM data

    Science.gov (United States)

    Tan, Liheng; Wan, Gang; Li, Feng; Chen, Xiaohui; Du, Wenlong

    2017-08-01

    This paper presents a novel method to generate contour lines from grid DEM data based on the programmable GPU pipeline. The previous contouring approaches often use CPU to construct a finite element mesh from the raw DEM data, and then extract contour segments from the elements. They also need a tracing or sorting strategy to generate the final continuous contours. These approaches can be heavily CPU-costing and time-consuming. Meanwhile the generated contours would be unsmooth if the raw data is sparsely distributed. Unlike the CPU approaches, we employ the GPU's vertex shader to generate a triangular mesh with arbitrary user-defined density, in which the height of each vertex is calculated through a third-order Cardinal spline function. Then in the same frame, segments are extracted from the triangles by the geometry shader, and translated to the CPU-side with an internal order in the GPU's transform feedback stage. Finally we propose a "Grid Sorting" algorithm to achieve the continuous contour lines by travelling the segments only once. Our method makes use of multiple stages of GPU pipeline for computation, which can generate smooth contour lines, and is significantly faster than the previous CPU approaches. The algorithm can be easily implemented with OpenGL 3.3 API or higher on consumer-level PCs.

  14. Implicit Active Contours Driven by Local and Global Image Fitting Energy for Image Segmentation and Target Localization

    Directory of Open Access Journals (Sweden)

    Xiaosheng Yu

    2013-01-01

    Full Text Available We propose a novel active contour model in a variational level set formulation for image segmentation and target localization. We combine a local image fitting term and a global image fitting term to drive the contour evolution. Our model can efficiently segment the images with intensity inhomogeneity with the contour starting anywhere in the image. In its numerical implementation, an efficient numerical schema is used to ensure sufficient numerical accuracy. We validated its effectiveness in numerous synthetic images and real images, and the promising experimental results show its advantages in terms of accuracy, efficiency, and robustness.

  15. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting.

    Science.gov (United States)

    Kumarasiri, Akila; Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J; Kim, Jinkoo

    2014-12-01

    To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H&N) adaptive radiotherapy. Ten H&N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3-4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm(3). Organs with volumes <3 cm(3) and/or those with poorly defined boundaries showed Dice coefficients of ∼ 0.5-0.6. For the propagation of small organs (<3 cm(3)), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was "clinically acceptable with minor modification or major modification in a small number of contours." Use of DIR-based contour propagation in the routine

  16. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    International Nuclear Information System (INIS)

    Kumarasiri, Akila; Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J.; Kim, Jinkoo

    2014-01-01

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm 3 . Organs with volumes <3 cm 3 and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm 3 ), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours.” Conclusions

  17. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasiri, Akila, E-mail: akumara1@hfhs.org; Siddiqui, Farzan; Liu, Chang; Yechieli, Raphael; Shah, Mira; Pradhan, Deepak; Zhong, Hualiang; Chetty, Indrin J.; Kim, Jinkoo [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States)

    2014-12-15

    Purpose: To evaluate the clinical potential of deformable image registration (DIR)-based automatic propagation of physician-drawn contours from a planning CT to midtreatment CT images for head and neck (H and N) adaptive radiotherapy. Methods: Ten H and N patients, each with a planning CT (CT1) and a subsequent CT (CT2) taken approximately 3–4 week into treatment, were considered retrospectively. Clinically relevant organs and targets were manually delineated by a radiation oncologist on both sets of images. Four commercial DIR algorithms, two B-spline-based and two Demons-based, were used to deform CT1 and the relevant contour sets onto corresponding CT2 images. Agreement of the propagated contours with manually drawn contours on CT2 was visually rated by four radiation oncologists in a scale from 1 to 5, the volume overlap was quantified using Dice coefficients, and a distance analysis was done using center of mass (CoM) displacements and Hausdorff distances (HDs). Performance of these four commercial algorithms was validated using a parameter-optimized Elastix DIR algorithm. Results: All algorithms attained Dice coefficients of >0.85 for organs with clear boundaries and those with volumes >9 cm{sup 3}. Organs with volumes <3 cm{sup 3} and/or those with poorly defined boundaries showed Dice coefficients of ∼0.5–0.6. For the propagation of small organs (<3 cm{sup 3}), the B-spline-based algorithms showed higher mean Dice values (Dice = 0.60) than the Demons-based algorithms (Dice = 0.54). For the gross and planning target volumes, the respective mean Dice coefficients were 0.8 and 0.9. There was no statistically significant difference in the Dice coefficients, CoM, or HD among investigated DIR algorithms. The mean radiation oncologist visual scores of the four algorithms ranged from 3.2 to 3.8, which indicated that the quality of transferred contours was “clinically acceptable with minor modification or major modification in a small number of contours

  18. Gait Recognition Based on Outermost Contour

    Directory of Open Access Journals (Sweden)

    Lili Liu

    2011-10-01

    Full Text Available Gait recognition aims to identify people by the way they walk. In this paper, a simple but e ective gait recognition method based on Outermost Contour is proposed. For each gait image sequence, an adaptive silhouette extraction algorithm is firstly used to segment the frames of the sequence and a series of postprocessing is applied to obtain the normalized silhouette images with less noise. Then a novel feature extraction method based on Outermost Contour is performed. Principal Component Analysis (PCA is adopted to reduce the dimensionality of the distance signals derived from the Outermost Contours of silhouette images. Then Multiple Discriminant Analysis (MDA is used to optimize the separability of gait features belonging to di erent classes. Nearest Neighbor (NN classifier and Nearest Neighbor classifier with respect to class Exemplars (ENN are used to classify the final feature vectors produced by MDA. In order to verify the e ectiveness and robustness of our feature extraction algorithm, we also use two other classifiers: Backpropagation Neural Network (BPNN and Support Vector Machine (SVM for recognition. Experimental results on a gait database of 100 people show that the accuracy of using MDA, BPNN and SVM can achieve 97.67%, 94.33% and 94.67%, respectively.

  19. Low level constraints on dynamic contour path integration.

    Directory of Open Access Journals (Sweden)

    Sophie Hall

    Full Text Available Contour integration is a fundamental visual process. The constraints on integrating discrete contour elements and the associated neural mechanisms have typically been investigated using static contour paths. However, in our dynamic natural environment objects and scenes vary over space and time. With the aim of investigating the parameters affecting spatiotemporal contour path integration, we measured human contrast detection performance of a briefly presented foveal target embedded in dynamic collinear stimulus sequences (comprising five short 'predictor' bars appearing consecutively towards the fovea, followed by the 'target' bar in four experiments. The data showed that participants' target detection performance was relatively unchanged when individual contour elements were separated by up to 2° spatial gap or 200 ms temporal gap. Randomising the luminance contrast or colour of the predictors, on the other hand, had similar detrimental effect on grouping dynamic contour path and subsequent target detection performance. Randomising the orientation of the predictors reduced target detection performance greater than introducing misalignment relative to the contour path. The results suggest that the visual system integrates dynamic path elements to bias target detection even when the continuity of path is disrupted in terms of spatial (2°, temporal (200 ms, colour (over 10 colours and luminance (-25% to 25% information. We discuss how the findings can be largely reconciled within the functioning of V1 horizontal connections.

  20. Male Body Contouring.

    Science.gov (United States)

    Singh, Babu; Keaney, Terrence; Rossi, Anthony M

    2015-09-01

    Men are increasingly turning to dermatologists and plastic surgeons to request procedures that correct or enhance physical features. With the advent of this emerging new patient population, alterations in preexisting aesthetic techniques, gender-specific uses of existing devices and overall approaches need to be revisited and adapted to obtain results that are suitable for the male patient. Recently, body contouring has become one of the most sought out procedures by men. Although the majority of clinical studies involving body contouring esthetics are performed with female patients, gains from such studies can be extrapolated to men. Body contouring can be broadly classified as non-invasive or invasive, depending on the modality used. Non-invasive contouring is most frequently performed with devices that target subcutaneous adipose with focused electrical or thermal energy, including low-level laser, cryolipolysis, ultrasonography, and radiofrequency. Invasive body contouring modalities useful for male body contouring include liposuction, pectoral and abdominal wall etching, jawline fillers, synthetic deoxycholic acid injections, and solid silicone implants. The purpose of this review is to bring attention to the unique aspects, strategies, and modalities used in aesthetic body contouring for the male patient.

  1. Auto-Segmentation of Head and Neck Cancer using Textural features

    DEFF Research Database (Denmark)

    Hollensen, Christian; Jørgensen, Peter Stanley; Højgaard, Liselotte

    - and intra observer variability. Several automatic segmentation methods have been developed using positron emission tomography (PET) and/or computerised tomography (CT). The aim of the present study is to develop a model for 3-dimensional auto-segmentation, the level set method, to contour gross tumour...

  2. Color and Contour Based Identification of Stem of Coconut Bunch

    Science.gov (United States)

    Kannan Megalingam, Rajesh; Manoharan, Sakthiprasad K.; Reddy, Rajesh G.; Sriteja, Gone; Kashyap, Ashwin

    2017-08-01

    Vision is the key component of Artificial Intelligence and Automated Robotics. Sensors or Cameras are the sight organs for a robot. Only through this, they are able to locate themselves or identify the shape of a regular or an irregular object. This paper presents the method of Identification of an object based on color and contour recognition using a camera through digital image processing techniques for robotic applications. In order to identify the contour, shape matching technique is used, which takes the input data from the database provided, and uses it to identify the contour by checking for shape match. The shape match is based on the idea of iterating through each contour of the threshold image. The color is identified on HSV Scale, by approximating the desired range of values from the database. HSV data along with iteration is used for identifying a quadrilateral, which is our required contour. This algorithm could also be used in a non-deterministic plane, which only uses HSV values exclusively.

  3. On the Relationship between Variational Level Set-Based and SOM-Based Active Contours

    Science.gov (United States)

    Abdelsamea, Mohammed M.; Gnecco, Giorgio; Gaber, Mohamed Medhat; Elyan, Eyad

    2015-01-01

    Most Active Contour Models (ACMs) deal with the image segmentation problem as a functional optimization problem, as they work on dividing an image into several regions by optimizing a suitable functional. Among ACMs, variational level set methods have been used to build an active contour with the aim of modeling arbitrarily complex shapes. Moreover, they can handle also topological changes of the contours. Self-Organizing Maps (SOMs) have attracted the attention of many computer vision scientists, particularly in modeling an active contour based on the idea of utilizing the prototypes (weights) of a SOM to control the evolution of the contour. SOM-based models have been proposed in general with the aim of exploiting the specific ability of SOMs to learn the edge-map information via their topology preservation property and overcoming some drawbacks of other ACMs, such as trapping into local minima of the image energy functional to be minimized in such models. In this survey, we illustrate the main concepts of variational level set-based ACMs, SOM-based ACMs, and their relationship and review in a comprehensive fashion the development of their state-of-the-art models from a machine learning perspective, with a focus on their strengths and weaknesses. PMID:25960736

  4. Contour Detection for UAV-Based Cadastral Mapping

    Directory of Open Access Journals (Sweden)

    Sophie Crommelinck

    2017-02-01

    Full Text Available Unmanned aerial vehicles (UAVs provide a flexible and low-cost solution for the acquisition of high-resolution data. The potential of high-resolution UAV imagery to create and update cadastral maps is being increasingly investigated. Existing procedures generally involve substantial fieldwork and many manual processes. Arguably, multiple parts of UAV-based cadastral mapping workflows could be automated. Specifically, as many cadastral boundaries coincide with visible boundaries, they could be extracted automatically using image analysis methods. This study investigates the transferability of gPb contour detection, a state-of-the-art computer vision method, to remotely sensed UAV images and UAV-based cadastral mapping. Results show that the approach is transferable to UAV data and automated cadastral mapping: object contours are comprehensively detected at completeness and correctness rates of up to 80%. The detection quality is optimal when the entire scene is covered with one orthoimage, due to the global optimization of gPb contour detection. However, a balance between high completeness and correctness is hard to achieve, so a combination with area-based segmentation and further object knowledge is proposed. The localization quality exhibits the usual dependency on ground resolution. The approach has the potential to accelerate the process of general boundary delineation during the creation and updating of cadastral maps.

  5. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2001-01-01

    Based on the analysis of auto-correlation function, the notion of the distance between auto-correlation function was quoted, and the characterization of the noise and the signal with noise were discussed by using the distance. Then, the method of auto- adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low signal with noise ratio circumstance

  6. Role of endocortical contouring methods on precision of HR-pQCT-derived cortical micro-architecture in postmenopausal women and young adults.

    Science.gov (United States)

    Kawalilak, C E; Johnston, J D; Cooper, D M L; Olszynski, W P; Kontulainen, S A

    2016-02-01

    Precision errors of cortical bone micro-architecture from high-resolution peripheral quantitative computed tomography (pQCT) ranged from 1 to 16 % and did not differ between automatic or manually modified endocortical contour methods in postmenopausal women or young adults. In postmenopausal women, manually modified contours led to generally higher cortical bone properties when compared to the automated method. First, the objective of the study was to define in vivo precision errors (coefficient of variation root mean square (CV%RMS)) and least significant change (LSC) for cortical bone micro-architecture using two endocortical contouring methods: automatic (AUTO) and manually modified (MOD) in two groups (postmenopausal women and young adults) from high-resolution pQCT (HR-pQCT) scans. Second, it was to compare precision errors and bone outcomes obtained with both methods within and between groups. Using HR-pQCT, we scanned twice the distal radius and tibia of 34 postmenopausal women (mean age ± SD 74 ± 7 years) and 30 young adults (27 ± 9 years). Cortical micro-architecture was determined using AUTO and MOD contour methods. CV%RMS and LSC were calculated. Repeated measures and multivariate ANOVA were used to compare mean CV% and bone outcomes between the methods within and between the groups. Significance was accepted at P young adults, postmenopausal women had better precision for radial cortical porosity (precision difference 9.3 %) and pore volume (7.5 %) with MOD. Young adults had better precision for cortical thickness (0.8 %, MOD) and tibial cortical density (0.2 %, AUTO). In postmenopausal women, MOD resulted in 0.2-54 % higher values for most cortical outcomes, as well as 6-8 % lower radial and tibial cortical BMD and 2 % lower tibial cortical thickness. Results suggest that AUTO and MOD endocortical contour methods provide comparable repeatability. In postmenopausal women, manual modification of endocortical contours led to

  7. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2000-01-01

    There are certain shortcomings for the endpoint detection by time-waveform envelope and/or by checking the travel table (both labelled as the artificial detection method). Based on the analysis of the auto-correlation function, the notion of the distance between auto-correlation functions was quoted, and the characterizations of the noise and the signal with noise were discussed by using the distance. Then, the method of auto-adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low SNR circumstance

  8. Auto-Targeted Neurostimulation Is Not Superior to Placebo in Chronic Low Back Pain: A Fourfold Blind Randomized Clinical Trial.

    Science.gov (United States)

    Aguilar Ferrándiz, Maria Encarnación; Nijs, Jo; Gidron, Yori; Roussel, Nathalie; Vanderstraeten, Rob; Van Dyck, Dries; Huysmans, Eva; De Kooning, Margot

    2016-07-01

    Myofascial trigger points (MTrPs) are common in people with musculoskeletal pain and may play a role in chronic nonspecific low back pain (CLBP). One of the potential treatments of MTrPs is the Nervomatrix Soleve® auto-targeted neurostimulation device, providing targeted transcutaneous electrical nerve stimulation (TENS) to MTrPs in the lower back muscles. To date, no controlled studies have evaluated the effectiveness of this device for the pain management of this population. To examine whether the Nervomatrix Soleve® auto-targeted neurostimulation device is superior over placebo for the treatment of CLBP. A fourfold-blind randomized controlled trial was conducted. Brussels University Hospital, health care centers and pharmacies around Belgium. Participants with CLBP for at least 3 months were randomly assigned to the experimental (the Nervomatrix Soleve® auto-targeted neurostimulation device providing TENS-stimulation and mechanical pressure) or placebo group (the Nervomatrix Soleve® auto-targeted neurostimulation device providing mechanical pressure alone without current). The treatment protocol in both groups consisted of 6 treatment sessions per patient. Participants were evaluated at baseline prior to the intervention, immediately following treatment, and at one month follow-up. Pain and pain behavior (steps climbed) were assessed as primary outcome measures. Secondary outcome measures were pain functioning, health beliefs, symptoms of central sensitization, pain catastrophizing, and kinesiophobia. In total, 39 participants were included in the study. Participants in both groups improved significantly for pain and functioning, but no significant differences were observed between groups. These improvements were not clinically meaningful for any of the reported measures. The health beliefs changed significantly in both groups (P pain, pain behavior, functioning, central sensitization, pain catastrophizing, and health beliefs.

  9. Contour extraction of echocardiographic images based on pre-processing

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Zinah Rajab; Rahmat, Rahmita Wirza; Abdullah, Lili Nurliyana [Department of Multimedia, Faculty of Computer Science and Information Technology, Department of Computer and Communication Systems Engineering, Faculty of Engineering University Putra Malaysia 43400 Serdang, Selangor (Malaysia); Zamrin, D M [Department of Surgery, Faculty of Medicine, National University of Malaysia, 56000 Cheras, Kuala Lumpur (Malaysia); Saripan, M Iqbal

    2011-02-15

    In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.

  10. Contour extraction of echocardiographic images based on pre-processing

    International Nuclear Information System (INIS)

    Hussein, Zinah Rajab; Rahmat, Rahmita Wirza; Abdullah, Lili Nurliyana; Zamrin, D M; Saripan, M Iqbal

    2011-01-01

    In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.

  11. Contour-Based Corner Detection and Classification by Using Mean Projection Transform

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Mousavi Kahaki

    2014-02-01

    Full Text Available Image corner detection is a fundamental task in computer vision. Many applications require reliable detectors to accurately detect corner points, commonly achieved by using image contour information. The curvature definition is sensitive to local variation and edge aliasing, and available smoothing methods are not sufficient to address these problems properly. Hence, we propose Mean Projection Transform (MPT as a corner classifier and parabolic fit approximation to form a robust detector. The first step is to extract corner candidates using MPT based on the integral properties of the local contours in both the horizontal and vertical directions. Then, an approximation of the parabolic fit is calculated to localize the candidate corner points. The proposed method presents fewer false-positive (FP and false-negative (FN points compared with recent standard corner detection techniques, especially in comparison with curvature scale space (CSS methods. Moreover, a new evaluation metric, called accuracy of repeatability (AR, is introduced. AR combines repeatability and the localization error (Le for finding the probability of correct detection in the target image. The output results exhibit better repeatability, localization, and AR for the detected points compared with the criteria in original and transformed images.

  12. Assessment and improvement of radiation oncology trainee contouring ability utilizing consensus-based penalty metrics

    International Nuclear Information System (INIS)

    Hallock, Abhirami; Read, Nancy; D'Souza, David

    2012-01-01

    The objective of this study was to develop and assess the feasibility of utilizing consensus-based penalty metrics for the purpose of critical structure and organ at risk (OAR) contouring quality assurance and improvement. A Delphi study was conducted to obtain consensus on contouring penalty metrics to assess trainee-generated OAR contours. Voxel-based penalty metric equations were used to score regions of discordance between trainee and expert contour sets. The utility of these penalty metric scores for objective feedback on contouring quality was assessed by using cases prepared for weekly radiation oncology radiation oncology trainee treatment planning rounds. In two Delphi rounds, six radiation oncology specialists reached agreement on clinical importance/impact and organ radiosensitivity as the two primary criteria for the creation of the Critical Structure Inter-comparison of Segmentation (CriSIS) penalty functions. Linear/quadratic penalty scoring functions (for over- and under-contouring) with one of four levels of severity (none, low, moderate and high) were assigned for each of 20 OARs in order to generate a CriSIS score when new OAR contours are compared with reference/expert standards. Six cases (central nervous system, head and neck, gastrointestinal, genitourinary, gynaecological and thoracic) then were used to validate 18 OAR metrics through comparison of trainee and expert contour sets using the consensus derived CriSIS functions. For 14 OARs, there was an improvement in CriSIS score post-educational intervention. The use of consensus-based contouring penalty metrics to provide quantitative information for contouring improvement is feasible.

  13. Analysis on the workspace of palletizing robot based on AutoCAD

    Science.gov (United States)

    Li, Jin-quan; Zhang, Rui; Guan, Qi; Cui, Fang; Chen, Kuan

    2017-10-01

    In this paper, a four-degree-of-freedom articulated palletizing robot is used as the object of research. Based on the analysis of the overall configuration of the robot, the kinematic mathematical model is established by D-H method to figure out the workspace of the robot. In order to meet the needs of design and analysis, using AutoCAD secondary development technology and AutoLisp language to develop AutoCAD-based 2D and 3D workspace simulation interface program of palletizing robot. At last, using AutoCAD plugin, the influence of structural parameters on the shape and position of the working space is analyzed when the structure parameters of the robot are changed separately. This study laid the foundation for the design, control and planning of palletizing robots.

  14. A 3-Step Algorithm Using Region-Based Active Contours for Video Objects Detection

    Directory of Open Access Journals (Sweden)

    Stéphanie Jehan-Besson

    2002-06-01

    Full Text Available We propose a 3-step algorithm for the automatic detection of moving objects in video sequences using region-based active contours. First, we introduce a very full general framework for region-based active contours with a new Eulerian method to compute the evolution equation of the active contour from a criterion including both region-based and boundary-based terms. This framework can be easily adapted to various applications, thanks to the introduction of functions named descriptors of the different regions. With this new Eulerian method based on shape optimization principles, we can easily take into account the case of descriptors depending upon features globally attached to the regions. Second, we propose a 3-step algorithm for detection of moving objects, with a static or a mobile camera, using region-based active contours. The basic idea is to hierarchically associate temporal and spatial information. The active contour evolves with successively three sets of descriptors: a temporal one, and then two spatial ones. The third spatial descriptor takes advantage of the segmentation of the image in intensity homogeneous regions. User interaction is reduced to the choice of a few parameters at the beginning of the process. Some experimental results are supplied.

  15. Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Sanggoo Kang

    2016-08-01

    Full Text Available Cloud computing is a base platform for the distribution of large volumes of data and high-performance image processing on the Web. Despite wide applications in Web-based services and their many benefits, geo-spatial applications based on cloud computing technology are still developing. Auto-scaling realizes automatic scalability, i.e., the scale-out and scale-in processing of virtual servers in a cloud computing environment. This study investigates the applicability of auto-scaling to geo-based image processing algorithms by comparing the performance of a single virtual server and multiple auto-scaled virtual servers under identical experimental conditions. In this study, the cloud computing environment is built with OpenStack, and four algorithms from the Orfeo toolbox are used for practical geo-based image processing experiments. The auto-scaling results from all experimental performance tests demonstrate applicable significance with respect to cloud utilization concerning response time. Auto-scaling contributes to the development of web-based satellite image application services using cloud-based technologies.

  16. A cognitive evaluation procedure for contour based shape descriptors

    NARCIS (Netherlands)

    Ghosh, Anarta; Petkov, Nicolai

    2005-01-01

    Present image processing algorithms are unable to extract a neat and closed contour of an object of interest from a natural image. Advanced contour detection algorithms extract the contour of an object of interest from a natural scene with a side effect of depletion of the contour. Hence in order to

  17. A framework for automated contour quality assurance in radiation therapy including adaptive techniques

    International Nuclear Information System (INIS)

    Altman, M B; Kavanaugh, J A; Wooten, H O; Green, O L; DeWees, T A; Gay, H; Thorstad, W L; Li, H; Mutic, S

    2015-01-01

    Contouring of targets and normal tissues is one of the largest sources of variability in radiation therapy treatment plans. Contours thus require a time intensive and error-prone quality assurance (QA) evaluation, limitations which also impair the facilitation of adaptive radiotherapy (ART). Here, an automated system for contour QA is developed using historical data (the ‘knowledge base’). A pilot study was performed with a knowledge base derived from 9 contours each from 29 head-and-neck treatment plans. Size, shape, relative position, and other clinically-relevant metrics and heuristically derived rules are determined. Metrics are extracted from input patient data and compared against rules determined from the knowledge base; a computer-learning component allows metrics to evolve with more input data, including patient specific data for ART. Nine additional plans containing 42 unique contouring errors were analyzed. 40/42 errors were detected as were 9 false positives. The results of this study imply knowledge-based contour QA could potentially enhance the safety and effectiveness of RT treatment plans as well as increase the efficiency of the treatment planning process, reducing labor and the cost of therapy for patients. (paper)

  18. Supertracker: A Programmable Parallel Pipeline Arithmetic Processor For Auto-Cueing Target Processing

    Science.gov (United States)

    Mack, Harold; Reddi, S. S.

    1980-04-01

    Supertracker represents a programmable parallel pipeline computer architecture that has been designed to meet the real time image processing requirements of auto-cueing target data processing. The prototype bread-board currently under development will be designed to perform input video preprocessing and processing for 525-line and 875-line TV formats FLIR video, automatic display gain and contrast control, and automatic target cueing, classification, and tracking. The video preprocessor is capable of performing operations full frames of video data in real time, e.g., frame integration, storage, 3 x 3 convolution, and neighborhood processing. The processor architecture is being implemented using bit-slice microprogrammable arithmetic processors, operating in parallel. Each processor is capable of up to 20 million operations per second. Multiple frame memories are used for additional flexibility.

  19. A Logistic Regression Based Auto Insurance Rate-Making Model Designed for the Insurance Rate Reform

    Directory of Open Access Journals (Sweden)

    Zhengmin Duan

    2018-02-01

    Full Text Available Using a generalized linear model to determine the claim frequency of auto insurance is a key ingredient in non-life insurance research. Among auto insurance rate-making models, there are very few considering auto types. Therefore, in this paper we are proposing a model that takes auto types into account by making an innovative use of the auto burden index. Based on this model and data from a Chinese insurance company, we built a clustering model that classifies auto insurance rates into three risk levels. The claim frequency and the claim costs are fitted to select a better loss distribution. Then the Logistic Regression model is employed to fit the claim frequency, with the auto burden index considered. Three key findings can be concluded from our study. First, more than 80% of the autos with an auto burden index of 20 or higher belong to the highest risk level. Secondly, the claim frequency is better fitted using the Poisson distribution, however the claim cost is better fitted using the Gamma distribution. Lastly, based on the AIC criterion, the claim frequency is more adequately represented by models that consider the auto burden index than those do not. It is believed that insurance policy recommendations that are based on Generalized linear models (GLM can benefit from our findings.

  20. Atlas-based segmentation technique incorporating inter-observer delineation uncertainty for whole breast

    International Nuclear Information System (INIS)

    Bell, L R; Pogson, E M; Metcalfe, P; Holloway, L; Dowling, J A

    2017-01-01

    Accurate, efficient auto-segmentation methods are essential for the clinical efficacy of adaptive radiotherapy delivered with highly conformal techniques. Current atlas based auto-segmentation techniques are adequate in this respect, however fail to account for inter-observer variation. An atlas-based segmentation method that incorporates inter-observer variation is proposed. This method is validated for a whole breast radiotherapy cohort containing 28 CT datasets with CTVs delineated by eight observers. To optimise atlas accuracy, the cohort was divided into categories by mean body mass index and laterality, with atlas’ generated for each in a leave-one-out approach. Observer CTVs were merged and thresholded to generate an auto-segmentation model representing both inter-observer and inter-patient differences. For each category, the atlas was registered to the left-out dataset to enable propagation of the auto-segmentation from atlas space. Auto-segmentation time was recorded. The segmentation was compared to the gold-standard contour using the dice similarity coefficient (DSC) and mean absolute surface distance (MASD). Comparison with the smallest and largest CTV was also made. This atlas-based auto-segmentation method incorporating inter-observer variation was shown to be efficient (<4min) and accurate for whole breast radiotherapy, with good agreement (DSC>0.7, MASD <9.3mm) between the auto-segmented contours and CTV volumes. (paper)

  1. An automatic contour propagation method to follow parotid gland deformation during head-and-neck cancer tomotherapy

    International Nuclear Information System (INIS)

    Faggiano, E; Scalco, E; Rizzo, G; Fiorino, C; Broggi, S; Cattaneo, M; Maggiulli, E; Calandrino, R; Dell'Oca, I; Di Muzio, N

    2011-01-01

    We developed an efficient technique to auto-propagate parotid gland contours from planning kVCT to daily MVCT images of head-and-neck cancer patients treated with helical tomotherapy. The method deformed a 3D surface mesh constructed from manual kVCT contours by B-spline free-form deformation to generate optimal and smooth contours. Deformation was calculated by elastic image registration between kVCT and MVCT images. Data from ten head-and-neck cancer patients were considered and manual contours by three observers were included in both kVCT and MVCT images. A preliminary inter-observer variability analysis demonstrated the importance of contour propagation in tomotherapy application: a high variability was reported in MVCT parotid volume estimation (p = 0.0176, ANOVA test) and a larger uncertainty of MVCT contouring compared with kVCT was demonstrated by DICE and volume variability indices (Wilcoxon signed rank test, p -4 for both indices). The performance analysis of our method showed no significant differences between automatic and manual contours in terms of volumes (p > 0.05, in a multiple comparison Tukey test), center-of-mass distances (p = 0.3043, ANOVA test), DICE values (p = 0.1672, Wilcoxon signed rank test) and average and maximum symmetric distances (p = 0.2043, p = 0.8228 Wilcoxon signed rank tests). Results suggested that our contour propagation method could successfully substitute human contouring on MVCT images.

  2. An automatic contour propagation method to follow parotid gland deformation during head-and-neck cancer tomotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Faggiano, E; Scalco, E; Rizzo, G [Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), CNR, Milan (Italy); Fiorino, C; Broggi, S; Cattaneo, M; Maggiulli, E; Calandrino, R [Department of Medical Physics, San Raffaele Scientific Institute, Milan (Italy); Dell' Oca, I; Di Muzio, N, E-mail: fiorino.claudio@hsr.it [Department of Radiotherapy, San Raffaele Scientific Institute, Milan (Italy)

    2011-02-07

    We developed an efficient technique to auto-propagate parotid gland contours from planning kVCT to daily MVCT images of head-and-neck cancer patients treated with helical tomotherapy. The method deformed a 3D surface mesh constructed from manual kVCT contours by B-spline free-form deformation to generate optimal and smooth contours. Deformation was calculated by elastic image registration between kVCT and MVCT images. Data from ten head-and-neck cancer patients were considered and manual contours by three observers were included in both kVCT and MVCT images. A preliminary inter-observer variability analysis demonstrated the importance of contour propagation in tomotherapy application: a high variability was reported in MVCT parotid volume estimation (p = 0.0176, ANOVA test) and a larger uncertainty of MVCT contouring compared with kVCT was demonstrated by DICE and volume variability indices (Wilcoxon signed rank test, p < 10{sup -4} for both indices). The performance analysis of our method showed no significant differences between automatic and manual contours in terms of volumes (p > 0.05, in a multiple comparison Tukey test), center-of-mass distances (p = 0.3043, ANOVA test), DICE values (p = 0.1672, Wilcoxon signed rank test) and average and maximum symmetric distances (p = 0.2043, p = 0.8228 Wilcoxon signed rank tests). Results suggested that our contour propagation method could successfully substitute human contouring on MVCT images.

  3. Elective Clinical Target Volumes for Conformal Therapy in Anorectal Cancer: A Radiation Therapy Oncology Group Consensus Panel Contouring Atlas

    International Nuclear Information System (INIS)

    Myerson, Robert J.; Garofalo, Michael C.; El Naqa, Issam; Abrams, Ross A.; Apte, Aditya; Bosch, Walter R.; Das, Prajnan; Gunderson, Leonard L.; Hong, Theodore S.; Kim, J.J. John; Willett, Christopher G.; Kachnic, Lisa A.

    2009-01-01

    Purpose: To develop a Radiation Therapy Oncology Group (RTOG) atlas of the elective clinical target volume (CTV) definitions to be used for planning pelvic intensity-modulated radiotherapy (IMRT) for anal and rectal cancers. Methods and Materials: The Gastrointestinal Committee of the RTOG established a task group (the nine physician co-authors) to develop this atlas. They responded to a questionnaire concerning three elective CTVs (CTVA: internal iliac, presacral, and perirectal nodal regions for both anal and rectal case planning; CTVB: external iliac nodal region for anal case planning and for selected rectal cases; CTVC: inguinal nodal region for anal case planning and for select rectal cases), and to outline these areas on individual computed tomographic images. The imaging files were shared via the Advanced Technology Consortium. A program developed by one of the co-authors (I.E.N.) used binomial maximum-likelihood estimates to generate a 95% group consensus contour. The computer-estimated consensus contours were then reviewed by the group and modified to provide a final contouring consensus atlas. Results: The panel achieved consensus CTV definitions to be used as guidelines for the adjuvant therapy of rectal cancer and definitive therapy for anal cancer. The most important difference from similar atlases for gynecologic or genitourinary cancer is mesorectal coverage. Detailed target volume contouring guidelines and images are discussed. Conclusion: This report serves as a template for the definition of the elective CTVs to be used in IMRT planning for anal and rectal cancers, as part of prospective RTOG trials.

  4. Simultaneous 68Ga DOTATATE Positron Emission Tomography/Magnetic Resonance Imaging in Meningioma Target Contouring: Feasibility and Impact Upon Interobserver Variability Versus Positron Emission Tomography/Computed Tomography and Computed Tomography/Magnetic Resonance Imaging.

    Science.gov (United States)

    Maclean, J; Fersht, N; Sullivan, K; Kayani, I; Bomanji, J; Dickson, J; O'Meara, C; Short, S

    2017-07-01

    The increasing use of highly conformal radiation techniques to treat meningioma confers a greater need for accurate targeting. Several groups have shown that positron emission tomography/computed tomography (PET/CT) information alters meningioma targets contoured by single observers, but whether this translates into improved accuracy has not been defined. As magnetic resonance imaging (MRI) is the cornerstone of meningioma target contouring, simultaneous PET/MRI may be superior to PET/CT. We assessed whether 68 Ga DOTATATE PET imaging (from PET/CT and PET/MRI) reduced interobserver variability (IOV) in meningioma target volume contouring. Ten patients with meningioma underwent simultaneous 68 Ga DOTATATE PET/MRI followed by PET/CT. They were selected as it was anticipated that target volume definition in their cases would be particularly challenging. Three radiation oncologists contoured target volumes according to an agreed protocol: gross tumour volume (GTV) and clinical target volume (CTV) on CT/MRI alone, CT/MRI+PET(CT) and CT/MRI+PET(MRI). GTV/CTV Kouwenhoven conformity levels (KCL), regions of contour variation and qualitative differences between PET(CT) and PET(MRI) were evaluated. There was substantial IOV in contouring. GTV mean KCL: CT/MRI 0.34, CT/MRI+PET(CT) 0.38, CT/MRI+PET(MRI) 0.39 (P = 0.06). CTV mean KCL: CT/MRI 0.31, CT/MRI+PET(CT) 0.35, CT/MRI+PET(MRI) 0.35 (P = 0.04 for all groups; P > 0.05 for individual pairs). One observer consistently contoured largest and one smallest. Observers rarely decreased volumes in relation to PET. Most IOV occurred in bone followed by dural tail, postoperative bed and venous sinuses. Tumour edges were qualitatively clearer on PET(MRI) versus PET(CT), but this did not affect contouring. IOV in contouring challenging meningioma cases was large and only slightly improved with the addition of 68 Ga DOTATATE PET. Simultaneous PET/MRI for meningioma contouring is feasible, but did not improve IOV versus PET

  5. Threshold-driven optimization for reference-based auto-planning

    Science.gov (United States)

    Long, Troy; Chen, Mingli; Jiang, Steve; Lu, Weiguo

    2018-02-01

    We study threshold-driven optimization methodology for automatically generating a treatment plan that is motivated by a reference DVH for IMRT treatment planning. We present a framework for threshold-driven optimization for reference-based auto-planning (TORA). Commonly used voxel-based quadratic penalties have two components for penalizing under- and over-dosing of voxels: a reference dose threshold and associated penalty weight. Conventional manual- and auto-planning using such a function involves iteratively updating the preference weights while keeping the thresholds constant, an unintuitive and often inconsistent method for planning toward some reference DVH. However, driving a dose distribution by threshold values instead of preference weights can achieve similar plans with less computational effort. The proposed methodology spatially assigns reference DVH information to threshold values, and iteratively improves the quality of that assignment. The methodology effectively handles both sub-optimal and infeasible DVHs. TORA was applied to a prostate case and a liver case as a proof-of-concept. Reference DVHs were generated using a conventional voxel-based objective, then altered to be either infeasible or easy-to-achieve. TORA was able to closely recreate reference DVHs in 5-15 iterations of solving a simple convex sub-problem. TORA has the potential to be effective for auto-planning based on reference DVHs. As dose prediction and knowledge-based planning becomes more prevalent in the clinical setting, incorporating such data into the treatment planning model in a clear, efficient way will be crucial for automated planning. A threshold-focused objective tuning should be explored over conventional methods of updating preference weights for DVH-guided treatment planning.

  6. Visual search of illusory contours: Shape and orientation effects

    Directory of Open Access Journals (Sweden)

    Gvozdenović Vasilije

    2008-01-01

    Full Text Available Illusory contours are specific class of visual stimuli that represent stimuli configurations perceived as integral irrespective of the fact that they are given in fragmented uncompleted wholes. Due to their specific features, illusory contours gained much attention in last decade representing prototype of stimuli used in investigations focused on binding problem. On the other side, investigations of illusory contours are related to problem of the level of their visual processing. Neurophysiologic studies show that processing of illusory contours proceed relatively early, on the V2 level, on the other hand most of experimental studies claim that illusory contours are perceived with engagement of visual attention, binding their elements to whole percept. This research is focused on two experiments in which visual search of illusory contours are based on shape and orientation. The main experimental procedure evolved the task proposed by Bravo and Nakayama where instead of detection, subjects were performing identification of one among two possible targets. In the first experiment subjects detected the presence of illusory square or illusory triangle, while in the second experiment subject were detecting two different orientations of illusory triangle. The results are interpreted in terms of visual search and feature integration theory. Beside the type of visual search task, search type proved to be dependent of specific features of illusory shapes which further complicate theoretical interpretation of the level of their perception.

  7. Prostate Contouring Variation: Can It Be Fixed?

    International Nuclear Information System (INIS)

    Khoo, Eric L.H.; Schick, Karlissa; Plank, Ashley W.; Poulsen, Michael; Wong, Winnie W.G.; Middleton, Mark; Martin, Jarad M.

    2012-01-01

    Purpose: To assess whether an education program on CT and MRI prostate anatomy would reduce inter- and intraobserver prostate contouring variation among experienced radiation oncologists. Methods and Materials: Three patient CT and MRI datasets were selected. Five radiation oncologists contoured the prostate for each patient on CT first, then MRI, and again between 2 and 4 weeks later. Three education sessions were then conducted. The same contouring process was then repeated with the same datasets and oncologists. The observer variation was assessed according to changes in the ratio of the encompassing volume to intersecting volume (volume ratio [VR]), across sets of target volumes. Results: For interobserver variation, there was a 15% reduction in mean VR with CT, from 2.74 to 2.33, and a 40% reduction in mean VR with MRI, from 2.38 to 1.41 after education. A similar trend was found for intraobserver variation, with a mean VR reduction for CT and MRI of 9% (from 1.51 to 1.38) and 16% (from 1.37 to 1.15), respectively. Conclusion: A well-structured education program has reduced both inter- and intraobserver prostate contouring variations. The impact was greater on MRI than on CT. With the ongoing incorporation of new technologies into routine practice, education programs for target contouring should be incorporated as part of the continuing medical education of radiation oncologists.

  8. Digital extraction of interference fringe contours

    International Nuclear Information System (INIS)

    Mastin, G.A.; Ghiglia, D.C.

    1985-01-01

    Two basic techniques for extracting interferogram contours have been discussed. The first is a global contour extracton technique based on the fast Fourier transform. The second extracts individual contours with a thinning algorithm using logical neighborhood transformations

  9. Active contour based segmentation of resected livers in CT images

    Science.gov (United States)

    Oelmann, Simon; Oyarzun Laura, Cristina; Drechsler, Klaus; Wesarg, Stefan

    2015-03-01

    The majority of state of the art segmentation algorithms are able to give proper results in healthy organs but not in pathological ones. However, many clinical applications require an accurate segmentation of pathological organs. The determination of the target boundaries for radiotherapy or liver volumetry calculations are examples of this. Volumetry measurements are of special interest after tumor resection for follow up of liver regrow. The segmentation of resected livers presents additional challenges that were not addressed by state of the art algorithms. This paper presents a snakes based algorithm specially developed for the segmentation of resected livers. The algorithm is enhanced with a novel dynamic smoothing technique that allows the active contour to propagate with different speeds depending on the intensities visible in its neighborhood. The algorithm is evaluated in 6 clinical CT images as well as 18 artificial datasets generated from additional clinical CT images.

  10. High signal-to-noise ratio sensing with Shack–Hartmann wavefront sensor based on auto gain control of electron multiplying CCD

    International Nuclear Information System (INIS)

    Zhu Zhao-Yi; Li Da-Yu; Hu Li-Fa; Mu Quan-Quan; Yang Cheng-Liang; Cao Zhao-Liang; Xuan Li

    2016-01-01

    High signal-to-noise ratio can be achieved with the electron multiplying charge-coupled-device (EMCCD) applied in the Shack–Hartmann wavefront sensor (S–H WFS) in adaptive optics (AO). However, when the brightness of the target changes in a large scale, the fixed electron multiplying (EM) gain will not be suited to the sensing limitation. Therefore an auto-gain-control method based on the brightness of light-spots array in S–H WFS is proposed in this paper. The control value is the average of the maximum signals of every light spot in an array, which has been demonstrated to be kept stable even under the influence of some noise and turbulence, and sensitive enough to the change of target brightness. A goal value is needed in the control process and it is predetermined based on the characters of EMCCD. Simulations and experiments have demonstrated that this auto-gain-control method is valid and robust, the sensing SNR reaches the maximum for the corresponding signal level, and especially is greatly improved for those dim targets from 6 to 4 magnitude in the visual band. (special topic)

  11. An automated approach for segmentation of intravascular ultrasound images based on parametric active contour models

    International Nuclear Information System (INIS)

    Vard, Alireza; Jamshidi, Kamal; Movahhedinia, Naser

    2012-01-01

    This paper presents a fully automated approach to detect the intima and media-adventitia borders in intravascular ultrasound images based on parametric active contour models. To detect the intima border, we compute a new image feature applying a combination of short-term autocorrelations calculated for the contour pixels. These feature values are employed to define an energy function of the active contour called normalized cumulative short-term autocorrelation. Exploiting this energy function, the intima border is separated accurately from the blood region contaminated by high speckle noise. To extract media-adventitia boundary, we define a new form of energy function based on edge, texture and spring forces for the active contour. Utilizing this active contour, the media-adventitia border is identified correctly even in presence of branch openings and calcifications. Experimental results indicate accuracy of the proposed methods. In addition, statistical analysis demonstrates high conformity between manual tracing and the results obtained by the proposed approaches.

  12. Short interactive workshops reduce variability in contouring treatment volumes for spine stereotactic body radiation therapy: Experience with the ESTRO FALCON programme and EduCase™ training tool.

    Science.gov (United States)

    De Bari, Berardino; Dahele, Max; Palmu, Miika; Kaylor, Scott; Schiappacasse, Luis; Guckenberger, Matthias

    2017-11-20

    We report the results of 4, 2-h contouring workshops on target volume definition for spinal stereotactic radiotherapy. They combined traditional teaching methods with a web-based contouring/contour-analysis platform and led to a significant reduction in delineation variability. Short, interactive workshops can reduce interobserver variability in spine SBRT target volume delineation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Realization of method of characteristics based on customization of AutoCAD

    International Nuclear Information System (INIS)

    Chen Qichang; Wu Hongchun; Cao Liangzhi

    2009-01-01

    The method of characteristics (MOC) solves the neutron transport equation along each characteristics line. Theoretically, it is independent of the geometry shape of boundary and region. However, the geometry should be described, and ray tracing should be carried out firstly. In most of the existing MOC codes, the geometry description and ray tracing still have more or less limitation. To wipe off these geometry limitations for using MOC in more complex fuel assembly calculation, a new MOC code AutoMOC based on the customization of AutoCAD was developed. The numerical results show that AutoMOC not only has high flexibility in geometry but also gives accurate solutions in comparison with state-of-the-art methodologies. (authors)

  14. Auto MOC-A 2D neutron transport code for arbitrary geometry based on the method of characteristics and customization of AutoCAD

    International Nuclear Information System (INIS)

    Chen Qichang; Wu Hongchun; Cao Liangzhi

    2008-01-01

    A new 2D neutron transport code AutoMOC for arbitrary geometry has been developed. This code is based on the method of characteristics (MOCs) and the customization of AutoCAD. The MOC solves the neutron transport equation along characteristic lines. It is independent of the geometric shape of boundaries and regions. So theoretically, this method can be used to solve the neutron transport equation in highly complex geometries. However, it is important to describe the geometry and calculate intersection points of each characteristic line with every boundary and region in advance. In complex geometries, due to the complications of treating the arbitrary domain, the selection of geometric shapes and efficiency of ray tracing are generally limited. The geometry treatment through the customization of AutoCAD, a widely used computer-aided design software package, is given in this paper. Thanks to the powerful capability of AutoCAD, the description of arbitrary geometry becomes quite convenient. Moreover, with the language Visual Basic for Applications (VBAs), AutoCAD can be customized to carry out the ray tracing procedure with a high flexibility in geometry. The numerical results show that AutoMOC can solve 2D neutron transport problems in a complex geometry accurately and effectively

  15. Auto MOC-A 2D neutron transport code for arbitrary geometry based on the method of characteristics and customization of AutoCAD

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qichang; Wu Hongchun [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China); Cao Liangzhi [School of Nuclear Science and Technology, Xi' an Jiaotong University, Xi' an Shaanxi 710049 (China)], E-mail: caolz@mail.xjtu.edu.cn

    2008-10-15

    A new 2D neutron transport code AutoMOC for arbitrary geometry has been developed. This code is based on the method of characteristics (MOCs) and the customization of AutoCAD. The MOC solves the neutron transport equation along characteristic lines. It is independent of the geometric shape of boundaries and regions. So theoretically, this method can be used to solve the neutron transport equation in highly complex geometries. However, it is important to describe the geometry and calculate intersection points of each characteristic line with every boundary and region in advance. In complex geometries, due to the complications of treating the arbitrary domain, the selection of geometric shapes and efficiency of ray tracing are generally limited. The geometry treatment through the customization of AutoCAD, a widely used computer-aided design software package, is given in this paper. Thanks to the powerful capability of AutoCAD, the description of arbitrary geometry becomes quite convenient. Moreover, with the language Visual Basic for Applications (VBAs), AutoCAD can be customized to carry out the ray tracing procedure with a high flexibility in geometry. The numerical results show that AutoMOC can solve 2D neutron transport problems in a complex geometry accurately and effectively.

  16. Model cortical association fields account for the time course and dependence on target complexity of human contour perception.

    Directory of Open Access Journals (Sweden)

    Vadas Gintautas

    2011-10-01

    Full Text Available Can lateral connectivity in the primary visual cortex account for the time dependence and intrinsic task difficulty of human contour detection? To answer this question, we created a synthetic image set that prevents sole reliance on either low-level visual features or high-level context for the detection of target objects. Rendered images consist of smoothly varying, globally aligned contour fragments (amoebas distributed among groups of randomly rotated fragments (clutter. The time course and accuracy of amoeba detection by humans was measured using a two-alternative forced choice protocol with self-reported confidence and variable image presentation time (20-200 ms, followed by an image mask optimized so as to interrupt visual processing. Measured psychometric functions were well fit by sigmoidal functions with exponential time constants of 30-91 ms, depending on amoeba complexity. Key aspects of the psychophysical experiments were accounted for by a computational network model, in which simulated responses across retinotopic arrays of orientation-selective elements were modulated by cortical association fields, represented as multiplicative kernels computed from the differences in pairwise edge statistics between target and distractor images. Comparing the experimental and the computational results suggests that each iteration of the lateral interactions takes at least [Formula: see text] ms of cortical processing time. Our results provide evidence that cortical association fields between orientation selective elements in early visual areas can account for important temporal and task-dependent aspects of the psychometric curves characterizing human contour perception, with the remaining discrepancies postulated to arise from the influence of higher cortical areas.

  17. AutoDrug: fully automated macromolecular crystallography workflows for fragment-based drug discovery

    International Nuclear Information System (INIS)

    Tsai, Yingssu; McPhillips, Scott E.; González, Ana; McPhillips, Timothy M.; Zinn, Daniel; Cohen, Aina E.; Feese, Michael D.; Bushnell, David; Tiefenbrunn, Theresa; Stout, C. David; Ludaescher, Bertram; Hedman, Britt; Hodgson, Keith O.; Soltis, S. Michael

    2013-01-01

    New software has been developed for automating the experimental and data-processing stages of fragment-based drug discovery at a macromolecular crystallography beamline. A new workflow-automation framework orchestrates beamline-control and data-analysis software while organizing results from multiple samples. AutoDrug is software based upon the scientific workflow paradigm that integrates the Stanford Synchrotron Radiation Lightsource macromolecular crystallography beamlines and third-party processing software to automate the crystallography steps of the fragment-based drug-discovery process. AutoDrug screens a cassette of fragment-soaked crystals, selects crystals for data collection based on screening results and user-specified criteria and determines optimal data-collection strategies. It then collects and processes diffraction data, performs molecular replacement using provided models and detects electron density that is likely to arise from bound fragments. All processes are fully automated, i.e. are performed without user interaction or supervision. Samples can be screened in groups corresponding to particular proteins, crystal forms and/or soaking conditions. A single AutoDrug run is only limited by the capacity of the sample-storage dewar at the beamline: currently 288 samples. AutoDrug was developed in conjunction with RestFlow, a new scientific workflow-automation framework. RestFlow simplifies the design of AutoDrug by managing the flow of data and the organization of results and by orchestrating the execution of computational pipeline steps. It also simplifies the execution and interaction of third-party programs and the beamline-control system. Modeling AutoDrug as a scientific workflow enables multiple variants that meet the requirements of different user groups to be developed and supported. A workflow tailored to mimic the crystallography stages comprising the drug-discovery pipeline of CoCrystal Discovery Inc. has been deployed and successfully

  18. AutoCAD 2015 and AutoCAD LT 2015

    CERN Document Server

    Gladfelter, Donnie

    2014-01-01

    Learn AutoCAD by example with this tutorial-based guide from Autodesk Official Press Whether you are just starting out or an experienced user wanting to brush up on your skills, this Autodesk Official Press book provides you with concise explanations, focused examples, and step-by-step instructions through a hands-on tutorial project that runs throughout the book. As you progress through the project, the book introduces you to the Microsoft Windows-based AutoCAD interface and then guides you through basic commands and creating drawings. A downloadable file is available from the website so that

  19. A new template matching method based on contour information

    Science.gov (United States)

    Cai, Huiying; Zhu, Feng; Wu, Qingxiao; Li, Sicong

    2014-11-01

    Template matching is a significant approach in machine vision due to its effectiveness and robustness. However, most of the template matching methods are so time consuming that they can't be used to many real time applications. The closed contour matching method is a popular kind of template matching methods. This paper presents a new closed contour template matching method which is suitable for two dimensional objects. Coarse-to-fine searching strategy is used to improve the matching efficiency and a partial computation elimination scheme is proposed to further speed up the searching process. The method consists of offline model construction and online matching. In the process of model construction, triples and distance image are obtained from the template image. A certain number of triples which are composed by three points are created from the contour information that is extracted from the template image. The rule to select the three points is that the template contour is divided equally into three parts by these points. The distance image is obtained here by distance transform. Each point on the distance image represents the nearest distance between current point and the points on the template contour. During the process of matching, triples of the searching image are created with the same rule as the triples of the model. Through the similarity that is invariant to rotation, translation and scaling between triangles, the triples corresponding to the triples of the model are found. Then we can obtain the initial RST (rotation, translation and scaling) parameters mapping the searching contour to the template contour. In order to speed up the searching process, the points on the searching contour are sampled to reduce the number of the triples. To verify the RST parameters, the searching contour is projected into the distance image, and the mean distance can be computed rapidly by simple operations of addition and multiplication. In the fine searching process

  20. Poster - Thur Eve - 65: Optimization of an automatic image contouring system for radiation therapy.

    Science.gov (United States)

    Hamilton, T; Nedialkov, N; Wierzbicki, M

    2012-07-01

    Intensity modulated radiation therapy (IMRT) is an advanced technique used to concentrate the prescribed dose in the tumour while minimizing exposure to healthy tissues. Success in IMRT is greatly dependent upon the localization of the target volume and normal tissue, thus accurate contouring is crucial. In this paper, we describe an automated atlas-based image contouring system and our approach for improving the system by performing a full-scale optimization of registration parameters using high-performance computing. To achieve this, we use manually pre-contoured CT images of ten head and neck patients. For any parameter set, each patient data is registered with the remaining patients. Accuracy of the resulting contours is determined automatically by comparing their overlap with manually defined targets using Dice's similarity coefficient (DSC). This allows us to compare all permutations of the image registration parameter sets and input data to investigate their impact on final contour accuracy. Investigating the parameter space required 27,000 image registrations and 216,000 DSC computations. To perform these registrations we introduced a large cluster of high-performance computers and developed a parallel testing harness. The metrics collected from the tests show a wide range of performance, indicating that parameter selection is crucial in our contouring system. By selecting an optimized parameter set, we increased the mean overlap of the automatically contoured regions of interest by 50% and reduced registration time by 50% compared to the original parameters. Our findings illustrate that full-scale optimization is an effective method for improving the performance of the automated image contouring system. © 2012 American Association of Physicists in Medicine.

  1. Principle and realization of segmenting contour series algorithm in reverse engineering based on X-ray computerized tomography

    International Nuclear Information System (INIS)

    Wang Yanfang; Liu Li; Yan Yonglian; Shan Baoci; Tang Xiaowei

    2007-01-01

    A new algorithm of segmenting contour series of images is presented, which can achieve three dimension reconstruction with parametric recognition in Reverse Engineering based on X-ray CT. First, in order to get the nested relationship between contours, a method of a certain angle ray is used. Second, for realizing the contour location in one slice, another approach is presented to generate the contour tree by scanning the relevant vector only once. Last, a judge algorithm is put forward to accomplish the contour match between slices by adopting the qualitative and quantitative properties. The example shows that this algorithm can segment contour series of CT parts rapidly and precisely. (authors)

  2. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Science.gov (United States)

    Li, Xin; Zhang, Yuyu; Shi, Yinghua; Wu, Shuyu; Xiao, Yang; Gu, Xuejun; Zhen, Xin; Zhou, Linghong

    2017-01-01

    Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) for propagating contours between planning computerized tomography (CT) images and treatment CT/cone-beam CT (CBCT) images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N) cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e., the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB), the vertebral foramen (VF), the parotid gland (PG) and the submandibular gland (SMG). It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  3. Human body contour data based activity recognition.

    Science.gov (United States)

    Myagmarbayar, Nergui; Yuki, Yoshida; Imamoglu, Nevrez; Gonzalez, Jose; Otake, Mihoko; Yu, Wenwei

    2013-01-01

    This research work is aimed to develop autonomous bio-monitoring mobile robots, which are capable of tracking and measuring patients' motions, recognizing the patients' behavior based on observation data, and providing calling for medical personnel in emergency situations in home environment. The robots to be developed will bring about cost-effective, safe and easier at-home rehabilitation to most motor-function impaired patients (MIPs). In our previous research, a full framework was established towards this research goal. In this research, we aimed at improving the human activity recognition by using contour data of the tracked human subject extracted from the depth images as the signal source, instead of the lower limb joint angle data used in the previous research, which are more likely to be affected by the motion of the robot and human subjects. Several geometric parameters, such as, the ratio of height to weight of the tracked human subject, and distance (pixels) between centroid points of upper and lower parts of human body, were calculated from the contour data, and used as the features for the activity recognition. A Hidden Markov Model (HMM) is employed to classify different human activities from the features. Experimental results showed that the human activity recognition could be achieved with a high correct rate.

