WorldWideScience

Sample records for based anthropomorphic phantom

  1. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    International Nuclear Information System (INIS)

    Hintenlang, David E.

    2009-01-01

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ doses in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date

  2. OSL Based Anthropomorphic Phantom and Real-Time Organ Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    David E. Hintenlang, Ph.D

    2009-02-10

    The overall objective of this project was the development of a dosimetry system that provides the direct measurement of organ does in real-time with a sensitivity that makes it an effective tool for applications in a wide variety of health physics applications. The system included the development of a real-time readout system for fiber optic coupled (FOC) dosimeters that is integrated with a state-of-art anthropomorphic phantom to provide instantaneous measures of organ doses throughout the phantom. The small size of the FOC detectors and optical fibers allow the sensitive volume of the detector to be located at organ centroids (or multiple locations distributed through the organ) within a tissue equivalent, anthropomorphic phantom without perturbing the tissue equivalent features of the phantom. The developed phantom/dosimetry system can be used in any environment where personnel may be exposed to gamma or x-ray radiations to provide the most accurate determinations of organ and effective doses possible to date.

  3. NURBS-based 3-d anthropomorphic computational phantoms for radiation dosimetry applications

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Lee, Choonik; Bolch, Wesley E.

    2007-01-01

    Computational anthropomorphic phantoms are computer models used in the evaluation of absorbed dose distributions within the human body. Currently, two classes of the computational phantoms have been developed and widely utilised for dosimetry calculation: (1) stylized (equation-based) and (2) voxel (image-based) phantoms describing human anatomy through the use of mathematical surface equations and 3-D voxel matrices, respectively. However, stylized phantoms have limitations in defining realistic organ contours and positioning as compared to voxel phantoms, which are themselves based on medical images of human subjects. In turn, voxel phantoms that have been developed through medical image segmentation have limitations in describing organs that are presented in low contrast within either magnetic resonance or computed tomography image. The present paper reviews the advantages and disadvantages of these existing classes of computational phantoms and introduces a hybrid approach to a computational phantom construction based on non-uniform rational B-Spline (NURBS) surface animation technology that takes advantage of the most desirable features of the former two phantom types. (authors)

  4. Analysis of translational errors in frame-based and frameless cranial radiosurgery using an anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Taynna Vernalha Rocha [Faculdades Pequeno Principe (FPP), Curitiba, PR (Brazil); Cordova Junior, Arno Lotar; Almeida, Cristiane Maria; Piedade, Pedro Argolo; Silva, Cintia Mara da, E-mail: taynnavra@gmail.com [Centro de Radioterapia Sao Sebastiao, Florianopolis, SC (Brazil); Brincas, Gabriela R. Baseggio [Centro de Diagnostico Medico Imagem, Florianopolis, SC (Brazil); Marins, Priscila; Soboll, Danyel Scheidegger [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)

    2016-03-15

    Objective: To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods: We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5- mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results: For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion: The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used. (author)

  5. Anthropomorphic phantom materials

    International Nuclear Information System (INIS)

    White, D.R.; Constantinou, C.

    1982-01-01

    The need, terminology and history of tissue substitutes are outlined. Radiation properties of real tissues are described and simulation procedures are outlined. Recent tissue substitutes are described and charted, as are calculated radiation classifications. Manufacturing procedures and quality control are presented. Recent phantom studies are reviewed and a discussion recorded. Elemental compositions of the recommended tissue substitutes are charted with elemental composition given for each tissue substitute

  6. SU-E-T-124: Anthropomorphic Phantoms for Confirmation of Linear Accelerator Based Small Animal Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Perks, J; Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States); Lucero, S [UC Davis, Davis, CA (United States)

    2015-06-15

    Purpose: To document the support of radiobiological small animal research by a modern radiation oncology facility. This study confirms that a standard, human use linear accelerator can cover the range of experiments called for by researchers performing animal irradiation. A number of representative, anthropomorphic murine phantoms were made. The phantoms confirmed the small field photon and electron beams dosimetry validated the use of the linear accelerator for rodents. Methods: Laser scanning a model, CAD design and 3D printing produced the phantoms. The phantoms were weighed and CT scanned to judge their compatibility to real animals. Phantoms were produced to specifically mimic lung, gut, brain, and othotopic lesion irradiations. Each phantom was irradiated with the same protocol as prescribed to the live animals. Delivered dose was measured with small field ion chambers, MOS/FETs or TLDs. Results: The density of the phantom material compared to density range across the real mice showed that the printed material would yield sufficiently accurate measurements when irradiated. The whole body, lung and gut irradiations were measured within 2% of prescribed doses with A1SL ion chamber. MOSFET measurements of electron irradiations for the orthotopic lesions allowed refinement of the measured small field output factor to better than 2% and validated the immunology experiment of irradiating one lesion and sparing another. Conclusion: Linacs are still useful tools in small animal bio-radiation research. This work demonstrated a strong role for the clinical accelerator in small animal research, facilitating standard whole body dosing as well as conformal treatments down to 1cm field. The accuracy of measured dose, was always within 5%. The electron irradiations of the phantom brain and flank tumors needed adjustment; the anthropomorphic phantoms allowed refinement of the initial output factor measurements for these fields which were made in a large block of solid water.

  7. Anthropomorphic Phantoms for Confirmation of Linear Accelerator-Based Small Animal Irradiation.

    Science.gov (United States)

    Perks, Julian R; Lucero, Steven; Monjazeb, Arta M; Li, Jian Jian

    2015-03-01

    Three dimensional (3D) scanning and printing technology is utilized to create phantom models of mice in order to assess the accuracy of ionizing radiation dosing from a clinical, human-based linear accelerator. Phantoms are designed to simulate a range of research questions, including irradiation of lung tumors and primary subcutaneous or orthotopic tumors for immunotherapy experimentation. The phantoms are used to measure the accuracy of dose delivery and then refine it to within 1% of the prescribed dose.

  8. Development of a physical 3D anthropomorphic breast phantom

    Energy Technology Data Exchange (ETDEWEB)

    Carton, Ann-Katherine; Bakic, Predrag; Ullberg, Christer; Derand, Helen; Maidment, Andrew D. A. [Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States); XCounter AB, Svaerdvaegen 11, SE-182 33 Danderyd (Sweden); Department of Radiology, University of Pennsylvania, 1 Silverstein Building, 3400 Spruce Street, Philadelphia, Pennsylvania 19104-4206 (United States)

    2011-02-15

    Purpose: Develop a technique to fabricate a 3D anthropomorphic breast phantom with known ground truth for image quality assessment of 2D and 3D breast x-ray imaging systems. Methods: The phantom design is based on an existing computer model that can generate breast voxel phantoms of varying composition, size, and shape. The physical phantom is produced in two steps. First, the portion of the voxel phantom consisting of the glandular tissue, skin, and Cooper's ligaments is separated into sections. These sections are then fabricated by high-resolution rapid prototyping using a single material with 50% glandular equivalence. The remaining adipose compartments are then filled using an epoxy-based resin (EBR) with 100% adipose equivalence. The phantom sections are stacked to form the physical anthropomorphic phantom. Results: The authors fabricated a prototype phantom corresponding to a 450 ml breast with 45% dense tissue, deformed to a 5 cm compressed thickness. Both the rapid prototype (RP) and EBR phantom materials are radiographically uniform. The coefficient of variation (CoV) of the relative attenuation between RP and EBR phantom samples was <1% and the CoV of the signal intensity within RP and EBR phantom samples was <1.5% on average. Digital mammography and reconstructed digital breast tomosynthesis images of the authors' phantom were reviewed by two radiologists; they reported that the images are similar in appearance to clinical images, noting there are still artifacts from air bubbles in the EBR. Conclusions: The authors have developed a technique to produce 3D anthropomorphic breast phantoms with known ground truth, yielding highly realistic x-ray images. Such phantoms may serve both qualitative and quantitative performance assessments for 2D and 3D breast x-ray imaging systems.

  9. A statistically defined anthropomorphic software breast phantom

    International Nuclear Information System (INIS)

    Lau, Beverly A.; Reiser, Ingrid; Nishikawa, Robert M.; Bakic, Predrag R.

    2012-01-01

    Purpose: Digital anthropomorphic breast phantoms have emerged in the past decade because of recent advances in 3D breast x-ray imaging techniques. Computer phantoms in the literature have incorporated power-law noise to represent glandular tissue and branching structures to represent linear components such as ducts. When power-law noise is added to those phantoms in one piece, the simulated fibroglandular tissue is distributed randomly throughout the breast, resulting in dense tissue placement that may not be observed in a real breast. The authors describe a method for enhancing an existing digital anthropomorphic breast phantom by adding binarized power-law noise to a limited area of the breast. Methods: Phantoms with (0.5 mm) 3 voxel size were generated using software developed by Bakic et al. Between 0% and 40% of adipose compartments in each phantom were replaced with binarized power-law noise (β = 3.0) ranging from 0.1 to 0.6 volumetric glandular fraction. The phantoms were compressed to 7.5 cm thickness, then blurred using a 3 × 3 boxcar kernel and up-sampled to (0.1 mm) 3 voxel size using trilinear interpolation. Following interpolation, the phantoms were adjusted for volumetric glandular fraction using global thresholding. Monoenergetic phantom projections were created, including quantum noise and simulated detector blur. Texture was quantified in the simulated projections using power-spectrum analysis to estimate the power-law exponent β from 25.6 × 25.6 mm 2 regions of interest. Results: Phantoms were generated with total volumetric glandular fraction ranging from 3% to 24%. Values for β (averaged per projection view) were found to be between 2.67 and 3.73. Thus, the range of textures of the simulated breasts covers the textures observed in clinical images. Conclusions: Using these new techniques, digital anthropomorphic breast phantoms can be generated with a variety of glandular fractions and patterns. β values for this new phantom are comparable

  10. Computational anthropomorphic phantoms for radiation protection dosimetry: evolution and prospects

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Jaiki

    2006-01-01

    Computational anthropomorphic phantoms are computer models of human anatomy used in the calculation of radiation dose distribution in the human body upon exposure to a radiation source. Depending on the manner to represent human anatomy, they are categorized into two classes: stylized and tomographic phantoms. Stylized phantoms, which have mainly been developed at the Oak Ridge National Laboratory (ORNL), describe human anatomy by using simple mathematical equations of analytical geometry. Several improved stylized phantoms such as male and female adults, pediatric series, and enhanced organ models have been developed following the first hermaphrodite adult stylized phantom, Medical Internal Radiation Dose (MIRD)-5 phantom. Although stylized phantoms have significantly contributed to dosimetry calculation, they provide only approximations of the true anatomical features of the human body and the resulting organ dose distribution. An alternative class of computational phantom, the tomographic phantom, is based upon three-dimensional imaging techniques such as Magnetic Resonance (MR) imaging and Computed Tomography (CT). The tomographic phantoms represent the human anatomy with a large number of voxels that are assigned tissue type and organ identity. To date, a total of around 30 tomographic phantoms including male and female adults, pediatric phantoms, and even a pregnant female, have been developed and utilized for realistic radiation dosimetry calculation. They are based on MRI/CT images or sectional color photos from patients, volunteers or cadavers. Several investigators have compared tomographic phantoms with stylized phantoms, and demonstrated the superiority of tomographic phantoms in terms of realistic anatomy and dosimetry calculation. This paper summarizes the history and current status of both stylized and tomographic phantoms, including Korean computational phantoms. Advantages, limitations, and future prospects are also discussed

  11. Design and fabrication of a realistic anthropomorphic heterogeneous head phantom for MR purposes.

    Directory of Open Access Journals (Sweden)

    Sossena Wood

    Full Text Available The purpose of this study is to design an anthropomorphic heterogeneous head phantom that can be used for MRI and other electromagnetic applications.An eight compartment, physical anthropomorphic head phantom was developed from a 3T MRI dataset of a healthy male. The designed phantom was successfully built and preliminarily evaluated through an application that involves electromagnetic-tissue interactions: MRI (due to it being an available resource. The developed phantom was filled with media possessing electromagnetic constitutive parameters that correspond to biological tissues at ~297 MHz. A preliminary comparison between an in-vivo human volunteer (based on whom the anthropomorphic head phantom was created and various phantoms types, one being the anthropomorphic heterogeneous head phantom, were performed using a 7 Tesla human MRI scanner.Echo planar imaging was performed and minimal ghosting and fluctuations were observed using the proposed anthropomorphic phantom. The magnetic field distributions (during MRI experiments at 7 Tesla and the scattering parameter (measured using a network analyzer were most comparable between the anthropomorphic heterogeneous head phantom and an in-vivo human volunteer.The developed anthropomorphic heterogeneous head phantom can be used as a resource to various researchers in applications that involve electromagnetic-biological tissue interactions such as MRI.

  12. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    Science.gov (United States)

    Cerqueira, R. A. D.; Maia, A. F.

    2014-02-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers.

  13. Development of thyroid anthropomorphic phantoms for use in nuclear medicine

    International Nuclear Information System (INIS)

    Cerqueira, R.A.D.; Maia, A.F.

    2014-01-01

    The objective of this study was to develop thyroid anthropomorphic phantoms to be used in control tests of medical images in scintillation cameras. The main difference among the phantoms was the neck shape: in the first, called OSCT, it was geometrically shaped, while in the second, called OSAP, it was anthropomorphically shaped. In both phantoms, thyroid gland prototypes, which were made of acrylic and anthropomorphically shaped, were constructed to allow the simulation of a healthy thyroid and of thyroids with hyperthyroidism and hypothyroidism. Images of these thyroid anthropomorphic phantoms were obtained using iodine 131 with an activity of 8.695 MBq. The iodine 131 was chosen because it is widely used in studies of thyroid scintigraphy. The images obtained proved the effectiveness of the phantoms to simulate normal or abnormal thyroids function. These phantoms can be used in medical imaging quality control programs and, also in the training of professionals involved in the analysis of images in nuclear medicine centers. - Highlights: ► Two thyroid phantoms were developed (OSCT and OSAP) with different types of acrylics. ► Thyroid glands were represented anthropomorphically in the both phantoms. ► Different prototypes of thyroid were built of simulate healthy or unhealthy glands. ► Images indicate that anthropomorphic phantoms correctly simulate the thyroid gland

  14. Synthesized interstitial lung texture for use in anthropomorphic computational phantoms

    Science.gov (United States)

    Becchetti, Marc F.; Solomon, Justin B.; Segars, W. Paul; Samei, Ehsan

    2016-04-01

    A realistic model of the anatomical texture from the pulmonary interstitium was developed with the goal of extending the capability of anthropomorphic computational phantoms (e.g., XCAT, Duke University), allowing for more accurate image quality assessment. Contrast-enhanced, high dose, thorax images for a healthy patient from a clinical CT system (Discovery CT750HD, GE healthcare) with thin (0.625 mm) slices and filtered back- projection (FBP) were used to inform the model. The interstitium which gives rise to the texture was defined using 24 volumes of interest (VOIs). These VOIs were selected manually to avoid vasculature, bronchi, and bronchioles. A small scale Hessian-based line filter was applied to minimize the amount of partial-volumed supernumerary vessels and bronchioles within the VOIs. The texture in the VOIs was characterized using 8 Haralick and 13 gray-level run length features. A clustered lumpy background (CLB) model with added noise and blurring to match CT system was optimized to resemble the texture in the VOIs using a genetic algorithm with the Mahalanobis distance as a similarity metric between the texture features. The most similar CLB model was then used to generate the interstitial texture to fill the lung. The optimization improved the similarity by 45%. This will substantially enhance the capabilities of anthropomorphic computational phantoms, allowing for more realistic CT simulations.

  15. Construction of cardiac anthropomorphic phantom for simulation of radiological exams

    International Nuclear Information System (INIS)

    Bandeira, C.K.; Vieira Neto, H.; Vieira, M.P.M.M.

    2017-01-01

    Phantoms are simulating objects of structures of the human body and can be applied in the quality control and calibration of radiological equipment. The aim of the work is the development of a cardiac anthropomorphic phantom to assist in the elaboration of protocols of dynamic studies that demonstrate the blood circulation inside the cardiac chambers. For the construction of the phantom was used latex, applied in layers on an anatomical model of heart, having been constructed the cardiac chambers and atrioventricular valves. Cardiac chambers were connected to the cannulas for fluid injection and simulation of the circulatory system. The constructed phantom presents anthropomorphic characteristics and allows the circulation of the fluid without reflux, but the thickness of the catheters used does not yet allow flows of greater order of magnitude. This phantom has the potential to be used in the dynamic simulation of cardiac exams, contributing to the elaboration and adequacy of computed tomography protocols

  16. Effective dose measurement at workplaces within an instrumented anthropomorphic phantom

    International Nuclear Information System (INIS)

    Villagrasa, C.; Darreon, J.; Martin-Burtat, N.; Clairand, I.; Colin, J.; Fontbonne, J. M.

    2011-01-01

    The Laboratory of Ionizing Radiation Dosimetry of the IRSN (France) is developing an instrumented anthropomorphic phantom in order to measure the effective dose for photon fields at workplaces. This anthropomorphic phantom will be equipped with small active detectors located inside at chosen positions. The aim of this paper is to present the development of these new detectors showing the results of the characterisation of the prototype under metrological conditions. New evaluations of the effective dose for standard and non-homogenous irradiation configurations taking into account the real constraints of the project have been done validating the feasibility and utility of the instrument. (authors)

  17. Evaluation of patient doses from upper gastrointestinal tract examinations based on the dosimetry in an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Hirofuji, Yoshiaki; Aoyama, Takahiko; Koyama, Shuji; Kawaura, Chiyo

    2005-01-01

    The objective of this study was to evaluate organ dose and effective dose to patients from examinations of the upper gastrointestinal (GI) tract. Absorbed doses of various tissues and organs were measured using novel photodiode dosimeters installed in an anthropomorphic phantom representing a standard Japanese adult body. The organ dose and the effective dose were assessed from the absorbed doses according to the definitions seen in the publications of the International Commission on Radiological Protection. Dose measurements were performed for each projection of the upper GI tract examination in seven procedures at four hospitals and in a mobile coach, and organ and effective doses were assessed for each procedure. Organ doses obtained in the observation areas such as the stomach, esophagus and colon were in the order of several to more than 60 mGy, though they decreased to less than 1 mGy for tissues and organs distant from the observation areas. Organ doses and effective doses differed largely according to tube voltage, filtration and tube current or mAs value of the x-ray generator used, and by examination protocol, number of images, fluoroscopy time, and imaging units such as screen/film, computed radiography, digital radiography and flat panel detector. The number of images and the fluoroscopy time were 7 and 1.5 min for the examination in the mobile coach, and 18-22 and 2-6 min in the hospitals. Evaluated effective dose for the examination in the mobile coach was 2.9 mSv, and that in the hospitals ranged from 4.0-13.4 mSv at a ratio of more than three. (author)

  18. Characterisation of an anthropomorphic chest phantom for dose measurements in radiology beams

    Science.gov (United States)

    Henriques, L. M. S.; Cerqueira, R. A. D.; Santos, W. S.; Pereira, A. J. S.; Rodrigues, T. M. A.; Carvalho Júnior, A. B.; Maia, A. F.

    2014-02-01

    The objective of this study was to characterise an anthropomorphic chest phantom for dosimetric measurements of conventional radiology beams. This phantom was developed by a previous research project at the Federal University of Sergipe for image quality control tests. As the phantom consists of tissue-equivalent material, it is possible to characterise it for dosimetric studies. For comparison, a geometric chest phantom, consisting of PMMA (polymethylmethacrylate) with dimensions of 30×30×15 cm³ was used. Measurements of incident air kerma (Ki) and entrance surface dose (ESD) were performed using ionisation chambers. From the results, backscatter factors (BSFs) of the two phantoms were determined and compared with values estimated by CALDose_X software, based on a Monte Carlo simulation. For the technical parameters evaluated in this study, the ESD and BSF values obtained experimentally showed a good similarity between the two phantoms, with minimum and maximum difference of 0.2% and 7.0%, respectively, and showed good agreement with the results published in the literature. Organ doses and effective doses for the anthropomorphic phantom were also estimated by the determination of conversion coefficients (CCs) using the visual Monte Carlo (VMC) code. Therefore, the results of this study prove that the anthropomorphic thorax phantom proposed is a good tool to use in dosimetry and can be used for risk evaluation of X-ray diagnostic procedures.

  19. Poster - 44: Development and implementation of a comprehensive end-to-end testing methodology for linac-based frameless SRS QA using a modified commercial stereotactic anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Derek; Mutanga, Theodore [University of Toronto, Carlo Fidani Peel Regional Cancer Center (Canada)

    2016-08-15

    Purpose: An end-to-end testing methodology was designed to evaluate the overall SRS treatment fidelity, incorporating all steps in the linac-based frameless radiosurgery treatment delivery process. The study details our commissioning experience of the Steev (CIRS, Norfolk, VA) stereotactic anthropomorphic head phantom including modification, test design, and baseline measurements. Methods: Repeated MR and CT scans were performed with interchanging inserts. MR-CT fusion accuracy was evaluated and the insert spatial coincidence was verified on CT. Five non-coplanar arcs delivered a prescription dose to a 15 mm spherical CTV with 2 mm PTV margin. Following setup, CBCT-based shifts were applied as per protocol. Sequential measurements were performed by interchanging inserts without disturbing the setup. Spatial and dosimetric accuracy was assessed by a combination of CBCT hidden target, radiochromic film, and ion chamber measurements. To facilitate film registration, the film insert was modified in-house by etching marks. Results: MR fusion error and insert spatial coincidences were within 0.3 mm. Both CBCT and film measurements showed spatial displacements of 1.0 mm in similar directions. Both coronal and sagittal films reported 2.3 % higher target dose relative to the treatment plan. The corrected ion chamber measurement was similarly greater by 1.0 %. The 3 %/2 mm gamma pass rate was 99% for both films Conclusions: A comprehensive end-to-end testing methodology was implemented for our SRS QA program. The Steev phantom enabled realistic evaluation of the entire treatment process. Overall spatial and dosimetric accuracy of the delivery were 1 mm and 3 % respectively.

  20. Monte Carlo Simulations for Homeland Security Using Anthropomorphic Phantoms

    International Nuclear Information System (INIS)

    Burns, Kimberly A.

    2008-01-01

    A radiological dispersion device (RDD) is a device which deliberately releases radioactive material for the purpose of causing terror or harm. In the event that a dirty bomb is detonated, there may be airborne radioactive material that can be inhaled as well as settle on an individuals leading to external contamination. Monte Carlo calculations were performed to simulate healthcare workers in the operating room or trauma room at a hospital. The Monte Carlo Neutral Particle transport code MCNP5 was used for the modeling. The human body was modeled using Medical Internal Radiation Dose (MIRD-V) anthropomorphic phantoms originally developed at Oak Ridge National Laboratory (ORNL) under the specifications of International Commission on Radiation Protection (ICRP) Publication 23 and later altered at Georgia Tech (17). This study considered two possible contamination scenarios: uniform external contamination with no internal contamination and inhaled radioactive material without any external contamination. For both scenarios, the patients isotopes considered were 60 Co, 137 Cs, 131 I, 192 Ir, and 241 Am. For the externally contaminated patient, a uniform volume source two millimeters thick was placed around the skin of each anthropomorphic phantom to simulate a uniform source on the surface of the body. For the internally contaminated patients, the Dose and Risk Calculation software, DCAL, was used to determine the distribution of the isotopes in the internal organs. For both of the scenarios, the healthcare provider was placed 20-cm from the middle of the torso of the contaminated patient. The amount of energy deposited to the tissues and organs of the healthcare provider due to the internally and externally contaminated patients and in the patient in the case of external contamination was determined. The effective dose rate was calculated using the masses of the tissues and organ and tissue weighting factors from ICRP Publication 60. The effective dose rate for the

  1. CT images of an anthropomorphic and anthropometric male pelvis phantom

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de, E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares

    2009-07-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  2. CT images of an anthropomorphic and anthropometric male pelvis phantom

    International Nuclear Information System (INIS)

    Matos, Andrea S.D. de; Campos, Tarcisio P.R. de

    2009-01-01

    Actually, among of the most often neoplasm types are the cancer of prostate, bladder and intestine. The incidence of the intestine neoplasm in Brazil is at fourth among the most frequent tumors of the male sex, barely close to the stomach, lung and prostate incidences. Phantoms are objects used as simulators for investigating ionizing radiation transport on humans, especially during radiation therapy or radiological diagnostic. The purpose of this work is the achievement of a set of computerized tomography (CT) images of a male pelvis phantom, with anthropomorphic and anthropometric features. It investigates and analyses the set of phantom CT images in according to a correspondent human pelvis one. The reason to develop a pelvis phantom is the needs of reproducing well established spatial dose distribution in radiation therapy, especially during calibration and protocol setup for various pelvis neoplasms. It aims to produce dose optimization on radiation therapy, improving health tissue protection and keeping control tumor dose. A male pelvis phantom with similar shape made of equivalent tissues was built for simulating the ionizing radiation transport to the human body. At the phantom, pelvis organs were reproduced including the bladder, the intestine, the prostate, the muscular and greasy tissue, as well as the bone tissue and the skin. A set of CT images was carried out in axial thin sections of 2mm thickness. As results, the constituent tissues had a tomography response on Hounsfield scale similar to values found on the human pelvis. Each tissue has its respective Hounsfield value, demonstrated here. The CT images also show that the organs have equivalent anthropometric measures and anthropomorphic features of the radiological human anatomy. The anatomical physical arrangement of the organs is also similar to of the pelvis human male, having the scales of gray and numerical scale of Hounsfield compatible with the scale of the human tissue. The phantom presents

  3. A quantitative comparison of noise reduction across five commercial (hybrid and model-based) iterative reconstruction techniques: an anthropomorphic phantom study.

    Science.gov (United States)

    Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V

    2015-02-01

    OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid

  4. Development and application of anthropomorphic voxel phantom of the head for in vivo measurement.

    Science.gov (United States)

    Vrba, T

    2007-01-01

    The in vivo measurement of the activity deposited in the skeleton is a very useful source of information on human internal contaminations with transuranic elements, e.g. americium 241, especially for long time periods after intake. Measurements are performed on the skull or the larger joints such as the knee or elbow. The paper deals with the construction of an anthropomorphic numerical phantom based on CT scans, its potential for calibration and the estimation of the uncertainties of the detection system. The density of bones, activity distribution and position of the detectors were changed in individual simulations in order to estimate their effects on the result of the measurement. The results from simulations with the numerical phantom were compared with the results of physical phantoms.

  5. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    International Nuclear Information System (INIS)

    Batista Nogueira, Luciana; Lemos Silva, Hugo Leonardo; Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio

    2015-01-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm 2 each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the prescribed

  6. Skin Dosimetry in Breast Teletherapy on a Phantom Anthropomorphic and Anthropometric Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Batista Nogueira, Luciana [Anatomy and Imaging Department, Federal University of Minas Gerais, Belo Horizonte (Brazil); Lemos Silva, Hugo Leonardo [Santa Casa Hospital, Belo Horizonte (Brazil); Donato da Silva, Sabrina; Passos Ribeiro Campos, Tarcisio [Nuclear Engineering Department, Federal University of Minas Gerais, Belo Horizonte (Brazil)

    2015-07-01

    This paper addresses the breast teletherapy dosimetry. The goal is to evaluate and compare absorbed doses in equivalent skin tissue, TE-skin, of an anthropomorphic and anthropometric breast phantom submitted to breast radiotherapy. The methodology involved the reproduction of a set of tomographic images of the phantom; the elaboration of conformational radiotherapy planning in the SOMAVISION and CadPlan (TPS) software; and the synthetic breast irradiation by parallel opposed fields in 3D conformal teletherapy at 6 MV linear accelerator Clinac-2100 C from VARIAN with prescribed dose (PD) of 180 cGy to the target volume (PTV), referent to the glandular tissue. Radiochromic films EBT2 were selected as dosimeters. Two independent calibration processes of films with solid water Gammex 457 plates and water filled box were produced. Curves of optical density (OD) versus absorbed dose were produced. Dosimeters were positioned in the external region of the breast phantom in contact with TE-skin, area of 4.0 cm{sup 2} each. The irradiation process was prepared in duplicate to check the reproducibility of the technique. The radiochromic films were scanned and their response in RGB (Red, Green, Blue) analyzed by the ImageJ software. The optical density was obtained and converted to dose based on the calibration curves. Thus, the spatial dose distribution in the skin was reproduced. The absorbed doses measured on the radiochromic films in TE-skin showed values between upper and lower quadrants at 9 o'clock in the range of 54% of PD, between the upper and lower quadrants 3 o'clock in the range of 72% and 6 o'clock at the lower quadrant in the range of 68 % of PD. The values are ±64% (p <0.05) according to the TPS. It is concluded that the depth dose measured in solid water plates or water box reproduce equivalent dose values for both calibration processes of the radiochromic films. It was observed that the skin received doses ranging from 50% to 78% of the

  7. Measurement of Patient Dose from Computed Tomography Using Physical Anthropomorphic Phantom

    International Nuclear Information System (INIS)

    Jang, Ki Won; Lee, Jae Ki; Kim, Jong Kyung

    2005-01-01

    The computed tomography (CT) provides a high quality in images of human body but contributes relatively high patient dose compared with the conventional X-ray examination. Furthermore, the frequency of CT examination has been increasing in Korea for the last decade owing to the national health insurance benefits. Increasing concerns about high patient dose from CT have stimulated a great deal of researches on dose assessment, which many of these are based on the Monte Carlo simulation. But in this study, absorbed doses and effective dose of patient undergoing CT examination were determined experimentally using anthropomorphic physical phantom and the measured results are compared with those from Monte Carlo calculation

  8. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy

    International Nuclear Information System (INIS)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de

    2005-01-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  9. Voxel anthropomorphic phantoms: review of models used for ionising radiation dosimetry

    International Nuclear Information System (INIS)

    Lemosquet, A.; Carlan, L. de; Clairand, I.

    2003-01-01

    Computational anthropomorphic phantoms have been used since the 1970's for dosimetric calculations. Realistic geometries are required for this operation, resulting in the development of ever more accurate phantoms. Voxel phantoms, consisting of a set of small-volume elements, appeared towards the end of the 1980's, and significantly improved on the original mathematical models. Voxel phantoms are models of the human body, obtained using computed tomography (CT) or magnetic resonance images (MRI). These phantoms are an extremely accurate representation of the human anatomy. This article provides a review of the literature available on the development of these phantoms and their applications in ionising radiation dosimetry. The bibliographical study has shown that there is a wide range of phantoms, covering various characteristics of the general population in terms of sex, age or morphology, and that they are used in applications relating to all aspects of ionising radiation. (author)

  10. Radiation dose evaluation of dental cone beam computed tomography using an anthropomorphic adult head phantom

    Science.gov (United States)

    Wu, Jay; Shih, Cheng-Ting; Ho, Chang-hung; Liu, Yan-Lin; Chang, Yuan-Jen; Min Chao, Max; Hsu, Jui-Ting

    2014-11-01

    Dental cone beam computed tomography (CBCT) provides high-resolution tomographic images and has been gradually used in clinical practice. Thus, it is important to examine the amount of radiation dose resulting from dental CBCT examinations. In this study, we developed an in-house anthropomorphic adult head phantom to evaluate the level of effective dose. The anthropomorphic phantom was made of acrylic and filled with plaster to replace the bony tissue. The contour of the head was extracted from a set of adult computed tomography (CT) images. Different combinations of the scanning parameters of CBCT were applied. Thermoluminescent dosimeters (TLDs) were used to measure the absorbed doses at 19 locations in the head and neck regions. The effective doses measured using the proposed phantom at 65, 75, and 85 kVp in the D-mode were 72.23, 100.31, and 134.29 μSv, respectively. In the I-mode, the effective doses were 108.24, 190.99, and 246.48 μSv, respectively. The maximum percent error between the doses measured by the proposed phantom and the Rando phantom was l4.90%. Therefore, the proposed anthropomorphic adult head phantom is applicable for assessing the radiation dose resulting from clinical dental CBCT.

  11. Construction of a anthropomorphic phantom for dose measurement in hands in brachytherapy procedures

    International Nuclear Information System (INIS)

    Papp, Cinthia M.

    2013-01-01

    The main objective of this work was to show the differences between the dose value measured by dosimeter endpoint and the values measured in different points inside the hand during brachytherapy procedures. For this, the procedures involved in the handling of sources were analyzed and the simulated using an anthropomorphic phantom hand

  12. Advances in development of young-pediatric anthropometric and anthropomorphic head and neck phantoms for dosimetry

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.