  4. Automatic re-contouring in 4D radiotherapy

    International Nuclear Information System (INIS)

    Lu, Weiguo; Olivera, Gustavo H; Chen, Quan; Chen, Ming-Li; Ruchala, Kenneth J

    2006-01-01

    Delineating regions of interest (ROIs) on each phase of four-dimensional (4D) computed tomography (CT) images is an essential step for 4D radiotherapy. The requirement of manual phase-by-phase contouring prohibits the routine use of 4D radiotherapy. This paper develops an automatic re-contouring algorithm that combines techniques of deformable registration and surface construction. ROIs are manually contoured slice-by-slice in the reference phase image. A reference surface is constructed based on these reference contours using a triangulated surface construction technique. The deformable registration technique provides the voxel-to-voxel mapping between the reference phase and the test phase. The vertices of the reference surface are displaced in accordance with the deformation map, resulting in a deformed surface. The new contours are reconstructed by cutting the deformed surface slice-by-slice along the transversal, sagittal or coronal direction. Since both the inputs and outputs of our automatic re-contouring algorithm are contours, it is relatively easy to cope with any treatment planning system. We tested our automatic re-contouring algorithm using a deformable phantom and 4D CT images of six lung cancer patients. The proposed algorithm is validated by visual inspections and quantitative comparisons of the automatic re-contours with both the gold standard segmentations and the manual contours. Based on the automatic delineated ROIs, changes of tumour and sensitive structures during respiration are quantitatively analysed. This algorithm could also be used to re-contour daily images for treatment evaluation and adaptive radiotherapy

  5. Variations in the Contouring of Organs at Risk: Test Case From a Patient With Oropharyngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E., E-mail: alpha@canislupusllc.com [Canis Lupus LLC, Merrimac, WI (United States); Tome, Wolfgang A. [Department of Human Oncology, University of Wisconsin, Madison, WI (United States); Robinson, Greg [Radiation Oncology Resources, Goshen, IN (United States); Wheeler, James [Department of Radiation Oncology, Goshen Health System Goshen, IN (United States)

    2012-01-01

    Purpose: Anatomy contouring is critical in radiation therapy. Inaccuracy and variation in defining critical volumes will affect everything downstream: treatment planning, dose-volume histogram analysis, and contour-based visual guidance used in image-guided radiation therapy. This study quantified: (1) variation in the contouring of organs at risk (OAR) in a clinical test case and (2) corresponding effects on dosimetric metrics of highly conformal plans. Methods and Materials: A common CT data set with predefined targets from a patient with oropharyngeal cancer was provided to a population of clinics, which were asked to (1) contour OARs and (2) design an intensity-modulated radiation therapy plan. Thirty-two acceptable plans were submitted as DICOM RT data sets, each generated by a different clinical team. Using those data sets, we quantified: (1) the OAR contouring variation and (2) the impact this variation has on dosimetric metrics. New technologies were employed, including a software tool to quantify three-dimensional structure comparisons. Results: There was significant interclinician variation in OAR contouring. The degree of variation is organ-dependent. We found substantial dose differences resulting strictly from contouring variation (differences ranging from -289% to 56% for mean OAR dose; -22% to 35% for maximum dose). However, there appears to be a threshold in the OAR comparison metric beyond which the dose differences stabilize. Conclusions: The effects of interclinician variation in contouring organs-at-risk in the head and neck can be large and are organ-specific. Physicians need to be aware of the effect that variation in OAR contouring can play on the final treatment plan and not restrict their focus only to the target volumes.

  6. Strategic Alliance Decision-Making for the Auto Industry Base on an Integrate DEA and GM(1,1 Approach

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2015-11-01

    Full Text Available Strategic alliance promotes enterprise resources sharing and enhances the competitiveness of the marketplace. Therefore, finding a mutually beneficial partner to make a strategic alliance is an important issue for various industries. The aim of this paper is to propose a suitable method based on Grey theory and Data Envelopment Analysis (DEA. A method predicts future business and measure operation efficiency, by the use of critical input and output variables. From this, firms can find out their appropriate candidates. This research was implemented with realistic public data from four consecutive financial years (2009-2012 of twenty Auto Manufactures. The study tries to help target firm find the right alliance partners. The results show the most priori candidates in recent years. The study will be of interest for managers of Auto Manufacture in utilizing alliance strategy.

  7. Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud Computing Environment

    OpenAIRE

    Sanggoo Kang; Kiwon Lee

    2016-01-01

    Cloud computing is a base platform for the distribution of large volumes of data and high-performance image processing on the Web. Despite wide applications in Web-based services and their many benefits, geo-spatial applications based on cloud computing technology are still developing. Auto-scaling realizes automatic scalability, i.e., the scale-out and scale-in processing of virtual servers in a cloud computing environment. This study investigates the applicability of auto-scaling to geo-bas...

  8. A compact wideband precision impedance measurement system based on digital auto-balancing bridge

    International Nuclear Information System (INIS)

    Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang

    2016-01-01

    The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor. (paper)

  9. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    Science.gov (United States)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation

  10. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, S; Dolly, S; Cai, B; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deep modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification

  11. SU-F-J-72: A Clinical Usable Integrated Contouring Quality Evaluation Software for Radiotherapy

    International Nuclear Information System (INIS)

    Jiang, S; Dolly, S; Cai, B; Mutic, S; Li, H

    2016-01-01

    Purpose: To introduce the Auto Contour Evaluation (ACE) software, which is the clinical usable, user friendly, efficient and all-in-one toolbox for automatically identify common contouring errors in radiotherapy treatment planning using supervised machine learning techniques. Methods: ACE is developed with C# using Microsoft .Net framework and Windows Presentation Foundation (WPF) for elegant GUI design and smooth GUI transition animations through the integration of graphics engines and high dots per inch (DPI) settings on modern high resolution monitors. The industrial standard software design pattern, Model-View-ViewModel (MVVM) pattern, is chosen to be the major architecture of ACE for neat coding structure, deep modularization, easy maintainability and seamless communication with other clinical software. ACE consists of 1) a patient data importing module integrated with clinical patient database server, 2) a 2D DICOM image and RT structure simultaneously displaying module, 3) a 3D RT structure visualization module using Visualization Toolkit or VTK library and 4) a contour evaluation module using supervised pattern recognition algorithms to detect contouring errors and display detection results. ACE relies on supervised learning algorithms to handle all image processing and data processing jobs. Implementations of related algorithms are powered by Accord.Net scientific computing library for better efficiency and effectiveness. Results: ACE can take patient’s CT images and RT structures from commercial treatment planning software via direct user input or from patients’ database. All functionalities including 2D and 3D image visualization and RT contours error detection have been demonstrated with real clinical patient cases. Conclusion: ACE implements supervised learning algorithms and combines image processing and graphical visualization modules for RT contours verification. ACE has great potential for automated radiotherapy contouring quality verification

  12. AutoCAD 2008 and AutoCAD LT 2008 Bible

    CERN Document Server

    Finkelstein, Ellen

    2011-01-01

    "Whether you're new to AutoCAD or a veteran, you will undoubtedly find this book to be an excellent resource."-- Abhi Singh, AutoCAD Product Manager, Autodesk, Inc.Here's the book that makes AutoCAD approachableEven the people at Autodesk look to Ellen Finkelstein for AutoCAD training, so who better to teach you about AutoCAD 2008? This comprehensive guide brings veterans up to speed on AutoCAD updates and takes novices from the basics to programming in AutoLISP(r) and VBA. Every feature is covered in a logical order, and with the Quick Start chapter, you'll be creating drawings on your very f

  13. Unsupervised domain adaptation techniques based on auto-encoder for non-stationary EEG-based emotion recognition.

    Science.gov (United States)

    Chai, Xin; Wang, Qisong; Zhao, Yongping; Liu, Xin; Bai, Ou; Li, Yongqiang

    2016-12-01

    In electroencephalography (EEG)-based emotion recognition systems, the distribution between the training samples and the testing samples may be mismatched if they are sampled from different experimental sessions or subjects because of user fatigue, different electrode placements, varying impedances, etc. Therefore, it is difficult to directly classify the EEG patterns with a conventional classifier. The domain adaptation method, which is aimed at obtaining a common representation across training and test domains, is an effective method for reducing the distribution discrepancy. However, the existing domain adaptation strategies either employ a linear transformation or learn the nonlinearity mapping without a consistency constraint; they are not sufficiently powerful to obtain a similar distribution from highly non-stationary EEG signals. To address this problem, in this paper, a novel component, called the subspace alignment auto-encoder (SAAE), is proposed. Taking advantage of both nonlinear transformation and a consistency constraint, we combine an auto-encoder network and a subspace alignment solution in a unified framework. As a result, the source domain can be aligned with the target domain together with its class label, and any supervised method can be applied to the new source domain to train a classifier for classification in the target domain, as the aligned source domain follows a distribution similar to that of the target domain. We compared our SAAE method with six typical approaches using a public EEG dataset containing three affective states: positive, neutral, and negative. Subject-to-subject and session-to-session evaluations were performed. The subject-to-subject experimental results demonstrate that our component achieves a mean accuracy of 77.88% in comparison with a state-of-the-art method, TCA, which achieves 73.82% on average. In addition, the average classification accuracy of SAAE in the session-to-session evaluation for all the 15 subjects

  14. Segmentation of breast ultrasound images based on active contours using neutrosophic theory.

    Science.gov (United States)

    Lotfollahi, Mahsa; Gity, Masoumeh; Ye, Jing Yong; Mahlooji Far, A

    2018-04-01

    Ultrasound imaging is an effective approach for diagnosing breast cancer, but it is highly operator-dependent. Recent advances in computer-aided diagnosis have suggested that it can assist physicians in diagnosis. Definition of the region of interest before computer analysis is still needed. Since manual outlining of the tumor contour is tedious and time-consuming for a physician, developing an automatic segmentation method is important for clinical application. The present paper represents a novel method to segment breast ultrasound images. It utilizes a combination of region-based active contour and neutrosophic theory to overcome the natural properties of ultrasound images including speckle noise and tissue-related textures. First, due to inherent speckle noise and low contrast of these images, we have utilized a non-local means filter and fuzzy logic method for denoising and image enhancement, respectively. This paper presents an improved weighted region-scalable active contour to segment breast ultrasound images using a new feature derived from neutrosophic theory. This method has been applied to 36 breast ultrasound images. It generates true-positive and false-positive results, and similarity of 95%, 6%, and 90%, respectively. The purposed method indicates clear advantages over other conventional methods of active contour segmentation, i.e., region-scalable fitting energy and weighted region-scalable fitting energy.

  15. Contouring variability of human- and deformable-generated contours in radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Gardner, Stephen J; Wen, Ning; Kim, Jinkoo; Liu, Chang; Pradhan, Deepak; Aref, Ibrahim; Cattaneo, Richard II; Vance, Sean; Movsas, Benjamin; Chetty, Indrin J; Elshaikh, Mohamed A

    2015-01-01

    This study was designed to evaluate contouring variability of human-and deformable-generated contours on planning CT (PCT) and CBCT for ten patients with low-or intermediate-risk prostate cancer. For each patient in this study, five radiation oncologists contoured the prostate, bladder, and rectum, on one PCT dataset and five CBCT datasets. Consensus contours were generated using the STAPLE method in the CERR software package. Observer contours were compared to consensus contour, and contour metrics (Dice coefficient, Hausdorff distance, Contour Distance, Center-of-Mass [COM] Deviation) were calculated. In addition, the first day CBCT was registered to subsequent CBCT fractions (CBCTn: CBCT2–CBCT5) via B-spline Deformable Image Registration (DIR). Contours were transferred from CBCT1 to CBCTn via the deformation field, and contour metrics were calculated through comparison with consensus contours generated from human contour set. The average contour metrics for prostate contours on PCT and CBCT were as follows: Dice coefficient—0.892 (PCT), 0.872 (CBCT-Human), 0.824 (CBCT-Deformed); Hausdorff distance—4.75 mm (PCT), 5.22 mm (CBCT-Human), 5.94 mm (CBCT-Deformed); Contour Distance (overall contour)—1.41 mm (PCT), 1.66 mm (CBCT-Human), 2.30 mm (CBCT-Deformed); COM Deviation—2.01 mm (PCT), 2.78 mm (CBCT-Human), 3.45 mm (CBCT-Deformed). For human contours on PCT and CBCT, the difference in average Dice coefficient between PCT and CBCT (approx. 2%) and Hausdorff distance (approx. 0.5 mm) was small compared to the variation between observers for each patient (standard deviation in Dice coefficient of 5% and Hausdorff distance of 2.0 mm). However, additional contouring variation was found for the deformable-generated contours (approximately 5.0% decrease in Dice coefficient and 0.7 mm increase in Hausdorff distance relative to human-generated contours on CBCT). Though deformable contours provide a reasonable starting point for contouring

  16. A high-speed bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method

    International Nuclear Information System (INIS)

    Li, Nan; Xu, Hui; Zhou, Zhou; Wang, Wei; Qiao, Guofeng; Li, David D-U

    2013-01-01

    A novel bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method improved from the conventional analogue auto-balancing method is presented for bioelectrical impedance measurements. The hardware of the proposed system consists of a reference source, a null detector, a variable source, a field programmable gate array, a clock generator, a flash and a USB controller. Software implemented in the field programmable gate array includes three major blocks: clock management, peripheral control and digital signal processing. The principle and realization of the least-mean-squares-based digital auto-balancing algorithm is introduced in detail. The performances of our system were examined by comparing with a commercial impedance analyzer. The results reveal that the proposed system has high speed (less than 3.5 ms per measurement) and high accuracy in the frequency range of 1 kHz–10 MHz. Compared with the commercial instrument based on the traditional analogue auto-balancing method, our system shows advantages in measurement speed, compactness and flexibility, making it suitable for various bioelectrical impedance measurement applications. (paper)

  17. The Development of Contour Interpolation: Evidence from Subjective Contours

    Science.gov (United States)

    Hadad, Bat-Sheva; Maurer, Daphne; Lewis, Terri L.

    2010-01-01

    Adults are skilled at perceiving subjective contours in regions without any local image information (e.g., [Ginsburg, 1975] and [Kanizsa, 1976]). Here we examined the development of this skill and the effect thereon of the support ratio (i.e., the ratio of the physically specified contours to the total contour length). Children (6-, 9-, and…

  18. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.

    Directory of Open Access Journals (Sweden)

    Xin Li

    Full Text Available Deformable image registration (DIR is a critical technic in adaptive radiotherapy (ART for propagating contours between planning computerized tomography (CT images and treatment CT/cone-beam CT (CBCT images to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR contour mapping, ten intensity-based DIR strategies, which were classified into four categories-optical flow-based, demons-based, level-set-based and spline-based-were tested on planning CT and fractional CBCT images acquired from twenty-one head & neck (H&N cancer patients who underwent 6~7-week intensity-modulated radiation therapy (IMRT. Three similarity metrics, i.e., the Dice similarity coefficient (DSC, the percentage error (PE and the Hausdorff distance (HD, were employed to measure the agreement between the propagated contours and the physician-delineated ground truths of four OARs, including the vertebra (VTB, the vertebral foramen (VF, the parotid gland (PG and the submandibular gland (SMG. It was found that the evaluated DIRs in this work did not necessarily outperform rigid registration. DIR performed better for bony structures than soft-tissue organs, and the DIR performance tended to vary for different ROIs with different degrees of deformation as the treatment proceeded. Generally, the optical flow-based DIR performed best, while the demons-based DIR usually ranked last except for a modified demons-based DISC used for CT-CBCT DIR. These experimental results suggest that the choice of a specific DIR algorithm depends on the image modality, anatomic site, magnitude of deformation and application. Therefore, careful examinations and modifications are required before accepting the auto-propagated contours, especially for automatic re-planning ART systems.

  19. Attention capture by contour onsets and offsets: no special role for onsets.

    Science.gov (United States)

    Watson, D G; Humphreys, G W

    1995-07-01

    In five experiments, we investigated the power of targets defined by the onset or offset of one of an object's parts (contour onsets and offsets) either to guide or to capture visual attention. In Experiment 1, search for a single contour onset target was compared with search for a single contour offset target against a static background of distractors; no difference was found between the efficiency with which each could be detected. In Experiment 2, onsets and offsets were compared for automatic attention capture, when both occurred simultaneously. Unlike in previous studies, the effects of overall luminance change, new-object creation, and number of onset and offset items were controlled. It was found that contour onset and offset items captured attention equally well. However, display size effects on both target types were also apparent. Such effects may have been due to competition for selection between multiple onset and offset stimuli. In Experiments 3 and 4, single onset and offset stimuli were presented simultaneously and pitted directly against one another among a background of static distractors. In Experiment 3, we examined "guided search," for a target that was formed either from an onset or from an offset among static items. In Experiment 4, the onsets and offsets were uncorrelated with the target location. Similar results occurred in both experiments: target onsets and offsets were detected more efficiently than static stimuli which needed serial search; there remained effects of display size on performance; but there was still no advantage for onsets. In Experiment 5, we examined automatic attention capture by single onset and offset stimuli presented individually among static distractors. Again, there was no advantage for onset over offset targets and a display size effect was also present. These results suggest that, both in isolation and in competition, onsets that do not form new objects neither guide nor gain automatic attention more efficiently

  20. AutoCAD 2014 and AutoCAD LT 2014

    CERN Document Server

    Gladfelter, Donnie

    2013-01-01

    A step-by-step tutorial introduction to AutoCAD As the only book to teach AutoCAD using a continuous tutorial which allows you to follow along sequentially or jump in at any exercise by downloading the drawing files, this Autodesk Official Press book is ideal for the AutoCAD novice. Industry expert and AutoCAD guru Donnie Gladfelter walks you through the powerful features of AutoCAD, provides you with a solid foundation of the basics, and shares the latest industry standards and techniques. The hands-on tutorial project inspired by real-world workflows that runs throughout the book

  1. Expert Consensus Contouring Guidelines for Intensity Modulated Radiation Therapy in Esophageal and Gastroesophageal Junction Cancer

    International Nuclear Information System (INIS)

    Wu, Abraham J.; Bosch, Walter R.; Chang, Daniel T.; Hong, Theodore S.; Jabbour, Salma K.; Kleinberg, Lawrence R.; Mamon, Harvey J.; Thomas, Charles R.; Goodman, Karyn A.

    2015-01-01

    Purpose/Objective(s): Current guidelines for esophageal cancer contouring are derived from traditional 2-dimensional fields based on bony landmarks, and they do not provide sufficient anatomic detail to ensure consistent contouring for more conformal radiation therapy techniques such as intensity modulated radiation therapy (IMRT). Therefore, we convened an expert panel with the specific aim to derive contouring guidelines and generate an atlas for the clinical target volume (CTV) in esophageal or gastroesophageal junction (GEJ) cancer. Methods and Materials: Eight expert academically based gastrointestinal radiation oncologists participated. Three sample cases were chosen: a GEJ cancer, a distal esophageal cancer, and a mid-upper esophageal cancer. Uniform computed tomographic (CT) simulation datasets and accompanying diagnostic positron emission tomographic/CT images were distributed to each expert, and the expert was instructed to generate gross tumor volume (GTV) and CTV contours for each case. All contours were aggregated and subjected to quantitative analysis to assess the degree of concordance between experts and to generate draft consensus contours. The panel then refined these contours to generate the contouring atlas. Results: The κ statistics indicated substantial agreement between panelists for each of the 3 test cases. A consensus CTV atlas was generated for the 3 test cases, each representing common anatomic presentations of esophageal cancer. The panel agreed on guidelines and principles to facilitate the generalizability of the atlas to individual cases. Conclusions: This expert panel successfully reached agreement on contouring guidelines for esophageal and GEJ IMRT and generated a reference CTV atlas. This atlas will serve as a reference for IMRT contours for clinical practice and prospective trial design. Subsequent patterns of failure analyses of clinical datasets using these guidelines may require modification in the future

  2. Cross Validation on the Equality of Uav-Based and Contour-Based Dems

    Science.gov (United States)

    Ma, R.; Xu, Z.; Wu, L.; Liu, S.

    2018-04-01

    Unmanned Aerial Vehicles (UAV) have been widely used for Digital Elevation Model (DEM) generation in geographic applications. This paper proposes a novel framework of generating DEM from UAV images. It starts with the generation of the point clouds by image matching, where the flight control data are used as reference for searching for the corresponding images, leading to a significant time saving. Besides, a set of ground control points (GCP) obtained from field surveying are used to transform the point clouds to the user's coordinate system. Following that, we use a multi-feature based supervised classification method for discriminating non-ground points from ground ones. In the end, we generate DEM by constructing triangular irregular networks and rasterization. The experiments are conducted in the east of Jilin province in China, which has been suffered from soil erosion for several years. The quality of UAV based DEM (UAV-DEM) is compared with that generated from contour interpolation (Contour-DEM). The comparison shows a higher resolution, as well as higher accuracy of UAV-DEMs, which contains more geographic information. In addition, the RMSE errors of the UAV-DEMs generated from point clouds with and without GCPs are ±0.5 m and ±20 m, respectively.

  3. Anatomical contouring variability in thoracic organs at risk

    Energy Technology Data Exchange (ETDEWEB)

    McCall, Ross, E-mail: rmccall86@gmail.com [Medical Dosimetry Program, University of Wisconsin, La Crosse, WI (United States); MacLennan, Grayden; Taylor, Matthew; Lenards, Nishele [Medical Dosimetry Program, University of Wisconsin, La Crosse, WI (United States); Nelms, Benjamin E. [Canis Lupus LLC, Madison, WI (United States); Koshy, Matthew; Lemons, Jeffrey [Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL (United States); Hunzeker, Ashley [Medical Dosimetry Program, University of Wisconsin, La Crosse, WI (United States)

    2016-01-01

    The purpose of this study was to determine whether contouring thoracic organs at risk was consistent among medical dosimetrists and to identify how trends in dosimetrist's education and experience affected contouring accuracy. Qualitative and quantitative methods were used to contextualize the raw data that were obtained. A total of 3 different computed tomography (CT) data sets were provided to medical dosimetrists (N = 13) across 5 different institutions. The medical dosimetrists were directed to contour the lungs, heart, spinal cord, and esophagus. The medical dosimetrists were instructed to contour in line with their institutional standards and were allowed to use any contouring tool or technique that they would traditionally use. The contours from each medical dosimetrist were evaluated against “gold standard” contours drawn and validated by 2 radiation oncology physicians. The dosimetrist-derived contours were evaluated against the gold standard using both a Dice coefficient method and a penalty-based metric scoring system. A short survey was also completed by each medical dosimetrist to evaluate their individual contouring experience. There was no significant variation in the contouring consistency of the lungs and spinal cord. Intradosimetrist contouring was consistent for those who contoured the esophagus and heart correctly; however, medical dosimetrists with a poor metric score showed erratic and inconsistent methods of contouring.

  4. Sensor-Based Auto-Focusing System Using Multi-Scale Feature Extraction and Phase Correlation Matching

    Directory of Open Access Journals (Sweden)

    Jinbeum Jang

    2015-03-01

    Full Text Available This paper presents a novel auto-focusing system based on a CMOS sensor containing pixels with different phases. Robust extraction of features in a severely defocused image is the fundamental problem of a phase-difference auto-focusing system. In order to solve this problem, a multi-resolution feature extraction algorithm is proposed. Given the extracted features, the proposed auto-focusing system can provide the ideal focusing position using phase correlation matching. The proposed auto-focusing (AF algorithm consists of four steps: (i acquisition of left and right images using AF points in the region-of-interest; (ii feature extraction in the left image under low illumination and out-of-focus blur; (iii the generation of two feature images using the phase difference between the left and right images; and (iv estimation of the phase shifting vector using phase correlation matching. Since the proposed system accurately estimates the phase difference in the out-of-focus blurred image under low illumination, it can provide faster, more robust auto focusing than existing systems.

  5. Comprehensive Auto CAD

    International Nuclear Information System (INIS)

    Jang, Taekju

    1993-06-01

    This book starts introduction of conception, application system, software for CAD, function of Auto CAD, kinds and function of Auto CAD files. It deals with starting of Auto CAD, dialogue box and Auto CAD interface, utility command, 2D drawing command, check command, control system, dimension, hatching command, layer command, block, 3D drawing, plotting and printing, auto CAD and application of data, supply program of auto CAD, AME and region modeler, EDLIN, script optimization of Auto CAD and composition on demand.

  6. Disentangling degradation and auto-recovery of luminescence in Alq3 based organic light emitting diodes

    International Nuclear Information System (INIS)

    Rao, K. Sudheendra; Mohapatra, Y.N.

    2014-01-01

    Organic semiconductor devices and materials have matured sufficiently to be limited by intrinsic degradation processes which are as yet not understood well. We use high quality Alq 3 based organic light emitting diodes to study the rate processes involved in degradation due to electrical stressing and its auto-recovery. The method involves interspersing degradation due to electrical pulsing with variable relaxation windows to monitor time evolution of loss and recovery of luminescence. The corresponding rate processes for permanent and auto-recoverable degradation is discussed on the basis of charging and discharging of traps, and a phenomenological model based on metastability in configuration-coordinate diagram is proposed. -- Highlights: • Luminescence degradation of high quality Alq 3 based OLED device. • Auto-recovery of luminance as function of relaxation time is exponential. • Individual rates of permanent, recoverable and relaxation process measured. • A Phenomenological model based on metastable state in configuration-coordinate

  7. Interactive 3D segmentation using connected orthogonal contours

    NARCIS (Netherlands)

    de Bruin, P. W.; Dercksen, V. J.; Post, F. H.; Vossepoel, A. M.; Streekstra, G. J.; Vos, F. M.

    2005-01-01

    This paper describes a new method for interactive segmentation that is based on cross-sectional design and 3D modelling. The method represents a 3D model by a set of connected contours that are planar and orthogonal. Planar contours overlayed on image data are easily manipulated and linked contours

  8. AutoCAD / AutoCAD LT 2014 fundamentals metric

    CERN Document Server

    ASCENT center for technical knowledge

    2014-01-01

    The objective of AutoCAD/AutoCAD LT 2014 Fundamentals is to enable students to create a basic 2D drawing in the AutoCAD software. Even at this fundamental level, the AutoCAD software is one of the most sophisticated computer applications that you are likely to encounter. Therefore learning to use it can be challenging. To make the process easier and provide flexibility for instructors and students, the training guide is divided into two parts that can be taken independently.

  9. [Correlation coefficient-based classification method of hydrological dependence variability: With auto-regression model as example].

    Science.gov (United States)

    Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.

  10. An improved spatial contour tree constructed method

    Science.gov (United States)

    Zheng, Yi; Zhang, Ling; Guilbert, Eric; Long, Yi

    2018-05-01

    Contours are important data to delineate the landform on a map. A contour tree provides an object-oriented description of landforms and can be used to enrich the topological information. The traditional contour tree is used to store topological relationships between contours in a hierarchical structure and allows for the identification of eminences and depressions as sets of nested contours. This research proposes an improved contour tree so-called spatial contour tree that contains not only the topological but also the geometric information. It can be regarded as a terrain skeleton in 3-dimention, and it is established based on the spatial nodes of contours which have the latitude, longitude and elevation information. The spatial contour tree is built by connecting spatial nodes from low to high elevation for a positive landform, and from high to low elevation for a negative landform to form a hierarchical structure. The connection between two spatial nodes can provide the real distance and direction as a Euclidean vector in 3-dimention. In this paper, the construction method is tested in the experiment, and the results are discussed. The proposed hierarchical structure is in 3-demintion and can show the skeleton inside a terrain. The structure, where all nodes have geo-information, can be used to distinguish different landforms and applied for contour generalization with consideration of geographic characteristics.

  11. A Waterline Extraction Method from Remote Sensing Image Based on Quad-tree and Multiple Active Contour Model

    Directory of Open Access Journals (Sweden)

    YU Jintao

    2016-09-01

    Full Text Available After the characteristics of geodesic active contour model (GAC, Chan-Vese model(CV and local binary fitting model(LBF are analyzed, and the active contour model based on regions and edges is combined with image segmentation method based on quad-tree, a waterline extraction method based on quad-tree and multiple active contour model is proposed in this paper. Firstly, the method provides an initial contour according to quad-tree segmentation. Secondly, a new signed pressure force(SPF function based on global image statistics information of CV model and local image statistics information of LBF model has been defined, and then ,the edge stopping function(ESF is replaced by the proposed SPF function, which solves the problem such as evolution stopped in advance and excessive evolution. Finally, the selective binary and Gaussian filtering level set method is used to avoid reinitializing and regularization to improve the evolution efficiency. The experimental results show that this method can effectively extract the weak edges and serious concave edges, and owns some properties such as sub-pixel accuracy, high efficiency and reliability for waterline extraction.

  12. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua, E-mail: huli@radonc.wustl.edu [Department of Radiation Oncology, Washington University, St. Louis, Missouri 63110 (United States); Anastasio, Mark A. [Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110 (United States); Low, Daniel A. [Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  13. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    International Nuclear Information System (INIS)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven; Kavanaugh, James; Harold Li, H.; Altman, Michael; Gay, Hiram; Thorstad, Wade L.; Mutic, Sasa; Li, Hua; Anastasio, Mark A.; Low, Daniel A.

    2015-01-01

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy based on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets

  14. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-06-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  15. Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation

    Science.gov (United States)

    Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou

    2018-03-01

    Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.

  16. Design Of Toyota Home Service Applications For AUTO2000 Based On Android

    OpenAIRE

    Aswin, Arief Rahmadian

    2016-01-01

    AUTO2000 is a network of sales services, maintenance, repair and supply of spare parts Toyota that was established in 1975 under the name Astra Motor Sales, in 1989 changed its name to AUTO2000 with management that has been handled entirely by PT. Astra International Tbk. Services provided by AUTO2000 one of which is a service of Toyota Home Service, a service provided by the service vehicle Auto 2000 where customers can service their vehicles without having to come to the dealership Auto 200...

  17. Consensus Contouring Guidelines for Postoperative Stereotactic Body Radiation Therapy for Metastatic Solid Tumor Malignancies to the Spine

    International Nuclear Information System (INIS)

    Redmond, Kristin J.; Robertson, Scott; Lo, Simon S.; Soltys, Scott G.; Ryu, Samuel; McNutt, Todd; Chao, Samuel T.; Yamada, Yoshiya; Ghia, Amol; Chang, Eric L.; Sheehan, Jason; Sahgal, Arjun

    2017-01-01

    Purpose: To develop consensus contouring guidelines for postoperative stereotactic body radiation therapy (SBRT) for spinal metastases. Methods and Materials: Ten spine SBRT specialists representing 10 international centers independently contoured the clinical target volume (CTV), planning target volume (PTV), spinal cord, and spinal cord planning organ at risk volume (PRV) for 10 representative clinical scenarios in postoperative spine SBRT for metastatic solid tumor malignancies. Contours were imported into the Computational Environment for Radiotherapy Research. Agreement between physicians was calculated with an expectation minimization algorithm using simultaneous truth and performance level estimation with κ statistics. Target volume definition guidelines were established by finding optimized confidence level consensus contours using histogram agreement analyses. Results: Nine expert radiation oncologists and 1 neurosurgeon completed contours for all 10 cases. The mean sensitivity and specificity were 0.79 (range, 0.71-0.89) and 0.94 (range, 0.90-0.99) for the CTV and 0.79 (range, 0.70-0.95) and 0.92 (range, 0.87-0.99) for the PTV), respectively. Mean κ agreement, which demonstrates the probability that contours agree by chance alone, was 0.58 (range, 0.43-0.70) for CTV and 0.58 (range, 0.37-0.76) for PTV (P<.001 for all cases). Optimized consensus contours were established for all patients with 80% confidence interval. Recommendations for CTV include treatment of the entire preoperative extent of bony and epidural disease, plus immediately adjacent bony anatomic compartments at risk of microscopic disease extension. In particular, a “donut-shaped” CTV was consistently applied in cases of preoperative circumferential epidural extension, regardless of extent of residual epidural extension. Otherwise more conformal anatomic-based CTVs were determined and described. Spinal instrumentation was consistently excluded from the CTV. Conclusions: We provide

  18. Image Interpolation with Contour Stencils

    OpenAIRE

    Pascal Getreuer

    2011-01-01

    Image interpolation is the problem of increasing the resolution of an image. Linear methods must compromise between artifacts like jagged edges, blurring, and overshoot (halo) artifacts. More recent works consider nonlinear methods to improve interpolation of edges and textures. In this paper we apply contour stencils for estimating the image contours based on total variation along curves and then use this estimation to construct a fast edge-adaptive interpolation.

  19. Incomplete contour representations and shape descriptors : ICR test studies

    NARCIS (Netherlands)

    Ghosh, Anarta; Petkov, Nicolai; Gregorio, MD; DiMaio,; Frucci, M; Musio, C

    2005-01-01

    Inspired by psychophysical studies of the human cognitive abilities we propose a novel aspect and a method for performance evaluation of contour based shape recognition algorithms regarding their robustness to incompleteness of contours. We use complete contour representations of objects as a

  20. AutoCAD 2015 and AutoCAD LT 2015 bible

    CERN Document Server

    Finkelstein, Ellen

    2014-01-01

    The perfect reference for all AutoCAD users AutoCAD 2015 and AutoCAD LT 2015 Bible is the book you want to have close at hand to answer those day-to-day questions about this industry-leading software. Author and Autodesk University instructor Ellen Finkelstein guides readers through AutoCAD 2015 and AutoCAD LT 2015 with clear, easy-to-understand instruction and hands-on tutorials that allow even total beginners to create a design on their very first day. Although simple and fundamental enough to be used by those new to CAD, the book is so comprehensive that even Autodesk power u

  1. AutoCAD 2012 and AutoCAD LT 2012 Bible

    CERN Document Server

    Finkelstein, Ellen

    2011-01-01

    The latest version of this perennial favorite, in-depth, reference-tutorial This top-selling book has been updated by AutoCAD guru and author Ellen Finkelstein to provide you with the very latest coverage of both AutoCAD 2012 and AutoCAD LT 2012. It begins with a Quick Start tutorial, so you start creating right away. From there, the book covers so much in-depth material on AutoCAD that it is said that even Autodesk employees keep this comprehensive book at their desks. A DVD is included that features before-and-after drawings of all the tutorials and plenty of great examples from AutoCAD prof

  2. Distributed Fair Auto Rate Medium Access Control for IEEE 802.11 Based WLANs

    Science.gov (United States)

    Zhu, Yanfeng; Niu, Zhisheng

    Much research has shown that a carefully designed auto rate medium access control can utilize the underlying physical multi-rate capability to exploit the time-variation of the channel. In this paper, we develop a simple analytical model to elucidate the rule that maximizes the throughput of RTS/CTS based multi-rate wireless local area networks. Based on the discovered rule, we propose two distributed fair auto rate medium access control schemes called FARM and FARM+ from the view-point of throughput fairness and time-share fairness, respectively. With the proposed schemes, after receiving a RTS frame, the receiver selectively returns the CTS frame to inform the transmitter the maximum feasible rate probed by the signal-to-noise ratio of the received RTS frame. The key feature of the proposed schemes is that they are capable of maintaining throughput/time-share fairness in asymmetric situation where the distribution of SNR varies with stations. Extensive simulation results show that the proposed schemes outperform the existing throughput/time-share fair auto rate schemes in time-varying channel conditions.

  3. Contactin-1 and Neurofascin-155/-186 Are Not Targets of Auto-Antibodies in Multifocal Motor Neuropathy.

    Directory of Open Access Journals (Sweden)

    Kathrin Doppler

    Full Text Available Multifocal motor neuropathy is an immune mediated disease presenting with multifocal muscle weakness and conduction block. IgM auto-antibodies against the ganglioside GM1 are detectable in about 50% of the patients. Auto-antibodies against the paranodal proteins contactin-1 and neurofascin-155 and the nodal protein neurofascin-186 have been detected in subgroups of patients with chronic inflammatory demyelinating polyneuropathy. Recently, auto-antibodies against neurofascin-186 and gliomedin were described in more than 60% of patients with multifocal motor neuropathy. In the current study, we aimed to validate this finding, using a combination of different assays for auto-antibody detection. In addition we intended to detect further auto-antibodies against paranodal proteins, specifically contactin-1 and neurofascin-155 in multifocal motor neuropathy patients' sera. We analyzed sera of 33 patients with well-characterized multifocal motor neuropathy for IgM or IgG anti-contactin-1, anti-neurofascin-155 or -186 antibodies using enzyme-linked immunosorbent assay, binding assays with transfected human embryonic kidney 293 cells and murine teased fibers. We did not detect any IgM or IgG auto-antibodies against contactin-1, neurofascin-155 or -186 in any of our multifocal motor neuropathy patients. We conclude that auto-antibodies against contactin-1, neurofascin-155 and -186 do not play a relevant role in the pathogenesis in this cohort with multifocal motor neuropathy.

  4. Motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes

    International Nuclear Information System (INIS)

    Lamb, James M.; Robinson, Clifford G.; Bradley, Jeffrey D.; Low, Daniel A.

    2013-01-01

    Background and purpose: To quantify the benefit of motion-specific internal target volumes for FDG-avid mediastinal and hilar lymph nodes generated using 4D-PET, vs. conventional internal target volumes generated using non-respiratory gated PET and 4D-CT scans. Materials and methods: Five patients with FDG-avid tumors metastatic to 11 hilar or mediastinal lymph nodes were imaged with respiratory-correlated FDG-PET (4D-PET) and 4D-CT. FDG-avid nodes were contoured by a radiation oncologist in two ways. Standard-of-care volumes were contoured using conventional un-gated PET, 4D-CT, and breath-hold CT. A second, motion-specific, set of volumes were contoured using 4D-PET.Contours based on 4D-PET corresponded directly to an internal target volume (ITV 4D ), whereas contours based on un-gated PET were expanded by a series of exploratory isotropic margins (from 5 to 13 mm) based on literature recommendations on lymph node motion to form internal target volumes (ITV 3D ). Results: A 13 mm expansion of the un-gated PET nodal volume was needed to cover the ITV 4D for 10 of 11 nodes studied. The ITV 3D based on a 13 mm expansion included on average 45 cm 3 of tissue that was not included in the ITV 4D . Conclusions: Motion-specific lymph-node internal target volumes generated from 4D-PET imaging could be used to improve accuracy and/or reduce normal-tissue irradiation compared to the standard-of-care un-gated PET based internal target volumes

  5. Development of a CONTOUR-METER

    International Nuclear Information System (INIS)

    Andrada Contardi, F.A.

    2004-01-01

    Dose calculation in patients undergoing radiotherapy treatments requires the knowledge of their anatomical geometry.Making reference to the specific case of breast cancer, one of the measurement that are made on the patients is the acquisition of the breast's contour, determined in an axial plane from a point marked on the breastbone until another point marked on the thorax side under the armpit.This measurement is normally made with a mechanic contour-meter: a device formed by a series of plastic-covered wires designed to be applied on the patient's skin copying the breast contour after it deformation.The geometrical error associated with this procedure is ± 1 cm. The precision of the dose calculation could be increased acquiring a breast contour more accurate.This objective was achieved developing a method based on breast images from a digital camera.The algorithms to obtain an axial-plane image of the contour from digital photographs taken from arbitrary positions were developed.A geometric transformation is applied to the photograph to correct for perspective distortions, obtaining a frontal - undistorted image (axial-plane image).A software tool to make all the image processing was developed under MatLab.The maximum geometrical error detected during the validation of the process was 2 mm [es

  6. Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer: A comparison between two modalities.

    Science.gov (United States)

    Seppälä, Tiina; Visapää, Harri; Collan, Juhani; Kapanen, Mika; Beule, Annette; Kouri, Mauri; Tenhunen, Mikko; Saarilahti, Kauko

    2015-11-01

    To investigate the conversion of prostate cancer radiotherapy (RT) target definition from CT-based planning into an MRI-only-based planning procedure. Using the CT- and MRI-only-based RT planning protocols, 30 prostate cancer patients were imaged in the RT fixation position. Two physicians delineated the prostate in both CT and T2-weighted MRI images. The CT and MRI images were coregistered based on gold seeds and anatomic borders of the prostate. The uncertainty of the coregistration, as well as differences in target volumes and uncertainty of contour delineation were investigated. Conversion of margins and dose constraints from CT- to MRI-only-based treatment planning was assessed. On average, the uncertainty of image coregistration was 0.4 ± 0.5 mm (one standard deviation, SD), 0.9 ± 0.8 mm and 0.9 ± 0.9 mm in the lateral, anterior-posterior and base-apex direction, respectively. The average ratio of the prostate volume between CT and MRI was 1.20 ± 0.15 (one SD). Compared to the CT-based contours, the MRI-based contours were on average 2-7 mm smaller in the apex, 0-1 mm smaller in the rectal direction and 1-4 mm smaller elsewhere. When converting from a CT-based planning procedure to an MRI-based one, the overall planning target volumes (PTV) are prominently reduced only in the apex. The prostate margins and dose constraints can be retained by this conversion.

  7. The effect of betel nut chewing on contour and object masking.

    Science.gov (United States)

    Ho, Ming-Chou; Wang, Chin-Kun

    2011-11-01

    The betel nut is a common stimulant in many Asian countries. We employed the masking task developed by Enns and Di Lollo (Trends in Cognitive Sciences, 4, 345-352, 1997) to investigate the effects of betel nuts on sensory and attentional processing. In the masking task, participants needed to identify a target that was masked by either a contour mask or an object mask. Sensory processing was assessed by examining target identification in the contour mask condition when the target was presented only centrally, whereas attentional processing was assessed by examining target identification in the object mask condition when the target was presented randomly in either a central or a parafoveal location. The results showed that chewing betel nut and chewing gum produced significant contour masking with a large effect size, similar to the pure control condition, in which participants chewed nothing, and the placebo control condition, in which what participants chewed was disguised. This suggests that neither betel nut nor gum affects sensory processing. Alternatively, betel nut chewing could produce a reduction in object masking for the habitual chewers and the nonchewers, suggesting an effect of betel nut on attentional processing. This concentrated attention was also observed in the placebo control condition; thus, it cannot be exclusively driven by the expectation effect. Also, chewing per se reduced the attentional distribution foveally.

  8. PID controller auto-tuning based on process step response and damping optimum criterion.

    Science.gov (United States)

    Pavković, Danijel; Polak, Siniša; Zorc, Davor

    2014-01-01

    This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations. © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Analysis on the Workspace of Six-degrees-of-freedom Industrial Robot Based on AutoCAD

    Directory of Open Access Journals (Sweden)

    Li Jin-quan

    2017-01-01

    Full Text Available This research discusses the workspace of the industrial robot with six degrees of freedom(6-DOF based on AutoCAD platform. Based on the analysis of the overall configuration of the robot, this research establishes the kinematic mathematical model of the industrial robot by using DH parameters, and then solves the workspace of the robot consequently. In the AutoCAD, Auto Lisp language program is adopted to simulate the two-dimensional(2D and three-dimensional(3D space of the robot. Software user interface is written by using the dialog box control language of Visual LISP. At last, the research analyzes the trend of the shape and direction of the workspace when the length and angle range of the robot are changed. This research lays the foundation for the design, control and planning of industrial robots.

  10. AutoCAD platform customization user interface, AutoLISP, VBA, and beyond

    CERN Document Server

    Ambrosius, Lee

    2015-01-01

    Take control of AutoCAD to boost the speed, quality, and precision of your work Senior drafters and savvy users are increasingly taking AutoCAD customization out of the hands of system administrators, and taking control of their own workflow. In AutoCAD Platform Customization, Autodesk customization guru Lee Ambrosius walks you through a multitude of customization options using detailed tutorials and real-world examples applicable to AutoCAD, AutoCAD LT, Civil 3D, Plant 3D, and other programs built on the AutoCAD platform. By unleashing the full power of the software, you'll simplify and str

  11. [Evaluation of pressure ulcers area using the softwares Motic and AutoCAD®].

    Science.gov (United States)

    Reis, Camila Letícia Dias dos; Cavalcante, Janaína Mortosa; Rocha Júnior, Edvar Ferreira da; Neves, Rinaldo Souza; Santana, Levy Aniceto; Guadagnin, Renato da Veiga; Brasil, Lourdes Mattos

    2012-01-01

    Pressure ulcer is a lesion that affects skin layers in some regions of the body and its healing can be followed up using image processing. The analysis of pressure ulcer area is relevant to evaluate its evolution and response to therapeutic procedures. Such areas can be evaluated through contour marking with the softwares Motic and AutoCAD®. In this study 35 volunteers computed areas from two grade III pressure ulcers using these instruments. It was possible to conclude that results are clinically equivalent and so can be considered to follow up healing evolution from pressure ulcers.

  12. Development of a contour meter

    International Nuclear Information System (INIS)

    Andrada C, F.A.; Sanz, D.E.

    2006-01-01

    The dosimetric calculation in patients that receive radiotherapy treatment it requires the one knowledge of the geometry of some anatomical portions, which differs from a patient to another. Making reference to the specific case of mammary neoplasia, one of the measurements that is carried out on the patient is the acquisition of the contour of the breast, which is determined from a point marked on the breastbone until another point marked on the lateral of the thorax, below the armpit, with the patient located in the irradiation position. This measurement is carried out with the help of a mechanical contour meter that is a device conformed by a series of wires with a polymeric coating, which support on the breast of the patient and it reproduces its form. Then it is transported in the more careful possible form on a paper and the contour is traced with a tracer one. The geometric error associated to this procedure is of ±1 cm, which is sensitive of being reduced. The present work finds its motivation in the patient's radiological protection radiotherapy. The maximum error in dose allowed in radiotherapeutic treatments is 5%. It would be increase the precision and with it to optimize the treatment received by the patient, reducing the error in the acquisition process of the mammary contour. With this objective, a digital device is designed whose operation is based in the application of a spatial transformation on a picture of the mammary contour, which corrects the geometric distortion introduced in the process of the photographic acquisition. An algorithm that allows to obtain a front image (without distortion) of the plane of the contour was developed. A software tool especially developed carries out the processing of the digital images. The maximum geometric error detected in the validation process is 2 mm located on a small portion of the contour. (Author)

  13. [Dermatological features of auto-inflammatory recurrent fevers].

    Science.gov (United States)

    Escudier, A; Mauvais, F-X; Bastard, P; Boussard, C; Jaoui, A; Koskas, V; Lecoq, E; Michel, A; Orcel, M-C; Truelle, P-E; Wohrer, D; Piram, M

    2018-02-01

    Auto-inflammatory diseases are characterized by unexplained and recurrent attacks of systemic inflammation often involving the skin, joints, or serosal membranes. They are due to a dysfunction or dysregulation of the innate immunity, which is the first line of defense against pathogens. Early recognition of these diseases by the clinician, especially by pediatricians encountering such pathologies in pediatric patients, is primordial to avoid complications. Skin manifestations, common in most auto-inflammatory diseases, are helpful for prompt diagnosis. After a brief physiopathological review, we will describe auto-inflammatory recurrent fevers by their main dermatological presentations: urticarial lesions, neutrophilic dermatoses, panniculitis, other maculopapular eruptions, dyskeratosis, skin vasculitis, and oral aphthous. We finally suggest a decision tree to help clinicians better target genetic exams in patients with recurrent fevers and dermatological manifestations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Prototype and Evaluation of AutoHelp: A Case-based, Web-accessible Help Desk System for EOSDIS

    Science.gov (United States)

    Mitchell, Christine M.; Thurman, David A.

    1999-01-01

    AutoHelp is a case-based, Web-accessible help desk for users of the EOSDIS. Its uses a combination of advanced computer and Web technologies, knowledge-based systems tools, and cognitive engineering to offload the current, person-intensive, help desk facilities at the DAACs. As a case-based system, AutoHelp starts with an organized database of previous help requests (questions and answers) indexed by a hierarchical category structure that facilitates recognition by persons seeking assistance. As an initial proof-of-concept demonstration, a month of email help requests to the Goddard DAAC were analyzed and partially organized into help request cases. These cases were then categorized to create a preliminary case indexing system, or category structure. This category structure allows potential users to identify or recognize categories of questions, responses, and sample cases similar to their needs. Year one of this research project focused on the development of a technology demonstration. User assistance 'cases' are stored in an Oracle database in a combination of tables linking prototypical questions with responses and detailed examples from the email help requests analyzed to date. When a potential user accesses the AutoHelp system, a Web server provides a Java applet that displays the category structure of the help case base organized by the needs of previous users. When the user identifies or requests a particular type of assistance, the applet uses Java database connectivity (JDBC) software to access the database and extract the relevant cases. The demonstration will include an on-line presentation of how AutoHelp is currently structured. We will show how a user might request assistance via the Web interface and how the AutoHelp case base provides assistance. The presentation will describe the DAAC data collection, case definition, and organization to date, as well as the AutoHelp architecture. It will conclude with the year 2 proposal to more fully develop the

  15. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: Reducing the interobserver variability in multicentre clinical studies.

    Science.gov (United States)

    Schimek-Jasch, Tanja; Troost, Esther G C; Rücker, Gerta; Prokic, Vesna; Avlar, Melanie; Duncker-Rohr, Viola; Mix, Michael; Doll, Christian; Grosu, Anca-Ligia; Nestle, Ursula

    2015-06-01

    Interobserver variability in the definition of target volumes (TVs) is a well-known confounding factor in (multicentre) clinical studies employing radiotherapy. Therefore, detailed contouring guidelines are provided in the prospective randomised multicentre PET-Plan (NCT00697333) clinical trial protocol. This trial compares strictly FDG-PET-based TV delineation with conventional TV delineation in patients with locally advanced non-small cell lung cancer (NSCLC). Despite detailed contouring guidelines, their interpretation by different radiation oncologists can vary considerably, leading to undesirable discrepancies in TV delineation. Considering this, as part of the PET-Plan study quality assurance (QA), a contouring dummy run (DR) consisting of two phases was performed to analyse the interobserver variability before and after teaching. In the first phase of the DR (DR1), radiation oncologists from 14 study centres were asked to delineate TVs as defined by the study protocol (gross TV, GTV; and two clinical TVs, CTV-A and CTV-B) in a test patient. A teaching session was held at a study group meeting, including a discussion of the results focussing on discordances in comparison to the per-protocol solution. Subsequently, the second phase of the DR (DR2) was performed in order to evaluate the impact of teaching. Teaching after DR1 resulted in a reduction of absolute TVs in DR2, as well as in better concordance of TVs. The Overall Kappa(κ) indices increased from 0.63 to 0.71 (GTV), 0.60 to 0.65 (CTV-A) and from 0.59 to 0.63 (CTV-B), demonstrating improvements in overall interobserver agreement. Contouring DRs and study group meetings as part of QA in multicentre clinical trials help to identify misinterpretations of per-protocol TV delineation. Teaching the correct interpretation of protocol contouring guidelines leads to a reduction in interobserver variability and to more consistent contouring, which should consequently improve the validity of the overall study

  16. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer. Reducing the interobserver variability in multicentre clinical studies

    International Nuclear Information System (INIS)

    Schimek-Jasch, Tanja; Prokic, Vesna; Doll, Christian; Grosu, Anca-Ligia; Nestle, Ursula; Troost, Esther G.C.; Ruecker, Gerta; Avlar, Melanie; Duncker-Rohr, Viola; Mix, Michael

    2015-01-01

    Interobserver variability in the definition of target volumes (TVs) is a well-known confounding factor in (multicentre) clinical studies employing radiotherapy. Therefore, detailed contouring guidelines are provided in the prospective randomised multicentre PET-Plan (NCT00697333) clinical trial protocol. This trial compares strictly FDG-PET-based TV delineation with conventional TV delineation in patients with locally advanced non-small cell lung cancer (NSCLC). Despite detailed contouring guidelines, their interpretation by different radiation oncologists can vary considerably, leading to undesirable discrepancies in TV delineation. Considering this, as part of the PET-Plan study quality assurance (QA), a contouring dummy run (DR) consisting of two phases was performed to analyse the interobserver variability before and after teaching. In the first phase of the DR (DR1), radiation oncologists from 14 study centres were asked to delineate TVs as defined by the study protocol (gross TV, GTV; and two clinical TVs, CTV-A and CTV-B) in a test patient. A teaching session was held at a study group meeting, including a discussion of the results focussing on discordances in comparison to the per-protocol solution. Subsequently, the second phase of the DR (DR2) was performed in order to evaluate the impact of teaching. Teaching after DR1 resulted in a reduction of absolute TVs in DR2, as well as in better concordance of TVs. The Overall Kappa(κ) indices increased from 0.63 to 0.71 (GTV), 0.60 to 0.65 (CTV-A) and from 0.59 to 0.63 (CTV-B), demonstrating improvements in overall interobserver agreement. Contouring DRs and study group meetings as part of QA in multicentre clinical trials help to identify misinterpretations of per-protocol TV delineation. Teaching the correct interpretation of protocol contouring guidelines leads to a reduction in interobserver variability and to more consistent contouring, which should consequently improve the validity of the overall study

  17. Visualization of Uncertain Contour Trees

    DEFF Research Database (Denmark)

    Kraus, Martin

    2010-01-01

    Contour trees can represent the topology of large volume data sets in a relatively compact, discrete data structure. However, the resulting trees often contain many thousands of nodes; thus, many graph drawing techniques fail to produce satisfactory results. Therefore, several visualization methods...... were proposed recently for the visualization of contour trees. Unfortunately, none of these techniques is able to handle uncertain contour trees although any uncertainty of the volume data inevitably results in partially uncertain contour trees. In this work, we visualize uncertain contour trees...... by combining the contour trees of two morphologically filtered versions of a volume data set, which represent the range of uncertainty. These two contour trees are combined and visualized within a single image such that a range of potential contour trees is represented by the resulting visualization. Thus...

  18. SU-E-J-108: Solving the Chinese Postman Problem for Effective Contour Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J; Zhang, L; Balter, P; Court, L [MD Anderson Cancer Center, Houston, TX (United States); Zhang, Y; Dong, L [Scripps Proton Therapy Center, San Diego, CA (United States)

    2015-06-15

    Purpose: To develop a practical approach for accurate contour deformation when deformable image registration (DIR) is used for atlas-based segmentation or contour propagation in image-guided radiotherapy. Methods: A contour deformation approach was developed on the basis of 3D mesh operations. The 2D contours represented by a series of points in each slice were first converted to a 3D triangular mesh, which was deformed by the deformation vectors resulting from DIR. A set of parallel 2D planes then cut through the deformed 3D mesh, generating unordered points and line segments, which should be reorganized into a set of 2D contour points. It was realized that the reorganization problem was equivalent to solving the Chinese Postman Problem (CPP) by traversing a graph built from the unordered points with the least cost. Alternatively, deformation could be applied to a binary mask converted from the original contours. The deformed binary mask was then converted back into contours at the CT slice locations. We performed a qualitative comparison to validate the mesh-based approach against the image-based approach. Results: The DIR could considerably change the 3D mesh, making complicated 2D contour representations after deformation. CPP was able to effectively reorganize the points in 2D planes no matter how complicated the 2D contours were. The mesh-based approach did not require a post-processing of the contour, thus accurately showing the actual deformation in DIR. The mesh-based approach could keep some fine details and resulted in smoother contours than the image-based approach did, especially for the lung structure. Image-based approach appeared to over-process contours and suffered from image resolution limits. The mesh-based approach was integrated into in-house DIR software for use in routine clinic and research. Conclusion: We developed a practical approach for accurate contour deformation. The efficiency of this approach was demonstrated in both clinic and

  19. A Neurocomputational Account of the Role of Contour Facilitation in Brightness Perception

    Directory of Open Access Journals (Sweden)

    Dražen eDomijan

    2015-02-01

    Full Text Available A novel filling-in model is proposed in order to account for challenging brightness illusions where inducing background elements are spatially separated from gray target such as dungeon, cube and grating illusion, bull's eye and ring patterns. The model implements simple idea that neural response to low-contrast contour is enhanced (facilitated by the presence of collinear or parallel high-contrast contour in the wider neighborhood. Contour facilitation is achieved via dendritic inhibition which enables computation of maximum function among inputs to the node. Recurrent application of maximum function leads to the propagation of neural signal along collinear or parallel contour segments. When strong global contour signal is accompanied with weak local contour signal at the same location, conditions are met to produce brightness assimilation within filling-in network. Computer simulations showed that the model correctly predicts brightness appearance in all of the above mentioned illusions as well as in White's effect, Benary's cross, Todorović's illusion, checkerboard contrast, contrast-contrast illusion and various variations on the White's effect. The proposed model offer new insights on how geometric factors (contour colinearity or parallelism jointly with contrast magnitude contribute to the brightness perception.