    2005-01-01

    The neck malign cancer in pediatric population differs significantly than adult cancer. The pediatric primary malign tumors result in the neck and head fence 5% . The malign cervical tumors, generally, are rabdomyossarcoms and lymphomas. The least frequent malign cancer includes metastasis, scammous cells and thyroid cancer. The larynx cancer treatment is surgery, preferentially. However, lesions with little infiltration, that do not compromise the vocals cords mobile, do not infiltrate cartilage, and do not compromise neither the anterior comissure neither the arytenoid, can be controlled with exclusive radiotherapy. The traditional dose for sub-clinical disease in larynx cancer, neck and head region, has been 50 to 60 Gy to standard fraction of 2 Gy/day, five times for week. When the treatment is consummated with exclusive radiotherapy in primary tumor. The dose must be higher, diversifying from 66 (for small tumors T1) to 70 Gy (for higher tumors, that T2 or T3). Phantoms are simulators utilized for dose prediction in patient simulating radiation interactions with matter. Also it is applied for radio diagnosis equipment calibration and quality control of medical image. Many kind of phantoms are developed, handmade and commercialized, with matters and forms most varied, holding distinct purpose, in senses of establishing double check parameters for reducing planning and calibration errors. This study addresses the development of a object for simulating young-pediatric anthropometric and anthropomorphic head and neck, called phantom, for dosimetric studies. The methodology will be based on the preparation of a phantom respecting the anatomic standards and its tissue equivalent composition. The hope is that phantom can be used in the scientific researches of radiation protocols applied to young-pediatric patient. (author)

  13. Design, manufacture, and evaluation of an anthropomorphic pelvic phantom purpose-built for radiotherapy dosimetric intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K. M.; Ebert, M. A.; Kron, T.; Howlett, S. J.; Cornes, D.; Hamilton, C. S.; Denham, J. W. [Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales 2298, Australia and School of Physics, University of Newcastle, New South Wales 2308 (Australia); Department of Radiation Oncology, Sir Charles Gairdner Hospital, Western Australia, Australia and School of Physics, University of Western Australia, Western Australia 6009 (Australia); Department of Physical Sciences, Peter MacCallum Cancer Centre, Victoria 8006 (Australia); Australiasian College of Physical Scientists and Engineers in Medicine, Sydney, New South Wales 2020 (Australia); Trans-Tasman Radiation Oncology Group, Calvary Mater Newcastle, New South Wales 2298 (Australia); Heidelberg Repatriation Hospital, Victoria 3081 (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Waratah, New South Wales 2298, Australia and School of Medicine and Population Health, University of Newcastle, New South Wales 2308 (Australia)

    2011-10-15

    Purpose: An anthropomorphic pelvic phantom was designed and constructed to meet specific criteria for multicenter radiotherapy dosimetric intercomparison. Methods: Three dimensional external and organ outlines were generated from a computed tomography image set of a male pelvis, forming the basis of design for an anatomically realistic phantom. Clinically relevant points of interest were selected throughout the dataset where point-dose values could be measured with thermoluminescence dosimeters and a small-volume ionization chamber. Following testing, three materials were selected and the phantom was manufactured using modern prototyping techniques into five separate coronal slices. Time lines and resource requirements for the phantom design and manufacture were recorded. The ability of the phantom to mimic the entire treatment chain was tested. Results: The phantom CT images indicated that organ densities and geometries were comparable to those of the original patient. The phantom proved simple to load for dosimetry and rapid to assemble. Due to heat release during manufacture, small air gaps and density heterogeneities were present throughout the phantom. The overall cost for production of the prototype phantom was comparable to other commercial anthropomorphic phantoms. The phantom was shown to be suitable for use as a ''patient'' to mimic the entire treatment chain for typical external beam radiotherapy for prostate and rectal cancer. Conclusions: The phantom constructed for the present study incorporates all characteristics necessary for accurate Level III intercomparison studies. Following use in an extensive Level III dosimetric comparison over a large time scale and geographic area, the phantom retained mechanical stability and did not show signs of radiation-induced degradation.

  14. Design, development, and implementation of the Radiological Physics Center's pelvis and thorax anthropomorphic quality assurance phantoms

    International Nuclear Information System (INIS)

    Followill, David S.; Radford Evans, DeeAnn; Cherry, Christopher; Molineu, Andrea; Fisher, Gary; Hanson, William F.; Ibbott, Geoffrey S.

    2007-01-01

    The Radiological Physics Center (RPC) developed two heterogeneous anthropomorphic quality assurance phantoms for use in verifying the accuracy of radiation delivery: one for intensity-modulated radiation therapy (IMRT) to the pelvis and the other for stereotactic body radiation therapy (SBRT) to the thorax. The purpose of this study was to describe the design and development of these two phantoms and to demonstrate the reproducibility of measurements generated with them. The phantoms were built to simulate actual patient anatomy. They are lightweight and water-fillable, and they contain imageable targets and organs at risk of radiation exposure that are of similar densities to their human counterparts. Dosimetry inserts accommodate radiochromic film for relative dosimetry and thermoluminesent dosimetry capsules for absolute dosimetry. As a part of the commissioning process, each phantom was imaged, treatment plans were developed, and radiation was delivered at least three times. Under these controlled irradiation conditions, the reproducibility of dose delivery to the target TLD in the pelvis and thorax phantoms was 3% and 0.5%, respectively. The reproducibility of radiation-field localization was less than 2.5 mm for both phantoms. Using these anthropomorphic phantoms, pelvic IMRT and thoracic SBRT radiation treatments can be verified with a high level of precision. These phantoms can be used to effectively credential institutions for participation in specific NCI-sponsored clinical trials

  15. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization (abstract)

    Science.gov (United States)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and-most importantly-use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  16. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization

    International Nuclear Information System (INIS)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-01-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and--most importantly--use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  17. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da; Li, Xinhua; Liu, Bob [Division of Diagnostic Imaging Physics and Webster Center for Advanced Research and Education in Radiation, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114 (United States); Gao, Yiming; Xu, X. George [Nuclear Engineering Program, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2013-08-15

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated

  18. A method to acquire CT organ dose map using OSL dosimeters and ATOM anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Zhang, Da; Li, Xinhua; Liu, Bob; Gao, Yiming; Xu, X. George

    2013-01-01

    Purpose: To present the design and procedure of an experimental method for acquiring densely sampled organ dose map for CT applications, based on optically stimulated luminescence (OSL) dosimeters “nanoDots” and standard ATOM anthropomorphic phantoms; and to provide the results of applying the method—a dose data set with good statistics for the comparison with Monte Carlo simulation result in the future.Methods: A standard ATOM phantom has densely located holes (in 3 × 3 cm or 1.5 × 1.5 cm grids), which are too small (5 mm in diameter) to host many types of dosimeters, including the nanoDots. The authors modified the conventional way in which nanoDots are used, by removing the OSL disks from the holders before inserting them inside a standard ATOM phantom for dose measurements. The authors solved three technical difficulties introduced by this modification: (1) energy dependent dose calibration for raw OSL readings; (2) influence of the brief background exposure of OSL disks to dimmed room light; (3) correct pairing between the dose readings and measurement locations. The authors acquired 100 dose measurements at various positions in the phantom, which was scanned using a clinical chest protocol with both angular and z-axis tube current modulations.Results: Dose calibration was performed according to the beam qualities inside the phantom as determined from an established Monte Carlo model of the scanner. The influence of the brief exposure to dimmed room light was evaluated and deemed negligible. Pairing between the OSL readings and measurement locations was ensured by the experimental design. The organ doses measured for a routine adult chest scan protocol ranged from 9.4 to 18.8 mGy, depending on the composition, location, and surrounding anatomy of the organs. The dose distribution across different slices of the phantom strongly depended on the z-axis mA modulation. In the same slice, doses to the soft tissues other than the spinal cord demonstrated

  19. Performance of an automatic dose control system for CT. Anthropomorphic phantom studies

    Energy Technology Data Exchange (ETDEWEB)

    Gosch, D.; Stumpp, P.; Kahn, T. [Universitaetsklinikum Leipzig (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Nagel, H.D. [Wissenschaft und Technik fuer die Radiologie, Dr. HD Nagel, Buchholz (Germany)

    2011-02-15

    Purpose: To assess the performance and to provide more detailed insight into characteristics and limitations of devices for automatic dose control (ADC) in CT. Materials and Methods: A comprehensive study on DoseRight 2.0, the ADC system provided by Philips for its Brilliance CT scanners, was conducted with assorted tests using an anthropomorphic phantom that allowed simulation of the operation of the system under almost realistic conditions. The scan protocol settings for the neck, chest and abdomen with pelvis were identical to those applied in the clinical routine. Results: Using the appropriate ADC functionalities, dose reductions equal 40 % for the neck, 20 % for the chest and 10 % for the abdomen with pelvis. Larger dose reductions can be expected for average patients, since their attenuating properties differ significantly from the anthropomorphic phantom. Adverse effects due to increased image noise were only moderate as a consequence of the 'adequate noise system' design and the complementary use of adaptive filtration. The results of specific tests also provided deeper insight into the operation of the ADC system that helps to identify the causes of suspected malfunctions and to prevent potential pitfalls. Conclusion: Tests with anthropomorphic phantoms allow verification of the characteristics of devices for ADC in CT under almost realistic conditions. However, differences in phantom shape and material composition require supplementary patient studies on representative patient groups. (orig.)

  20. Calcium scoring with dual-energy CT in men and women: an anthropomorphic phantom study

    Science.gov (United States)

    Li, Qin; Liu, Songtao; Myers, Kyle; Gavrielides, Marios A.; Zeng, Rongping; Sahiner, Berkman; Petrick, Nicholas

    2016-03-01

    This work aimed to quantify and compare the potential impact of gender differences on coronary artery calcium scoring with dual-energy CT. An anthropomorphic thorax phantom with four synthetic heart vessels (diameter 3-4.5 mm: female/male left main and left circumflex artery) were scanned with and without female breast plates. Ten repeat scans were acquired in both single- and dual-energy modes and reconstructed at six reconstruction settings: two slice thicknesses (3 mm, 0.6 mm) and three reconstruction algorithms (FBP, IR3, IR5). Agatston and calcium volume scores were estimated from the reconstructed data using a segmentation-based approach. Total calcium score (summation of four vessels), and male/female calcium scores (summation of male/female vessels scanned in phantom without/with breast plates) were calculated accordingly. Both Agatston and calcium volume scores were found comparable between single- and dual-energy scans (Pearson r= 0.99, pwomen and men in calcium scoring, and for standardizing imaging protocols for improved gender-specific calcium scoring.

  1. Development and liver of phantom anthropomorphic application for use in radiology

    International Nuclear Information System (INIS)

    Melo, M.G.; Silva, L.F.; Ferreira, F. C.L.; Cunha, C.J.; Paschoal, C.M.M.

    2015-01-01

    The use of artificial ionizing radiation has also been employed in several areas, namely: medicine, agriculture, industry, ink curing etc. However, the use of radiation for medical purposes of diagnosis or therapy is being treated with more attention due to its increased use and the use of simulators object for quality control and training of professionals. The phantoms and are used to aid radiographic procedures, they may simulate a part of the body, both in its form as mass, density, and attenuation. The objective of this work was the development and application of liver anthropomorphic phantom for use in diagnostic radiology and training professionals. The construction of the liver anthropomorphic phantom was through literature and it was noticed that the use of phantoms are relatively low. For the construction of the mold of the phantom was used an adult human liver with early cirrhosis that was preserved in formalin for teaching demonstrations in Prof. Human Anatomy Museum collection Osvaldo Cruz of milk from the Federal University of Sergipe. With this work, we emphasize the need for the control program and quality assurance in radiology doctor to ensure image quality and low exposure of patients and professionals, since the radiological examinations are extremely important, because its contribution decisively in medical diagnosis. (authors)

  2. An anthropomorphic multimodality (CT/MRI) head phantom prototype for end-to-end tests in ion radiotherapy

    International Nuclear Information System (INIS)

    Gallas, Raya R.; Huenemohr, Nora; Runz, Armin; Niebuhr, Nina I.; Greilich, Steffen; Jaekel, Oliver

    2015-01-01

    With the increasing complexity of external beam therapy ''end-to-end'' tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom. It is initially intended for ion radiotherapy but may also be used in photon therapy. As basis for the anthropomorphic head shape we have used a set of patient computed tomography (CT) images. The phantom recipient consisting of epoxy resin was produced by using a 3D printer. It includes a nasal air cavity, a cranial bone surrogate (based on dipotassium phosphate), a brain surrogate (based on agarose gel), and a surrogate for cerebrospinal fluid (based on distilled water). Furthermore, a volume filled with normoxic dosimetric gel mimicked a tumor. The entire workflow of a proton therapy could be successfully applied to the phantom. CT measurements revealed CT numbers agreeing with reference values for all surrogates in the range from 2 HU to 978 HU (120 kV). MRI showed the desired contrasts between the different phantom materials especially in T2-weighted images (except for the bone surrogate). T2-weighted readout of the polymerization gel dosimeter allowed approximate range verification.

  3. An anthropomorphic multimodality (CT/MRI) head phantom prototype for end-to-end tests in ion radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Gallas, Raya R.; Huenemohr, Nora; Runz, Armin; Niebuhr, Nina I.; Greilich, Steffen [German Cancer Research Center (DKFZ), Heidelberg (Germany). Div. of Medical Physics in Radiation Oncology; National Center for Radiation Research in Oncology, Heidelberg (Germany). Heidelberg Institute of Radiation Oncology (HIRO); Jaekel, Oliver [German Cancer Research Center (DKFZ), Heidelberg (Germany). Div. of Medical Physics in Radiation Oncology; National Center for Radiation Research in Oncology, Heidelberg (Germany). Heidelberg Institute of Radiation Oncology (HIRO); Heidelberg University Hospital (Germany). Dept. of Radiation Oncology; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg (Germany)

    2015-07-01

    With the increasing complexity of external beam therapy ''end-to-end'' tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom. It is initially intended for ion radiotherapy but may also be used in photon therapy. As basis for the anthropomorphic head shape we have used a set of patient computed tomography (CT) images. The phantom recipient consisting of epoxy resin was produced by using a 3D printer. It includes a nasal air cavity, a cranial bone surrogate (based on dipotassium phosphate), a brain surrogate (based on agarose gel), and a surrogate for cerebrospinal fluid (based on distilled water). Furthermore, a volume filled with normoxic dosimetric gel mimicked a tumor. The entire workflow of a proton therapy could be successfully applied to the phantom. CT measurements revealed CT numbers agreeing with reference values for all surrogates in the range from 2 HU to 978 HU (120 kV). MRI showed the desired contrasts between the different phantom materials especially in T2-weighted images (except for the bone surrogate). T2-weighted readout of the polymerization gel dosimeter allowed approximate range verification.

  4. An anthropomorphic multimodality (CT/MRI) head phantom prototype for end-to-end tests in ion radiotherapy.

    Science.gov (United States)

    Gallas, Raya R; Hünemohr, Nora; Runz, Armin; Niebuhr, Nina I; Jäkel, Oliver; Greilich, Steffen

    2015-12-01

    With the increasing complexity of external beam therapy "end-to-end" tests are intended to cover every step from therapy planning through to follow-up in order to fulfill the higher demands on quality assurance. As magnetic resonance imaging (MRI) has become an important part of the treatment process, established phantoms such as the Alderson head cannot fully be used for those tests and novel phantoms have to be developed. Here, we present a feasibility study of a customizable multimodality head phantom. It is initially intended for ion radiotherapy but may also be used in photon therapy. As basis for the anthropomorphic head shape we have used a set of patient computed tomography (CT) images. The phantom recipient consisting of epoxy resin was produced by using a 3D printer. It includes a nasal air cavity, a cranial bone surrogate (based on dipotassium phosphate), a brain surrogate (based on agarose gel), and a surrogate for cerebrospinal fluid (based on distilled water). Furthermore, a volume filled with normoxic dosimetric gel mimicked a tumor. The entire workflow of a proton therapy could be successfully applied to the phantom. CT measurements revealed CT numbers agreeing with reference values for all surrogates in the range from 2 HU to 978 HU (120 kV). MRI showed the desired contrasts between the different phantom materials especially in T2-weighted images (except for the bone surrogate). T2-weighted readout of the polymerization gel dosimeter allowed approximate range verification. Copyright © 2015. Published by Elsevier GmbH.

  5. NOTE: On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    Science.gov (United States)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-11-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP

  6. On the need to revise the arm structure in stylized anthropomorphic phantoms in lateral photon irradiation geometry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lee, Choonik; Lee, Jai-Ki

    2006-01-01

    Distributions of radiation absorbed dose within human anatomy have been estimated through Monte Carlo radiation transport techniques implemented for two different classes of computational anthropomorphic phantoms: (1) mathematical equation-based stylized phantoms and (2) tomographic image-based voxel phantoms. Voxel phantoms constructed from tomographic images of real human anatomy have been actively developed since the late 1980s to overcome the anatomical approximations necessary with stylized phantoms, which themselves have been utilized since the mid 1960s. However, revisions of stylized phantoms have also been pursued in parallel to the development of voxel phantoms since voxel phantoms (1) are initially restricted to the individual-specific anatomy of the person originally imaged, (2) must be restructured on an organ-by-organ basis to conform to reference individual anatomy and (3) cannot easily represent very fine anatomical structures and tissue layers that are thinner than the voxel dimensions of the overall phantom. Although efforts have been made to improve the anatomic realism of stylized phantoms, most of these efforts have been limited to attempts to alter internal organ structures. Aside from the internal organs, the exterior shapes, and especially the arm structures, of stylized phantoms are also far from realistic descriptions of human anatomy, and may cause dosimetry errors in the calculation of organ-absorbed doses for external irradiation scenarios. The present study was intended to highlight the need to revise the existing arm structure within stylized phantoms by comparing organ doses of stylized adult phantoms with those from three adult voxel phantoms in the lateral photon irradiation geometry. The representative stylized phantom, the adult phantom of the Oak Ridge National Laboratory (ORNL) series and two adult male voxel phantoms, KTMAN-2 and VOXTISS8, were employed for Monte Carlo dose calculation, and data from another voxel phantom, VIP

  7. Anthropomorphic thorax phantom for cardio-respiratory motion simulation in tomographic imaging

    Science.gov (United States)

    Bolwin, Konstantin; Czekalla, Björn; Frohwein, Lynn J.; Büther, Florian; Schäfers, Klaus P.

    2018-02-01

    Patient motion during medical imaging using techniques such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), or single emission computed tomography (SPECT) is well known to degrade images, leading to blurring effects or severe artifacts. Motion correction methods try to overcome these degrading effects. However, they need to be validated under realistic conditions. In this work, a sophisticated anthropomorphic thorax phantom is presented that combines several aspects of a simulator for cardio-respiratory motion. The phantom allows us to simulate various types of cardio-respiratory motions inside a human-like thorax, including features such as inflatable lungs, beating left ventricular myocardium, respiration-induced motion of the left ventricle, moving lung lesions, and moving coronary artery plaques. The phantom is constructed to be MR-compatible. This means that we can not only perform studies in PET, SPECT and CT, but also inside an MRI system. The technical features of the anthropomorphic thorax phantom Wilhelm are presented with regard to simulating motion effects in hybrid emission tomography and radiotherapy. This is supplemented by a study on the detectability of small coronary plaque lesions in PET/CT under the influence of cardio-respiratory motion, and a study on the accuracy of left ventricular blood volumes.

  8. ANTHROPOMORPHIC PHANTOMS FOR ASSESSMENT OF STRAIN IMAGING METHODS INVOLVING SALINE-INFUSED SONOHYSTEROGRAPHY

    Science.gov (United States)

    Hobson, Maritza A.; Madsen, Ernest L.; Frank, Gary R.; Jiang, Jingfeng; Shi, Hairong; Hall, Timothy J.; Varghese, Tomy

    2008-01-01

    Two anthropomorphic uterine phantoms were developed which allow assessment and comparison of strain imaging systems adapted for use with saline-infused sonohysterography (SIS). Tissue-mimicking (TM) materials consist of dispersions of safflower oil in gelatin. TM fibroids are stiffer than the TM myometrium/cervix and TM polyps are softer. The first uterine phantom has 3-mm diameter TM fibroids randomly distributed in TM myometrium. The second uterine phantom has a 5-mm and an 8-mm spherical TM fibroid in addition to a 5-mm spherical and a 12.5-mm long (medicine-capsule-shaped) TM endometrial polyp protruding into the endometrial cavity; also, a 10-mm spherical TM fibroid projects from the serosal surface. Strain images using the first phantom show the stiffer 3-mm TM fibroids in the myometrium. Results from the second uterine phantom show that, as expected, parts of inclusions projecting into the uterine cavity will appear very stiff, whether they are stiff or soft. Results from both phantoms show that even though there is a five-fold difference in the Young’s moduli values, there is not a significant difference in the strain in the transition from the TM myometrium to the TM fat. These phantoms allow for realistic comparison and evolution of SIS strain imaging techniques and can aid clinical personnel to develop skills for SIS strain imaging. PMID:18514999

  9. Anthropomorphic chest phantom imaging – The potential for dose creep in computed radiography

    International Nuclear Information System (INIS)

    Ma, W.K.; Hogg, P.; Tootell, A.; Manning, D.; Thomas, N.; Kane, T.; Kelly, J.; McKenzie, M.; Kitching, J.

    2013-01-01

    For film-based radiography the operator had to be exact in the selection of acquisition parameters or the image could easily become under- or over-exposed. By contrast, digital technology allows for a much greater tolerance of acquisition factor selection which would still give an image of acceptable diagnostic quality. In turn this greater tolerance allows for the operator to increase effective dose for little or no penalty in image quality. The purpose of this article is to determine how image quality and lesion visibility vary with effective dose (E) in order to identify how much overexposure could be tolerated within the radiograph. Using an anthropomorphic chest phantom with ground glass lesions we determined how perceptual image quality and E varied over a wide range of acquisition conditions. Perceptual image quality comprised of image quality and lesion visibility. E was calculated using Monte Carlo method; image quality was determined using a two alternative forced choice (2AFC) method and the quality criteria were partly informed from European guidelines. Five clinicians with significant experience in image reading scored the images for quality (intraclass correlation coefficient 0.869). Image quality and lesion visibility had a close correlation (R 2 > 0.8). The tolerance for over-exposure, whilst still acquiring an image of acceptable quality, increases with decreasing kV and increasing source to image distance (SID). The maximum over-exposure factor (ratio of maximum E to minimum E that produce images of acceptable quality) possible was 139 (at 125 cm and 60 kV). Given the phantom had characteristics similar to the human thorax we propose that that potential for overexposure in a human whilst still obtaining an image of acceptable perceptual image quality is very high. Further research into overexposure tolerance and dose creep should be undertaken

  10. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    International Nuclear Information System (INIS)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D

    2015-01-01

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647

  11. MO-F-CAMPUS-T-01: IROC Houston QA Center’s Anthropomorphic Proton Phantom Program

    Energy Technology Data Exchange (ETDEWEB)

    Lujano, C; Hernandez, N; Keith, T; Nguyen, T; Taylor, P; Molineu, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To describe the proton phantoms that IROC Houston uses to approve and credential proton institutions to participate in NCI-sponsored clinical trials. Methods: Photon phantoms cannot necessarily be used for proton measurements because protons react differently than photons in some plastics. As such plastics that are tissue equivalent for protons were identified. Another required alteration is to ensure that the film dosimeters are housed in the phantom with no air gap to avoid proton streaming. Proton-equivalent plastics/materials used include RMI Solid Water, Techron HPV, blue water, RANDO soft tissue material, balsa wood, compressed cork and polyethylene. Institutions wishing to be approved or credentialed request a phantom and are prioritized for delivery. At the institution, the phantom is imaged, a treatment plan is developed, positioned on the treatment couch and the treatment is delivered. The phantom is returned and the measured dose distributions are compared to the institution’s electronically submitted treatment plan dosimetry data. Results: IROC Houston has developed an extensive proton phantom approval/credentialing program consisting of five different phantoms designs: head, prostate, lung, liver and spine. The phantoms are made with proton equivalent plastics that have HU and relative stopping powers similar (within 5%) of human tissues. They also have imageable targets, avoidance structures, and heterogeneities. TLD and radiochromic film are contained in the target structures. There have been 13 head, 33 prostate, 18 lung, 2 liver and 16 spine irradiations with either passive scatter, or scanned proton beams. The pass rates have been: 100%, 69.7%, 72.2%, 50%, and 81.3%, respectively. Conclusion: IROC Houston has responded to the recent surge in proton facilities by developing a family of anthropomorphic phantoms that are able to be used for remote audits of proton beams. Work supported by PHS grant CA10953 and CA081647.

  12. The measurement of organic radiation dose of multi-slice CT scanning by using the Chinese anthropomorphic chest phantom

    International Nuclear Information System (INIS)

    Peng Gang; Zeng Yongming; Luo Tianyou; Zhao Feng; Zhang Zhiwei; Yu Renqiang; Peng Shengkun

    2011-01-01

    Objective: Using the Chinese anthropomorphic chest phantom to measure the absorbed dose of various tissues and organs under different noise index, and to assess the radiation dose of MSCT chest scanning with the effective dose (ED). Methods: The equivalence of the Chinese anthropomorphic chest phantom (CDP-1 C) and the adult chest on CT sectional anatomy and X-ray attenuation was demonstrated. The absorbed doses of various tissues and organs under different noise index were measured by laying thermoluminescent dosimeters (TLD) inside the phantom, and the corresponding dose-length products (DLP) were recorded. Both of them were later converted into ED and comparison was conducted to analyze the dose levels of chest CT scanning with automatic tube current modulation (ATCM) under different noise index. Student t-test was applied using SPSS 12.0 statistical software. Results: The Phantom was similar to the human body on CT sectional anatomy. The average CT value of phantom are - 788.04 HU in lung, 45.64 HU in heart, 65.84 HU in liver, 254.32 HU in spine and the deviations are 0.10%, 3.04%, 4.49% and 4.36% respectively compared to humans. The difference of average CT value of liver was statistically significant (t=-8.705, P 0.05). As the noise index increased from 8.5 to 22.5, the DLP decreased from 393.57 mGy · cm to 78.75 mGy · cm and the organs dose declined. For example, the average absorbed dose decreased from 22.38 mGy to 3.66 mGy in lung. Compared to ED calculating by absorbed dose, the ED calculating by DLP was lower. The ED values of the two methods were 6.69 mSv and 8.77 mSv when the noise index was set at 8.5. Conclusions: Application of the Chinese anthropomorphic chest phantom to carry out CT dose assessment is more accurate. The noise index should be set more than 8.5 during the chest CT scanning based on ATCM technique. (authors)

  13. Novel anthropomorphic hip phantom corrects systemic interscanner differences in proximal femoral vBMD

    International Nuclear Information System (INIS)

    Bonaretti, S; Saeed, I; Burghardt, A J; Lang, T; Carpenter, R D; Yu, L; Bruesewitz, M; Khosla, S

    2014-01-01

    Quantitative computed tomography (QCT) is increasingly used in osteoporosis studies to assess volumetric bone mineral density (vBMD), bone quality and strength. However, QCT is confronted by technical issues in the clinical research setting, such as potentially confounding effects of body size on vBMD measurements and lack of standard approaches to scanner cross-calibration, which affects measurements of vBMD in multicenter settings. In this study, we addressed systematic inter-scanner differences and subject-dependent body size errors using a novel anthropomorphic hip phantom, containing a calibration hip to estimate correction equations, and a contralateral test hip to assess the quality of the correction. We scanned this phantom on four different scanners and we applied phantom-derived corrections to in vivo images of 16 postmenopausal women scanned on two scanners. From the phantom study, we found that vBMD decreased with increasing phantom size in three of four scanners and that inter-scanner variations increased with increasing phantom size. In the in vivo study, we observed that inter-scanner corrections reduced systematic inter-scanner mean vBMD differences but that the inter-scanner precision error was still larger than expected from known intra-scanner precision measurements. In conclusion, inter-scanner corrections and body size influence should be considered when measuring vBMD from QCT images. (paper)

  14. Construction of an Anthropomorphic Phantom for Use in Evaluating Pediatric Airway Digital Tomosynthesis Protocols

    Directory of Open Access Journals (Sweden)

    Nima Kasraie

    2018-01-01

    Full Text Available Interpretation of radiolucent foreign bodies (FBs is a common task charged to pediatric radiologists. The use of a motion compensated technique to decrease breathing motion on images would greatly decrease overall exposure to ionizing radiation and increase access to treatment yielding a great impact on clinical care. This study reports on the methodology and materials used to construct an in-house anthropomorphic phantom for investigating image quality in digital tomosynthesis protocols for volumetric imaging of the pediatric airway. Availability and cost of possible substitute materials were considered and simplifying assumptions were made. Two different modular phantoms were assembled in coronal slab layers using materials designed to approximate a one- and three-year-old thorax at diagnostic photon energies for use with digital tomosynthesis protocols such as those offered on GE’s VolumeRAD application. Exposures were made using both phantoms with inserted food particles inside an oscillating airway. The goal of the phantom is to help evaluate (1 whether the currently used protocol is sufficient to image the airway despite breathing motion and (2 whether it is not, to find the optimal protocol by testing various commercially available protocols using this phantom. The affordable construction of the pediatric sized phantom aimed at optimizing GE’s VolumeRAD protocol for airway foreign body imaging is demonstrated in this study which can be used to test VolumeRAD’s ability to image the airways with and without a low-density foreign body within the airways.

  15. TU-G-BRD-05: Results From Multi-Institutional Measurements with An Anthropomorphic Spine Phantom

    International Nuclear Information System (INIS)

    Molineu, A; Hernandez, N; Alvarez, P; Followill, D

    2015-01-01

    Purpose: To analyze the results from an anthropomorphic spine phantom used for credentialing institutions for National Cancer Institute (NCI) sponsored clinical trial. Methods: An anthropomorphic phantom that contains left and right lungs, a heart, an esophagus, spinal cord, bony material and a PTV was sent to institutions wishing to be credentialed for NCI trials. The PTV holds 4 TLD and radiochromic film in the axial and sagittal planes. The heart holds one TLD. Institutions created IMRT plans to cover ≥90% of the PTV with 6 Gy and limit the cord dose to <0.35cc receiving 3.75 Gy and <1.2cc receiving 2.63 Gy. They were instructed to treat the phantom as they would a patient, including making plan specific IMRT/SBRT QA measurements before treatment. The TLD results in the PTV were required to be within ±7% of the plan dose. A gamma calculation was performed using the film results and the submitted DICOM plan. ≥85% of the analyzed region was required to pass a 5%/3 mm criteria. Results: 176 institutions irradiated the spine phantom for a total of 255 results. The pass rate was 73% (187 irradiations) overall. 44 irradiations failed only the gamma criteria, 2 failed only the dose criteria and 22 failed both. The most used planning systems were Eclipse (116) and Pinnacle (52) and they had pass rates of 76% and 71%, respectively. The AAA algorithm had a pass rate of 77% while superposition type algorithms had a 71% pass rate. The average TLD measurement to institution calculation ratio was 0.99 (0.04 std dev.). The average percent pixels passing the gamma criteria for films was 89% (12% std dev.) Conclusion: Results show that this phantom is an important part of credentialing and that we have room for improvement in IMRT/SBRT spine treatments. This work was supported by PHS CA180803 and CA037422 awarded by NCI, DHHS

  16. Development of a patient-specific two-compartment anthropomorphic breast phantom

    International Nuclear Information System (INIS)

    Prionas, Nicolas D; Burkett, George W; McKenney, Sarah E; Chen, Lin; Boone, John M; Stern, Robin L

    2012-01-01

    The purpose of this paper is to develop a technique for the construction of a two-compartment anthropomorphic breast phantom specific to an individual patient's pendant breast anatomy. Three-dimensional breast images were acquired on a prototype dedicated breast computed tomography (bCT) scanner as part of an ongoing IRB-approved clinical trial of bCT. The images from the breast of a patient were segmented into adipose and glandular tissue regions and divided into 1.59 mm thick breast sections to correspond to the thickness of polyethylene stock. A computer-controlled water-jet cutting machine was used to cut the outer breast edge and the internal regions corresponding to glandular tissue from the polyethylene. The stack of polyethylene breast segments was encased in a thermoplastic ‘skin’ and filled with water. Water-filled spaces modeled glandular tissue structures and the surrounding polyethylene modeled the adipose tissue compartment. Utility of the phantom was demonstrated by inserting 200 µm microcalcifications as well as by measuring point dose deposition during bCT scanning. Affine registration of the original patient images with bCT images of the phantom showed similar tissue distribution. Linear profiles through the registered images demonstrated a mean coefficient of determination (r 2 ) between grayscale profiles of 0.881. The exponent of the power law describing the anatomical noise power spectrum was identical in the coronal images of the patient's breast and the phantom. Microcalcifications were visualized in the phantom at bCT scanning. The real-time air kerma rate was measured during bCT scanning and fluctuated with breast anatomy. On average, point dose deposition was 7.1% greater than the mean glandular dose. A technique to generate a two-compartment anthropomorphic breast phantom from bCT images has been demonstrated. The phantom is the first, to our knowledge, to accurately model the uncompressed pendant breast and the glandular tissue

  17. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms.

    Science.gov (United States)

    Koivisto, Juha H; Wolff, Jan E; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-07-08

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50-90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point-dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k = 2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low-dose limit. The sensitivity was 3.09 ± 0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was -8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD-comparable low-dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However, for single in

  18. Characterization of MOSFET dosimeters for low‐dose measurements in maxillofacial anthropomorphic phantoms

    Science.gov (United States)

    Wolff, Jan E.; Kiljunen, Timo; Schulze, Dirk; Kortesniemi, Mika

    2015-01-01

    The aims of this study were to characterize reinforced metal‐oxide‐semiconductor field‐effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low‐dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the thermoluminescent dosimeters (TLD). The second aim was to characterize MOSFET dosimeter sensitivities for two dental photon energy ranges, dose dependency, dose rate dependency, and accumulated dose dependency. A further aim was to compare the performance of MOSFETs with those of TLDs in an anthropomorphic phantom head using a dentomaxillofacial CBCT device. The uncertainty was assessed by exposing 20 MOSFETs and a Barracuda MPD reference dosimeter. The MOSFET dosimeter sensitivities were evaluated for two photon energy ranges (50–90 kVp) using a constant dose and polymethylmethacrylate backscatter material. MOSFET and TLD comparative point‐dose measurements were performed on an anthropomorphic phantom that was exposed with a clinical CBCT protocol. The MOSFET single exposure low dose limit (25% uncertainty, k=2) was 1.69 mGy. An averaging of eight MOSFET exposures was required to attain the corresponding TLD (0.3 mGy) low‐dose limit. The sensitivity was 3.09±0.13 mV/mGy independently of the photon energy used. The MOSFET dosimeters did not present dose or dose rate sensitivity but, however, presented a 1% decrease of sensitivity per 1000 mV for accumulated threshold voltages between 8300 mV and 17500 mV. The point doses in an anthropomorphic phantom ranged for MOSFETs between 0.24 mGy and 2.29 mGy and for TLDs between 0.25 and 2.09 mGy, respectively. The mean difference was −8%. The MOSFET dosimeters presented statistically insignificant energy dependency. By averaging multiple exposures, the MOSFET dosimeters can achieve a TLD‐comparable low‐dose limit and constitute a feasible method for diagnostic dosimetry using anthropomorphic phantoms. However

  19. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    International Nuclear Information System (INIS)

    Könik, Arda; Johnson, Karen L; Dasari, Paul; Pretorius, P H; Dey, Joyoni; King, Michael A; Connolly, Caitlin M; Segars, Paul W; Lindsay, Clifford

    2014-01-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  20. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging

    Science.gov (United States)

    Könik, Arda; Connolly, Caitlin M.; Johnson, Karen L.; Dasari, Paul; Segars, Paul W.; Pretorius, P. H.; Lindsay, Clifford; Dey, Joyoni; King, Michael A.

    2014-07-01

    The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory

  1. SU-G-TeP2-12: IROCHouston and MDAPL SRS Anthropomorphic Phantom Results

    International Nuclear Information System (INIS)

    Molineu, A; Kry, S; Alvarez, P; Hernandez, N; Nguyen, T; Followill, D

    2016-01-01

    Purpose: To report the results of SRS phantom irradiations Methods: Anthropomorphic SRS head phantoms were sent to institutions participating in NCI sponsored SRS clinical trials and institutions interested in verifying SRS treatment delivery. The phantom shell was purchased from Phantom Laboratory and altered to house dosimetry and imaging inserts. The imaging insert has 1.9 cm diameter spherical target. The dosimetry insert holds two TLD capsules and radiochromic film in the coronal and sagittal planes through the center of the target. Institutions were asked to image, plan and treat the phantom as they would an SRS patient. GammaKnife, CyberKnife and c-arm accelerator institutions were asked to cover the target with 15 Gy, 20 Gy and 25 Gy, respectively. Following these guidelines and typical planning protocols for these three types of machines gives roughly 30 Gy to the center of the target for all units. Submission of the DICOM digital data set was required for analysis. Criteria of 5% for TLD results and 85% of pixels passing 5%/3mm gamma analysis were applied beginning in 2013. Results: The phantom was analyzed 269 times between the beginning of 2013 to present. The pass rate is 81%. Nineteen of the irradiation results failed only the TLD criteria, 19 failed only the film criteria and 12 failed both. Irradiations included 32 CyberKnife 23 GammaKnife, 3 TomoTherapy and 211 c-arm units. Planning systems included Eclipse, Ergo, GammaPlan, Hi-Art, iPlan, Monaco, MultiPlan, Pinnacle, RayStation, XiO and XKnife. Irradiations that were not accompanied with DICOM data were not included in this analysis. Conclusion: The phantom is a valuable end-to-end test used to independently verify the accuracy of SRS treatment delivery. This investigation was supported by IROC grant CA180803 awarded by the NCI.

  2. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, Hanna; Seppaelae, Tiina; Uusi-Simola, Jouni; Merimaa, Katja; Savolainen, Sauli [Department of Physics, POB 64, FI-00014 University of Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo, POB 1000, FI-02044 VTT (Finland); Kortesniemi, Mika, E-mail: hanna.koivunoro@helsinki.f [HUS Helsinki Medical Imaging Center, University of Helsinki, POB 340, FI-00029 HUS (Finland)

    2010-06-21

    In this paper, the accuracy of dose planning calculations for boron neutron capture therapy (BNCT) of brain and head and neck cancer was studied at the FiR 1 epithermal neutron beam. A cylindrical water phantom and an anthropomorphic head phantom were applied with two beam aperture-to-surface distances (ASD). The calculations using the simulation environment for radiation application (SERA) treatment planning system were compared to neutron activation measurements with Au and Mn foils, photon dose measurements with an ionization chamber and the reference simulations with the MCNP5 code. Photon dose calculations using SERA differ from the ionization chamber measurements by 2-13% (disagreement increased along the depth in the phantom), but are in agreement with the MCNP5 calculations within 2%. The {sup 55}Mn(n,{gamma}) and {sup 197}Au(n,{gamma}) reaction rates calculated using SERA agree within 10% and 8%, respectively, with the measurements and within 5% with the MCNP5 calculations at depths >0.5 cm from the phantom surface. The {sup 55}Mn(n,{gamma}) reaction rate represents the nitrogen and boron depth dose within 1%. Discrepancy in the SERA fast neutron dose calculation (of up to 37%) is corrected if the biased fast neutron dose calculation option is not applied. Reduced voxel cell size ({<=}0.5 cm) improves the SERA calculation accuracy on the phantom surface. Despite the slight overestimation of the epithermal neutrons and underestimation of the thermal neutrons in the beam model, neutron calculation accuracy with the SERA system is sufficient for reliable BNCT treatment planning with the two studied treatment distances. The discrepancy between measured and calculated photon dose remains unsatisfactorily high for depths >6 cm from the phantom surface. Increasing discrepancy along the phantom depth is expected to be caused by the inaccurately determined effective point of the ionization chamber.

  3. Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy

    OpenAIRE

    Dana J Lewis; Paige A Summers; David S Followill; Narayan Sahoo; Anita Mahajan; Francesco C Stingo; Stephen F Kry

    2014-01-01

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC).Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the ...

  4. Positioning of the detectors inside an anthropomorphic phantom in order to measure the effective dose at workplace

    International Nuclear Information System (INIS)

    Furstoss, C.; Menard, S.

    2006-01-01

    Passive and active dosimeters worn on the trunk by the workers exposed to radiation fields at their workplaces measure the personal dose equivalent Hp(10), which was introduced by ICRP 60 to provide an appropriate estimate of the protection quantity: the effective dose E. However, the angular and energy distributions of the radiation fields encountered at workplaces can generate an over or an under-estimation of E because of the response of the dosimeters or/and because of the definition of H p(10) itself. That is why the Institute for Radiological Protection and Nuclear Safety (I.R.S.N.) is evaluating the possibility of the measurement of the effective dose E using an instrumented anthropomorphic phantom. The determination of the effective dose E in mixed neutron/photon fields requires to identify the nature and the energy distribution of the incident fields in order to apply the right radiation weighting factor to the mean absorbed doses. So electronic detectors will have to be placed on the surface and inside the phantom in order to identify the nature of the radiation field and to measure the mean absorbed dose within the organs. The positions and the technical characteristics of the detectors are determined by simulating the spatial distributions of the energy losses within organs and tissues of the phantom. The simulations are carried out with the Monte Carlo code M.C.N.P.X. using mesh tallies (virtual grid superimposed to the phantom geometry) and a mathematical model of an anthropomorphic phantom based on the specifications of Cristy and Eckerman. The processing of the first numerical results corresponding to photon irradiations in standard configurations (A.P., P.A. and L.A.T.) shows that for the following organs: the lungs, the liver, the small intestine and the brain, just one detector is enough and that this detector is not necessarily located at the center of the organ. On the other hand, the determination of the energy deposited in the red bone marrow

  5. Inter- and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT : an anthropomorphic phantom study

    NARCIS (Netherlands)

    Xie, X.; Willemink, M. J.; Zhao, Y.; de Jong, P. A.; van Ooijen, P. M. A.; Oudkerk, M.; Greuter, M. J. W.; Vliegenthart, R.

    Objective: To assess inter- and intrascanner variability in volumetry of solid pulmonary nodules in an anthropomorphic thoracic phantom using low-dose CT. Methods: Five spherical solid artificial nodules [diameters 3, 5, 8, 10 and 12mm; CT density 1100 Hounsfield units (HU)] were randomly placed

  6. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    DEFF Research Database (Denmark)

    Jonasson, L S; Axelsson, J; Riklund, K

    2017-01-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET...... cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events...... from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function...

  7. Design and manufacturing of anthropomorphic thyroid-neck phantom for use in nuclear medicine centres in Chile

    International Nuclear Information System (INIS)

    Hermosilla, A.; Diaz Londono, G.; Garcia, M.; Ruiz, F.; Andrade, P.; Perez, A.

    2014-01-01

    Anthropomorphic phantoms are used in nuclear medicine for imaging quality control, calibration of gamma spectrometry system for the study of internal contamination with radionuclides and for internal dosimetric studies. These are constructed of materials that have radiation attenuation coefficients similar to those of the different organs and tissues of the human body. The material usually used for the manufacture of phantoms is polymethyl methacrylate. Other materials used for this purpose are polyethylene, polystyrene and epoxy resin. This project presents the design and manufacture of an anthropomorphic thyroid-neck phantom that includes the cervical spine, trachea and oesophagus, using a polyester resin (ρ 1.1 g cm -3 ). Its linear and mass attenuation coefficients were experimentally determined and simulated by means of XCOM software, finding that this material reproduces the soft tissue ICRU-44 in a range of energies between 80 keV and 11 MeV, with less than a 5 % difference. (authors)

  8. Evaluation of the usefulness of a MOSFET detector in an anthropomorphic phantom for 6-MV photon beam.

    Science.gov (United States)

    Kohno, Ryosuke; Hirano, Eriko; Kitou, Satoshi; Goka, Tomonori; Matsubara, Kana; Kameoka, Satoru; Matsuura, Taeko; Ariji, Takaki; Nishio, Teiji; Kawashima, Mitsuhiko; Ogino, Takashi

    2010-07-01

    In order to evaluate the usefulness of a metal oxide-silicon field-effect transistor (MOSFET) detector as a in vivo dosimeter, we performed in vivo dosimetry using the MOSFET detector with an anthropomorphic phantom. We used the RANDO phantom as an anthropomorphic phantom, and dose measurements were carried out in the abdominal, thoracic, and head and neck regions for simple square field sizes of 10 x 10, 5 x 5, and 3 x 3 cm(2) with a 6-MV photon beam. The dose measured by the MOSFET detector was verified by the dose calculations of the superposition (SP) algorithm in the XiO radiotherapy treatment-planning system. In most cases, the measured doses agreed with the results of the SP algorithm within +/-3%. Our results demonstrated the utility of the MOSFET detector for in vivo dosimetry even in the presence of clinical tissue inhomogeneities.

  9. SU-E-I-94: Automated Image Quality Assessment of Radiographic Systems Using An Anthropomorphic Phantom

    International Nuclear Information System (INIS)

    Wells, J; Wilson, J; Zhang, Y; Samei, E; Ravin, Carl E.

    2014-01-01

    Purpose: In a large, academic medical center, consistent radiographic imaging performance is difficult to routinely monitor and maintain, especially for a fleet consisting of multiple vendors, models, software versions, and numerous imaging protocols. Thus, an automated image quality control methodology has been implemented using routine image quality assessment with a physical, stylized anthropomorphic chest phantom. Methods: The “Duke” Phantom (Digital Phantom 07-646, Supertech, Elkhart, IN) was imaged twice on each of 13 radiographic units from a variety of vendors at 13 primary care clinics. The first acquisition used the clinical PA chest protocol to acquire the post-processed “FOR PRESENTATION” image. The second image was acquired without an antiscatter grid followed by collection of the “FOR PROCESSING” image. Manual CNR measurements were made from the largest and thickest contrast-detail inserts in the lung, heart, and abdominal regions of the phantom in each image. An automated image registration algorithm was used to estimate the CNR of the same insert using similar ROIs. Automated measurements were then compared to the manual measurements. Results: Automatic and manual CNR measurements obtained from “FOR PRESENTATION” images had average percent differences of 0.42%±5.18%, −3.44%±4.85%, and 1.04%±3.15% in the lung, heart, and abdominal regions, respectively; measurements obtained from “FOR PROCESSING” images had average percent differences of -0.63%±6.66%, −0.97%±3.92%, and −0.53%±4.18%, respectively. The maximum absolute difference in CNR was 15.78%, 10.89%, and 8.73% in the respective regions. In addition to CNR assessment of the largest and thickest contrast-detail inserts, the automated method also provided CNR estimates for all 75 contrast-detail inserts in each phantom image. Conclusion: Automated analysis of a radiographic phantom has been shown to be a fast, robust, and objective means for assessing radiographic

  10. Estimating effective dose to pediatric patients undergoing interventional radiology procedures using anthropomorphic phantoms and MOSFET dosimeters.

    Science.gov (United States)

    Miksys, Nelson; Gordon, Christopher L; Thomas, Karen; Connolly, Bairbre L

    2010-05-01

    The purpose of this study was to estimate the effective doses received by pediatric patients during interventional radiology procedures and to present those doses in "look-up tables" standardized according to minute of fluoroscopy and frame of digital subtraction angiography (DSA). Organ doses were measured with metal oxide semiconductor field effect transistor (MOSFET) dosimeters inserted within three anthropomorphic phantoms, representing children at ages 1, 5, and 10 years, at locations corresponding to radiosensitive organs. The phantoms were exposed to mock interventional radiology procedures of the head, chest, and abdomen using posteroanterior and lateral geometries, varying magnification, and fluoroscopy or DSA exposures. Effective doses were calculated from organ doses recorded by the MOSFET dosimeters and are presented in look-up tables according to the different age groups. The largest effective dose burden for fluoroscopy was recorded for posteroanterior and lateral abdominal procedures (0.2-1.1 mSv/min of fluoroscopy), whereas procedures of the head resulted in the lowest effective doses (0.02-0.08 mSv/min of fluoroscopy). DSA exposures of the abdomen imparted higher doses (0.02-0.07 mSv/DSA frame) than did those involving the head and chest. Patient doses during interventional procedures vary significantly depending on the type of procedure. User-friendly look-up tables may provide a helpful tool for health care providers in estimating effective doses for an individual procedure.

  11. Characterization of a computed tomography iterative reconstruction algorithm by image quality evaluations with an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Rampado, O.; Bossi, L.; Garabello, D.; Davini, O.; Ropolo, R.

    2012-01-01

    Objective: This study aims to investigate the consequences on dose and image quality of the choices of different combinations of NI and adaptive statistical iterative reconstruction (ASIR) percentage, the image quality parameters of GE CT equipment. Methods: An anthropomorphic phantom was used to simulate the chest and upper abdomen of a standard weight patient. Images were acquired with tube current modulation and different values of noise index, in the range 10–22 for a slice thickness of 5 mm and a tube voltage of 120 kV. For each selected noise index, several image series were reconstructed using different percentages of ASIR (0, 40, 50, 60, 70, 100). Quantitative noise was assessed at different phantom locations. Computed tomography dose index (CTDI) and dose length products (DLP) were recorded. Three radiologists reviewed the images in a blinded and randomized manner and assessed the subjective image quality by comparing the image series with the one acquired with the reference protocol (noise index 14, ASIR 40%). The perceived noise, contrast, edge sharpness and overall quality were graded on a scale from −2 (much worse) to +2 (much better). Results: A repeatable trend of noise reduction versus the percentage of ASIR was observed for different noise levels and phantom locations. The different combinations of noise index and percentage of ASIR to obtain a desired dose reduction were assessed. The subjective image quality evaluation evidenced a possible dose reduction between 24 and 40% as a consequence of an increment of ASIR percentage to 50 or 70%, respectively. Conclusion: These results highlighted that the same patient dose reduction can be obtained with several combinations of noise index and percentages of ASIR, providing a model with which to choose these acquisition parameters in future optimization studies, with the aim of reducing patient dose by maintaining image quality in diagnostic levels.

  12. Characterization of a computed tomography iterative reconstruction algorithm by image quality evaluations with an anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Rampado, O., E-mail: orampado@molinette.piemonte.it [S.C. Fisica Sanitaria, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy); Bossi, L., E-mail: laura-bossi@hotmail.it [S.C. Fisica Sanitaria, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy); Garabello, D., E-mail: dgarabello@molinette.piemonte.it [S.C. Radiodiagnostica DEA, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy); Davini, O., E-mail: odavini@molinette.piemonte.it [S.C. Radiodiagnostica DEA, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy); Ropolo, R., E-mail: rropolo@molinette.piemonte.it [S.C. Fisica Sanitaria, San Giovanni Battista Hospital of Turin, Corso Bramante 88, Torino 10126 (Italy)

    2012-11-15

    Objective: This study aims to investigate the consequences on dose and image quality of the choices of different combinations of NI and adaptive statistical iterative reconstruction (ASIR) percentage, the image quality parameters of GE CT equipment. Methods: An anthropomorphic phantom was used to simulate the chest and upper abdomen of a standard weight patient. Images were acquired with tube current modulation and different values of noise index, in the range 10-22 for a slice thickness of 5 mm and a tube voltage of 120 kV. For each selected noise index, several image series were reconstructed using different percentages of ASIR (0, 40, 50, 60, 70, 100). Quantitative noise was assessed at different phantom locations. Computed tomography dose index (CTDI) and dose length products (DLP) were recorded. Three radiologists reviewed the images in a blinded and randomized manner and assessed the subjective image quality by comparing the image series with the one acquired with the reference protocol (noise index 14, ASIR 40%). The perceived noise, contrast, edge sharpness and overall quality were graded on a scale from -2 (much worse) to +2 (much better). Results: A repeatable trend of noise reduction versus the percentage of ASIR was observed for different noise levels and phantom locations. The different combinations of noise index and percentage of ASIR to obtain a desired dose reduction were assessed. The subjective image quality evaluation evidenced a possible dose reduction between 24 and 40% as a consequence of an increment of ASIR percentage to 50 or 70%, respectively. Conclusion: These results highlighted that the same patient dose reduction can be obtained with several combinations of noise index and percentages of ASIR, providing a model with which to choose these acquisition parameters in future optimization studies, with the aim of reducing patient dose by maintaining image quality in diagnostic levels.

  13. An anthropomorphic phantom for quality assurance and training in gynaecological brachytherapy

    International Nuclear Information System (INIS)

    Almeida, Carlos Eduardo de; Rodriguez, Miguel; Vianello, Elizabeth; Ferreira, Ivaldo Humberto; Sibata, Claudio

    2002-01-01

    Background and purpose: An anthropomorphic water filled polymethylmethacrylate (PMMA) phantom designed to serve as a Quality Assurance (QA) tool and a training aid in brachytherapy of gynaecological tumours is investigated and presented. Several dosimetric parameters associated with the dose rate calculation can be verified with the aid of this phantom such as the source positioning, its imaging reconstruction from radiographs and the accuracy of the algorithm used for manual or computer dose rate calculation. Material and methods: The phantom walls and the internal structure are 5 mm thick and consist of PMMA, in the form of the abdomen taken from a female Alderson Phantom Marker points representing the organs of interest were determined from computed tomography scans of a patient of similar size. Three PMMA inserts designed to hold a Farmer type ionization chamber of 0.6 cm 3 were positioned at the points to represent the bladder, rectum and point A. The formalism proposed by the IAEA TRS-277 dosimetry protocol was used for the conversion of readings of the ionization chamber to dose rate values with a modification to take into account the dose rate gradient in the detector. Five 137 Cs sources were used and the dose rate was evaluated by measurements and Monte Carlo simulations using the PENELOPE code. Four different treatment planning systems with different algorithms and source reconstruction techniques were also used in this investigation and compared with the manual dose rate calculations made using Karen and Breitman's tables. Results: The dose rate calculations performed with Monte Carlo and the four treatment planning systems are in good agreement with the experimental results as well as with the manual calculations when the colpostat shielding and the tandem attenuation are taken into account. The comparison between experiment and calculations by the four treatment planning systems shows a maximum variation of 5.1% between the calculated and measured

  14. Experience of development and testing of a new model of an anthropomorphic radiodosimetric phantom of the human body ARDF-10 'Roman'

    International Nuclear Information System (INIS)

    Bruhov, R.E.; Finkel, F.V.

    2013-01-01

    In 2006-2010 by the commission of the Radiation and Nuclear Safety Authority in Finland applied scientific research and development of a new model of an anthropomorphic radio dosimetric phantom of the human body (the Phantom) were performed, after the development of the production technology and initial testing in 2010-2012 the first serial copy of the Phantom under the name ARDF-10 ROMAN was produced. The main application of the new model of the Phantom ARDF-10 ROMAN: - increase of the precision of calibration and implementation of the periodic monitoring of Whole body counters (WBC) equipment, standardization of measurement procedure for inter-laboratory comparisons of the incorporated activity. - metrological support of the development and implementation of new methods for human radiation spectrometry: identification of radionuclide content of incorporated activity in the human body; measurements of the activity of incorporated technogenic and natural radionuclides in the whole body and in the lungs; measurements of 90 Sr content in the bone tissue. Study of the mechanisms of the intake, distribution, accumulation and excretion of the radionuclides in the human body, such as: daughter products of 222 Rn decay in the respiratory tract, 241 Am, other transuranic elements; isotopes of iodine in the thyroid gland; radiopharmaceuticals administered to patients for diagnostic and medicinal purposes. Obtaining estimates of spatial-temporal distribution of individual internal exposure dose of a human. The result of the work of recent years has been the creation of hygienic safe standard sample of an anthropomorphic radio dosimetric phantom of the human body ARDF-10 ROMAN, consisting of 4 anthropometric models of body parts, which are independent assembly units (head phantom, neck phantom, torso phantom, knee phantom). Phantom models are made from simulators of bone, soft (muscle) and lungs biological tissue. The Phantom contains 28 separate elements. To the first

  15. A Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom

    Directory of Open Access Journals (Sweden)

    Payam Samadi Miandoab

    2016-12-01

    Full Text Available Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion of dynamic organs, a phantom employs non-uniform rational B-splines (NURBS-based Cardiac-Torso method with spline-based model to generate 4D computed tomography (CT images. First, to generate all the possible roto-translation positions, the 4D CT images were imported to Medical Image Data Examiner (AMIDE. Then, for automatic, real time verification of geometrical setup, an artificial neural network (ANN was proposed to estimate patient displacement, using training sets. Moreover, three external motion markers were synchronized with a patient couch position as reference points. In addition, the technique was validated through simulated activities by using reference 4D CT data acquired from five patients. Results The results indicated that patient geometrical set-up is highly depended on the comprehensiveness of training set. By using ANN model, the average patient setup error in XCAT phantom was reduced from 17.26 mm to 0.50 mm. In addition, in the five real patients, these average errors were decreased from 18.26 mm to 1.48 mm various breathing phases ranging from inhalation to exhalation were taken into account for patient setup. Uncertainty error assessment and different setup errors were obtained from each respiration phase. Conclusion This study proposed a new method for alignment of patient setup error using ANN model. Additionally, our correlation model (ANN could estimate true patient position with less error.

  16. Radiation exposure of lens, thyroid gland and testis in anthropomorphic phantom during CT examination and its protective measures

    International Nuclear Information System (INIS)

    Dai Suhua; Weng Zhigen; Wu Caifa

    1995-01-01

    The SMN-I anthropomorphic phantom was used to simulate patients and to estimate the radiation exposure of lens, thyroid gland and testes during CT examination according to hospital routine managements. The results show that the X-ray radiation doses received by the organs mentioned above are different in good and no protection shelter. Therefore, during CT examination it's of great significance to take a good protective shelter for organs which are near the CT scanning areas

  17. Fabrication of an anthropomorphous phantom equipped with sensors to assess the efficient dose at workstations submitted to photonic fields: experimental study

    International Nuclear Information System (INIS)

    Darreon, J.

    2009-12-01

    The efficient dose is a reference value in radioprotection. It allows the harmfulness of ionizing radiations received by organs and tissues to be assessed. It is used on a legal basis but is not directly measurable. This research thesis reports a practical feasibility study of an anthropomorphous dummy or phantom equipped with sensors to assess the efficient dose from selective measurements. A first part deals with the dose measurement system, i.e. the sensors which will be embedded in the phantom. The second part, based on a simulation performed with a Monte Carlo code, reports the study of the efficient dose assessment accuracies for different irradiation configurations which could be obtained with this measurement instrument. The author shows that the estimation accuracy can be improved by modifying the sensor locations with respect to doses deposited in future reference phantoms of the International Commission on Radiological Protection

  18. Optimising radiographic bitewing examination to adult and juvenile patients through the use of anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Dauer, L. T.; Branets, I.; Stabulas-Savage, J.; Quinn, B.; Miodownik, D.; Dauer, Z. L.; Colosi, D.; Hershkowitz, D.; Goren, A.

    2014-01-01

    Four anthropomorphic phantoms (an adult male, an adult female, a 10-y-old child and a 5-y-old child) were exposed to bitewing radiographs at film and digital settings using both rectangular and round collimation. Optically stimulated dosemeters were used. For children, average organ doses were <40 μGy and the organs with the highest doses were the salivary glands, parotid, oral mucosa, skin and extrathoracic airway. For adults, average organ doses were <200 μGy. Highest adult doses were to the salivary glands, oral mucosa and skin. Effective doses ranged from 1.5 to 1.8 μSv for children and from 2.6 to 3.6 μSv for adults when optimised technique factors were employed, including digital receptors, rectangular collimation, size-appropriate exposure times and proper clinical judgment. Optimised doses were a fraction of the natural daily background exposure. Therefore, predictions of hypothetical cancer incidence or detriment in patient populations exposed to such low doses are highly speculative and should be discouraged. (authors)

  19. Optimization of a protocol for myocardial perfusion scintigraphy by using an anthropomorphic phantom*

    Science.gov (United States)

    Ramos, Susie Medeiros Oliveira; Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar; de Sá, Lidia Vasconcellos

    2014-01-01

    Objective To develop a study aiming at optimizing myocardial perfusion imaging. Materials and Methods Imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The 99mTc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. Results The results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. Conclusion The described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol. PMID:25741088

  20. Dose profile study in head CT scans using a male anthropomorphic phantom

    International Nuclear Information System (INIS)

    Gomez, Alvaro M.L.; Santana, Priscila do C.; Mourao, Arnaldo P.

    2017-01-01

    Computed tomography (CT) test is an efficient and non-invasive method to obtain data about internal structures of the human body. CT scans contribute with the highest absorbed doses in population due X-ray beam attenuation and it has raised concern in radiosensitive tissues. Techniques for the optimization of CT scanning protocols in diagnostic services have been developing with the objective of decreasing the absorbed dose in the patient, aiming image quality within acceptable parameters for diagnosis by noise control. Routine head scans were performed using GE CT scan of 64 channels programmed with automatic exposure control and voltages of 80, 100 and 120 kV attaching the noise index in approximately 0.5%, using the tool of smart mA. An anthropomorphic adult male phantom was used and radiochromic film strips were placed to measure the absorbed dose deposited in areas such as the lens, thyroid and pituitary for study of dose deposited in these important areas containing high radiosensitive tissues. Different head scans were performed using optimized values of mA.s for the different voltages. The absorbed dose measured by the film strips were in the range of the 0.58 and 44.36 mGy. The analysis of noise in the images is within the acceptable levels for diagnosis, and the optimized protocol happens with the voltage of 100 kV. The use of other voltage values can allow obtain better protocols for head scans. (author)

  1. Optimization of a protocol for myocardial perfusion scintigraphy by using an anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Susie Medeiros Oliveira; Sa, Lidia Vasconcellos de, E-mail: susie@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Glavam, Adriana Pereira; Kubo, Tadeu Takao Almodovar [Clinica de Diagnostico Por Imagem (CDPI/DASA), Rio de Janeiro, RJ (Brazil)

    2014-07-15

    Objective: to develop a study aiming at optimizing myocardial perfusion imaging. Materials and Methods: imaging of an anthropomorphic thorax phantom with a GE SPECT Ventri gamma camera, with varied activities and acquisition times, in order to evaluate the influence of these parameters on the quality of the reconstructed medical images. The {sup 99m}Tc-sestamibi radiotracer was utilized, and then the images were clinically evaluated on the basis of data such as summed stress score, and on the technical image quality and perfusion. The software ImageJ was utilized in the data quantification. Results: the results demonstrated that for the standard acquisition time utilized in the procedure (15 seconds per angle), the injected activity could be reduced by 33.34%. Additionally, even if the standard scan time is reduced by 53.34% (7 seconds per angle), the standard injected activity could still be reduced by 16.67%, without impairing the image quality and the diagnostic reliability. Conclusion: the described method and respective results provide a basis for the development of a clinical trial of patients in an optimized protocol. (author)

  2. Dose evaluation in occupationally exposed workers through dosimeters ring and wrist type with an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Palma, R.; Gastelo, E.; Paucar, R.; Tolentino, D.; Herrera, J.; Armas, D.

    2014-08-01

    In the Nuclear Medicine service of the Clinica San Pablo (Peru), the occupationally exposed workers carried out the preparation and administration of radiopharmaceuticals to patients, so it is vital to measure the equivalent dose to the hands during the procedures in order to optimize the exposure to the ionizing radiation and execute the Radiological Safety Regulation (D.S. No. 009-97-Em) and the standard IR 002.2012 of radiation protection and safety in nuclear medicine. In this paper was designed and built a hand anthropomorphic phantom made of paraffin following the description given for the standard man, later were placed dosimeters ring and wrist type UD-807 model, Panasonic brand. Then we proceeded to irradiate using vial containers of Tc-99 and I-131. The obtained results showed the difference between the equivalent dose obtained among the ring and wrist dosimeter also getting a dose of 153 mSv /year when working with 99m Tc and of 61 mSv /year when working with iodine-131. Was also demonstrated that the ring dosimeter shows the average dose received in the hand with less dispersion. It was found that under the national regulation on Requirements of Radiation Protection and Nuclear Safety in Medicine article 63, indicates that higher doses of 150 mSv /year the occupationally exposed workers should have hand dosimetry. Finally the individual dose limit of 500 mSv /year in extremities can be overcome if adequate radiation protection standards do not apply. (author)

  3. In vivo proton dosimetry using a MOSFET detector in an anthropomorphic phantom with tissue inhomogeneity.

    Science.gov (United States)

    Kohno, Ryosuke; Hotta, Kenji; Matsubara, Kana; Nishioka, Shie; Matsuura, Taeko; Kawashima, Mitsuhiko

    2012-03-08

    When in vivo proton dosimetry is performed with a metal-oxide semiconductor field-effect transistor (MOSFET) detector, the response of the detector depends strongly on the linear energy transfer. The present study reports a practical method to correct the MOSFET response for linear energy transfer dependence by using a simplified Monte Carlo dose calculation method (SMC). A depth-output curve for a mono-energetic proton beam in polyethylene was measured with the MOSFET detector. This curve was used to calculate MOSFET output distributions with the SMC (SMC(MOSFET)). The SMC(MOSFET) output value at an arbitrary point was compared with the value obtained by the conventional SMC(PPIC), which calculates proton dose distributions by using the depth-dose curve determined by a parallel-plate ionization chamber (PPIC). The ratio of the two values was used to calculate the correction factor of the MOSFET response at an arbitrary point. The dose obtained by the MOSFET detector was determined from the product of the correction factor and the MOSFET raw dose. When in vivo proton dosimetry was performed with the MOSFET detector in an anthropomorphic phantom, the corrected MOSFET doses agreed with the SMC(PPIC) results within the measurement error. To our knowledge, this is the first report of successful in vivo proton dosimetry with a MOSFET detector.