  20. What is in a contour map? A region-based logical formalization of contour semantics

    Science.gov (United States)

    Usery, E. Lynn; Hahmann, Torsten

    2015-01-01

    Contours maps (such as topographic maps) compress the information of a function over a two-dimensional area into a discrete set of closed lines that connect points of equal value (isolines), striking a fine balance between expressiveness and cognitive simplicity. They allow humans to perform many common sense reasoning tasks about the underlying function (e.g. elevation).

  1. [Oral diseases in auto-immune polyendocrine syndrome type 1].

    Science.gov (United States)

    Proust-Lemoine, Emmanuelle; Guyot, Sylvie

    2017-09-01

    Auto-immune polyendocrine syndrome type 1 (APS1) also called Auto-immune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED) is a rare monogenic childhood-onset auto-immune disease. This autosomal recessive disorder is caused by mutations in the auto-immune regulator (AIRE) gene, and leads to autoimmunity targeting peripheral tissues. There is a wide variability in clinical phenotypes in patients with APSI, with auto-immune endocrine and non-endocrine disorders, and chronic mucocutaneous candidiasis. These patients suffer from oral diseases such as dental enamel hypoplasia and candidiasis. Both are frequently described, and in recent series, enamel hypoplasia and candidiasis are even the most frequent components of APS1 together with hypoparathyroidism. Both often occur during childhood (before 5 years old for canrdidiasis, and before 15 years old for enamel hypoplasia). Oral candidiasis is recurrent all life long, could become resistant to azole antifungal after years of treatment, and be carcinogenic, leading to severe oral squamous cell carcinoma. Oral components of APS1 should be diagnosed and rigorously treated. Dental enamel hypoplasia and/or recurrent oral candidiasis in association with auto-immune diseases in a young child should prompt APS1 diagnosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Auto-optimisation for three-dimensional conformal radiotherapy of nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wu, V.W.C. E-mail: orvinwu@polyu.edu.hk; Kwong, D.W.L.; Sham, J.S.T.; Mui, A.W.L

    2003-08-01

    Purpose: The purpose of this study was to evaluate the application of auto-optimisation in the treatment planning of three-dimensional conformal radiotherapy (3DCRT) of nasopharyngeal carcinoma (NPC). Methods: Twenty-nine NPC patients were planned by both forward planning and auto-optimisation methods. The forward plans, which consisted of three coplanar facial fields, were produced according to the routine planning criteria. The auto-optimised plans, which consisted of 5-15 (median 9) fields, were generated by the planning system after prescribing the dose requirements and the importance weightings of the planning target volume and organs at risk. Plans produced by the two planning methods were compared by the dose volume histogram, tumour control probability (TCP), conformity index and normal tissue complication probability (NTCP). Results: The auto-optimised plans reduced the average planner's time by over 35 min. It demonstrated better TCP and conformity index than the forward plans (P=0.03 and 0.04, respectively). Besides, the parotid gland and temporo-mandibular (TM) joint were better spared with the mean dose reduction of 31.8 and 17.7%, respectively. The slight trade off was the mild dose increase in spinal cord and brain stem with their maximum doses remaining within the tolerance limits. Conclusions: The findings demonstrated the potentials of auto-optimisation for improving target dose and parotid sparing in the 3DCRT of NPC with saving of the planner's time.

  3. Auto-optimisation for three-dimensional conformal radiotherapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Wu, V.W.C.; Kwong, D.W.L.; Sham, J.S.T.; Mui, A.W.L.

    2003-01-01

    Purpose: The purpose of this study was to evaluate the application of auto-optimisation in the treatment planning of three-dimensional conformal radiotherapy (3DCRT) of nasopharyngeal carcinoma (NPC). Methods: Twenty-nine NPC patients were planned by both forward planning and auto-optimisation methods. The forward plans, which consisted of three coplanar facial fields, were produced according to the routine planning criteria. The auto-optimised plans, which consisted of 5-15 (median 9) fields, were generated by the planning system after prescribing the dose requirements and the importance weightings of the planning target volume and organs at risk. Plans produced by the two planning methods were compared by the dose volume histogram, tumour control probability (TCP), conformity index and normal tissue complication probability (NTCP). Results: The auto-optimised plans reduced the average planner's time by over 35 min. It demonstrated better TCP and conformity index than the forward plans (P=0.03 and 0.04, respectively). Besides, the parotid gland and temporo-mandibular (TM) joint were better spared with the mean dose reduction of 31.8 and 17.7%, respectively. The slight trade off was the mild dose increase in spinal cord and brain stem with their maximum doses remaining within the tolerance limits. Conclusions: The findings demonstrated the potentials of auto-optimisation for improving target dose and parotid sparing in the 3DCRT of NPC with saving of the planner's time

  4. The effect of F0 contour on the intelligibility of speech in the presence of interfering sounds for Mandarin Chinese.

    Science.gov (United States)

    Chen, Jing; Yang, Hongying; Wu, Xihong; Moore, Brian C J

    2018-02-01

    In Mandarin Chinese, the fundamental frequency (F0) contour defines lexical "Tones" that differ in meaning despite being phonetically identical. Flattening the F0 contour impairs the intelligibility of Mandarin Chinese in background sounds. This might occur because the flattening introduces misleading lexical information. To avoid this effect, two types of speech were used: single-Tone speech contained Tones 1 and 0 only, which have a flat F0 contour; multi-Tone speech contained all Tones and had a varying F0 contour. The intelligibility of speech in steady noise was slightly better for single-Tone speech than for multi-Tone speech. The intelligibility of speech in a two-talker masker, with the difference in mean F0 between the target and masker matched across conditions, was worse for the multi-Tone target in the multi-Tone masker than for any other combination of target and masker, probably because informational masking was maximal for this combination. The introduction of a perceived spatial separation between the target and masker, via the precedence effect, led to better performance for all target-masker combinations, especially the multi-Tone target in the multi-Tone masker. In summary, a flat F0 contour does not reduce the intelligibility of Mandarin Chinese when the introduction of misleading lexical cues is avoided.

  5. Inductance analyzer based on auto-balanced circuit for precision measurement of fluxgate impedance

    Science.gov (United States)

    Setiadi, Rahmondia N.; Schilling, Meinhard

    2018-05-01

    An instrument for fluxgate sensor impedance measurement based on an auto-balanced circuit has been designed and characterized. The circuit design is adjusted to comply with the fluxgate sensor characteristics which are low impedance and highly saturable core with very high permeability. The system utilizes a NI-DAQ card and LabVIEW to process the signal acquisition and evaluation. Some fixed reference resistances are employed for system calibration using linear regression. A multimeter HP 34401A and impedance analyzer Agilent 4294A are used as calibrator and validator for the resistance and inductance measurements. Here, we realized a fluxgate analyzer instrument based on auto-balanced circuit, which measures the resistance and inductance of the device under test with a small error and much lower excitation current to avoid core saturation compared to the used calibrator.

  6. Spiral Light Beams and Contour Image Processing

    Science.gov (United States)

    Kishkin, Sergey A.; Kotova, Svetlana P.; Volostnikov, Vladimir G.

    Spiral beams of light are characterized by their ability to remain structurally unchanged at propagation. They may have the shape of any closed curve. In the present paper a new approach is proposed within the framework of the contour analysis based on a close cooperation of modern coherent optics, theory of functions and numerical methods. An algorithm for comparing contours is presented and theoretically justified, which allows convincing of whether two contours are similar or not to within the scale factor and/or rotation. The advantages and disadvantages of the proposed approach are considered; the results of numerical modeling are presented.

  7. Ingenious Snake: An Adaptive Multi-Class Contours Extraction

    Science.gov (United States)

    Li, Baolin; Zhou, Shoujun

    2018-04-01

    Active contour model (ACM) plays an important role in computer vision and medical image application. The traditional ACMs were used to extract single-class of object contours. While, simultaneous extraction of multi-class of interesting contours (i.e., various contours with closed- or open-ended) have not been solved so far. Therefore, a novel ACM model named “Ingenious Snake” is proposed to adaptively extract these interesting contours. In the first place, the ridge-points are extracted based on the local phase measurement of gradient vector flow field; the consequential ridgelines initialization are automated with high speed. Secondly, the contours’ deformation and evolvement are implemented with the ingenious snake. In the experiments, the result from initialization, deformation and evolvement are compared with the existing methods. The quantitative evaluation of the structure extraction is satisfying with respect of effectiveness and accuracy.

  8. Spot auto-focusing and spot auto-stigmation methods with high-definition auto-correlation function in high-resolution TEM.

    Science.gov (United States)

    Isakozawa, Shigeto; Fuse, Taishi; Amano, Junpei; Baba, Norio

    2018-04-01

    As alternatives to the diffractogram-based method in high-resolution transmission electron microscopy, a spot auto-focusing (AF) method and a spot auto-stigmation (AS) method are presented with a unique high-definition auto-correlation function (HD-ACF). The HD-ACF clearly resolves the ACF central peak region in small amorphous-thin-film images, reflecting the phase contrast transfer function. At a 300-k magnification for a 120-kV transmission electron microscope, the smallest areas used are 64 × 64 pixels (~3 nm2) for the AF and 256 × 256 pixels for the AS. A useful advantage of these methods is that the AF function has an allowable accuracy even for a low s/n (~1.0) image. A reference database on the defocus dependency of the HD-ACF by the pre-acquisition of through-focus amorphous-thin-film images must be prepared to use these methods. This can be very beneficial because the specimens are not limited to approximations of weak phase objects but can be extended to objects outside such approximations.

  9. Consensus Recommendations for Radiation Therapy Contouring and Treatment of Vulvar Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, David K., E-mail: david.gaffney@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, Salt Lake City, Utah (United States); King, Bronwyn [Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre and Epworth Radiation Oncology, Melbourne, Victoria (Australia); Viswanathan, Akila N. [Department of Radiation Oncology, Dana-Farber/Brigham and Women' s Cancer Center, Harvard Medical School, Boston, Massachusetts (United States); Barkati, Maroie [Department of Radiation Oncology, Centre hospitalier de l' universite de Montreal, Montreal, Quebec (Canada); Beriwal, Sushil [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Eifel, Patricia [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Erickson, Beth [Department of Radiation Oncology, Proedtert and Medical College Clinical Cancer Center, Milwaukee, Wisconsin (United States); Fyles, Anthony [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Goulart, Jennifer [Department of Radiation Oncology, British Columbia Cancer Agency, Victoria, British Columbia (Canada); Harkenrider, Matthew [Department of Radiation Oncology, Stritch School of Medicine, Loyola University, Maywood, Illinois (United States); Jhingran, Anuja; Klopp, Ann [Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas (United States); Koh, Wui-Jin [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Lim, Karen [Liverpool Cancer Therapy Centre, Radiation Oncology Unit, Sydney, New South Wales (Australia); Petersen, Ivy [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Portelance, Lorraine [Radiation Oncology Department, Miller School of Medicine, University of Miami, Miami, Florida (United States); and others

    2016-07-15

    Purpose: The purpose of this study was to develop a radiation therapy (RT) contouring atlas and recommendations for women with postoperative and locally advanced vulvar carcinoma. Methods and Materials: An international committee of 35 expert gynecologic radiation oncologists completed a survey of the treatment of vulvar carcinoma. An initial set of recommendations for contouring was discussed and generated by consensus. Two cases, 1 locally advanced and 1 postoperative, were contoured by 14 physicians. Contours were compared and analyzed using an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE), and a 95% confidence interval contour was developed. The level of agreement among contours was assessed using a kappa statistic. STAPLE contours underwent full committee editing to generate the final atlas consensus contours. Results: Analysis of the 14 contours showed substantial agreement, with kappa statistics of 0.69 and 0.64 for cases 1 and 2, respectively. There was high specificity for both cases (≥99%) and only moderate sensitivity of 71.3% and 64.9% for cases 1 and 2, respectively. Expert review and discussion generated consensus recommendations for contouring target volumes and treatment for postoperative and locally advanced vulvar cancer. Conclusions: These consensus recommendations for contouring and treatment of vulvar cancer identified areas of complexity and controversy. Given the lack of clinical research evidence in vulvar cancer radiation therapy, the committee advocates a conservative and consistent approach using standardized recommendations.

  10. Consensus Recommendations for Radiation Therapy Contouring and Treatment of Vulvar Carcinoma

    International Nuclear Information System (INIS)

    Gaffney, David K.; King, Bronwyn; Viswanathan, Akila N.; Barkati, Maroie; Beriwal, Sushil; Eifel, Patricia; Erickson, Beth; Fyles, Anthony; Goulart, Jennifer; Harkenrider, Matthew; Jhingran, Anuja; Klopp, Ann; Koh, Wui-Jin; Lim, Karen; Petersen, Ivy; Portelance, Lorraine

    2016-01-01

    Purpose: The purpose of this study was to develop a radiation therapy (RT) contouring atlas and recommendations for women with postoperative and locally advanced vulvar carcinoma. Methods and Materials: An international committee of 35 expert gynecologic radiation oncologists completed a survey of the treatment of vulvar carcinoma. An initial set of recommendations for contouring was discussed and generated by consensus. Two cases, 1 locally advanced and 1 postoperative, were contoured by 14 physicians. Contours were compared and analyzed using an expectation-maximization algorithm for simultaneous truth and performance level estimation (STAPLE), and a 95% confidence interval contour was developed. The level of agreement among contours was assessed using a kappa statistic. STAPLE contours underwent full committee editing to generate the final atlas consensus contours. Results: Analysis of the 14 contours showed substantial agreement, with kappa statistics of 0.69 and 0.64 for cases 1 and 2, respectively. There was high specificity for both cases (≥99%) and only moderate sensitivity of 71.3% and 64.9% for cases 1 and 2, respectively. Expert review and discussion generated consensus recommendations for contouring target volumes and treatment for postoperative and locally advanced vulvar cancer. Conclusions: These consensus recommendations for contouring and treatment of vulvar cancer identified areas of complexity and controversy. Given the lack of clinical research evidence in vulvar cancer radiation therapy, the committee advocates a conservative and consistent approach using standardized recommendations.

  11. Fairfax County Contours

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — This layer contains contours that were derived from the digital terrain model made up of irregularly spaced mass points and breaklines. The contours are 5 foot...

  12. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Gay, Hiram A., E-mail: hgay@radonc.wustl.edu [Washington University School of Medicine, St Louis, MO (United States); Barthold, H. Joseph [Commonwealth Hematology and Oncology, Weymouth, MA (United States); Beth Israel Deaconess Medical Center, Boston, MA (Israel); O' Meara, Elizabeth [Radiation Therapy Oncology Group, Philadelphia, PA (United States); Bosch, Walter R. [Washington University School of Medicine, St Louis, MO (United States); El Naqa, Issam [Department of Radiation Oncology, McGill University Health Center, Montreal, Quebec (Canada); Al-Lozi, Rawan [Washington University School of Medicine, St Louis, MO (United States); Rosenthal, Seth A. [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); Lawton, Colleen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Sandler, Howard [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Zietman, Anthony [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Myerson, Robert [Washington University School of Medicine, St Louis, MO (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Willett, Christopher [Department of Radiation Oncology, Duke University Medical Center, Durham, NC (United States); Kachnic, Lisa A. [Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, MA (United States); Jhingran, Anuja [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Portelance, Lorraine [University of Miami, Miami, FL (United States); Ryu, Janice [Radiation Oncology Centers, Radiological Associates of Sacramento, Sacramento, CA (United States); and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  13. Contour detection based on nonclassical receptive field inhibition

    NARCIS (Netherlands)

    Grigorescu, Cosmin; Petkov, Nicolai; Westenberg, Michel A.

    We propose a biologically motivated computational step, called nonclassical receptive field (non-CRF) inhibition, more generally surround inhibition or suppression, to improve contour detection in machine vision. Non-CRF inhibition is exhibited by 80% of the orientation-selective neurons in the

  14. Statistical region based active contour using a fractional entropy descriptor: Application to nuclei cell segmentation in confocal \\ud microscopy images

    OpenAIRE

    Histace, A; Meziou, B J; Matuszewski, Bogdan; Precioso, F; Murphy, M F; Carreiras, F

    2013-01-01

    We propose an unsupervised statistical region based active contour approach integrating an original fractional entropy measure for image segmentation with a particular application to single channel actin tagged fluorescence confocal microscopy image segmentation. Following description of statistical based active contour segmentation and the mathematical definition of the proposed fractional entropy descriptor, we demonstrate comparative segmentation results between the proposed approach and s...

  15. Optimal design of a high accuracy photoelectric auto-collimator based on position sensitive detector

    Science.gov (United States)

    Yan, Pei-pei; Yang, Yong-qing; She, Wen-ji; Liu, Kai; Jiang, Kai; Duan, Jing; Shan, Qiusha

    2018-02-01

    A kind of high accuracy Photo-electric auto-collimator based on PSD was designed. The integral structure composed of light source, optical lens group, Position Sensitive Detector (PSD) sensor, and its hardware and software processing system constituted. Telephoto objective optical type is chosen during the designing process, which effectively reduces the length, weight and volume of the optical system, as well as develops simulation-based design and analysis of the auto-collimator optical system. The technical indicators of auto-collimator presented by this paper are: measuring resolution less than 0.05″; a field of view is 2ω=0.4° × 0.4° measuring range is +/-5' error of whole range measurement is less than 0.2″. Measuring distance is 10m, which are applicable to minor-angle precise measuring environment. Aberration analysis indicates that the MTF close to the diffraction limit, the spot in the spot diagram is much smaller than the Airy disk. The total length of the telephoto lens is only 450mm by the design of the optical machine structure optimization. The autocollimator's dimension get compact obviously under the condition of the image quality is guaranteed.

  16. SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning

    International Nuclear Information System (INIS)

    Kim, J; Han, J; Ailawadi, S; Baker, J; Hsia, A; Xu, Z; Ryu, S

    2016-01-01

    Purpose: Normal organ segmentation is one time-consuming and labor-intensive step for lung radiotherapy treatment planning. The aim of this study is to evaluate the performance of a multi-atlas based segmentation approach for automatic organs at risk (OAR) delineation. Methods: Fifteen Lung stereotactic body radiation therapy patients were randomly selected. Planning CT images and OAR contours of the heart - HT, aorta - AO, vena cava - VC, pulmonary trunk - PT, and esophagus – ES were exported and used as reference and atlas sets. For automatic organ delineation for a given target CT, 1) all atlas sets were deformably warped to the target CT, 2) the deformed sets were accumulated and normalized to produce organ probability density (OPD) maps, and 3) the OPD maps were converted to contours via image thresholding. Optimal threshold for each organ was empirically determined by comparing the auto-segmented contours against their respective reference contours. The delineated results were evaluated by measuring contour similarity metrics: DICE, mean distance (MD), and true detection rate (TD), where DICE=(intersection volume/sum of two volumes) and TD = {1.0 - (false positive + false negative)/2.0}. Diffeomorphic Demons algorithm was employed for CT-CT deformable image registrations. Results: Optimal thresholds were determined to be 0.53 for HT, 0.38 for AO, 0.28 for PT, 0.43 for VC, and 0.31 for ES. The mean similarity metrics (DICE[%], MD[mm], TD[%]) were (88, 3.2, 89) for HT, (79, 3.2, 82) for AO, (75, 2.7, 77) for PT, (68, 3.4, 73) for VC, and (51,2.7, 60) for ES. Conclusion: The investigated multi-atlas based approach produced reliable segmentations for the organs with large and relatively clear boundaries (HT and AO). However, the detection of small and narrow organs with diffused boundaries (ES) were challenging. Sophisticated atlas selection and multi-atlas fusion algorithms may further improve the quality of segmentations.

  17. SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Han, J; Ailawadi, S; Baker, J; Hsia, A; Xu, Z; Ryu, S [Stony Brook University Hospital, Stony Brook, NY (United States)

    2016-06-15

    Purpose: Normal organ segmentation is one time-consuming and labor-intensive step for lung radiotherapy treatment planning. The aim of this study is to evaluate the performance of a multi-atlas based segmentation approach for automatic organs at risk (OAR) delineation. Methods: Fifteen Lung stereotactic body radiation therapy patients were randomly selected. Planning CT images and OAR contours of the heart - HT, aorta - AO, vena cava - VC, pulmonary trunk - PT, and esophagus – ES were exported and used as reference and atlas sets. For automatic organ delineation for a given target CT, 1) all atlas sets were deformably warped to the target CT, 2) the deformed sets were accumulated and normalized to produce organ probability density (OPD) maps, and 3) the OPD maps were converted to contours via image thresholding. Optimal threshold for each organ was empirically determined by comparing the auto-segmented contours against their respective reference contours. The delineated results were evaluated by measuring contour similarity metrics: DICE, mean distance (MD), and true detection rate (TD), where DICE=(intersection volume/sum of two volumes) and TD = {1.0 - (false positive + false negative)/2.0}. Diffeomorphic Demons algorithm was employed for CT-CT deformable image registrations. Results: Optimal thresholds were determined to be 0.53 for HT, 0.38 for AO, 0.28 for PT, 0.43 for VC, and 0.31 for ES. The mean similarity metrics (DICE[%], MD[mm], TD[%]) were (88, 3.2, 89) for HT, (79, 3.2, 82) for AO, (75, 2.7, 77) for PT, (68, 3.4, 73) for VC, and (51,2.7, 60) for ES. Conclusion: The investigated multi-atlas based approach produced reliable segmentations for the organs with large and relatively clear boundaries (HT and AO). However, the detection of small and narrow organs with diffused boundaries (ES) were challenging. Sophisticated atlas selection and multi-atlas fusion algorithms may further improve the quality of segmentations.

  18. Spatial profile of contours inducing long-range color assimilation.

    Science.gov (United States)

    Devinck, Frédéric; Spillmann, Lothar; Werner, John S

    2006-01-01

    Color induction was measured using a matching method for two spatial patterns, each composed of double contours. In one pattern (the standard), the contours had sharp edges to induce the Watercolor Effect (WCE); in the other, the two contours had a spatial taper so that the overall profile produced a sawtooth edge, or ramped stimulus. These patterns were chosen based on our previous study demonstrating that the strength of the chromatic WCE depends on a luminance difference between the two contours. Low-pass chromatic mechanisms, unlike bandpass luminance mechanisms, may be expected to be insensitive to the difference between the two spatial profiles. The strength of the watercolor spreading was similar for the two patterns at narrow widths of the contour possibly because of chromatic aberration, but with wider contours, the standard stimulus produced stronger assimilation than the ramped stimulus. This research suggests that luminance-dependent chromatic mechanisms mediate the WCE and that these mechanisms are sensitive to differences in the two spatial profiles of the pattern contours only when they are wide.

  19. Non-Rigid Contour-Based Registration of Cell Nuclei in 2-D Live Cell Microscopy Images Using a Dynamic Elasticity Model.

    Science.gov (United States)

    Sorokin, Dmitry V; Peterlik, Igor; Tektonidis, Marco; Rohr, Karl; Matula, Pavel

    2018-01-01

    The analysis of the pure motion of subnuclear structures without influence of the cell nucleus motion and deformation is essential in live cell imaging. In this paper, we propose a 2-D contour-based image registration approach for compensation of nucleus motion and deformation in fluorescence microscopy time-lapse sequences. The proposed approach extends our previous approach, which uses a static elasticity model to register cell images. Compared with that scheme, the new approach employs a dynamic elasticity model for the forward simulation of nucleus motion and deformation based on the motion of its contours. The contour matching process is embedded as a constraint into the system of equations describing the elastic behavior of the nucleus. This results in better performance in terms of the registration accuracy. Our approach was successfully applied to real live cell microscopy image sequences of different types of cells including image data that was specifically designed and acquired for evaluation of cell image registration methods. An experimental comparison with the existing contour-based registration methods and an intensity-based registration method has been performed. We also studied the dependence of the results on the choice of method parameters.

  20. Auto Safety

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Auto Safety KidsHealth / For Parents / Auto Safety What's in this ... by teaching some basic rules. Importance of Child Safety Seats Using a child safety seat (car seat) ...

  1. A voxel visualization and analysis system based on AutoCAD

    Science.gov (United States)

    Marschallinger, Robert

    1996-05-01

    A collection of AutoLISP programs is presented which enable the visualization and analysis of voxel models by AutoCAD rel. 12/rel. 13. The programs serve as an interactive, graphical front end for manipulating the results of three-dimensional modeling software producing block estimation data. ASCII data files describing geometry and attributes per estimation block are imported and stored as a voxel array. Each voxel may contain multiple attributes, therefore different parameters may be incorporated in one voxel array. Voxel classification is implemented on a layer basis providing flexible treatment of voxel classes such as recoloring, peeling, or volumetry. A versatile clipping tool enables slicing voxel arrays according to combinations of three perpendicular clipping planes. The programs feature an up-to-date, graphical user interface for user-friendly operation by non AutoCAD specialists.

  2. SU-F-J-88: Comparison of Two Deformable Image Registration Algorithms for CT-To-CT Contour Propagation

    International Nuclear Information System (INIS)

    Gopal, A; Xu, H; Chen, S

    2016-01-01

    Purpose: To compare the contour propagation accuracy of two deformable image registration (DIR) algorithms in the Raystation treatment planning system – the “Hybrid” algorithm based on image intensities and anatomical information; and the “Biomechanical” algorithm based on linear anatomical elasticity and finite element modeling. Methods: Both DIR algorithms were used for CT-to-CT deformation for 20 lung radiation therapy patients that underwent treatment plan revisions. Deformation accuracy was evaluated using landmark tracking to measure the target registration error (TRE) and inverse consistency error (ICE). The deformed contours were also evaluated against physician drawn contours using Dice similarity coefficients (DSC). Contour propagation was qualitatively assessed using a visual quality score assigned by physicians, and a refinement quality score (0 0.9 for lungs, > 0.85 for heart, > 0.8 for liver) and similar qualitative assessments (VQS 0.75 for lungs). When anatomical structures were used to control the deformation, the DSC improved more significantly for the biomechanical DIR compared to the hybrid DIR, while the VQS and RQS improved only for the controlling structures. However, while the inclusion of controlling structures improved the TRE for the hybrid DIR, it increased the TRE for the biomechanical DIR. Conclusion: The hybrid DIR was found to perform slightly better than the biomechanical DIR based on lower TRE while the DSC, VQS, and RQS studies yielded comparable results for both. The use of controlling structures showed considerable improvement in the hybrid DIR results and is recommended for clinical use in contour propagation.

  3. AutoCAD 2015 and AutoCAD LT 2015 essentials

    CERN Document Server

    Onstott, Scott

    2014-01-01

    Step-by-step instructions for the AutoCAD fundamentals AutoCAD 2015 Essentials contains 400 pages of full-color, comprehensive instruction on the world's top drafting and architecture software. This 2015 edition features architectural, manufacturing, and landscape architecture examples. And like previous editions, the detailed guide introduces core concepts using interactive tutorials and open-ended projects, which can be completed in any order, thanks to downloadable data sets (an especially useful feature for students and professionals studying for Autodesk AutoCAD certification). Unlike man

  4. CONTOUR investigation launched

    Science.gov (United States)

    Showstack, Randy

    On 27 August, NASA Administrator Sean O'Keefe appointed a team to investigate the apparent loss of the Comet Nucleus Tour (CONTOUR) spacecraft, which stopped communicating with the mission control operations on 15 August.On that date, CONTOUR failed to communicate following the firing of its main engine that would take it out of its orbit around the Earth. Shortly afterwards, the mission team received telescope images from several observatories showing two objects traveling along the spacecraft's predicted path. Those objects could be CONTOUR, and part of the spacecraft that may have separated from it when the spacecraft's solid rocket motor fired.

  5. (Con)fusing contours

    NARCIS (Netherlands)

    Lier, R.J. van; Wit, T.C.J. de; Koning, A.R.

    2005-01-01

    We have created patterns in which illusory Kanizsa squares are positioned on top of a background grid of bars. When the illusory contours and physical contours are misaligned, the resulting percept appears to be rather confusing (van Lier et al, 2004 Perception 33 Supplement, 77). Observers often

  6. AutoCAD-To-NASTRAN Translator Program

    Science.gov (United States)

    Jones, A.

    1989-01-01

    Program facilitates creation of finite-element mathematical models from geometric entities. AutoCAD to NASTRAN translator (ACTON) computer program developed to facilitate quick generation of small finite-element mathematical models for use with NASTRAN finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Written in Microsoft Quick-Basic (Version 2.0).

  7. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model.

    Science.gov (United States)

    Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye

    2017-10-01

    Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A visual LISP program for voxelizing AutoCAD solid models

    Science.gov (United States)

    Marschallinger, Robert; Jandrisevits, Carmen; Zobl, Fritz

    2015-01-01

    AutoCAD solid models are increasingly recognized in geological and geotechnical 3D modeling. In order to bridge the currently existing gap between AutoCAD solid models and the grid modeling realm, a Visual LISP program is presented that converts AutoCAD solid models into voxel arrays. Acad2Vox voxelizer works on a 3D-model that is made up of arbitrary non-overlapping 3D-solids. After definition of the target voxel array geometry, 3D-solids are scanned at grid positions and properties are streamed to an ASCII output file. Acad2Vox has a novel voxelization strategy that combines a hierarchical reduction of sampling dimensionality with an innovative use of AutoCAD-specific methods for a fast and memory-saving operation. Acad2Vox provides georeferenced, voxelized analogs of 3D design data that can act as regions-of-interest in later geostatistical modeling and simulation. The Supplement includes sample geological solid models with instructions for practical work with Acad2Vox.

  9. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    International Nuclear Information System (INIS)

    Viswanathan, Akila N.; Erickson, Beth; Gaffney, David K.; Beriwal, Sushil; Bhatia, Sudershan K.; Lee Burnett, Omer; D'Souza, David P.; Patil, Nikhilesh; Haddock, Michael G.; Jhingran, Anuja; Jones, Ellen L.; Kunos, Charles A.; Lee, Larissa J.; Lin, Lilie L.; Mayr, Nina A.; Petersen, Ivy; Petric, Primoz; Portelance, Lorraine; Small, William; Strauss, Jonathan B.

    2014-01-01

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  10. Comparison and Consensus Guidelines for Delineation of Clinical Target Volume for CT- and MR-Based Brachytherapy in Locally Advanced Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Erickson, Beth [Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Gaffney, David K. [University of Utah Huntsman Cancer Hospital, Salt Lake City, Utah (United States); Beriwal, Sushil [University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania (United States); Bhatia, Sudershan K. [University of Iowa, Iowa City, Iowa (United States); Lee Burnett, Omer [University of Alabama, Birmingham, Alabama (United States); D' Souza, David P.; Patil, Nikhilesh [London Health Sciences Centre and Western University, London, Ontario (Canada); Haddock, Michael G. [Mayo Medical Center, Rochester, Minnesota (United States); Jhingran, Anuja [University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Jones, Ellen L. [University of North Carolina, Chapel Hill, North Carolina (United States); Kunos, Charles A. [Case Western Reserve University, Cleveland, Ohio (United States); Lee, Larissa J. [Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Lin, Lilie L. [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mayr, Nina A. [University of Washington, Seattle, Washington (United States); Petersen, Ivy [Mayo Medical Center, Rochester, Minnesota (United States); Petric, Primoz [Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana (Slovenia); Department of Radiation Oncology, National Center for Cancer Care and Research, Doha (Qatar); Portelance, Lorraine [University of Miami Miller School of Medicine, Miami, Florida (United States); Small, William [Loyola University Strich School of Medicine, Chicago, Illinois (United States); Strauss, Jonathan B. [The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois (United States); and others

    2014-10-01

    Objective: To create and compare consensus clinical target volume (CTV) contours for computed tomography (CT) and 3-Tesla (3-T) magnetic resonance (MR) image-based cervical-cancer brachytherapy. Methods and Materials: Twenty-three experts in gynecologic radiation oncology contoured the same 3 cervical cancer brachytherapy cases: 1 stage IIB near-complete response (CR) case with a tandem and ovoid, 1 stage IIB partial response (PR) case with tandem and ovoid with needles, and 1 stage IB2 CR case with a tandem and ring applicator. The CT contours were completed before the MRI contours. These were analyzed for consistency and clarity of target delineation using an expectation maximization algorithm for simultaneous truth and performance level estimation (STAPLE), with κ statistics as a measure of agreement between participants. The conformity index was calculated for each of the 6 data sets. Dice coefficients were generated to compare the CT and MR contours of the same case. Results: For all 3 cases, the mean tumor volume was smaller on MR than on CT (P<.001). The κ and conformity index estimates were slightly higher for CT, indicating a higher level of agreement on CT. The Dice coefficients were 89% for the stage IB2 case with a CR, 74% for the stage IIB case with a PR, and 57% for the stage IIB case with a CR. Conclusion: In a comparison of MR-contoured with CT-contoured CTV volumes, the higher level of agreement on CT may be due to the more distinct contrast medium visible on the images at the time of brachytherapy. MR at the time of brachytherapy may be of greatest benefit in patients with large tumors with parametrial extension that have a partial or complete response to external beam. On the basis of these results, a 95% consensus volume was generated for CT and for MR. Online contouring atlases are available for instruction at (http://www.nrgoncology.org/Resources/ContouringAtlases/GYNCervicalBrachytherapy.aspx)

  11. Surface filling-in and contour interpolation contribute independently to Kanizsa figure formation.

    Science.gov (United States)

    Chen, Siyi; Glasauer, Stefan; Müller, Hermann J; Conci, Markus

    2018-04-30

    To explore mechanisms of object integration, the present experiments examined how completion of illusory contours and surfaces modulates the sensitivity of localizing a target probe. Observers had to judge whether a briefly presented dot probe was located inside or outside the region demarcated by inducer elements that grouped to form variants of an illusory, Kanizsa-type figure. From the resulting psychometric functions, we determined observers' discrimination thresholds as a sensitivity measure. Experiment 1 showed that sensitivity was systematically modulated by the amount of surface and contour completion afforded by a given configuration. Experiments 2 and 3 presented stimulus variants that induced an (occluded) object without clearly defined bounding contours, which gave rise to a relative sensitivity increase for surface variations on their own. Experiments 4 and 5 were performed to rule out that these performance modulations were simply attributable to variable distances between critical local inducers or to costs in processing an interrupted contour. Collectively, the findings provide evidence for a dissociation between surface and contour processing, supporting a model of object integration in which completion is instantiated by feedforward processing that independently renders surface filling-in and contour interpolation and a feedback loop that integrates these outputs into a complete whole. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. SU-E-T-182: Feasibility of Dose Painting by Numbers in Proton Therapy with Contour-Driven Plan Optimization

    International Nuclear Information System (INIS)

    Montero, A Barragan; Differding, S; Lee, J; Sterpin, E

    2014-01-01

    Purpose: The work aims to 1) prove the feasibility of dose painting by numbers (DPBN) in proton therapy with usual contour-driven plan optimization and 2) compare the achieved plan quality to that of rotational IMRT. Methods: For two patients with head and neck cancers, voxel-by-voxel prescription to the target volume (PTV-PET) was calculated from 18 FDG-PET images and converted to contour-based prescription by defining several sub-contours. Treatments were planned with RayStation (RaySearch Laboratories, Sweden) and proton pencil beam scanning modality. In order to determine the optimal plan parameters to approach the DPBN prescription, the effect of the number of fields, number of sub-contours and use of range shifter were tested separately on each patient. The number of sub-contours were increased from 3 to 11 while the number of fields were set to 3, 5, 7 and 9. Treatment plans were also optimized on two rotational IMRT systems (TomoTherapy and Varian RapidArc) using previously published guidelines. Results: For both patients, more than 99% of the PTV-PET received at least 95% of the prescribed dose while less than 1% of the PTV-PET received more than 105%, which demonstrates the feasibility of the treatment. Neither the use of a range shifter nor the increase of the number of fields had a significant influence on PTV coverage. Plan quality increased when increasing number of fields up to 7 or 9 and slightly decreased for a bigger number of sub-contours. Good OAR sparing is achieved while keeping high plan quality. Finally, proton therapy achieved significantly better plan quality than rotational IMRT. Conclusion: Voxel-by-voxel prescriptions can be approximated accurately in proton therapy using a contour-driven optimization. Target coverage is nearly insensitive to the number of fields and the use of a range shifter. Finally, plan quality assessment confirmed the superiority of proton therapy compared to rotational IMRT

  13. High Resolution Elevation Contours

    Data.gov (United States)

    Minnesota Department of Natural Resources — This dataset contains contours generated from high resolution data sources such as LiDAR. Generally speaking this data is 2 foot or less contour interval.

  14. Automatic detection of AutoPEEP during controlled mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Nguyen Quang-Thang

    2012-06-01

    Full Text Available Abstract Background Dynamic hyperinflation, hereafter called AutoPEEP (auto-positive end expiratory pressure with some slight language abuse, is a frequent deleterious phenomenon in patients undergoing mechanical ventilation. Although not readily quantifiable, AutoPEEP can be recognized on the expiratory portion of the flow waveform. If expiratory flow does not return to zero before the next inspiration, AutoPEEP is present. This simple detection however requires the eye of an expert clinician at the patient’s bedside. An automatic detection of AutoPEEP should be helpful to optimize care. Methods In this paper, a platform for automatic detection of AutoPEEP based on the flow signal available on most of recent mechanical ventilators is introduced. The detection algorithms are developed on the basis of robust non-parametric hypothesis testings that require no prior information on the signal distribution. In particular, two detectors are proposed: one is based on SNT (Signal Norm Testing and the other is an extension of SNT in the sequential framework. The performance assessment was carried out on a respiratory system analog and ex-vivo on various retrospectively acquired patient curves. Results The experiment results have shown that the proposed algorithm provides relevant AutoPEEP detection on both simulated and real data. The analysis of clinical data has shown that the proposed detectors can be used to automatically detect AutoPEEP with an accuracy of 93% and a recall (sensitivity of 90%. Conclusions The proposed platform provides an automatic early detection of AutoPEEP. Such functionality can be integrated in the currently used mechanical ventilator for continuous monitoring of the patient-ventilator interface and, therefore, alleviate the clinician task.

  15. Tagged Vector Contour (TVC)

    Data.gov (United States)

    Kansas Data Access and Support Center — The Kansas Tagged Vector Contour (TVC) dataset consists of digitized contours from the 7.5 minute topographic quadrangle maps. Coverage for the state is incomplete....

  16. Universality in the merging dynamics of parametric active contours: a study in MRI based lung segmentation

    International Nuclear Information System (INIS)

    Chattopadhyay, Amit K; Ray, Nilanjan; Acton, Scott T

    2005-01-01

    Measurement of lung ventilation is one of the most reliable techniques in diagnosing pulmonary diseases. The time-consuming and bias-prone traditional methods using hyperpolarized H 3 He and 1 H magnetic resonance imageries have recently been improved by an automated technique based on 'multiple active contour evolution'. This method involves a simultaneous evolution of multiple initial conditions, called 'snakes', eventually leading to their 'merging' and is entirely independent of the shapes and sizes of snakes or other parametric details. The objective of this paper is to show, through a theoretical analysis, that the functional dynamics of merging as depicted in the active contour method has a direct analogue in statistical physics and this explains its 'universality'. We show that the multiple active contour method has an universal scaling behaviour akin to that of classical nucleation in two spatial dimensions. We prove our point by comparing the numerically evaluated exponents with an equivalent thermodynamic model

  17. SU-F-J-88: Comparison of Two Deformable Image Registration Algorithms for CT-To-CT Contour Propagation

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, A; Xu, H; Chen, S [University of Maryland School of Medicine, Columbia, MD (United States)

    2016-06-15

    Purpose: To compare the contour propagation accuracy of two deformable image registration (DIR) algorithms in the Raystation treatment planning system – the “Hybrid” algorithm based on image intensities and anatomical information; and the “Biomechanical” algorithm based on linear anatomical elasticity and finite element modeling. Methods: Both DIR algorithms were used for CT-to-CT deformation for 20 lung radiation therapy patients that underwent treatment plan revisions. Deformation accuracy was evaluated using landmark tracking to measure the target registration error (TRE) and inverse consistency error (ICE). The deformed contours were also evaluated against physician drawn contours using Dice similarity coefficients (DSC). Contour propagation was qualitatively assessed using a visual quality score assigned by physicians, and a refinement quality score (0based on the extent of manual refinement needed for acceptable quality. Results: Both algorithms showed similar ICE (< 1.5 mm), but the hybrid DIR (TRE = 3.2 mm) performed better than the biomechanical DIR (TRE = 4.3 mm) with landmark tracking. Both algorithms had comparable DSC (DSC > 0.9 for lungs, > 0.85 for heart, > 0.8 for liver) and similar qualitative assessments (VQS < 0.35, RQS > 0.75 for lungs). When anatomical structures were used to control the deformation, the DSC improved more significantly for the biomechanical DIR compared to the hybrid DIR, while the VQS and RQS improved only for the controlling structures. However, while the inclusion of controlling structures improved the TRE for the hybrid DIR, it increased the TRE for the biomechanical DIR. Conclusion: The hybrid DIR was found to perform slightly better than the biomechanical DIR based on lower TRE while the DSC, VQS, and RQS studies yielded comparable results for both. The use of controlling structures showed considerable improvement in the hybrid DIR results and is recommended for clinical use in

  18. Theory and practice of Auto CAD, computer graphics

    International Nuclear Information System (INIS)

    Hwang, Si Won; Choe, Hong Yeong; Shin, Jae Yeon; Lee, Ryong Cheol

    1990-08-01

    This book describes theory and practice of Auto CAD, computer graphics, which deals with peripheral of computer, occurrence of digital line by DDA, BRM, theory of conversion, data base and display and shape modeling. This book gives descriptions of outline of CAD system, Auto CAD, basic function practice, simple figure practice, the third angle projection drawing a little complex single object, machine drawing I, function practice of improved Auto CAD, edit, set up layer, and 3D, and 3D display function.

  19. SPMK AND GRABCUT BASED TARGET EXTRACTION FROM HIGH RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    W. Cui

    2016-06-01

    Full Text Available Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT descriptor and the histogram of oriented gradients (HOG & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels’ spatial pyramid (SP to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  20. Spmk and Grabcut Based Target Extraction from High Resolution Remote Sensing Images

    Science.gov (United States)

    Cui, Weihong; Wang, Guofeng; Feng, Chenyi; Zheng, Yiwei; Li, Jonathan; Zhang, Yi

    2016-06-01

    Target detection and extraction from high resolution remote sensing images is a basic and wide needed application. In this paper, to improve the efficiency of image interpretation, we propose a detection and segmentation combined method to realize semi-automatic target extraction. We introduce the dense transform color scale invariant feature transform (TC-SIFT) descriptor and the histogram of oriented gradients (HOG) & HSV descriptor to characterize the spatial structure and color information of the targets. With the k-means cluster method, we get the bag of visual words, and then, we adopt three levels' spatial pyramid (SP) to represent the target patch. After gathering lots of different kinds of target image patches from many high resolution UAV images, and using the TC-SIFT-SP and the multi-scale HOG & HSV feature, we constructed the SVM classifier to detect the target. In this paper, we take buildings as the targets. Experiment results show that the target detection accuracy of buildings can reach to above 90%. Based on the detection results which are a series of rectangle regions of the targets. We select the rectangle regions as candidates for foreground and adopt the GrabCut based and boundary regularized semi-auto interactive segmentation algorithm to get the accurate boundary of the target. Experiment results show its accuracy and efficiency. It can be an effective way for some special targets extraction.

  1. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  2. Categorizing segmentation quality using a quantitative quality assurance algorithm

    International Nuclear Information System (INIS)

    Rodrigues, George; Louie, Alexander; Best, Lara

    2012-01-01

    Obtaining high levels of contouring consistency is a major limiting step in optimizing the radiotherapeutic ratio. We describe a novel quantitative methodology for the quality assurance (QA) of contour compliance referenced against a community set of contouring experts. Two clinical tumour site scenarios (10 lung cases and one prostate case) were used with QA algorithm. For each case, multiple physicians (lung: n = 6, prostate: n = 25) segmented various target/organ at risk (OAR) structures to define a set of community reference contours. For each set of community contours, a consensus contour (Simultaneous Truth and Performance Level Estimation (STAPLE)) was created. Differences between each individual community contour versus the group consensus contour were quantified by consensus-based contouring penalty metric (PM) scores. New observers segmented these same cases to calculate individual PM scores (for each unique target/OAR) for each new observer–STAPLE pair for comparison against the community and consensus contours. Four physicians contoured the 10 lung cases for a total of 72 contours for quality assurance evaluation against the previously derived community consensus contours. A total of 16 outlier contours were identified by the QA system of which 11 outliers were due to over-contouring discrepancies, three were due to over-/under-contouring discrepancies, and two were due to missing/incorrect nodal contours. In the prostate scenario involving six physicians, the QA system detected a missing penile bulb contour, systematic inner-bladder contouring, and under-contouring of the upper/anterior rectum. A practical methodology for QA has been demonstrated with future clinical trial credentialing, medical education and auto-contouring assessment applications.

  3. Brightness Alteration with Interweaving Contours

    Directory of Open Access Journals (Sweden)

    Sergio Roncato

    2012-12-01

    Full Text Available Chromatic induction is observed whenever the perceived colour of a target surface shifts towards the hue of a neighbouring surface. Some vivid manifestations may be seen in a white background where thin coloured lines have been drawn (assimilation or when lines of different colours are collinear (neon effect or adjacent (watercolour to each other. This study examines a particular colour induction that manifests in concomitance with an opposite effect of colour saturation (or anti-spread. The two phenomena can be observed when a repetitive pattern is drawn in which outline thin contours intercept wider contours or surfaces, colour spreading appear to fill the surface occupied by surfaces or thick lines whereas the background traversed by thin lines is seen as brighter or filled of a saturated white. These phenomena were first observed by Bozzi (1975 and Kanizsa (1979 in figural conditions that did not allow them to document their conjunction. Here we illustrate various manifestations of this twofold phenomenon and compare its effects with the known effects of brightness and colour induction. Some conjectures on the nature of these effects are discussed.

  4. Program auto

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Plagnol, E.

    1990-01-01

    The program AUTO was developed to be used in the analysis of dE vs E type spectra. This program is written in FORTRAN and calculates dE vs E lines in MeV. The provision is also made in the program to convert these lines from MeV to ADC channel numbers to facilitate the comparison with the raw data from the experiments. Currently the output of this program can be plotted with the display program, called VISU, but it can also be used independent of the program VISU, with little or no modification in the actual fortran code. The program AUTO has many useful applications. In this article the program AUTO is described along with its applications

  5. Automated consensus contour building for prostate MRI.

    Science.gov (United States)

    Khalvati, Farzad

    2014-01-01

    Inter-observer variability is the lack of agreement among clinicians in contouring a given organ or tumour in a medical image. The variability in medical image contouring is a source of uncertainty in radiation treatment planning. Consensus contour of a given case, which was proposed to reduce the variability, is generated by combining the manually generated contours of several clinicians. However, having access to several clinicians (e.g., radiation oncologists) to generate a consensus contour for one patient is costly. This paper presents an algorithm that automatically generates a consensus contour for a given case using the atlases of different clinicians. The algorithm was applied to prostate MR images of 15 patients manually contoured by 5 clinicians. The automatic consensus contours were compared to manual consensus contours where a median Dice similarity coefficient (DSC) of 88% was achieved.

  6. Analysis of contour images using optics of spiral beams

    Science.gov (United States)

    Volostnikov, V. G.; Kishkin, S. A.; Kotova, S. P.

    2018-03-01

    An approach is outlined to the recognition of contour images using computer technology based on coherent optics principles. A mathematical description of the recognition process algorithm and the results of numerical modelling are presented. The developed approach to the recognition of contour images using optics of spiral beams is described and justified.

  7. Application of Auto CAD 2000

    International Nuclear Information System (INIS)

    Kim, Hyeong Jun

    1999-11-01

    This book deals with basic of AutoCAD, beginning AutoCAD 2000, using design center of AutoCAD 2000, adding drawing element with design center, drawing lines, using 2D edit command, making layer, hatching, dimensioning, entering letters on the floor plan, making 3D object, practice of 3D command, edition of 3D object, making solid, rendering object, and using internet in AutoCAD 2000. This book is introduction of AutoCAD 2000 for beginner.

  8. AutoCAD 2010 For Dummies

    CERN Document Server

    Byrnes, David

    2009-01-01

    AutoCAD is the hot computer-aided design software known for both its powerful tools and its complexity. AutoCAD 2010 for Dummies is the bestselling guide that walks you through this complicated program so you can build complex 3D technical drawings, edit like a pro, enter new dimensions, and plot with style. AutoCAD 2010 for Dummies helps you navigate the program, use the AutoCAD Design Center, create a basic layout and work with dimension, and put your drawings on the Internet. You'll soon be setting up the AutoCAD environment, using the AutoCAD Ribbon, creating annotation and dimension drawi

  9. The importance of surrounding tissues and window settings for contouring of moving targets

    Energy Technology Data Exchange (ETDEWEB)

    Borm, Kai Joachim [Technische Universitaet Muenchen, Medical School, Munich (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany); Oechsner, Markus; Berndt, Johannes; Combs, Stephanie Elisabeth; Molls, Michael; Duma, Marciana Nona [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Radiation Oncology, Munich (Germany)

    2015-09-15

    The aim of the study was to assess the importance of surrounding tissues for the delineation of moving targets in tissue-specific phantoms and to find optimal settings for lung, soft tissue, and liver tumors. Tumor movement was simulated by a water-filled table tennis ball (target volume, TV). Three phantoms were created: corkboards to simulate lung tissue (lung phantom, LunPh), animal fat as fatty soft tissue (fatty tissue phantom, FatPh), and water enhanced with contrast medium as the liver tissue (liver phantom, LivPh). Slow planning three-dimensional compute tomography images (3D-CTs) were acquired with and without phantom movements. One-dimensional tumor movement (1D), three-dimensional tumor movement (3D), as well as a real patient's tumor trajectories were simulated. The TV was contoured using two lung window settings, two soft-tissue window settings, and one liver window setting. The volumes were compared to mathematical calculated values. TVs were underestimated in all phantoms due to movement. The use of soft-tissue windows in the LivPh led to a significantunderestimation of the TV (70.8 % of calculated TV). When common window settings [LunPh + 200 HU/-1,000 HU (upper window/lower window threshold); FatPh: + 240 HU/-120 HU; LivPh: + 175 HU/+ 50 HU] were used, the contoured TVs were: LivPh, 84.0 %; LunPh, 93.2 %, and FatPh, 92.8 %. The lower window threshold had a significant impact on the size of the delineated TV, whereas changes of the upper threshold led only to small differences. The decisive factor for window settings is the lower window threshold (for adequate TV delineation in the lung and fatty-soft tissue it should be lower than density values of surrounding tissue). The use of a liver window should be considered. (orig.) [German] Das Ziel dieser Arbeit war es, den Einfluss des umgebenden Gewebes auf die Konturierung bewegter Objekte zu untersuchen. Um die optimalen CT-Fensterungen fuer Lungen-, Weichteil- und Lebertumoren zu bestimmen

  10. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: Multi-observer and image multi-modality study

    International Nuclear Information System (INIS)

    Luetgendorf-Caucig, Carola; Fotina, Irina; Stock, Markus; Poetter, Richard; Goldner, Gregor; Georg, Dietmar

    2011-01-01

    Background and purpose: In-room cone-beam CT (CBCT) imaging and adaptive treatment strategies are promising methods to decrease target volumes and to spare organs at risk. The aim of this work was to analyze the inter-observer contouring uncertainties of target volumes and organs at risks (oars) in localized prostate cancer radiotherapy using CBCT images. Furthermore, CBCT contouring was benchmarked against other image modalities (CT, MR) and the influence of subjective image quality perception on inter-observer variability was assessed. Methods and materials: Eight prostate cancer patients were selected. Seven radiation oncologists contoured target volumes and oars on CT, MRI and CBCT. Volumes, coefficient of variation (COV), conformity index (cigen), and coordinates of center-of-mass (COM) were calculated for each patient and image modality. Reliability analysis was performed for the support of the reported findings. Subjective perception of image quality was assessed via a ten-scored visual analog scale (VAS). Results: The median volume for prostate was larger on CT compared to MRI and CBCT images. The inter-observer variation for prostate was larger on CBCT (CIgen = 0.57 ± 0.09, 0.61 reliability) compared to CT (CIgen = 0.72 ± 0.07, 0.83 reliability) and MRI (CIgen = 0.66 ± 0.12, 0.87 reliability). On all image modalities values of the intra-observer reliability coefficient (0.97 for CT, 0.99 for MR and 0.94 for CBCT) indicated high reproducibility of results. For all patients the root mean square (RMS) of the inter-observer standard deviation (σ) of the COM was largest on CBCT with σ(x) = 0.4 mm, σ(y) = 1.1 mm, and σ(z) = 1.7 mm. The concordance in delineating OARs was much stronger than for target volumes, with average CIgen > 0.70 for rectum and CIgen > 0.80 for bladder. Positive correlations between CIgen and VAS score of the image quality were observed for the prostate, seminal vesicles and rectum. Conclusions: Inter-observer variability for target

  11. Easy Auto CAD

    International Nuclear Information System (INIS)

    Lee, Hyeon Jun

    1996-02-01

    This book explains Auto CAD easily, which introduces improved function in Auto CAD R 13, such as direct import and export of 3 DS pile, revised render order structure, and explanations of assist, view Draw, construct and modify. Next it gives descriptions of Auto CAD conception, application and system. The last part deals with line, arc, circle, ellipse, erase, undo, redo, redraw, line type, multi line, limits, zoom, move, copy, rotate, array, mirror, grid, snap, units, offset and poly line.

  12. Pitch contour impairment in congenital amusia: New insights from the Self-paced Audio-visual Contour Task (SACT).

    Science.gov (United States)

    Lu, Xuejing; Sun, Yanan; Ho, Hao Tam; Thompson, William Forde

    2017-01-01

    Individuals with congenital amusia usually exhibit impairments in melodic contour processing when asked to compare pairs of melodies that may or may not be identical to one another. However, it is unclear whether the impairment observed in contour processing is caused by an impairment of pitch discrimination, or is a consequence of poor pitch memory. To help resolve this ambiguity, we designed a novel Self-paced Audio-visual Contour Task (SACT) that evaluates sensitivity to contour while placing minimal burden on memory. In this task, participants control the pace of an auditory contour that is simultaneously accompanied by a visual contour, and they are asked to judge whether the two contours are congruent or incongruent. In Experiment 1, melodic contours varying in pitch were presented with a series of dots that varied in spatial height. Amusics exhibited reduced sensitivity to audio-visual congruency in comparison to control participants. To exclude the possibility that the impairment arises from a general deficit in cross-modal mapping, Experiment 2 examined sensitivity to cross-modal mapping for two other auditory dimensions: timbral brightness and loudness. Amusics and controls were significantly more sensitive to large than small contour changes, and to changes in loudness than changes in timbre. However, there were no group differences in cross-modal mapping, suggesting that individuals with congenital amusia can comprehend spatial representations of acoustic information. Taken together, the findings indicate that pitch contour processing in congenital amusia remains impaired even when pitch memory is relatively unburdened.