  4. Dose profile study in head CT scans using a male anthropomorphic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Alvaro M.L.; Santana, Priscila do C.; Mourao, Arnaldo P., E-mail: amlgphys@gmail.com, E-mail: pridili@gmail.com, E-mail: apratabhz@gmail.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)

    2017-11-01

    Computed tomography (CT) test is an efficient and non-invasive method to obtain data about internal structures of the human body. CT scans contribute with the highest absorbed doses in population due X-ray beam attenuation and it has raised concern in radiosensitive tissues. Techniques for the optimization of CT scanning protocols in diagnostic services have been developing with the objective of decreasing the absorbed dose in the patient, aiming image quality within acceptable parameters for diagnosis by noise control. Routine head scans were performed using GE CT scan of 64 channels programmed with automatic exposure control and voltages of 80, 100 and 120 kV attaching the noise index in approximately 0.5%, using the tool of smart mA. An anthropomorphic adult male phantom was used and radiochromic film strips were placed to measure the absorbed dose deposited in areas such as the lens, thyroid and pituitary for study of dose deposited in these important areas containing high radiosensitive tissues. Different head scans were performed using optimized values of mA.s for the different voltages. The absorbed dose measured by the film strips were in the range of the 0.58 and 44.36 mGy. The analysis of noise in the images is within the acceptable levels for diagnosis, and the optimized protocol happens with the voltage of 100 kV. The use of other voltage values can allow obtain better protocols for head scans. (author)

  5. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes.

    Science.gov (United States)

    Hazelaar, Colien; van Eijnatten, Maureen; Dahele, Max; Wolff, Jan; Forouzanfar, Tymour; Slotman, Ben; Verbakel, Wilko F A R

    2018-01-01

    Imaging phantoms are widely used for testing and optimization of imaging devices without the need to expose humans to irradiation. However, commercially available phantoms are commonly manufactured in simple, generic forms and sizes and therefore do not resemble the clinical situation for many patients. Using 3D printing techniques, we created a life-size phantom based on a clinical CT scan of the thorax from a patient with lung cancer. It was assembled from bony structures printed in gypsum, lung structures consisting of airways, blood vessels >1 mm, and outer lung surface, three lung tumors printed in nylon, and soft tissues represented by silicone (poured into a 3D-printed mold). Kilovoltage x-ray and CT images of the phantom closely resemble those of the real patient in terms of size, shapes, and structures. Surface comparison using 3D models obtained from the phantom and the 3D models used for printing showed mean differences 3D printing and molding techniques. The phantom closely resembles a real patient in terms of spatial accuracy and is currently being used to evaluate x-ray-based imaging quality and positional verification techniques for radiotherapy. © 2017 American Association of Physicists in Medicine.

  6. TU-F-CAMPUS-I-02: Validation of a CT X-Ray Source Characterization Technique for Dose Computation Using An Anthropomorphic Thorax Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Sommerville, M; Tambasco, M [San Diego State University, San Diego, CA (United States); Poirier, Y [CancerCare Manitoba, Winnipeg, MB (Canada)

    2015-06-15

    Purpose: To experimentally validate a rotational kV x-ray source characterization technique by computing CT dose in an anthropomorphic thorax phantom using an in-house dose computation algorithm (kVDoseCalc). Methods: The lateral variation in incident energy spectra of a GE Optima big bore CT scanner was found by measuring the HVL along the internal, full bow-tie filter axis. The HVL and kVp were used to generate the x-ray spectra using Spektr software, while beam fluence was derived by dividing the integral product of the spectra and in-air mass-energy absorption coefficients by in-air dose measurements along the bow-tie filter axis. Beams produced by the GE Optima scanner were modeled at 80 and 140 kVp tube settings. kVDoseCalc calculates dose by solving the linear Boltzmann transport equation using a combination of deterministic and stochastic methods. Relative doses in an anthropomorphic thorax phantom (E2E SBRT Phantom) irradiated by the GE Optima scanner were measured using a (0.015 cc) PTW Freiburg ionization chamber, and compared to computations from kVDoseCalc. Results: The agreement in relative dose between dose computation and measurement for points of interest (POIs) within the primary path of the beam was within experimental uncertainty for both energies, however points outside the primary beam were not. The average absolute percent difference for POIs within the primary path of the beam was 1.37% and 5.16% for 80 and 140 kVp, respectively. The minimum and maximum absolute percent difference for both energies and all POIs within the primary path of the beam was 0.151% and 6.41%, respectively. Conclusion: The CT x-ray source characterization technique based on HVL measurements and kVp can be used to accurately compute CT dose in an anthropomorphic thorax phantom.

  7. SU-F-T-292: Imaging and Radiation Oncology Core (IROC) Houston QA Center’s Anthropomorphic Phantom Program

    International Nuclear Information System (INIS)

    Mehrens, H; Lewis, B; Lujano, C; Nguyen, T; Hernandez, N; Alvarez, P; Molineu, A; Followill, D

    2016-01-01

    Purpose: To describe the results of IROC Houston’s international and domestic end-to-end QA phantom irradiations. Methods: IROC Houston has anthropomorphic lung, liver, head and neck, prostate, SRS and spine phantoms that are used for credentialing and quality assurance purposes. The phantoms include structures that closely mimic targets and organs at risk and are made from tissue equivalent materials: high impact polystyrene, solid water, cork and acrylic. Motion tables are used to mimic breathing motion for some lung and liver phantoms. Dose is measured with TLD and radiochromic film in various planes within the target of the phantoms. Results: The most common phantom requested is the head and neck followed by the lung phantom. The head and neck phantom was sent to 800 domestic and 148 international sites between 2011 and 2015, with average pass rates of 89% and 92%, respectively. During the past five years, a general upward trend exists regarding demand for the lung phantom for both international and domestic sites with international sites more than tripling from 5 (2011) to 16 (2015) and domestic sites doubling from 66 (2011) to 152 (2015). The pass rate for lung phantoms has been consistent from year to year despite this large increase in the number of phantoms irradiated with an average pass rate of 85% (domestic) and 95% (international) sites. The percentage of lung phantoms used in combination with motions tables increased from 38% to 79% over the 5 year time span. Conclusion: The number of domestic and international sites irradiating the head and neck and lung phantoms continues to increase and the pass rates remained constant. These end-to-end QA tests continue to be a crucial part of clinical trial credentialing and institution quality assurance. This investigation was supported by IROC grant CA180803 awarded by the NCI.

  8. SU-F-T-292: Imaging and Radiation Oncology Core (IROC) Houston QA Center’s Anthropomorphic Phantom Program

    Energy Technology Data Exchange (ETDEWEB)

    Mehrens, H; Lewis, B; Lujano, C; Nguyen, T; Hernandez, N; Alvarez, P; Molineu, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To describe the results of IROC Houston’s international and domestic end-to-end QA phantom irradiations. Methods: IROC Houston has anthropomorphic lung, liver, head and neck, prostate, SRS and spine phantoms that are used for credentialing and quality assurance purposes. The phantoms include structures that closely mimic targets and organs at risk and are made from tissue equivalent materials: high impact polystyrene, solid water, cork and acrylic. Motion tables are used to mimic breathing motion for some lung and liver phantoms. Dose is measured with TLD and radiochromic film in various planes within the target of the phantoms. Results: The most common phantom requested is the head and neck followed by the lung phantom. The head and neck phantom was sent to 800 domestic and 148 international sites between 2011 and 2015, with average pass rates of 89% and 92%, respectively. During the past five years, a general upward trend exists regarding demand for the lung phantom for both international and domestic sites with international sites more than tripling from 5 (2011) to 16 (2015) and domestic sites doubling from 66 (2011) to 152 (2015). The pass rate for lung phantoms has been consistent from year to year despite this large increase in the number of phantoms irradiated with an average pass rate of 85% (domestic) and 95% (international) sites. The percentage of lung phantoms used in combination with motions tables increased from 38% to 79% over the 5 year time span. Conclusion: The number of domestic and international sites irradiating the head and neck and lung phantoms continues to increase and the pass rates remained constant. These end-to-end QA tests continue to be a crucial part of clinical trial credentialing and institution quality assurance. This investigation was supported by IROC grant CA180803 awarded by the NCI.

  9. SU-F-T-168: Development and Implementation of An Anthropomorphic Head & Neck Phantom for the Assessment of Proton Therapy Treatment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Branco, D; Taylor, P; Frank, S; Li, H; Zhang, X; Mehrens, H; Guindani, M; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To design a Head and Neck (H&N) anthropomorphic QA phantom that the Imaging and Radiation Oncology Core Houston (IROC-H) can use to verify the quality of intensity modulated proton therapy (IMPT) H&N treatments for institutions participating in NCI clinical trials. Methods: The phantom was created to serve as a remote auditing tool for IROC-H to evaluate an institution’s IMPT planning and delivery abilities. The design was based on the composition, size, and geometry of a generalized oropharyngeal tumor and contains critical structures (parotids and spinal cord). Radiochromic film in the axial and sagittal planes and thermoluminescent dosimeters (TLD)-100 capsules were embedded in the phantom and used to perform the dose delivery evaluation. A CT simulation was used to create a passive scatter and a spot scanning treatment plan with typical clinical constraints for H&N cancer. The IMPT plan was approved by a radiation oncologist and the phantom was irradiated multiple times. The measured dose distribution using a 7%/4mm gamma analysis (85% of pixels passing) and point doses were compared with the treatment planning system calculations. Results: The designed phantom could not achieve the target dose prescription and organ at risk dose constraints with the passive scatter treatment plan. The target prescription dose could be met but not the parotid dose constraint. The average TLD point dose ratio in the target was 0.975, well within the 5% acceptance criterion. The dose distribution analysis using various acceptance criteria, 5%/4mm, 5%/3mm, 7%/4mm and 7%/5mm, had average pixel passing rates of 85.9%, 81.8%, 89.6% and 91.6%, and respectively. Conclusion: An anthropomorphic IMPT H&N phantom was designed that can assess the dose delivery of proton sites wishing to participate in clinical trials using a 5% TLD dose and 7%/4mm gamma analysis acceptance criteria.

  10. Simulating effects of brain atrophy in longitudinal PET imaging with an anthropomorphic brain phantom

    Science.gov (United States)

    Jonasson, L. S.; Axelsson, J.; Riklund, K.; Boraxbekk, C. J.

    2017-07-01

    In longitudinal positron emission tomography (PET), the presence of volumetric changes over time can lead to an overestimation or underestimation of the true changes in the quantified PET signal due to the partial volume effect (PVE) introduced by the limited spatial resolution of existing PET cameras and reconstruction algorithms. Here, a 3D-printed anthropomorphic brain phantom with attachable striata in three sizes was designed to enable controlled volumetric changes. Using a method to eliminate the non-radioactive plastic wall, and manipulating BP levels by adding different number of events from list-mode acquisitions, we investigated the artificial volume dependence of BP due to PVE, and potential bias arising from varying BP. Comparing multiple reconstruction algorithms we found that a high-resolution ordered-subsets maximization algorithm with spatially variant point-spread function resolution modeling provided the most accurate data. For striatum, the BP changed by 0.08% for every 1% volume change, but for smaller volumes such as the posterior caudate the artificial change in BP was as high as 0.7% per 1% volume change. A simple gross correction for striatal volume is unsatisfactory, as the amplitude of the PVE on the BP differs depending on where in the striatum the change occurred. Therefore, to correctly interpret age-related longitudinal changes in the BP, we must account for volumetric changes also within a structure, rather than across the whole volume. The present 3D-printing technology, combined with the wall removal method, can be implemented to gain knowledge about the predictable bias introduced by the PVE differences in uptake regions of varying shape.

  11. Evaluation of organ doses and specific k effective dose of 64-slice CT thorax examination using an adult anthropomorphic phantom

    International Nuclear Information System (INIS)

    Hashim, S.; Karim, M.K.A.; Bakar, K.A.; Sabarudin, A.; Chin, A.W; Saripan, M.I.; Bradley, D.A.

    2016-01-01

    The magnitude of radiation dose in computed tomography (CT) depends on the scan acquisition parameters, investigated herein using an anthropomorphic phantom (RANDO®) and thermoluminescence dosimeters (TLD). Specific interest was in the organ doses resulting from CT thorax examination, the specific k coefficient for effective dose estimation for particular protocols also being determined. For measurement of doses representing five main organs (thyroid, lung, liver, esophagus and skin), TLD-100 (LiF:Mg, Ti) were inserted into selected holes in a phantom slab. Five CT thorax protocols were investigated, one routine (R1) and four that were modified protocols (R2 to R5). Organ doses were ranked from greatest to least, found to lie in the order: thyroid>skin>lung>liver>breast. The greatest dose, for thyroid at 25 mGy, was that in use of R1 while the lowest, at 8.8 mGy, was in breast tissue using R3. Effective dose (E) was estimated using three standard methods: the International Commission on Radiological Protection (ICRP)-103 recommendation (E103), the computational phantom CT-EXPO (E(CTEXPO)) method, and the dose-length product (DLP) based approach. E103 k factors were constant for all protocols, ~8% less than that of the universal k factor. Due to inconsistency in tube potential and pitch factor the k factors from CTEXPO were found to vary between 0.015 and 0.010 for protocols R3 and R5. With considerable variation between scan acquisition parameters and organ doses, optimization of practice is necessary in order to reduce patient organ dose. - Highlights: • Using TLD-100 dosimeters and a RANDO phantom 5 CT thorax protocol organ doses were assessed. • The specific k coefficient for effective dose estimation of protocols differed with approach. • Organ dose was observed to decrease in the order: thyroid>skin>lung>liver>breast. • E103 k factors were constant for all protocols, lower by ~8% compared to the universal k factor.

  12. Development and implementation of an anthropomorphic pediatric spine phantom for the assessment of craniospinal irradiation procedures in proton therapy

    Directory of Open Access Journals (Sweden)

    Dana J Lewis

    2014-03-01

    Full Text Available Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC Houston QA Center (formerly RPC.Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS, and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP and Hounsfield unit (HU values. Each material was CT scanned at 120 kVp, and the RSP was obtained from depth ionization scans using the Zebra multi-layer ion chamber (MLIC at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU.Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc., solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%.Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma

  13. COMPARISON OF RESPONSE OF PASSIVE DOSIMETRY SYSTEMS IN SCANNING PROTON RADIOTHERAPY-A STUDY USING PAEDIATRIC ANTHROPOMORPHIC PHANTOMS.

    Science.gov (United States)

    Kneževic, Ž; Ambrozova, I; Domingo, C; De Saint-Hubert, M; Majer, M; Martínez-Rovira, I; Miljanic, S; Mojzeszek, N; Porwol, P; Ploc, O; Romero-Expósito, M; Stolarczyk, L; Trinkl, S; Harrison, R M; Olko, P

    2017-11-18

    Proton beam therapy has advantages in comparison to conventional photon radiotherapy due to the physical properties of proton beams (e.g. sharp distal fall off, adjustable range and modulation). In proton therapy, there is the possibility of sparing healthy tissue close to the target volume. This is especially important when tumours are located next to critical organs and while treating cancer in paediatric patients. On the other hand, the interactions of protons with matter result in the production of secondary radiation, mostly neutrons and gamma radiation, which deposit their energy at a distance from the target. The aim of this study was to compare the response of different passive dosimetry systems in mixed radiation field induced by proton pencil beam inside anthropomorphic phantoms representing 5 and 10 years old children. Doses were measured in different organs with thermoluminescent (MTS-7, MTS-6 and MCP-N), radiophotoluminescent (GD-352 M and GD-302M), bubble and poly-allyl-diglycol carbonate (PADC) track detectors. Results show that RPL detectors are the less sensitive for neutrons than LiF TLDs and can be applied for in-phantom dosimetry of gamma component. Neutron doses determined using track detectors, bubble detectors and pairs of MTS-7/MTS-6 are consistent within the uncertainty range. This is the first study dealing with measurements on child anthropomorphic phantoms irradiated by a pencil scanning beam technique. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Second generation anthropomorphic physical phantom for mammography and DBT: Incorporating voxelized 3D printing and inkjet printing of iodinated lesion inserts

    Science.gov (United States)

    Sikaria, Dhiraj; Musinsky, Stephanie; Sturgeon, Gregory M.; Solomon, Justin; Diao, Andrew; Gehm, Michael E.; Samei, Ehsan; Glick, Stephen J.; Lo, Joseph Y.

    2016-03-01

    Physical phantoms are needed for the evaluation and optimization of new digital breast tomosynthesis (DBT) systems. Previously, we developed an anthropomorphic phantom based on human subject breast CT data and fabricated using commercial 3D printing. We now present three key advancements: voxelized 3D printing, photopolymer material doping, and 2D inkjet printing of lesion inserts. First, we bypassed the printer's control software in order to print in voxelized form instead of conventional STL surfaces, thus improving resolution and allowing dithering to mix the two photopolymer materials into arbitrary proportions. We demonstrated ability to print details as small as 150μm, and dithering to combine VeroWhitePlus and TangoPlus in 10% increments. Second, to address the limited attenuation difference among commercial photopolymers, we evaluated a beta sample from Stratasys with increased TiO2 doping concentration up to 2.5%, which corresponded to 98% breast density. By spanning 36% to 98% breast density, this doubles our previous contrast. Third, using inkjet printers modified to print with iopamidol, we created 2D lesion patterns on paper that can be sandwiched into the phantom. Inkjet printing has advantages of being inexpensive and easy, and more contrast can be delivered through overprinting. Printing resolution was maintained at 210 μm horizontally and 330 μm vertically even after 10 overprints. Contrast increased linearly with overprinting at 0.7% per overprint. Together, these three new features provide the basis for creating a new anthropomorphic physical breast phantom with improved resolution and contrast, as well as the ability to insert 2D lesions for task-based assessment of performance.

  15. Use of VAP3D software in the construction of pathological anthropomorphic phantoms for dosimetric evaluations

    International Nuclear Information System (INIS)

    Lima, Lindeval Fernandes de; Lima, Fernando R.A.

    2011-01-01

    This paper performs a new type of dosimetric evaluation, where it was used a phantom of pathological voxels (representative phantom of sick person). The software VAP3D (Visualization and Analysis of Phantoms 3D) were used for, from a healthy phantom (phantom representative of healthy person), to introduce three dimensional regions to simulate tumors. It was used the Monte Carlo ESGnrc code to simulate the X ray photon transport, his interaction with matter and evaluation of absorbed dose in organs and tissues from thorax region of the healthy phantom and his pathological version. This is a computer model of typical exposure for programming the treatments in radiodiagnostic

  16. Dosimetric study of a brachytherapy treatment of esophagus with Brazilian 192Ir sources using an anthropomorphic phantom

    Science.gov (United States)

    Neves, Lucio P.; Santos, William S.; Gorski, Ronan; Perini, Ana P.; Maia, Ana F.; Caldas, Linda V. E.; Orengo, Gilberto

    2014-11-01

    Several radioisotopes are produced at Instituto de Pesquisas Energéticas e Nucleares for the use in medical treatments, including the activation of 192Ir sources. These sources are suitable for brachytherapy treatments, due to their low or high activity, depending on the concentration of 192Ir, easiness to manufacture, small size, stable daughter products and the possibility of re-utilization. They may be used for the treatment of prostate, cervix, head and neck, skin, breast, gallbladder, uterus, vagina, lung, rectum, and eye cancer treatment. In this work, the use of some 192Ir sources was studied for the treatment of esophagus cancer, especially the dose determination of important structures, such as those on the mediastinum. This was carried out utilizing a FASH anthropomorphic phantom and the MCNP5 Monte Carlo code to transport the radiation through matter. It was possible to observe that the doses at lungs, breast, esophagus, thyroid and heart were the highest, which was expected due to their proximity to the source. Therefore, the data are useful to assess the representative dose specific to brachytherapy treatments on the esophagus for radiation protection purposes. The use of brachytherapy sources was studied for the treatment of esophagus cancer. FASH anthropomorphic phantom and MCNP5 Monte Carlo code were employed. The doses at lungs, breast, esophagus, thyroid and heart were the highest. The data is useful to assess the representative doses of treatments on the esophagus.

  17. Whole-Body Single-Bed Time-of-Flight RPC-PET: Simulation of Axial and Planar Sensitivities With NEMA and Anthropomorphic Phantoms

    Science.gov (United States)

    Crespo, Paulo; Reis, João; Couceiro, Miguel; Blanco, Alberto; Ferreira, Nuno C.; Marques, Rui Ferreira; Martins, Paulo; Fonte, Paulo

    2012-06-01

    A single-bed, whole-body positron emission tomograph based on resistive plate chambers has been proposed (RPC-PET). An RPC-PET system with an axial field-of-view (AFOV) of 2.4 m has been shown in simulation to have higher system sensitivity using the NEMA NU2-1994 protocol than commercial PET scanners. However, that protocol does not correlate directly with lesion detectability. The latter is better correlated with the planar (slice) sensitivity, obtained with a NEMA NU2-2001 line-source phantom. After validation with published data for the GE Advance, Siemens TruePoint and TrueV, we study by simulation their axial sensitivity profiles, comparing results with RPC-PET. Planar sensitivities indicate that RPC-PET is expected to outperform 16-cm (22-cm) AFOV scanners by a factor 5.8 (3.0) for 70-cm-long scans. For 1.5-m scans (head to mid-legs), the sensitivity gain increases to 11.7 (6.7). Yet, PET systems with large AFOV provide larger coverage but also larger attenuation in the object. We studied these competing effects with both spherical- and line-sources immersed in a 27-cm-diameter water cylinder. For 1.5-m-long scans, the planar sensitivity drops one order of magnitude in all scanners, with RPC-PET outperforming 16-cm (22-cm) AFOV scanners by a factor 9.2 (5.3) without considering the TOF benefit. A gain in the effective sensitivity is expected with TOF iterative reconstruction. Finally, object scatter in an anthropomorphic phantom is similar for RPC-PET and modern, scintillator-based scanners, although RPC-PET benefits further if its TOF information is utilized to exclude scatter events occurring outside the anthropomorphic phantom.

  18. Design of a multimodal ({sup 1}H/{sup 23}Na MR/CT) anthropomorphic thorax phantom

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Wiebke; Lietzmann, Florian; Schad, Lothar R.; Zoellner, Frank G. [Heidelberg Univ., Mannheim (Germany). Computer Assisted Clinical Medicine

    2017-08-01

    This work proposes a modular, anthropomorphic MR and CT thorax phantom that enables the comparison of experimental studies for quantitative evaluation of deformable, multimodal image registration algorithms and realistic multi-nuclear MR imaging techniques. A human thorax phantom was developed with insertable modules representing lung, liver, ribs and additional tracking spheres. The quality of human tissue mimicking characteristics was evaluated for {sup 1}H and {sup 23}Na MR as well as CT imaging. The position of landmarks in the lung lobes was tracked during CT image acquisition at several positions during breathing cycles. {sup 1}H MR measurements of the liver were repeated after seven months to determine long term stability. The modules possess HU, T{sub 1} and T{sub 2} values comparable to human tissues (lung module: -756 ± 148 HU, artificial ribs: 218 ± 56 HU (low CaCO{sub 3} concentration) and 339 ± 121 (high CaCO{sub 3} concentration), liver module: T{sub 1} = 790 ± 28 ms, T{sub 2} = 65 ± 1 ms). Motion analysis showed that the landmarks in the lung lobes follow a 3D trajectory similar to human breathing motion. The tracking spheres are well detectable in both CT and MRI. The parameters of the tracking spheres can be adjusted in the following ranges to result in a distinct signal: HU values from 150 to 900 HU, T{sub 1} relaxation time from 550 ms to 2000 ms, T{sub 2} relaxation time from 40 ms to 200 ms. The presented anthropomorphic multimodal thorax phantom fulfills the demands of a simple, inexpensive system with interchangeable components. In future, the modular design allows for complementing the present set up with additional modules focusing on specific research targets such as perfusion studies, {sup 23}Na MR quantification experiments and an increasing level of complexity for motion studies.

  19. Inter- and intrascanner variability of pulmonary nodule volumetry on low-dose 64-row CT: an anthropomorphic phantom study

    Science.gov (United States)

    Xie, X; Willemink, M J; Zhao, Y; de Jong, P A; van Ooijen, P M A; Oudkerk, M; Greuter, M J W

    2013-01-01

    Objective: To assess inter- and intrascanner variability in volumetry of solid pulmonary nodules in an anthropomorphic thoracic phantom using low-dose CT. Methods: Five spherical solid artificial nodules [diameters 3, 5, 8, 10 and 12 mm; CT density +100 Hounsfield units (HU)] were randomly placed inside an anthropomorphic thoracic phantom in different combinations. The phantom was examined on two 64-row multidetector CT (64-MDCT) systems (CT-A and CT-B) from different vendors with a low-dose protocol. Each CT examination was performed three times. The CT examinations were evaluated twice by independent blinded observers. Nodule volume was semi-automatically measured by dedicated software. Interscanner variability was evaluated by Bland–Altman analysis and expressed as 95% confidence interval (CI) of relative differences. Intrascanner variability was expressed as 95% CI of relative variation from the mean. Results: No significant difference in CT-derived volume was found between CT-A and CT-B, except for the 3-mm nodules (pvolumetry of artificial pulmonary nodules between 5 mm and 12 mm in diameter. Inter- and intrascanner variability decreases at a larger nodule size to a maximum of 4.9% for ≥8 mm nodules. Advances in knowledge: The commonly accepted cut-off of 25% to determine nodule growth has the potential to be reduced for ≥8 mm nodules. This offers the possibility of reducing the interval for repeated CT scans in lung cancer screenings. PMID:23884758

  20. Location of radiosensitive organs, measurement of absorbed dose to radiosensitive organs and use of bismuth shields in paediatric anthropomorphic phantoms

    International Nuclear Information System (INIS)

    Inkoom, S.

    2014-08-01

    The aim of this study was to investigate: firstly, (i) location of radiosensitive organs in the interior of four (4) paediatric anthropomorphic phantoms, and, secondly, (ii) effectiveness of single and double bismuth thyroid shields, distance between shield and phantom surface, during paediatric multi-detector computed tomography (MDCT) using fixed tube current (FTC) and automatic exposure control (AEC) on dose reduction and image quality. Four (4) paediatric anthropomorphic phantoms representing the equivalent of a newborn, 1-, 5-, and 10-y-old child underwent head, thorax and abdomen computed tomography (CT) scans. CT and magnetic resonance imaging scans of all children aged 0-16 y-old performed during a 5-y-period at the University Hospital of Heraklion, Crete, Greece were reviewed, and five hundred and three (503) were found to be eligible for normal anatomy. Anterior-posterior and lateral dimensions of twelve (12) of the above children closely matched that of the phantoms' thoracic and abdominal region in each four (4) phantoms. The mid-sagittal plane (MSP) and mid-coronal plane (MCP) were drawn on selected matching axial images of patients and phantoms. Multiple points outlining large radiosensitive organs and centres of small organs in patient images were identified at each slice level and their orthogonal distances from the MSP and MCP were measured. The outlines and centres of all radiosensitive organs were reproduced using the coordinates of each organ on the corresponding phantom's transverse images. The four (4) phantoms were also subjected to routine head and neck, neck and thorax CT scans on a 16-slice CT system. Each phantom was first scanned with both FTC and AEC for with and without bismuth shields. Each scan was repeated ten (10) times to increase thermoluminescent dosimeters (TLDs) signal and reduce measurement statistical error. For neck CT, the effect of using single and double thickness of bismuth shields and 1-3 cm cotton spacers

  1. Adult phantoms as function of body mass, height and posture by using caucasian anthropomorphic statistics

    International Nuclear Information System (INIS)

    Kramer, Richard; Cassola, Vagner Ferreira; Lira, Carlos Alberto Brayner de Oliveira; Khoury, Helen Jamil; Milian, Felix Mas

    2011-01-01

    The CALLDose X 4.0 computer program uses conversion coefficients for the MASH and FASH adult phantoms on the vertical and supine postures, representing the standard man and woman according to ICRP 90 and are called 'basic phantoms'. For improving the representation of real patients in the CALLDose X , this paper developed adults phantoms as function of mass and height by using anthropometric data from nine of them prevailing caucasian countries

  2. Accuracy of lung nodule volumetry in low-dose CT with iterative reconstruction: an anthropomorphic thoracic phantom study.

    Science.gov (United States)

    Doo, K W; Kang, E-Y; Yong, H S; Woo, O H; Lee, K Y; Oh, Y-W

    2014-09-01

    The purpose of this study was to assess accuracy of lung nodule volumetry in low-dose CT with application of iterative reconstruction (IR) according to nodule size, nodule density and CT tube currents, using artificial lung nodules within an anthropomorphic thoracic phantom. Eight artificial nodules (four diameters: 5, 8, 10 and 12 mm; two CT densities: -630 HU that represents ground-glass nodule and +100 HU that represents solid nodule) were randomly placed inside a thoracic phantom. Scans were performed with tube current-time product to 10, 20, 30 and 50 mAs. Images were reconstructed with IR and filtered back projection (FBP). We compared volume estimates to a reference standard and calculated the absolute percentage error (APE). The APE of all nodules was significantly lower when IR was used than with FBP (7.5 ± 4.7% compared with 9.0 ±6.9%; p volumetry in low-dose CT by application of IR showed reliable accuracy in a phantom study. Lung nodule volumetry can be reliably applicable to all lung nodules including small, ground-glass nodules even in ultra-low-dose CT with application of IR. IR significantly improved the accuracy of lung nodule volumetry compared with FBP particularly for ground-glass (-630 HU) nodules. Volumetry in low-dose CT can be utilized in patient with lung nodule work-up, and IR has benefit for small, ground-glass lung nodules in low-dose CT.

  3. Sensitivity and accuracy of volumetry of pulmonary nodules on low-dose 16- and 64-row multi-detector CT : an anthropomorphic phantom study

    NARCIS (Netherlands)

    Xie, X.; Zhao, Yingru; Snijder, R.A.; van Ooijen, P.M.; de Jong, P.A.; Oudkerk, M.; de Bock, G.H.; Vliegenthart, R.; Greuter, M.J.

    To assess the sensitivity of detection and accuracy of volumetry by manual and semi-automated quantification of artificial pulmonary nodules in an anthropomorphic thoracic phantom on low-dose CT. Fifteen artificial spherical nodules (diameter 3, 5, 8, 10 and 12 mm; CT densities -800, -630 and +100

  4. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    International Nuclear Information System (INIS)

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan

    2015-01-01

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  5. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    Energy Technology Data Exchange (ETDEWEB)

    Kiarashi, Nooshin [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Nolte, Adam C. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Sturgeon, Gregory M.; Ghate, Sujata V. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Segars, William P. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Nolte, Loren W. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Samei, Ehsan [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708 (United States); Medical Physics Graduate Program, Duke University, Durham, North Carolina 27708 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States); and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  6. CT head-scan dosimetry in an anthropomorphic phantom and associated measurement of ACR accreditation-phantom imaging metrics under clinically representative scan conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Claudia C.; Stern, Stanley H.; Chakrabarti, Kish [U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Minniti, Ronaldo [National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Parry, Marie I. [Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, Maryland 20889 (United States); Skopec, Marlene [National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892 (United States)

    2013-08-15

    Purpose: To measure radiation absorbed dose and its distribution in an anthropomorphic head phantom under clinically representative scan conditions in three widely used computed tomography (CT) scanners, and to relate those dose values to metrics such as high-contrast resolution, noise, and contrast-to-noise ratio (CNR) in the American College of Radiology CT accreditation phantom.Methods: By inserting optically stimulated luminescence dosimeters (OSLDs) in the head of an anthropomorphic phantom specially developed for CT dosimetry (University of Florida, Gainesville), we measured dose with three commonly used scanners (GE Discovery CT750 HD, Siemens Definition, Philips Brilliance 64) at two different clinical sites (Walter Reed National Military Medical Center, National Institutes of Health). The scanners were set to operate with the same data-acquisition and image-reconstruction protocols as used clinically for typical head scans, respective of the practices of each facility for each scanner. We also analyzed images of the ACR CT accreditation phantom with the corresponding protocols. While the Siemens Definition and the Philips Brilliance protocols utilized only conventional, filtered back-projection (FBP) image-reconstruction methods, the GE Discovery also employed its particular version of an adaptive statistical iterative reconstruction (ASIR) algorithm that can be blended in desired proportions with the FBP algorithm. We did an objective image-metrics analysis evaluating the modulation transfer function (MTF), noise power spectrum (NPS), and CNR for images reconstructed with FBP. For images reconstructed with ASIR, we only analyzed the CNR, since MTF and NPS results are expected to depend on the object for iterative reconstruction algorithms.Results: The OSLD measurements showed that the Siemens Definition and the Philips Brilliance scanners (located at two different clinical facilities) yield average absorbed doses in tissue of 42.6 and 43.1 m

  7. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom

    Science.gov (United States)

    Oancea, C.; Shipulin, K.; Mytsin, G.; Molokanov, A.; Niculae, D.; Ambrožová, I.; Davídková, M.

    2017-03-01

    A dosimetric experiment was performed at the Medico-Technical Complex in the Joint Institute for Nuclear Research, Dubna, to investigate the effects of metallic dental implants in the treatment of head and neck tumours with proton therapy. The goal of the study was to evaluate the 2D dose distributions of different clinical treatment plans measured in an anthropomorphic phantom, and compare them to predictions from a treatment planning system. The anthropomorphic phantom was sliced into horizontal segments. Two grade 4 Titanium implants were inserted between 2 slices, corresponding to a maxillary area. GafChromic EBT2 films were placed between the segments containing the implants to measure the 2D delivered dose. Two different targets were designed: the first target includes the dental implants in the isocentre, and in the second target, the proton beam is delivered through the implants, which are located at the entrance region of the Bragg curve. The experimental results were compared to the treatment plans made using our custom 3D Treatment Planning System, named RayTreat. To quantitatively determine differences in the isodose distributions (measured and calculated), the gamma index (3 mm, 3%) was calculated for each target for the matrix value in the region of high isodose (> 90%): for the experimental setup, which includes the implants in the SOBP region, the result obtained was 84.3%. When the implants were localised in the entrance region of the Bragg curve, the result obtained was 86.4%. In conclusion, the uncertainties introduced by the clinically planned dose distribution are beyond reasonable limits. The linear energy transfer spectra in close proximity to the implants were investigated using solid state nuclear track detectors (TED). Scattered particles outside the target were detected.