  13. SU-E-E-05: Improving Contouring Precision and Consistency for Physicians-In-Training with Simple Lab Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L; Larson, D A [University of California School of Medicine, San Francisco, CA (United States)

    2015-06-15

    Purpose: Target contouring for high-dose treatments such as radiosurgery of brain metastases is highly critical in eliminating marginal failure and reducing complications as shown by recent clinical studies. In order to improve contouring accuracy and practice consistency for the procedure, we introduced a self-assessed physics lab practice for the physicians-in-training. Methods: A set of commercially acquired high-precision PMMA plastic spheres were randomly embedded in a Styrofoam block and then scanned with the CT/MR via the clinical procedural imaging protocol. A group of first-year physicians-in-training (n=6) from either neurosurgery or radiation oncology department were asked to contour the scanned objects (diameter ranged from 0.4 cm to 3.8 cm). These user-defined contours were then compared with the ideal contour sets of object shape for self assessments to determine the maximum areas of the observed discrepancies and method of improvements. Results: The largest discrepancies from initial practice were consistently found to be located near the extreme longitudinal portions of the target for all the residents. Discrepancy was especially prominent when contouring small objects < 1.0 cm in diameters. For example, the mean volumes rendered from the initial contour data set differed from the ideal data set by 7.7%±6.6% for the participants (p> 0.23 suggesting agreement cannot be established). However, when incorporating a secondary imaging scan such as reconstructed coronal or sagittal images in a repeat practice, the agreement was dramatically improved yielding p<0.02 in agreement with the reference data set for all the participants. Conclusion: A simple physics lab revealed a common pitfall in contouring small metastatic brain tumors for radiosurgical procedures and provided a systematic tool for physicians-in-training in improving their clinical contouring skills. Dr Ma is current a board member of international stereotactic radiosurgical society.

  14. Afterimage watercolors: an exploration of contour-based afterimage filling-in.

    Science.gov (United States)

    Hazenberg, Simon J; van Lier, Rob

    2013-01-01

    We investigated filling-in of colored afterimages and compared them with filling-in of "real" colors in the watercolor illusion. We used shapes comprising two thin adjacent undulating outlines of which the inner or the outer outline was chromatic, while the other was achromatic. The outlines could be presented simultaneously, inducing the original watercolor effect, or in an alternating fashion, inducing colored afterimages of the chromatic outlines. In Experiment 1, using only alternating outlines, these afterimages triggered filling-in, revealing an "afterimage watercolor" effect. Depending on whether the inner or the outer outline was chromatic, filling-in of a complementary or a similarly colored afterimage was perceived. In Experiment 2, simultaneous and alternating presentations were compared. Additionally, gray and black achromatic contours were tested, having an increased luminance contrast with the background for the black contours. Compared to "real" color filling-in, afterimage filling-in was more easily affected by different luminance settings. More in particular, afterimage filling-in was diminished when high-contrast contours were used. In the discussion we use additional demonstrations in which we further explore the "watercolor afterimage." All in all, comparisons between both types of illusions show similarities and differences with regard to color filling-in. Caution, however, is warranted in attributing these effects to different underlying processing differences.

  15. Global regularizing flows with topology preservation for active contours and polygons.

    Science.gov (United States)

    Sundaramoorthi, Ganesh; Yezzi, Anthony

    2007-03-01

    Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature.

  16. ACCTuner: OpenACC Auto-Tuner For Accelerated Scientific Applications

    KAUST Repository

    Alzayer, Fatemah

    2015-01-01

    ciently on the hardware. Following successful approaches to obtain high performance in kernels for cache-based processors using auto-tuning, we approach this compiler-hardware gap in GPUs by employing auto-tuning for the key parameters “gang” and “vector

  17. WE-AB-BRA-09: Sensitivity of Plan Re-Optimization to Errors in Deformable Image Registration in Online Adaptive Image-Guided Radiation Therapy

    International Nuclear Information System (INIS)

    McClain, B; Olsen, J; Green, O; Yang, D; Santanam, L; Olsen, L; Zhao, T; Rodriguez, V; Wooten, H; Mutic, S; Kashani, R; Victoria, J; Dempsey, J

    2015-01-01

    Purpose: Online adaptive therapy (ART) relies on auto-contouring using deformable image registration (DIR). DIR’s inherent uncertainties require user intervention and manual edits while the patient is on the table. We investigated the dosimetric impact of DIR errors on the quality of re-optimized plans, and used the findings to establish regions for focusing manual edits to where DIR errors can Result in clinically relevant dose differences. Methods: Our clinical implementation of online adaptive MR-IGRT involves using DIR to transfer contours from CT to daily MR, followed by a physicians’ edits. The plan is then re-optimized to meet the organs at risk (OARs) constraints. Re-optimized abdomen and pelvis plans generated based on physician edited OARs were selected as the baseline for evaluation. Plans were then re-optimized on auto-deformed contours with manual edits limited to pre-defined uniform rings (0 to 5cm) around the PTV. A 0cm ring indicates that the auto-deformed OARs were used without editing. The magnitude of the variations caused by the non-deterministic optimizer was quantified by repeat re-optimizations on the same geometry to determine the mean and standard deviation (STD). For each re-optimized plan, various volumetric parameters for the PTV, the OARs were extracted along with DVH and isodose evaluation. A plan was deemed acceptable if the variation from the baseline plan was within one STD. Results: Initial results show that for abdomen and pancreas cases, a minimum of 5cm margin around the PTV is required for contour corrections, while for pelvic and liver cases a 2–3 cm margin is sufficient. Conclusion: Focusing manual contour edits to regions of dosimetric relevance can reduce contouring time in the online ART process while maintaining a clinically comparable plan. Future work will further refine the contouring region by evaluating the path along the beams, dose gradients near the target and OAR dose metrics

  18. Development of simulation technology on full auto air conditioning system; Auto eakon no simulation gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, N; Otsubo, Y; Matsumura, K; Sako, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Mazda has developed simulation technology on control of full auto air conditioning system. We have developed the development tool based on the technology, aiming at higher controllability of full auto air conditioning system and shorter development period. The tool performs simulation on control, on-vehicle evaluation of actual load operation, collecting data and analyzing them by personal computer. This paper reports our verification results on effectiveness of the technology/ and the tool. 4 refs., 9 figs.

  19. AutoCAD platform customization VBA

    CERN Document Server

    Ambrosius, Lee

    2015-01-01

    Boost productivity and streamline your workflow with expert AutoCAD: VBA programming instruction AutoCAD Platform Customization: VBA is the definitive guide to personalizing AutoCAD and the various programs that run on the AutoCAD platform, including AutoCAD Architecture, Civil 3D, Plant 3D, and more. Written by an Autodesk insider with years of customization and programming experience, this book features detailed discussions backed by real-world examples and easy-to-follow tutorials that illustrate each step in the personalization process. Readers gain expert guidance toward managing layout

  20. Pitch contour impairment in congenital amusia: New insights from the Self-paced Audio-visual Contour Task (SACT.

    Directory of Open Access Journals (Sweden)

    Xuejing Lu

    Full Text Available Individuals with congenital amusia usually exhibit impairments in melodic contour processing when asked to compare pairs of melodies that may or may not be identical to one another. However, it is unclear whether the impairment observed in contour processing is caused by an impairment of pitch discrimination, or is a consequence of poor pitch memory. To help resolve this ambiguity, we designed a novel Self-paced Audio-visual Contour Task (SACT that evaluates sensitivity to contour while placing minimal burden on memory. In this task, participants control the pace of an auditory contour that is simultaneously accompanied by a visual contour, and they are asked to judge whether the two contours are congruent or incongruent. In Experiment 1, melodic contours varying in pitch were presented with a series of dots that varied in spatial height. Amusics exhibited reduced sensitivity to audio-visual congruency in comparison to control participants. To exclude the possibility that the impairment arises from a general deficit in cross-modal mapping, Experiment 2 examined sensitivity to cross-modal mapping for two other auditory dimensions: timbral brightness and loudness. Amusics and controls were significantly more sensitive to large than small contour changes, and to changes in loudness than changes in timbre. However, there were no group differences in cross-modal mapping, suggesting that individuals with congenital amusia can comprehend spatial representations of acoustic information. Taken together, the findings indicate that pitch contour processing in congenital amusia remains impaired even when pitch memory is relatively unburdened.

  1. AutoCAD workbook

    CERN Document Server

    Metherell, Phil

    1989-01-01

    AutoCAD Workbook helps new users learn the basics of AutoCad, providing guidance on most of the commonly used functions in which the program operates.This book discusses loading AutoCad and starting a drawing; drawing and erasing lines, circles, and arcs; and setting up the drawing environment. The topics on drawing and editing polylines; entering text and text styles; and layers, linetype, and color are also considered. This publication likewise covers creating and using blocks, hatching and extracting information, dimensioning drawings, 3D visualization, and plotting a drawing. Other

  2. Image Interpolation with Geometric Contour Stencils

    Directory of Open Access Journals (Sweden)

    Pascal Getreuer

    2011-09-01

    Full Text Available We consider the image interpolation problem where given an image vm,n with uniformly-sampled pixels vm,n and point spread function h, the goal is to find function u(x,y satisfying vm,n = (h*u(m,n for all m,n in Z. This article improves upon the IPOL article Image Interpolation with Contour Stencils. In the previous work, contour stencils are used to estimate the image contours locally as short line segments. This article begins with a continuous formulation of total variation integrated over a collection of curves and defines contour stencils as a consistent discretization. This discretization is more reliable than the previous approach and can effectively distinguish contours that are locally shaped like lines, curves, corners, and circles. These improved contour stencils sense more of the geometry in the image. Interpolation is performed using an extension of the method described in the previous article. Using the improved contour stencils, there is an increase in image quality while maintaining similar computational efficiency.

  3. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  4. Automatic liver contouring for radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Li, Dengwang; Kapp, Daniel S; Xing, Lei; Liu, Li

    2015-01-01

    To develop automatic and efficient liver contouring software for planning 3D-CT and four-dimensional computed tomography (4D-CT) for application in clinical radiation therapy treatment planning systems.The algorithm comprises three steps for overcoming the challenge of similar intensities between the liver region and its surrounding tissues. First, the total variation model with the L1 norm (TV-L1), which has the characteristic of multi-scale decomposition and an edge-preserving property, is used for removing the surrounding muscles and tissues. Second, an improved level set model that contains both global and local energy functions is utilized to extract liver contour information sequentially. In the global energy function, the local correlation coefficient (LCC) is constructed based on the gray level co-occurrence matrix both of the initial liver region and the background region. The LCC can calculate the correlation of a pixel with the foreground and background regions, respectively. The LCC is combined with intensity distribution models to classify pixels during the evolutionary process of the level set based method. The obtained liver contour is used as the candidate liver region for the following step. In the third step, voxel-based texture characterization is employed for refining the liver region and obtaining the final liver contours.The proposed method was validated based on the planning CT images of a group of 25 patients undergoing radiation therapy treatment planning. These included ten lung cancer patients with normal appearing livers and ten patients with hepatocellular carcinoma or liver metastases. The method was also tested on abdominal 4D-CT images of a group of five patients with hepatocellular carcinoma or liver metastases. The false positive volume percentage, the false negative volume percentage, and the dice similarity coefficient between liver contours obtained by a developed algorithm and a current standard delineated by the expert group

  5. Highly Conformal Craniospinal Radiotherapy Techniques Can Underdose the Cranial Clinical Target Volume if Leptomeningeal Extension through Skull Base Exit Foramina is not Contoured.

    Science.gov (United States)

    Noble, D J; Ajithkumar, T; Lambert, J; Gleeson, I; Williams, M V; Jefferies, S J

    2017-07-01

    Craniospinal irradiation (CSI) remains a crucial treatment for patients with medulloblastoma. There is uncertainty about how to manage meningeal surfaces and cerebrospinal fluid (CSF) that follows cranial nerves exiting skull base foramina. The purpose of this study was to assess plan quality and dose coverage of posterior cranial fossa foramina with both photon and proton therapy. We analysed the radiotherapy plans of seven patients treated with CSI for medulloblastoma and primitive neuro-ectodermal tumours and three with ependymoma (total n = 10). Four had been treated with a field-based technique and six with TomoTherapy™. The internal acoustic meatus (IAM), jugular foramen (JF) and hypoglossal canal (HC) were contoured and added to the original treatment clinical target volume (Plan_CTV) to create a Test_CTV. This was grown to a test planning target volume (Test_PTV) for comparison with a Plan_PTV. Using Plan_CTV and Plan_PTV, proton plans were generated for all 10 cases. The following dosimetry data were recorded: conformity (dice similarity coefficient) and homogeneity index (D 2  - D 98 /D 50 ) as well as median and maximum dose (D 2% ) to Plan_PTV, V 95% and minimum dose (D 99.9% ) to Plan_CTV and Test_CTV and Plan_PTV and Test_PTV, V 95% and minimum dose (D 98% ) to foramina PTVs. Proton and TomoTherapy™ plans were more conformal (0.87, 0.86) and homogeneous (0.07, 0.04) than field-photon plans (0.79, 0.17). However, field-photon plans covered the IAM, JF and HC PTVs better than proton plans (P = 0.002, 0.004, 0.003, respectively). TomoTherapy™ plans covered the IAM and JF better than proton plans (P = 0.000, 0.002, respectively) but the result for the HC was not significant. Adding foramen CTVs/PTVs made no difference for field plans. The mean D min dropped 3.4% from Plan_PTV to Test_PTV for TomoTherapy™ (not significant) and 14.8% for protons (P = 0.001). Highly conformal CSI techniques may underdose meninges and CSF in the dural

  6. Building Contour Extraction Based on LiDAR Point Cloud

    Directory of Open Access Journals (Sweden)

    Zhang Xu-Qing

    2017-01-01

    Full Text Available This paper presents a new method for solving the problem of utilizing the LiDAR data to extract the building contour line. For detection of the edge points between the building test points by using the least squares fitting to get the edge line of buildings and give the weight determining of the building of edge line slope depend on the length of the edge line. And then get the weighted mean of the positive and negative slope of the building edge line. Based on the structure of the adjacent edge perpendicular hypothesis, regularization processing to extract the edge of the skeleton line perpendicular. The experiments show that the extracted building edges have the good accuracy and have the good applicability in complex urban areas.

  7. The influence of automation on tumor contouring

    NARCIS (Netherlands)

    Aselmaa, A.; van Herk, Marcel; Song, Y.; Goossens, R.H.M.; Laprie, Anne

    2017-01-01

    Fully or semi-automatic contouring tools are increasingly being used in the tumor contouring task for radiotherapy. While the fully automatic contouring tools have not reached sufficient efficiency, the semi-automatic contouring tools balance more effectively between the human interaction and

  8. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.

    Science.gov (United States)

    Guo, Y; Li, J; Wang, W; Zhang, Y; Wang, J; Duan, Y; Shang, D; Fu, Z

    2014-01-01

    The objective of the study was to compare geometrical differences of target volumes based on four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of primary thoracic esophageal cancer for radiation treatment. Twenty-one patients with thoracic esophageal cancer sequentially underwent contrast-enhanced three-dimensional computed tomography (3DCT), 4DCT, and 18F-FDG PET/CT thoracic simulation scans during normal free breathing. The internal gross target volume defined as IGTVMIP was obtained by contouring on MIP images. The gross target volumes based on PET/CT images (GTVPET ) were determined with nine different standardized uptake value (SUV) thresholds and manual contouring: SUV≥2.0, 2.5, 3.0, 3.5 (SUVn); ≥20%, 25%, 30%, 35%, 40% of the maximum (percentages of SUVmax, SUVn%). The differences in volume ratio (VR), conformity index (CI), and degree of inclusion (DI) between IGTVMIP and GTVPET were investigated. The mean centroid distance between GTVPET and IGTVMIP ranged from 4.98 mm to 6.53 mm. The VR ranged from 0.37 to 1.34, being significantly (P<0.05) closest to 1 at SUV2.5 (0.94), SUV20% (1.07), or manual contouring (1.10). The mean CI ranged from 0.34 to 0.58, being significantly closest to 1 (P<0.05) at SUV2.0 (0.55), SUV2.5 (0.56), SUV20% (0.56), SUV25% (0.53), or manual contouring (0.58). The mean DI of GTVPET in IGTVMIP ranged from 0.61 to 0.91, and the mean DI of IGTVMIP in GTVPET ranged from 0.34 to 0.86. The SUV threshold setting of SUV2.5, SUV20% or manual contouring yields the best tumor VR and CI with internal-gross target volume contoured on MIP of 4DCT dataset, but 3DPET/CT and 4DCT MIP could not replace each other for motion encompassing target volume delineation for radiation treatment. © 2014 International Society for Diseases of the Esophagus.

  9. Automatic Construction by Contour Crafting Technology

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Khorramshahi

    2017-07-01

    Full Text Available Contour Crafting is a novel technology in construction industry based on 3D printing that uses robotics to construct free form building structures by repeatedly laying down layers of material such as concrete. It is actually an approach to scale up automatic fabrication from building small industrial parts to constructing buildings. However, there are little information about contour crafting (CC in current use; present paper aims to describe the operational steps of creating a whole building by the machine reviewing relevant literature. Furthermore, it will represent the advantages of CC usage compared to traditional construction methods, as well as its applicability in construction industry.

  10. [Clinical overview of auto-inflammatory diseases].

    Science.gov (United States)

    Georgin-Lavialle, S; Rodrigues, F; Hentgen, V; Fayand, A; Quartier, P; Bader-Meunier, B; Bachmeyer, C; Savey, L; Louvrier, C; Sarrabay, G; Melki, I; Belot, A; Koné-Paut, I; Grateau, G

    2018-04-01

    Monogenic auto-inflammatory diseases are characterized by genetic abnormalities coding for proteins involved in innate immunity. They were initially described in mirror with auto-immune diseases because of the absence of circulating autoantibodies. Their main feature is the presence of peripheral blood inflammation in crisis without infection. The best-known auto-inflammatory diseases are mediated by interleukines that consisted in the 4 following diseases familial Mediterranean fever, cryopyrinopathies, TNFRSF1A-related intermittent fever, and mevalonate kinase deficiency. Since 10 years, many other diseases have been discovered, especially thanks to the progress in genetics. In this review, we propose the actual panorama of the main known auto-inflammatory diseases. Some of them are recurrent fevers with crisis and remission; some others evaluate more chronically; some are associated with immunodeficiency. From a physiopathological point of view, we can separate diseases mediated by interleukine-1 and diseases mediated by interferon. Then some polygenic inflammatory diseases will be shortly described: Still disease, Schnitzler syndrome, aseptic abscesses syndrome. The diagnosis of auto-inflammatory disease is largely based on anamnesis, the presence of peripheral inflammation during attacks and genetic analysis, which are more and more performant. Copyright © 2018 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  11. AutoCAD 2008 for dummies

    CERN Document Server

    Byrnes, David

    2007-01-01

    A gentle, humorous introduction to this fearsomely complex software that helps new users start creating 2D and 3D technical drawings right awayCovers the new features and enhancements in the latest AutoCAD version and provides coverage of AutoCAD LT, AutoCAD''s lower-cost siblingTopics covered include creating a basic layout, using AutoCAD DesignCenter, drawing and editing, working with dimensions, plotting, using blocks, adding text to drawings, and drawing on the InternetAutoCAD is the leading CAD software for architects, engineers, and draftspeople who need to create detailed 2D and 3D tech

  12. AutoCAD 2014 for dummies

    CERN Document Server

    Fane, Bill

    2013-01-01

    Find your way around AutoCAD 2014 with this full-color, For Dummies guide!Put away that pencil and paper and start putting the power of AutoCAD 2014 to work in your CAD projects and designs. From setting up your drawing environment to using text, dimensions, hatching, and more, this guide walks you through AutoCAD basics and provides you with a solid understanding of the latest CAD tools and techniques. You'll also benefit from the full-color illustrations that mirror exactly what you'll see on your AutoCAD 2014 screen and highlight the importance of AutoCAD's Mode

  13. AutoCAD platform customization autolisp

    CERN Document Server

    Ambrosius, Lee

    2014-01-01

    Customize and personalize programs built on the AutoCAD platform AutoLISP is the key to unlocking the secrets of a more streamlined experience using industry leading software programs like AutoCAD, Civil 3D, Plant 3D, and more. AutoCAD Platform Customization: AutoLISP provides real-world examples that show you how to do everything from modifying graphical objects and reading and setting system variables to communicating with external programs. It also features a resources appendix and downloadable datasets and customization examples-tools that ensure swift and easy adoption. Find out how to r

  14. Correlations between contouring similarity metrics and simulated treatment outcome for prostate radiotherapy

    Science.gov (United States)

    Roach, D.; Jameson, M. G.; Dowling, J. A.; Ebert, M. A.; Greer, P. B.; Kennedy, A. M.; Watt, S.; Holloway, L. C.

    2018-02-01

    Many similarity metrics exist for inter-observer contouring variation studies, however no correlation between metric choice and prostate cancer radiotherapy dosimetry has been explored. These correlations were investigated in this study. Two separate trials were undertaken, the first a thirty-five patient cohort with three observers, the second a five patient dataset with ten observers. Clinical and planning target volumes (CTV and PTV), rectum, and bladder were independently contoured by all observers in each trial. Structures were contoured on T2-weighted MRI and transferred onto CT following rigid registration for treatment planning in the first trial. Structures were contoured directly on CT in the second trial. STAPLE and majority voting volumes were generated as reference gold standard volumes for each structure for the two trials respectively. VMAT treatment plans (78 Gy to PTV) were simulated for observer and gold standard volumes, and dosimetry assessed using multiple radiobiological metrics. Correlations between contouring similarity metrics and dosimetry were calculated using Spearman’s rank correlation coefficient. No correlations were observed between contouring similarity metrics and dosimetry for CTV within either trial. Volume similarity correlated most strongly with radiobiological metrics for PTV in both trials, including TCPPoisson (ρ  =  0.57, 0.65), TCPLogit (ρ  =  0.39, 0.62), and EUD (ρ  =  0.43, 0.61) for each respective trial. Rectum and bladder metric correlations displayed no consistency for the two trials. PTV volume similarity was found to significantly correlate with rectum normal tissue complication probability (ρ  =  0.33, 0.48). Minimal to no correlations with dosimetry were observed for overlap or boundary contouring metrics. Future inter-observer contouring variation studies for prostate cancer should incorporate volume similarity to provide additional insights into dosimetry during analysis.

  15. Enhancement of Afterimage Colors by Surrounding Contours

    Directory of Open Access Journals (Sweden)

    Takao Sato

    2011-05-01

    Full Text Available Presenting luminance contours surrounding the adapted areas in test phase enhances color afterimages in both duration and color appearance. The presence of surrounding contour is crucial to some color phenomenon such as van Lier's afterimage, but the contour-effect itself has not been seriously examined. In this paper, we compared the contour-effect to color afterimages and to actually colored patches to examine the nature of color information subserving color-aftereffect. In the experiment, observers were adapted for 1 sec to a small colored square (red, green, yellow, or blue presented on a gray background. Then, a test field either with or without surrounding contour was presented. Observers matched the color of a test-patch located near the afterimage to the color of afterimage. It was found that the saturation of negative afterimage was almost doubled by the presence of surrounding contours. There was no effect of luminance contrast or polarity of contours. In contrast, no enhancement of saturation by surrounding contours was observed for actually colored patches even though the colors of patches were equalized to that of afterimage without contours. This dissociation in the contour-effect demonstrates the crucial difference between the color information for aftereffects and for ordinary bottom-up color perception.

  16. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  17. Learning Auto CAD 2004

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Gyeong Su; Song, Chun Dong; Park, Hyeong Jin; Kim, Yeong Min

    2004-02-15

    This book introduces basic knowledge of AutoCAD, practice method of command of AutoCAD like poly line, rotate, copy, break, trim, stretch, lengthen, chamfer, grips, extend, array polygon, spline, hatch, and image, writing letters, making library, application of design center and tool palette, drawing floor plan elevation, cross-sectional diagram, presentation materials, effective application of AutoCAD, and construction design using CAD POWER 2004.

  18. Learning Auto CAD 2004

    International Nuclear Information System (INIS)

    Shin, Gyeong Su; Song, Chun Dong; Park, Hyeong Jin; Kim, Yeong Min

    2004-02-01

    This book introduces basic knowledge of AutoCAD, practice method of command of AutoCAD like poly line, rotate, copy, break, trim, stretch, lengthen, chamfer, grips, extend, array polygon, spline, hatch, and image, writing letters, making library, application of design center and tool palette, drawing floor plan elevation, cross-sectional diagram, presentation materials, effective application of AutoCAD, and construction design using CAD POWER 2004.

  19. Cloud-Based Architectures for Auto-Scalable Web Geoportals towards the Cloudification of the GeoVITe Swiss Academic Geoportal

    Directory of Open Access Journals (Sweden)

    Ionuț Iosifescu-Enescu

    2017-06-01

    Full Text Available Cloud computing has redefined the way in which Spatial Data Infrastructures (SDI and Web geoportals are designed, managed, and maintained. The cloudification of a geoportal represents the migration of a full-stack geoportal application to an internet-based private or public cloud. This work introduces two generic and open cloud-based architectures for auto-scalable Web geoportals, illustrated with the use case of the cloudification efforts of the Swiss academic geoportal GeoVITe. The presented cloud-based architectural designs for auto-scalable Web geoportals consider the most important functional and non-functional requirements and are adapted to both public and private clouds. The availability of such generic cloud-based architectures advances the cloudification of academic SDIs and geoportals.

  20. Toward Prostate Cancer Contouring Guidelines on Magnetic Resonance Imaging: Dominant Lesion Gross and Clinical Target Volume Coverage Via Accurate Histology Fusion

    International Nuclear Information System (INIS)

    Gibson, Eli; Bauman, Glenn S.; Romagnoli, Cesare; Cool, Derek W.; Bastian-Jordan, Matthew; Kassam, Zahra; Gaed, Mena; Moussa, Madeleine; Gómez, José A.; Pautler, Stephen E.; Chin, Joseph L.; Crukley, Cathie; Haider, Masoom A.

    2016-01-01

    Purpose: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. Methods and Materials: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs on each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. Results: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. Conclusions: Multiparametric magnetic resonance imaging–defined GTVs expanded by appropriate margins

  1. Toward Prostate Cancer Contouring Guidelines on Magnetic Resonance Imaging: Dominant Lesion Gross and Clinical Target Volume Coverage Via Accurate Histology Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Eli [Robarts Research Institute, University of Western Ontario, London, Ontario (Canada); Biomedical Engineering, University of Western Ontario, London, Ontario (Canada); Centre for Medical Image Computing, University College London, London (United Kingdom); Department of Radiology, Radboud University Medical Centre, Nijmegen (Netherlands); Bauman, Glenn S., E-mail: glenn.bauman@lhsc.on.ca [Lawson Health Research Institute, London, Ontario (Canada); Department of Oncology, University of Western Ontario, London, Ontario (Canada); Romagnoli, Cesare; Cool, Derek W. [Department of Medical Imaging, University of Western Ontario, London, Ontario (Canada); Bastian-Jordan, Matthew [Department of Medical Imaging, University of Western Ontario, London, Ontario (Canada); Queensland Health, Brisbane, Queensland (Australia); Kassam, Zahra [Department of Medical Imaging, University of Western Ontario, London, Ontario (Canada); Gaed, Mena [Robarts Research Institute, University of Western Ontario, London, Ontario (Canada); Department of Pathology, University of Western Ontario, London, Ontario (Canada); Moussa, Madeleine; Gómez, José A. [Department of Pathology, University of Western Ontario, London, Ontario (Canada); Pautler, Stephen E.; Chin, Joseph L. [Lawson Health Research Institute, London, Ontario (Canada); Department of Urology, University of Western Ontario, London, Ontario (Canada); Crukley, Cathie [Robarts Research Institute, University of Western Ontario, London, Ontario (Canada); Lawson Health Research Institute, London, Ontario (Canada); Haider, Masoom A. [Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); and others

    2016-09-01

    Purpose: Defining prostate cancer (PCa) lesion clinical target volumes (CTVs) for multiparametric magnetic resonance imaging (mpMRI) could support focal boosting or treatment to improve outcomes or lower morbidity, necessitating appropriate CTV margins for mpMRI-defined gross tumor volumes (GTVs). This study aimed to identify CTV margins yielding 95% coverage of PCa tumors for prospective cases with high likelihood. Methods and Materials: Twenty-five men with biopsy-confirmed clinical stage T1 or T2 PCa underwent pre-prostatectomy mpMRI, yielding T2-weighted, dynamic contrast-enhanced, and apparent diffusion coefficient images. Digitized whole-mount histology was contoured and registered to mpMRI scans (error ≤2 mm). Four observers contoured lesion GTVs on each mpMRI scan. CTVs were defined by isotropic and anisotropic expansion from these GTVs and from multiparametric (unioned) GTVs from 2 to 3 scans. Histologic coverage (proportions of tumor area on co-registered histology inside the CTV, measured for Gleason scores [GSs] ≥6 and ≥7) and prostate sparing (proportions of prostate volume outside the CTV) were measured. Nonparametric histologic-coverage prediction intervals defined minimal margins yielding 95% coverage for prospective cases with 78% to 92% likelihood. Results: On analysis of 72 true-positive tumor detections, 95% coverage margins were 9 to 11 mm (GS ≥ 6) and 8 to 10 mm (GS ≥ 7) for single-sequence GTVs and were 8 mm (GS ≥ 6) and 6 mm (GS ≥ 7) for 3-sequence GTVs, yielding CTVs that spared 47% to 81% of prostate tissue for the majority of tumors. Inclusion of T2-weighted contours increased sparing for multiparametric CTVs with 95% coverage margins for GS ≥6, and inclusion of dynamic contrast-enhanced contours increased sparing for GS ≥7. Anisotropic 95% coverage margins increased the sparing proportions to 71% to 86%. Conclusions: Multiparametric magnetic resonance imaging–defined GTVs expanded by appropriate margins

  2. AutoCAD 2012 and AutoCAD LT 2012 No Experience Required

    CERN Document Server

    Gladfelter, Donnie

    2011-01-01

    The perfect step-by-step introduction to Autodesk's powerful architectural design software With this essential guide, you'll learn how to plan, develop, document, and present a complete AutoCAD project by building a summer cabin from start to finish. You can follow each step sequentially or jump in at any point by downloading the drawing files from the book's companion web site. You'll also master all essential AutoCAD features, get a thorough grounding in the basics, learn the very latest industry standards and techniques, and quickly become productive with AutoCAD 2012.Features concise expla

  3. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    Science.gov (United States)

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  4. Measurements of auto-antibodies to α-synuclein in the serum and cerebral spinal fluids of patients with Parkinson's disease.

    Science.gov (United States)

    Akhtar, Rizwan S; Licata, Joseph P; Luk, Kelvin C; Shaw, Leslie M; Trojanowski, John Q; Lee, Virginia M-Y

    2018-03-03

    Biomarkers for α-synuclein are needed for diagnosis and prognosis in Parkinson's disease (PD). Endogenous auto-antibodies to α-synuclein could serve as biomarkers for underlying synucleinopathy, but previous assessments of auto-antibodies have shown variability and inconsistent clinical correlations. We hypothesized that auto-antibodies to α-synuclein could be diagnostic for PD and explain its clinical heterogeneity. To test this hypothesis, we developed an enzyme-linked immunosorbent assay for measuring α-synuclein auto-antibodies in human samples. We evaluated 69 serum samples (16 healthy controls (HC) and 53 PD patients) and 145 CSF samples (52 HC and 93 PD patients) from our Institution. Both serum and CSF were available for 24 participants. Males had higher auto-antibody levels than females in both fluids. CSF auto-antibody levels were significantly higher in PD patients as compared to HC, whereas serum levels were not significantly different. CSF auto-antibody levels did not associate with amyloid-β 1-42 , total tau, or phosphorylated tau. CSF auto-antibody levels correlated with performance on the Montreal Cognitive Assessment, even when controlled for CSF amyloidβ 1-42 . CSF hemoglobin levels, as a proxy for contamination of CSF by blood during lumbar puncture, did not influence these observations. Using recombinant α-synuclein with N- and C-terminal truncations, we found that CSF auto-antibodies target amino acids 100 through 120 of α-synuclein. We conclude that endogenous CSF auto-antibodies are significantly higher in PD patients as compared to HC, suggesting that they could indicate the presence of underlying synucleinopathy. These auto-antibodies associate with poor cognition, independently of CSF amyloidβ 1-42 ., and target a select C-terminal region of α-synuclein. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Drawing Contour Trees in the Plane.

    Science.gov (United States)

    Heine, C; Schneider, D; Carr, Hamish; Scheuermann, G

    2011-11-01

    The contour tree compactly describes scalar field topology. From the viewpoint of graph drawing, it is a tree with attributes at vertices and optionally on edges. Standard tree drawing algorithms emphasize structural properties of the tree and neglect the attributes. Applying known techniques to convey this information proves hard and sometimes even impossible. We present several adaptions of popular graph drawing approaches to the problem of contour tree drawing and evaluate them. We identify five esthetic criteria for drawing contour trees and present a novel algorithm for drawing contour trees in the plane that satisfies four of these criteria. Our implementation is fast and effective for contour tree sizes usually used in interactive systems (around 100 branches) and also produces readable pictures for larger trees, as is shown for an 800 branch example.

  6. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    International Nuclear Information System (INIS)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X

    2014-01-01

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method

  7. MO-C-17A-06: Online Adaptive Re-Planning to Account for Independent Motions Between Multiple Targets During Radiotherapy of Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F; Tai, A; Ahunbay, E; Gore, E; Johnstone, C; Li, X [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-15

    Purpose: To quantify interfractional independent motions between multiple targets in radiotherapy (RT) of lung cancer, and to study the dosimetric benefits of an online adaptive replanning method to account for these variations. Methods: Ninety five diagnostic-quality daily CTs acquired for 9 lung cancer patients treated with IGRT using an in-room CT (CTVision, Siemens) were analyzed. On each daily CT set, contours of the targets (GTV, CTV, or involved nodes) and organs at risk were generated by populating the planning contours using an auto-segmentation tool (ABAS, Elekta) with manual editing. For each patient, an IMRT plan was generated based on the planning CT with a prescription dose of 60 Gy in 2Gy fractions. Three plans were generated and compared for each daily CT set: an IGRT (repositioning) plan by copying the original plan with the required shifts, an online adaptive plan by rapidly modifying the aperture shapes and segment weights of the original plan to conform to the daily anatomy, and a new fully re-optimized plan based on the daily CT using a planning system (Panther, Prowess). Results: The daily deviations of the distance between centers of masses of the targets from the plans varied daily from -10 to 8 mm with an average −0.9±4.1 mm (one standard deviation). The average CTV V100 are 99.0±0.7%, 97.9±2.8%, 99.0±0.6%, and 99.1±0.6%, and the lung V20 Gy 928±332 cc, 944±315 cc, 917±300 cc, and 891±295 cc for the original, repositioning, adaptive, and re-optimized plans, respectively. Wilcoxon signed-rank tests show that the adaptive plans are statistically significantly better than the repositioning plans and comparable with the reoptimized plans. Conclusion: There exist unpredictable, interfractional, relative volume changes and independent motions between multiple targets during lung cancer RT which cannot be accounted for by the current IGRT repositioning but can be corrected by the online adaptive replanning method.

  8. Visualizing Contour Trees within Histograms

    DEFF Research Database (Denmark)

    Kraus, Martin

    2010-01-01

    Many of the topological features of the isosurfaces of a scalar volume field can be compactly represented by its contour tree. Unfortunately, the contour trees of most real-world volume data sets are too complex to be visualized by dot-and-line diagrams. Therefore, we propose a new visualization...... that is suitable for large contour trees and efficiently conveys the topological structure of the most important isosurface components. This visualization is integrated into a histogram of the volume data; thus, it offers strictly more information than a traditional histogram. We present algorithms...... to automatically compute the graph layout and to calculate appropriate approximations of the contour tree and the surface area of the relevant isosurface components. The benefits of this new visualization are demonstrated with the help of several publicly available volume data sets....

  9. Easy Korean Auto CAD 14

    International Nuclear Information System (INIS)

    Lee, Jae Cheol

    1997-10-01

    This book introduces Auto CAD 14, which includes summary of basic things of Auto CAD 14, user interface for Auto CAD, basic drawing and advice, layer and set-up drawing, drawing with Auto CAD tools exactly, basic drawing of every thing, edit command, control of display, modeling and view ports of drawing space, various things drawing, writing letters, modification of floor plan, and check, block, X ref, lines and hatch, writing measurement, floor plan and OLE exchange of data, 3D floor plan, and rendering and presentation.

  10. Flyby Error Analysis Based on Contour Plots for the Cassini Tour

    Science.gov (United States)

    Stumpf, P. W.; Gist, E. M.; Goodson, T. D.; Hahn, Y.; Wagner, S. V.; Williams, P. N.

    2008-01-01

    The maneuver cancellation analysis consists of cost contour plots employed by the Cassini maneuver team. The plots are two-dimensional linear representations of a larger six-dimensional solution to a multi-maneuver, multi-encounter mission at Saturn. By using contours plotted with the dot product of vectors B and R and the dot product of vectors B and T components, it is possible to view the effects delta V on for various encounter positions in the B-plane. The plot is used in operations to help determine if the Approach Maneuver (ensuing encounter minus three days) and/or the Cleanup Maneuver (ensuing encounter plus three days) can be cancelled and also is a linear check of an integrated solution.

  11. TU-C-17A-04: BEST IN PHYSICS (THERAPY) - A Supervised Framework for Automatic Contour Assessment for Radiotherapy Planning of Head- Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Kavanaugh, J; Tan, J; Dolly, S; Gay, H; Thorstad, W; Anastasio, M; Altman, M; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)

    2014-06-15

    Purpose: Precise contour delineation of tumor targets and critical structures from CT simulations is essential for accurate radiotherapy (RT) treatment planning. However, manual and automatic delineation processes can be error prone due to limitations in imaging techniques and individual anatomic variability. Tedious and laborious manual verification is hence needed. This study develops a general framework for automatically assessing RT contours for head-neck cancer patients using geometric attribute distribution models (GADMs). Methods: Geometric attributes (centroid and volume) were computed from physician-approved RT contours of 29 head-neck patients. Considering anatomical correlation between neighboring structures, the GADM for each attribute was trained to characterize intra- and interpatient structure variations using principal component analysis. Each trained GADM was scalable and deformable, but constrained by the principal attribute variations of the training contours. A new hierarchical model adaptation algorithm was utilized to assess the RT contour correctness for a given patient. Receiver operating characteristic (ROC) curves were employed to evaluate and tune system parameters for the training models. Results: Experiments utilizing training and non-training data sets with simulated contouring errors were conducted to validate the framework performance. Promising assessment results of contour normality/abnormality for the training contour-based data were achieved with excellent accuracy (0.99), precision (0.99), recall (0.83), and F-score (0.97), while corresponding values of 0.84, 0.96, 0.83, and 0.9 were achieved for the non-training data. Furthermore, the areas under the ROC curves were above 0.9, validating the accuracy of this test. Conclusion: The proposed framework can reliably identify contour normality/abnormality based upon intra- and inter-structure constraints derived from clinically-approved contours. It also allows physicians to

  12. Radiodiagnosis of gastric diseases on the basis of thin contour findings

    International Nuclear Information System (INIS)

    Zubarev, A.V.; Zavodnov, V.Ya.; Sklyanskaya, O.A.

    1988-01-01

    The authors have analyzed the role of the thin contour in radiodiagnisis of various diseases of the gastric mucosa. Altogether 140 patients with various gastric diseases were investigated. Using X-ray examination of the stomach based on the common 2-phase method, thin contour images were obtained in 80 % of the cases. The results of the investigation have revealed direct correlation between the type of the thin contour and a morphological picture of the gastric mucosa in chronic gastritis. Early stomach cancer was characterized by the local absence or rearrangement of a usual pattern of the thin contour on stomach radiograms. It was difficult to defect single erosions or polyps with a diameter under 5 mm against a background of the gastric mucosa thin contour. Good visualization of stomach areolae, particularly those of a rough nodular type in the proximal part of the stomach was suggestive of an ulcerative lesion

  13. A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonance images in radiotherapy.

    Science.gov (United States)

    Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming

    2018-02-19

    The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.

  14. Image-based historical manuscript dating using contour and stroke fragments

    NARCIS (Netherlands)

    He, Sheng; Samara, Petros; Burgers, Jan; Schomaker, Lambertus

    2016-01-01

    Historical manuscript dating has always been an important challenge for historians but since countless manuscripts have become digitally available recently, the pattern recognition community has started addressing the dating problem as well. In this paper, we present a family of local contour

  15. Evaluation of auto-assessment method for C-D analysis based on support vector machine

    International Nuclear Information System (INIS)

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Kamihira, Hiroaki; Kishimoto, Tomonari; Goto, Hiroya

    2010-01-01

    Contrast-Detail (C-D) analysis is one of the visual quality assessment methods in medical imaging, and many auto-assessment methods for C-D analysis have been developed in recent years. However, for the auto-assessment method for C-D analysis, the effects of nonlinear image processing are not clear. So, we have made an auto-assessment method for C-D analysis using a support vector machine (SVM), and have evaluated its performance for the images processed with a noise reduction method. The feature indexes used in the SVM were the normalized cross correlation (NCC) coefficient on each signal between the noise-free and noised image, the contrast to noise ratio (CNR) on each signal, the radius of each signal, and the Student's t-test statistic for the mean difference between the signal and background pixel values. The results showed that the auto-assessment method for C-D analysis by using Student's t-test statistic agreed well with the visual assessment for the non-processed images, but disagreed for the images processed with the noise reduction method. Our results also showed that the auto-assessment method for C-D analysis by the SVM made of NCC and CNR agreed well with the visual assessment for the non-processed and noise-reduced images. Therefore, the auto-assessment method for C-D analysis by the SVM will be expected to have the robustness for the non-linear image processing. (author)

  16. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK

    International Nuclear Information System (INIS)

    Würz, Julia M.; Güntert, Peter

    2017-01-01

    The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

  17. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK

    Energy Technology Data Exchange (ETDEWEB)

    Würz, Julia M.; Güntert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (Germany)

    2017-01-15

    The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

  18. Semi-automated contour recognition using DICOMautomaton

    International Nuclear Information System (INIS)

    Clark, H; Duzenli, C; Wu, J; Moiseenko, V; Lee, R; Gill, B; Thomas, S

    2014-01-01

    Purpose: A system has been developed which recognizes and classifies Digital Imaging and Communication in Medicine contour data with minimal human intervention. It allows researchers to overcome obstacles which tax analysis and mining systems, including inconsistent naming conventions and differences in data age or resolution. Methods: Lexicographic and geometric analysis is used for recognition. Well-known lexicographic methods implemented include Levenshtein-Damerau, bag-of-characters, Double Metaphone, Soundex, and (word and character)-N-grams. Geometrical implementations include 3D Fourier Descriptors, probability spheres, boolean overlap, simple feature comparison (e.g. eccentricity, volume) and rule-based techniques. Both analyses implement custom, domain-specific modules (e.g. emphasis differentiating left/right organ variants). Contour labels from 60 head and neck patients are used for cross-validation. Results: Mixed-lexicographical methods show an effective improvement in more than 10% of recognition attempts compared with a pure Levenshtein-Damerau approach when withholding 70% of the lexicon. Domain-specific and geometrical techniques further boost performance. Conclusions: DICOMautomaton allows users to recognize contours semi-automatically. As usage increases and the lexicon is filled with additional structures, performance improves, increasing the overall utility of the system.

  19. Research on AutoCAD secondary development and function expansion based on VBA technology

    Science.gov (United States)

    Zhang, Runmei; Gu, Yehuan

    2017-06-01

    AutoCAD is the most widely used drawing tool among the similar design drawing products. In the process of drawing different types of design drawings of the same product, there are a lot of repetitive and single work contents. The traditional manual method uses a drawing software AutoCAD drawing graphics with low efficiency, high error rate and high input cost shortcomings and many more. In order to solve these problems, the design of the parametric drawing system of the hot-rolled I-beam (steel beam) cross-section is completed by using the VBA secondary development tool and the Access database software with large-capacity storage data, and the analysis of the functional extension of the plane drawing and the parametric drawing design in this paper. For the secondary development of AutoCAD functions, the system drawing work will be simplified and work efficiency also has been greatly improved. This introduction of parametric design of AutoCAD drawing system to promote the industrial mass production and related industries economic growth rate similar to the standard I-beam hot-rolled products.

  20. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    International Nuclear Information System (INIS)

    Ng, Michael; Leong, Trevor; Chander, Sarat; Chu, Julie; Kneebone, Andrew; Carroll, Susan; Wiltshire, Kirsty; Ngan, Samuel; Kachnic, Lisa

    2012-01-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steering committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.

  1. AutoCAD 2014 essentials

    CERN Document Server

    Onstott, Scott

    2013-01-01

    Learn crucial AutoCAD tools and techniques with this Autodesk Official Press Book Quickly become productive using AutoCAD 2014 and AutoCAD LT 2014 with this full color Autodesk Official Press guide. This unique learning resource features concise, straightforward explanations and real-world, hands-on exercises and tutorials. Following a quick discussion of concepts and goals, each chapter moves on to an approachable hands-on exercise designed to reinforce real-world tactics and techniques. Compelling, full-color screenshots illustrate tutorial steps, and chapters conclude with relat

  2. A Method for Denoising Image Contours

    Directory of Open Access Journals (Sweden)

    Ovidiu COSMA

    2017-12-01

    Full Text Available The edge detection techniques have to compromise between sensitivity and noise. In order for the main contours to be uninterrupted, the level of sensitivity has to be raised, which however has the negative effect of producing a multitude of insignificant contours (noise. This article proposes a method of removing this noise, which acts directly on the binary representation of the image contours.

  3. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation.

    Directory of Open Access Journals (Sweden)

    Todd J Cohen

    Full Text Available Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer's disease (AD. Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies.

  4. Auto-immune hepatitis following delivery.

    Science.gov (United States)

    Saini, Vandana; Gupta, Mamta; Mishra, S K

    2013-05-01

    Auto-immune hepatitis first presenting in the early postpartum period is rare. Immunosuppressive effects of pregnancy result in delayed manifestation of auto-immune hepatitis, and in established cases, the spontaneous improvements are there. Auto-immune hepatitis should be considered in the differential diagnosis of liver dysfunction first presenting in the early postpartum period. A case of postpartum hepatitis of auto-immune aetiology is being presented here. It is disease of unknown aetiology, characterised by inflammation of liver (as evidenced by raised serum transaminases, presence of interface hepatitis on histological examination), hypergammaglobulinaemia (> 1.5 times normal), presence of auto-antibodies [(antinuclear antibodies (ANA)], smooth muscle antibody (SMA) and antibody to liver-kidney microsome type 1 (LKM1) in the absence of viral markers ie, hepatitis B (HBsAg) and C (AntiHCV) and excellent response to corticosteroid therapy.

  5. Automatic atlas based electron density and structure contouring for MRI-based prostate radiation therapy on the cloud

    International Nuclear Information System (INIS)

    Dowling, J A; Burdett, N; Chandra, S; Rivest-Hénault, D; Ghose, S; Salvado, O; Fripp, J; Greer, P B; Sun, J; Parker, J; Pichler, P; Stanwell, P

    2014-01-01

    Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.

  6. Automatic Atlas Based Electron Density and Structure Contouring for MRI-based Prostate Radiation Therapy on the Cloud

    Science.gov (United States)

    Dowling, J. A.; Burdett, N.; Greer, P. B.; Sun, J.; Parker, J.; Pichler, P.; Stanwell, P.; Chandra, S.; Rivest-Hénault, D.; Ghose, S.; Salvado, O.; Fripp, J.

    2014-03-01

    Our group have been developing methods for MRI-alone prostate cancer radiation therapy treatment planning. To assist with clinical validation of the workflow we are investigating a cloud platform solution for research purposes. Benefits of cloud computing can include increased scalability, performance and extensibility while reducing total cost of ownership. In this paper we demonstrate the generation of DICOM-RT directories containing an automatic average atlas based electron density image and fast pelvic organ contouring from whole pelvis MR scans.

  7. [Peripheral refraction and retinal contour in children with myopia by results of refractometry and partial coherence interferometry].

    Science.gov (United States)

    Tarutta, E P; Milash, S V; Tarasova, N A; Romanova, L I; Markosian, G A; Epishina, M V

    2014-01-01

    To determine the posterior pole contour of the eye based on the relative peripheral refractive error and relative eye length. A parallel study was performed, which enrolled 38 children (76 eyes) with myopia from -1.25 to -10.82 diopters. The patients underwent peripheral refraction assessment with WR-5100K Binocular Auto Refractometer ("Grand Seiko", Japan) and partial coherence tomography with IOLMaster ("Carl Zeiss", Germany) for the relative eye length in areas located 15 and 30 degrees nasal and temporal from the central fovea along the horizontal meridian. In general, refractometry and interferometry showed high coincidence of defocus signs and values for the areas located 15 and 30 degrees nasal as well as 15 degrees temporal from the fovea. However, in 41% of patients defocus signs determined by the two methods mismatched in one or more areas. Most of the mismatch cases were mild myopia. We suppose that such a mismatch is caused by optical peculiarities of the anterior eye segment that have an impact on refractometry results.

  8. Reduce in Variation and Improve Efficiency of Target Volume Delineation by a Computer-Assisted System Using a Deformable Image Registration Approach

    International Nuclear Information System (INIS)

    Chao, K.S. Clifford; Bhide, Shreerang FRCR; Chen, Hansen; Asper, Joshua PAC; Bush, Steven; Franklin, Gregg; Kavadi, Vivek; Liengswangwong, Vichaivood; Gordon, William; Raben, Adam; Strasser, Jon; Koprowski, Christopher; Frank, Steven; Chronowski, Gregory; Ahamad, Anesa; Malyapa, Robert; Zhang Lifei; Dong Lei

    2007-01-01

    Purpose: To determine whether a computer-assisted target volume delineation (CAT) system using a deformable image registration approach can reduce the variation of target delineation among physicians with different head and neck (HN) IMRT experiences and reduce the time spent on the contouring process. Materials and Methods: We developed a deformable image registration method for mapping contours from a template case to a patient case with a similar tumor manifestation but different body configuration. Eight radiation oncologists with varying levels of clinical experience in HN IMRT performed target delineation on two HN cases, one with base-of-tongue (BOT) cancer and another with nasopharyngeal cancer (NPC), by first contouring from scratch and then by modifying the contours deformed by the CAT system. The gross target volumes were provided. Regions of interest for comparison included the clinical target volumes (CTVs) and normal organs. The volumetric and geometric variation of these regions of interest and the time spent on contouring were analyzed. Results: We found that the variation in delineating CTVs from scratch among the physicians was significant, and that using the CAT system reduced volumetric variation and improved geometric consistency in both BOT and NPC cases. The average timesaving when using the CAT system was 26% to 29% for more experienced physicians and 38% to 47% for the less experienced ones. Conclusions: A computer-assisted target volume delineation approach, using a deformable image-registration method with template contours, was able to reduce the variation among physicians with different experiences in HN IMRT while saving contouring time

  9. Direct Optimization of Printed Reflectarrays for Contoured Beam Satellite Antenna Applications

    DEFF Research Database (Denmark)

    Zhou, Min; Sorensen, Stig B.; Kim, Oleksiy S.

    2013-01-01

    An accurate and efficient direct optimization technique for the design of contoured beam reflectarrays is presented. It is based on the spectral domain method of moments assuming local periodicity and minimax optimization. Contrary to the conventional phase-only optimization techniques, the geome......An accurate and efficient direct optimization technique for the design of contoured beam reflectarrays is presented. It is based on the spectral domain method of moments assuming local periodicity and minimax optimization. Contrary to the conventional phase-only optimization techniques......, the geometrical parameters of the array elements are directly optimized to fulfill the contoured beam requirements, thus maintaining a direct relation between optimization goals and optimization variables, and hence resulting in more optimal designs. Both co- and cross-polar radiation patterns of the reflectarray...... can be optimized for multiple frequencies, polarizations, and feed illuminations. Several contoured beam reflectarrays, that radiate a high-gain beam on a European coverage, have been designed and compared to similar designs obtained using the phase-only optimization technique. The comparisons show...

  10. AutoClickChem: click chemistry in silico.

    Directory of Open Access Journals (Sweden)

    Jacob D Durrant

    Full Text Available Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.

  11. AutoClickChem: click chemistry in silico.

    Science.gov (United States)

    Durrant, Jacob D; McCammon, J Andrew

    2012-01-01

    Academic researchers and many in industry often lack the financial resources available to scientists working in "big pharma." High costs include those associated with high-throughput screening and chemical synthesis. In order to address these challenges, many researchers have in part turned to alternate methodologies. Virtual screening, for example, often substitutes for high-throughput screening, and click chemistry ensures that chemical synthesis is fast, cheap, and comparatively easy. Though both in silico screening and click chemistry seek to make drug discovery more feasible, it is not yet routine to couple these two methodologies. We here present a novel computer algorithm, called AutoClickChem, capable of performing many click-chemistry reactions in silico. AutoClickChem can be used to produce large combinatorial libraries of compound models for use in virtual screens. As the compounds of these libraries are constructed according to the reactions of click chemistry, they can be easily synthesized for subsequent testing in biochemical assays. Additionally, in silico modeling of click-chemistry products may prove useful in rational drug design and drug optimization. AutoClickChem is based on the pymolecule toolbox, a framework that may facilitate the development of future python-based programs that require the manipulation of molecular models. Both the pymolecule toolbox and AutoClickChem are released under the GNU General Public License version 3 and are available for download from http://autoclickchem.ucsd.edu.

  12. Testing First-Order Logic Axioms in AutoCert

    Science.gov (United States)

    Ahn, Ki Yung; Denney, Ewen

    2009-01-01

    AutoCert [2] is a formal verification tool for machine generated code in safety critical domains, such as aerospace control code generated from MathWorks Real-Time Workshop. AutoCert uses Automated Theorem Provers (ATPs) [5] based on First-Order Logic (FOL) to formally verify safety and functional correctness properties of the code. These ATPs try to build proofs based on user provided domain-specific axioms, which can be arbitrary First-Order Formulas (FOFs). These axioms are the most crucial part of the trusted base, since proofs can be submitted to a proof checker removing the need to trust the prover and AutoCert itself plays the part of checking the code generator. However, formulating axioms correctly (i.e. precisely as the user had really intended) is non-trivial in practice. The challenge of axiomatization arise from several dimensions. First, the domain knowledge has its own complexity. AutoCert has been used to verify mathematical requirements on navigation software that carries out various geometric coordinate transformations involving matrices and quaternions. Axiomatic theories for such constructs are complex enough that mistakes are not uncommon. Second, adjusting axioms for ATPs can add even more complexity. The axioms frequently need to be modified in order to have them in a form suitable for use with ATPs. Such modifications tend to obscure the axioms further. Thirdly, speculating validity of the axioms from the output of existing ATPs is very hard since theorem provers typically do not give any examples or counterexamples.

  13. Contours - MO 2012 Greene County 5ft Contours (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — 5ft cartographic contour file for Greene County, Missouri. This file was created using the elevation data from the 2011 LiDAR flight. It includes indexes for 10, 25,...

  14. AutoCAD-To-GIFTS Translator Program

    Science.gov (United States)

    Jones, Andrew

    1989-01-01

    AutoCAD-to-GIFTS translator program, ACTOG, developed to facilitate quick generation of small finite-element models using CASA/GIFTS finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Geometric entities recognized by ACTOG include points, lines, arcs, solids, three-dimensional lines, and three-dimensional faces. From this information, ACTOG creates GIFTS SRC file, which then reads into GIFTS preprocessor BULKM or modified and reads into EDITM to create finite-element model. SRC file used as is or edited for any number of uses. Written in Microsoft Quick-Basic (Version 2.0).

  15. On a program manifold's stability of one contour automatic control systems

    Science.gov (United States)

    Zumatov, S. S.