  8. Effect of titanium dental implants on proton therapy delivered for head tumors: experimental validation using an anthropomorphic head phantom

    International Nuclear Information System (INIS)

    Oancea, C.; Shipulin, K.; Mytsin, G.; Molokanov, A.; Niculae, D.; Ambrožová, I.; Davídková, M.

    2017-01-01

    A dosimetric experiment was performed at the Medico-Technical Complex in the Joint Institute for Nuclear Research, Dubna, to investigate the effects of metallic dental implants in the treatment of head and neck tumours with proton therapy. The goal of the study was to evaluate the 2D dose distributions of different clinical treatment plans measured in an anthropomorphic phantom, and compare them to predictions from a treatment planning system. The anthropomorphic phantom was sliced into horizontal segments. Two grade 4 Titanium implants were inserted between 2 slices, corresponding to a maxillary area. GafChromic EBT2 films were placed between the segments containing the implants to measure the 2D delivered dose. Two different targets were designed: the first target includes the dental implants in the isocentre, and in the second target, the proton beam is delivered through the implants, which are located at the entrance region of the Bragg curve. The experimental results were compared to the treatment plans made using our custom 3D Treatment Planning System, named RayTreat. To quantitatively determine differences in the isodose distributions (measured and calculated), the gamma index (3 mm, 3%) was calculated for each target for the matrix value in the region of high isodose (> 90%): for the experimental setup, which includes the implants in the SOBP region, the result obtained was 84.3%. When the implants were localised in the entrance region of the Bragg curve, the result obtained was 86.4%. In conclusion, the uncertainties introduced by the clinically planned dose distribution are beyond reasonable limits. The linear energy transfer spectra in close proximity to the implants were investigated using solid state nuclear track detectors (TED). Scattered particles outside the target were detected.

  9. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    OpenAIRE

    Dang, J; Lecoq, P; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    International audience; Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allo...

  10. Results From the Imaging and Radiation Oncology Core Houston's Anthropomorphic Phantoms Used for Proton Therapy Clinical Trial Credentialing

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paige A., E-mail: pataylor@mdanderson.org; Kry, Stephen F.; Alvarez, Paola; Keith, Tyler; Lujano, Carrie; Hernandez, Nadia; Followill, David S.

    2016-05-01

    Purpose: The purpose of this study was to summarize the findings of anthropomorphic proton phantom irradiations analyzed by the Imaging and Radiation Oncology Core Houston QA Center (IROC Houston). Methods and Materials: A total of 103 phantoms were irradiated by proton therapy centers participating in clinical trials. The anthropomorphic phantoms simulated heterogeneous anatomy of a head, liver, lung, prostate, and spine. Treatment plans included those for scattered, uniform scanning, and pencil beam scanning beam delivery modalities using 5 different treatment planning systems. For every phantom irradiation, point doses and planar doses were measured using thermoluminescent dosimeters (TLD) and film, respectively. Differences between measured and planned doses were studied as a function of phantom, beam delivery modality, motion, repeat attempt, treatment planning system, and date of irradiation. Results: The phantom pass rate (overall, 79%) was high for simple phantoms and lower for phantoms that introduced higher levels of difficulty, such as motion, multiple targets, or increased heterogeneity. All treatment planning systems overestimated dose to the target, compared to TLD measurements. Errors in range calculation resulted in several failed phantoms. There was no correlation between treatment planning system and pass rate. The pass rates for each individual phantom are not improving over time, but when individual institutions received feedback about failed phantom irradiations, pass rates did improve. Conclusions: The proton phantom pass rates are not as high as desired and emphasize potential deficiencies in proton therapy planning and/or delivery. There are many areas for improvement with the proton phantom irradiations, such as treatment planning system dose agreement, range calculations, accounting for motion, and irradiation of multiple targets.

  11. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xinming; Lai Chaojen; Whitman, Gary J.; Geiser, William R.; Shen Youtao; Yi Ying; Shaw, Chris C. [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States); Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009 (United States)

    2011-12-15

    Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factors were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement

  12. Effects of exposure equalization on image signal-to-noise ratios in digital mammography: A simulation study with an anthropomorphic breast phantom

    International Nuclear Information System (INIS)

    Liu Xinming; Lai Chaojen; Whitman, Gary J.; Geiser, William R.; Shen Youtao; Yi Ying; Shaw, Chris C.

    2011-01-01

    Purpose: The scan equalization digital mammography (SEDM) technique combines slot scanning and exposure equalization to improve low-contrast performance of digital mammography in dense tissue areas. In this study, full-field digital mammography (FFDM) images of an anthropomorphic breast phantom acquired with an anti-scatter grid at various exposure levels were superimposed to simulate SEDM images and investigate the improvement of low-contrast performance as quantified by primary signal-to-noise ratios (PSNRs). Methods: We imaged an anthropomorphic breast phantom (Gammex 169 ''Rachel,'' Gammex RMI, Middleton, WI) at various exposure levels using a FFDM system (Senographe 2000D, GE Medical Systems, Milwaukee, WI). The exposure equalization factors were computed based on a standard FFDM image acquired in the automatic exposure control (AEC) mode. The equalized image was simulated and constructed by superimposing a selected set of FFDM images acquired at 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32 times of exposure levels to the standard AEC timed technique (125 mAs) using the equalization factors computed for each region. Finally, the equalized image was renormalized regionally with the exposure equalization factors to result in an appearance similar to that with standard digital mammography. Two sets of FFDM images were acquired to allow for two identically, but independently, formed equalized images to be subtracted from each other to estimate the noise levels. Similarly, two identically but independently acquired standard FFDM images were subtracted to estimate the noise levels. Corrections were applied to remove the excess system noise accumulated during image superimposition in forming the equalized image. PSNRs over the compressed area of breast phantom were computed and used to quantitatively study the effects of exposure equalization on low-contrast performance in digital mammography. Results: We found that the highest achievable PSNR improvement factor was 1.89 for

  13. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    Science.gov (United States)

    Dang, Jun; Frisch, Benjamin; Lasaygues, Philippe; Zhang, Dachun; Tavernier, Stefaan; Felix, Nicolas; Lecoq, Paul; Auffray, Etiennette; Varela, Joao; Mensah, Serge; Wan, Mingxi

    2011-06-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Sonic is a project of the Crystal Clear Collaboration and the European Centre for Research on Medical Imaging (CERIMED).

  14. Development of an Anthropomorphic Breast Phantom for Combined PET, B-Mode Ultrasound and Elastographic Imaging

    CERN Document Server

    Dang, J; Tavernier, S; Lasaygues, P; Mensah, S; Zhang, D C; Auffray, E; Frisch, B; Varela, J; Wan, M X; Felix, N

    2011-01-01

    Combining the advantages of different imaging modalities leads to improved clinical results. For example, ultrasound provides good real-time structural information without any radiation and PET provides sensitive functional information. For the ongoing ClearPEM-Sonic project combining ultrasound and PET for breast imaging, we developed a dual-modality PET/Ultrasound (US) phantom. The phantom reproduces the acoustic and elastic properties of human breast tissue and allows labeling the different tissues in the phantom with different concentrations of FDG. The phantom was imaged with a whole-body PET/CT and with the Supersonic Imagine Aixplorer system. This system allows both B-mode US and shear wave elastographic imaging. US elastography is a new imaging method for displaying the tissue elasticity distribution. It was shown to be useful in breast imaging. We also tested the phantom with static elastography. A 6D magnetic positioning system allows fusing the images obtained with the two modalities. ClearPEM-Soni...

  15. Numerical absorbed dose distributions inside principal organs of a mathematical anthropomorphic phantom irradiated by monoenergetic photon fields

    International Nuclear Information System (INIS)

    Furstoss, C.; Menard, S.

    2005-01-01

    Full text: Personnel can be exposed to photon or mixed (neutrons and photons) radiations at workplaces for various activities (nuclear fuel cycle, medical sector, research... ). The passive and active personal dosimeters worn on the trunk evaluate the personal dose equivalent Hp(10), defined by ICRP 601 to be an estimator of the effective dose E. However, the angular and energy distributions of the radiations encountered could generate an over or under-estimation of the protection quantity E because of the response of the dosimeters or/and because of the definition of Hp(10) itself. The Institute of Radiological Protection and Nuclear Safety (IRSN) is evaluating the possibility of the measurement of the effective dose E using an instrumented anthropomorphic phantom at workplaces. Such an instrument would allow the control of the suitability of the radiological protection instrumentation used at workplaces for radiation fields which can appreciably differ from the reference ISO radiation fields used to calibrate dosimeters. The objectives of this study are to determine key positions for the future detectors inside and on the phantom, as well as their needed technical characteristics. The simulations of the organ absorbed dose distributions performed using the Monte Carlo code MCNPX2 and the MIRD phantom3 model will allow the determination of the detector locations. This paper will present the first numerical results obtained for monoenergetic parallel photon fields. The effective doses E calculated in an energy range from 15 keV to 10 MeV will be presented and compared with the results of M. Zankl et al., published in the GSF report Bericht 8/974. (author)

  16. Sensitivity and accuracy of volumetry of pulmonary nodules on low-dose 16- and 64-row multi-detector CT: an anthropomorphic phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xueqian; Zhao, Yingru; Ooijen, Peter M.A. van; Vliegenthart, Rozemarijn [University of Groningen, University Medical Center Groningen, Department of Radiology, EB44, P.O. Box 30.001, Groningen (Netherlands); University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen (Netherlands); Snijder, Roland A.; Greuter, Marcel J.W. [University of Groningen, University Medical Center Groningen, Department of Radiology, EB44, P.O. Box 30.001, Groningen (Netherlands); Jong, Pim A. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Oudkerk, Matthijs [University of Groningen, University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, Department of Radiology, Groningen (Netherlands); Bock, Geertruida H. de [University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen (Netherlands)

    2013-01-15

    To assess the sensitivity of detection and accuracy of volumetry by manual and semi-automated quantification of artificial pulmonary nodules in an anthropomorphic thoracic phantom on low-dose CT. Fifteen artificial spherical nodules (diameter 3, 5, 8, 10 and 12 mm; CT densities -800, -630 and +100 HU) were randomly placed inside an anthropomorphic thoracic phantom. The phantom was examined on 16- and 64-row multidetector CT with a low-dose protocol. Two independent blinded observers screened for pulmonary nodules. Nodule diameter was measured manually, and volume calculated. For solid nodules (+100 HU), diameter and volume were also evaluated by semi-automated software. Differences in observed volumes between the manual and semi-automated method were evaluated by a t-test. Sensitivity was 100 % for all nodules of >5 mm and larger, 60-80 % for solid and 0-20 % for non-solid 3-mm nodules. No false-positive nodules but high inter-observer reliability and inter-technique correlation were found. Volume was underestimated manually by 24.1 {+-} 14.0 % for nodules of any density, and 26.4 {+-} 15.5 % for solid nodules, compared with 7.6 {+-} 8.5 % (P < 0.01) semi-automatically. In an anthropomorphic phantom study, the sensitivity of detection is 100 % for nodules of >5 mm in diameter. Semi-automated volumetry yielded more accurate nodule volumes than manual measurements. (orig.)

  17. Determination of dose correction factor for energy and directional dependence of the MOSFET dosimeter in an anthropomorphic phantom

    International Nuclear Information System (INIS)

    Cho, Sung Koo; Choi, Sang Hyoun; Kim, Chan Hyeong; Na, Seong Ho

    2006-01-01

    In recent years, the MOSFET dosimeter has been widely used in various medical applications such as dose verification in radiation therapeutic and diagnostic applications. The MOSFET dosimeter is, however, mainly made of silicon and shows some energy dependence for low energy photons. Therefore, the MOSFET dosimeter tends to overestimate the dose for low energy scattered photons in a phantom. This study determines the correction factors to compensate these dependences of the MOSFET dosimeter in ATOM phantom. For this, we first constructed a computational model of the ATOM phantom based on the 3D CT image data of the phantom. The voxel phantom was then implemented in a Monte Carlo simulation code and used to calculate the energy spectrum of the photon field at each of the MOSFET dosimeter locations in the phantom. Finally, the correction factors were calculated based on the energy spectrum of the photon field at the dosimeter locations and the pre-determined energy and directional dependence of the MOSFET dosimeter. Our result for 60 Co and 137 Cs photon fields shows that the correction factors are distributed within the range of 0.89 and 0.97 considering all the MOSFET dosimeter locations in the phantom

  18. Activation rate uniformity in a bilateral IVNAA facility for two anthropomorphic phantoms

    Directory of Open Access Journals (Sweden)

    Miri Hakimabad Hashem

    2010-01-01

    Full Text Available Activation rate uniformity is the first property which is considered in the design of a prompt γ-ray in vivo neutron activation analysis facility. Preliminary studies on the activation rate distribution in the body can be done by use of Monte Carlo codes, such as the MCNP. In this paper, different bilateral configurations of an IVNAA system are considered in order to improve the activation rate uniformity in a water phantom measuring 32 cm x 100 cm x 16 cm. In the best case, uniformity parameters are U = 1.003 and R = 1.67, with the mean activation rate of 1.85×10-6 cm-3. In more accurate calculations, the water phantom is replaced by a body model. The model in question is a 5 year-old ORNL phantom filled with just soft tissue. For uniformity studies, the internal organs are not simulated. Finally, uniformity parameters in this case are U = 1.005 and R = 12.2.

  19. Computational voxel phantom, associated to anthropometric and anthropomorphic real phantom for dosimetry in human male pelvis radiotherapy; Fantoma computacional de voxel, associado a fantoma real antropomorfico antropometrico, para dosimetria em radioterapia de pelve masculina

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cleuza Helena Teixeira; Campos, Tarcisio Passos Ribeiro de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br

    2005-07-01

    This paper addresses a computational model of voxels through MCNP5 Code and the experimental development of an anthropometric and anthropomorphic phantom for dosimetry in human male pelvis brachytherapy focusing prostatic tumors. For elaboration of the computational model of the human male pelvis, anatomical section images from the Visible Man Project were applied. Such selected and digital images were associated to a numeric representation, one for each section. Such computational representation of the anatomical sections was transformed into a bi-dimensional mesh of equivalent tissue. The group of bidimensional meshes was concatenated forming the three-dimensional model of voxels to be used by the MCNP5 code. In association to the anatomical information, data from the density and chemical composition of the basic elements, representatives of the organs and involved tissues, were setup in a material database for the MCNP-5. The model will be applied for dosimetric evaluations in situations of irradiation of the human masculine pelvis. Such 3D model of voxel is associated to the code of transport of particles MCNP5, allowing future simulations. It was also developed the construction of human masculine pelvis phantom, based on anthropometric and anthropomorphic dates and in the use of representative equivalent tissues of the skin, fatty, muscular and glandular tissue, as well as the bony structure.This part of work was developed in stages, being built the bony cast first, later the muscular structures and internal organs. They were then jointly mounted and inserted in the skin cast. The representative component of the fatty tissue was incorporate and accomplished the final retouchings in the skin. The final result represents the development of two important essential tools for elaboration of computational and experimental dosimetry. Thus, it is possible its use in calibrations of pre-existent protocols in radiotherapy, as well as for tests of new protocols, besides

  20. Evaluation of effective dose in an anthropomorphic phantom in radiological emergencies situations

    International Nuclear Information System (INIS)

    Silva, Livia K. da; Ribeiro, Rosane M.; Santos, Denison de S.

    2013-01-01

    This work aims to implement the code of Monte Carlo Geant4 in a male and female phantom, ADAM and EVA, to be able to evaluate the dose in individuals who have been exposed externally to ionizing radiation sources so that in the future be made a review within the limits of validity of the terms contained in TECDOC-1162, published by the International Atomic Energy Agency (IAEA), which recommends formulas for the effective dose assessment in individuals who have been exposed to external radiation sources in various geometric configurations and for various radionuclides

  1. Measurement of entrance surface dose on an anthropomorphic thorax phantom using a miniature fiber-optic dosimeter.

    Science.gov (United States)

    Yoo, Wook Jae; Shin, Sang Hun; Jeon, Dayeong; Hong, Seunghan; Sim, Hyeok In; Kim, Seon Geun; Jang, Kyoung Won; Cho, Seunghyun; Youn, Won Sik; Lee, Bongsoo

    2014-04-01

    A miniature fiber-optic dosimeter (FOD) system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD) during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR) system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA) chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.

  2. Radiation Pattern Measurement of a Low-Profile Wearable Antenna Using an Optical Fibre and a Solid Anthropomorphic Phantom

    Directory of Open Access Journals (Sweden)

    Tian Hong Loh

    2014-08-01

    Full Text Available This paper presents a study into radiation pattern measurements of an electrically small dielectric resonator antenna (DRA operating between 2.4 and 2.5 GHz in the industrial, scientific and medical (ISM radio band for body-centric wireless communication applications. To eliminate the distortion of the radiation pattern associated with the unwanted radiation from a metallic coaxial cable feeding the antenna we have replaced it with a fibre optic feed and an electro-optical (EO transducer. The optical signal is then converted back to RF using an Opto-Electric Field Sensor (OEFS system. To ensure traceable measurements of the radiation pattern performance of the wearable antenna a generic head and torso solid anthropomorphic phantom model has been employed. Furthermore, to illustrate the benefits of the method, numerical simulations of the co-polar and cross-polar H-plane radiation patterns at 2.4, 2.45, and 2.5 GHz are compared with the measured results obtained using: (i an optical fibre; and (ii a metallic coaxial cable.

  3. Measurement of Entrance Surface Dose on an Anthropomorphic Thorax Phantom Using a Miniature Fiber-Optic Dosimeter

    Directory of Open Access Journals (Sweden)

    Wook Jae Yoo

    2014-04-01

    Full Text Available A miniature fiber-optic dosimeter (FOD system was fabricated using a plastic scintillating fiber, a plastic optical fiber, and a multi-pixel photon counter to measure real-time entrance surface dose (ESD during radiation diagnosis. Under varying exposure parameters of a digital radiography (DR system, we measured the scintillating light related to the ESD using the sensing probe of the FOD, which was placed at the center of the beam field on an anthropomorphic thorax phantom. Also, we obtained DR images using a flat panel detector of the DR system to evaluate the effects of the dosimeter on image artifacts during posteroanterior (PA chest radiography. From the experimental results, the scintillation output signals of the FOD were similar to the ESDs including backscatter simultaneously obtained using a semiconductor dosimeter. We demonstrated that the proposed miniature FOD can be used to measure real-time ESDs with minimization of DR image artifacts in the X-ray energy range of diagnostic radiology.

  4. Simulating the spectrum of neutrons produced by a radiation beam of high voltage inside an anthropomorphic phantom; Simulacion de espectro de nuetrones producido por un haz de radioterapia de alto voltaje en el interior de un manique antropomorfico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Soto, X.; Amgarou, K.; Langares, J. I.; Munez, J. L.; Mendez, R.; Exposito, M. R.; Gomez, F.; Domingo, C.; Sanche-Doblado, F.

    2011-07-01

    Our project aims to provide a universal method to estimate the dose deposited by neutrons in patients, using an anthropomorphic phantom. Both the detector response as relative biological effectiveness have a strong dependence on the energy spectrum of those, for this reason, a series of simulations were performed to calculate the spectrum of the neutron fluence in 16 representative points within the anthropomorphic phantom Standard for a full course of radiotherapy.

  5. SU-E-I-81: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Adult Anthropomorphic and ACR Phantoms

    International Nuclear Information System (INIS)

    Mahmood, U; Erdi, Y; Wang, W

    2014-01-01

    Purpose: To assess the impact of General Electrics (GE) automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of an adult anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, Auto mA (180 to 380 mA), noise index (NI) = 14, adaptive iterative statistical reconstruction (ASiR) of 20%, 0.8s rotation time. Image quality was evaluated by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: The CNR for the adult male was found to decrease from CNR = 0.912 ± 0.045 for the baseline protocol without kVa to a CNR = 0.756 ± 0.049 with kVa activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.903 ± 0.023. The difference in the central liver dose with and without kVa was found to be 0.07%. Conclusion: Dose reduction was insignificant in the adult phantom. As determined by NPS analysis, ASiR of 40% produced images with similar noise texture to the baseline protocol. However, the CNR at ASiR of 40% with kVa fails to meet the current ACR CNR passing requirement of 1.0

  6. SU-E-I-81: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Adult Anthropomorphic and ACR Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, U; Erdi, Y; Wang, W [Memorial Sloan Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: To assess the impact of General Electrics (GE) automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of an adult anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, Auto mA (180 to 380 mA), noise index (NI) = 14, adaptive iterative statistical reconstruction (ASiR) of 20%, 0.8s rotation time. Image quality was evaluated by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: The CNR for the adult male was found to decrease from CNR = 0.912 ± 0.045 for the baseline protocol without kVa to a CNR = 0.756 ± 0.049 with kVa activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.903 ± 0.023. The difference in the central liver dose with and without kVa was found to be 0.07%. Conclusion: Dose reduction was insignificant in the adult phantom. As determined by NPS analysis, ASiR of 40% produced images with similar noise texture to the baseline protocol. However, the CNR at ASiR of 40% with kVa fails to meet the current ACR CNR passing requirement of 1.0.

  7. SU-E-I-89: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Pediatric Anthropomorphic and ACR Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, U; Erdi, Y; Wang, W [Memorial Sloan Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: To assess the impact of General Electrics automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of a pediatric anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, 80 mA, 0.7s rotation time. Image quality was assessed by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: For the baseline protocol, CNR was found to decrease from 0.460 ± 0.182 to 0.420 ± 0.057 when kVa was activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.620 ± 0.040. The liver dose decreased by 30% with kVa activation. Conclusion: Application of kVa reduces the liver dose up to 30%. However, reduction in image quality for abdominal scans occurs when using the automated tube voltage selection feature at the baseline protocol. As demonstrated by the CNR and NPS analysis, the texture and magnitude of the noise in reconstructed images at ASiR 40% was found to be the same as our baseline images. We have demonstrated that 30% dose reduction is possible when using 40% ASiR with kVa in pediatric patients.

  8. SU-E-I-89: Assessment of CT Radiation Dose and Image Quality for An Automated Tube Potential Selection Algorithm Using Pediatric Anthropomorphic and ACR Phantoms

    International Nuclear Information System (INIS)

    Mahmood, U; Erdi, Y; Wang, W

    2014-01-01

    Purpose: To assess the impact of General Electrics automated tube potential algorithm, kV assist (kVa) on radiation dose and image quality, with an emphasis on optimizing protocols based on noise texture. Methods: Radiation dose was assessed by inserting optically stimulated luminescence dosimeters (OSLs) throughout the body of a pediatric anthropomorphic phantom (CIRS). The baseline protocol was: 120 kVp, 80 mA, 0.7s rotation time. Image quality was assessed by calculating the contrast to noise ratio (CNR) and noise power spectrum (NPS) from the ACR CT accreditation phantom. CNRs were calculated according to the steps described in ACR CT phantom testing document. NPS was determined by taking the 3D FFT of the uniformity section of the ACR phantom. NPS and CNR were evaluated with and without kVa and for all available adaptive iterative statistical reconstruction (ASiR) settings, ranging from 0 to 100%. Each NPS was also evaluated for its peak frequency difference (PFD) with respect to the baseline protocol. Results: For the baseline protocol, CNR was found to decrease from 0.460 ± 0.182 to 0.420 ± 0.057 when kVa was activated. When compared against the baseline protocol, the PFD at ASiR of 40% yielded a decrease in noise magnitude as realized by the increase in CNR = 0.620 ± 0.040. The liver dose decreased by 30% with kVa activation. Conclusion: Application of kVa reduces the liver dose up to 30%. However, reduction in image quality for abdominal scans occurs when using the automated tube voltage selection feature at the baseline protocol. As demonstrated by the CNR and NPS analysis, the texture and magnitude of the noise in reconstructed images at ASiR 40% was found to be the same as our baseline images. We have demonstrated that 30% dose reduction is possible when using 40% ASiR with kVa in pediatric patients

  9. Computation of a voxelized anthropomorphic phantom from Computer Tomography slices and 3D dose distribution calculation utilizing the MCNP5 Code

    International Nuclear Information System (INIS)

    Abella, V.; Miro, R.; Juste, B.; Verdu, G.

    2008-01-01

    Full text: The purpose of this work is to obtain the voxelization of a series of tomography slices in order to provide a voxelized human phantom throughout a MatLab algorithm, and the consequent simulation of the irradiation of such phantom with the photon beam generated in a Theratron 780 (MDS Nordion) 60 Co radiotherapy unit, using the Monte Carlo transport code MCNP (Monte Carlo N-Particle), version 5. The project provides as results dose mapping calculations inside the voxelized anthropomorphic phantom. Prior works have validated the cobalt therapy model utilizing a simple heterogeneous water cube-shaped phantom. The reference phantom model utilized in this work is the Zubal phantom, which consists of a group of pre-segmented CT slices of a human body. The CT slices are to be input into the Matlab program which computes the voxelization by means of two-dimensional pixel and material identification on each slice, and three-dimensional interpolation, in order to depict the phantom geometry via small cubic cells. Each slice is divided in squares with the size of the desired voxelization, and then the program searches for the pixel intensity with a predefined material at each square, making a subsequent three-dimensional interpolation. At the end of this process, the program produces a voxelized phantom in which each voxel defines the mixture of the different materials that compose it. In the case of the Zubal phantom, the voxels result in pure organ materials due to the fact that the phantom is presegmented. The output of this code follows the MCNP input deck format and is integrated in a full input model including the 60 Co radiotherapy unit. Dose rates are calculated using the MCNP5 tool FMESH, superimposed mesh tally. This feature allows to tally particles on an independent mesh over the problem geometry, and to obtain the length estimation of the particle flux, in units of particles/cm 2 (tally F4). Furthermore, the particle flux is transformed into dose by

  10. Quantifying the effects of iodine contrast media on standardised uptake values of FDG PET/CT images: an anthropomorphic phantom study.

    Science.gov (United States)

    Abdul Razak, Hairil Rashmizal; Nordin, Abdul Jalil; Ackerly, Trevor; Van Every, Bruce; Martin, Ruth; Geso, Moshi

    2011-09-01

    This study aimed to quantify the amount of change in Standardised Uptake Values (SUVs) of PET/CT images by simulating the set-up as closely as possible to the actual patient scanning. The experiments were conducted using an anthropomorphic phantom, which contained an amount of radioactivity in the form of Fluorodeoxyglucose (FDG) in a primary plastic test tube and one litre saline bags, including the insertion of bony structures and another two test tubes containing different concentrations of iodine contrast media. Standard scanning protocols were employed for the PET/CT image acquisition. The highest absolute differences in the SUVmax and SUVmean values of the saline bags were found to be about 0.2 and 0.4, respectively. The primary test tube showed the largest change of 1.5 in both SUVs; SUV max and SUVmean. However, none of these changes were found to be statistically significant. The clinical literature also contains no evidence to suggest that the changes of this magnitude would change the final diagnosis. Based on these preliminary data, we propose that iodine contrast media can be used during the CT scan of PET/CT imaging, without significantly affecting the diagnostic quality of this integrated imaging modality.

  11. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, D; Summers, P; Followill, D; Sahoo, N; Mahajan, A; Stingo, F; Kry, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis

  12. SU-E-CAMPUS-T-03: Development and Implementation of An Anthropomorphic Pediatric Spine Phantom for the Assessment of Craniospinal Irradiation Procedures in Proton Therapy

    International Nuclear Information System (INIS)

    Lewis, D; Summers, P; Followill, D; Sahoo, N; Mahajan, A; Stingo, F; Kry, S

    2014-01-01

    Purpose: To design an anthropomorphic pediatric spine phantom for use in the evaluation of proton therapy facilities for clinical trial participation by the Imaging and Radiation Oncology Core (IROC) Houston QA Center (formerly RPC). Methods: This phantom was designed to perform an end-to-end audit of the proton spine treatment process, including simulation, dose calculation by the treatment planning system (TPS), and proton treatment delivery. The design incorporated materials simulating the thoracic spinal column of a pediatric patient, along with two thermoluminescent dosimeter (TLD)-100 capsules and radiochromic film embedded in the phantom for dose evaluation. Fourteen potential materials were tested to determine relative proton stopping power (RSP) and Hounsfield unit (HU) values. Each material was CT scanned at 120kVp, and the RSP was obtained from depth ionization scans using the Zebra multilayer ion chamber (MLIC) at two energies: 160 MeV and 250 MeV. To determine tissue equivalency, the measured RSP for each material was compared to the RSP calculated by the Eclipse TPS for a given HU. Results: The materials selected as bone, tissue, and cartilage substitutes were Techron HPV Bearing Grade (Boedeker Plastics, Inc.), solid water, and blue water, respectively. The RSP values did not differ by more than 1.8% between the two energies. The measured RSP for each selected material agreed with the RSP calculated by the Eclipse TPS within 1.2%. Conclusion: An anthropomorphic pediatric proton spine phantom was designed to evaluate proton therapy delivery. The inclusion of multiple tissue substitutes increases heterogeneity and the level of difficulty for institutions to successfully treat the phantom. The following attributes will be evaluated: absolute dose agreement, distal range, field width, junction match and right/left dose profile alignment. The phantom will be tested at several institutions using a 5% dose agreement criterion, and a 5%/3mm gamma analysis

  13. Design and development of an anthropomorphic phantom equipped with detectors in order to evaluate the effective dose E at workplaces: feasibility study

    International Nuclear Information System (INIS)

    Furstoss, Ch.

    2006-11-01

    My PhD study aims to determine the feasibility to design and develop, for photon fields, an anthropomorphic phantom equipped with detectors in order to evaluate the effective dose E at workplaces. First of all, the energy losses within the organs are calculated using the M.C.N.P.X. Monte Carlo code, in order to determine the detection positions within the different organs. Then, to decrease the number of detection positions, the organ contribution to the effective dose is studied. Finally, the characteristics of the detectors to insert and the characteristics of the phantom to use are deduced. The results show that 24 or 23 detection positions, according to the wT values (publication 60 or new recommendations of the ICRP), give a E estimation with an uncertainty of ±15 % from 50 keV to 4 MeV. Moreover, the interest of such an instrument is underlined while comparing the E estimation by the personal dose equivalent Hp to the E estimation by the instrumented phantom when the phantom is irradiated by point sources (worker in front of a glove box for example). Last, after the detector and phantom characteristic determination, two types of detectors and one type of phantom are selected. However, for the detectors mainly, developments are necessary. Follow up this study, the characterization and the adaptation of the detectors to the project would be interesting. Furthermore, the study to mixed photon-neutrons would be required the needs of the radiological protection community. (author)

  14. Sensitivity and accuracy of volumetry of pulmonary nodules on low-dose 16- and 64-row multi-detector CT: an anthropomorphic phantom study

    International Nuclear Information System (INIS)

    Xie, Xueqian; Zhao, Yingru; Ooijen, Peter M.A. van; Vliegenthart, Rozemarijn; Snijder, Roland A.; Greuter, Marcel J.W.; Jong, Pim A. de; Oudkerk, Matthijs; Bock, Geertruida H. de

    2013-01-01

    To assess the sensitivity of detection and accuracy of volumetry by manual and semi-automated quantification of artificial pulmonary nodules in an anthropomorphic thoracic phantom on low-dose CT. Fifteen artificial spherical nodules (diameter 3, 5, 8, 10 and 12 mm; CT densities -800, -630 and +100 HU) were randomly placed inside an anthropomorphic thoracic phantom. The phantom was examined on 16- and 64-row multidetector CT with a low-dose protocol. Two independent blinded observers screened for pulmonary nodules. Nodule diameter was measured manually, and volume calculated. For solid nodules (+100 HU), diameter and volume were also evaluated by semi-automated software. Differences in observed volumes between the manual and semi-automated method were evaluated by a t-test. Sensitivity was 100 % for all nodules of >5 mm and larger, 60-80 % for solid and 0-20 % for non-solid 3-mm nodules. No false-positive nodules but high inter-observer reliability and inter-technique correlation were found. Volume was underestimated manually by 24.1 ± 14.0 % for nodules of any density, and 26.4 ± 15.5 % for solid nodules, compared with 7.6 ± 8.5 % (P 5 mm in diameter. Semi-automated volumetry yielded more accurate nodule volumes than manual measurements. (orig.)

  15. Performance of two commercial electron beam algorithms over regions close to the lung-mediastinum interface, against Monte Carlo simulation and point dosimetry in virtual and anthropomorphic phantoms.

    Science.gov (United States)

    Ojala, J; Hyödynmaa, S; Barańczyk, R; Góra, E; Waligórski, M P R

    2014-03-01

    Electron radiotherapy is applied to treat the chest wall close to the mediastinum. The performance of the GGPB and eMC algorithms implemented in the Varian Eclipse treatment planning system (TPS) was studied in this region for 9 and 16 MeV beams, against Monte Carlo (MC) simulations, point dosimetry in a water phantom and dose distributions calculated in virtual phantoms. For the 16 MeV beam, the accuracy of these algorithms was also compared over the lung-mediastinum interface region of an anthropomorphic phantom, against MC calculations and thermoluminescence dosimetry (TLD). In the phantom with a lung-equivalent slab the results were generally congruent, the eMC results for the 9 MeV beam slightly overestimating the lung dose, and the GGPB results for the 16 MeV beam underestimating the lung dose. Over the lung-mediastinum interface, for 9 and 16 MeV beams, the GGPB code underestimated the lung dose and overestimated the dose in water close to the lung, compared to the congruent eMC and MC results. In the anthropomorphic phantom, results of TLD measurements and MC and eMC calculations agreed, while the GGPB code underestimated the lung dose. Good agreement between TLD measurements and MC calculations attests to the accuracy of "full" MC simulations as a reference for benchmarking TPS codes. Application of the GGPB code in chest wall radiotherapy may result in significant underestimation of the lung dose and overestimation of dose to the mediastinum, affecting plan optimization over volumes close to the lung-mediastinum interface, such as the lung or heart. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. MO-E-17A-02: Incorporation of Contrast Medium Dynamics in Anthropomorphic Phantoms: The Advent of 5D XCAT Models

    Energy Technology Data Exchange (ETDEWEB)

    Sahbaee, P [NC State University, Raleigh, NC (United States); Samei, E [Duke University Medical Center, Durham, NC (United States); Segars, W [Duke University, Durham, NC (United States)

    2014-06-15

    Purpose: To develop a unique method to incorporate the dynamics of contrast-medium propagation into the anthropomorphic phantom, to generate a five-dimensional (5D) patient model for multimodality imaging studies. Methods: A compartmental model of blood circulation network within the body was embodied into an extended cardiac-torso (4D-XCAT) patient model. To do so, a computational physiologic model of the human cardiovascular system was developed which includes a series of compartments representing heart, vessels, and organs. Patient-specific cardiac output and blood volume were used as inputs influenced by the weight, height, age, and gender of the patient's model. For a given injection protocol and given XCAT model, the contrast-medium transmission within the body was described by a series of mass balance differential equations, the solutions to which provided the contrast enhancement-time curves for each organ; thereby defining the tissue materials including the contrastmedium within the XCAT model. A library of time-dependent organ materials was then defined. Each organ in each voxelized 4D-XCAT phantom was assigned to a corresponding time-varying material to create the 5D-XCAT phantom in which the fifth dimension is blood/contrast-medium within the temporal domain. Results: The model effectively predicts the time-varying concentration behavior of various contrast-medium administration in each organ for different patient models as function of patient size (weight/height) and different injection protocol factors (injection rate and pattern, iodine concentration or volume). The contrast enhanced XCAT patient models was developed based on the concentration of iodine as a function of time after injection. Conclusion: Majority of medical imaging systems take advantage of contrast-medium administration in terms of better image quality, the effect of which was ignored in previous optimization studies. The study enables a comprehensive optimization of contrast

  17. ROC evaluation of SPECT myocardial lesion detectability with and without single iteration non-uniform Chang attenuation compensation using an anthropomorphic female phantom

    International Nuclear Information System (INIS)

    Jang, S.; Jaszczak, R.J.; Duke Univ. Medical Center, Durham, NC; Gilland, D.R.; Turkington, T.G.; Coleman, R.E.; Tsui, B.M.W.; Metz, C.E.

    1998-01-01

    The purpose of this work was to evaluate lesion detectability with and without nonuniform attenuation compensation (AC) in myocardial perfusion SPECT imaging in women using an anthropomorphic phantom and receiver operating characteristics (ROC) methodology. Breast attenuation causes artifacts in reconstructed images and may increase the difficulty of diagnosis of myocardial perfusion imaging in women. The null hypothesis tested using the ROC study was that nonuniform AC does not change the lesion detectability in myocardial perfusion SPECT imaging in women. The authors used a filtered backprojection (FBP) reconstruction algorithm and Chang's single iteration method for AC. In conclusion, with the proposed myocardial defect model nuclear medicine physicians demonstrated no significant difference for the detection of the anterior wall defect; however, a greater accuracy for the detection of the inferior wall defect was observed without nonuniform AC than with it. Medical physicists did not demonstrate any statistically significant difference in defect detection accuracy with or without nonuniform AC in the female phantom

  18. MO-FG-209-05: Towards a Feature-Based Anthropomorphic Model Observer

    International Nuclear Information System (INIS)

    Avanaki, A.

    2016-01-01

    This symposium will review recent advances in the simulation methods for evaluation of novel breast imaging systems – the subject of AAPM Task Group TG234. Our focus will be on the various approaches to development and validation of software anthropomorphic phantoms and their use in the statistical assessment of novel imaging systems using such phantoms along with computational models for the x-ray image formation process. Due to the dynamic development and complex design of modern medical imaging systems, the simulation of anatomical structures, image acquisition modalities, and the image perception and analysis offers substantial benefits of reduced cost, duration, and radiation exposure, as well as the known ground-truth and wide variability in simulated anatomies. For these reasons, Virtual Clinical Trials (VCTs) have been increasingly accepted as a viable tool for preclinical assessment of x-ray and other breast imaging methods. Activities of TG234 have encompassed the optimization of protocols for simulation studies, including phantom specifications, the simulated data representation, models of the imaging process, and statistical assessment of simulated images. The symposium will discuss the state-of-the-science of VCTs for novel breast imaging systems, emphasizing recent developments and future directions. Presentations will discuss virtual phantoms for intermodality breast imaging performance comparisons, extension of the breast anatomy simulation to the cellular level, optimized integration of the simulated imaging chain, and the novel directions in the observer models design. Learning Objectives: Review novel results in developing and applying virtual phantoms for inter-modality breast imaging performance comparisons; Discuss the efforts to extend the computer simulation of breast anatomy and pathology to the cellular level; Summarize the state of the science in optimized integration of modules in the simulated imaging chain; Compare novel directions

  19. MO-FG-209-05: Towards a Feature-Based Anthropomorphic Model Observer

    Energy Technology Data Exchange (ETDEWEB)

    Avanaki, A.

    2016-06-15

    This symposium will review recent advances in the simulation methods for evaluation of novel breast imaging systems – the subject of AAPM Task Group TG234. Our focus will be on the various approaches to development and validation of software anthropomorphic phantoms and their use in the statistical assessment of novel imaging systems using such phantoms along with computational models for the x-ray image formation process. Due to the dynamic development and complex design of modern medical imaging systems, the simulation of anatomical structures, image acquisition modalities, and the image perception and analysis offers substantial benefits of reduced cost, duration, and radiation exposure, as well as the known ground-truth and wide variability in simulated anatomies. For these reasons, Virtual Clinical Trials (VCTs) have been increasingly accepted as a viable tool for preclinical assessment of x-ray and other breast imaging methods. Activities of TG234 have encompassed the optimization of protocols for simulation studies, including phantom specifications, the simulated data representation, models of the imaging process, and statistical assessment of simulated images. The symposium will discuss the state-of-the-science of VCTs for novel breast imaging systems, emphasizing recent developments and future directions. Presentations will discuss virtual phantoms for intermodality breast imaging performance comparisons, extension of the breast anatomy simulation to the cellular level, optimized integration of the simulated imaging chain, and the novel directions in the observer models design. Learning Objectives: Review novel results in developing and applying virtual phantoms for inter-modality breast imaging performance comparisons; Discuss the efforts to extend the computer simulation of breast anatomy and pathology to the cellular level; Summarize the state of the science in optimized integration of modules in the simulated imaging chain; Compare novel directions

  20. Preliminary Study on Hybrid Computational Phantom for Radiation Dosimetry Based on Subdivision Surface

    International Nuclear Information System (INIS)

    Jeong, Jong Hwi; Choi, Sang Hyoun; Cho, Sung Koo; Kim, Chan Hyeong

    2007-01-01

    The anthropomorphic computational phantoms are classified into two groups. One group is the stylized phantoms, or MIRD phantoms, which are based on mathematical representations of the anatomical structures. The shapes and positions of the organs and tissues in these phantoms can be adjusted by changing the coefficients of the equations in use. The other group is the voxel phantoms, which are based on tomographic images of a real person such as CT, MR and serially sectioned color slice images from a cadaver. Obviously, the voxel phantoms represent the anatomical structures of a human body much more realistically than the stylized phantoms. A realistic representation of anatomical structure is very important for an accurate calculation of radiation dose in the human body. Consequently, the ICRP recently has decided to use the voxel phantoms for the forthcoming update of the dose conversion coefficients. However, the voxel phantoms also have some limitations: (1) The topology and dimensions of the organs and tissues in a voxel model are extremely difficult to change, and (2) The thin organs, such as oral mucosa and skin, cannot be realistically modeled unless the voxel resolution is prohibitively high. Recently, a new approach has been implemented by several investigators. The investigators converted their voxel phantoms to hybrid computational phantoms based on NURBS (Non-Uniform Rational B-Splines) surface, which is smooth and deformable. It is claimed that these new phantoms have the flexibility of the stylized phantom along with the realistic representations of the anatomical structures. The topology and dimensions of the anatomical structures can be easily changed as necessary. Thin organs can be modeled without affecting computational speed or memory requirement. The hybrid phantoms can be also used for 4-D Monte Carlo simulations. In this preliminary study, the external shape of a voxel phantom (i.e., skin), HDRK-Man, was converted to a hybrid computational

  1. Construction of cardiac anthropomorphic phantom for simulation of radiological exams; Construção de fantoma antropomórfico cardíaco para simulação de exames radiológicos

    Energy Technology Data Exchange (ETDEWEB)

    Bandeira, C.K.; Vieira Neto, H., E-mail: cbandeira@alunos.utfpr.edu.br, E-mail: hvieir@utfpr.edu.br [Universidade Tecnológica Federal do Paraná (UTFPR), Curitiba (Brazil). Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial; Vieira, M.P.M.M., E-mail: michele.vieira@ifpr.edu.br [Instituto Federal do Paraná (IFPR), Curitiba, PR (Brazil). Curso Técnico em Radiologia

    2017-07-01

    Phantoms are simulating objects of structures of the human body and can be applied in the quality control and calibration of radiological equipment. The aim of the work is the development of a cardiac anthropomorphic phantom to assist in the elaboration of protocols of dynamic studies that demonstrate the blood circulation inside the cardiac chambers. For the construction of the phantom was used latex, applied in layers on an anatomical model of heart, having been constructed the cardiac chambers and atrioventricular valves. Cardiac chambers were connected to the cannulas for fluid injection and simulation of the circulatory system. The constructed phantom presents anthropomorphic characteristics and allows the circulation of the fluid without reflux, but the thickness of the catheters used does not yet allow flows of greater order of magnitude. This phantom has the potential to be used in the dynamic simulation of cardiac exams, contributing to the elaboration and adequacy of computed tomography protocols.

  2. Dosimetric reproduction of a left-breast 3DCRT field-in-field radiation therapy planning in an anthropomorphic and anthropometric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Luciana B., E-mail: lucibn19@yahoo.com.br, E-mail: jonymarques@uol.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Barsanelli, Cristiane; Geraldo, Jony M., E-mail: cbarsanelli@yahoo.com.br [Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte, MG (Brazil); Aquino, Jean Carlos; Campos, Tarcísio P. Ribeiro, E-mail: jeancarlosaquino@outlook.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UGMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The proposal of this study was to reproduce the dosimetry established in a treatment planning system (TPS) following a 3D conformational radiation therapy (3DCRT) protocol of two parallel-opposite fields applied to the left-breast in a thorax phantom, with the use of the field-in-field technique. Computed tomography (CT) images of the anthropomorphic and anthropometric phantom of the thorax with mobile breasts were generated. This phantom was developed by the NRI / UFMG research group. The generated images were transferred to the planning system XiO version-5 for the elaboration of the breast tele therapeutic planning with 2 Gy per fraction, in 25 fractions, with prescribed dose of 50 Gy. A set of ten EBT2 radiochromic films were irradiated at different doses. The values of RGB (Red, Green, Blue) of the radiochromic films were obtained by scanning and data transformed in optical density (OD), whose values were used to construct the calibration curve. EBT2 radiochromic films were positioned outside and inside of the thorax phantom: internally in the right and left lungs, on the face of the heart, in the glandular breast tissue-equivalent (TE) and in the left breast skin. After phantom radiation at the linear accelerator 6 MV Elekta Precise reproducing the 3DCRT, the radiochromic films were digitized after 24 h of exposure. The measurements of the intensities of the films in RGB were measured in the software ImageJ, transformed in optical density and converted in bidimensional dose distributions, applying the calibration curve. The experimental dosimetric data were analyzed and compared with values generated in the TPS. In addition, graphics and dose-volume histograms (DVH) were developed. The dose measurements in the glandular-TE in breast did not present statistically significant differences in relation to values at equivalent positions generated in the TPS. The organs at risk received doses below the reference values, according to TPS. It was verified the

  3. Dosimetric reproduction of a left-breast 3DCRT field-in-field radiation therapy planning in an anthropomorphic and anthropometric phantom

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Aquino, Jean Carlos; Campos, Tarcísio P. Ribeiro

    2017-01-01

    The proposal of this study was to reproduce the dosimetry established in a treatment planning system (TPS) following a 3D conformational radiation therapy (3DCRT) protocol of two parallel-opposite fields applied to the left-breast in a thorax phantom, with the use of the field-in-field technique. Computed tomography (CT) images of the anthropomorphic and anthropometric phantom of the thorax with mobile breasts were generated. This phantom was developed by the NRI / UFMG research group. The generated images were transferred to the planning system XiO version-5 for the elaboration of the breast tele therapeutic planning with 2 Gy per fraction, in 25 fractions, with prescribed dose of 50 Gy. A set of ten EBT2 radiochromic films were irradiated at different doses. The values of RGB (Red, Green, Blue) of the radiochromic films were obtained by scanning and data transformed in optical density (OD), whose values were used to construct the calibration curve. EBT2 radiochromic films were positioned outside and inside of the thorax phantom: internally in the right and left lungs, on the face of the heart, in the glandular breast tissue-equivalent (TE) and in the left breast skin. After phantom radiation at the linear accelerator 6 MV Elekta Precise reproducing the 3DCRT, the radiochromic films were digitized after 24 h of exposure. The measurements of the intensities of the films in RGB were measured in the software ImageJ, transformed in optical density and converted in bidimensional dose distributions, applying the calibration curve. The experimental dosimetric data were analyzed and compared with values generated in the TPS. In addition, graphics and dose-volume histograms (DVH) were developed. The dose measurements in the glandular-TE in breast did not present statistically significant differences in relation to values at equivalent positions generated in the TPS. The organs at risk received doses below the reference values, according to TPS. It was verified the

  4. SU-E-T-792: Validation of a Secondary TPS for IROC-H Recalculation of Anthropomorphic Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Kerns, J; Howell, R; Followill, D; Melancon, A; Stingo, F; Kry, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To validate a secondary treatment planning system (sTPS) for use by the Imaging & Radiation Oncology Core-Houston (IROC-H). The TPS will recalculate phantom irradiations submitted by institutions to IROC-H and compare plan results of the institution to the sTPS. Methods: In-field dosimetric data was collected by IROC-H for numerous linacs at 6, 10, 15, and 18 MV. The data was aggregated and used to define reference linac classes; each class was then modeled in the sTPS (Mobius3D) by matching the in-field characteristics. Fields used to collect IROC-H data were recreated and recalculated using Mobius3D. The same dosimetric points were measured in the recalculation and compared to the initial collection data. Additionally, a 6MV Monte Carlo beam configuration was used to compare penumbrae in the Mobius3D models. Finally, a handful of IROC-H head and neck phantoms were recalculated using Mobius3D. Results: Recalculation and quantification of differences between reference data and Mobius3D values resulted in a relative matching score of 12.45 (0 is a perfect match) for the default 6MV Mobius3D beam configuration. By adjusting beam configuration options, iterations resulted in scores of 8.45, 6.32, and 3.52, showing that customization could have a dramatic effect on beam configuration. After in-field optimization, penumbra was compared between Monte Carlo and Mobius3D for the reference fields. For open jaw fields, FWHM field widths and penumbra widths were different by <0.6 and <1mm respectively; for MLC open fields the penumbra widths were up to 1.5mm different. Phantom recalculations showed good agreement, having an average of 0.6% error per beam. Conclusion: A secondary TPS has been validated for simple irradiation geometries using reference data collected by IROC-H. The beam was customized to the reference data iteratively and resulted in a good match. This system can provide independent recalculation of phantom plans based on independent reference data.

  5. Relationships of clinical protocols and reconstruction kernels with image quality and radiation dose in a 128-slice CT scanner: Study with an anthropomorphic and water phantom

    International Nuclear Information System (INIS)

    Paul, Jijo; Krauss, B.; Banckwitz, R.; Maentele, W.; Bauer, R.W.; Vogl, T.J.

    2012-01-01

    Research highlights: ► Clinical protocol, reconstruction kernel, reconstructed slice thickness, phantom diameter or the density of material it contains directly affects the image quality of DSCT. ► Dual energy protocol shows the lowest DLP compared to all other protocols examined. ► Dual-energy fused images show excellent image quality and the noise is same as that of single- or high-pitch mode protocol images. ► Advanced CT technology improves image quality and considerably reduce radiation dose. ► An important finding is the comparatively higher DLP of the dual-source high-pitch protocol compared to other single- or dual-energy protocols. - Abstract: Purpose: The aim of this study was to explore the relationship of scanning parameters (clinical protocols), reconstruction kernels and slice thickness with image quality and radiation dose in a DSCT. Materials and methods: The chest of an anthropomorphic phantom was scanned on a DSCT scanner (Siemens Somatom Definition flash) using different clinical protocols, including single- and dual-energy modes. Four scan protocols were investigated: 1) single-source 120 kV, 110 mA s, 2) single-source 100 kV, 180 mA s, 3) high-pitch 120 kV, 130 mA s and 4) dual-energy with 100/Sn140 kV, eff.mA s 89, 76. The automatic exposure control was switched off for all the scans and the CTDIvol selected was in between 7.12 and 7.37 mGy. The raw data were reconstructed using the reconstruction kernels B31f, B80f and B70f, and slice thicknesses were 1.0 mm and 5.0 mm. Finally, the same parameters and procedures were used for the scanning of water phantom. Friedman test and Wilcoxon-Matched-Pair test were used for statistical analysis. Results: The DLP based on the given CTDIvol values showed significantly lower exposure for protocol 4, when compared to protocol 1 (percent difference 5.18%), protocol 2 (percent diff. 4.51%), and protocol 3 (percent diff. 8.81%). The highest change in Hounsfield Units was observed with dual

  6. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, D.J., E-mail: daniel.shaw@christie.nhs.uk [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom); Crawshaw, I. [Diagnostic X-ray Department, York Teaching Hospital NHS Foundation Trust, The York Hospital, Wigginton Road, York YO31 8HE (United Kingdom); Rimmer, S. D. [Diagnostic Radiology, Department of Medical Physics and Engineering, Leeds Teaching Hospitals, Leeds General Infirmary, Great George Street, Leeds LS1 3EX (United Kingdom)

    2013-11-15

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV{sub p}) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV{sub p} relative to 109 kV{sub p}, though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p < 0.01). For FPD imaging the anti-scatter grid offered slightly improved image quality relative to the air gap (p = 0.038) but this was not seen for CR (p = 0.404). Conclusions: For FPD chest imaging of the anthropomorphic phantom there was no dependence of image quality on tube potential. Scatter rejection improved image quality, with the anti-scatter grid giving greater improvements than an air-gap, but at the expense of increased effective dose. CR imaging of the chest phantom demonstrated negligible dependence on tube potential except at 125 kV{sub p}. Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique.

  7. Bases for calibration of whole body counters using anthropomorphic physical simulators

    International Nuclear Information System (INIS)

    Dantas, Bernardo Maranhao

    1998-01-01

    The quantification of radionuclides in the human body can be carried out through in vivo measurements performed in facilities generically called whole body counters. The calibration of such units is usually done by using physical anthropomorphic phantoms, which can be defined as artificial structures with geometrical characteristics and attenuation properties similar to the living tissues. This work presents the development of the phantoms necessary to the monitoring of the internal contamination by the radionuclides manipulated in Brazil. It also presents the procedures for the calibration of the detectors used for the in vivo measurements. The developed phantoms are applied in the determination of radionuclides deposited in specific organs, such as Th-232 and Am-241 in the lungs and skull, isotopes of iodine in the thyroid and photon emitters in the energy range from 100 to 3000 keV in the whole body. (author)

  8. Effect of reconstruction methods and x-ray tube current–time product on nodule detection in an anthropomorphic thorax phantom: A crossed-modality JAFROC observer study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J. D., E-mail: j.d.thompson@salford.ac.uk [Directorate of Radiography, University of Salford, Frederick Road Campus, Salford, Greater Manchester M6 6PU, United Kingdom and Department of Radiology, Furness General Hospital, University Hospitals of Morecambe Bay NHS Foundation Trust, Dalton Lane, Barrow-in-Furness LA14 4LF (United Kingdom); Chakraborty, D. P. [Department of Radiology, University of Pittsburgh, FARP Building, Room 212, 3362 Fifth Avenue, Pittsburgh, Pennsylvania 15213 (United States); Szczepura, K.; Tootell, A. K. [Directorate of Radiography, University of Salford, Frederick Road Campus, Salford, Greater Manchester M6 6PU (United Kingdom); Vamvakas, I. [Department of Radiology, Christie Hospitals NHS Foundation Trust, 550 Wilmslow Road, Manchester M20 4BX (United Kingdom); Manning, D. J. [Faculty of Health and Medicine, Lancaster Medical School, Furness College, Lancaster University, Lancaster LA1 4YG (United Kingdom); Hogg, P. [Directorate of Radiography, University of Salford, Frederick Road Campus, Salford, Greater Manchester M6 6PU, United Kingdom and Department of Radiography, Karolinksa Institute, Solnavägen 1, Solna 171 77 (Sweden)

    2016-03-15

    Purpose: To evaluate nodule detection in an anthropomorphic chest phantom in computed tomography (CT) images reconstructed with adaptive iterative dose reduction 3D (AIDR{sup 3D}) and filtered back projection (FBP) over a range of tube current–time product (mAs). Methods: Two phantoms were used in this study: (i) an anthropomorphic chest phantom was loaded with spherical simulated nodules of 5, 8, 10, and 12 mm in diameter and +100, −630, and −800 Hounsfield units electron density; this would generate CT images for the observer study; (ii) a whole-body dosimetry verification phantom was used to ultimately estimate effective dose and risk according to the model of the BEIR VII committee. Both phantoms were scanned over a mAs range (10, 20, 30, and 40), while all other acquisition parameters remained constant. Images were reconstructed with both AIDR{sup 3D} and FBP. For the observer study, 34 normal cases (no nodules) and 34 abnormal cases (containing 1–3 nodules, mean 1.35 ± 0.54) were chosen. Eleven observers evaluated images from all mAs and reconstruction methods under the free-response paradigm. A crossed-modality jackknife alternative free-response operating characteristic (JAFROC) analysis method was developed for data analysis, averaging data over the two factors influencing nodule detection in this study: mAs and image reconstruction (AIDR{sup 3D} or FBP). A Bonferroni correction was applied and the threshold for declaring significance was set at 0.025 to maintain the overall probability of Type I error at α = 0.05. Contrast-to-noise (CNR) was also measured for all nodules and evaluated by a linear least squares analysis. Results: For random-reader fixed-case crossed-modality JAFROC analysis, there was no significant difference in nodule detection between AIDR{sup 3D} and FBP when data were averaged over mAs [F(1, 10) = 0.08, p = 0.789]. However, when data were averaged over reconstruction methods, a significant difference was seen between

  9. Effect of imaging parameters of spiral CT scanning on image quality for the dental implants. Visual evaluation using a semi-anthropomorphic mandible phantom

    International Nuclear Information System (INIS)

    Morita, Yasuhiko; Indou, Hiroko; Honda Eiichi

    2002-01-01

    The purpose of this study was to evaluate the effect of parameters of spiral CT scanning on the image quality required for the planning of dental implants operations. A semi-anthropomorphic mandible phantom which has artificial mandibular canals and teeth roots was used as a standard object for imaging. Spiral CT scans for the phantom settled in water phantom with diameters of 20 and 16 cm were performed. Visibility of the artificial mandibular canal made of a Teflon tube and gaps between tooth apex and canal in the mandibular phantom was evaluated for various combinations of the slice thickness, tables speeds, angles to the canal, and x-ray tube currents. Teeth roots were made of PVC (poly vinyl chloride). The artificial mandibular canal was clearly observed on the images of 1 mm slice thickness. At the same table speed of 2 mm /rotation, the images of thin slice (1 mm) were superior to that of thick slice (2 mm). The gap between teeth apex and canal was erroneously diagnosed on the images with table speeds of 3 mm/rotation. Horizontal scanning in parallel to the canal result in poor image quality for observation of mandibular canals because of the partial volume effect. A relatively high x-ray tube current (125 mA) at thin slice (1 mm) scanning was required for scanning the mandibular phantom in 20 cm water vessel. Spiral scanning with slice thickness of 1 mm and table speeds of 1 of 2 mm/rotation seemed to be suitable for dental implants. The result of this study suggested that diagnosis from two independent spiral scans with a different angle to the object was more accurate and more efficient than single spiral scanning. (author)

  10. SU-E-I-74: Image-Matching Technique of Computed Tomography Images for Personal Identification: A Preliminary Study Using Anthropomorphic Chest Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Matsunobu, Y; Shiotsuki, K [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Morishita, J [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka, JP (Japan)

    2015-06-15

    Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone image and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.

  11. SU-E-I-74: Image-Matching Technique of Computed Tomography Images for Personal Identification: A Preliminary Study Using Anthropomorphic Chest Phantoms

    International Nuclear Information System (INIS)

    Matsunobu, Y; Shiotsuki, K; Morishita, J

    2015-01-01

    Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone image and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body

  12. Study on motion artifacts in coronary arteries with an anthropomorphic moving heart phantom on an ECG-gated multidetector computed tomography unit

    International Nuclear Information System (INIS)

    Greuter, Marcel J.W.; Dorgelo, Joost; Tukker, Wim G.J.; Oudkerk, Matthijs

    2005-01-01

    Acquisition time plays a key role in the quality of cardiac multidetector computed tomography (MDCT) and is directly related to the rotation time of the scanner. The purpose of this study is to examine the influence of heart rate and a multisector reconstruction algorithm on the image quality of coronary arteries of an anthropomorphic adjustable moving heart phantom on an ECG-gated MDCT unit. The heart phantom and a coronary artery phantom were used on a MDCT unit with a rotation time of 500 ms. The movement of the heart was determined by analysis of the images taken at different phases. The results indicate that the movement of the coronary arteries on the heart phantom is comparable to that in a clinical setting. The influence of the heart rate on image quality and artifacts was determined by analysis of several heart rates between 40 and 80 bpm where the movement of the heart was synchronized using a retrospective ECG-gated acquisition protocol. The resulting reformatted volume rendering images of the moving heart and the coronary arteries were qualitatively compared as a result of the heart rate. The evaluation was performed on three independent series by two independent radiologists for the image quality of the coronary arteries and the presence of artifacts. The evaluation shows that at heart rates above 50 bpm the influence of motion artifacts in the coronary arteries becomes apparent. In addition the influence of a dedicated multisector reconstruction technique on image quality was determined. The results show that the image quality of the coronary arteries is not only related to the heart rate and that the influence of the multisector reconstruction technique becomes significant above 70 bpm. Therefore, this study proves that from the actual acquisition time per heart cycle one cannot determine an actual acquisition time, but only a mathematical acquisition time. (orig.)

  13. Design construction and testing of a human abdomen phantom (anthropomorphic) for in-vivo dosimetry in radiology

    International Nuclear Information System (INIS)

    Addison, E.C.K.; Andam, A.B.; Nani, E.K.; Dogbe, R.

    2007-01-01

    Using direct measurement, we investigated entrance surface doses of patients for routine radiographs in attempt to develop evaluation methods of patient dose in order to establish the guidance level in Ghana. To date, patient doses have been evaluated by calculation based on radiographic conditions, or model experiments using phantoms, also based on several assumptions. Direct measurement of patient dose is difficult to perform in many patients due to its time requirement, level of expertise required and difficulty in providing an explanation of the procedure to the patient. However, such direct measurement is essential since it incorporates all aspects of radiography from the radiographic equipment used, to the actual conditions of each patient without assumption. In this study, we examined the need for introducing the guidance level, controversial points in the calculation method for patient dose evaluation, evaluation accuracy required for introducing the guidance level, and necessity for a standardized method. The variation between measured and calculated doses range between -4.8 to +29.3 per cent. Computational technique is a wide ranging and cost effective method od conducting representative patient dose estimations in plain radiography. (au)

  14. Comparison of chest radiography, chest digital tomosynthesis and low dose MDCT to detect small ground-glass opacity nodules: an anthropomorphic chest phantom study

    International Nuclear Information System (INIS)

    Doo, Kyung Won; Kang, Eun-Young; Yong, Hwan Seok; Ham, Soo-Youn; Lee, Ki Yeol; Choo, Ji Yung

    2014-01-01

    The purpose of this study was to evaluate the diagnostic performance of chest radiography (CXR), chest digital tomosynthesis (DT) and low dose multidetector computed tomography (LDCT) for the detection of small pulmonary ground-glass opacity (GGO) nodules, using an anthropomorphic chest phantom. Artificial pulmonary nodules were placed in a phantom and a total of 40 samples of different nodule settings underwent CXR, DT and LDCT. The images were randomly read by three experienced chest radiologists. Free-response receiver-operating characteristics (FROC) were used. The figures of merit for the FROC curves averaged for the three observers were 0.41, 0.37 and 0.76 for CXR, DT and LDCT, respectively. FROC analyses revealed significantly better performance of LDCT over CXR or DT for the detection of GGO nodules (P < 0.05). The difference in detectability between CXR and DT was not statistically significant (P = 0.73). The diagnostic performance of DT for the detection of pulmonary small GGO nodules was not significantly different from that of CXR, but LDCT performed significantly better than both CXR and DT. DT is not a suitable alternative to CT for small GGO nodule detection, and LDCT remains the method of choice for this purpose. (orig.)

  15. Comparison of chest radiography, chest digital tomosynthesis and low dose MDCT to detect small ground-glass opacity nodules: an anthropomorphic chest phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Doo, Kyung Won; Kang, Eun-Young; Yong, Hwan Seok [Korea University Guro Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Ham, Soo-Youn [Korea University Anam Hospital, Korea University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Lee, Ki Yeol; Choo, Ji Yung [Korea University Ansan Hospital, Korea University College of Medicine, Department of Radiology, Ansan (Korea, Republic of)

    2014-12-15

    The purpose of this study was to evaluate the diagnostic performance of chest radiography (CXR), chest digital tomosynthesis (DT) and low dose multidetector computed tomography (LDCT) for the detection of small pulmonary ground-glass opacity (GGO) nodules, using an anthropomorphic chest phantom. Artificial pulmonary nodules were placed in a phantom and a total of 40 samples of different nodule settings underwent CXR, DT and LDCT. The images were randomly read by three experienced chest radiologists. Free-response receiver-operating characteristics (FROC) were used. The figures of merit for the FROC curves averaged for the three observers were 0.41, 0.37 and 0.76 for CXR, DT and LDCT, respectively. FROC analyses revealed significantly better performance of LDCT over CXR or DT for the detection of GGO nodules (P < 0.05). The difference in detectability between CXR and DT was not statistically significant (P = 0.73). The diagnostic performance of DT for the detection of pulmonary small GGO nodules was not significantly different from that of CXR, but LDCT performed significantly better than both CXR and DT. DT is not a suitable alternative to CT for small GGO nodule detection, and LDCT remains the method of choice for this purpose. (orig.)

  16. Effects of tube potential and scatter rejection on image quality and effective dose in digital chest X-ray examination: An anthropomorphic phantom study

    International Nuclear Information System (INIS)

    Shaw, D.J.; Crawshaw, I.; Rimmer, S.D.