    2017-12-01

    Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold's absolute stability of one contour automatic control systems are obtained. The Hurwitz's angle of absolute stability was determined. The sufficient conditions of program manifold's absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov's second method.

  16. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211.

    Science.gov (United States)

    Hatt, Mathieu; Lee, John A; Schmidtlein, Charles R; Naqa, Issam El; Caldwell, Curtis; De Bernardi, Elisabetta; Lu, Wei; Das, Shiva; Geets, Xavier; Gregoire, Vincent; Jeraj, Robert; MacManus, Michael P; Mawlawi, Osama R; Nestle, Ursula; Pugachev, Andrei B; Schöder, Heiko; Shepherd, Tony; Spezi, Emiliano; Visvikis, Dimitris; Zaidi, Habib; Kirov, Assen S

    2017-06-01

    The purpose of this educational report is to provide an overview of the present state-of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an emphasis on providing the user with help in understanding the challenges and pitfalls associated with selecting and implementing a PET-AS algorithm for a particular application. A brief description of the different types of PET-AS algorithms is provided using a classification based on method complexity and type. The advantages and the limitations of the current PET-AS algorithms are highlighted based on current publications and existing comparison studies. A review of the available image datasets and contour evaluation metrics in terms of their applicability for establishing a standardized evaluation of PET-AS algorithms is provided. The performance requirements for the algorithms and their dependence on the application, the radiotracer used and the evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and implementation, as well as the complementary role of manual and auto-segmentation are addressed. A large number of PET-AS algorithms have been developed within the last 20 years. Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More recently, numerous papers have proposed the use of more advanced image analysis paradigms to perform semi-automated delineation of the PET images. However, the level of algorithm validation is variable and for most published algorithms is either insufficient or inconsistent which prevents recommending a single algorithm. This is compounded by the fact that realistic image configurations with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used. Large variations in the evaluation methods used in the literature point to the need for a standardized evaluation protocol. Available comparison studies suggest that PET-AS algorithms relying

  17. Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211

    Science.gov (United States)

    Hatt, Mathieu; Lee, John A.; Schmidtlein, Charles R.; Naqa, Issam El; Caldwell, Curtis; De Bernardi, Elisabetta; Lu, Wei; Das, Shiva; Geets, Xavier; Gregoire, Vincent; Jeraj, Robert; MacManus, Michael P.; Mawlawi, Osama R.; Nestle, Ursula; Pugachev, Andrei B.; Schöder, Heiko; Shepherd, Tony; Spezi, Emiliano; Visvikis, Dimitris; Zaidi, Habib; Kirov, Assen S.

    2017-01-01

    Purpose The purpose of this educational report is to provide an overview of the present state-of-the-art PET auto-segmentation (PET-AS) algorithms and their respective validation, with an emphasis on providing the user with help in understanding the challenges and pitfalls associated with selecting and implementing a PET-AS algorithm for a particular application. Approach A brief description of the different types of PET-AS algorithms is provided using a classification based on method complexity and type. The advantages and the limitations of the current PET-AS algorithms are highlighted based on current publications and existing comparison studies. A review of the available image datasets and contour evaluation metrics in terms of their applicability for establishing a standardized evaluation of PET-AS algorithms is provided. The performance requirements for the algorithms and their dependence on the application, the radiotracer used and the evaluation criteria are described and discussed. Finally, a procedure for algorithm acceptance and implementation, as well as the complementary role of manual and auto-segmentation are addressed. Findings A large number of PET-AS algorithms have been developed within the last 20 years. Many of the proposed algorithms are based on either fixed or adaptively selected thresholds. More recently, numerous papers have proposed the use of more advanced image analysis paradigms to perform semi-automated delineation of the PET images. However, the level of algorithm validation is variable and for most published algorithms is either insufficient or inconsistent which prevents recommending a single algorithm. This is compounded by the fact that realistic image configurations with low signal-to-noise ratios (SNR) and heterogeneous tracer distributions have rarely been used. Large variations in the evaluation methods used in the literature point to the need for a standardized evaluation protocol. Conclusions Available comparison studies

  18. Double-lumen tubes and auto-PEEP during one-lung ventilation.

    Science.gov (United States)

    Spaeth, J; Ott, M; Karzai, W; Grimm, A; Wirth, S; Schumann, S; Loop, T

    2016-01-01

    Double-lumen tubes (DLT) are routinely used to enable one-lung-ventilation (OLV) during thoracic anaesthesia. The flow-dependent resistance of the DLT's bronchial limb may be high as a result of its narrow inner diameter and length, and thus potentially contribute to an unintended increase in positive end-expiratory pressure (auto-PEEP). We therefore studied the impact of adult sized DLTs on the dynamic auto-PEEP during OLV. In this prospective clinical study, dynamic auto-PEEP was determined in 72 patients undergoing thoracic surgery, with right- and left-sided DLTs of various sizes. During OLV, air trapping was provoked by increasing inspiration to expiration ratio from 1:2 to 2:1 (five steps). Based on measured flow rate, airway pressure (Paw) and bronchial pressure (Pbronch), the pressure gradient across the DLT (ΔPDLT) and the total auto-PEEP in the respiratory system (i.e. the lungs, the DLT and the ventilator circuit) were determined. Subsequently the DLT's share in total auto-PEEP was calculated. ΔPDLT was 2.3 (0.7) cm H2O over the entire breathing cycle. At the shortest expiratory time the mean total auto-PEEP was 2.9 (1.5) cm H2O (range 0-5.9 cm H2O). The DLT caused 27 to 31% of the total auto-PEEP. Size and side of the DLT's bronchial limb did not impact auto-PEEP significantly. Although the DLT contributes to the overall auto-PEEP, its contribution is small and independent of size and side of the DLT's bronchial limb. The choice of DLT does not influence the risk of auto-PEEP during OLV to a clinically relevant extent. DRKS00005648. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Fully-automated identification of fish species based on otolith contour: using short-time Fourier transform and discriminant analysis (STFT-DA).

    Science.gov (United States)

    Salimi, Nima; Loh, Kar Hoe; Kaur Dhillon, Sarinder; Chong, Ving Ching

    2016-01-01

    Background. Fish species may be identified based on their unique otolith shape or contour. Several pattern recognition methods have been proposed to classify fish species through morphological features of the otolith contours. However, there has been no fully-automated species identification model with the accuracy higher than 80%. The purpose of the current study is to develop a fully-automated model, based on the otolith contours, to identify the fish species with the high classification accuracy. Methods. Images of the right sagittal otoliths of 14 fish species from three families namely Sciaenidae, Ariidae, and Engraulidae were used to develop the proposed identification model. Short-time Fourier transform (STFT) was used, for the first time in the area of otolith shape analysis, to extract important features of the otolith contours. Discriminant Analysis (DA), as a classification technique, was used to train and test the model based on the extracted features. Results. Performance of the model was demonstrated using species from three families separately, as well as all species combined. Overall classification accuracy of the model was greater than 90% for all cases. In addition, effects of STFT variables on the performance of the identification model were explored in this study. Conclusions. Short-time Fourier transform could determine important features of the otolith outlines. The fully-automated model proposed in this study (STFT-DA) could predict species of an unknown specimen with acceptable identification accuracy. The model codes can be accessed at http://mybiodiversityontologies.um.edu.my/Otolith/ and https://peerj.com/preprints/1517/. The current model has flexibility to be used for more species and families in future studies.

  20. Automatic Image Segmentation Using Active Contours with Univariate Marginal Distribution

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a novel automatic image segmentation method based on the theory of active contour models and estimation of distribution algorithms. The proposed method uses the univariate marginal distribution model to infer statistical dependencies between the control points on different active contours. These contours have been generated through an alignment process of reference shape priors, in order to increase the exploration and exploitation capabilities regarding different interactive segmentation techniques. This proposed method is applied in the segmentation of the hollow core in microscopic images of photonic crystal fibers and it is also used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, respectively. Moreover, to evaluate the performance of the medical image segmentations compared to regions outlined by experts, a set of similarity measures has been adopted. The experimental results suggest that the proposed image segmentation method outperforms the traditional active contour model and the interactive Tseng method in terms of segmentation accuracy and stability.

  1. AutoCAD

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1998-01-01

    I 1998 var AutoCAD Arkitektskolens basale CAD-tilbud til de studerende. Kursets vægt ligger på konstruktion og strukturering af 3d-modeller og med udgangspunkt i dette, 2d-tegning. Kurset er opbygget over CAD Clasic skabelonen (se min forskning). Kompendiet kan bruges til selvstudium.......I 1998 var AutoCAD Arkitektskolens basale CAD-tilbud til de studerende. Kursets vægt ligger på konstruktion og strukturering af 3d-modeller og med udgangspunkt i dette, 2d-tegning. Kurset er opbygget over CAD Clasic skabelonen (se min forskning). Kompendiet kan bruges til selvstudium....

  2. Auto-tuning Dense Vector and Matrix-vector Operations for Fermi GPUs

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2012-01-01

    applications. As examples, we develop single-precision CUDA kernels for the Euclidian norm (SNRM2) and the matrix-vector multiplication (SGEMV). The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture). We show that auto-tuning can be successfully applied to achieve high performance...

  3. A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamidreza Mousavi

    2017-01-01

    Full Text Available Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN. In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple fault conditions. The algorithm uses a calibration model based on AANN. AANN can reconstruct the faulty sensor using non-faulty sensors due to correlation between the process variables, and mean of the difference between reconstructed and original data determines which sensors are faulty. The algorithms are tested on a Dimerization process. The simulation results show that the S-AANN can isolate multiple faulty sensors with low computational time that make the algorithm appropriate candidate for online applications.

  4. A new approach to the form and position error measurement of the auto frame surface based on laser

    Science.gov (United States)

    Wang, Hua; Li, Wei

    2013-03-01

    Auto frame is a very large workpiece, with length up to 12 meters and width up to 2 meters, and it's very easy to know that it's inconvenient and not automatic to measure such a large workpiece by independent manual operation. In this paper we propose a new approach to reconstruct the 3D model of the large workpiece, especially the auto truck frame, based on multiple pulsed lasers, for the purpose of measuring the form and position errors. In a concerned area, it just needs one high-speed camera and two lasers. It is a fast, high-precision and economical approach.

  5. Séminaire de l'enseignement technique : Forum AutoCAD 2006 et AutoCAD Mechanical 2006 - French version only

    CERN Multimedia

    Davide Vitè

    2005-01-01

    Jeudi 17 novembre 2005 de 14:30 à 16:30 - Training Centre Auditorium Forum AutoCAD 2006 et AutoCAD Mechanical 2006 CADSCHOOL, CH-1207 GENEVE, Suisse Ce nouveau séminaire de l'Enseignement technique, organisé en forme de forum et en collabora- tion avec TS-MME et notre entreprise partenaire en formation, sera consacré à la présentation de la nouvelle version d'AutoCAD, AutoCAD 2006 et AutoCAD Mechanical 2006, disponible au CERN. Au programme : Présentation d'AutoCAD Mechanical 2006 Améliorations par rapport à AutoCAD Mechanical 6 Power Pack Questions - Réponses Langue: Français. Séminaire libre, sans inscription. Organisateurs: Manfred Mayer / TS-MME / 74499 ; Davide Vitè / HR-PMD / 75141 Pour plus d'information, veuillez SVP visiter les pages des Séminaires de l'Enseignement Technique à l'adresse http://www.cern.ch/TechnicalTraining/special/TTseminars.asp . ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING technical.training@cern.ch

  6. Second auto-SCT for treatment of relapsed multiple myeloma.

    Science.gov (United States)

    Gonsalves, W I; Gertz, M A; Lacy, M Q; Dispenzieri, A; Hayman, S R; Buadi, F K; Dingli, D; Hogan, W J; Kumar, S K

    2013-04-01

    High-dose therapy and auto-SCT remain integral in the initial treatment of multiple myeloma (MM), and are increasingly being applied for management of relapsed disease. We examined the outcomes in 98 patients undergoing salvage auto-SCT (auto-SCT2) for relapsed MM after receiving an initial transplant (auto-SCT1) between 1994 and 2009. The median age at auto-SCT2 was 60 years (range: 35-74). The median time between auto-SCT1 and auto-SCT2 was 46 months (range: 10-130). Treatment-related mortality was seen in 4%. The median PFS from auto-SCT2 was 10.3 (95% confidence interval (CI): 7-14) months and the median OS from auto-SCT2 was 33 months (95% CI: 28-51). In a multivariable analysis, shorter time to progression (TTP) after auto-SCT1, not achieving a CR after auto-SCT2, higher number of treatment regimens before auto-SCT2 and a higher plasma cell labeling index at auto-SCT2 predicted for shorter PFS. However, only a shorter TTP after auto-SCT1 predicted for a shorter OS post auto-SCT2. Hence, auto-SCT2 is an effective and feasible therapeutic option for MM patients relapsing after other treatments, especially in patients who had a TTP of at least 12 months after their auto-SCT1.

  7. Esma Auto ja Mazda on loodud kestma

    Index Scriptorium Estoniae

    2003-01-01

    Ülevaade olulisematest sündmustest Esma Auto kümne tegevusaasta jooksul. Kommenteerivad Tarmo Järvoja, Mart Laar ja Enn Sau. Diagrammid ja skeemid: AS Esma Auto müügi statistika läbi aastate; AS Esma Auto kasum ja klientide arv aastate lõikes; Esma Auto esindused Eestis ja pakutavad teenused

  8. Matched-pair analysis to compare the outcomes of a second salvage auto-SCT to systemic chemotherapy alone in patients with multiple myeloma who relapsed after front-line auto-SCT.

    Science.gov (United States)

    Yhim, H-Y; Kim, K; Kim, J S; Kang, H J; Kim, J-A; Min, C-K; Bae, S H; Park, E; Yang, D-H; Suh, C; Kim, M K; Mun, Y-C; Eom, H S; Shin, H J; Yoon, H-J; Kwon, J H; Lee, J H; Kim, Y S; Yoon, S-S; Kwak, J-Y

    2013-03-01

    The aims of this study were to investigate the outcomes of second salvage auto-SCT and to identify the impacts of a second auto-SCT compared with systemic chemotherapy alone on disease outcome. Data from 48 patients who underwent second auto-SCT were matched to 144 patients (1:3) who received systemic chemotherapy alone from the Korean Myeloma Registry. Groups were matched for nine potential prognostic factors and compared for treatment outcomes. The median age of matching-pairs at relapse was 55.5 years. A total of 156 patients (81%) received vincristine, doxorubicin and dexamethasone induction therapy before the first auto-SCT. Thirty-five patients (73%) in the second auto-SCT group received novel agent-based therapies before the second auto-SCT, and similar proportion in both groups received novel therapies after relapse of front-line auto-SCT. With a median follow-up of 55.3 months, patients who underwent a second auto-SCT had significantly better median OS (55.5 vs 25.4 months, P=0.035). In multivariate analysis for OS, SCT, International Staging System III and salvage chemotherapy alone were independent predictors for worse OS. The outcomes of second auto-SCT appear to be superior to those of systemic chemotherapy alone. A randomized trial comparing both treatment strategies is required.

  9. A Loudness Function for Analog and Digital Sound Systems based on Equal Loudness Level Contours

    DEFF Research Database (Denmark)

    Nielsen, Sofus Birkedal

    2016-01-01

    frequency balance will been changed both for LL lower or higher than ML. The differences in ELLC ask for a level based equalization using fractional-order filters. A designing technique for both analog and digital fractional-order filters was developed. The analog solution is based on OPAMs and the digital......A new and better loudness compensation has been designed based on the differences between the Equal Loudness Level Contours (ELLC) in ISO 226:2003. Sound productions are normally being mixed at a high mixing level (ML) but often played at lower listening level (LL) which mean that the perceived...

  10. Auto-ubiquitination of Mdm2 Enhances Its Substrate Ubiquitin Ligase Activity*

    Science.gov (United States)

    Ranaweera, Ruchira S.; Yang, Xiaolu

    2013-01-01

    The RING domain E3 ubiquitin ligase Mdm2 is the master regulator of the tumor suppressor p53. It targets p53 for proteasomal degradation, restraining the potent activity of p53 and enabling cell survival and proliferation. Like most E3 ligases, Mdm2 can also ubiquitinate itself. How Mdm2 auto-ubiquitination may influence its substrate ubiquitin ligase activity is undefined. Here we show that auto-ubiquitination of Mdm2 is an activating event. Mdm2 that has been conjugated to polyubiquitin chains, but not to single ubiquitins, exhibits substantially enhanced activity to polyubiquitinate p53. Mechanistically, auto-ubiquitination of Mdm2 facilitates the recruitment of the E2 ubiquitin-conjugating enzyme. This occurs through noncovalent interactions between the ubiquitin chains on Mdm2 and the ubiquitin binding domain on E2s. Mutations that diminish the noncovalent interactions render auto-ubiquitination unable to stimulate Mdm2 substrate E3 activity. These results suggest a model in which polyubiquitin chains on an E3 increase the local concentration of E2 enzymes and permit the processivity of substrate ubiquitination. They also support the notion that autocatalysis may be a prevalent mode for turning on the activity of latent enzymes. PMID:23671280

  11. Design of auto-control high-voltage control system of pulsed neutron generator

    International Nuclear Information System (INIS)

    Lv Juntao

    2008-01-01

    It is difficult to produce multiple anode controlling time sequences under different logging mode for the high-voltage control system of the conventional pulsed neutron generator. It is also difficult realize sequential control among anode high-voltage, filament power supply and target voltage to make neutron yield stable. To these problems, an auto-control high-voltage system of neutron pulsed generator was designed. It not only can achieve anode high-voltage double blast time sequences, which can measure multiple neutron blast time sequences such as Σ, activated spectrum, etc. under inelastic scattering mode, but also can realize neutron generator real-time measurement of multi-state parameters and auto-control such as target voltage pulse width modulation (PWM), filament current, anode current, etc., there by it can produce stable neutron yield and realize stable and accurate measurement of the pulsed neutron full spectral loging tool. (authors)

  12. Pancreatic gross tumor volume contouring on computed tomography (CT) compared with magnetic resonance imaging (MRI): Results of an international contouring conference.

    Science.gov (United States)

    Hall, William A; Heerkens, Hanne D; Paulson, Eric S; Meijer, Gert J; Kotte, Alexis N; Knechtges, Paul; Parikh, Parag J; Bassetti, Michael F; Lee, Percy; Aitken, Katharine L; Palta, Manisha; Myrehaug, Sten; Koay, Eugene J; Portelance, Lorraine; Ben-Josef, Edgar; Erickson, Beth A

    Accurate identification of the gross tumor volume (GTV) in pancreatic adenocarcinoma is challenging. We sought to understand differences in GTV delineation using pancreatic computed tomography (CT) compared with magnetic resonance imaging (MRI). Twelve attending radiation oncologists were convened for an international contouring symposium. All participants had a clinical and research interest in pancreatic adenocarcinoma. CT and MRI scans from 3 pancreatic cases were used for contouring. CT and MRI GTVs were analyzed and compared. Interobserver variability was compared using Dice's similarity coefficient (DSC), Hausdorff distances, and Jaccard indices. Mann-Whitney tests were used to check for significant differences. Consensus contours on CT and MRI scans and constructed count maps were used to visualize the agreement. Agreement regarding the optimal method to determine GTV definition using MRI was reached. Six contour sets (3 from CT and 3 from MRI) were obtained and compared for each observer, totaling 72 contour sets. The mean volume of contours on CT was significantly larger at 57.48 mL compared with a mean of 45.76 mL on MRI, P = .011. The standard deviation obtained from the CT contours was significantly larger than the standard deviation from the MRI contours (P = .027). The mean DSC was 0.73 for the CT and 0.72 for the MRI (P = .889). The conformity index measurement was similar for CT and MRI (P = .58). Count maps were created to highlight differences in the contours from CT and MRI. Using MRI as a primary image set to define a pancreatic adenocarcinoma GTV resulted in smaller contours compared with CT. No differences in DSC or the conformity index were seen between MRI and CT. A stepwise method is recommended as an approach to contour a pancreatic GTV using MRI. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  13. Improving superficial target delineation in radiation therapy with endoscopic tracking and registration

    Energy Technology Data Exchange (ETDEWEB)

    Weersink, R. A.; Qiu, J.; Hope, A. J.; Daly, M. J.; Cho, B. C. J.; DaCosta, R. S.; Sharpe, M. B.; Breen, S. L.; Chan, H.; Jaffray, D. A. [Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada) and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9, Canada and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada) and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada) and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 2M9 (Canada)

    2011-12-15

    Purpose: Target delineation within volumetric imaging is a critical step in the planning process of intensity modulated radiation therapy. In endoluminal cancers, endoscopy often reveals superficial areas of visible disease beyond what is seen on volumetric imaging. Quantitatively relating these findings to the volumetric imaging is prone to human error during the recall and contouring of the target. We have developed a method to improve target delineation in the radiation therapy planning process by quantitatively registering endoscopic findings contours traced on endoscopic images to volumetric imaging. Methods: Using electromagnetic sensors embedded in an endoscope, 2D endoscopic images were registered to computed tomography (CT) volumetric images by tracking the position and orientation of the endoscope relative to a CT image set. Regions-of-interest (ROI) in the 2D endoscopic view were delineated. A mesh created within the boundary of the ROI was projected onto the 3D image data, registering the ROI with the volumetric image. This 3D ROI was exported to clinical radiation treatment planning software. The precision and accuracy of the procedure was tested on two solid phantoms with superficial markings visible on both endoscopy and CT images. The first phantom was T-shaped tube with X-marks etched on the interior. The second phantom was an anatomically correct skull phantom with a phantom superficial lesion placed on the pharyngeal surface. Markings were contoured on the endoscope images and compared with contours delineated in the treatment planning system based on the CT images. Clinical feasibility was tested on three patients with early stage glottic cancer. Image-based rendering using manually identified landmarks was used to improve the registration. Results: Using the T-shaped phantom with X-markings, the 2D to 3D registration accuracy was 1.5-3.5 mm, depending on the endoscope position relative to the markings. Intraobserver standard variation was 0

  14. The Effect of Contouring Variability on Dosimetric Parameters for Brain Metastases Treated With Stereotactic Radiosurgery

    International Nuclear Information System (INIS)

    Stanley, Julia; Dunscombe, Peter; Lau, Harold; Burns, Paul; Lim, Gerald; Liu, Hong-Wei; Nordal, Robert; Starreveld, Yves; Valev, Boris; Voroney, Jon-Paul; Spencer, David P.

    2013-01-01

    Purpose: To quantify the effect of contouring variation on stereotactic radiosurgery plan quality metrics for brain metastases. Methods and Materials: Fourteen metastases, each contoured by 8 physicians, formed the basis of this study. A template-based dynamic conformal 5-arc dose distribution was developed for each of the 112 contours, and each dose distribution was applied to the 7 other contours in each patient set. Radiation Therapy Oncology Group (RTOG) plan quality metrics and the Paddick conformity index were calculated for each of the 896 combinations of dose distributions and contours. Results: The ratio of largest to smallest contour volume for each metastasis varied from 1.25 to 4.47, with a median value of 1.68 (n=8). The median absolute difference in RTOG conformity index between the value for the reference contour and the values for the alternative contours was 0.35. The variation of the range of conformity index for all contours for a given tumor varied with the tumor size. Conclusions: The high degree of interobserver contouring variation strongly suggests that peer review or consultation should be adopted to standardize tumor volume prescription. Observer confidence was not reflected in contouring consistency. The impact of contouring variability on plan quality metrics, used as criteria for clinical trial protocol compliance, was such that the category of compliance was robust to interobserver effects only 70% of the time

  15. AutoBD: Automated Bi-Level Description for Scalable Fine-Grained Visual Categorization.

    Science.gov (United States)

    Yao, Hantao; Zhang, Shiliang; Yan, Chenggang; Zhang, Yongdong; Li, Jintao; Tian, Qi

    Compared with traditional image classification, fine-grained visual categorization is a more challenging task, because it targets to classify objects belonging to the same species, e.g. , classify hundreds of birds or cars. In the past several years, researchers have made many achievements on this topic. However, most of them are heavily dependent on the artificial annotations, e.g., bounding boxes, part annotations, and so on . The requirement of artificial annotations largely hinders the scalability and application. Motivated to release such dependence, this paper proposes a robust and discriminative visual description named Automated Bi-level Description (AutoBD). "Bi-level" denotes two complementary part-level and object-level visual descriptions, respectively. AutoBD is "automated," because it only requires the image-level labels of training images and does not need any annotations for testing images. Compared with the part annotations labeled by the human, the image-level labels can be easily acquired, which thus makes AutoBD suitable for large-scale visual categorization. Specifically, the part-level description is extracted by identifying the local region saliently representing the visual distinctiveness. The object-level description is extracted from object bounding boxes generated with a co-localization algorithm. Although only using the image-level labels, AutoBD outperforms the recent studies on two public benchmark, i.e. , classification accuracy achieves 81.6% on CUB-200-2011 and 88.9% on Car-196, respectively. On the large-scale Birdsnap data set, AutoBD achieves the accuracy of 68%, which is currently the best performance to the best of our knowledge.Compared with traditional image classification, fine-grained visual categorization is a more challenging task, because it targets to classify objects belonging to the same species, e.g. , classify hundreds of birds or cars. In the past several years, researchers have made many achievements on this topic

  16. Auto-fotografi som metode

    DEFF Research Database (Denmark)

    Mogensen, Mette

    2014-01-01

    Artiklen sætter fokus på auto-fotografi som metode i arbejdsmiljøforskningen. Den organisationsæstetiske tilgang, som metoden ofte forbindes med, udfordres med afsæt i en performativ og aktørnetværks-teoretisk position. Gennem en analyse af et enkelt auto-fotografi vises hvordan en artikulation af...

  17. Séminaire de l'enseignement technique : Forum AutoCAD 2006 et AutoCAD Mechanical 2006

    - French version only

    CERN Multimedia

    Davide Vitè

    2005-01-01

    Jeudi 17 novembre 2005 de 14:30 à 16:30 - Training Centre Auditorium, Bât 593 Forum AutoCAD 2006 et AutoCAD Mechanical 2006 CADSCHOOL, CH-1207 GENEVE, Suisse Ce nouveau séminaire de l'Enseignement technique, organisé en forme de forum et en collaboration avec TS-MME et notre entreprise partenaire en formation, sera consacré à la présentation de la nouvelle version d'AutoCAD, AutoCAD 2006 et AutoCAD Mechanical 2006, disponible au CERN. Au programme : Présentation d'AutoCAD Mechanical 2006 Améliorations par rapport à AutoCAD Mechanical 6 Power Pack Questions - Réponses Langue: Français. Séminaire libre, sans inscription. Organisateurs: Manfred Mayer / TS-MME / 74499 ; Davide Vitè / HR-PMD / 75141 Pour plus d'information, veuillez SVP visiter les pages des Séminaires de l'Enseignement Technique à l'adresse http://www.cern.ch/TechnicalTraining/special/TTseminars.asp . ENSEIGNEMENT TECHNIQUE TECHNICAL TRAINING technical.training@cern.ch

  18. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    Science.gov (United States)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  19. A Robust and Accurate Two-Step Auto-Labeling Conditional Iterative Closest Points (TACICP Algorithm for Three-Dimensional Multi-Modal Carotid Image Registration.

    Directory of Open Access Journals (Sweden)

    Hengkai Guo

    Full Text Available Atherosclerosis is among the leading causes of death and disability. Combining information from multi-modal vascular images is an effective and efficient way to diagnose and monitor atherosclerosis, in which image registration is a key technique. In this paper a feature-based registration algorithm, Two-step Auto-labeling Conditional Iterative Closed Points (TACICP algorithm, is proposed to align three-dimensional carotid image datasets from ultrasound (US and magnetic resonance (MR. Based on 2D segmented contours, a coarse-to-fine strategy is employed with two steps: rigid initialization step and non-rigid refinement step. Conditional Iterative Closest Points (CICP algorithm is given in rigid initialization step to obtain the robust rigid transformation and label configurations. Then the labels and CICP algorithm with non-rigid thin-plate-spline (TPS transformation model is introduced to solve non-rigid carotid deformation between different body positions. The results demonstrate that proposed TACICP algorithm has achieved an average registration error of less than 0.2mm with no failure case, which is superior to the state-of-the-art feature-based methods.

  20. SU-F-J-157: Effect of Contouring Uncertainty in Post Implant Dosimetry of Low-Dose-Rate Prostate Permanent Seed Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mashouf, S; Merino, T; Ravi, A; Morton, G; Song, W [Sunnybrook Health Sciences Center, Odette Cancer Centre, Toronto, ON (Canada); University of Toronto, Dept. of Radiation Oncology, Toronto, ON (Canada); Safigholi, H; Soliman, A [Sunnybrook Research Institute, Toronto, ON (Canada)

    2016-06-15

    Purpose: There is strong evidence relating post-implant dosimetry for low-dose-rate (LDR) prostate seed brachytherapy to local control rates. The delineation of the prostate on CT images, however, represents a challenge due to the lack of soft tissue contrast in order to identify the prostate borders. This study aims at quantifying the sensitivity of clinically relevant dosimetric parameters to uncertainty in the contouring of prostate. Methods: CT images, post-op plans and contours of a cohort of patients (n=43) (low risk=55.8%, intermediate risk=39.5%, high risk=4.7%), who had received prostate seed brachytherapy, were imported into MIM Symphony treatment planning system. The prostate contours in post-implant CT images were expanded/contracted uniformly for margins of ±1.00 mm, ±2.00 mm, ±3.00 mm, ±4.00 mm and ±5.00 mm. The values for V100 and D90 were extracted from Dose Volume Histograms for each contour and compared. Results: Significant changes were observed in the values of D90 and V100 as well as the number of suboptimal plans for expansion or contraction margins of only few millimeters. Evaluation of coverage based on D90 was found to be less sensitive to expansion errors compared to V100. D90 led to a lower number of implants incorrectly identified with insufficient coverage for expanded contours which increases the accuracy of post-implant QA using CT images compared to V100. Conclusion: In order to establish a successful post implant QA for LDR prostate seed brachytherapy, it is necessary to identify the low and high thresholds of important dose metrics of the target volume such as D90 and V100. Since these parameters are sensitive to target volume definition, accurate identification of prostate borders would help to improve accuracy and predictive value of the post-implant QA process. In this respect, use of imaging modalities such as MRI where prostate is well delineated should prove useful.

  1. SU-F-J-157: Effect of Contouring Uncertainty in Post Implant Dosimetry of Low-Dose-Rate Prostate Permanent Seed Brachytherapy

    International Nuclear Information System (INIS)

    Mashouf, S; Merino, T; Ravi, A; Morton, G; Song, W; Safigholi, H; Soliman, A

    2016-01-01

    Purpose: There is strong evidence relating post-implant dosimetry for low-dose-rate (LDR) prostate seed brachytherapy to local control rates. The delineation of the prostate on CT images, however, represents a challenge due to the lack of soft tissue contrast in order to identify the prostate borders. This study aims at quantifying the sensitivity of clinically relevant dosimetric parameters to uncertainty in the contouring of prostate. Methods: CT images, post-op plans and contours of a cohort of patients (n=43) (low risk=55.8%, intermediate risk=39.5%, high risk=4.7%), who had received prostate seed brachytherapy, were imported into MIM Symphony treatment planning system. The prostate contours in post-implant CT images were expanded/contracted uniformly for margins of ±1.00 mm, ±2.00 mm, ±3.00 mm, ±4.00 mm and ±5.00 mm. The values for V100 and D90 were extracted from Dose Volume Histograms for each contour and compared. Results: Significant changes were observed in the values of D90 and V100 as well as the number of suboptimal plans for expansion or contraction margins of only few millimeters. Evaluation of coverage based on D90 was found to be less sensitive to expansion errors compared to V100. D90 led to a lower number of implants incorrectly identified with insufficient coverage for expanded contours which increases the accuracy of post-implant QA using CT images compared to V100. Conclusion: In order to establish a successful post implant QA for LDR prostate seed brachytherapy, it is necessary to identify the low and high thresholds of important dose metrics of the target volume such as D90 and V100. Since these parameters are sensitive to target volume definition, accurate identification of prostate borders would help to improve accuracy and predictive value of the post-implant QA process. In this respect, use of imaging modalities such as MRI where prostate is well delineated should prove useful.

  2. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer. Reducing the interobserver variability in multicentre clinical studies

    Energy Technology Data Exchange (ETDEWEB)

    Schimek-Jasch, Tanja; Prokic, Vesna; Doll, Christian; Grosu, Anca-Ligia; Nestle, Ursula [University Medical Center Freiburg, Department of Radiation Oncology, Freiburg (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); German Cancer Consortium (DKTK) partner site: Freiburg, Heidelberg (Germany); Troost, Esther G.C. [Maastricht University Medical Centre, Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht (Netherlands); Ruecker, Gerta [University Medical Center Freiburg, Institute for Medical Biometry and Statistics, Centre for Medical Biometry and Medical Informatics, Freiburg (Germany); Avlar, Melanie [German Cancer Research Center (DKFZ), Heidelberg (Germany); Duncker-Rohr, Viola [Ortenau-Klinikum Offenburg-Gengenbach, Department of Radiation Oncology, Gengenbach (Germany); Mix, Michael [University Medical Center Freiburg, Department of Nuclear Medicine, Freiburg (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); German Cancer Consortium (DKTK) partner site: Freiburg, Heidelberg (Germany)

    2015-02-10

    Interobserver variability in the definition of target volumes (TVs) is a well-known confounding factor in (multicentre) clinical studies employing radiotherapy. Therefore, detailed contouring guidelines are provided in the prospective randomised multicentre PET-Plan (NCT00697333) clinical trial protocol. This trial compares strictly FDG-PET-based TV delineation with conventional TV delineation in patients with locally advanced non-small cell lung cancer (NSCLC). Despite detailed contouring guidelines, their interpretation by different radiation oncologists can vary considerably, leading to undesirable discrepancies in TV delineation. Considering this, as part of the PET-Plan study quality assurance (QA), a contouring dummy run (DR) consisting of two phases was performed to analyse the interobserver variability before and after teaching. In the first phase of the DR (DR1), radiation oncologists from 14 study centres were asked to delineate TVs as defined by the study protocol (gross TV, GTV; and two clinical TVs, CTV-A and CTV-B) in a test patient. A teaching session was held at a study group meeting, including a discussion of the results focussing on discordances in comparison to the per-protocol solution. Subsequently, the second phase of the DR (DR2) was performed in order to evaluate the impact of teaching. Teaching after DR1 resulted in a reduction of absolute TVs in DR2, as well as in better concordance of TVs. The Overall Kappa(κ) indices increased from 0.63 to 0.71 (GTV), 0.60 to 0.65 (CTV-A) and from 0.59 to 0.63 (CTV-B), demonstrating improvements in overall interobserver agreement. Contouring DRs and study group meetings as part of QA in multicentre clinical trials help to identify misinterpretations of per-protocol TV delineation. Teaching the correct interpretation of protocol contouring guidelines leads to a reduction in interobserver variability and to more consistent contouring, which should consequently improve the validity of the overall study

  3. A Biologically Motivated Multiresolution Approach to Contour Detection

    Directory of Open Access Journals (Sweden)

    Alessandro Neri

    2007-01-01

    Full Text Available Standard edge detectors react to all local luminance changes, irrespective of whether they are due to the contours of the objects represented in a scene or due to natural textures like grass, foliage, water, and so forth. Moreover, edges due to texture are often stronger than edges due to object contours. This implies that further processing is needed to discriminate object contours from texture edges. In this paper, we propose a biologically motivated multiresolution contour detection method using Bayesian denoising and a surround inhibition technique. Specifically, the proposed approach deploys computation of the gradient at different resolutions, followed by Bayesian denoising of the edge image. Then, a biologically motivated surround inhibition step is applied in order to suppress edges that are due to texture. We propose an improvement of the surround suppression used in previous works. Finally, a contour-oriented binarization algorithm is used, relying on the observation that object contours lead to long connected components rather than to short rods obtained from textures. Experimental results show that our contour detection method outperforms standard edge detectors as well as other methods that deploy inhibition.

  4. Europe's Auto/Oil 2 program, understanding the cost-benefits of NGV's

    NARCIS (Netherlands)

    Weide, J. van der

    2000-01-01

    In the mid-nineties in Europe, the so-called Auto/Oil 1 Program was carried out. The aim was to improve air quality in urban areas by setting new emissions standards based on improved vehicle and fuel technology. The program was carried out by the auto and oil industry under leadership of the

  5. AutoCAD platform customization user interface and beyond

    CERN Document Server

    Ambrosius, Lee

    2014-01-01

    Make AutoCAD your own with powerful personalization options Options for AutoCAD customization are typically the domain of administrators, but savvy users can perform their own customizations to personalize AutoCAD. Until recently, most users never thought to customize the AutoCAD platform to meet their specific needs, instead leaving it to administrators. If you are an AutoCAD user who wants to ramp up personalization options in your favorite software, AutoCAD Platform Customization: User Interface and Beyond is the perfect resource for you. Author Lee Ambrosius is recognized as a leader in Au

  6. The equivalent internal orientation and position noise for contour integration.

    Science.gov (United States)

    Baldwin, Alex S; Fu, Minnie; Farivar, Reza; Hess, Robert F

    2017-10-12

    Contour integration is the joining-up of local responses to parts of a contour into a continuous percept. In typical studies observers detect contours formed of discrete wavelets, presented against a background of random wavelets. This measures performance for detecting contours in the limiting external noise that background provides. Our novel task measures contour integration without requiring any background noise. This allowed us to perform noise-masking experiments using orientation and position noise. From these we measure the equivalent internal noise for contour integration. We found an orientation noise of 6° and position noise of 3 arcmin. Orientation noise was 2.6x higher in contour integration compared to an orientation discrimination control task. Comparing against a position discrimination task found position noise in contours to be 2.4x lower. This suggests contour integration involves intermediate processing that enhances the quality of element position representation at the expense of element orientation. Efficiency relative to the ideal observer was lower for the contour tasks (36% in orientation noise, 21% in position noise) compared to the controls (54% and 57%).

  7. Fourier Descriptor Analysis and Unification of Voice Range Profile Contours: Method and Applications

    Science.gov (United States)

    Pabon, Peter; Ternstrom, Sten; Lamarche, Anick

    2011-01-01

    Purpose: To describe a method for unified description, statistical modeling, and comparison of voice range profile (VRP) contours, even from diverse sources. Method: A morphologic modeling technique, which is based on Fourier descriptors (FDs), is applied to the VRP contour. The technique, which essentially involves resampling of the curve of the…

  8. Detection of elliptical contours

    International Nuclear Information System (INIS)

    Blokland, J.A.K.

    1987-01-01

    This dissertation describes the quantitation of myocardial perfusion defects in planar thallium-201 scintigrams. To be able to quantify the distribution of 201 Tl in the myocardium as imaged by the scintigram, accurate delineation of the target object is a prerequisite. The distribution of the radionuclide within the contour of the left ventricle can be described by application of circumferential profiles. By comparing the computed circumferential profile with those of normal subjects, humans with no evidence of coronary artery disease, segments of the left ventricle with decreased bloodflow can be detected. In practice there is no real standard to compare with, and due to noise and biological variations, it is not always possible to make a definite decision regarding the presence of a defect in the distribution of the radionuclide. The value and limitations of the developed quantification procedure are discussed. Some future developments are suggested. 108 refs.; 57 figs.; 5 tabs

  9. Auto-correlation based intelligent technique for complex waveform presentation and measurement

    International Nuclear Information System (INIS)

    Rana, K P S; Singh, R; Sayann, K S

    2009-01-01

    Waveform acquisition and presentation forms the heart of many measurement systems. Particularly, data acquisition and presentation of repeating complex signals like sine sweep and frequency-modulated signals introduces the challenge of waveform time period estimation and live waveform presentation. This paper presents an intelligent technique, for waveform period estimation of both the complex and simple waveforms, based on the normalized auto-correlation method. The proposed technique is demonstrated using LabVIEW based intensive simulations on several simple and complex waveforms. Implementation of the technique is successfully demonstrated using LabVIEW based virtual instrumentation. Sine sweep vibration waveforms are successfully presented and measured for electrodynamic shaker system generated vibrations. The proposed method is also suitable for digital storage oscilloscope (DSO) triggering, for complex signals acquisition and presentation. This intelligence can be embodied into the DSO, making it an intelligent measurement system, catering wide varieties of the waveforms. The proposed technique, simulation results, robustness study and implementation results are presented in this paper.

  10. Assessment of Factors Related to Auto-PEEP.

    Science.gov (United States)

    Natalini, Giuseppe; Tuzzo, Daniele; Rosano, Antonio; Testa, Marco; Grazioli, Michele; Pennestrì, Vincenzo; Amodeo, Guido; Marsilia, Paolo F; Tinnirello, Andrea; Berruto, Francesco; Fiorillo, Marialinda; Filippini, Matteo; Peratoner, Alberto; Minelli, Cosetta; Bernardini, Achille

    2016-02-01

    Previous physiological studies have identified factors that are involved in auto-PEEP generation. In our study, we examined how much auto-PEEP is generated from factors that are involved in its development. One hundred eighty-six subjects undergoing controlled mechanical ventilation with persistent expiratory flow at the beginning of each inspiration were enrolled in the study. Volume-controlled continuous mandatory ventilation with PEEP of 0 cm H2O was applied while maintaining the ventilator setting as chosen by the attending physician. End-expiratory and end-inspiratory airway occlusion maneuvers were performed to calculate respiratory mechanics, and tidal flow limitation was assessed by a maneuver of manual compression of the abdomen. The variable with the strongest effect on auto-PEEP was flow limitation, which was associated with an increase of 2.4 cm H2O in auto-PEEP values. Moreover, auto-PEEP values were directly related to resistance of the respiratory system and body mass index and inversely related to expiratory time/time constant. Variables that were associated with the breathing pattern (tidal volume, frequency minute ventilation, and expiratory time) did not show any relationship with auto-PEEP values. The risk of auto-PEEP ≥5 cm H2O was increased by flow limitation (adjusted odds ratio 17; 95% CI: 6-56.2), expiratory time/time constant ratio 15 cm H2O/L s (3; 1.3-6.9), age >65 y (2.8; 1.2-6.5), and body mass index >26 kg/m(2) (2.6; 1.1-6.1). Flow limitation, expiratory time/time constant, resistance of the respiratory system, and obesity are the most important variables that affect auto-PEEP values. Frequency expiratory time, tidal volume, and minute ventilation were not independently associated with auto-PEEP. Therapeutic strategies aimed at reducing auto-PEEP and its adverse effects should be primarily oriented to the variables that mainly affect auto-PEEP values. Copyright © 2016 by Daedalus Enterprises.

  11. Localization method of picking point of apple target based on smoothing contour symmetry axis algorithm%基于平滑轮廓对称轴法的苹果目标采摘点定位方法

    Institute of Scientific and Technical Information of China (English)

    王丹丹; 徐越; 宋怀波; 何东健

    2015-01-01

    果实采摘点的精确定位是采摘机器人必须解决的关键问题。鉴于苹果目标具有良好对称性的特点,利用转动惯量所具有的平移、旋转不变性及其在对称轴方向取得极值的特性,提出了一种基于轮廓对称轴法的苹果目标采摘点定位方法。为了解决分割后苹果目标边缘不够平滑而导致定位精度偏低的问题,提出了一种苹果目标轮廓平滑方法。为了验证算法的有效性,对随机选取的20幅无遮挡的单果苹果图像分别利用轮廓平滑和未进行轮廓平滑的算法进行试验,试验结果表明,未进行轮廓平滑算法的平均定位误差为20.678°,而轮廓平滑后算法平均定位误差为4.542°,比未进行轮廓平滑算法平均定位误差降低了78.035%,未进行轮廓平滑算法的平均运行时间为10.2 ms,而轮廓平滑后算法的平均运行时间为7.5 ms,比未进行轮廓平滑算法平均运行时间降低了25.839%,表明平滑轮廓算法可以提高定位精度和运算效率。利用平滑轮廓对称轴算法可以较好地找到苹果目标的对称轴并实现采摘点定位,表明将该方法应用于苹果目标的对称轴提取及采摘点定位是可行的。%The localization of picking points of fruits is one of the key problems for picking robots, and it is the first step of implementation of the picking task for picking robots. In view of a good symmetry of apples, and characteristics of shift, rotation invariance, and reaching the extreme values in symmetry axis direction which moment of inertia possesses, a new method based on a contour symmetry axis was proposed to locate the picking point of apples. In order to solve the problem of low localization accuracy which results from the rough edge of apples after segmentation, a method of smoothing contour algorithm was presented. The steps of the algorithm were as follow, first, the image was transformed from RGB color space into

  12. 75 FR 24753 - The Walker Auto Group, Inc., Miamisburg, OH; Notice of Negative Determination Regarding...

    Science.gov (United States)

    2010-05-05

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,471] The Walker Auto Group... Auto Group, Inc., Miamisburg, Ohio, was based on the finding that the subject firm did not shift abroad... of the subject firm should be eligible for TAA because the Walker Auto Group, Inc., Miamisburg, Ohio...

  13. Experimental Study of Magnetic Field Production and Dielectric Breakdown of Auto-Magnetizing Liners

    Science.gov (United States)

    Shipley, Gabriel; Awe, Thomas; Hutchinson, Trevor; Hutsel, Brian; Slutz, Stephen; Lamppa, Derek

    2017-10-01

    AutoMag liners premagnetize the fuel in MagLIF targets and provide enhanced x-ray diagnostic access and increased current delivery without requiring external field coils. AutoMag liners are composite liners made with discrete metallic helical conduction paths separated by insulating material. First, a low dI/dt ``foot'' current pulse (1 MA in 100 ns) premagnetizes the fuel. Next, a higher dI/dt pulse with larger induced electric field initiates breakdown on the composite liner's; surface, switching the current from helical to axial to implode the liner. Experiments on MYKONOS have tested the premagnetization and breakdown phases of AutoMag and demonstrate axial magnetic fields above 90 Tesla for a 550 kA peak current pulse. Electric fields of 17 MV/m have been generated before breakdown. AutoMag may enhance MagLIF performance by increasing the premagnetization strength significantly above 30 T, thus reducing thermal-conduction losses and mitigating anomalous diffusion of magnetic field out of hotter fuel regions, by, for example, the Nernst thermoelectric effect. This project was funded in part by Sandia's Laboratory Directed Research and Development Program (Projects No. 200169 and 195306).

  14. Contour plotting programs for printer and Calcomp plotter

    International Nuclear Information System (INIS)

    Moller, P.

    1980-07-01

    Contour plotting programs for plotting contour diagrams on printers or Calcomp plotters are described. The subroutines also exist in versions that are useful for the special application of finding minima and saddlepoints of nuclear potential energy surfaces generated by the subroutine PETR3 of another program package. For the general user, however, the most interesting aspect of the plotting package is probably the possibility of generating printer contour plots. The plotting of printer contour plots is a very fast and convenient way of displaying two-dimensional functions. 3 figures

  15. AUTO

    DEFF Research Database (Denmark)

    Gammelgaard Nielsen, Anders; Aagaard, Tine; Diaz, pauline

    2011-01-01

    AUTO is the first assignment that the students of Architecture are introduced to at the Aarhus school of Architecture. The aim is to give students an understanding of design through a generic working method. This by disassembling a car engine and staging its components through a series of castings...

  16. TU-H-CAMPUS-JeP2-05: Can Automatic Delineation of Cardiac Substructures On Noncontrast CT Be Used for Cardiac Toxicity Analysis?

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y; Liao, Z; Jiang, W; Gomez, D; Williamson, R; Court, L; Yang, J [MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To evaluate the feasibility of using an automatic segmentation tool to delineate cardiac substructures from computed tomography (CT) images for cardiac toxicity analysis for non-small cell lung cancer (NSCLC) patients after radiotherapy. Methods: A multi-atlas segmentation tool developed in-house was used to delineate eleven cardiac substructures including the whole heart, four heart chambers, and six greater vessels automatically from the averaged 4DCT planning images for 49 NSCLC patients. The automatic segmented contours were edited appropriately by two experienced radiation oncologists. The modified contours were compared with the auto-segmented contours using Dice similarity coefficient (DSC) and mean surface distance (MSD) to evaluate how much modification was needed. In addition, the dose volume histogram (DVH) of the modified contours were compared with that of the auto-segmented contours to evaluate the dosimetric difference between modified and auto-segmented contours. Results: Of the eleven structures, the averaged DSC values ranged from 0.73 ± 0.08 to 0.95 ± 0.04 and the averaged MSD values ranged from 1.3 ± 0.6 mm to 2.9 ± 5.1mm for the 49 patients. Overall, the modification is small. The pulmonary vein (PV) and the inferior vena cava required the most modifications. The V30 (volume receiving 30 Gy or above) for the whole heart and the mean dose to the whole heart and four heart chambers did not show statistically significant difference between modified and auto-segmented contours. The maximum dose to the greater vessels did not show statistically significant difference except for the PV. Conclusion: The automatic segmentation of the cardiac substructures did not require substantial modification. The dosimetric evaluation showed no statistically significant difference between auto-segmented and modified contours except for the PV, which suggests that auto-segmented contours for the cardiac dose response study are feasible in the clinical

  17. TU-H-CAMPUS-JeP2-05: Can Automatic Delineation of Cardiac Substructures On Noncontrast CT Be Used for Cardiac Toxicity Analysis?

    International Nuclear Information System (INIS)

    Luo, Y; Liao, Z; Jiang, W; Gomez, D; Williamson, R; Court, L; Yang, J

    2016-01-01

    Purpose: To evaluate the feasibility of using an automatic segmentation tool to delineate cardiac substructures from computed tomography (CT) images for cardiac toxicity analysis for non-small cell lung cancer (NSCLC) patients after radiotherapy. Methods: A multi-atlas segmentation tool developed in-house was used to delineate eleven cardiac substructures including the whole heart, four heart chambers, and six greater vessels automatically from the averaged 4DCT planning images for 49 NSCLC patients. The automatic segmented contours were edited appropriately by two experienced radiation oncologists. The modified contours were compared with the auto-segmented contours using Dice similarity coefficient (DSC) and mean surface distance (MSD) to evaluate how much modification was needed. In addition, the dose volume histogram (DVH) of the modified contours were compared with that of the auto-segmented contours to evaluate the dosimetric difference between modified and auto-segmented contours. Results: Of the eleven structures, the averaged DSC values ranged from 0.73 ± 0.08 to 0.95 ± 0.04 and the averaged MSD values ranged from 1.3 ± 0.6 mm to 2.9 ± 5.1mm for the 49 patients. Overall, the modification is small. The pulmonary vein (PV) and the inferior vena cava required the most modifications. The V30 (volume receiving 30 Gy or above) for the whole heart and the mean dose to the whole heart and four heart chambers did not show statistically significant difference between modified and auto-segmented contours. The maximum dose to the greater vessels did not show statistically significant difference except for the PV. Conclusion: The automatic segmentation of the cardiac substructures did not require substantial modification. The dosimetric evaluation showed no statistically significant difference between auto-segmented and modified contours except for the PV, which suggests that auto-segmented contours for the cardiac dose response study are feasible in the clinical

  18. Noninvasive Body Contouring: A Male Perspective.

    Science.gov (United States)

    Wat, Heidi; Wu, Douglas C; Goldman, Mitchel P

    2018-01-01

    Noninvasive body contouring is an attractive therapeutic modality to enhance the ideal male physique. Men place higher value on enhancing a well-defined, strong, masculine jawline and developing a V-shaped taper through the upper body. An understanding of the body contour men strive for allows the treating physician to focus on areas that are of most concern to men, thus enhancing patient experience and satisfaction. This article discusses noninvasive body contouring techniques, taking into account the unique aesthetic concerns of the male patient by combining an analysis of the existing literature with our own clinical experience. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Dynamic contour tonometry: presentation of a new tonometer.

    Science.gov (United States)

    Kanngiesser, Hartmut E; Kniestedt, Christoph; Robert, Yves C A

    2005-10-01

    With tonometers currently in use intraocular pressure is indirectly determined by measuring a physical quantity related to a specified deformation of the cornea. We present a new principle of direct, continuous, and transcorneal intraocular pressure measurement, describe its theoretical foundation, and evaluate its application on the basis of an in vitro model. On a living human eye an optimized pressure-sensitive contact surface was determined by performing pressure measurements with differently shaped tonometer heads. Based on these results and on the theoretical model, a Dynamic Contour Tonometer was constructed and validated on eye bank bulbi against a manometric reference pressure. A concave contact surface with a radius of curvature of 10.5 mm creates a distribution of forces between the central contour matching area of the tip and the cornea that equals the forces generated by the internal pressure of the eye. A sensor integrated into the surface having the same contour measures the intraocular pressure closely to the manometric reference pressure in human cadaver eyes. The accuracy of the tonometer appears to be unaffected by variations in corneal properties. Dynamic Contour Tonometry eliminates most of the systematic errors arising from individual changes of corneal properties that adversely influence all types of applanation tonometers. The advantage of measuring the true pressure in combination with the capability of registering dynamic pressure fluctuations discloses new tonometric opportunities to diagnose and classify different types of glaucoma.

  20. AutoCAD 2014 review for certification official certification preparation

    CERN Document Server

    ASCENT center for technical knowledge

    2014-01-01

    The AutoCAD® 2014 Review for Certification book is intended for users of AutoCAD® preparing to complete the AutoCAD 2014 Certified Professional exam. This book contains a collection of relevant instructional topics, practice exercises, and review questions from the Autodesk Official Training Guides (AOTG) from ASCENT - Center for Technical Knowledge pertaining specifically to the Certified Professional exam topics and objectives. This book is intended for experienced users of AutoCAD in preparation for certification. New users of AutoCAD should refer to the AOTG training guides from ASCENT, such as AutoCAD/AutoCAD LT 2014 Fundamentals, for more comprehensive instruction.

  1. Line Generalization and AutoCAD Map

    Directory of Open Access Journals (Sweden)

    Nada Vučetić

    2001-01-01

    Full Text Available The paper offers the results of original research made on the application of AutoCAD Map in line generalisation. The differences and similarities have been found out between the Douglas-Peucker method and the method of line simplification that is incorporated in AutoCAD Map. There have been also the inaccuracies found out in AutoCAD Map manual relating to the issues of buffer width and tolerance, and the line width before and after simplification. The paper gives recommendations about pseudo nodes dissolving. It has been noticed that AutoCAD Map simplification method is not independent of the order of points. The application of the method is illustrated by an example of coastal line of Istria.

  2. On a program manifold’s stability of one contour automatic control systems

    Directory of Open Access Journals (Sweden)

    Zumatov S. S.

    2017-12-01

    Full Text Available Methodology of analysis of stability is expounded to the one contour systems automatic control feedback in the presence of non-linearities. The methodology is based on the use of the simplest mathematical models of the nonlinear controllable systems. Stability of program manifolds of one contour automatic control systems is investigated. The sufficient conditions of program manifold’s absolute stability of one contour automatic control systems are obtained. The Hurwitz’s angle of absolute stability was determined. The sufficient conditions of program manifold’s absolute stability of control systems by the course of plane in the mode of autopilot are obtained by means Lyapunov’s second method.

  3. Projecting pipeline construction by AutoDesk Map; Projektierung von Rohrleitungsbaumassnahmen mit AutoDesk Map

    Energy Technology Data Exchange (ETDEWEB)

    Taschendorf, M.; Voigtlaender, M. [Hamburger Wasserwerke GmbH, Hamburg (Germany)

    2005-12-15

    Presented is AutoDesk Map, which enables the construction and planning of big grids for water- and gas supply. In this example industrial equipment is driven as objects in AutoDesk Map. Therefore the consistence of the data is guaranted and comprehensive CAD functions are available for industrial equipment and topologies. (GL)

  4. Summing over Feynman histories by functional contour integration

    International Nuclear Information System (INIS)

    Garrison, J.C.; Wright, E.M.