    2013-01-01

    Objectives: The purpose of this study was to investigate the effects of tube potential and scatter rejection techniques on image quality of digital posteroanterior (PA) chest radiographs. Methods: An anthropomorphic phantom was imaged using a range of tube potentials (81–125 kV p ) without scatter rejection, with an anti-scatter grid, and using a 10 cm air gap. Images were anonymised and randomised before being evaluated using a visual graded analysis (VGA) method. Results: The effects of tube potential on image quality were found to be negligible (p > 0.63) for the flat panel detector (FPD). Decreased image quality (p = 0.031) was noted for 125 kV p relative to 109 kV p , though no difference was noted for any of the other potentials (p > 0.398) for computed radiography (CR). Both scatter rejection techniques improved image quality (p p . Scatter rejection improved image quality, but with no difference found between techniques. The air-gap resulted in a smaller increase in effective dose than the anti-scatter grid and would be the preferred scatter rejection technique

  17. Quality assurance in RapidArc with Alderson anthropomorphic phantom using radiochromic film in comparison to MATLAB

    International Nuclear Information System (INIS)

    Garcia, Paulo L.; Silva, Leonardo P.; Santos, Maira R.; Trindade, Cassia; Martins, Lais P.; Batista, Delano V.S.; Alves, Victor G.

    2012-01-01

    This paper presented the quality control for RapidArc using an Alderson human body phantom and radiochromic film as an alternative system to approve the treatment plan for brain tumor. Thus, it was comprised the dose distributions provided by the treatment planning system with those measured by the film radiochromic. The gamma index (Γ) analysis, to verify the acceptability of the dose distribution, was 95% of approved points, with the mostly non-compliance points in regions near the PTV’s edges. These non-compliance points may be associated to transmission blades aspects, because the regions near the edges present significant losses compared to the central areas. Also, MATLAB has proved an effective tool for that measurements and it can be used in quality assurance programs. (author)

  18. A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions

    Science.gov (United States)

    Gallivanone, F.; Interlenghi, M.; Canervari, C.; Castiglioni, I.

    2016-01-01

    18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in a

  19. Dynamic 99mTc-MAG3 renography: images for quality control obtained by combining pharmacokinetic modelling, an anthropomorphic computer phantom and Monte Carlo simulated scintillation camera imaging

    Science.gov (United States)

    Brolin, Gustav; Sjögreen Gleisner, Katarina; Ljungberg, Michael

    2013-05-01

    In dynamic renal scintigraphy, the main interest is the radiopharmaceutical redistribution as a function of time. Quality control (QC) of renal procedures often relies on phantom experiments to compare image-based results with the measurement setup. A phantom with a realistic anatomy and time-varying activity distribution is therefore desirable. This work describes a pharmacokinetic (PK) compartment model for 99mTc-MAG3, used for defining a dynamic whole-body activity distribution within a digital phantom (XCAT) for accurate Monte Carlo (MC)-based images for QC. Each phantom structure is assigned a time-activity curve provided by the PK model, employing parameter values consistent with MAG3 pharmacokinetics. This approach ensures that the total amount of tracer in the phantom is preserved between time points, and it allows for modifications of the pharmacokinetics in a controlled fashion. By adjusting parameter values in the PK model, different clinically realistic scenarios can be mimicked, regarding, e.g., the relative renal uptake and renal transit time. Using the MC code SIMIND, a complete set of renography images including effects of photon attenuation, scattering, limited spatial resolution and noise, are simulated. The obtained image data can be used to evaluate quantitative techniques and computer software in clinical renography.

  20. Evaluation of a new system for chest tomosynthesis: aspects of image quality of different protocols determined using an anthropomorphic phantom

    Science.gov (United States)

    Sundin, A; Aspelin, P; Båth, M; Nyrén, S

    2015-01-01

    Objective: To compare the image quality obtained with the different protocols in a new chest digital tomosynthesis (DTS) system. Methods: A chest phantom was imaged with chest X-ray equipment with DTS. 10 protocols were used, and for each protocol, nine acquisitions were performed. Four observers visually rated the quality of the reconstructed section images according to pre-defined quality criteria in four different classes. The data were analysed with visual grading characteristics (VGC) analysis, using the vendor-recommended protocol [12-s acquisition time, source-to-image distance (SID) 180 cm] as reference, and the area under the VGC curve (AUCVGC) was determined for each protocol and class of criteria. Results: Protocols with a smaller swing angle resulted in a lower image quality for the classes of criteria “disturbance” and “homogeneity in nodule” but a higher image quality for the class “structure”. The class “demarcation” showed little dependency on the swing angle. All protocols but one (6.3 s, SID 130 cm) obtained an AUCVGC significantly <0.5 (indicating lower quality than reference) for at least one class of criteria. Conclusion: The study indicates that the DTS protocol with 6.3 s yields image quality similar to that obtained with the vendor-recommended protocol (12 s) but with the clinically important advantage for patients with respiratory impairment of a shorter acquisition time. Advances in knowledge: The study demonstrates that the image quality may be strongly affected by the choice of protocol and that the vendor-recommended protocol may not be optimal. PMID:26118300

  1. Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology.

    Science.gov (United States)

    Emigh, Brent; Gordon, Christopher L; Connolly, Bairbre L; Falkiner, Michelle; Thomas, Karen E

    2013-09-01

    There is a need for updated radiation dose estimates in pediatric fluoroscopy given the routine use of new dose-saving technologies and increased radiation safety awareness in pediatric imaging. To estimate effective doses for standardized pediatric upper gastrointestinal (UGI) examinations at our institute using direct dose measurement, as well as provide dose-area product (DAP) to effective dose conversion factors to be used for the estimation of UGI effective doses for boys and girls up to 10 years of age at other centers. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were placed within four anthropomorphic phantoms representing children ≤10 years of age and exposed to mock UGI examinations using exposures much greater than used clinically to minimize measurement error. Measured effective dose was calculated using ICRP 103 weights and scaled to our institution's standardized clinical UGI (3.6-min fluoroscopy, four spot exposures and four examination beam projections) as determined from patient logs. Results were compared to Monte Carlo simulations and related to fluoroscope-displayed DAP. Measured effective doses for standardized pediatric UGI examinations in our institute ranged from 0.35 to 0.79 mSv in girls and were 3-8% lower for boys. Simulation-derived and measured effective doses were in agreement (percentage differences  0.18). DAP-to-effective dose conversion factors ranged from 6.5 ×10(-4) mSv per Gy-cm(2) to 4.3 × 10(-3) mSv per Gy-cm(2) for girls and were similarly lower for boys. Using modern fluoroscopy equipment, the effective dose associated with the UGI examination in children ≤10 years at our institute is MOSFETs, which were shown to agree with Monte Carlo simulated doses.

  2. Characterization of the secondary neutron field produced during treatment of an anthropomorphic phantom with x-rays, protons and carbon ions

    Science.gov (United States)

    La Tessa, C.; Berger, T.; Kaderka, R.; Schardt, D.; Burmeister, S.; Labrenz, J.; Reitz, G.; Durante, M.

    2014-04-01

    Short- and long-term side effects following the treatment of cancer with radiation are strongly related to the amount of dose deposited to the healthy tissue surrounding the tumor. The characterization of the radiation field outside the planned target volume is the first step for estimating health risks, such as developing a secondary radioinduced malignancy. In ion and high-energy photon treatments, the major contribution to the dose deposited in the far-out-of-field region is given by neutrons, which are produced by nuclear interaction of the primary radiation with the beam line components and the patient’s body. Measurements of the secondary neutron field and its contribution to the absorbed dose and equivalent dose for different radiotherapy technologies are presented in this work. An anthropomorphic RANDO phantom was irradiated with a treatment plan designed for a simulated 5 × 2 × 5 cm3 cancer volume located in the center of the head. The experiment was repeated with 25 MV IMRT (intensity modulated radiation therapy) photons and charged particles (protons and carbon ions) delivered with both passive modulation and spot scanning in different facilities. The measurements were performed with active (silicon-scintillation) and passive (bubble, thermoluminescence 6LiF:Mg, Ti (TLD-600) and 7LiF:Mg, Ti (TLD-700)) detectors to investigate the production of neutral particles both inside and outside the phantom. These techniques provided the whole energy spectrum (E ⩽ 20 MeV) and corresponding absorbed dose and dose equivalent of photo neutrons produced by x-rays, the fluence of thermal neutrons for all irradiation types and the absorbed dose deposited by neutrons with 0.8 energy x-rays, the contribution of secondary neutrons to the dose equivalent is of the same order of magnitude as the primary radiation. In carbon therapy delivered with raster scanning, the absorbed dose deposited by neutrons in the energy region between 0.8 and 10 MeV is almost two orders of

  3. Design and development of an anthropomorphic phantom equipped with detectors in order to evaluate the effective dose E at workplaces: feasibility study; Conception et developpement d'un fantome anthropomorphe equipe de detecteurs dans le but d'evaluer la dose efficace a un poste de travail: etude de faisabilite

    Energy Technology Data Exchange (ETDEWEB)

    Furstoss, Ch

    2006-11-15

    My PhD study aims to determine the feasibility to design and develop, for photon fields, an anthropomorphic phantom equipped with detectors in order to evaluate the effective dose E at workplaces. First of all, the energy losses within the organs are calculated using the M.C.N.P.X. Monte Carlo code, in order to determine the detection positions within the different organs. Then, to decrease the number of detection positions, the organ contribution to the effective dose is studied. Finally, the characteristics of the detectors to insert and the characteristics of the phantom to use are deduced. The results show that 24 or 23 detection positions, according to the wT values (publication 60 or new recommendations of the ICRP), give a E estimation with an uncertainty of {+-}15 % from 50 keV to 4 MeV. Moreover, the interest of such an instrument is underlined while comparing the E estimation by the personal dose equivalent Hp to the E estimation by the instrumented phantom when the phantom is irradiated by point sources (worker in front of a glove box for example). Last, after the detector and phantom characteristic determination, two types of detectors and one type of phantom are selected. However, for the detectors mainly, developments are necessary. Follow up this study, the characterization and the adaptation of the detectors to the project would be interesting. Furthermore, the study to mixed photon-neutrons would be required the needs of the radiological protection community. (author)

  4. Hybrid computational phantoms of the male and female newborn patient: NURBS-based whole-body models

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hasenauer, Deanna; Williams, Jonathan L; Lee, Choonik; Bolch, Wesley E

    2007-01-01

    Anthropomorphic computational phantoms are computer models of the human body for use in the evaluation of dose distributions resulting from either internal or external radiation sources. Currently, two classes of computational phantoms have been developed and widely utilized for organ dose assessment: (1) stylized phantoms and (2) voxel phantoms which describe the human anatomy via mathematical surface equations or 3D voxel matrices, respectively. Although stylized phantoms based on mathematical equations can be very flexible in regard to making changes in organ position and geometrical shape, they are limited in their ability to fully capture the anatomic complexities of human internal anatomy. In turn, voxel phantoms have been developed through image-based segmentation and correspondingly provide much better anatomical realism in comparison to simpler stylized phantoms. However, they themselves are limited in defining organs presented in low contrast within either magnetic resonance or computed tomography images-the two major sources in voxel phantom construction. By definition, voxel phantoms are typically constructed via segmentation of transaxial images, and thus while fine anatomic features are seen in this viewing plane, slice-to-slice discontinuities become apparent in viewing the anatomy of voxel phantoms in the sagittal or coronal planes. This study introduces the concept of a hybrid computational newborn phantom that takes full advantage of the best features of both its stylized and voxel counterparts: flexibility in phantom alterations and anatomic realism. Non-uniform rational B-spline (NURBS) surfaces, a mathematical modeling tool traditionally applied to graphical animation studies, was adopted to replace the limited mathematical surface equations of stylized phantoms. A previously developed whole-body voxel phantom of the newborn female was utilized as a realistic anatomical framework for hybrid phantom construction. The construction of a hybrid

  5. Effective dose estimation for pediatric upper gastrointestinal examinations using an anthropomorphic phantom set and metal oxide semiconductor field-effect transistor (MOSFET) technology

    International Nuclear Information System (INIS)

    Emigh, Brent; Gordon, Christopher L.; Falkiner, Michelle; Thomas, Karen E.; Connolly, Bairbre L.

    2013-01-01

    There is a need for updated radiation dose estimates in pediatric fluoroscopy given the routine use of new dose-saving technologies and increased radiation safety awareness in pediatric imaging. To estimate effective doses for standardized pediatric upper gastrointestinal (UGI) examinations at our institute using direct dose measurement, as well as provide dose-area product (DAP) to effective dose conversion factors to be used for the estimation of UGI effective doses for boys and girls up to 10 years of age at other centers. Metal oxide semiconductor field-effect transistor (MOSFET) dosimeters were placed within four anthropomorphic phantoms representing children ≤10 years of age and exposed to mock UGI examinations using exposures much greater than used clinically to minimize measurement error. Measured effective dose was calculated using ICRP 103 weights and scaled to our institution's standardized clinical UGI (3.6-min fluoroscopy, four spot exposures and four examination beam projections) as determined from patient logs. Results were compared to Monte Carlo simulations and related to fluoroscope-displayed DAP. Measured effective doses for standardized pediatric UGI examinations in our institute ranged from 0.35 to 0.79 mSv in girls and were 3-8% lower for boys. Simulation-derived and measured effective doses were in agreement (percentage differences 0.18). DAP-to-effective dose conversion factors ranged from 6.5 x 10 -4 mSv per Gy-cm 2 to 4.3 x 10 -3 mSv per Gy-cm 2 for girls and were similarly lower for boys. Using modern fluoroscopy equipment, the effective dose associated with the UGI examination in children ≤10 years at our institute is < 1 mSv. Estimations of effective dose associated with pediatric UGI examinations can be made for children up to the age of 10 using the DAP-normalized conversion factors provided in this study. These estimates can be further refined to reflect individual hospital examination protocols through the use of direct organ

  6. SU-E-T-87: Comparison Study of Dose Reconstruction From Cylindrical Diode Array Measurements, with TLD Measurements and Treatment Planning System Calculations in Anthropomorphic Head and Neck and Lung Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Benhabib, S; Cardan, R; Huang, M; Brezovich, I; Popple, R [University of Alabama at Birmingham, Birmingham, AL (United States); Faught, A; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: To assess dose calculated by the 3DVH software (Sun Nuclear Systems, Melbourne, FL) against TLD measurements and treatment planning system calculations in anthropomorphic phantoms. Methods: The IROC Houston (RPC) head and neck (HN) and lung phantoms were scanned and plans were generated using Eclipse (Varian Medical Systems, Milpitas, CA) following IROC Houston procedures. For the H and N phantom, 6 MV VMAT and 9-field dynamic MLC (DMLC) plans were created. For the lung phantom 6 MV VMAT and 15 MV 9-field dynamic MLC (DMLC) plans were created. The plans were delivered to the phantoms and to an ArcCHECK (Sun Nuclear Systems, Melbourne, FL). The head and neck phantom contained 8 TLDs located at PTV1 (4), PTV2 (2), and OAR Cord (2). The lung phantom contained 4 TLDs, 2 in the PTV, 1 in the cord, and 1 in the heart. Daily outputs were recorded before each measurement for correction. 3DVH dose reconstruction software was used to project the calculated dose to patient anatomy. Results: For the HN phantom, the maximum difference between 3DVH and TLDs was -3.4% and between 3DVH and Eclipse was 1.2%. For the lung plan the maximum difference between 3DVH and TLDs was 4.3%, except for the spinal cord for which 3DVH overestimated the TLD dose by 12%. The maximum difference between 3DVH and Eclipse was 0.3%. 3DVH agreed well with Eclipse because the dose reconstruction algorithm uses the diode measurements to perturb the dose calculated by the treatment planning system; therefore, if there is a problem in the modeling or heterogeneity correction, it will be carried through to 3DVH. Conclusion: 3DVH agreed well with Eclipse and TLD measurements. Comparison of 3DVH with film measurements is ongoing. Work supported by PHS grant CA10953 and CA81647 (NCI, DHHS)

  7. Initial implementation of the conversion from the energy-subtracted CT number to electron density in tissue inhomogeneity corrections: An anthropomorphic phantom study of radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Tsukihara, Masayoshi [Division of Radiological Technology, Graduate School of Health Sciences, Niigata University, Niigata 951-8518 (Japan); Noto, Yoshiyuki [Department of Radiology, Niigata University Medical and Dental Hospital, Niigata 951-8520 (Japan); Sasamoto, Ryuta; Hayakawa, Takahide; Saito, Masatoshi, E-mail: masaito@clg.niigata-u.ac.jp [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan)

    2015-03-15

    Purpose: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU–ρ{sub e} conversion), which provides a single linear relationship between ΔHU and ρ{sub e} over a wide range of ρ{sub e}. The purpose of this study is to present an initial implementation of the ΔHU–ρ{sub e} conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU–ρ{sub e} conversion method. Methods: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80–140 kV/Sn and 100–140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU–ρ{sub e} conversion method with a conventional conversion from a CT number to ρ{sub e} (Hounsfield units, HU–ρ{sub e} conversion). Lookup tables for ρ{sub e} calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ{sub e} calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. Results: In both treatment plans, the performance of the ΔHU–ρ{sub e} conversion was superior to that of the conventional HU–ρ{sub e} conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment

  8. 10 kVp rule – An anthropomorphic pelvis phantom imaging study using a CR system: Impact on image quality and effective dose using AEC and manual mode

    International Nuclear Information System (INIS)

    Lança, Luís; Franco, Loris; Ahmed, Abdulfatah; Harderwijk, Marloes; Marti, Chloe; Nasir, Sadeeda; Ndlovu, Junior; Oliveira, Miguel; Santiago, Ana Rita; Hogg, Peter

    2014-01-01

    Purpose: This study aims to investigate the influence of tube potential (kVp) variation in relation to perceptual image quality and effective dose (E) for pelvis using automatic exposure control (AEC) and non-AEC in a Computed Radiography (CR) system. Methods and materials: To determine the effects of using AEC and non-AEC by applying the 10 kVp rule in two experiments using an anthropomorphic pelvis phantom. Images were acquired using 10 kVp increments (60–120 kVp) for both experiments. The first experiment, based on seven AEC combinations, produced 49 images. The mean mAs from each kVp increment were used as a baseline for the second experiment producing 35 images. A total of 84 images were produced and a panel of 5 experienced observers participated for the image scoring using the two alternative forced choice (2AFC) visual grading software. PCXMC software was used to estimate E. Results: A decrease in perceptual image quality as the kVp increases was observed both in non-AEC and AEC experiments, however no significant statistical differences (p > 0.05) were found. Image quality scores from all observers at 10 kVp increments for all mAs values using non-AEC mode demonstrates a better score up to 90 kVp. E results show a statistically significant decrease (p = 0.000) on the 75th quartile from 0.37 mSv at 60 kVp to 0.13 mSv at 120 kVp when applying the 10 kVp rule in non-AEC mode. Conclusion: Using the 10 kVp rule, no significant reduction in perceptual image quality is observed when increasing kVp whilst a marked and significant E reduction is observed

  9. Tomographic anthropomorphic models. Pt. 4. Organ doses for adults due to idealized external photon exposures

    CERN Document Server

    Zankl, M; Petoussi-Henss, N; Regulla, D

    2002-01-01

    The present report contains extensive tables and figures of conversion coefficients of organ and tissue equivalent dose, normalised to air kerma free in air for voxel anthropomorphic phantoms and for standard geometries of external photon radiation, estimated with Monte Carlo techniques. Four realistic adult voxel phantoms were used for the calculations, based on computed tomographic data of real people: three male phantoms, two of them being of average size, one representing a big man, and one female phantom of a tall and somewhat over weighted woman.

  10. Tomographic anthropomorphic models. Pt. 4. Organ doses for adults due to idealized external photon exposures

    International Nuclear Information System (INIS)

    Zankl, M.; Petoussi-Henss, N.; Fill, U.; Regulla, D.

    2002-01-01

    The present report contains extensive tables and figures of conversion coefficients of organ and tissue equivalent dose, normalised to air kerma free in air for voxel anthropomorphic phantoms and for standard geometries of external photon radiation, estimated with Monte Carlo techniques. Four realistic adult voxel phantoms were used for the calculations, based on computed tomographic data of real people: three male phantoms, two of them being of average size, one representing a big man, and one female phantom of a tall and somewhat over weighted woman. (orig.)

  11. Limiting CT radiation dose in children with craniosynostosis: phantom study using model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kaasalainen, Touko; Lampinen, Anniina [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); University of Helsinki, Department of Physics, Helsinki (Finland); Palmu, Kirsi [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); School of Science, Aalto University, Department of Biomedical Engineering and Computational Science, Helsinki (Finland); Reijonen, Vappu; Kortesniemi, Mika [University of Helsinki and Helsinki University Hospital, HUS Medical Imaging Center, Radiology, POB 340, Helsinki (Finland); Leikola, Junnu [University of Helsinki and Helsinki University Hospital, Department of Plastic Surgery, Helsinki (Finland); Kivisaari, Riku [University of Helsinki and Helsinki University Hospital, Department of Neurosurgery, Helsinki (Finland)

    2015-09-15

    Medical professionals need to exercise particular caution when developing CT scanning protocols for children who require multiple CT studies, such as those with craniosynostosis. To evaluate the utility of ultra-low-dose CT protocols with model-based iterative reconstruction techniques for craniosynostosis imaging. We scanned two pediatric anthropomorphic phantoms with a 64-slice CT scanner using different low-dose protocols for craniosynostosis. We measured organ doses in the head region with metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. Numerical simulations served to estimate organ and effective doses. We objectively and subjectively evaluated the quality of images produced by adaptive statistical iterative reconstruction (ASiR) 30%, ASiR 50% and Veo (all by GE Healthcare, Waukesha, WI). Image noise and contrast were determined for different tissues. Mean organ dose with the newborn phantom was decreased up to 83% compared to the routine protocol when using ultra-low-dose scanning settings. Similarly, for the 5-year phantom the greatest radiation dose reduction was 88%. The numerical simulations supported the findings with MOSFET measurements. The image quality remained adequate with Veo reconstruction, even at the lowest dose level. Craniosynostosis CT with model-based iterative reconstruction could be performed with a 20-μSv effective dose, corresponding to the radiation exposure of plain skull radiography, without compromising required image quality. (orig.)

  12. Ultra-high pitch chest computed tomography at 70 kVp tube voltage in an anthropomorphic pediatric phantom and non-sedated pediatric patients: Initial experience with 3rd generation dual-source CT.

    Science.gov (United States)

    Hagelstein, Claudia; Henzler, Thomas; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Schoenberg, Stefan O; Neff, K Wolfgang; Weis, Meike

    2016-12-01

    Minimizing radiation dose while at the same time preserving image quality is of particular importance in pediatric chest CT. Very recently, CT imaging with a tube voltage of 70 kVp has become clinically available. However, image noise is inversely proportional to the tube voltage. We aimed to investigate radiation dose and image quality of pediatric chest CT performed at 70 kVp in an anthropomorphic pediatric phantom as well as in clinical patients. An anthropomorphic pediatric phantom, which resembles a one-year-old child in physiognomy, was scanned on the 3 rd generation dual-source CT (DSCT) system at 70 kVp and 80 kVp and a fixed ultra low tube-current of 8 mAs to solely evaluate the impact of lowering tube voltage. After the phantom measurements, 18 pediatric patients (mean 29.5 months; range 1-91 months; 21 examinations) underwent 3.2 high-pitch chest CT on the same DSCT system at 70 kVp tube voltage without any sedation. Radiation dose and presence of motion artifacts was compared to a retrospectively identified patient cohort examined at 80 kVp on a 16-slice single-source-CT (SSCT; n=15; 14/15 with sedation; mean 30.7 months; range 0-96 months; pitch=1.5) or on a 2 nd generation DSCT without any sedation (n=6; mean 32.8 months; range 4-61 months; pitch=3.2). Radiation dose in the phantom scans was reduced by approximately 40% when using a tube voltage of 70 kVp instead of 80 kVp. In the pediatric patient group examined at 70 kVp age-specific effective dose (ED; mean 0.5±0.2 mSv) was significantly lower when compared to the retrospective cohort scanned at 80 kVp on the 16-slice-SSCT (mean ED: 1.0±0.3 mSv; pCT examinations showed any motion artifacts whereas 13/15 examinations of the retrospective patient cohort scanned at 80 kVp with a pitch of 1.5 showed motion artifacts. 3.2 high-pitch chest CT performed with 70 kVp significantly reduces radiation dose when compared to 80 kVp while at the same time provides good image quality without any motion artifacts

  13. Hybrid pregnant reference phantom series based on adult female ICRP reference phantom

    Science.gov (United States)

    Rafat-Motavalli, Laleh; Miri-Hakimabad, Hashem; Hoseinian-Azghadi, Elie

    2018-03-01

    This paper presents boundary representation (BREP) models of pregnant female and her fetus at the end of each trimester. The International Commission on Radiological Protection (ICRP) female reference voxel phantom was used as a base template in development process of the pregnant hybrid phantom series. The differences in shape and location of the displaced maternal organs caused by enlarging uterus were also taken into account. The CT and MR images of fetus specimens and pregnant patients of various ages were used to replace the maternal abdominal pelvic organs of template phantom and insert the fetus inside the gravid uterus. Each fetal model contains 21 different organs and tissues. The skeletal model of the fetus also includes age-dependent cartilaginous and ossified skeletal components. The replaced maternal organ models were converted to NURBS surfaces and then modified to conform to reference values of ICRP Publication 89. The particular feature of current series compared to the previously developed pregnant phantoms is being constructed upon the basis of ICRP reference phantom. The maternal replaced organ models are NURBS surfaces. With this great potential, they might have the feasibility of being converted to high quality polygon mesh phantoms.

  14. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments

    International Nuclear Information System (INIS)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Mahnken, Andreas H.; Wiemann, Christian; Guenther, Rolf W.; Kyriakou, Yiannis; Kalender, Willi A.; Schmitz-Rode, Thomas

    2010-01-01

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 ± 0.9 mm (phantom) and 0.6 ± 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 ± 1.2 mm (phantom) and 0.5 ± 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 ± 0.9 mm and 1.0 ± 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 ± 17.3 s vs. 20.8 ± 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 ± 5.1 s vs. 28.6 ± 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 ± 9.0 s vs. 23.6 ± 7.2 s, p = 0.001) and IVD punctures (43.9 ± 16.1 s vs. 31.1 ± 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures. (orig.)

  15. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Mahnken, Andreas H. [RWTH Aachen University, Applied Medical Engineering, Helmholtz-Institute Aachen, Aachen (Germany); RWTH Aachen University, Department of Diagnostic Radiology, Aachen University Hospital, Aachen (Germany); Wiemann, Christian; Guenther, Rolf W. [RWTH Aachen University, Department of Diagnostic Radiology, Aachen University Hospital, Aachen (Germany); Kyriakou, Yiannis; Kalender, Willi A. [Friedrich-Alexander University of Erlangen-Nuremberg, Institute for Medical Physics, Erlangen (Germany); Schmitz-Rode, Thomas [RWTH Aachen University, Applied Medical Engineering, Helmholtz-Institute Aachen, Aachen (Germany)

    2010-11-15

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 {+-} 0.9 mm (phantom) and 0.6 {+-} 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 {+-} 1.2 mm (phantom) and 0.5 {+-} 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 {+-} 0.9 mm and 1.0 {+-} 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 {+-} 17.3 s vs. 20.8 {+-} 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 {+-} 5.1 s vs. 28.6 {+-} 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 {+-} 9.0 s vs. 23.6 {+-} 7.2 s, p = 0.001) and IVD punctures (43.9 {+-} 16.1 s vs. 31.1 {+-} 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures. (orig.)

  16. MATSIM -The Development and Validation of a Numerical Voxel Model based on the MATROSHKA Phantom

    Science.gov (United States)

    Beck, Peter; Rollet, Sofia; Berger, Thomas; Bergmann, Robert; Hajek, Michael; Latocha, Marcin; Vana, Norbert; Zechner, Andrea; Reitz, Guenther

    The AIT Austrian Institute of Technology coordinates the project MATSIM (MATROSHKA Simulation) in collaboration with the Vienna University of Technology and the German Aerospace Center. The aim of the project is to develop a voxel-based model of the MATROSHKA anthro-pomorphic torso used at the International Space Station (ISS) as foundation to perform Monte Carlo high-energy particle transport simulations for different irradiation conditions. Funded by the Austrian Space Applications Programme (ASAP), MATSIM is a co-investigation with the European Space Agency (ESA) ELIPS project MATROSHKA, an international collaboration of more than 18 research institutes and space agencies from all over the world, under the science and project lead of the German Aerospace Center. The MATROSHKA facility is designed to determine the radiation exposure of an astronaut onboard ISS and especially during an ex-travehicular activity. The numerical model developed in the frame of MATSIM is validated by reference measurements. In this report we give on overview of the model development and compare photon and neutron irradiations of the detector-equipped phantom torso with Monte Carlo simulations using FLUKA. Exposure to Co-60 photons was realized in the standard ir-radiation laboratory at Seibersdorf, while investigations with neutrons were performed at the thermal column of the Vienna TRIGA Mark-II reactor. The phantom was loaded with passive thermoluminescence dosimeters. In addition, first results of the calculated dose distribution within the torso are presented for a simulated exposure in low-Earth orbit.

  17. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    International Nuclear Information System (INIS)

    Shypailo, R J; Ellis, K J

    2011-01-01

    During construction of the whole body counter (WBC) at the Children's Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40 K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Carlo n-particle simulation program was used to describe the WBC (54 detectors plus shielding), test individual detector counting response, and create a series of virtual anthropomorphic phantoms based on national reference anthropometric data. Each phantom included an outer layer of adipose tissue and an inner core of lean tissue. Phantoms were designed for both genders representing ages 3.5 to 18.5 years with body sizes from the 5th to the 95th percentile based on body weight. In addition, a spherical surface source surrounding the WBC was modeled in order to measure the effects of subject mass on room background interference. Individual detector measurements showed good agreement with the MCNP model. The background source model came close to agreement with empirical measurements, but showed a trend deviating from unity with increasing subject size. Results from the MCNP simulation of the CNRC WBC agreed well with empirical measurements using BOMAB phantoms. Individual detector efficiency corrections were used to improve the accuracy of the model. Nonlinear multiple regression efficiency calibration equations were derived for each gender. Room background correction is critical in improving the accuracy of the WBC calibration.

  18. Ultra-high pitch chest computed tomography at 70 kVp tube voltage in an anthropomorphic pediatric phantom and non-sedated pediatric patients. Initial experience with 3{sup rd} generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Hagelstein, Claudia; Henzler, Thomas; Haubenreisser, Holger; Meyer, Mathias; Sudarski, Sonja; Schoenberg, Stefan O.; Neff, K. Wolfgang; Weis, Meike [Univ. Medical Center Mannheim (Germany). Inst. of Clinical Radiology and Nuclear Medicine

    2016-07-01

    Minimizing radiation dose while at the same time preserving image quality is of particular importance in pediatric chest CT. Very recently, CT imaging with a tube voltage of 70 kVp has become clinically available. However, image noise is inversely proportional to the tube voltage. We aimed to investigate radiation dose and image quality of pediatric chest CT performed at 70 kVp in an anthropomorphic pediatric phantom as well as in clinical patients. An anthropomorphic pediatric phantom, which resembles a one-year-old child in physiognomy, was scanned on the 3{sup rd} generation dual-source CT (DSCT) system at 70 kVp and 80 kVp and a fixed ultra low tube-current of 8 mAs to solely evaluate the impact of lowering tube voltage. After the phantom measurements, 18 pediatric patients (mean 29.5 months; range 1-91 months; 21 examinations) underwent 3.2 high-pitch chest CT on the same DSCT system at 70 kVp tube voltage without any sedation. Radiation dose and presence of motion artifacts was compared to a retrospectively identified patient cohort examined at 80 kVp on a 16-slice single-source-CT (SSCT; n = 15; 14/15 with sedation; mean 30.7 months; range 0-96 months; pitch = 1.5) or on a 2{sup nd} generation DSCT without any sedation (n = 6; mean 32.8 months; range 4-61 months; pitch = 3.2). Radiation dose in the phantom scans was reduced by approximately 40% when using a tube voltage of 70 kVp instead of 80 kVp. In the pediatric patient group examined at 70 kVp age-specific effective dose (ED; mean 0.5 ± 0.2 mSv) was significantly lower when compared to the retrospective cohort scanned at 80 kVp on the 16-slice-SSCT (mean ED: 1.0 ± 0.3 mSv; p < 0.0001) and also considerably lower when compared to the cohort scanned at 80 kVp on the 2{sup nd} generation DSCT (mean ED: 0.9 ± 0.5 mSv). None of the prospective, sedation-free CT examinations showed any motion artifacts whereas 13/15 examinations of the retrospective patient cohort scanned at 80 kVp with a pitch of 1

  19. Dose evaluation in occupationally exposed workers through dosimeters ring and wrist type with an anthropomorphic phantom; Evaluacion de la dosis en trabajadores ocupacionalmente expuestos a traves de dosimetros tipo anillo y de muneca con un fantoma antropomorfico

    Energy Technology Data Exchange (ETDEWEB)

    Palma, R.; Gastelo, E. [Univesidad Nacional Pedro Ruiz Gallo, Huamachuco, Lambayeque (Peru); Paucar, R.; Tolentino, D.; Herrera, J. [Complejo Hospitalario San Pablo, Lima (Peru); Armas, D., E-mail: fispalma@hotmail.com [Consorcio Proxtronics del Pacifico S. A. C., Cal. Manuela Estacio Mza. D1-2 Lote 13, San Miguel, Lima (Peru)

    2014-08-15

    In the Nuclear Medicine service of the Clinica San Pablo (Peru), the occupationally exposed workers carried out the preparation and administration of radiopharmaceuticals to patients, so it is vital to measure the equivalent dose to the hands during the procedures in order to optimize the exposure to the ionizing radiation and execute the Radiological Safety Regulation (D.S. No. 009-97-Em) and the standard IR 002.2012 of radiation protection and safety in nuclear medicine. In this paper was designed and built a hand anthropomorphic phantom made of paraffin following the description given for the standard man, later were placed dosimeters ring and wrist type UD-807 model, Panasonic brand. Then we proceeded to irradiate using vial containers of Tc-99 and I-131. The obtained results showed the difference between the equivalent dose obtained among the ring and wrist dosimeter also getting a dose of 153 mSv /year when working with {sup 99m}Tc and of 61 mSv /year when working with iodine-131. Was also demonstrated that the ring dosimeter shows the average dose received in the hand with less dispersion. It was found that under the national regulation on Requirements of Radiation Protection and Nuclear Safety in Medicine article 63, indicates that higher doses of 150 mSv /year the occupationally exposed workers should have hand dosimetry. Finally the individual dose limit of 500 mSv /year in extremities can be overcome if adequate radiation protection standards do not apply. (author)

  20. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, A; Stafford, R; Yung, J; Followill, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials.