    1986-01-01

    The authors show how complex paths can be consistently introduced into sums for Feynman histories by using the notion of functional contour integration. For a kappa-dimensional system specified by a potential with suitable analyticity properties, each coordinate axis is replaced by a copy of the complex plane, and at each instant of time a contour is chosen in each plane. This map from the time axis into the set of complex contours defines a functional contour. The family of contours labelled by time generates a (kappa+1)-dimensional submanifold of the (2kappa+1)-dimensional space defined by the cartesian product of the time axis and the coordinate planes. The complex Feynman paths lie on this submanifold. An application of this idea to systems described by absorptive potentials yields a simple derivation of the correct WKB result in terms of a complex path that extremalises the action. The method can also be applied to spherically symmetric potentials by using a partial wave expansion and restricting the contours appropriately. (author)

  5. Combining prior day contours to improve automated prostate segmentation

    International Nuclear Information System (INIS)

    Godley, Andrew; Sheplan Olsen, Lawrence J.; Stephans, Kevin; Zhao Anzi

    2013-01-01

    Purpose: To improve the accuracy of automatically segmented prostate, rectum, and bladder contours required for online adaptive therapy. The contouring accuracy on the current image guidance [image guided radiation therapy (IGRT)] scan is improved by combining contours from earlier IGRT scans via the simultaneous truth and performance level estimation (STAPLE) algorithm. Methods: Six IGRT prostate patients treated with daily kilo-voltage (kV) cone-beam CT (CBCT) had their original plan CT and nine CBCTs contoured by the same physician. Three types of automated contours were produced for analysis. (1) Plan: By deformably registering the plan CT to each CBCT and then using the resulting deformation field to morph the plan contours to match the CBCT anatomy. (2) Previous: The contour set drawn by the physician on the previous day CBCT is similarly deformed to match the current CBCT anatomy. (3) STAPLE: The contours drawn by the physician, on each prior CBCT and the plan CT, are deformed to match the CBCT anatomy to produce multiple contour sets. These sets are combined using the STAPLE algorithm into one optimal set. Results: Compared to plan and previous, STAPLE improved the average Dice's coefficient (DC) with the original physician drawn CBCT contours to a DC as follows: Bladder: 0.81 ± 0.13, 0.91 ± 0.06, and 0.92 ± 0.06; Prostate: 0.75 ± 0.08, 0.82 ± 0.05, and 0.84 ± 0.05; and Rectum: 0.79 ± 0.06, 0.81 ± 0.06, and 0.85 ± 0.04, respectively. The STAPLE results are within intraobserver consistency, determined by the physician blindly recontouring a subset of CBCTs. Comparing plans recalculated using the physician and STAPLE contours showed an average disagreement less than 1% for prostate D98 and mean dose, and 5% and 3% for bladder and rectum mean dose, respectively. One scan takes an average of 19 s to contour. Using five scans plus STAPLE takes less than 110 s on a 288 core graphics processor unit. Conclusions: Combining the plan and all prior days via

  6. Variation in contour and cancer of stomach

    International Nuclear Information System (INIS)

    Lee, Won Hong; Hwang, Seon Moon; Yoon, Kwon Ha

    1999-01-01

    There were four types of stomach contour included eutonic, hypotonic, steerhorn, and cascade. The aim of this study is to clarify relationship between incidence of stomach cancer and contour variation of the stomach. Double- contrast upper gastrointestinal study was performed in 1,546 patients, who had dyspepsia or other gastrointestinal tract symptoms. The radiographs were classified into the four types including eutonic, hypotonic, steerhorn, and cascade according to stomach contour in relation to body build. We also reviewed pathologic reports on endoscopic biopsy or surgical specimen. We studied the presence of relationship between incidence of stomach cancer and variation of stomach contour. We also examined the incidence of gastritis and gastric ulcer to the stomach contour variation. Of total 1,546 patients, eutonic stomach were 438(28.3%), hypotonic 911(58.9%), steerhorn 102(6.5%) and cascade 95(6.2%). Stomach cancer was found in 139(31.7%) of 438 eutonic stomachs, in 135(14.8%) of 911 hypotonic, in 42(41.2%) of 102 steerhorn, and in 24(36.9%) of 95 cascade (P=0.001). In hypotonic stomach, the incidence of stomach cancer was lower compared to the other three types significantly (p<0.05). Gastritis or gastric ulcer was found in 146(33.3%) of eutonic stomach, in 293(32.1%) of hypotonic, in 36(35.2%) of steerhorn, and in 26(27.3%) of cascade (p=0.640). In conclusion, gastric contour variation seems to be a factor affecting development of stomach cancer. The patients with hypotonic stomach may have lower incidence of stomach cancer than that of the other types. There was no relationship between the contour and gastric ulcer

  7. Variation in contour and cancer of stomach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Hong; Hwang, Seon Moon [Asan Medical Center, Asan (Korea, Republic of); Yoon, Kwon Ha [College of Medicine, Wonkwang Univ., Iksan (Korea, Republic of)

    1999-04-01

    There were four types of stomach contour included eutonic, hypotonic, steerhorn, and cascade. The aim of this study is to clarify relationship between incidence of stomach cancer and contour variation of the stomach. Double- contrast upper gastrointestinal study was performed in 1,546 patients, who had dyspepsia or other gastrointestinal tract symptoms. The radiographs were classified into the four types including eutonic, hypotonic, steerhorn, and cascade according to stomach contour in relation to body build. We also reviewed pathologic reports on endoscopic biopsy or surgical specimen. We studied the presence of relationship between incidence of stomach cancer and variation of stomach contour. We also examined the incidence of gastritis and gastric ulcer to the stomach contour variation. Of total 1,546 patients, eutonic stomach were 438(28.3%), hypotonic 911(58.9%), steerhorn 102(6.5%) and cascade 95(6.2%). Stomach cancer was found in 139(31.7%) of 438 eutonic stomachs, in 135(14.8%) of 911 hypotonic, in 42(41.2%) of 102 steerhorn, and in 24(36.9%) of 95 cascade (P=0.001). In hypotonic stomach, the incidence of stomach cancer was lower compared to the other three types significantly (p<0.05). Gastritis or gastric ulcer was found in 146(33.3%) of eutonic stomach, in 293(32.1%) of hypotonic, in 36(35.2%) of steerhorn, and in 26(27.3%) of cascade (p=0.640). In conclusion, gastric contour variation seems to be a factor affecting development of stomach cancer. The patients with hypotonic stomach may have lower incidence of stomach cancer than that of the other types. There was no relationship between the contour and gastric ulcer.

  8. A deep auto-encoder model for gene expression prediction.

    Science.gov (United States)

    Xie, Rui; Wen, Jia; Quitadamo, Andrew; Cheng, Jianlin; Shi, Xinghua

    2017-11-17

    Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess how good genetic variants will contribute to gene expression changes. This new deep learning model is a regression-based predictive model based on the MultiLayer Perceptron and Stacked Denoising Auto-encoder (MLP-SAE). The model is trained using a stacked denoising auto-encoder for feature selection and a multilayer perceptron framework for backpropagation. We further improve the model by introducing dropout to prevent overfitting and improve performance. To demonstrate the usage of this model, we apply MLP-SAE to a real genomic datasets with genotypes and gene expression profiles measured in yeast. Our results show that the MLP-SAE model with dropout outperforms other models including Lasso, Random Forests and the MLP-SAE model without dropout. Using the MLP-SAE model with dropout, we show that gene expression quantifications predicted by the model solely based on genotypes, align well with true gene expression patterns. We provide a deep auto-encoder model for predicting gene expression from SNP genotypes. This study demonstrates that deep learning is appropriate for tackling another genomic problem, i.e., building predictive models to understand genotypes' contribution to gene expression. With the emerging availability of richer genomic data, we anticipate that deep learning models play a bigger role in modeling and interpreting genomics.

  9. Noninvasive pulse contour analysis for determination of cardiac output in patients with chronic heart failure.

    Science.gov (United States)

    Roth, Sebastian; Fox, Henrik; Fuchs, Uwe; Schulz, Uwe; Costard-Jäckle, Angelika; Gummert, Jan F; Horstkotte, Dieter; Oldenburg, Olaf; Bitter, Thomas

    2018-05-01

    Determination of cardiac output (CO) is essential in diagnosis and management of heart failure (HF). The gold standard to obtain CO is invasive assessment via thermodilution (TD). Noninvasive pulse contour analysis (NPCA) is supposed as a new method of CO determination. However, a validation of this method in HF is pending and performed in the present study. Patients with chronic-stable HF and reduced left ventricular ejection fraction (LVEF ≤ 45%; HF-REF) underwent right heart catheterization including TD. NPCA using the CNAP Monitor (V5.2.14, CNSystems Medizintechnik AG) was performed simultaneously. Three standardized TD measurements were compared with simultaneous auto-calibrated NPCA CO measurements. In total, 84 consecutive HF-REF patients were enrolled prospectively in this study. In 4 patients (5%), TD was not successful and for 22 patients (26%, 18 with left ventricular assist device), no NPCA signal could be obtained. For the remaining 58 patients, Bland-Altman analysis revealed a mean bias of + 1.92 L/min (limits of agreement ± 2.28 L/min, percentage error 47.4%) for CO. With decreasing cardiac index, as determined by the gold standard of TD, there was an increasing gap between CO values obtained by TD and NPCA (r = - 0.75, p TD-CI classified 52 (90%) patients to have a reduced CI (REF patients, auto-calibrated NPCA systematically overestimates CO with decrease in cardiac function. Therefore, to date, NPCA cannot be recommended in this cohort.

  10. Evaluating the impact of a Canadian national anatomy and radiology contouring boot camp for radiation oncology residents.

    Science.gov (United States)

    Jaswal, Jasbir; D'Souza, Leah; Johnson, Marjorie; Tay, KengYeow; Fung, Kevin; Nichols, Anthony; Landis, Mark; Leung, Eric; Kassam, Zahra; Willmore, Katherine; D'Souza, David; Sexton, Tracy; Palma, David A

    2015-03-15

    Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course ("boot camp") designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, Pradiology in addition to enhancing their confidence and accuracy in contouring. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. SU-D-202-02: Quantitative Imaging: Correlation Between Image Feature Analysis and the Accuracy of Manually Drawn Contours On PET Images

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, N; Johnson, P; Chinea, F; Patel, V; Yang, F [University of Miami, Miami, FL (United States)

    2016-06-15

    Purpose: To evaluate the correlation between image features and the accuracy of manually drawn target contours on synthetic PET images Methods: A digital PET phantom was used in combination with Monte Carlo simulation to create a set of 26 simulated PET images featuring a variety of tumor shapes and activity heterogeneity. These tumor volumes were used as a gold standard in comparisons with manual contours delineated by 10 radiation oncologist on the simulated PET images. Metrics used to evaluate segmentation accuracy included the dice coefficient, false positive dice, false negative dice, symmetric mean absolute surface distance, and absolute volumetric difference. Image features extracted from the simulated tumors consisted of volume, shape complexity, mean curvature, and intensity contrast along with five texture features derived from the gray-level neighborhood difference matrices including contrast, coarseness, busyness, strength, and complexity. Correlation between these features and contouring accuracy were examined. Results: Contour accuracy was reasonably well correlated with a variety of image features. Dice coefficient ranged from 0.7 to 0.90 and was correlated closely with contrast (r=0.43, p=0.02) and complexity (r=0.5, p<0.001). False negative dice ranged from 0.10 to 0.50 and was correlated closely with contrast (r=0.68, p<0.001) and complexity (r=0.66, p<0.001). Absolute volumetric difference ranged from 0.0002 to 0.67 and was correlated closely with coarseness (r=0.46, p=0.02) and complexity (r=0.49, p=0.008). Symmetric mean absolute difference ranged from 0.02 to 1 and was correlated closely with mean curvature (r=0.57, p=0.02) and contrast (r=0.6, p=0.001). Conclusion: The long term goal of this study is to assess whether contouring variability can be reduced by providing feedback to the practitioner based on image feature analysis. The results are encouraging and will be used to develop a statistical model which will enable a prediction of

  12. Development and Validation of Consensus Contouring Guidelines for Adjuvant Radiation Therapy for Bladder Cancer After Radical Cystectomy

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Brian C. [Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Bosch, Walter R. [Washington University in St. Louis, St. Louis, Missouri (United States); Bahl, Amit [University Hospitals Bristol NHS Foundation Trust, Bristol (United Kingdom); Birtle, Alison J. [Royal Preston Hospital, Preston (United Kingdom); Breau, Rodney H. [University of Ottawa, Ottawa, Ontario (Canada); Challapalli, Amarnath [University Hospitals Bristol NHS Foundation Trust, Bristol (United Kingdom); Chang, Albert J. [University of California San Francisco, San Francisco, California (United States); Choudhury, Ananya [Department of Clinical Oncology, The Christie NHS Foundation Trust, Manchester (United Kingdom); The University of Manchester, Manchester Academic Heath Science Centre, Manchester (United Kingdom); Daneshmand, Sia [University of Southern California, Los Angeles, California (United States); El-Gayed, Ali [Saskatoon Cancer Centre, Saskatoon (Canada); Feldman, Adam [Massachusetts General Hospital, Boston, Massachusetts (United States); Finkelstein, Steven E. [Cancer Treatment Centers of America, Tulsa, Oklahoma (United States); Guzzo, Thomas J. [Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Hilman, Serena [University Hospitals Bristol NHS Foundation Trust, Bristol (United Kingdom); Jani, Ashesh [Emory University, Atlanta, Georgia (United States); Malkowicz, S. Bruce [Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania (United States); Mantz, Constantine A. [21st Century Oncology, Scottsdale, Arizona (United States); 21st Century Oncology, Fort Myers, Florida (United States); Master, Viraj [Emory University, Atlanta, Georgia (United States); Mitra, Anita V. [University College London Hospital, London (United Kingdom); Murthy, Vedang [Tata Memorial Center, Mumbai (India); and others

    2016-09-01

    Purpose: To develop multi-institutional consensus clinical target volumes (CTVs) and organs at risk (OARs) for male and female bladder cancer patients undergoing adjuvant radiation therapy (RT) in clinical trials. Methods and Materials: We convened a multidisciplinary group of bladder cancer specialists from 15 centers and 5 countries. Six radiation oncologists and 7 urologists participated in the development of the initial contours. The group proposed initial language for the CTVs and OARs, and each radiation oncologist contoured them on computed tomography scans of a male and female cystectomy patient with input from ≥1 urologist. On the basis of the initial contouring, the group updated its CTV and OAR descriptions. The cystectomy bed, the area of greatest controversy, was contoured by another 6 radiation oncologists, and the cystectomy bed contouring language was again updated. To determine whether the revised language produced consistent contours, CTVs and OARs were redrawn by 6 additional radiation oncologists. We evaluated their contours for level of agreement using the Landis-Koch interpretation of the κ statistic. Results: The group proposed that patients at elevated risk for local-regional failure with negative margins should be treated to the pelvic nodes alone (internal/external iliac, distal common iliac, obturator, and presacral), whereas patients with positive margins should be treated to the pelvic nodes and cystectomy bed. Proposed OARs included the rectum, bowel space, bone marrow, and urinary diversion. Consensus language describing the CTVs and OARs was developed and externally validated. The revised instructions were found to produce consistent contours. Conclusions: Consensus descriptions of CTVs and OARs were successfully developed and can be used in clinical trials of adjuvant radiation therapy for bladder cancer.

  13. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction

    Directory of Open Access Journals (Sweden)

    Jinke Wang

    2016-01-01

    Full Text Available This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD 11.15±69.63 cm3, volume overlap error (VOE 3.5057±1.3719%, average surface distance (ASD 0.7917±0.2741 mm, root mean square distance (RMSD 1.6957±0.6568 mm, maximum symmetric absolute surface distance (MSD 21.3430±8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  14. Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, Luca; Elisei, Federica [San Gerardo Hospital, Nuclear Medicine, Monza (Italy); Meregalli, Sofia; Niespolo, Rita [San Gerardo Hospital, Radiotherapy, Monza (Italy); Zorz, Alessandra; De Ponti, Elena; Morzenti, Sabrina; Crespi, Andrea [San Gerardo Hospital, Medical Physics, Monza (Italy); Brenna, Sarah [University of Milan-Bicocca, School of Radiation Oncology, Monza (Italy); Gardani, Gianstefano [San Gerardo Hospital, Radiotherapy, Monza (Italy); University of Milan-Bicocca, Milan (Italy); Messa, Cristina [San Gerardo Hospital, Nuclear Medicine, Monza (Italy); University of Milan-Bicocca, Tecnomed Foundation, Milan (Italy); National Research Council, Institute for Bioimaging and Molecular Physiology, Milan (Italy)

    2014-04-15

    The aim of this study was to compare planning target volume (PTV) defined on respiratory-gated positron emission tomography (PET)/CT (RG-PET/CT) to PTV based on ungated free-breathing CT and to evaluate if RG-PET/CT can be useful to personalize PTV by tailoring the target volume to the lesion motion in lung cancer patients. Thirteen lung cancer patients (six men, mean age 70.0 years, 1 small cell lung cancer, 12 non-small cell lung cancer) who were candidates for radiation therapy were prospectively enrolled and submitted to RG-PET/CT. Ungated free-breathing CT images obtained during a PET/CT study were visually contoured by the radiation oncologist to define standard clinical target volumes (CTV1). Standard PTV (PTV1) resulted from CTV1 with the addition of 1-cm expansion of margins in all directions. RG-PET/CT images were contoured by the nuclear medicine physician and radiation oncologist according to a standardized institutional protocol for contouring gated images. Each CT and PET image of the patient's respiratory cycle phases was contoured to obtain the RG-CT-based CTV (CTV2) and the RG-PET/CT-based CTV (CTV3), respectively. RG-CT-based and RG-PET/CT-based PTV (PTV2 and PTV3, respectively) were then derived from gated CTVs with a margin expansion of 7-8 mm in head to feet direction and 5 mm in anterior to posterior and left to right direction. The portions of gated PTV2 and PTV3 geometrically not encompassed in PTV1 (PTV2 out PTV1 and PTV3 out PTV1) were also calculated. Mean ± SD CTV1, CTV2 and CTV3 were 30.5 ± 33.2, 43.1 ± 43.2 and 44.8 ± 45.2 ml, respectively. CTV1 was significantly smaller than CTV2 and CTV3 (p = 0.017 and 0.009 with Student's t test, respectively). No significant difference was found between CTV2 and CTV3. Mean ± SD of PTV1, PTV2 and PTV3 were 118.7 ± 94.1, 93.8 ± 80.2 and 97.0 ± 83.9 ml, respectively. PTV1 was significantly larger than PTV2 and PTV3 (p = 0.038 and 0.043 with Student's t test, respectively). No

  15. Determination of patients contour for using in radiotherapy planning, by microcomputer

    International Nuclear Information System (INIS)

    Elbern, A.W.; Souto, S.L.L.

    1987-01-01

    This work describes a system for measuring the contour of patients, based on a mechanical device which, during the movement of its tip over the patient's contour, changes the resistence of three potenciometers while the device change its angles. The resistence variation, produces voltage changes, which are digitalized by an analog to digital converter in a microcomputer. The mathematical routines for processing the acquired data, and the obtained results, are discussed in this paper. (author) [pt

  16. Determination of patient's contour for use in radiotherapeutic planning by microcomputer

    International Nuclear Information System (INIS)

    Elbern, A.W.; Souto, S.L.L.

    1987-01-01

    A system for measuring the contour of patients based on a mechanical device, is described. During the movement of the device's tip, over the patient's contour, changes in the resistence of three potenciometers are reported, and the device changes its angles. Voltage changes produced by resistence variation, are digitalized by an analog to digital converter in a micro-computer. The mathematical routines for processing the acquired data, and the obtained results are discussed. (M.A.C.) [pt

  17. Retrofitting the AutoBayes Program Synthesis System with Concrete Syntax

    Science.gov (United States)

    Fischer, Bernd; Visser, Eelco

    2004-01-01

    AutoBayes is a fully automatic, schema-based program synthesis system for statistical data analysis applications. Its core component is a schema library. i.e., a collection of generic code templates with associated applicability constraints which are instantiated in a problem-specific way during synthesis. Currently, AutoBayes is implemented in Prolog; the schemas thus use abstract syntax (i.e., Prolog terms) to formulate the templates. However, the conceptual distance between this abstract representation and the concrete syntax of the generated programs makes the schemas hard to create and maintain. In this paper we describe how AutoBayes is retrofitted with concrete syntax. We show how it is integrated into Prolog and describe how the seamless interaction of concrete syntax fragments with AutoBayes's remaining legacy meta-programming kernel based on abstract syntax is achieved. We apply the approach to gradually mitigate individual schemas without forcing a disruptive migration of the entire system to a different First experiences show that a smooth migration can be achieved. Moreover, it can result in a considerable reduction of the code size and improved readability of the code. In particular, abstracting out fresh-variable generation and second-order term construction allows the formulation of larger continuous fragments.

  18. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Instant Autodesk AutoCAD 2014 customization with .NET

    CERN Document Server

    Nelson, Tom

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. An instruction-based guide with examples written in the C# programming language. VB.NET programmers can also take advantage of these examples by using one of the free conversion websites to convert the examples to VB.NET.Clear, step-by-step instructions and complete code examples illustrate the processes, making it easy to develop your own custom AutoCAD tools.This book is perfect if you are interested in customizing AutoCAD 2014 using the .NET API. You should have a basic familiari

  20. Auto-Generated Semantic Processing Services

    Science.gov (United States)

    Davis, Rodney; Hupf, Greg

    2009-01-01

    Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.

  1. Perception of illusory contour figures: Microgenetic analysis

    Directory of Open Access Journals (Sweden)

    Gvozdenović Vasilije P.

    2004-01-01

    Full Text Available Microgenetic analysis was used to investigate perception of illusory contour figures which represent whole, completed forms on the basis of segmented, incomplete stimulation. The analysis provided an experimental approach to this phenomenon which was standardly investigated phenomenologically. Experimental procedure consisted of two phases: a priming phase and b test phase which consisted of visual search task. Two types of visual search tasks were applied: (i classic detection, in which subjects were detecting presence or absence of the target stimuli and (ii two-alternative forced choice, 2AFC, in which subjects performed discrimination between two concurrent targets (target A vs. target B. Variation of exposition of prim stimuli was used as an indication of the percept formation period. Concepts like early vision, visual attention and feature binding were investigated. Four experiments were conducted. Their outcome showed that (i perception of amodal figure requires visual attention, (ii features binding precedes spatial attention and (iii time period of percept formation is dependent of task properties and varies between 50 - 150 ms. Some results obtained in this research could be explained by feature-integration theory (Treisman & Gelade, 1980; Treisman, 1986. Furthermore, percept formation period data comply with data acquired in Elliott & Müller's psychophysical research (1998.

  2. MS AutoCad

    DEFF Research Database (Denmark)

    Andersen, Michael Rye; Heinicke, Hugo

    1996-01-01

    Formålet med dette notat er at give en introduktion til tegning af et generalarrangement ved anvendelse af CAD-programmet AutoCAD. Generalarrangementets formål er at skabe en overskuelig præsentation af et skibsprojekt. Det skal gøres indenfor de rammer, som ligger til grund for praktiskprojekter......Formålet med dette notat er at give en introduktion til tegning af et generalarrangement ved anvendelse af CAD-programmet AutoCAD. Generalarrangementets formål er at skabe en overskuelig præsentation af et skibsprojekt. Det skal gøres indenfor de rammer, som ligger til grund...

  3. PERI auto-tuning

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D H; Williams, S [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Chame, J; Chen, C; Hall, M [USC/ISI, Marina del Rey, CA 90292 (United States); Dongarra, J; Moore, S; Seymour, K; You, H [University of Tennessee, Knoxville, TN 37996 (United States); Hollingsworth, J K; Tiwari, A [University of Maryland, College Park, MD 20742 (United States); Hovland, P; Shin, J [Argonne National Laboratory, Argonne, IL 60439 (United States)], E-mail: mhall@isi.edu

    2008-07-15

    The enormous and growing complexity of today's high-end systems has increased the already significant challenges of obtaining high performance on equally complex scientific applications. Application scientists are faced with a daunting challenge in tuning their codes to exploit performance-enhancing architectural features. The Performance Engineering Research Institute (PERI) is working toward the goal of automating portions of the performance tuning process. This paper describes PERI's overall strategy for auto-tuning tools and recent progress in both building auto-tuning tools and demonstrating their success on kernels, some taken from large-scale applications.

  4. 75 FR 65524 - United Auto Workers Local 1999, Oklahoma City, OK; Notice of Negative Determination Regarding...

    Science.gov (United States)

    2010-10-25

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,863] United Auto Workers Local... workers and former workers of United Auto Workers Local 1999, Oklahoma City, Oklahoma (the subject firm... Auto Workers Local 1999, Oklahoma City, Oklahoma, was based on the findings that the workers at the...

  5. Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Mohseni Salehi, Seyed Sadegh; Erdogmus, Deniz; Gholipour, Ali

    2017-11-01

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and the robustness of brain extraction, therefore, are crucial for the accuracy of the entire brain analysis process. The state-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry, and therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent, and registration-free brain extraction tool, in this paper, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2-D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2-D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3-D image information without the need for computationally expensive 3-D convolutions and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark data sets, namely, LPBA40 and OASIS, in which we obtained the Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily oriented fetal brains in reconstructed fetal brain magnetic

  6. AutoBayes Program Synthesis System System Internals

    Science.gov (United States)

    Schumann, Johann Martin

    2011-01-01

    This lecture combines the theoretical background of schema based program synthesis with the hands-on study of a powerful, open-source program synthesis system (Auto-Bayes). Schema-based program synthesis is a popular approach toward program synthesis. The lecture will provide an introduction into this topic and discuss how this technology can be used to generate customized algorithms. The synthesis of advanced numerical algorithms requires the availability of a powerful symbolic (algebra) system. Its task is to symbolically solve equations, simplify expressions, or to symbolically calculate derivatives (among others) such that the synthesized algorithms become as efficient as possible. We will discuss the use and importance of the symbolic system for synthesis. Any synthesis system is a large and complex piece of code. In this lecture, we will study Autobayes in detail. AutoBayes has been developed at NASA Ames and has been made open source. It takes a compact statistical specification and generates a customized data analysis algorithm (in C/C++) from it. AutoBayes is written in SWI Prolog and many concepts from rewriting, logic, functional, and symbolic programming. We will discuss the system architecture, the schema libary and the extensive support infra-structure. Practical hands-on experiments and exercises will enable the student to get insight into a realistic program synthesis system and provides knowledge to use, modify, and extend Autobayes.

  7. Fault tolerant control of multivariable processes using auto-tuning PID controller.

    Science.gov (United States)

    Yu, Ding-Li; Chang, T K; Yu, Ding-Wen

    2005-02-01

    Fault tolerant control of dynamic processes is investigated in this paper using an auto-tuning PID controller. A fault tolerant control scheme is proposed composing an auto-tuning PID controller based on an adaptive neural network model. The model is trained online using the extended Kalman filter (EKF) algorithm to learn system post-fault dynamics. Based on this model, the PID controller adjusts its parameters to compensate the effects of the faults, so that the control performance is recovered from degradation. The auto-tuning algorithm for the PID controller is derived with the Lyapunov method and therefore, the model predicted tracking error is guaranteed to converge asymptotically. The method is applied to a simulated two-input two-output continuous stirred tank reactor (CSTR) with various faults, which demonstrate the applicability of the developed scheme to industrial processes.

  8. MULTIMEDIA DATA TRANSMISSION THROUGH TCP/IP USING HASH BASED FEC WITH AUTO-XOR SCHEME

    OpenAIRE

    R. Shalin; D. Kesavaraja

    2012-01-01

    The most preferred mode for communication of multimedia data is through the TCP/IP protocol. But on the other hand the TCP/IP protocol produces huge packet loss unavoidable due to network traffic and congestion. In order to provide a efficient communication it is necessary to recover the loss of packets. The proposed scheme implements Hash based FEC with auto XOR scheme for this purpose. The scheme is implemented through Forward error correction, MD5 and XOR for providing efficient transmissi...

  9. Roentgenological differential diagnosis of the psoas contour

    International Nuclear Information System (INIS)

    Voran, G.; Pfab, R.; Hess, F.

    1984-01-01

    The assessment of the psoas border contour in the X-ray photo of the abdomen is important for differential diagnostic considerations. For the separation of fallacious psoas configurations which are similar to the well defined pathological form changes, a regular supine position of the patient was chosen, and the psoas examined without and with muscle tension. The whole visible psoas muscle system did not show any unilateral bulging of the border silhouette during muscle action. Isolated tension of the left psoas muscle induced a distinct deviation of both border contours to the left side, too. There was a clear tendency of a more distinct psoas border contour and of augmented opacity of the muscle over its whole length under muscle tension. Changes similar to the bulging border contour of a psoas abscess were not produced by muscular action. (orig.) [de

  10. AutoT&T v.2: An Efficient and Versatile Tool for Lead Structure Generation and Optimization.

    Science.gov (United States)

    Li, Yan; Zhao, Zhixiong; Liu, Zhihai; Su, Minyi; Wang, Renxiao

    2016-02-22

    In structure-based drug design, automated de novo design methods are helpful tools for lead discovery as well as lead optimization. In a previous study ( J. Chem. Inf. 2011 , 51 , 1474 - 1491 ) we reported a new de novo design method, namely, Automatic Tailoring and Transplanting (AutoT&T). It overcomes some intrinsic problems in conventional fragment-based buildup methods. In this study, we describe an upgraded version, namely, AutoT&T2. Structural operations conducted by AutoT&T2 have been largely optimized by introducing several new algorithms. As a result, its overall speed in multiround optimization jobs has been improved by a few thousand fold. With this improvement, it is now practical to conduct structural crossover among multiple lead molecules using AutoT&T2. Three different test cases are described in this study that demonstrate the new features and versatile applications of AutoT&T2. The AutoT&T2 software suite is available to the public. Besides, a Web portal for running AutoT&T2 online is provided at http://www.sioc-ccbg.ac.cn/software/att2 for testing.

  11. Tumour auto-antibody screening: performance of protein microarrays using SEREX derived antigens

    International Nuclear Information System (INIS)

    Stempfer, René; Weinhäusel, Andreas; Syed, Parvez; Vierlinger, Klemens; Pichler, Rudolf; Meese, Eckart; Leidinger, Petra; Ludwig, Nicole; Kriegner, Albert; Nöhammer, Christa

    2010-01-01

    The simplicity and potential of minimal invasive testing using serum from patients make auto-antibody based biomarkers a very promising tool for use in diagnostics of cancer and auto-immune disease. Although several methods exist for elucidating candidate-protein markers, immobilizing these onto membranes and generating so called macroarrays is of limited use for marker validation. Especially when several hundred samples have to be analysed, microarrays could serve as a good alternative since processing macro membranes is cumbersome and reproducibility of results is moderate. Candidate markers identified by SEREX (serological identification of antigens by recombinant expression cloning) screenings of brain and lung tumour were used for macroarray and microarray production. For microarray production recombinant proteins were expressed in E. coli by autoinduction and purified His-tag (histidine-tagged) proteins were then used for the production of protein microarrays. Protein arrays were hybridized with the serum samples from brain and lung tumour patients. Methods for the generation of microarrays were successfully established when using antigens derived from membrane-based selection. Signal patterns obtained by microarrays analysis of brain and lung tumour patients' sera were highly reproducible (R = 0.92-0.96). This provides the technical foundation for diagnostic applications on the basis of auto-antibody patterns. In this limited test set, the assay provided high reproducibility and a broad dynamic range to classify all brain and lung samples correctly. Protein microarray is an efficient means for auto-antibody-based detection when using SEREX-derived clones expressing antigenic proteins. Protein microarrays are preferred to macroarrays due to the easier handling and the high reproducibility of auto-antibody testing. Especially when using only a few microliters of patient samples protein microarrays are ideally suited for validation of auto

  12. Spectral embedding based active contour (SEAC): application to breast lesion segmentation on DCE-MRI

    Science.gov (United States)

    Agner, Shannon C.; Xu, Jun; Rosen, Mark; Karthigeyan, Sudha; Englander, Sarah; Madabhushi, Anant

    2011-03-01

    Spectral embedding (SE), a graph-based manifold learning method, has previously been shown to be useful in high dimensional data classification. In this work, we present a novel SE based active contour (SEAC) segmentation scheme and demonstrate its applications in lesion segmentation on breast dynamic contrast enhance magnetic resonance imaging (DCE-MRI). In this work, we employ SE on DCE-MRI on a per voxel basis to embed the high dimensional time series intensity vector into a reduced dimensional space, where the reduced embedding space is characterized by the principal eigenvectors. The orthogonal eigenvector-based data representation allows for computation of strong tensor gradients in the spectrally embedded space and also yields improved region statistics that serve as optimal stopping criteria for SEAC. We demonstrate both analytically and empirically that the tensor gradients in the spectrally embedded space are stronger than the corresponding gradients in the original grayscale intensity space. On a total of 50 breast DCE-MRI studies, SEAC yielded a mean absolute difference (MAD) of 3.2+/-2.1 pixels and mean Dice similarity coefficient (DSC) of 0.74+/-0.13 compared to manual ground truth segmentation. An active contour in conjunction with fuzzy c-means (FCM+AC), a commonly used segmentation method for breast DCE-MRI, produced a corresponding MAD of 7.2+/-7.4 pixels and mean DSC of 0.58+/-0.32. In conjunction with a set of 6 quantitative morphological features automatically extracted from the SEAC derived lesion boundary, a support vector machine (SVM) classifier yielded an area under the curve (AUC) of 0.73, for discriminating between 10 benign and 30 malignant lesions; the corresponding SVM classifier with the FCM+AC derived morphological features yielded an AUC of 0.65.

  13. Invariance Signatures: Characterizing contours by their departures from invariance

    OpenAIRE

    Squire, David; Caelli, Terry M.

    1997-01-01

    In this paper, a new invariant feature of two-dimensional contours is reported: the Invariance Signature. The Invariance Signature is a measure of the degree to which a contour is invariant under a variety of transformations, derived from the theory of Lie transformation groups. It is shown that the Invariance Signature is itself invariant under shift, rotation and scaling of the contour. Since it is derived from local properties of the contour, it is well-suited to a neural network implement...

  14. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    International Nuclear Information System (INIS)

    Naidu, M C A; Nolakha, Dinesh; Saharkar, B S; Kavani, K M; Patel, D R

    2012-01-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of 'Open loop, auto reversing liquid nitrogen based thermal system'. System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  15. CONTOURS BASED APPROACH FOR THERMAL IMAGE AND TERRESTRIAL POINT CLOUD REGISTRATION

    Directory of Open Access Journals (Sweden)

    A. Bennis

    2013-07-01

    Full Text Available Building energetic performances strongly depend on the thermal insulation. However the performance of the insulation materials tends to decrease over time which necessitates the continuous monitoring of the building in order to detect and repair the anomalous zones. In this paper, it is proposed to couple 2D infrared images representing the surface temperature of the building with 3D point clouds acquired with Terrestrial Laser Scanner (TLS resulting in a semi-automatic approach allowing the texturation of TLS data with infrared image of buildings. A contour-based algorithm is proposed whose main features are : 1 the extraction of high level primitive is not required 2 the use of projective transform allows to handle perspective effects 3 a point matching refinement procedure allows to cope with approximate control point selection. The procedure is applied to test modules aiming at investigating the thermal properties of material.

  16. Closed contour fractal dimension estimation by the Fourier transform

    International Nuclear Information System (INIS)

    Florindo, J.B.; Bruno, O.M.

    2011-01-01

    Highlights: → A novel fractal dimension concept, based on Fourier spectrum, is proposed. → Computationally simple. Computational time smaller than conventional fractal methods. → Results are closer to Hausdorff-Besicovitch than conventional methods. → The method is more accurate and robustness to geometric operations and noise addition. - Abstract: This work proposes a novel technique for the numerical calculus of the fractal dimension of fractal objects which can be represented as a closed contour. The proposed method maps the fractal contour onto a complex signal and calculates its fractal dimension using the Fourier transform. The Fourier power spectrum is obtained and an exponential relation is verified between the power and the frequency. From the parameter (exponent) of the relation, is obtained the fractal dimension. The method is compared to other classical fractal dimension estimation methods in the literature, e.g., Bouligand-Minkowski, box-counting and classical Fourier. The comparison is achieved by the calculus of the fractal dimension of fractal contours whose dimensions are well-known analytically. The results showed the high precision and robustness of the proposed technique.

  17. Auto-Interviewing, Auto-Ethnography and Critical Incident Methodology for Eliciting a Self-Conceptualised Worldview

    Directory of Open Access Journals (Sweden)

    Béatrice Boufoy-Bastick

    2004-01-01

    Full Text Available Knowing oneself has been an age-old humanistic concern for many western and oriental philosophers. The same concern is now shared by modern psychologists and anthropologists who seek to understand the "self" and others by eluci­dating their worldviews. This paper presents an auto-anthropological methodology which can ef­fec­tively elucidate one's worldview. This intro­spective qualitative methodology uses integratively three methodological processes, namely auto-inter­viewing, auto-ethnography and critical incident technique to elicit baseline cultural data. The paper reports on how this methodology was used to elicit my current worldview. It first explains how emic data were educed and rendered in emo­tionally enhanced narratives, which were then deconstructed to elicit the major recurring themes in the etic interpretive content analysis. To illus­trate this auto-anthropological methodology, two cultural life events have been used: a critical incident in Singapore and a consciousness raising process in Fiji. The first event revealed my own education ideology while the second made me realise my mitigated support for cultural diversity. URN: urn:nbn:de:0114-fqs0401371

  18. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Tan, J; Kavanaugh, J; Dolly, S; Gay, H; Thorstad, W; Anastasio, M; Altman, M; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)

    2014-06-15

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-time and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding

  19. Up and running with AutoCAD 2014 2D and 3D drawing and modeling

    CERN Document Server

    Gindis, Elliot

    2013-01-01

    Get ""Up and Running"" with AutoCAD using Gindis's combination of step-by-step instruction, examples, and insightful explanations. The emphasis from the beginning is on core concepts and practical application of AutoCAD in architecture, engineering and design. Equally useful in instructor-led classroom training, self-study, or as a professional reference, the book is written with the user in mind by a long-time AutoCAD professional and instructor based on what works in the industry and the classroom. Strips away complexities, both real and perceived, and reduces AutoCAD t

  20. Container code recognition in information auto collection system of container inspection

    International Nuclear Information System (INIS)

    Su Jianping; Chen Zhiqiang; Zhang Li; Gao Wenhuan; Kang Kejun

    2003-01-01

    Now custom needs electrical application and automatic detection. Container inspection should not only give the image of the goods, but also auto-attain container's code and weight. Its function and track control, information transfer make up the Information Auto Collection system of Container Inspection. Code Recognition is the point. The article is based on model match, the close property of character, and uses it to recognize. Base on checkout rule, design the adjustment arithmetic, form the whole recognition strategy. This strategy can achieve high recognition ratio and robust property

  1. What Is the Best Way to Contour Lung Tumors on PET Scans? Multiobserver Validation of a Gradient-Based Method Using a NSCLC Digital PET Phantom

    International Nuclear Information System (INIS)

    Werner-Wasik, Maria; Nelson, Arden D.; Choi, Walter; Arai, Yoshio; Faulhaber, Peter F.; Kang, Patrick; Almeida, Fabio D.; Xiao, Ying; Ohri, Nitin; Brockway, Kristin D.; Piper, Jonathan W.; Nelson, Aaron S.

    2012-01-01

    Purpose: To evaluate the accuracy and consistency of a gradient-based positron emission tomography (PET) segmentation method, GRADIENT, compared with manual (MANUAL) and constant threshold (THRESHOLD) methods. Methods and Materials: Contouring accuracy was evaluated with sphere phantoms and clinically realistic Monte Carlo PET phantoms of the thorax. The sphere phantoms were 10–37 mm in diameter and were acquired at five institutions emulating clinical conditions. One institution also acquired a sphere phantom with multiple source-to-background ratios of 2:1, 5:1, 10:1, 20:1, and 70:1. One observer segmented (contoured) each sphere with GRADIENT and THRESHOLD from 25% to 50% at 5% increments. Subsequently, seven physicians segmented 31 lesions (7–264 mL) from 25 digital thorax phantoms using GRADIENT, THRESHOLD, and MANUAL. Results: For spheres 20 mm (p < 0.065) and <20 mm (p < 0.015). For digital thorax phantoms, GRADIENT was the most accurate (p < 0.01), with a mean absolute % error in volume of 10.99% (11.9% SD), followed by 25% THRESHOLD at 17.5% (29.4% SD), and MANUAL at 19.5% (17.2% SD). GRADIENT had the least systematic bias, with a mean % error in volume of –0.05% (16.2% SD) compared with 25% THRESHOLD at –2.1% (34.2% SD) and MANUAL at –16.3% (20.2% SD; p value <0.01). Interobserver variability was reduced using GRADIENT compared with both 25% THRESHOLD and MANUAL (p value <0.01, Levene’s test). Conclusion: GRADIENT was the most accurate and consistent technique for target volume contouring. GRADIENT was also the most robust for varying imaging conditions. GRADIENT has the potential to play an important role for tumor delineation in radiation therapy planning and response assessment.

  2. Cheap contouring of costly functions: the Pilot Approximation Trajectory algorithm

    International Nuclear Information System (INIS)

    Huttunen, Janne M J; Stark, Philip B

    2012-01-01

    The Pilot Approximation Trajectory (PAT) contour algorithm can find the contour of a function accurately when it is not practical to evaluate the function on a grid dense enough to use a standard contour algorithm, for instance, when evaluating the function involves conducting a physical experiment or a computationally intensive simulation. PAT relies on an inexpensive pilot approximation to the function, such as interpolating from a sparse grid of inexact values, or solving a partial differential equation (PDE) numerically using a coarse discretization. For each level of interest, the location and ‘trajectory’ of an approximate contour of this pilot function are used to decide where to evaluate the original function to find points on its contour. Those points are joined by line segments to form the PAT approximation of the contour of the original function. Approximating a contour numerically amounts to estimating a lower level set of the function, the set of points on which the function does not exceed the contour level. The area of the symmetric difference between the true lower level set and the estimated lower level set measures the accuracy of the contour. PAT measures its own accuracy by finding an upper confidence bound for this area. In examples, PAT can estimate a contour more accurately than standard algorithms, using far fewer function evaluations than standard algorithms require. We illustrate PAT by constructing a confidence set for viscosity and thermal conductivity of a flowing gas from simulated noisy temperature measurements, a problem in which each evaluation of the function to be contoured requires solving a different set of coupled nonlinear PDEs. (paper)

  3. VT 10 ft Contour Lines generated from bare earth lidar - Chittenden

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) ElevationContours_CN10T (10ft contours) was extracted from ElevationContours_CN2T (2ft contours), which was generated by USGS from the 2004...

  4. Gallbladder shape extraction from ultrasound images using active contour models.

    Science.gov (United States)

    Ciecholewski, Marcin; Chochołowicz, Jakub

    2013-12-01

    Gallbladder function is routinely assessed using ultrasonographic (USG) examinations. In clinical practice, doctors very often analyse the gallbladder shape when diagnosing selected disorders, e.g. if there are turns or folds of the gallbladder, so extracting its shape from USG images using supporting software can simplify a diagnosis that is often difficult to make. The paper describes two active contour models: the edge-based model and the region-based model making use of a morphological approach, both designed for extracting the gallbladder shape from USG images. The active contour models were applied to USG images without lesions and to those showing specific disease units, namely, anatomical changes like folds and turns of the gallbladder as well as polyps and gallstones. This paper also presents modifications of the edge-based model, such as the method for removing self-crossings and loops or the method of dampening the inflation force which moves nodes if they approach the edge being determined. The user is also able to add a fragment of the approximated edge beyond which neither active contour model will move if this edge is incomplete in the USG image. The modifications of the edge-based model presented here allow more precise results to be obtained when extracting the shape of the gallbladder from USG images than if the morphological model is used. © 2013 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.

  5. Role of endorectal MR imaging and MR spectroscopic imaging in defining treatable intraprostatic tumor foci in prostate cancer: Quantitative analysis of imaging contour compared to whole-mount histopathology

    International Nuclear Information System (INIS)

    Anwar, Mekhail; Westphalen, Antonio C.; Jung, Adam J.; Noworolski, Susan M.; Simko, Jeffry P.; Kurhanewicz, John; Roach, Mack; Carroll, Peter R.; Coakley, Fergus V.

    2014-01-01

    Purpose: To investigate the role of endorectal MR imaging and MR spectroscopic imaging in defining the contour of treatable intraprostatic tumor foci in prostate cancer, since targeted therapy requires accurate target volume definition. Materials and methods: We retrospectively identified 20 patients with prostate cancer who underwent endorectal MR imaging and MR spectroscopic imaging prior to radical prostatectomy and subsequent creation of detailed histopathological tumor maps from whole-mount step sections. Two experienced radiologists independently reviewed all MR images and electronically contoured all suspected treatable (⩾0.5 cm 3 ) tumor foci. Deformable co-registration in MATLAB was used to calculate the margin of error between imaging and histopathological contours at both capsular and non-capsular surfaces and the treatment margin required to ensure at least 95% tumor coverage. Results: Histopathology showed 17 treatable tumor foci in 16 patients, of which 8 were correctly identified by both readers and an additional 2 were correctly identified by reader 2. For all correctly identified lesions, both readers accurately identified that tumor contacted the prostatic capsule, with no error in contour identification. On the non-capsular border, the median distance between the imaging and histopathological contour was 1.4 mm (range, 0–12). Expanding the contour by 5 mm at the non-capsular margin included 95% of tumor volume not initially covered within the MR contour. Conclusions: Endorectal MR imaging and MR spectroscopic imaging can be used to accurately contour treatable intraprostatic tumor foci; adequate tumor coverage is achieved by expanding the treatment contour at the non-capsular margin by 5 mm

  6. Contour adaptation reduces the spreading of edge induced colors.

    Science.gov (United States)

    Coia, Andrew J; Crognale, Michael A

    2017-04-25

    Brief exposure to flickering achromatic outlines of an area causes a reduction in the brightness contrast of the surface inside the area. This contour adaptation to achromatic contours does not reduce surface contrast when the surface is chromatic (the saturation or colorimetric purity of the surface is maintained). In addition to reducing the brightness of physical luminance contrast, contour adaptation also reduces (or even reverses) the illusory brightness contrast seen in the Craik-O'Brien-Cornsweet illusion, in which two physically identical grey areas appear different brightness because of a sharp luminance edge separating them. Chromatic color spreading illusions also occur with chromatic inducing edges, and an unanswered question is whether contour adaptation can reduce the perceived contrast of illusory color spreading from edges, even though it cannot reduce the perceived contrast of physical surface color. The current studies use a color spreading illusion known as the watercolor effect in order to test whether illusory color spreading is affected by contour adaptation. The general findings of physical achromatic contrast being reduced and chromatic contrast being robust to contour adaptation were replicated. However, both illusory brightness and color were reduced by contour adaptation, even when the illusion edges only differed in chromatic contrast with each other and the background. Additional studies adapting to chromatic contours showed opposite effects on illusory color contrast than achromatic adaptation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Application of Auto CAD

    International Nuclear Information System (INIS)

    Park, Yong Un; Kim, Geun Ho

    1989-05-01

    This book has introduction to use this book and explanation of application on Auto CAD, which includes, sub directories, batch files, robot wrist, design of standard paper, title block, robort weld room, robert wrist joint, PC board, plant sym, electro, PID, machines, robots, bubbles, plant, schema, Pid, plant assembly, robots, dim plant, PL-ASSM, plotting line weight control, symbol drawing joint, Auto CAD using script file, set up of workout · MNU, workout MNU, ACAD, LSP and workout · MNU.

  8. Instant AutoIt scripting

    CERN Document Server

    Laso, Emilio Aristides de Fez

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. This is a Packt Instant How-to guide, which provides concise and clear recipes for getting started with AutoIt.Instant AutoIt Scripting Essentials How-to is for beginners who wish to know more about automation and programming, system administration developers who intent to automate/manage clusters and servers, and for computer programmers who want to control any PC to create seamless automation apps.

  9. The role of shape complexity in the detection of closed contours.

    Science.gov (United States)

    Wilder, John; Feldman, Jacob; Singh, Manish

    2016-09-01

    The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Evaluation of atlas-based autosegmentation with ABAS software for head-and-neck cancer

    International Nuclear Information System (INIS)

    Zhang Xiuchun; Hu Cairong; Chen Chuanben; Cai Yongjun

    2011-01-01

    Objective: To evaluate the autocontouring accuracy using the atlas-based autosegmentation of CT images for head-and-neck cancer. Methods: Ten head and neck patients with contours were selected. Two groups of autocontouring atlas were tested, the first group was for patients with own atlas, for the second group we tested the autocontouring of eight patients with other two patients atlas. Dice similarity coefficient (DSC) and overlap index (OI) were introduced to evaluate the autocontours, and the discrepancy between the two groups was evaluated through paired t-test. Results: Both the DSC and OI of all the organs in the first group were >0.80, the result of mandible was the highest (>0.91), the DSC of the gross tumor volume (GTV) was the lowest (0.81), the OI of the GTV was 0.82, and the DSC and OI of the clinical target volume (node) were 0.82 and 0, 79, respectively. Only the risk organ was delineated in the second group, and spinal cord and brain stem were combined to analyze. All the DSC was about 0.70, and the DSC and OI of mandible were higher than the others, which was due to its bone anatomy. The accuracy in the second group was significantly lower than that of the first group (t =3.24 - 8.26, P =0.014 -0.000), except the right parotid (t=2.08, P=0.075). Conclusions: Automatic segmentation generates contours of sufficient accuracy for adaptive planning intensity-modulated radiotherapy (IMRT) to accommodate anatomic changes during treatment. For convention planning IMRT normal structure auto-contouring,it need to select more standard atlas in order to acquire a satisfied autocontours. (authors)

  11. Computation-based virtual screening for designing novel antimalarial drugs by targeting falcipain-III: a structure-based drug designing approach.

    Science.gov (United States)

    Kesharwani, Rajesh Kumar; Singh, Durg Vijay; Misra, Krishna

    2013-01-01

    Cysteine proteases (falcipains), a papain-family of enzymes of Plasmodium falciparum, are responsible for haemoglobin degradation and thus necessary for its survival during asexual life cycle phase inside the human red blood cells while remaining non-functional for the human body. Therefore, these can act as potential targets for designing antimalarial drugs. The P. falciparum cysteine proteases, falcipain-II and falcipain- III are the enzymes which initiate the haemoglobin degradation, therefore, have been selected as targets. In the present study, we have designed new leupeptin analogues and subjected to virtual screening using Glide at the active site cavity of falcipain-II and falcipain-III to select the best docked analogues on the basis of Glide score and also compare with the result of AutoDock. The proposed analogues can be synthesized and tested in vivo as future potent antimalarial drugs. Protein falcipain-II and falcipain-III together with bounds inhibitors epoxysuccinate E64 (E64) and leupeptin respectively were retrieved from protein data bank (PDB) and latter leupeptin was used as lead molecule to design new analogues by using Ligbuilder software and refined the molecules on the basis of Lipinski rule of five and fitness score parameters. All the designed leupeptin analogues were screened via docking simulation at the active site cavity of falcipain-II and falcipain-III by using Glide software and AutoDock. The 104 new leupeptin-based antimalarial ligands were designed using structure-based drug designing approach with the help of Ligbuilder and subjected for virtual screening via docking simulation method against falcipain-II and falcipain-III receptor proteins. The Glide docking results suggest that the ligands namely result_037 shows good binding and other two, result_044 and result_042 show nearly similar binding than naturally occurring PDB bound ligand E64 against falcipain-II and in case of falcipain-III, 15 designed leupeptin analogues having

  12. From Single- to Multi-Objective Auto-Tuning of Programs: Advantages and Implications

    Directory of Open Access Journals (Sweden)

    Juan Durillo

    2014-01-01

    Full Text Available Automatic tuning (auto-tuning of software has emerged in recent years as a promising method that tries to automatically adapt the behaviour of a program to attain different performance objectives on a given computing system. This method is gaining momentum due to the increasing complexity of modern multicore-based hardware architectures. Many solutions to auto-tuning have been explored ranging from simple random search to more sophisticate methods like machine learning or evolutionary search. To this day, it is still unclear whether these approaches are general enough to encompass all the complexities of the problem (e.g. search space, parameters influencing the search space, input data sensitivity, etc., or which approach is best suited for a given problem. Furthermore, the growing interest in auto-tuning a program for several objectives is increasing this confusion even further. The goal of this paper is to formally describe the problem addressed by auto-tuning programs and review existing solutions highlighting the advantages and drawbacks of different techniques for single-objective as well as multi-objective auto-tuning approaches.

  13. Auto concept y rasgos de personalidad: Un estudio correlacional

    Directory of Open Access Journals (Sweden)

    Débora Cecílio Fernandes

    Full Text Available Este estudio ha investigado las relaciones entre los rasgos de personalidad y auto concepto. Fueron aplicadas la Escala de Traços de Personalidade para Crianças y la Escala de Autoconceito Infanto-Juvenil en 389 niños, con edad de 8 a 10 años de escuelas públicas y particulares. Se han hallado diferencias de sexo para casi todas las medidas hechas. Para los varones, ha sido observado correlaciones positivas entre extroversión y auto conceptos escolar y familiar, neuroticismo y psicoticismo con auto conceptos personal y social, y sociabilidad con auto concepto familiar; y correlaciones negativas entre extroversión y auto concepto social, psicoticismo y auto concepto familiar, y sociabilidad y auto concepto personal. Para las niñas, fueron observadas correlaciones positivas entre el auto concepto social y psicoticismo y sociabilidad con el familiar; y correlaciones negativas entre extroversión y el social, psicoticismo y neuroticismo con el familiar. Los análisis de los grupos extremos confirmaron los datos encontrados.

  14. Data integrity systems for organ contours in radiation therapy planning.

    Science.gov (United States)

    Shah, Veeraj P; Lakshminarayanan, Pranav; Moore, Joseph; Tran, Phuoc T; Quon, Harry; Deville, Curtiland; McNutt, Todd R

    2018-06-12

    The purpose of this research is to develop effective data integrity models for contoured anatomy in a radiotherapy workflow for both real-time and retrospective analysis. Within this study, two classes of contour integrity models were developed: data driven models and contiguousness models. The data driven models aim to highlight contours which deviate from a gross set of contours from similar disease sites and encompass the following regions of interest (ROI): bladder, femoral heads, spinal cord, and rectum. The contiguousness models, which individually analyze the geometry of contours to detect possible errors, are applied across many different ROI's and are divided into two metrics: Extent and Region Growing over volume. After analysis, we found that 70% of detected bladder contours were verified as suspicious. The spinal cord and rectum models verified that 73% and 80% of contours were suspicious respectively. The contiguousness models were the most accurate models and the Region Growing model was the most accurate submodel. 100% of the detected noncontiguous contours were verified as suspicious, but in the cases of spinal cord, femoral heads, bladder, and rectum, the Region Growing model detected additional two to five suspicious contours that the Extent model failed to detect. When conducting a blind review to detect false negatives, it was found that all the data driven models failed to detect all suspicious contours. The Region Growing contiguousness model produced zero false negatives in all regions of interest other than prostate. With regards to runtime, the contiguousness via extent model took an average of 0.2 s per contour. On the other hand, the region growing method had a longer runtime which was dependent on the number of voxels in the contour. Both contiguousness models have potential for real-time use in clinical radiotherapy while the data driven models are better suited for retrospective use. © 2018 The Authors. Journal of Applied Clinical

  15. Perceptual representation and effectiveness of local figure-ground cues in natural contours.

    Science.gov (United States)

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases.

  16. Perceptual representation and effectiveness of local figure–ground cues in natural contours

    Science.gov (United States)

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure–ground segregation. Although previous studies have reported local contour features that evoke figure–ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure–ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure–ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure–ground perception with natural contours when the other cues coexist with equal probability including contradictory cases. PMID:26579057

  17. Perceptual Representation and Effectiveness of Local Figure-Ground Cues in Natural Contours

    Directory of Open Access Journals (Sweden)

    Ko eSakai

    2015-11-01

    Full Text Available A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure-ground segregation. Although previous studies have reported local contour features that evoke figure-ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural contour shapes. We performed similarity tests between local contours, and examined the contribution of the contour features to the perceptual similarities between the contours. The local contours were sampled from natural contours so that their distribution was uniform in the space composed of the three contour features. This sampling ensured the equal appearance frequency of the factors and a wide variety of contour shapes including those comprised of contradictory factors that induce figure in the opposite directions. This sampling from natural contours is advantageous in order to randomly pickup a variety of contours that satisfy a wide range of cue combinations. Multidimensional scaling analyses showed that the combinations of convexity, closure, and symmetry contribute to perceptual similarity, thus they are perceptual quantities. Second, we examined whether the three features contribute to local figure-ground perception. We performed psychophysical experiments to judge the direction of the figure along the local contours, and examined the contribution of the features to the figure-ground judgment. Multiple linear regression analyses showed that closure was a significant factor, but that convexity and symmetry were not. These results indicate that closure is dominant in the local figure-ground perception with natural contours when the other cues coexist with equal probability including contradictory cases.

  18. [PSYCHOTHERAPEUTIC INTERVENTIONS IN PATIENTS WITH AUTO-AGGRESSIVE BEHAVIOR DURING THE FIRST PSYCHOTIC EPISODE].

    Science.gov (United States)

    Mudrenko, I; Potapov, A; Sotnikov, D; Kolenko, O; Kmyta, A

    2017-09-01

    In this article the formation of psychopathological predictors auto-aggressive behavior in patients with a first psychotic episode were identified, which became "targets" in the framework of a comprehensive emergency suicide assistance to conduct the crisis psychotherapy. The work was done on the basis of the Sumy regional psychoneurologic dispensary, where 100 patients with a first psychotic episode were examined: 52 of them (core group) had suicidal symptoms and 48 (control group) had not. According to the test results of severity of auto-aggressive predictors (pre-suicidal syndrome) to clinicopsychopathological predictors of auto-aggressive behavior include: the narrowing of the cognitive function (p≤0,001), the avoidance of interpersonal contact (r≤0,001), the presence of affective (p≤0,001) and vegetative (p≤0,01) violations, the autoaggression of moderate severity (p≤0,001) and impulsivity (p≤0,001). Patients of the core group with the auto-aggressive behavior (n=58) completed a course of a crisis psychotherapy comprising the stages of crisis support, crisis intervention and increase the adaptation layer. After a psychotherapy course levels of aggression (6,45±0,41), auto-aggression (of 9,68±0,67), disorders in the affective sphere (18,58±0,66) and impulsivity (of 4,23±0,30) decreased, which was manifested in increasing tolerance to emotional stress factors, control over their emotions and reduce their affective valence (p≤0,001). The expansion of interpersonal interaction, the increase of patients social activity, the blood relationships establishment (of 9,23±0,40) was observed.

  19. Feasibility of geometrical verification of patient set-up using body contours and computed tomography data

    International Nuclear Information System (INIS)

    Ploeger, Lennert S.; Betgen, Anja; Gilhuijs, Kenneth G.A.; Herk, Marcel van

    2003-01-01

    Background and purpose: Body contours can potentially be used for patient set-up verification in external-beam radiotherapy and might enable more accurate set-up of patients prior to irradiation. The aim of this study is to test the feasibility of patient set-up verification using a body contour scanner. Material and methods: Body contour scans of 33 lung cancer and 21 head-and-neck cancer patients were acquired on a simulator. We assume that this dataset is representative for the patient set-up on an accelerator. Shortly before acquisition of the body contour scan, a pair of orthogonal simulator images was taken as a reference. Both the body contour scan and the simulator images were matched in 3D to the planning computed tomography scan. Movement of skin with respect to bone was quantified based on an analysis of variance method. Results: Set-up errors determined with body-contours agreed reasonably well with those determined with simulator images. For the lung cancer patients, the average set-up errors (mm)±1 standard deviation (SD) for the left-right, cranio-caudal and anterior-posterior directions were 1.2±2.9, -0.8±5.0 and -2.3±3.1 using body contours, compared to -0.8±3.2, -1.0±4.1 and -1.2±2.4 using simulator images. For the head-and-neck cancer patients, the set-up errors were 0.5±1.8, 0.5±2.7 and -2.2±1.8 using body contours compared to -0.4±1.2, 0.1±2.1, -0.1±1.8 using simulator images. The SD of the set-up errors obtained from analysis of the body contours were not significantly different from those obtained from analysis of the simulator images. Movement of the skin with respect to bone (1 SD) was estimated at 2.3 mm for lung cancer patients and 1.7 mm for head-and-neck cancer patients. Conclusion: Measurement of patient set-up using a body-contouring device is possible. The accuracy, however, is limited by the movement of the skin with respect to the bone. In situations where the error in the patient set-up is relatively large, it is

  20. Software planning and analysis for automated design system AutoCAD

    OpenAIRE

    Koskutė, Lina

    2007-01-01

    AutoCAD sistemos papildymas sukurtas tam, kad būtų lengviau ir paprasčiau dirbti su AutoCAD grafine sistema. Funkcijos sukurtos naudojant AutoLisp ir VisualLISP programavimo kalbas. Sistemos papildymą galima įdiegti į bet kurią AutoCAD versiją. Sukurtas papildymas lankstus naujų funkcijų prijungimui, lengvai eksploatuojamas. Funkcijos suskirstytos į keletą grupių pagal jų formatą. AutoCAD system complement is created to make more easy working with AutoCAD graphic system. Functions are crea...

  1. Auto-recognition of surfaces and auto-generation of material removal volume for finishing process

    Science.gov (United States)

    Kataraki, Pramod S.; Salman Abu Mansor, Mohd

    2018-03-01

    Auto-recognition of a surface and auto-generation of material removal volumes for the so recognised surfaces has become a need to achieve successful downstream manufacturing activities like automated process planning and scheduling. Few researchers have contributed to generation of material removal volume for a product but resulted in material removal volume discontinuity between two adjacent material removal volumes generated from two adjacent faces that form convex geometry. The need for limitation free material removal volume generation was attempted and an algorithm that automatically recognises computer aided design (CAD) model’s surface and also auto-generate material removal volume for finishing process of the recognised surfaces was developed. The surfaces of CAD model are successfully recognised by the developed algorithm and required material removal volume is obtained. The material removal volume discontinuity limitation that occurred in fewer studies is eliminated.

  2. Automatic contouring of geologic fabric and finite strain data on the unit hyperboloid

    Science.gov (United States)

    Vollmer, Frederick W.

    2018-06-01

    Fabric and finite strain analysis, an integral part of studies of geologic structures and orogenic belts, is commonly done by the analysis of particles whose shapes can be approximated as ellipses. Given a sample of such particles, the mean and confidence intervals of particular parameters can be calculated, however, taking the extra step of plotting and contouring the density distribution can identify asymmetries or modes related to sedimentary fabrics or other factors. A common graphical strain analysis technique is to plot final ellipse ratios, Rf , versus orientations, ϕf on polar Elliott or Rf / ϕ plots to examine the density distribution. The plot may be contoured, however, it is desirable to have a contouring method that is rapid, reproducible, and based on the underlying geometry of the data. The unit hyperboloid, H2 , gives a natural parameter space for two-dimensional strain, and various projections, including equal-area and stereographic, have useful properties for examining density distributions for anisotropy. An index, Ia , is given to quantify the magnitude and direction of anisotropy. Elliott and Rf / ϕ plots can be understood by applying hyperbolic geometry and recognizing them as projections of H2 . These both distort area, however, so the equal-area projection is preferred for examining density distributions. The algorithm presented here gives fast, accurate, and reproducible contours of density distributions calculated directly on H2 . The algorithm back-projects the data onto H2 , where the density calculation is done at regular nodes using a weighting value based on the hyperboloid distribution, which is then contoured. It is implemented as an Octave compatible MATLAB function that plots ellipse data using a variety of projections, and calculates and displays contours of their density distribution on H2 .

  3. Genotoxic damage in auto body shop workers.

    Science.gov (United States)

    Siebel, Anna Maria; Basso da Silva, Luciano

    2010-10-01

    Some studies have shown increased DNA damage among car painters, but other professionals working in auto body and paint shops have not been extensively assessed. The aim of this study was to assess DNA damage in different types of auto body shop workers by measuring micronucleus (MN) levels in exfoliated buccal cells. The mean number of cells with MN per 2000 exfoliated buccal cells was analyzed in three groups of male workers: auto body repair technicians, painters, and office workers (control group). All participants answered a questionnaire inquiring about age, smoking habits, alcohol consumption, work practices, occupational exposure time, job activities, and use of protective equipment. The mean number of cells with MN was 3.50 ± 1.50 in auto body painters, 3.91 ± 2.10 in auto body repair technicians, and 0.80 ± 0.78 in office workers, with a significant difference between the control group and the two other groups (p = 0.0001). Age, occupational exposure time, use of protective masks, alcohol consumption, and smoking habit did not affect MN results. The findings indicate that technicians and painters working in auto body shops are at risk for genotoxic damage, while office workers seem to be protected.

  4. Auto-calibration of Systematic Odometry Errors in Mobile Robots

    DEFF Research Database (Denmark)

    Bak, Martin; Larsen, Thomas Dall; Andersen, Nils Axel

    1999-01-01

    This paper describes the phenomenon of systematic errors in odometry models in mobile robots and looks at various ways of avoiding it by means of auto-calibration. The systematic errors considered are incorrect knowledge of the wheel base and the gains from encoder readings to wheel displacement....... By auto-calibration we mean a standardized procedure which estimates the uncertainties using only on-board equipment such as encoders, an absolute measurement system and filters; no intervention by operator or off-line data processing is necessary. Results are illustrated by a number of simulations...... and experiments on a mobile robot....

  5. Presença de auto-anticorpos não-tireóide-específicos no soro de pacientes com hipotireoidismo auto-imune

    OpenAIRE

    Soares Débora Vieira; Vanderborght Bart O. M.; Vaisman Mário

    2003-01-01

    Auto-anticorpos contra componentes não-específicos da tireóide foram encontrados no soro de pacientes com doença auto-imune da tireóide. Neste estudo avaliamos a presença de auto-anticorpos antinucleares (ANA), antimúsculo liso (anti-ML) e antimitocôndria (anti-Mc) no soro de pacientes com hipotireoidismo auto-imune (HA), comparando-os a controles saudáveis. Estudamos 70 pacientes com hipotireoidismo auto-imune (tireoidite de Hashimoto ou tireoidite atrófica ) e 70 controles saudáveis (sem di...

  6. A cardiac contouring atlas for radiotherapy

    DEFF Research Database (Denmark)

    Duane, Frances; Aznar, Marianne C; Bartlett, Freddie

    2017-01-01

    defined from cardiology models and agreed by two cardiologists. Reference atlas contours were delineated and written guidelines prepared. Six radiation oncologists tested the atlas. Spatial variation was assessed using the DICE similarity coefficient (DSC) and the directed Hausdorff average distance (d→H,avg......-observer contour separation (mean d→H,avg) was 1.5-2.2mm for left ventricular segments and 1.3-5.1mm for coronary artery segments. This spatial variation resulted in

  7. Comparison of primary tumour volumes delineated on four-dimensional computed tomography maximum intensity projection and 18F-fluorodeoxyglucose positron emission tomography computed tomography images of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Duan, Yili; Li, Jianbin; Zhang, Yingjie; Wang, Wei; Fan, Tingyong; Shao, Qian; Xu, Min; Guo, Yanluan; Sun, Xiaorong; Shang, Dongping

    2015-01-01

    The study aims to compare the positional and volumetric differences of tumour volumes based on the maximum intensity projection (MIP) of four-dimensional CT (4DCT) and 18 F-fluorodexyglucose ( 18 F-FDG) positron emission tomography CT (PET/CT) images for the primary tumour of non-small cell lung cancer (NSCLC). Ten patients with NSCLC underwent 4DCT and 18 F-FDG PET/CT scans of the thorax on the same day. Internal gross target volumes (IGTVs) of the primary tumours were contoured on the MIP images of 4DCT to generate IGTV MIP . Gross target volumes (GTVs) based on PET (GTV PET ) were determined with nine different threshold methods using the auto-contouring function. The differences in the volume, position, matching index (MI) and degree of inclusion (DI) of the GTV PET and IGTV MIP were investigated. In volume terms, GTV PET2.0 and GTV PET20% approximated closely to IGTV MIP with mean volume ratio of 0.93 ± 0.45 and 1.06 ± 0.43, respectively. The best MI was between IGTV MIP and GTV PET20% (0.45 ± 0.23). The best DI of IGTV MIP in GTV PET was IGTV MIP in GTV PET20% (0.61 ± 0.26). In 3D PET images, the GTVPET contoured by standardised uptake value (SUV) 2.0 or 20% of maximal SUV (SUV max ) approximate closely to the IGTV MIP in target size, while the spatial mismatch is apparent between them. Therefore, neither of them could replace IGTV MIP in spatial position and form. The advent of 4D PET/CT may improve the accuracy of contouring the perimeter for moving targets.

  8. Comparing subjective contours for Kanizsa squares and linear edge alignments ('New York Titanic' figures).

    Science.gov (United States)

    Gillam, Barbara; Marlow, Phillip J

    2014-01-01

    One current view is that subjective contours may involve high-level detection of a salient shape with back propagation to early visual areas where small receptive fields allow for scrutiny of relevant details. This idea applies to Kanizsa-type figures. However, Gillam and Chan (2002 Psychological Science, 13, 279-282) using figures based on Gillam's graphic 'New York Titanic' (Gillam, 1997 Thresholds: Limits of perception. New York: Arts Magazine) showed that strong subjective contours can be seen along the linearly aligned edges of a set of shapes if occlusion cues of 'extrinsic edge' and 'entropy contrast' are strong. Here we compared ratings of the strength of subjective contours along linear alignments with those seen in Kanizsa figures. The strongest subjective contour for a single set of linearly aligned shapes was similar in strength to the edges of a Kanizsa square (controlling for support ratio) despite the lack of a salient region. The addition of a second set of linearly aligned inducers consistent with a common surface increased subjective-contour strength, as did having four rather than two 'pacmen' in the Kanizsa figure, indicating a role for surface support. We argue that linear subjective contours allow for the investigation of certain occlusion cues and the interactions between them that are not easily explored with Kanizsa figures.

  9. Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    Science.gov (United States)

    Demongeot, Jacques; Fouquet, Yannick; Tayyab, Muhammad; Vuillerme, Nicolas

    2009-01-01

    Background Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. Methodology First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. Conclusions We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery. PMID:19547712

  10. Understanding physiological and degenerative natural vision mechanisms to define contrast and contour operators.

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    Full Text Available BACKGROUND: Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY: First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS: We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery.

  11. Effects of Semantic Context and Fundamental Frequency Contours on Mandarin Speech Recognition by Second Language Learners.

    Science.gov (United States)

    Zhang, Linjun; Li, Yu; Wu, Han; Li, Xin; Shu, Hua; Zhang, Yang; Li, Ping

    2016-01-01

    Speech recognition by second language (L2) learners in optimal and suboptimal conditions has been examined extensively with English as the target language in most previous studies. This study extended existing experimental protocols (Wang et al., 2013) to investigate Mandarin speech recognition by Japanese learners of Mandarin at two different levels (elementary vs. intermediate) of proficiency. The overall results showed that in addition to L2 proficiency, semantic context, F0 contours, and listening condition all affected the recognition performance on the Mandarin sentences. However, the effects of semantic context and F0 contours on L2 speech recognition diverged to some extent. Specifically, there was significant modulation effect of listening condition on semantic context, indicating that L2 learners made use of semantic context less efficiently in the interfering background than in quiet. In contrast, no significant modulation effect of listening condition on F0 contours was found. Furthermore, there was significant interaction between semantic context and F0 contours, indicating that semantic context becomes more important for L2 speech recognition when F0 information is degraded. None of these effects were found to be modulated by L2 proficiency. The discrepancy in the effects of semantic context and F0 contours on L2 speech recognition in the interfering background might be related to differences in processing capacities required by the two types of information in adverse listening conditions.

  12. Female Infertility and Serum Auto-antibodies: a Systematic Review.

    Science.gov (United States)

    Deroux, Alban; Dumestre-Perard, Chantal; Dunand-Faure, Camille; Bouillet, Laurence; Hoffmann, Pascale

    2017-08-01

    On average, 10 % of infertile couples have unexplained infertility. Auto-immune disease (systemic lupus erythematosus, anti-phospholipid syndrome) accounts for a part of these cases. In the last 20 years, aspecific auto-immunity, defined as positivity of auto-antibodies in blood sample without clinical or biological criteria for defined diseases, has been evoked in a subpopulation of infertile women. A systematic review was performed (PUBMED) using the MESH search terms "infertility" and "auto-immunity" or "reproductive technique" or "assisted reproduction" or "in vitro fertilization" and "auto-immunity." We retained clinical and physiopathological studies that were applicable to the clinician in assuming joint management of both infertility associated with serum auto-antibodies in women. Thyroid auto-immunity which affects thyroid function could be a cause of infertility; even in euthyroidia, the presence of anti-thyroperoxydase antibodies and/or thyroglobulin are related to infertility. The presence of anti-phospholipid (APL) and/or anti-nuclear (ANA) antibodies seems to be more frequent in the population of infertile women; serum auto-antibodies are associated with early ovarian failure, itself responsible for fertility disorders. However, there exist few publications on this topic. The methods of dosage, as well as the clinical criteria of unexplained infertility deserve to be standardized to allow a precise response to the question of the role of serum auto-antibodies in these women. The direct pathogenesis of this auto-immunity is unknown, but therapeutic immunomodulators, prescribed on a case-by-case basis, could favor pregnancy even in cases of unexplained primary or secondary infertility.

  13. Economic evaluation of epinephrine auto-injectors for peanut allergy.

    Science.gov (United States)

    Shaker, Marcus; Bean, Katherine; Verdi, Marylee

    2017-08-01

    Three commercial epinephrine auto-injectors were available in the United States in the summer of 2016: EpiPen, Adrenaclick, and epinephrine injection, USP auto-injector. To describe the variation in pharmacy costs among epinephrine auto-injector devices in New England and evaluate the additional expense associated with incremental auto-injector costs. Decision analysis software was used to evaluate costs of the most and least expensive epinephrine auto-injector devices for children with peanut allergy. To evaluate regional variation in epinephrine auto-injector costs, a random sample of New England national and corporate pharmacies was compared with a convenience sample of pharmacies from 10 Canadian provinces. Assuming prescriptions written for 2 double epinephrine packs each year (home and school), the mean costs of food allergy over the 20-year model horizon totaled $58,667 (95% confidence interval [CI] $57,745-$59,588) when EpiPen was prescribed and $45,588 (95% CI $44,873-$46,304) when epinephrine injection, USP auto-injector was prescribed. No effectiveness differences were evident between groups, with 17.19 (95% CI 17.11-17.27) quality-adjusted life years accruing for each subject. The incremental cost per episode of anaphylaxis treated with epinephrine over the model horizon was $12,576 for EpiPen vs epinephrine injection, USP auto-injector. EpiPen costs were lowest at Canadian pharmacies ($96, 95% CI $85-$107). There was price consistency between corporate and independent pharmacies throughout New England by device brand, with the epinephrine injection, USP auto-injector being the most affordable device. Cost differences among epinephrine auto-injectors were significant. More expensive auto-injector brands did not appear to provide incremental benefit. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. The influence of different auto-ignition modes on the behavior of pressure waves

    International Nuclear Information System (INIS)

    Xu, Han; Yao, Anren; Yao, Chunde

    2015-01-01

    Highlights: • Modes of pressure oscillations in knocking, HCCI and super knock are recognized. • Three representative auto-ignition modes in engines are proposed. • A new method of “Energy Injected” is brought into understanding pressure wave. • Simulation results revealed the decisive factors for these three auto-ignition modes. • Different modes lead to different pressure wave behaviors damaging engines. - Abstract: For internal combustion engines, the knock of Homogeneous Charge Compression Ignition engines, the conventional knock of gasoline engines and the super knock are all caused by the auto-ignition of unburned mixture which leads to the oscillation burning, but their Maximal Pressure Oscillation Amplitude (MPOA) and Maximum Pressure Rising Rate (MPRR) are totally different. In order to explore the reason, we propose three typical auto-ignition modes and then bring up the method of “Energy Injected” (EI) which is based on the experiment measured heat release rate. Through changing the heat source term in the energy equation for different auto-ignition modes, we conducted a series of numerical simulations for these three modes. After that, the following pressure oscillations can be compared and analyzed. The numerical simulation results show that different combustion pressure waves with different oscillation characteristics come from different auto-ignition modes, thus the macroscopic MPRR and MPOA are totally different. Furthermore, the method of “EI” based on the experiment measured heat release rate can accurately and rapidly help to research the formation and propagation of pressure waves in the engine combustion chamber.

  15. A New Auto-Baecklund Transformation and Two-Soliton Solution for (3+1)-Dimensional Jimbo-Miwa Equation

    International Nuclear Information System (INIS)

    Liu Chunping; Zhou Ling

    2011-01-01

    By improving the extended homogeneous balance method, a general method is suggested to derive a new auto-Baecklund transformation (BT) for (3+1)-Dimensional Jimbo-Miwa (JM) equation. The auto-BT obtained by using our method only involves one quadratic homogeneity equation written as a bilinear equation. Based on the auto-BT, two-soliton solution of the (3+1)-Dimensional JM equation is obtained. (general)

  16. A new data integration approach for AutoCAD and GIS

    Science.gov (United States)

    Ye, Hongmei; Li, Yuhong; Wang, Cheng; Li, Lijun

    2006-10-01

    GIS has its advantages both on spatial data analysis and management, particularly on the geometric and attributive information management, which has also attracted lots attentions among researchers around world. AutoCAD plays more and more important roles as one of the main data sources of GIS. Various work and achievements can be found in the related literature. However, the conventional data integration from AutoCAD to GIS is time-consuming, which also can cause the information loss both in the geometric aspects and the attributive aspects for a large system. It is necessary and urgent to sort out new approach and algorithm for the efficient high-quality data integration. In this paper, a novel data integration approach from AutoCAD to GIS will be introduced based on the spatial data mining technique through the data structure analysis both in the AutoCAD and GIS. A practicable algorithm for the data conversion from CAD to GIS will be given as well. By a designed evaluation scheme, the accuracy of the conversion both in the geometric and the attributive information will be demonstrated. Finally, the validity and feasibility of the new approach will be shown by an experimental analysis.

  17. Error Estimation for the Linearized Auto-Localization Algorithm

    Directory of Open Access Journals (Sweden)

    Fernando Seco

    2012-02-01

    Full Text Available The Linearized Auto-Localization (LAL algorithm estimates the position of beacon nodes in Local Positioning Systems (LPSs, using only the distance measurements to a mobile node whose position is also unknown. The LAL algorithm calculates the inter-beacon distances, used for the estimation of the beacons’ positions, from the linearized trilateration equations. In this paper we propose a method to estimate the propagation of the errors of the inter-beacon distances obtained with the LAL algorithm, based on a first order Taylor approximation of the equations. Since the method depends on such approximation, a confidence parameter τ is defined to measure the reliability of the estimated error. Field evaluations showed that by applying this information to an improved weighted-based auto-localization algorithm (WLAL, the standard deviation of the inter-beacon distances can be improved by more than 30% on average with respect to the original LAL method.

  18. Clinical validation and applications for CT-based atlas for contouring the lower cranial nerves for head and neck cancer radiation therapy.

    Science.gov (United States)

    Mourad, Waleed F; Young, Brett M; Young, Rebekah; Blakaj, Dukagjin M; Ohri, Nitin; Shourbaji, Rania A; Manolidis, Spiros; Gámez, Mauricio; Kumar, Mahesh; Khorsandi, Azita; Khan, Majid A; Shasha, Daniel; Blakaj, Adriana; Glanzman, Jonathan; Garg, Madhur K; Hu, Kenneth S; Kalnicki, Shalom; Harrison, Louis B

    2013-09-01

    Radiation induced cranial nerve palsy (RICNP) involving the lower cranial nerves (CNs) is a serious complication of head and neck radiotherapy (RT). Recommendations for delineating the lower CNs on RT planning studies do not exist. The aim of the current study is to develop a standardized methodology for contouring CNs IX-XII, which would help in establishing RT limiting doses for organs at risk (OAR). Using anatomic texts, radiologic data, and guidance from experts in head and neck anatomy, we developed step-by-step instructions for delineating CNs IX-XII on computed tomography (CT) imaging. These structures were then contoured on five consecutive patients who underwent definitive RT for locally-advanced head and neck cancer (LAHNC). RT doses delivered to the lower CNs were calculated. We successfully developed a contouring atlas for CNs IX-XII. The median total dose to the planning target volume (PTV) was 70Gy (range: 66-70Gy). The median CN (IX-XI) and (XII) volumes were 10c.c (range: 8-12c.c) and 8c.c (range: 7-10c.c), respectively. The median V50, V60, V66, and V70 of the CN (IX-XI) and (XII) volumes were (85, 77, 71, 65) and (88, 80, 74, 64) respectively. The median maximal dose to the CN (IX-XI) and (XII) were 72Gy (range: 66-77) and 71Gy (range: 64-78), respectively. We have generated simple instructions for delineating the lower CNs on RT planning imaging. Further analyses to explore the relationship between lower CN dosing and the risk of RICNP are recommended in order to establish limiting doses for these OARs. Published by Elsevier Ltd.

  19. Shape reconstruction from apparent contours theory and algorithms

    CERN Document Server

    Bellettini, Giovanni; Paolini, Maurizio

    2015-01-01

    Motivated by a variational model concerning the depth of the objects in a picture and the problem of hidden and illusory contours, this book investigates one of the central problems of computer vision: the topological and algorithmic reconstruction of a smooth three dimensional scene starting from the visible part of an apparent contour. The authors focus their attention on the manipulation of apparent contours using a finite set of elementary moves, which correspond to diffeomorphic deformations of three dimensional scenes. A large part of the book is devoted to the algorithmic part, with implementations, experiments, and computed examples. The book is intended also as a user's guide to the software code appcontour, written for the manipulation of apparent contours and their invariants. This book is addressed to theoretical and applied scientists working in the field of mathematical models of image segmentation.

  20. Wh-question intonation in Peninsular Spanish: Multiple contours and the effect of task type

    Directory of Open Access Journals (Sweden)

    Nicholas C. Henriksen

    2009-06-01

    Full Text Available This paper reports on an experimental investigation of wh-question intonation in Peninsular Spanish. Speech data were collected from six León, Spain Peninsular Spanish speakers, and oral production data were elicited under two conditions: a computerized sentence reading task and an information gap task-oriented dialogue. The latter task was an adaptation of the HCRC Map Task method (cf. Anderson et al., 1991 and was designed to elicit multiple wh-question productions in an unscripted and more spontaneous speech style than the standard sentence reading task. Results indicate that four contours exist in the tonal inventory of the six speakers. The two most frequent contours were a final rise contour and a nuclear circumflex contour. Systematic task-based differences were found for four of the six speakers, indicating that sentence reading task data alone may not accurately reflect spontaneous speech tonal patterns (cf. Cruttenden, 2007; but see also Lickley, Schepman, & Ladd, 2005. The experimental findings serve to clarify a number of assumptions about the syntax-prosody interface underlying wh-question utterance signaling; they also have implications for research methods in intonation and task-based variation in laboratory phonology.

  1. Auto-immune Haemolytic Anaemia and Paroxys

    African Journals Online (AJOL)

    who presented with an acute auto-immune haemolytic anaemia. In addition to a persistently positive Coombs test, with specific red cell auto-antibodies, the acidified serum test and the sucrose haemolysis test were repeatedly positive. CASE REPORT. A 24-year-old Indian woman was admitted to hospital in. July 1969.

  2. Comparative Study of Contour Detection Evaluation Criteria Based on Dissimilarity Measures

    Directory of Open Access Journals (Sweden)

    Bruno Emile

    2008-04-01

    Full Text Available We present in this article a comparative study of well-known supervised evaluation criteria that enable the quantification of the quality of contour detection algorithms. The tested criteria are often used or combined in the literature to create new ones. Though these criteria are classical ones, none comparison has been made, on a large amount of data, to understand their relative behaviors. The objective of this article is to overcome this lack using large test databases both in a synthetic and a real context allowing a comparison in various situations and application fields and consequently to start a general comparison which could be extended by any person interested in this topic. After a review of the most common criteria used for the quantification of the quality of contour detection algorithms, their respective performances are presented using synthetic segmentation results in order to show their performance relevance face to undersegmentation, oversegmentation, or situations combining these two perturbations. These criteria are then tested on natural images in order to process the diversity of the possible encountered situations. The used databases and the following study can constitute the ground works for any researcher who wants to confront a new criterion face to well-known ones.

  3. Digital camera auto white balance based on color temperature estimation clustering

    Science.gov (United States)

    Zhang, Lei; Liu, Peng; Liu, Yuling; Yu, Feihong

    2010-11-01

    Auto white balance (AWB) is an important technique for digital cameras. Human vision system has the ability to recognize the original color of an object in a scene illuminated by a light source that has a different color temperature from D65-the standard sun light. However, recorded images or video clips, can only record the original information incident into the sensor. Therefore, those recorded will appear different from the real scene observed by the human. Auto white balance is a technique to solve this problem. Traditional methods such as gray world assumption, white point estimation, may fail for scenes with large color patches. In this paper, an AWB method based on color temperature estimation clustering is presented and discussed. First, the method gives a list of several lighting conditions that are common for daily life, which are represented by their color temperatures, and thresholds for each color temperature to determine whether a light source is this kind of illumination; second, an image to be white balanced are divided into N blocks (N is determined empirically). For each block, the gray world assumption method is used to calculate the color cast, which can be used to estimate the color temperature of that block. Third, each calculated color temperature are compared with the color temperatures in the given illumination list. If the color temperature of a block is not within any of the thresholds in the given list, that block is discarded. Fourth, the remaining blocks are given a majority selection, the color temperature having the most blocks are considered as the color temperature of the light source. Experimental results show that the proposed method works well for most commonly used light sources. The color casts are removed and the final images look natural.

  4. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    Energy Technology Data Exchange (ETDEWEB)

    Jaswal, Jasbir [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); D' Souza, Leah; Johnson, Marjorie [Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Canada); Tay, KengYeow [Department of Diagnostic Radiology, London Health Sciences, London, Ontario (Canada); Fung, Kevin; Nichols, Anthony [Department of Otolaryngology, Head & Neck Surgery, Victoria Hospital, London, Ontario (Canada); Landis, Mark [Department of Diagnostic Radiology, London Health Sciences, London, Ontario (Canada); Leung, Eric [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Kassam, Zahra [Department of Diagnostic Radiology, St. Joseph' s Health Care London, London, Ontario (Canada); Willmore, Katherine [Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario (Canada); D' Souza, David; Sexton, Tracy [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada); Palma, David A., E-mail: david.palma@lhsc.on.ca [Department of Radiation Oncology, London Health Sciences Centre, London, Ontario (Canada)

    2015-03-15

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp

  5. Evaluating the Impact of a Canadian National Anatomy and Radiology Contouring Boot Camp for Radiation Oncology Residents

    International Nuclear Information System (INIS)

    Jaswal, Jasbir; D'Souza, Leah; Johnson, Marjorie; Tay, KengYeow; Fung, Kevin; Nichols, Anthony; Landis, Mark; Leung, Eric; Kassam, Zahra; Willmore, Katherine; D'Souza, David; Sexton, Tracy; Palma, David A.

    2015-01-01

    Background: Radiation therapy treatment planning has advanced over the past 2 decades, with increased emphasis on 3-dimensional imaging for target and organ-at-risk (OAR) delineation. Recent studies suggest a need for improved resident instruction in this area. We developed and evaluated an intensive national educational course (“boot camp”) designed to provide dedicated instruction in site-specific anatomy, radiology, and contouring using a multidisciplinary (MDT) approach. Methods: The anatomy and radiology contouring (ARC) boot camp was modeled after prior single-institution pilot studies and a needs-assessment survey. The boot camp incorporated joint lectures from radiation oncologists, anatomists, radiologists, and surgeons, with hands-on contouring instruction and small group interactive seminars using cadaveric prosections and correlative axial radiographs. Outcomes were evaluated using pretesting and posttesting, including anatomy/radiology multiple-choice questions (MCQ), timed contouring sessions (evaluated relative to a gold standard using Dice similarity metrics), and qualitative questions on satisfaction and perceived effectiveness. Analyses of pretest versus posttest scores were performed using nonparametric paired testing. Results: Twenty-nine radiation oncology residents from 10 Canadian universities participated. As part of their current training, 29%, 75%, and 21% receive anatomy, radiology, and contouring instruction, respectively. On posttest scores, the MCQ knowledge scores improved significantly (pretest mean 60% vs posttest mean 80%, P<.001). Across all contoured structures, there was a 0.20 median improvement in students' average Dice score (P<.001). For individual structures, significant Dice improvements occurred in 10 structures. Residents self-reported an improved ability to contour OARs and interpret radiographs in all anatomic sites, 92% of students found the MDT format effective for their learning, and 93% found the boot camp

  6. SU-C-BRB-06: Dosimetric Impact of Breast Contour Reconstruction Errors in GammaPod Stereotactic Radiotherapy

    International Nuclear Information System (INIS)

    Niu, Y; Becker, S; Mutaf, Y; Yu, C

    2016-01-01

    Purpose: The first GammaPod™ unit, a dedicated prone stereotactic treatment device for early stage breast cancer, has been installed and commissioned at University of Maryland School of Medicine. The objective of this study was to investigate potential dosimetric impact of inaccurate breast contour. Methods: In GammaPod treatments, patient’s beast is immobilized by a breast cup device (BCID) throughout the entire same-day imaging and treatment procedure. 28 different BICD sizes are available to accommodate patients with varying breast sizes. A mild suction helps breast tissue to conform to the shape of the cup with selected size. In treatment planning, dose calculation utilizes previously calculated dose distributions for available cup geometry rather than the breast shape from CT image. Patient CT images with breast cups indicate minor geometric discrepancy between the matched shape of the cup and the breast contour, i.e., the contour size is larger or smaller. In order to investigate the dosimetric impact of these discrepancies, we simulated such discrepancies and reassessed the dose to target as well as skin. Results: In vicinity of skin, hot/cold spots were found when matched cup size was smaller/larger than patient’s breast after comparing the corrected dose profiles from Monte Carlo simulation with the planned dose from TPS. The overdosing/underdosing of target could yield point dose differences as large as 5% due to these setup errors (D95 changes within 2.5%). Maximal skin dose was overestimated/underestimated up to 25%/45% when matched cup size was larger/smaller than real breast contour. Conclusion: The dosimetric evaluation suggests substantial underdosing/overdosing with inaccurate cup geometry during planning, which is acceptable for current clinical trial. Further studies are needed to evaluate such impact to treating small volume close to skin.

  7. SU-C-BRB-06: Dosimetric Impact of Breast Contour Reconstruction Errors in GammaPod Stereotactic Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Y [Xcision Medical Systems LLC, Columbia, MD (United States); Becker, S; Mutaf, Y [University Maryland School of Medicine, Baltimore, MD (United States); Yu, C [Xcision Medical Systems LLC, Columbia, MD (United States); University Maryland School of Medicine, Baltimore, MD (United States)

    2016-06-15

    Purpose: The first GammaPod™ unit, a dedicated prone stereotactic treatment device for early stage breast cancer, has been installed and commissioned at University of Maryland School of Medicine. The objective of this study was to investigate potential dosimetric impact of inaccurate breast contour. Methods: In GammaPod treatments, patient’s beast is immobilized by a breast cup device (BCID) throughout the entire same-day imaging and treatment procedure. 28 different BICD sizes are available to accommodate patients with varying breast sizes. A mild suction helps breast tissue to conform to the shape of the cup with selected size. In treatment planning, dose calculation utilizes previously calculated dose distributions for available cup geometry rather than the breast shape from CT image. Patient CT images with breast cups indicate minor geometric discrepancy between the matched shape of the cup and the breast contour, i.e., the contour size is larger or smaller. In order to investigate the dosimetric impact of these discrepancies, we simulated such discrepancies and reassessed the dose to target as well as skin. Results: In vicinity of skin, hot/cold spots were found when matched cup size was smaller/larger than patient’s breast after comparing the corrected dose profiles from Monte Carlo simulation with the planned dose from TPS. The overdosing/underdosing of target could yield point dose differences as large as 5% due to these setup errors (D95 changes within 2.5%). Maximal skin dose was overestimated/underestimated up to 25%/45% when matched cup size was larger/smaller than real breast contour. Conclusion: The dosimetric evaluation suggests substantial underdosing/overdosing with inaccurate cup geometry during planning, which is acceptable for current clinical trial. Further studies are needed to evaluate such impact to treating small volume close to skin.

  8. Can Images Obtained With High Field Strength Magnetic Resonance Imaging Reduce Contouring Variability of the Prostate?

    International Nuclear Information System (INIS)

    Usmani, Nawaid; Sloboda, Ron; Kamal, Wafa; Ghosh, Sunita; Pervez, Nadeem; Pedersen, John; Yee, Don; Danielson, Brita; Murtha, Albert; Amanie, John; Monajemi, Tara

    2011-01-01

    Purpose: The objective of this study is to determine whether there is less contouring variability of the prostate using higher-strength magnetic resonance images (MRI) compared with standard MRI and computed tomography (CT). Methods and Materials: Forty patients treated with prostate brachytherapy were accrued to a prospective study that included the acquisition of 1.5-T MR and CT images at specified time points. A subset of 10 patients had additional 3.0-T MR images acquired at the same time as their 1.5-T MR scans. Images from each of these patients were contoured by 5 radiation oncologists, with a random subset of patients repeated to quantify intraobserver contouring variability. To minimize bias in contouring the prostate, the image sets were placed in folders in a random order with all identifiers removed from the images. Results: Although there was less interobserver contouring variability in the overall prostate volumes in 1.5-T MRI compared with 3.0-T MRI (p < 0.01), there was no significant differences in contouring variability in the different regions of the prostate between 1.5-T MRI and 3.0-T MRI. MRI demonstrated significantly less interobserver contouring variability in both 1.5-T and 3.0-T compared with CT in overall prostate volumes (p < 0.01, p = 0.01), with the greatest benefits being appreciated in the base of the prostate. Overall, there was less intraobserver contouring variability than interobserver contouring variability for all of the measurements analyzed. Conclusions: Use of 3.0-T MRI does not demonstrate a significant improvement in contouring variability compared with 1.5-T MRI, although both magnetic strengths demonstrated less contouring variability compared with CT.

  9. Auto-regenerative thermoluminescence dating using zircon inclusions

    International Nuclear Information System (INIS)

    Templer, R.H.

    1993-01-01

    Fired ceramics containing zircon inclusions have been dated by allowing the zircons to regenerate their own thermoluminescence (TL) signal, hence auto-regenerative TL dating. The technique is conceptually straightforward. One first measures the TL accrued since the last heating of the material. The zircon grains are then stored for six months and the TL signal regenerated through self-irradiation is measured. Since the internal dose-rate for zircon is dominated by the internal component the age of the sample is simply given by the ratio of the natural to auto-regenerated signal times the laboratory storage period. The technique, however, requires the measurement of a very small auto-regenerated signal, which introduces a number of experimental and physical complications. The methods for overcoming these problems and successfully dating zircons by auto-regeneration are described. (Author)

  10. Area of isodensity contours in Gaussian and non-Gaussian fields

    International Nuclear Information System (INIS)

    Ryden, B.S.

    1988-01-01

    The area of isodensity contours in a smoothed density field can be measured by the contour-crossing statistic N1, the number of times per unit length that a line drawn through the density field pierces an isodensity contour. The contour-crossing statistic distinguishes between Gaussian and non-Gaussian fields and provides a measure of the effective slope of the power spectrum. The statistic is easy to apply and can be used on pencil beams and slices as well as on a three-dimensional field. 10 references

  11. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  12. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Science.gov (United States)

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  13. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation.

  14. MULTIMEDIA DATA TRANSMISSION THROUGH TCP/IP USING HASH BASED FEC WITH AUTO-XOR SCHEME

    Directory of Open Access Journals (Sweden)

    R. Shalin

    2012-09-01

    Full Text Available The most preferred mode for communication of multimedia data is through the TCP/IP protocol. But on the other hand the TCP/IP protocol produces huge packet loss unavoidable due to network traffic and congestion. In order to provide a efficient communication it is necessary to recover the loss of packets. The proposed scheme implements Hash based FEC with auto XOR scheme for this purpose. The scheme is implemented through Forward error correction, MD5 and XOR for providing efficient transmission of multimedia data. The proposed scheme provides transmission high accuracy, throughput and low latency and loss.

  15. Fast radio burst search: cross spectrum vs. auto spectrum method

    Science.gov (United States)

    Liu, Lei; Zheng, Weimin; Yan, Zhen; Zhang, Juan

    2018-06-01

    The search for fast radio bursts (FRBs) is a hot topic in current radio astronomy studies. In this work, we carry out a single pulse search with a very long baseline interferometry (VLBI) pulsar observation data set using both auto spectrum and cross spectrum search methods. The cross spectrum method, first proposed in Liu et al., maximizes the signal power by fully utilizing the fringe phase information of the baseline cross spectrum. The auto spectrum search method is based on the popular pulsar software package PRESTO, which extracts single pulses from the auto spectrum of each station. According to our comparison, the cross spectrum method is able to enhance the signal power and therefore extract single pulses from data contaminated by high levels of radio frequency interference (RFI), which makes it possible to carry out a search for FRBs in regular VLBI observations when RFI is present.

  16. Web proxy auto discovery for the WLCG

    CERN Document Server

    Dykstra, D; Blumenfeld, B; De Salvo, A; Dewhurst, A; Verguilov, V

    2017-01-01

    All four of the LHC experiments depend on web proxies (that is, squids) at each grid site to support software distribution by the CernVM FileSystem (CVMFS). CMS and ATLAS also use web proxies for conditions data distributed through the Frontier Distributed Database caching system. ATLAS & CMS each have their own methods for their grid jobs to find out which web proxies to use for Frontier at each site, and CVMFS has a third method. Those diverse methods limit usability and flexibility, particularly for opportunistic use cases, where an experiment’s jobs are run at sites that do not primarily support that experiment. This paper describes a new Worldwide LHC Computing Grid (WLCG) system for discovering the addresses of web proxies. The system is based on an internet standard called Web Proxy Auto Discovery (WPAD). WPAD is in turn based on another standard called Proxy Auto Configuration (PAC). Both the Frontier and CVMFS clients support this standard. The input into the WLCG system comes from squids regis...

  17. Edge and line oriented contour detection : State of the art

    NARCIS (Netherlands)

    Papari, Giuseppe; Petkov, Nicolai

    We present an overview of various edge and line oriented approaches to contour detection that have been proposed in the last two decades. By edge and line oriented we mean methods that do not rely on segmentation. Distinction is made between edges and contours. Contour detectors are divided in local

  18. Analisis Pengukuran Waktu Kerja Karyawan Bengkel Toyota Auto 2000 di Balikpapan

    OpenAIRE

    -, Agus -

    2014-01-01

    This study aims to determine the specific labor standard time engine oil replacement vehicle machine Toyota Auto 2000 MT. Balikpapan Haryono used standard working time. Based on interviews with employees of Auto 2000 Toyota workshop. MT. Haryono completed replacement of engine oil required an average completion time of 1 hour of receipt to the consumer.The problem of this study is the labor time required to complete the work car oil changes are in accordance with the standart time in the wor...

  19. Low auto-fluorescence fabrication methods for plastic nanoslits.

    Science.gov (United States)

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei; Xu, Shenbo

    2016-04-01

    Plastic nanofluidic devices are becoming increasingly important for biological and chemical applications. However, they suffer from high auto-fluorescence when used for on-chip optical detection. In this study, the auto-fluorescence problem of plastic nanofluidic devices was remedied by newly developed fabrication methods that minimise their auto-fluorescence: one by depositing a gold (Au) layer on them, the other by making them ultra-thin. In the first method, the Au layer [minimum thickness is 40 nm on 150 μm SU-8, 50 nm on 1 mm polyethylene terephthalate (PET), and 40 on 2 nm polymethyl methacrylate (PMMA)] blocks the auto-fluorescence of the polymer; in the second method, auto-fluorescence is minimised by making the chips ultra-thin, selected operating thickness of SU-8 is 20 μm, for PET it is 150 μm, and for PMMA it is 0.8 mm.

  20. Identifying ambiguous prostate gland contours from histology using capsule shape information and least squares curve fitting

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Rania [DigiPen Institute of Technology, Department of Computer Engineering, Redmond, WA (United States); McKenzie, Frederic D. [Old Dominion University, Department of Electrical and Computer Engineering, Norfolk, VA (United States)

    2007-12-15

    To obtain an accurate assessment of the percentage and depth of extra-capsular soft tissue removed with the prostate by the various surgical techniques in order to help surgeons in determining the appropriateness of different surgical approaches. This can be enhanced by an accurate and automated means of identifying the prostate gland contour. To facilitate 3D reconstruction and, ultimately, more accurate analyses, it is essential for us to identify the capsule boundary that separates the prostate gland tissue from its extra-capsular tissue. However, the capsule is sometimes unrecognizable due to the naturally occurring intrusion of muscle and connective tissue into the prostate gland. At these regions where the capsule disappears, its contour can be arbitrarily created with a continuing contour line based on the natural shape of the prostate. We utilize an algorithm based on a least squares curve fitting technique that uses a prostate shape equation to merge previously detected capsule parts with the shape equation to produce an approximated curve that represents the prostate capsule. We have tested our algorithm using three different shapes on 13 histologic prostate slices that are cut at different locations from the apex. The best result shows a 90% average contour match when compared to pathologist-drawn contours. We believe that automatically identifying histologic prostate contours will lead to increased objective analyses of surgical margins and extracapsular spread of cancer. Our results show that this is achievable. (orig.)

  1. Identifying ambiguous prostate gland contours from histology using capsule shape information and least squares curve fitting

    International Nuclear Information System (INIS)

    Hussein, Rania; McKenzie, Frederic D.

    2007-01-01

    To obtain an accurate assessment of the percentage and depth of extra-capsular soft tissue removed with the prostate by the various surgical techniques in order to help surgeons in determining the appropriateness of different surgical approaches. This can be enhanced by an accurate and automated means of identifying the prostate gland contour. To facilitate 3D reconstruction and, ultimately, more accurate analyses, it is essential for us to identify the capsule boundary that separates the prostate gland tissue from its extra-capsular tissue. However, the capsule is sometimes unrecognizable due to the naturally occurring intrusion of muscle and connective tissue into the prostate gland. At these regions where the capsule disappears, its contour can be arbitrarily created with a continuing contour line based on the natural shape of the prostate. We utilize an algorithm based on a least squares curve fitting technique that uses a prostate shape equation to merge previously detected capsule parts with the shape equation to produce an approximated curve that represents the prostate capsule. We have tested our algorithm using three different shapes on 13 histologic prostate slices that are cut at different locations from the apex. The best result shows a 90% average contour match when compared to pathologist-drawn contours. We believe that automatically identifying histologic prostate contours will lead to increased objective analyses of surgical margins and extracapsular spread of cancer. Our results show that this is achievable. (orig.)

  2. Rational Thoughts on the Development of Chinese Auto Industry

    Institute of Scientific and Technical Information of China (English)

    Shao Qihui

    2004-01-01

    @@ In order to keep the steady, fast and sustainable development of auto industry, we should have an overall knowledge of the history and current situation of the world auto industry, and have a correct strategic planning and scientific measures towards the Chinese auto industry.

  3. Comparison of different contouring definitions of the rectum as organ at risk (OAR) and dose-volume parameters predicting rectal inflammation in radiotherapy of prostate cancer: which definition to use?

    Science.gov (United States)

    Nitsche, Mirko; Brannath, Werner; Brückner, Matthias; Wagner, Dirk; Kaltenborn, Alexander; Temme, Nils; Hermann, Robert M

    2017-02-01

    The objective of this retrospective planning study was to find a contouring definition for the rectum as an organ at risk (OAR) in curative three-dimensional external beam radiotherapy (EBRT) for prostate cancer (PCa) with a predictive correlation between the dose-volume histogram (DVH) and rectal toxicity. In a pre-study, the planning CT scans of 23 patients with PCa receiving definitive EBRT were analyzed. The rectum was contoured according to 13 different definitions, and the dose distribution was correlated with the respective rectal volumes by generating DVH curves. Three definitions were identified to represent the most distinct differences in the shapes of the DVH curves: one anatomical definition recommended by the Radiation Therapy Oncology Group (RTOG) and two functional definitions based on the target volume. In the main study, the correlation between different relative DVH parameters derived from these three contouring definitions and the occurrence of rectal toxicity during and after EBRT was studied in two consecutive collectives. The first cohort consisted of 97 patients receiving primary curative EBRT and the second cohort consisted of 66 patients treated for biochemical recurrence after prostatectomy. Rectal toxicity was investigated by clinical investigation and scored according to the Common Terminology Criteria for Adverse Events. Candidate parameters were the volume of the rectum, mean dose, maximal dose, volume receiving at least 60 Gy (V 60 ), area under the DVH curve up to 25 Gy and area under the DVH curve up to 75 Gy in dependence of each chosen rectum definition. Multivariable logistic regression considered other clinical factors such as pelvine lymphatics vs local target volume, diabetes, prior rectal surgery, anticoagulation or haemorrhoids too. In Cohort 1 (primary EBRT), the mean rectal volumes for definitions "RTOG", planning target volume "(PTV)-based" and "PTV-linked" were 100 cm 3 [standard deviation (SD) 43 cm 3 ], 60

  4. Making the cut for the contour method

    OpenAIRE

    Bouchard, P. John; Ledgard, Peter; Hiller, Stan; Hosseinzadh Torknezhad, Foroogh

    2012-01-01

    The contour method is becoming an increasingly popular measurement technique for mapping residual stress in engineering components. The accuracy of the technique is critically dependent on the quality of the cut performed. This paper presents results from blind cutting trials on austenitic stainless steel using electro-discharge machines made by three manufacturers. The suitability of the machines is assessed based on the surface finish achieved, risk of wire breakages and the nature of cutti...

  5. Linking mileage to auto accident risk and urban form.

    Science.gov (United States)

    2013-08-01

    Pricing auto insurance on a per-mile basis provides a beneficial, cost-based incentive to : reduce vehicle miles traveled compared with traditional rating plans that charge annual : premiums with little or no consideration of miles driven. : The rese...

  6. An investigation into positron emission tomography contouring methods across two treatment planning systems

    International Nuclear Information System (INIS)

    Young, Tony; Som, Seu; Sathiakumar, Chithradevi; Holloway, Lois

    2013-01-01

    Positron emission tomography (PET) imaging has been used to provide additional information regarding patient tumor location, size, and staging for radiotherapy treatment planning purposes. This additional information reduces interobserver variability and produces more consistent contouring. It is well recognized that different contouring methodology for PET data results in different contoured volumes. The goal of this study was to compare the difference in PET contouring methods for 2 different treatment planning systems using a phantom dataset and a series of patient datasets. Contouring methodology was compared on the ADAC Pinnacle Treatment Planning System and the CMS XiO Treatment Planning System. Contours were completed on the phantom and patient datasets using a number of PET contouring methods—the standardized uptake value 2.5 method, 30%, 40%, and 50% of the maximum uptake method and the signal to background ratio method. Differences of >15% were observed for PET-contoured volumes between the different treatment planning systems for the same data and the same PET contouring methodology. Contoured volume differences between treatment planning systems were caused by differences in data formatting and display and the different contouring tools available. Differences in treatment planning system as well as contouring methodology should be considered carefully in dose-volume contouring and reporting, especially between centers that may use different treatment planning systems or those that have several different treatment planning systems

  7. Using an active contour method to detect bilge dumps from SAR imagery

    CSIR Research Space (South Africa)

    Mdakane, Lizwe W

    2016-07-01

    Full Text Available An automatic approach to detect bilge dumping in synthetic aperture radar (SAR) images over Southern African oceans is proposed. The approach uses a threshold-based algorithm and a region-based active contour model (ACM) algorithm to achieve...

  8. Orientation is different: Interaction between contour integration and feature contrasts in visual search.

    Science.gov (United States)

    Jingling, Li; Tseng, Chia-Huei; Zhaoping, Li

    2013-09-10

    Salient items usually capture attention and are beneficial to visual search. Jingling and Tseng (2013), nevertheless, have discovered that a salient collinear column can impair local visual search. The display used in that study had 21 rows and 27 columns of bars, all uniformly horizontal (or vertical) except for one column of bars orthogonally oriented to all other bars, making this unique column of collinear (or noncollinear) bars salient in the display. Observers discriminated an oblique target bar superimposed on one of the bars either in the salient column or in the background. Interestingly, responses were slower for a target in a salient collinear column than in the background. This opens a theoretical question of how contour integration interacts with salience computation, which is addressed here by an examination of how salience modulated the search impairment from the collinear column. We show that the collinear column needs to have a high orientation contrast with its neighbors to exert search interference. A collinear column of high contrast in color or luminance did not produce the same impairment. Our results show that orientation-defined salience interacted with collinear contour differently from other feature dimensions, which is consistent with the neuronal properties in V1.

  9. Field-level financial assessment of contour prairie strips for enhancement of environmental quality.

    Science.gov (United States)

    Tyndall, John C; Schulte, Lisa A; Liebman, Matthew; Helmers, Matthew

    2013-09-01

    The impacts of strategically located contour prairie strips on sediment and nutrient runoff export from watersheds maintained under an annual row crop production system have been studied at a long-term research site in central Iowa. Data from 2007 to 2011 indicate that the contour prairie strips utilized within row crop-dominated landscapes have greater than proportionate and positive effects on the functioning of biophysical systems. Crop producers and land management agencies require comprehensive information about the Best Management Practices with regard to performance efficacy, operational/management parameters, and the full range of financial parameters. Here, a farm-level financial model assesses the establishment, management, and opportunity costs of contour prairie strips within cropped fields. Annualized, depending on variable opportunity costs the 15-year present value cost of utilizing contour prairie strips ranges from $590 to $865 ha(-1) year(-1) ($240-$350 ac(-1) year(-1)). Expressed in the context of "treatment area" (e.g., in this study 1 ha of prairie treats 10 ha of crops), the costs of contour prairie strips can also be viewed as $59 to about $87 per treated hectare ($24-$35 ac(-1)). If prairie strips were under a 15-year CRP contract, total per acre cost to farmers would be reduced by over 85 %. Based on sediment, phosphorus, and nitrogen export data from the related field studies and across low, medium, and high land rent scenarios, a megagram (Mg) of soil retained within the watershed costs between $7.79 and $11.46 mg(-1), phosphorus retained costs between $6.97 and $10.25 kg(-1), and nitrogen retained costs between $1.59 and $2.34 kg(-1). Based on overall project results, contour prairie strips may well become one of the key conservation practices used to sustain US Corn Belt agriculture in the decades to come.

  10. A case study from Turkey: Turkish auto-gas market towards sustainability

    International Nuclear Information System (INIS)

    Mme Kaya

    2008-01-01

    Turkish auto-gas market grew uncontrollably trough its initial years, leading to auto-gas product, retrofit cars, auto-gas filing stations and conversion shops in compliance with standards. Moreover, standards were not even adequate for a healthy market. Auto-gas accidents occurred due to mis-applications. Consequently, real benefits of auto-gas could not come into the picture, and general public as well as auto-gas customers came to perceive auto-gas as an inferior, unsafe and low-performance fuel. Today's market is really different than the markets in its initial years and it has covered a long way towards sustainability. To exemplify, the standards and inspections are well established and more strict than before. The image of auto-gas has improved considerably and now customers know that auto-gas is not only economic but also environment-friendly safe and good performance. The critical factor, bringing the market into sustainability and healthiness, are the developments in 4 crucial areas, namely, the government, LPG distribution companies, OEMs and auto-gas conversion firms and lastly, customers. Another important key success factor is cooperation between these 4 forces. The presentation will mainly focus on developments in these areas. (author)

  11. The psychological impact of body contouring surgery

    DEFF Research Database (Denmark)

    Mikkelsen Lorenzen, Mike; Poulsen, Lotte; Poulsen, Signe

    2018-01-01

    INTRODUCTION: Body contouring surgery is associated with changes in body image and identity. The primary aim of the study was to investigate a multidisciplinary assessment of potential psychological challenges before and after body contouring surgery. METHODS: Eight pre- and post-operative patients...... relevant codes had been extracted. RESULTS: A total of seven psychological themes were iden- tified, indicating that surgery alone cannot improve the pa- tients’ psychological difficulties and that psychological care and management of the expected discomfort and body im- age is of considerable importance...... in providing continuity of care. CONCLUSIONS: The reported quality of life is of consider- able importance to patients undergoing body contouring surgery after massive weight loss. Our findings may provide useful information for surgeons and healthcare profes- sionals allowing them to develop patient education...

  12. Are Radiation Therapy Oncology Group Para-aortic Contouring Guidelines for Pancreatic Neoplasm Applicable to Other Malignancies—Assessment of Nodal Distribution in Gynecological Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kabolizadeh, Peyman; Fulay, Suyash; Beriwal, Sushil, E-mail: beriwals@upmc.edu

    2013-09-01

    Purpose: Intensity modulated radiation therapy is used to reduce dose to adjacent critical structures while maintaining adequate target coverage, but it requires precise target localization. We report the 3-dimensional distribution of para-aortic (PA) lymph nodes (LN) in pelvic malignancies. We propose a guideline to accurately define the PA LN by anatomic landmarks and compare our data with published guidelines for pancreatic cancer. Methods and Materials: A retrospective analysis was performed on 46 patients with pelvic malignancies and positive PA LNs. Positive LNs were defined based on size and morphology or fluorodeoxyglucose avidity. All PA LNs were characterized into 3 groups based on location: left PA (between aorta and left psoas muscle), aortocaval (between aorta and inferior vena cava), and right paracaval (between inferior vena cava and right psoas muscle). Patients with retrocrural LNs were also analyzed. Results: One hundred thirty-three positive PA LNs were evaluated. The majority of the PA LNs were in the left PA (59%) and aortocaval (35) regions, and only 8% were in the right paracaval region. All patients with positive right paracaval LNs also had involved left PA LNs, with only 1 exception. The highest PA LN involvement was at the level of the renal vessels and was seen in 28% of patients. Of these patients with disease extending to renal vessels, 38% had retrocrural LN involvement. Conclusions: The nodal contouring for the PA region should not be defined by a fixed circumferential margin around the vessels. The left PA and aortocaval spaces should be covered adequately because these are common locations of PA LNs. For microscopic disease superiorly, contouring should extend up to renal vessels rather than a fixed bony landmark. For patients who have nodal involvement at renal vessels, one can consider including retrocrural LNs. Radiation Therapy Oncology Group Para-aortic Contouring Guidelines for Pancreatic Neoplasm are not applicable to

  13. Are Radiation Therapy Oncology Group Para-aortic Contouring Guidelines for Pancreatic Neoplasm Applicable to Other Malignancies—Assessment of Nodal Distribution in Gynecological Malignancies

    International Nuclear Information System (INIS)

    Kabolizadeh, Peyman; Fulay, Suyash; Beriwal, Sushil

    2013-01-01

    Purpose: Intensity modulated radiation therapy is used to reduce dose to adjacent critical structures while maintaining adequate target coverage, but it requires precise target localization. We report the 3-dimensional distribution of para-aortic (PA) lymph nodes (LN) in pelvic malignancies. We propose a guideline to accurately define the PA LN by anatomic landmarks and compare our data with published guidelines for pancreatic cancer. Methods and Materials: A retrospective analysis was performed on 46 patients with pelvic malignancies and positive PA LNs. Positive LNs were defined based on size and morphology or fluorodeoxyglucose avidity. All PA LNs were characterized into 3 groups based on location: left PA (between aorta and left psoas muscle), aortocaval (between aorta and inferior vena cava), and right paracaval (between inferior vena cava and right psoas muscle). Patients with retrocrural LNs were also analyzed. Results: One hundred thirty-three positive PA LNs were evaluated. The majority of the PA LNs were in the left PA (59%) and aortocaval (35) regions, and only 8% were in the right paracaval region. All patients with positive right paracaval LNs also had involved left PA LNs, with only 1 exception. The highest PA LN involvement was at the level of the renal vessels and was seen in 28% of patients. Of these patients with disease extending to renal vessels, 38% had retrocrural LN involvement. Conclusions: The nodal contouring for the PA region should not be defined by a fixed circumferential margin around the vessels. The left PA and aortocaval spaces should be covered adequately because these are common locations of PA LNs. For microscopic disease superiorly, contouring should extend up to renal vessels rather than a fixed bony landmark. For patients who have nodal involvement at renal vessels, one can consider including retrocrural LNs. Radiation Therapy Oncology Group Para-aortic Contouring Guidelines for Pancreatic Neoplasm are not applicable to

  14. A simplified CT-based definition of the lymph node levels in the node negative neck

    International Nuclear Information System (INIS)

    Wijers, O.B.; Levendag, P.C.; Tan, T.; Dieren, E.B. van; Sornsen de Koste, J. van; Est, H. van der; Senan, S.; Nowak, P.J.C.M.

    1999-01-01

    Using three dimensional (3D) conformal radiotherapy (CRT) techniques for elective neck irradiation (ENI) may allow for local disease control to be maintained while diminishing xerostomia by eliminating major salivary glands (or parts thereof) from the treatment portals. The standardization of CT based target volumes for the clinically negative (elective) neck is a prerequisite for 3DCRT. The aim of the present study was to substantially modify an existing ('original') CT-based protocol for the delineation of the neck tar-et volume, into a more practical ('simplified') protocol. This will allow for rapid contouring and the implementation of conformal ENI in routine clinical procedures. An earlier ('original') version of the CT-based definition for elective neck node re-ions 2-5 was re-evaluated, using 15 planning CT scans of previously treated patients. The contouring guidelines were simplified by (1) using a smaller number of easily identifiable soft tissue- and bony anatomical landmarks, which in turn had to be identified in only a limited number of CT slices, and (2) by subsequently interpolating the contoured lymph node regions. The adequacy of target coverage and the sparing using both 'original' and 'simplified' delineation protocols was evaluated by DVH analysis after contouring the primary tumor, the neck and the major salivary glands in a patient with supraglottic laryngeal (SGL) carcinoma who was treated using a 3DCRT technique. The BEV projections of the 'original' and the 'simplified' versions of the 3D elective neck target showed good agreement and were found to be reproducible. The DVH's of the target and parotid glands were not significantly different using both contouring protocols. The 'simplified' protocol for the delineation of the 3D elective neck target produced both comparable target coverage and sparing of the major salivary glands. When used together with an interpolation program, this 'simplified' protocol substantial reduced the contouring

  15. Contouring algorithm for two dimensional data- an application to airborne surveys

    International Nuclear Information System (INIS)

    Suryakumar, N.V.; Rohatgi, Savita; Raghuwanshi, S.S.

    1994-01-01

    The paper describes in general the contouring algorithm for two dimensional projection of aeroradiometric data and considers not only irregularly spaced flight lines but also solves the other problems related to voluminous data acquired during the airborne surveys. Several simple logics have been described for drawing the contours using scan method and taking care of annotations, identification marking, geographical locations, map size, contour density for visual distinctness and many such problems which may arise during contouring. The present paper also discusses various possibilities of contour line segments in the mini-grid and the criterion for selection of suitable segments has been described in detail. A novel approach to avoid the crossing of contours or missing data is also briefly discussed. The simplicity of the algorithm is mentioned for its ready implementation or any computer/plotter. (author). 8 refs., 8 figs

  16. Research on data auto-analysis algorithms in the explosive detection system

    International Nuclear Information System (INIS)

    Wang Haidong; Li Yuanjing; Yang Yigang; Li Tiezhu; Chen Boxian; Cheng Jianping

    2006-01-01

    This paper mainly describe some auto-analysis algorithms in explosive detection system with TNA method. These include the auto-calibration algorithm when disturbed by other factors, MCA auto-calibration algorithm with calibrated spectrum, the auto-fitting and integral of hydrogen and nitrogen elements data. With these numerical algorithms, the authors can automatically and precisely analysis the gamma-spectra and ultimately achieve the explosive auto-detection. (authors)

  17. Generic and robust method for automatic segmentation of PET images using an active contour model

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Mingzan [Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen (Netherlands)

    2016-08-15

    Purpose: Although positron emission tomography (PET) images have shown potential to improve the accuracy of targeting in radiation therapy planning and assessment of response to treatment, the boundaries of tumors are not easily distinguishable from surrounding normal tissue owing to the low spatial resolution and inherent noisy characteristics of PET images. The objective of this study is to develop a generic and robust method for automatic delineation of tumor volumes using an active contour model and to evaluate its performance using phantom and clinical studies. Methods: MASAC, a method for automatic segmentation using an active contour model, incorporates the histogram fuzzy C-means clustering, and localized and textural information to constrain the active contour to detect boundaries in an accurate and robust manner. Moreover, the lattice Boltzmann method is used as an alternative approach for solving the level set equation to make it faster and suitable for parallel programming. Twenty simulated phantom studies and 16 clinical studies, including six cases of pharyngolaryngeal squamous cell carcinoma and ten cases of nonsmall cell lung cancer, were included to evaluate its performance. Besides, the proposed method was also compared with the contourlet-based active contour algorithm (CAC) and Schaefer’s thresholding method (ST). The relative volume error (RE), Dice similarity coefficient (DSC), and classification error (CE) metrics were used to analyze the results quantitatively. Results: For the simulated phantom studies (PSs), MASAC and CAC provide similar segmentations of the different lesions, while ST fails to achieve reliable results. For the clinical datasets (2 cases with connected high-uptake regions excluded) (CSs), CAC provides for the lowest mean RE (−8.38% ± 27.49%), while MASAC achieves the best mean DSC (0.71 ± 0.09) and mean CE (53.92% ± 12.65%), respectively. MASAC could reliably quantify different types of lesions assessed in this work

  18. Development of ATSR (Auto Thermal Steam Reformer)

    International Nuclear Information System (INIS)

    Ono, J.; Yoshino, Y.; Kuwabara, T.; Fujisima, S.; Kobayashi, S.; Maruko, S.

    2004-01-01

    'Full text:' Auto-thermal reformers are used popularly for fuel cell vehicle because they are compact and can start up quickly. On the other hand, steam reformers are used for stationary fuel cell power plant because they are good thermal efficiency. While, there are many cases using the auto- thermal reformer for stationary use with expectation of cost reduction in USA, as well. However, they are still insufficient for its durability, compactness and cost. We have been developing the new type of fuel processing system that is auto-thermal steam reformer (ATSR), which is hybrid of a conventional steam reformer (STR) and a conventional auto-thermal reformer (ATR). In this study, some proto-type of ATSR for field test were designed, tried manufacturing and tested performance and durability. And we have tried to operate with fuel cell stack to evaluate the system interface performance, that is, operability and controllability. (author)

  19. A dedicated on-line detecting system for auto air dryers

    Science.gov (United States)

    Shi, Chao-yu; Luo, Zai

    2013-10-01

    According to the correlative automobile industry standard and the requirements of manufacturer, this dedicated on-line detecting system is designed against the shortage of low degree automatic efficiency and detection precision of auto air dryer in the domestic. Fast automatic detection is achieved by combining the technology of computer control, mechatronics and pneumatics. This system can detect the speciality performance of pressure regulating valve and sealability of auto air dryer, in which online analytical processing of test data is available, at the same time, saving and inquiring data is achieved. Through some experimental analysis, it is indicated that efficient and accurate detection of the performance of auto air dryer is realized, and the test errors are less than 3%. Moreover, we carry out the type A evaluation of uncertainty in test data based on Bayesian theory, and the results show that the test uncertainties of all performance parameters are less than 0.5kPa, which can meet the requirements of operating industrial site absolutely.

  20. What Is the Best Way to Contour Lung Tumors on PET Scans? Multiobserver Validation of a Gradient-Based Method Using a NSCLC Digital PET Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Werner-Wasik, Maria, E-mail: Maria.Werner-wasik@jeffersonhospital.org [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Nelson, Arden D. [MIM Software Inc., Cleveland, OH (United States); Choi, Walter [Department of Radiation Oncology, UPMC Health Systems, Pittsburgh, PA (United States); Arai, Yoshio [Department of Radiation Oncology, Beth Israel Medical Center, New York, NY (Israel); Faulhaber, Peter F. [University Hospitals Case Medical Center, Cleveland, OH (United States); Kang, Patrick [Department of Radiology, Beth Israel Medical Center, New York, NY (Israel); Almeida, Fabio D. [Division of Nuclear Medicine, University of Arizona Health Sciences Center, Tucson, AZ (United States); Xiao, Ying; Ohri, Nitin [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Brockway, Kristin D.; Piper, Jonathan W.; Nelson, Aaron S. [MIM Software Inc., Cleveland, OH (United States)

    2012-03-01

    Purpose: To evaluate the accuracy and consistency of a gradient-based positron emission tomography (PET) segmentation method, GRADIENT, compared with manual (MANUAL) and constant threshold (THRESHOLD) methods. Methods and Materials: Contouring accuracy was evaluated with sphere phantoms and clinically realistic Monte Carlo PET phantoms of the thorax. The sphere phantoms were 10-37 mm in diameter and were acquired at five institutions emulating clinical conditions. One institution also acquired a sphere phantom with multiple source-to-background ratios of 2:1, 5:1, 10:1, 20:1, and 70:1. One observer segmented (contoured) each sphere with GRADIENT and THRESHOLD from 25% to 50% at 5% increments. Subsequently, seven physicians segmented 31 lesions (7-264 mL) from 25 digital thorax phantoms using GRADIENT, THRESHOLD, and MANUAL. Results: For spheres <20 mm in diameter, GRADIENT was the most accurate with a mean absolute % error in diameter of 8.15% (10.2% SD) compared with 49.2% (51.1% SD) for 45% THRESHOLD (p < 0.005). For larger spheres, the methods were statistically equivalent. For varying source-to-background ratios, GRADIENT was the most accurate for spheres >20 mm (p < 0.065) and <20 mm (p < 0.015). For digital thorax phantoms, GRADIENT was the most accurate (p < 0.01), with a mean absolute % error in volume of 10.99% (11.9% SD), followed by 25% THRESHOLD at 17.5% (29.4% SD), and MANUAL at 19.5% (17.2% SD). GRADIENT had the least systematic bias, with a mean % error in volume of -0.05% (16.2% SD) compared with 25% THRESHOLD at -2.1% (34.2% SD) and MANUAL at -16.3% (20.2% SD; p value <0.01). Interobserver variability was reduced using GRADIENT compared with both 25% THRESHOLD and MANUAL (p value <0.01, Levene's test). Conclusion: GRADIENT was the most accurate and consistent technique for target volume contouring. GRADIENT was also the most robust for varying imaging conditions. GRADIENT has the potential to play an important role for tumor delineation in

  1. New method of contour image processing based on the formalism of spiral light beams

    Science.gov (United States)

    Volostnikov, Vladimir G.; Kishkin, S. A.; Kotova, S. P.

    2013-07-01

    The possibility of applying the mathematical formalism of spiral light beams to the problems of contour image recognition is theoretically studied. The advantages and disadvantages of the proposed approach are evaluated; the results of numerical modelling are presented.

  2. Holographic Moire Contouring

    Science.gov (United States)

    Sciammarella, C. A.; Sainov, Ventseslav; Simova, Eli

    1990-04-01

    Theoretical analysis and experimental results on holographic moire contouring (HMC) of difussely reflecting objects are presented. The sensitivity and application constraints of the method are discussed. A high signal-to-noise ratio and contrast of the fringes is achieved through the use of high quality silver halide holographic plates HP-650. A good agreement between theoretical and experimental results is observed.

  3. Diagnostic Utility of Auto-Antibodies in Inflammatory Muscle Diseases.

    Science.gov (United States)

    Allenbach, Y; Benveniste, O

    2015-01-01

    To date, there are four main groups of idiopathic inflammatory myopathies (IIM): polymyositis (PM), dermatomyositis (DM), immune-mediated necrotizing myopathy (IMNM) and sporadic inclusion body myositis; based on clinical presentation and muscle pathology. Nevertheless, important phenotypical differences (either muscular and/or extra-muscular manifestations) within a group persist. In recent years, the titration of different myositis-specific (or associated) auto-antibodies as a diagnostic tool has increased. This is an important step forward since it may facilitate, at a viable cost, the differential diagnosis between IIM and other myopathies. We have now routine access to assays for the detection of different antibodies. For example, IMNM are related to the presence of anti-SRP or anti-HMGCR. PM is associated with anti-synthetase antibodies (anti-Jo-1, PL-7, PL-12, OJ, and EJ) and DM with anti-Mi-2, anti-SAE, anti-TIF-1-γ and anti-NXP2 (both associated with cancer) or anti-MDA5 antibodies (associated with interstitial lung disease). Today, over 30 myositis specific and associated antibodies have been characterised, and all groups of myositis may present one of those auto-antibodies. Most of them allow identification of homogenous patient groups, more precisely than the classical international classifications of myositis. This implies that classification criteria could be modified accordingly, since these auto-antibodies delineate groups of patients suffering from myositis with consistent clinical phenotype (muscular and extra-muscular manifestations), common prognostic (cancer association, presence of interstitial lung disease, mortality and risk of relapse) and treatment responses. Nevertheless, since numerous auto-antibodies have been recently characterised, the exact prevalence of myositis specific antibodies remains to be documented, and research of new auto-antibodies in the remaining seronegative group is still needed.

  4. A review of methods of analysis in contouring studies for radiation oncology

    International Nuclear Information System (INIS)

    Jameson, Michael G.; Holloway, Lois C.; Metcalfe, Peter E.; Vial, Philip J.; Vinod, Shalini K.

    2010-01-01

    Full text: Inter-observer variability in anatomical contouring is the biggest contributor to uncertainty in radiation treatment planning. Contouring studies are frequently performed to investigate the differences between multiple contours on common datasets. There is, however, no widely accepted method for contour comparisons. The purpose of this study is to review the literature on contouring studies in the context of radiation oncology, with particular consideration of the contouring comparison methods they employ. A literature search, not limited by date, was conducted using Medline and Google Scholar with key words; contour, variation, delineation, inter/intra observer, uncertainty and trial dummy-run. This review includes a description of the contouring processes and contour comparison metrics used. The use of different processes and metrics according to tumour site and other factors were also investigated with limitations described. A total of 69 relevant studies were identified. The most common tumour sites were prostate (26), lung (10), head and neck cancers (8) and breast (7).The most common metric of comparison was volume used 59 times, followed by dimension and shape used 36 times, and centre of volume used 19 times. Of all 69 publications, 67 used a combination of metrics and two used only one metric for comparison. No clear relationships between tumour site or any other factors that may in Auence the contouring process and the metrics used to compare contours were observed from the literature. Further studies are needed to assess the advantages and disadvantages of each metric in various situations.

  5. Design optimization of highly asymmetrical layouts by 2D contour metrology

    Science.gov (United States)

    Hu, C. M.; Lo, Fred; Yang, Elvis; Yang, T. H.; Chen, K. C.

    2018-03-01

    As design pitch shrinks to the resolution limit of up-to-date optical lithography technology, the Critical Dimension (CD) variation tolerance has been dramatically decreased for ensuring the functionality of device. One of critical challenges associates with the narrower CD tolerance for whole chip area is the proximity effect control on asymmetrical layout environments. To fulfill the tight CD control of complex features, the Critical Dimension Scanning Electron Microscope (CD-SEM) based measurement results for qualifying process window and establishing the Optical Proximity Correction (OPC) model become insufficient, thus 2D contour extraction technique [1-5] has been an increasingly important approach for complementing the insufficiencies of traditional CD measurement algorithm. To alleviate the long cycle time and high cost penalties for product verification, manufacturing requirements are better to be well handled at design stage to improve the quality and yield of ICs. In this work, in-house 2D contour extraction platform was established for layout design optimization of 39nm half-pitch Self-Aligned Double Patterning (SADP) process layer. Combining with the adoption of Process Variation Band Index (PVBI), the contour extraction platform enables layout optimization speedup as comparing to traditional methods. The capabilities of identifying and handling lithography hotspots in complex layout environments of 2D contour extraction platform allow process window aware layout optimization to meet the manufacturing requirements.

  6. Software Development for Auto-Generation of Interlocking Knowledge base using Artificial Intelligence Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Yun Seok [Nanseoul University (Korea); Kim, JOng Sun [Kwangwoon University (Korea)

    1999-06-01

    This paper proposes IIKBAG (Intelligent Interlocking Knowledge Base Generator) which can build automatically the interlocking knowledge base utilized as the real-time interlocking strategy of the electronic interlocking system in order to enhance it's reliability and expansion. The IIKBAG consists of the inference engine and the knowledge base. The former has an auto-learning function which searches all the train routes for the given station model based on heuristic search technique while dynamically searching the model, and then generates automatically the interlocking patterns obtained from the interlocking relations of signal facilities on the routes. The latter is designed as the structure which the real-time expert system embedded on IS (Interlocking System) can use directly in order to enhances the reliability and accuracy. The IIKBAG is implemented in C computer language for the purpose of the build and interface of the station structure database. And, a typical station model is simulated to prove the validity of the proposed IIKBAG. (author). 13 refs., 5 figs., 2 tabs.

  7. Subsidence Contours for South Louisiana; UTM 15N NAD83; LRA (2005); [subsidence_contours

    Data.gov (United States)

    Louisiana Geographic Information Center — The GIS data shapefile represents average subsidence contour intervals (0.02 cm/year over 10,000 years) for Coastal LA derived from the following: Kulp, M.A., 2000,...

  8. Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer. A comparison between two modalities

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Tiina; Visapaeae, Harri; Collan, Juhani; Kapanen, Mika; Kouri, Mauri; Tenhunen, Mikko; Saarilahti, Kauko [University of Helsinki and Helsinki University Hospital, Comprehensive Cancer Center, POB 180, Helsinki (Finland); Beule, Annette [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 180, Helsinki (Finland)

    2015-11-15

    To investigate the conversion of prostate cancer radiotherapy (RT) target definition from CT-based planning into an MRI-only-based planning procedure. Using the CT- and MRI-only-based RT planning protocols, 30 prostate cancer patients were imaged in the RT fixation position. Two physicians delineated the prostate in both CT and T2-weighted MRI images. The CT and MRI images were coregistered based on gold seeds and anatomic borders of the prostate. The uncertainty of the coregistration, as well as differences in target volumes and uncertainty of contour delineation were investigated. Conversion of margins and dose constraints from CT- to MRI-only-based treatment planning was assessed. On average, the uncertainty of image coregistration was 0.4 ± 0.5 mm (one standard deviation, SD), 0.9 ± 0.8 mm and 0.9 ± 0.9 mm in the lateral, anterior-posterior and base-apex direction, respectively. The average ratio of the prostate volume between CT and MRI was 1.20 ± 0.15 (one SD). Compared to the CT-based contours, the MRI-based contours were on average 2-7 mm smaller in the apex, 0-1 mm smaller in the rectal direction and 1-4 mm smaller elsewhere. When converting from a CT-based planning procedure to an MRI-based one, the overall planning target volumes (PTV) are prominently reduced only in the apex. The prostate margins and dose constraints can be retained by this conversion. (orig.) [German] Ziel unserer Studie war es, die Umstellung der Strahlentherapieplanung des Prostatakarzinoms von CT-gestuetzter in ausschliesslich MR-gestuetzte Zieldefinition zu untersuchen. Bei 30 Patienten mit Prostatakarzinom wurden eine CT und eine MRT unter Planungsbedingungen durchgefuehrt. Zwei Untersucher konturierten die Prostata in CT- und T2-gewichteten MR-Bildern. Mit Hilfe der Position von Goldstiften und der anatomischen Grenzen der Prostata wurden die CT- und MR-Bilder koregistriert. Es wurden die Genauigkeit der Koregistrierung sowie die Unterschiede der Zielvolumina und der

  9. Statistical Modeling Approach to Quantitative Analysis of Interobserver Variability in Breast Contouring

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinzhong, E-mail: jyang4@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A.; Reed, Valerie K.; Strom, Eric A.; Perkins, George H.; Tereffe, Welela; Buchholz, Thomas A. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Zhang, Lifei; Balter, Peter; Court, Laurence E. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Dong, Lei [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Scripps Proton Therapy Center, San Diego, California (United States)

    2014-05-01

    Purpose: To develop a new approach for interobserver variability analysis. Methods and Materials: Eight radiation oncologists specializing in breast cancer radiation therapy delineated a patient's left breast “from scratch” and from a template that was generated using deformable image registration. Three of the radiation oncologists had previously received training in Radiation Therapy Oncology Group consensus contouring for breast cancer atlas. The simultaneous truth and performance level estimation algorithm was applied to the 8 contours delineated “from scratch” to produce a group consensus contour. Individual Jaccard scores were fitted to a beta distribution model. We also applied this analysis to 2 or more patients, which were contoured by 9 breast radiation oncologists from 8 institutions. Results: The beta distribution model had a mean of 86.2%, standard deviation (SD) of ±5.9%, a skewness of −0.7, and excess kurtosis of 0.55, exemplifying broad interobserver variability. The 3 RTOG-trained physicians had higher agreement scores than average, indicating that their contours were close to the group consensus contour. One physician had high sensitivity but lower specificity than the others, which implies that this physician tended to contour a structure larger than those of the others. Two other physicians had low sensitivity but specificity similar to the others, which implies that they tended to contour a structure smaller than the others. With this information, they could adjust their contouring practice to be more consistent with others if desired. When contouring from the template, the beta distribution model had a mean of 92.3%, SD ± 3.4%, skewness of −0.79, and excess kurtosis of 0.83, which indicated a much better consistency among individual contours. Similar results were obtained for the analysis of 2 additional patients. Conclusions: The proposed statistical approach was able to measure interobserver variability quantitatively

  10. New method of contour image processing based on the formalism of spiral light beams

    International Nuclear Information System (INIS)

    Volostnikov, Vladimir G; Kishkin, S A; Kotova, S P

    2013-01-01

    The possibility of applying the mathematical formalism of spiral light beams to the problems of contour image recognition is theoretically studied. The advantages and disadvantages of the proposed approach are evaluated; the results of numerical modelling are presented. (optical image processing)

  11. An Accurate and Efficient Design Tool for Large Contoured Beam Reflectarrays

    DEFF Research Database (Denmark)

    Zhou, Min; Sørensen, Stig B.; Jørgensen, Erik

    2012-01-01

    An accurate and efficient tool for the design of contoured beam reflectarrays is presented. It is based on the Spectral Domain Method of Moments, the Local Periodicity approach, and a minimax optimization algorithm. Contrary to the conventional phase-only optimization techniques, the geometrical...... parameters of the array elements are directly optimized to fulfill the far-field requirements. The design tool can be used to optimize reflectarrays based on a regular grid as well as an irregular grid. Both coand cross-polar radiation can be optimized for multiple frequencies, polarizations, and feed...... illuminations. Two offset contoured beam reflectarrays that radiate a highgain beam on an European coverage have been designed, manufactured, and measured at the DTU-ESA Spherical Near-Field Antenna Test Facility. An excellent agreement is obtained for the simulated and measured patterns. To show the design...

  12. Reliability and validity of the AutoCAD software method in lumbar lordosis measurement.

    Science.gov (United States)

    Letafatkar, Amir; Amirsasan, Ramin; Abdolvahabi, Zahra; Hadadnezhad, Malihe

    2011-12-01

    The aim of this study was to determine the reliability and validity of the AutoCAD software method in lumbar lordosis measurement. Fifty healthy volunteers with a mean age of 23 ± 1.80 years were enrolled. A lumbar lateral radiograph was taken on all participants, and the lordosis was measured according to the Cobb method. Afterward, the lumbar lordosis degree was measured via AutoCAD software and flexible ruler methods. The current study is accomplished in 2 parts: intratester and intertester evaluations of reliability as well as the validity of the flexible ruler and software methods. Based on the intraclass correlation coefficient, AutoCAD's reliability and validity in measuring lumbar lordosis were 0.984 and 0.962, respectively. AutoCAD showed to be a reliable and valid method to measure lordosis. It is suggested that this method may replace those that are costly and involve health risks, such as radiography, in evaluating lumbar lordosis.

  13. 46 CFR 78.19-1 - Use of auto pilot.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Use of auto pilot. 78.19-1 Section 78.19-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS OPERATIONS Auto Pilot § 78.19-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used in— (a...

  14. 46 CFR 97.16-1 - Use of auto pilot.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Use of auto pilot. 97.16-1 Section 97.16-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS OPERATIONS Auto Pilot § 97.16-1 Use of auto pilot. Except as provided in 33 CFR 164.15, when the automatic pilot is used...

  15. Brightness/darkness induction and the genesis of a contour

    Directory of Open Access Journals (Sweden)

    Sergio eRoncato

    2014-10-01

    Full Text Available Visual contours often result from the integration or interpolation of fragmented edges.The strength of the completion increases when the edges share the same contrast polarity (CP. Here we demonstrate that the appearance in the perceptual field of this integrated unit, or contour of invariant CP, is concomitant with a vivid brightness alteration of the surfaces at its opposite sides. To observe this effect requires some stratagems because the formation in the visual field of a contour of invariant CP normally engenders the formation of a second contour and then the rise of two streams of induction signals that interfere in different ways. Particular configurations have been introduced that allow us to observe the induction effects of one contour taken in isolation. I documented these effects by phenomenological observations and psychophysical measurement of the brightness alteration in relation to luminance contrast. When the edges of the same CP complete to form a contour, the background of homogeneous luminance appears to dim at one side and to brighten at the opposite side (in accord with the CP. The strength of the phenomenon is proportional to the local luminance contrast. This effect weakens or nulls when the contour of the invariant CP separates surfaces filled with different grey shades.These conflicting results stimulate a deeper exploration of the induction phenomena and their role in the computation of brightness contrast. An alternative perspective is offered to account for some brightness illusions and their relation to the phenomenal transparency. The main assumption asserts that, when in the same region induction signals of opposite CP overlap, the filling-in are blocked unless the image is stratified into different layers, one for each signal of the same polarity. Phenomenological observations document this solution by the visual system

  16. Color contributes to object-contour perception in natural scenes.

    Science.gov (United States)

    Hansen, Thorsten; Gegenfurtner, Karl R

    2017-03-01

    The magnitudes of chromatic and achromatic edge contrast are statistically independent and thus provide independent information, which can be used for object-contour perception. However, it is unclear if and how much object-contour perception benefits from chromatic edge contrast. To address this question, we investigated how well human-marked object contours can be predicted from achromatic and chromatic edge contrast. We used four data sets of human-marked object contours with a total of 824 images. We converted the images to the Derrington-Krauskopf-Lennie color space to separate chromatic from achromatic information in a physiologically meaningful way. Edges were detected in the three dimensions of the color space (one achromatic and two chromatic) and compared to human-marked object contours using receiver operating-characteristic (ROC) analysis for a threshold-independent evaluation. Performance was quantified by the difference of the area under the ROC curves (ΔAUC). Results were consistent across different data sets and edge-detection methods. If chromatic edges were used in addition to achromatic edges, predictions were better for 83% of the images, with a prediction advantage of 3.5% ΔAUC, averaged across all data sets and edge detectors. For some images the prediction advantage was considerably higher, up to 52% ΔAUC. Interestingly, if achromatic edges were used in addition to chromatic edges, the average prediction advantage was smaller (2.4% ΔAUC). We interpret our results such that chromatic information is important for object-contour perception.

  17. Dor crônica e a crença de auto-eficácia El dolor crónico y la creencia de la auto-eficacia Chronic pain and the belief in self-efficacy

    Directory of Open Access Journals (Sweden)

    Marina de Góes Salvetti

    2007-03-01

    Full Text Available O tratamento de doentes com dor crônica inclui a modificação de crenças, atitudes, valores e com-portamentos pouco adaptativos. Crenças disfuncionais podem se tornar o problema central e determinar os resultados do tra-tamento. Dentre as crenças importantes para a vivência e manejo da dor crônica, a de auto-eficácia merece destaque. Auto-eficácia, de acordo com Bandura, é a crença sobre a habilidade pessoal de desempenhar com sucesso determinadas tarefas ou comportamentos para produzir um resultado desejável. Este estudo é uma revisão crítica da literatura sobre a crença de auto-eficácia relacionada à dor crônica e sobre os métodos para sua avaliação. Estudos existentes nas ba-ses Medline (1992 a 2002, Lilacs e Dedalus (toda a base foram analisados. Os descritores utilizados foram pain and self-efficacy, dor e auto-eficácia.El tratamiento de enfermos con dolor crónico incluye la modi-ficación de creencias, actitudes, valores y comportamientos poco adaptativos. Las creencias disfuncionales pueden volverse el problema central y determinar los resultados del tratamiento. De las creencias importantes para la vivencia y manejo del dolor crónico, la de auto eficacia merece ser destacado. La auto eficacia, de acuerdo con Bandura, es la creencia sobre la habilidad personal de desempeñar con éxito determinadas tareas o comportamientos para producir un resultado deseable. Este estudio es una revisión crítica de la literatura sobre la creencia de la auto eficacia relacionada al dolor crónico y sobre los métodos para su evaluación. Los estudios existentes en las bases Medline (1992 a 2002, Lilacs y Dedalus (toda la base fueron analizados. Los descriptores utilizados fueron pain and self-efficacy, dolor y auto eficacia.The treatment of chronic pain patients includes beliefs, attitudes, values and behavior modifications. Dysfunctional beliefs about pain and management can become the central problem and determine the treatment

  18. THREE DIMENSIONAL DIGITIZATION OF HUMAN HEAD BY FUSING STRUCTURED LIGHT AND CONTOURS

    Institute of Scientific and Technical Information of China (English)

    Jin Gang; Li Dehua; Hu Hanping; Hu Bing

    2002-01-01

    Three dimensional digitization of human head is desired in many applications. In this paper, an information fusion based scheme is presented to obtain 3-D information of human head. Structured light technology is employed to measure depth. For the special reflection areas,in which the structured light stripe can not be detected directly, the shape of the structured light stripe can be calculated from the corresponding contour. By fusing the information of structured light and the contours, the problem of reflectance influence is solved, and the whole shape of head,including hair area, can be obtained. Some good results are obtained.

  19. Parallel peak pruning for scalable SMP contour tree computation

    Energy Technology Data Exchange (ETDEWEB)

    Carr, Hamish A. [Univ. of Leeds (United Kingdom); Weber, Gunther H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Davis, CA (United States); Sewell, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahrens, James P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-09

    As data sets grow to exascale, automated data analysis and visualisation are increasingly important, to intermediate human understanding and to reduce demands on disk storage via in situ analysis. Trends in architecture of high performance computing systems necessitate analysis algorithms to make effective use of combinations of massively multicore and distributed systems. One of the principal analytic tools is the contour tree, which analyses relationships between contours to identify features of more than local importance. Unfortunately, the predominant algorithms for computing the contour tree are explicitly serial, and founded on serial metaphors, which has limited the scalability of this form of analysis. While there is some work on distributed contour tree computation, and separately on hybrid GPU-CPU computation, there is no efficient algorithm with strong formal guarantees on performance allied with fast practical performance. Here in this paper, we report the first shared SMP algorithm for fully parallel contour tree computation, withfor-mal guarantees of O(lgnlgt) parallel steps and O(n lgn) work, and implementations with up to 10x parallel speed up in OpenMP and up to 50x speed up in NVIDIA Thrust.

  20. [Stress and auto-immunity].

    Science.gov (United States)

    Delévaux, I; Chamoux, A; Aumaître, O

    2013-08-01

    The etiology of auto-immune disorders is multifactorial. Stress is probably a participating factor. Indeed, a high proportion of patients with auto-immune diseases report uncommon stress before disease onset or disease flare. The biological consequences of stress are increasingly well understood. Glucocorticoids and catecholamines released by hypothalamic-pituitary-adrenal axis during stress will alter the balance Th1/Th2 and the balance Th17/Treg. Stress impairs cellular immunity, decreases immune tolerance and stimulates humoral immunity exposing individuals to autoimmune disease among others. The treatment for autoimmune disease should include stress management. Copyright © 2012 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  1. Deformation of contour and Hawking temperature

    International Nuclear Information System (INIS)

    Ding Chikun; Jing Jiliang

    2010-01-01

    It was found that, in an isotropic coordinate system, the tunneling approach brings a factor of 1/2 for the Hawking temperature of a Schwarzschild black hole. In this paper, we address this kind of problem by studying the relation between the Hawking temperature and the deformation of the integral contour for the scalar and Dirac particles tunneling. We find that the correct Hawking temperature can be obtained exactly as long as the integral contour deformed corresponding to the radial coordinate transform if the transformation is a non-regular or zero function at the event horizon.

  2. AUTO-EXPANSIVE FLOW

    Science.gov (United States)

    Physics suggests that the interplay of momentum, continuity, and geometry in outward radial flow must produce density and concomitant pressure reductions. In other words, this flow is intrinsically auto-expansive. It has been proposed that this process is the key to understanding...

  3. Some distinguishing characteristics of contour and texture phenomena in images

    Science.gov (United States)

    Jobson, Daniel J.

    1992-01-01

    The development of generalized contour/texture discrimination techniques is a central element necessary for machine vision recognition and interpretation of arbitrary images. Here, the visual perception of texture, selected studies of texture analysis in machine vision, and diverse small samples of contour and texture are all used to provide insights into the fundamental characteristics of contour and texture. From these, an experimental discrimination scheme is developed and tested on a battery of natural images. The visual perception of texture defined fine texture as a subclass which is interpreted as shading and is distinct from coarse figural similarity textures. Also, perception defined the smallest scale for contour/texture discrimination as eight to nine visual acuity units. Three contour/texture discrimination parameters were found to be moderately successful for this scale discrimination: (1) lightness change in a blurred version of the image, (2) change in lightness change in the original image, and (3) percent change in edge counts relative to local maximum.

  4. Automatic programming of grinding robot restoration of contours

    OpenAIRE

    Are Willersrud; Fred Godtliebsen; Trygve Thomessen

    1995-01-01

    A new programming method has been developed for grinding robots. Instead of using the conventional jog-and-teach method, the workpiece contour is automatically tracked by the robot. During the tracking, the robot position is stored in the robot control system every 8th millisecond. After filtering and reducing this contour data, a robot program is automatically generated.

  5. The Status and Trend of Chinese Auto EC

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    <正> As a new information industry, E-commerce is becoming a new growth point of economy, and changing the development of traditional industries such as the auto industry. E-commerce would ultimately bring it profound changes. Therefore, many countries are employing E-commerce to impel the development of the auto industry rapidly. As the final large market, China has to keep up with the trend of global auto development. If we did not explore and establish E-commerce actively, with WTO coming, we

  6. An improved active contour model for glacial lake extraction

    Science.gov (United States)

    Zhao, H.; Chen, F.; Zhang, M.

    2017-12-01

    Active contour model is a widely used method in visual tracking and image segmentation. Under the driven of objective function, the initial curve defined in active contour model will evolve to a stable condition - a desired result in given image. As a typical region-based active contour model, C-V model has a good effect on weak boundaries detection and anti noise ability which shows great potential in glacial lake extraction. Glacial lake is a sensitive indicator for reflecting global climate change, therefore accurate delineate glacial lake boundaries is essential to evaluate hydrologic environment and living environment. However, the current method in glacial lake extraction mainly contains water index method and recognition classification method are diffcult to directly applied in large scale glacial lake extraction due to the diversity of glacial lakes and masses impacted factors in the image, such as image noise, shadows, snow and ice, etc. Regarding the abovementioned advantanges of C-V model and diffcults in glacial lake extraction, we introduce the signed pressure force function to improve the C-V model for adapting to processing of glacial lake extraction. To inspect the effect of glacial lake extraction results, three typical glacial lake development sites were selected, include Altai mountains, Centre Himalayas, South-eastern Tibet, and Landsat8 OLI imagery was conducted as experiment data source, Google earth imagery as reference data for varifying the results. The experiment consequence suggests that improved active contour model we proposed can effectively discriminate the glacial lakes from complex backgound with a higher Kappa Coefficient - 0.895, especially in some small glacial lakes which belongs to weak information in the image. Our finding provide a new approach to improved accuracy under the condition of large proportion of small glacial lakes and the possibility for automated glacial lake mapping in large-scale area.

  7. Anti-pentraxin 3 auto-antibodies might be protective in lupus nephritis: a large cohort study.

    Science.gov (United States)

    Yuan, Mo; Tan, Ying; Pang, Yun; Li, Yong-Zhe; Song, Yan; Yu, Feng; Zhao, Ming-Hui

    2017-11-01

    Anti-pentraxin 3 (PTX3) auto-antibodies were found to be associated with the absence of renal involvement in systemic lupus erythematosus (SLE). This study is to investigate the prevalence of anti-PTX3 auto-antibodies and their clinical significance based on a large Chinese lupus nephritis cohort. One hundred and ninety-six active lupus nephritis patients, 150 SLE patients without clinical renal involvement, and 100 healthy controls were enrolled. Serum anti-PTX3 auto-antibodies and PTX3 levels were screened by enzyme-linked immunosorbent assay (ELISA). The associations between anti-PTX3 auto-antibodies and clinicopathological parameters in lupus nephritis were further analyzed. Anti-PTX3 auto-antibodies were less prevalent in active lupus nephritis patients compared with SLE without renal involvement (19.4% (38/196) versus 40.7% (61/150), p auto-antibodies were negatively correlated with proteinuria in lupus nephritis (r = -.143, p = .047). The levels of proteinuria, serum creatinine, and the prevalence of thrombotic microangiopathy were significantly higher in patients with higher PTX3 levels (≥3.207 ng/ml) and without anti-PTX3 auto-antibodies compared with patients with lower PTX3 levels (auto-antibodies (4.79 (3.39-8.28) versus 3.95 (1.78-7.0), p = .03; 168.84 ± 153.63 versus 101.44 ± 47.36, p = .01; 34.1% (14/41) versus 0% (0/9), p = .04; respectively). Anti-PTX3 auto-antibodies were less prevalent in active lupus nephritis patients compared with SLE without renal involvement and associated with less severe renal damage, especially with the combined evaluation of serum PTX3 levels.

  8. Auto-focusing accelerating hyper-geometric laser beams

    International Nuclear Information System (INIS)

    Kovalev, A A; Kotlyar, V V; Porfirev, A P

    2016-01-01

    We derive a new solution to the paraxial wave equation that defines a two-parameter family of three-dimensional structurally stable vortex annular auto-focusing hyper-geometric (AH) beams, with their complex amplitude expressed via a degenerate hyper-geometric function. The AH beams are found to carry an orbital angular momentum and be auto-focusing, propagating on an accelerating path toward a focus, where the annular intensity pattern is ‘sharply’ reduced in diameter. An explicit expression for the complex amplitude of vortex annular auto-focusing hyper-geometric-Gaussian beams is derived. The experiment has been shown to be in good agreement with theory. (paper)

  9. Computing Mass Properties From AutoCAD

    Science.gov (United States)

    Jones, A.

    1990-01-01

    Mass properties of structures computed from data in drawings. AutoCAD to Mass Properties (ACTOMP) computer program developed to facilitate quick calculations of mass properties of structures containing many simple elements in such complex configurations as trusses or sheet-metal containers. Mathematically modeled in AutoCAD or compatible computer-aided design (CAD) system in minutes by use of three-dimensional elements. Written in Microsoft Quick-Basic (Version 2.0).

  10. A new background distribution-based active contour model for three-dimensional lesion segmentation in breast DCE-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui; Liu, Yiping; Qiu, Tianshuang [Department of Biomedical Engineering, Dalian University of Technology, Dalian 116024 (China); Zhao, Zuowei, E-mail: liuhui@dlut.edu.cn [Second Affiliated Hospital, Dalian Medical University, Dalian 116027 (China); Zhang, Lina [Department of Radiology, First Affiliated Hospital, Dalian Medical University, Dalian 116027 (China)

    2014-08-15

    Purpose: To develop and evaluate a computerized semiautomatic segmentation method for accurate extraction of three-dimensional lesions from dynamic contrast-enhanced magnetic resonance images (DCE-MRIs) of the breast. Methods: The authors propose a new background distribution-based active contour model using level set (BDACMLS) to segment lesions in breast DCE-MRIs. The method starts with manual selection of a region of interest (ROI) that contains the entire lesion in a single slice where the lesion is enhanced. Then the lesion volume from the volume data of interest, which is captured automatically, is separated. The core idea of BDACMLS is a new signed pressure function which is based solely on the intensity distribution combined with pathophysiological basis. To compare the algorithm results, two experienced radiologists delineated all lesions jointly to obtain the ground truth. In addition, results generated by other different methods based on level set (LS) are also compared with the authors’ method. Finally, the performance of the proposed method is evaluated by several region-based metrics such as the overlap ratio. Results: Forty-two studies with 46 lesions that contain 29 benign and 17 malignant lesions are evaluated. The dataset includes various typical pathologies of the breast such as invasive ductal carcinoma, ductal carcinomain situ, scar carcinoma, phyllodes tumor, breast cysts, fibroadenoma, etc. The overlap ratio for BDACMLS with respect to manual segmentation is 79.55% ± 12.60% (mean ± s.d.). Conclusions: A new active contour model method has been developed and shown to successfully segment breast DCE-MRI three-dimensional lesions. The results from this model correspond more closely to manual segmentation, solve the weak-edge-passed problem, and improve the robustness in segmenting different lesions.

  11. Anti-drift and auto-alignment mechanism for an astigmatic atomic force microscope system based on a digital versatile disk optical head.

    Science.gov (United States)

    Hwu, E-T; Illers, H; Wang, W-M; Hwang, I-S; Jusko, L; Danzebrink, H-U

    2012-01-01

    In this work, an anti-drift and auto-alignment mechanism is applied to an astigmatic detection system (ADS)-based atomic force microscope (AFM) for drift compensation and cantilever alignment. The optical path of the ADS adopts a commercial digital versatile disc (DVD) optical head using the astigmatic focus error signal. The ADS-based astigmatic AFM is lightweight, compact size, low priced, and easy to use. Furthermore, the optical head is capable of measuring sub-atomic displacements of high-frequency AFM probes with a sub-micron laser spot (~570 nm, FWHM) and a high-working bandwidth (80 MHz). Nevertheless, conventional DVD optical heads suffer from signal drift problems. In a previous setup, signal drifts of even thousands of nanometers had been measured. With the anti-drift and auto-alignment mechanism, the signal drift is compensated by actuating a voice coil motor of the DVD optical head. A nearly zero signal drift was achieved. Additional benefits of this mechanism are automatic cantilever alignment and simplified design.

  12. Object segmentation using graph cuts and active contours in a pyramidal framework

    Science.gov (United States)

    Subudhi, Priyambada; Mukhopadhyay, Susanta

    2018-03-01

    Graph cuts and active contours are two very popular interactive object segmentation techniques in the field of computer vision and image processing. However, both these approaches have their own well-known limitations. Graph cut methods perform efficiently giving global optimal segmentation result for smaller images. However, for larger images, huge graphs need to be constructed which not only takes an unacceptable amount of memory but also increases the time required for segmentation to a great extent. On the other hand, in case of active contours, initial contour selection plays an important role in the accuracy of the segmentation. So a proper selection of initial contour may improve the complexity as well as the accuracy of the result. In this paper, we have tried to combine these two approaches to overcome their above-mentioned drawbacks and develop a fast technique of object segmentation. Here, we have used a pyramidal framework and applied the mincut/maxflow algorithm on the lowest resolution image with the least number of seed points possible which will be very fast due to the smaller size of the image. Then, the obtained segmentation contour is super-sampled and and worked as the initial contour for the next higher resolution image. As the initial contour is very close to the actual contour, so fewer number of iterations will be required for the convergence of the contour. The process is repeated for all the high-resolution images and experimental results show that our approach is faster as well as memory efficient as compare to both graph cut or active contour segmentation alone.

  13. Perceptual representation and effectiveness of local figure?ground cues in natural contours

    OpenAIRE

    Sakai, Ko; Matsuoka, Shouhei; Kurematsu, Ken; Hatori, Yasuhiro

    2015-01-01

    A contour shape strongly influences the perceptual segregation of a figure from the ground. We investigated the contribution of local contour shape to figure–ground segregation. Although previous studies have reported local contour features that evoke figure–ground perception, they were often image features and not necessarily perceptual features. First, we examined whether contour features, specifically, convexity, closure, and symmetry, underlie the perceptual representation of natural cont...

  14. 47 CFR 80.307 - Compulsory use of radiotelegraph auto alarm.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Compulsory use of radiotelegraph auto alarm. 80.307 Section 80.307 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL... Safety Watches § 80.307 Compulsory use of radiotelegraph auto alarm. The radiotelegraph auto alarm...

  15. Fast Graph Partitioning Active Contours for Image Segmentation Using Histograms

    Directory of Open Access Journals (Sweden)

    Nath SumitK

    2009-01-01

    Full Text Available Abstract We present a method to improve the accuracy and speed, as well as significantly reduce the memory requirements, for the recently proposed Graph Partitioning Active Contours (GPACs algorithm for image segmentation in the work of Sumengen and Manjunath (2006. Instead of computing an approximate but still expensive dissimilarity matrix of quadratic size, , for a 2D image of size and regular image tiles of size , we use fixed length histograms and an intensity-based symmetric-centrosymmetric extensor matrix to jointly compute terms associated with the complete dissimilarity matrix. This computationally efficient reformulation of GPAC using a very small memory footprint offers two distinct advantages over the original implementation. It speeds up convergence of the evolving active contour and seamlessly extends performance of GPAC to multidimensional images.

  16. Automatic programming of grinding robot restoration of contours

    Directory of Open Access Journals (Sweden)

    Are Willersrud

    1995-07-01

    Full Text Available A new programming method has been developed for grinding robots. Instead of using the conventional jog-and-teach method, the workpiece contour is automatically tracked by the robot. During the tracking, the robot position is stored in the robot control system every 8th millisecond. After filtering and reducing this contour data, a robot program is automatically generated.

  17. Heterogeneity in head and neck IMRT target design and clinical practice

    International Nuclear Information System (INIS)

    Hong, Theodore S.; Tomé, Wolfgang A.; Harari, Paul M.

    2012-01-01

    Purpose: To assess patterns of H and N IMRT practice with particular emphasis on elective target delineation. Materials and methods: Twenty institutions with established H and N IMRT expertise were solicited to design clinical target volumes for the identical H and N cancer case. To limit contouring variability, a primary tonsil GTV and ipsilateral level II node were pre-contoured. Participants were asked to accept this GTV, and contour their recommended CTV and PTV. Dose prescriptions, contouring time, and recommendations regarding chemotherapy were solicited. Results: All 20 institutions responded. Remarkable heterogeneity in H and N IMRT design and practice was identified. Seventeen of 20 centers recommended treatment of bilateral necks whereas 3/20 recommended treatment of the ipsilateral neck only. The average CTV volume was 250 cm 3 (range 37–676 cm 3 ). Although there was high concordance in coverage of ipsilateral neck levels II and III, substantial variation was identified for levels I, V, and the contralateral neck. Average CTV expansion was 4.1 mm (range 0–15 mm). Eight of 20 centers recommended chemotherapy (cisplatin), whereas 12/20 recommended radiation alone. Responders prescribed on average 69 and 68 Gy to the tumor and metastatic node GTV, respectively. Average H and N target volume contouring time was 102.5 min (range 60–210 min). Conclusion: This study identifies substantial heterogeneity in H and N IMRT target definition, prescription, neck treatment, and use of chemotherapy among practitioners with established H and N IMRT expertise. These data suggest that continued efforts to standardize and simplify the H and N IMRT process are desirable for the safe and effective global advancement of H and N IMRT practice.

  18. Sub-cellular trafficking of phytochemicals explored using auto-fluorescent compounds in maize cells

    Directory of Open Access Journals (Sweden)

    Grotewold Erich

    2003-12-01

    Full Text Available Abstract Background Little is known regarding the trafficking mechanisms of small molecules within plant cells. It remains to be established whether phytochemicals are transported by pathways similar to those used by proteins, or whether the expansion of metabolic pathways in plants was associated with the evolution of novel trafficking pathways. In this paper, we exploited the induction of green and yellow auto-fluorescent compounds in maize cultured cells by the P1 transcription factor to investigate their targeting to the cell wall and vacuole, respectively. Results We investigated the accumulation and sub-cellular localization of the green and yellow auto-fluorescent compounds in maize BMS cells expressing the P1 transcription factor from an estradiol inducible promoter. We established that the yellow fluorescent compounds accumulate inside the vacuole in YFBs that resemble AVIs. The green fluorescent compounds accumulate initially in the cytoplasm in large spherical GFBs. Cells accumulating GFBs also contain electron-dense structures that accumulate initially in the ER and which later appear to fuse with the plasma membrane. Structures resembling the GFBs were also observed in the periplasmic space of plasmolized cells. Ultimately, the green fluorescence accumulates in the cell wall, in a process that is insensitive to the Golgi-disturbing agents BFA and monensin. Conclusions Our results suggest the presence of at least two distinct trafficking pathways, one to the cell wall and the other to the vacuole, for different auto-fluorescent compounds induced by the same transcription factor in maize BMS cells. These compartments represent two of the major sites of accumulation of phenolic compounds characteristic of maize cells. The secretion of the green auto-fluorescent compounds occurs by a pathway that does not involve the TGN, suggesting that it is different from the secretion of most proteins, polysaccharides or epicuticular waxes. The

  19. MAP Estimation of Chin and Cheek Contours in Video Sequences

    Directory of Open Access Journals (Sweden)

    Kampmann Markus

    2004-01-01

    Full Text Available An algorithm for the estimation of chin and cheek contours in video sequences is proposed. This algorithm exploits a priori knowledge about shape and position of chin and cheek contours in images. Exploiting knowledge about the shape, a parametric 2D model representing chin and cheek contours is introduced. Exploiting knowledge about the position, a MAP estimator is developed taking into account the observed luminance gradient as well as a priori probabilities of chin and cheek contours positions. The proposed algorithm was tested with head and shoulder video sequences (image resolution CIF. In nearly 70% of all investigated video frames, a subjectively error free estimation could be achieved. The 2D estimate error is measured as on average between 2.4 and .

  20. Automatic transfer function generation using contour tree controlled residue flow model and color harmonics.

    Science.gov (United States)

    Zhou, Jianlong; Takatsuka, Masahiro

    2009-01-01

    Transfer functions facilitate the volumetric data visualization by assigning optical properties to various data features and scalar values. Automation of transfer function specifications still remains a challenge in volume rendering. This paper presents an approach for automating transfer function generations by utilizing topological attributes derived from the contour tree of a volume. The contour tree acts as a visual index to volume segments, and captures associated topological attributes involved in volumetric data. A residue flow model based on Darcy's Law is employed to control distributions of opacity between branches of the contour tree. Topological attributes are also used to control color selection in a perceptual color space and create harmonic color transfer functions. The generated transfer functions can depict inclusion relationship between structures and maximize opacity and color differences between them. The proposed approach allows efficient automation of transfer function generations, and exploration on the data to be carried out based on controlling of opacity residue flow rate instead of complex low-level transfer function parameter adjustments. Experiments on various data sets demonstrate the practical use of our approach in transfer function generations.