  1. SU-E-J-210: Characterizing Tissue Equivalent Materials for the Development of a Dual MRI-CT Heterogeneous Anthropomorphic Phantom Designed Specifically for MRI Guided Radiotherapy Systems

    International Nuclear Information System (INIS)

    Steinmann, A; Stafford, R; Yung, J; Followill, D

    2015-01-01

    Purpose: MRI guided radiotherapy (MRIgRT) is an emerging technology which will eventually require a proficient quality auditing system. Due to different principles in which MR and CT acquire images, there is a need for a multi-imaging-modality, end-to-end QA phantom for MRIgRT. The purpose of this study is to identify lung, soft tissue, and tumor equivalent substitutes that share similar human-like CT and MR properties (i.e. Hounsfield units and relaxation times). Methods: Materials of interested such as common CT QA phantom materials, and other proprietary gels/silicones from Polytek, SmoothOn, and CompositeOne were first scanned on a GE 1.5T Signa HDxT MR. Materials that could be seen on both T1-weighted and T2-weighted images were then scanned on a GE Lightspeed RT16 CT simulator and a GE Discovery 750HD CT scanner and their HU values were then measured. The materials with matching HU values of lung (−500 to −700HU), muscle (+40HU) and soft tissue (+100 to +300HU) were further scanned on GE 1.5T Signa HDx to measure their T1 and T2 relaxation times from varying parameters of TI and TE. Results: Materials that could be visualized on T1-weighted and T2-weighted images from a 1.5T MR unit and had an appropriate average CT number, −650, −685, 46,169, and 168 HUs were: compressed cork saturated with water, Polytek Platsil™ Gel-00 combined with mini styrofoam balls, radiotherapy bolus material, SmoothOn Dragon-Skin™ and SmoothOn Ecoflex™, respectively. Conclusion: Post processing analysis is currently being performed to accurately map T1 and T2 values for each material tested. From previous MR visualization and CT examinations it is expected that Dragon-Skin™, Ecoflex™ and bolus will have values consistent with tissue and tumor substitutes. We also expect compressed cork statured with water, and Polytek™-styrofoam combination to have approximate T1 and T2 values suitable for lung-equivalent materials

  2. Creating an anthropomorphic digital MR phantom—an extensible tool for comparing and evaluating quantitative imaging algorithms

    International Nuclear Information System (INIS)

    Bosca, Ryan J; Jackson, Edward F

    2016-01-01

    Assessing and mitigating the various sources of bias and variance associated with image quantification algorithms is essential to the use of such algorithms in clinical research and practice. Assessment is usually accomplished with grid-based digital reference objects (DRO) or, more recently, digital anthropomorphic phantoms based on normal human anatomy. Publicly available digital anthropomorphic phantoms can provide a basis for generating realistic model-based DROs that incorporate the heterogeneity commonly found in pathology. Using a publicly available vascular input function (VIF) and digital anthropomorphic phantom of a normal human brain, a methodology was developed to generate a DRO based on the general kinetic model (GKM) that represented realistic and heterogeneously enhancing pathology. GKM parameters were estimated from a deidentified clinical dynamic contrast-enhanced (DCE) MRI exam. This clinical imaging volume was co-registered with a discrete tissue model, and model parameters estimated from clinical images were used to synthesize a DCE-MRI exam that consisted of normal brain tissues and a heterogeneously enhancing brain tumor. An example application of spatial smoothing was used to illustrate potential applications in assessing quantitative imaging algorithms. A voxel-wise Bland–Altman analysis demonstrated negligible differences between the parameters estimated with and without spatial smoothing (using a small radius Gaussian kernel). In this work, we reported an extensible methodology for generating model-based anthropomorphic DROs containing normal and pathological tissue that can be used to assess quantitative imaging algorithms. (paper)

  3. The internal radiation dose calculations based on Chinese mathematical phantom

    International Nuclear Information System (INIS)

    Wang Haiyan; Li Junli; Cheng Jianping; Fan Jiajin

    2006-01-01

    The internal radiation dose calculations built on Chinese facts become more and more important according to the development of nuclear medicine. the MIRD method developed and consummated by the society of Nuclear Medicine (America) is based on the European and American mathematical phantom and can't fit Chinese well. The transport of γ-ray in the Chinese mathematical phantom was simulated with Monte Carlo method in programs as MCNP4C. the specific absorbed fraction (Φ) of Chinese were calculated and the Chinese Φ database was created. The results were compared with the recommended values by ORNL. the method was proved correct by the coherence when the target organ was the same with the source organ. Else, the difference was due to the different phantom and the choice of different physical model. (authors)

  4. Optimization for PET imaging based on phantom study and NECdensity

    International Nuclear Information System (INIS)

    Daisaki, Hiromitsu; Shimada, Naoki; Shinohara, Hiroyuki

    2012-01-01

    In consideration of the requirement for global standardization and quality control of PET imaging, the present studies gave an outline of phantom study to decide both scan and reconstruction parameters based on FDG-PET/CT procedure guideline in Japan, and optimization of scan duration based on NEC density was performed continuously. In the phantom study, scan and reconstruction parameters were decided by visual assessment and physical indexes (N 10mm , NEC phantom , Q H,10mm /N 10mm ) to visualize hot spot of 10 mm diameter with standardized uptake value (SUV)=4 explicitly. Simultaneously, Recovery Coefficient (RC) was evaluated to recognize that PET images had enough quantifiably. Scan durations were optimized by Body Mass Index (BMI) based on retrospective analysis of NEC density . Correlation between visual score in clinical FDG-PET images and NEC density fell after the optimization of scan duration. Both Inter-institution and inter-patient variability were decreased by performing the phantom study based on the procedure guideline and the optimization of scan duration based on NEC density which seem finally useful to practice highly precise examination and promote high-quality controlled study. (author)

  5. Robot arm based flat panel CT-guided electromagnetic tracked spine interventions: phantom and animal model experiments.

    Science.gov (United States)

    Penzkofer, Tobias; Isfort, Peter; Bruners, Philipp; Wiemann, Christian; Kyriakou, Yiannis; Kalender, Willi A; Günther, Rolf W; Schmitz-Rode, Thomas; Mahnken, Andreas H

    2010-11-01

    To evaluate accuracy and procedure times of electromagnetic tracking (EMT) in a robotic arm mounted flat panel setting using phantom and animal cadaveric models. A robotic arm mounted flat panel (RMFP) was used in combination with EMT to perform anthropomorphic phantom (n = 90) and ex vivo pig based punctures (n = 120) of lumbar facet joints (FJ, n = 120) and intervertebral discs (IVD, n = 90). Procedure accuracies and times were assessed and evaluated. FJ punctures were carried out with a spatial accuracy of 0.8 ± 0.9 mm (phantom) and 0.6 ± 0.8 mm (ex vivo) respectively. While IVD punctures showed puncture deviations of 0.6 ± 1.2 mm (phantom) and 0.5 ± 0.6 mm (ex vivo), direct and angulated phantom based punctures had accuracies of 0.8 ± 0.9 mm and 1.0 ± 1.3 mm. Planning took longer for ex vivo IVD punctures compared to phantom model interventions (39.3 ± 17.3 s vs. 20.8 ± 5.0 s, p = 0.001) and for angulated vs. direct phantom FJ punctures (19.7 ± 5.1 s vs. 28.6 ± 7.8 s, p < 0.001). Puncture times were longer for ex vivo procedures when compared to phantom model procedures in both FJ (37.9 ± 9.0 s vs. 23.6 ± 7.2 s, p = 0.001) and IVD punctures (43.9 ± 16.1 s vs. 31.1 ± 6.4 s, p = 0.026). The combination of RMFP with EMT provides an accurate method of navigation for spinal interventions such as facet joint punctures and intervertebral disc punctures.

  6. Anthropomorphic measurements

    International Nuclear Information System (INIS)

    Wang, J.

    1998-01-01

    Based on decisions taken during the Research Coordination Meetings in Mito City 1988 and Bombay 1991, the participants were requested to provide data on physical measurement parameters of body height, body weight, sitting height, head circumference, neck circumference, chest circumference, chest width and chest depth which represented the age groups as newborn, 1 year, 5 years, 10 years, 15 years and adult 20-50 years. Accordingly, physical measurement data was obtained by participants from 9 countries

  7. Analysis of the features of untrained human movements based on the multichannel EEG for controlling anthropomorphic robotic arm

    Science.gov (United States)

    Maksimenko, Vladimir; Runnova, Anastasia; Pchelintseva, Svetlana; Efremova, Tatiana; Zhuravlev, Maksim; Pisarchik, Alexander

    2018-04-01

    We have considered time-frequency and spatio-temporal structure of electrical brain activity, associated with real and imaginary movements based on the multichannel EEG recordings. We have found that along with wellknown effects of event-related desynchronization (ERD) in α/μ - rhythms and β - rhythm, these types of activity are accompanied by the either ERS (for real movement) or ERD (for imaginary movement) in low-frequency δ - band, located mostly in frontal lobe. This may be caused by the associated processes of decision making, which take place when subject is deciding either perform the movement or imagine it. Obtained features have been found in untrained subject which it its turn gives the possibility to use our results in the development of brain-computer interfaces for controlling anthropomorphic robotic arm.

  8. Individual virtual phantom reconstruction for organ dosimetry based on standard available phantoms

    International Nuclear Information System (INIS)

    Babapour Mofrad, F.; Aghaeizadeh Zoroofi, R.; Abbaspour Tehran Fard, A.; Akhlaghpoor, Sh.; Chen, Y. W.; Sato, Y.

    2010-01-01

    In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo Simulation and phantoms have been used in many works before. The shape, size and volume In organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framework for constructing individual phantom for dosimetry was performed on five liver CT scan data sets of Japanese normal individuals. The Zubal phantom was used as an original phantom to be adjusted by each individual data set. This registration was done by Spherical Harmonics and Thin-Plate Spline methods. Hausdorff distance was calculated for each case. Results: Result of Hausdorff distance for five lndividual phantoms showed that before registration ranged from 140.9 to 192.1, and after registration it changed to 52.5 to 76.7. This was caused by Index similarity ranged from %56.4 to %70.3. Conclusion: A new and automatic three-dimensional (3D) phantom construction approach was-suggested for individual internal dosimetry simulation via Spherical Harmonics and Thin-Plate Spline methods. The results showed that the Individual comparable phantom can be calculated with acceptable accuracy using geometric registration. This method could be used for race-specific statistical phantom modeling with major application in nuclear medicine for absorbed dose calculation.

  9. Tomographic anthropomorphic models. Pt. 1

    International Nuclear Information System (INIS)

    Veit, R.; Zankl, M.; Petoussi, N.; Mannweiler, E.; Drexler, G.; Williams, G.

    1989-01-01

    The first generation of heterogenoeous anthropomorphic mathematical models to be used in dose calculations was the MIRD-5 adult phantom, followed by the pediatric MIRD-type phantoms and by the GSF sex-specific phantoms ADAM and EVA. A new generation of realistic anthropomorphic models is now introduced. The organs and tissues of these models consist of a well defined number of volume elements (voxels), derived from computer tomographic (CT) data; consequently, these models were named voxel or tomographic models. So far two voxel models of real patients are available: one of an 8 week old baby and of a 7 year old child. For simplicity, the model of the baby will be referred to as BABY and that of the child as CHILD. In chapter 1 a brief literature review is given on the existing mathematical models and their applications. The reasons that lead to the construction of the new CT models is discussed. In chapter 2 the technique is described which allows to convert any physical object into computer files to be used for dose calculations. The technique which produces three dimensional reconstructions of high resolution is discussed. In chapter 3 the main characteristics of the models of the baby and child are given. Tables of organ masses and volumes are presented together with three dimensional images of some organs and tissues. A special mention is given to the assessment of bone marrow distribution. Chapter 4 gives a short description of the Monte Carlo code used in conjunction with the models to calculate organ and tissue doses resulting from photon exposures. Some technical details concerning the computer files which describe the models are also given. (orig./HP)

  10. Software for medical image based phantom modelling

    International Nuclear Information System (INIS)

    Possani, R.G.; Massicano, F.; Coelho, T.S.; Yoriyaz, H.

    2011-01-01

    Latest treatment planning systems depends strongly on CT images, so the tendency is that the dosimetry procedures in nuclear medicine therapy be also based on images, such as magnetic resonance imaging (MRI) or computed tomography (CT), to extract anatomical and histological information, as well as, functional imaging or activities map as PET or SPECT. This information associated with the simulation of radiation transport software is used to estimate internal dose in patients undergoing treatment in nuclear medicine. This work aims to re-engineer the software SCMS, which is an interface software between the Monte Carlo code MCNP, and the medical images, that carry information from the patient in treatment. In other words, the necessary information contained in the images are interpreted and presented in a specific format to the Monte Carlo MCNP code to perform the simulation of radiation transport. Therefore, the user does not need to understand complex process of inputting data on MCNP, as the SCMS is responsible for automatically constructing anatomical data from the patient, as well as the radioactive source data. The SCMS was originally developed in Fortran- 77. In this work it was rewritten in an object-oriented language (JAVA). New features and data options have also been incorporated into the software. Thus, the new software has a number of improvements, such as intuitive GUI and a menu for the selection of the energy spectra correspondent to a specific radioisotope stored in a XML data bank. The new version also supports new materials and the user can specify an image region of interest for the calculation of absorbed dose. (author)

  11. A MCNP-based calibration method and a voxel phantom for in vivo monitoring of 241Am in skull

    International Nuclear Information System (INIS)

    Moraleda, M.; Gomez-Ros, J.M.; Lopez, M.A.; Navarro, T.; Navarro, J.F.

    2004-01-01

    Whole body counter (WBC) facilities are currently used for assessment of internal radionuclide body burdens by directly measuring the radiation emitted from the body. Previous calibration of the detection devices requires the use of specific anthropomorphic phantoms. This paper describes the MCNP-based Monte Carlo technique developed for calibration of the germanium detectors (Canberra LE Ge) used in the CIEMAT WBC for in vivo measurements of 241 Am in skull. The proposed method can also be applied for in vivo counting of different radionuclides distributed in other anatomical regions as well as for other detectors. A computer software was developed to automatically generate the input files for the MCNP code starting from any segmented human anatomy data. A specific model of a human head for the assessment of 241 Am was built based on the tomographic phantom VOXELMAN of Yale University. The germanium detectors were carefully modelled from data provided by the manufacturer. This numerical technique has been applied to investigate the best counting geometry and the uncertainty due to improper positioning of the detectors

  12. Use of VAP3D software in the construction of pathological anthropomorphic phantoms for dosimetric evaluations; Uso do software VAP3D na construcao de fantomas antropomorficos patologicos para avaliacoes dosimetricas

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Lindeval Fernandes de [Universidade Federal de Pernambuco (DEM/UFPE), Recife, PE (Brazil). Dept. de Engenharia Mecanica; Vieira, Jose Wilson [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco, Recife, PE (Brazil); Lima, Fernando R.A., E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-10-26

    This paper performs a new type of dosimetric evaluation, where it was used a phantom of pathological voxels (representative phantom of sick person). The software VAP3D (Visualization and Analysis of Phantoms 3D) were used for, from a healthy phantom (phantom representative of healthy person), to introduce three dimensional regions to simulate tumors. It was used the Monte Carlo ESGnrc code to simulate the X ray photon transport, his interaction with matter and evaluation of absorbed dose in organs and tissues from thorax region of the healthy phantom and his pathological version. This is a computer model of typical exposure for programming the treatments in radiodiagnostic

  13. Micro-scale characterization of a CMOS-based neutron detector for in-phantom measurements in radiation therapy

    Science.gov (United States)

    Arbor, Nicolas; Higueret, Stephane; Husson, Daniel

    2018-04-01

    The CMOS sensor AlphaRad has been designed at the IPHC Strasbourg for real-time monitoring of fast and thermal neutrons over a full energy spectrum. Completely integrated, highly transparent to photons and optimized for low power consumption, this sensor offers very interesting characteristics for the study of internal neutrons in radiation therapy with anthropomorphic phantoms. However, specific effects related to the CMOS metal substructure and to the charge collection process of low energy particles must be carefully estimated before being used for medical applications. We present a detailed characterization of the AlphaRad chip in the MeV energy range using proton and alpha micro-beam experiments performed at the AIFIRA facility (CENBG, Bordeaux). Two-dimensional maps of the charge collection were carried out on a micro-metric scale to be integrated into a Geant4 Monte Carlo simulation of the system. The gamma rejection, as well as the fast and thermal neutrons separation, were studied using both simulation and experimental data. The results highlight the potential of a future system based on CMOS sensor for in-phantom neutron detection in radiation therapies.

  14. Image based Monte Carlo modeling for computational phantom

    International Nuclear Information System (INIS)

    Cheng, M.; Wang, W.; Zhao, K.; Fan, Y.; Long, P.; Wu, Y.

    2013-01-01

    Full text of the publication follows. The evaluation on the effects of ionizing radiation and the risk of radiation exposure on human body has been becoming one of the most important issues for radiation protection and radiotherapy fields, which is helpful to avoid unnecessary radiation and decrease harm to human body. In order to accurately evaluate the dose on human body, it is necessary to construct more realistic computational phantom. However, manual description and verification of the models for Monte Carlo (MC) simulation are very tedious, error-prone and time-consuming. In addition, it is difficult to locate and fix the geometry error, and difficult to describe material information and assign it to cells. MCAM (CAD/Image-based Automatic Modeling Program for Neutronics and Radiation Transport Simulation) was developed as an interface program to achieve both CAD- and image-based automatic modeling. The advanced version (Version 6) of MCAM can achieve automatic conversion from CT/segmented sectioned images to computational phantoms such as MCNP models. Imaged-based automatic modeling program(MCAM6.0) has been tested by several medical images and sectioned images. And it has been applied in the construction of Rad-HUMAN. Following manual segmentation and 3D reconstruction, a whole-body computational phantom of Chinese adult female called Rad-HUMAN was created by using MCAM6.0 from sectioned images of a Chinese visible human dataset. Rad-HUMAN contains 46 organs/tissues, which faithfully represented the average anatomical characteristics of the Chinese female. The dose conversion coefficients (Dt/Ka) from kerma free-in-air to absorbed dose of Rad-HUMAN were calculated. Rad-HUMAN can be applied to predict and evaluate dose distributions in the Treatment Plan System (TPS), as well as radiation exposure for human body in radiation protection. (authors)

  15. Efficiency factors for Phoswich based lung monitor using ICRP Voxel phantoms

    International Nuclear Information System (INIS)

    Manohari, M.; Mathiyarasu, R.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2016-01-01

    The actinide contamination in lungs is measured either using array of HPGe detector or Phoswich based lung monitors. This paper discusses the results obtained during numerical calibration of Phoswich based lung counting system using ICRP VOXEL phantoms. The results are also compared with measured efficiency values obtained using LLNL phantom. The efficiency factors of 241 Am present in the lungs for phoswich detector was simulated using ICRP male voxel phantom and compared with experimentally observed values using LLNL Phantom. The observed deviation is 12%. The efficiency of the same for female subjects was estimated using ICRP female voxel phantom for both supine and posterior geometries

  16. Between Anthropocentrism and Anthropomorphism: A Corpus-Based Analysis of Animal Comparisons in Shakespeare’s Plays

    Directory of Open Access Journals (Sweden)

    Postolea Sorina

    2017-12-01

    Full Text Available The assertion of the centrality and supremacy of man, or rather, of the idea(l of humanity, during the Renaissance period, inevitably entailed the repudiation of the animal and the beginning of the great human-animal divide. What was seen, at the time, as the re-birth of man, was also the birth of a rampant anthropocentrism which, until the recent so-called “animal turn”“ in critical and literary studies went unquestioned. Taking this into account, one would expect to find an almost exclusive focus on the human or what is/was perceived as being human in most works from that period. Yet, surprisingly, throughout Shakespeare‘s plays, one encounters a plethora of figures of animality leaping, running, crawling, flying, swimming, or advancing, as Derrida would say, “à pas de loup”“. From dogs, bears, lions, apes and foxes to birds, fish, worms and reptiles, Shakespeare the humanist paradoxically unfolds a veritable bestiary of nonhuman presences. Using corpus-based analysis that focuses on animal similes built with the preposition “like”“ and a critical angle largely informed by posthumanist theory, we take a closer look at the forms, roles and functions of both nonhuman and human animality in Shakespeare, as well as the intricate relationship between anthropocentrism and anthropomorphism.

  17. Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code.

    Science.gov (United States)

    Yoriyaz, H; dos Santos, A; Stabin, M G; Cabezas, R

    2000-07-01

    A new approach for calculating internal dose estimates was developed through the use of a more realistic computational model of the human body. The present technique shows the capability to build a patient-specific phantom with tomography data (a voxel-based phantom) for the simulation of radiation transport and energy deposition using Monte Carlo methods such as in the MCNP-4B code. MCNP-4B absorbed fractions for photons in the mathematical phantom of Snyder et al. agreed well with reference values. Results obtained through radiation transport simulation in the voxel-based phantom, in general, agreed well with reference values. Considerable discrepancies, however, were found in some cases due to two major causes: differences in the organ masses between the phantoms and the occurrence of organ overlap in the voxel-based phantom, which is not considered in the mathematical phantom.

  18. SU-G-206-05: A Comparison of Head Phantoms Used for Dose Determination in Imaging Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Z; Vijayan, S; Kilian-Meneghin, J; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2016-06-15

    Purpose: To determine similarities and differences between various head phantoms that might be used for dose measurements in diagnostic imaging procedures. Methods: We chose four frequently used anthropomorphic head phantoms (SK-150, PBU-50, RS-240T and Alderson Rando), a computational patient phantom (Zubal) and the CTDI head phantom for comparison in our study. We did a CT scan of the head phantoms using the same protocol and compared their dimensions and CT numbers. The scan data was used to calculate dose values for each of the phantoms using EGSnrc Monte Carlo software. An .egsphant file was constructed to describe these phantoms using a Visual C++ program for DOSXYZnrc/EGSnrc simulation. The lens dose was calculated for a simulated CBCT scan using DOSXYZnrc/EGSnrc and the calculated doses were validated with measurements using Gafchromic film and an ionization chamber. Similar calculations and measurements were made for PA radiography to investigate the attenuation and backscatter differences between these phantoms. We used the Zubal phantom as the standard for comparison since it was developed based on a CT scan of a patient. Results: The lens dose for the Alderson Rando phantom is around 9% different than the Zubal phantom, while the lens dose for the PBU-50 phantom was about 50% higher, possibly because its skull thickness and the density of bone and soft tissue are lower than anthropometric values. The lens dose for the CTDI phantom is about 500% higher because of its totally different structure. The entrance dose profiles are similar for the five anthropomorphic phantoms, while that for the CTDI phantom was distinctly different. Conclusion: The CTDI and PBU-50 head phantoms have substantially larger lens dose estimates in CBCT. The other four head phantoms have similar entrance dose with backscatter hence should be preferred for dose measurement in imaging procedures of the head. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems

  19. Adult phantoms as function of body mass, height and posture by using caucasian anthropomorphic statistics; Fantomas adultos em funcao da massa corporal, da altura e da postura usando estatisticas antropometricas caucasianas

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Richard; Cassola, Vagner Ferreira; Lira, Carlos Alberto Brayner de Oliveira; Khoury, Helen Jamil, E-mail: rkramer@uol.com.b, E-mail: vagner.cassola@gmail.co [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear; Milian, Felix Mas, E-mail: felix_mas_milian@yahoo.co [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Dept. de Ciencias Exatas e Tecnologia

    2011-10-26

    The CALLDose{sub X} 4.0 computer program uses conversion coefficients for the MASH and FASH adult phantoms on the vertical and supine postures, representing the standard man and woman according to ICRP 90 and are called 'basic phantoms'. For improving the representation of real patients in the CALLDose{sub X}, this paper developed adults phantoms as function of mass and height by using anthropometric data from nine of them prevailing caucasian countries

  20. Repeatability of Computerized Tomography-Based Anthropomorphic Measurements of Frailty in Patients With Pulmonary Fibrosis Undergoing Lung Transplantation.

    Science.gov (United States)

    McClellan, Taylor; Allen, Brian C; Kappus, Matthew; Bhatti, Lubna; Dafalla, Randa A; Snyder, Laurie D; Bashir, Mustafa R

    To determine interreader and intrareader repeatability and correlations among measurements of computerized tomography-based anthropomorphic measurements in patients with pulmonary fibrosis undergoing lung transplantation. This was an institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study of 23 randomly selected subjects (19 male and 4 female; median age = 69 years; range: 66-77 years) with idiopathic pulmonary fibrosis undergoing pulmonary transplantation, who had also undergone preoperative thoracoabdominal computerized tomography. Five readers of varying imaging experience independently performed the following cross-sectional area measurements at the inferior endplate of the L3 vertebral body: right and left psoas muscles, right and left paraspinal muscles, total abdominal musculature, and visceral and subcutaneous fat. The following measurements were obtained at the inferior endplate of T6: right and left paraspinal muscles with and without including the trapezius muscles and subcutaneous fat. Three readers repeated all measurements to assess intrareader repeatability. Intrareader repeatability was nearly perfect (interclass correlation coefficients = 0.99, P < 0.001). Interreader agreement was excellent across all 5 readers (interclass correlation coefficients: 0.71-0.99, P < 0.001). Coefficients of variance between measures ranged from 3.2%-6.8% for abdominal measurements, but were higher for thoracic measurements, up to 23.9%. Correlation between total paraspinal and total psoas muscle area was strong (r 2 = 0.67, P < 0.001). Thoracic and abdominal musculature had a weaker correlation (r 2 = 0.35-0.38, P < 0.001). Measures of thoracic and abdominal muscle and fat area are highly repeatable in patients with pulmonary fibrosis undergoing lung transplantation. Measures of muscle area are strongly correlated among abdominal locations, but inversely correlated between abdominal and thoracic locations

  1. Organ dose evaluation for CT scans based on in-phantom measurements

    International Nuclear Information System (INIS)

    Liu Haikuan; Zhuo Weihai; Chen Bo; Yi Yanling; Li Dehong

    2009-01-01

    Objective: To explore the organ doses and their distributions in different projections of CT scans. Methods: The CT values were measured and the linear absorption coefficients were derived for the main organs of the anthropomorphic phantom to compare with the normal values of human beings. The radiophotoluminescent glass dosimeters were set into various tissues or organs of the phantom for mimic measurements of the organ doses undergoing the head, chest, abdomen and pelvis CT scans, respectively. Results: The tissue equivalence of the phantom used in this study was good. The brain had the largest organ dose undergoing the head CT scan. The organ doses in thyroid, breast, lung and oesophagus were relatively large in performing the chest CT scan, while the liver, stomach, colon and lung had relatively hrge organ doses in abdomen CT practice. The doses in bone surface and colon exceeded by 50 mGy in a single pelvis CT scan. Conclusions: The organ doses and their distributions largely vary with different projections of CT scans. The organ doses of colon, bone marrow,gonads and bladder are fairly large in performing pelvis CT scan, which should be paid attention in the practice. (authors)

  2. A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories.

    Science.gov (United States)

    Rezazadeh, Siavash; Gregg, Robert D

    2016-10-01

    Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.

  3. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    International Nuclear Information System (INIS)

    Xu, X. Geroge

    2011-01-01

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  4. Use of realistic anthropomorphic models for calculation of radiation dose in nuclear medicine

    International Nuclear Information System (INIS)

    Stabin, Michael G.; Emmons, Mary A.; Fernald, Michael J.; Brill, A.B.; Segars, W.Paul

    2008-01-01

    Anthropomorphic phantoms based on simple geometric structures have been used in radiation dose calculations for many years. We have now developed a series of anatomically realistic phantoms representing adults and children using body models based on non-uniform rational B-spline (NURBS), with organ and body masses based on the reference values given in ICRP Publication 89. Age-dependent models were scaled and shaped to represent the reference individuals described in ICRP 89 (male and female adults, newborns, 1-, 5-, 10- and 15-year-olds), using a software tool developed in Visual C++. Voxel-based versions of these models were used with GEANT4 radiation transport codes for calculation of specific absorbed fractions (SAFs) for internal sources of photons and electrons, using standard starting energy values. Organ masses in the models were within a few % of ICRP reference masses, and physicians reviewed the models for anatomical realism. Development of individual phantoms was much faster than manual segmentation of medical images, and resulted in a very uniform standardized phantom series. SAFs were calculated on the Vanderbilt multi node computing network (ACCRE). Photon and electron SAFs were calculated for all organs in all models, and were compared to values from similar phantoms developed by others. Agreement was very good in most cases; some differences were seen, due to differences in organ mass and geometry. This realistic phantom series represents a possible replacement for the Cristy/Eckerman series of the 1980's. Both phantom sets will be included in the next release of the OLINDA/EXM personal computer code, and the new phantoms will be made generally available to the research community for other uses. Calculated radiation doses for diagnostic and therapeutic radiopharmaceuticals will be compared with previous values. (author)

  5. Monte Carlo simulations of adult and pediatric computed tomography exams: Validation studies of organ doses with physical phantoms

    International Nuclear Information System (INIS)

    Long, Daniel J.; Lee, Choonsik; Tien, Christopher; Fisher, Ryan; Hoerner, Matthew R.; Hintenlang, David; Bolch, Wesley E.

    2013-01-01

    Purpose: To validate the accuracy of a Monte Carlo source model of the Siemens SOMATOM Sensation 16 CT scanner using organ doses measured in physical anthropomorphic phantoms. Methods: The x-ray output of the Siemens SOMATOM Sensation 16 multidetector CT scanner was simulated within the Monte Carlo radiation transport code, MCNPX version 2.6. The resulting source model was able to perform various simulated axial and helical computed tomographic (CT) scans of varying scan parameters, including beam energy, filtration, pitch, and beam collimation. Two custom-built anthropomorphic phantoms were used to take dose measurements on the CT scanner: an adult male and a 9-month-old. The adult male is a physical replica of University of Florida reference adult male hybrid computational phantom, while the 9-month-old is a replica of University of Florida Series B 9-month-old voxel computational phantom. Each phantom underwent a series of axial and helical CT scans, during which organ doses were measured using fiber-optic coupled plastic scintillator dosimeters developed at University of Florida. The physical setup was reproduced and simulated in MCNPX using the CT source model and the computational phantoms upon which the anthropomorphic phantoms were constructed. Average organ doses were then calculated based upon these MCNPX results. Results: For all CT scans, good agreement was seen between measured and simulated organ doses. For the adult male, the percent differences were within 16% for axial scans, and within 18% for helical scans. For the 9-month-old, the percent differences were all within 15% for both the axial and helical scans. These results are comparable to previously published validation studies using GE scanners and commercially available anthropomorphic phantoms. Conclusions: Overall results of this study show that the Monte Carlo source model can be used to accurately and reliably calculate organ doses for patients undergoing a variety of axial or helical CT

  6. Phantom-based interactive simulation system for dental treatment training.

    Science.gov (United States)

    Sae-Kee, Bundit; Riener, Robert; Frey, Martin; Pröll, Thomas; Burgkart, Rainer

    2004-01-01

    In this paper, we propose a new interactive simulation system for dental treatment training. The system comprises a virtual reality environment and a force-torque measuring device to enhance the capabilities of a passive phantom of tooth anatomy in dental treatment training processes. The measuring device is connected to the phantom, and provides essential input data for generating the graphic animations of physical behaviors such as drilling and bleeding. The animation methods of those physical behaviors are also presented. This system is not only able to enhance interactivity and accessibility of the training system compared to conventional methods but it also provides possibilities of recording, evaluating, and verifying the training results.

  7. An anthropomorphic transhumeral prosthesis socket developed based on an oscillometric pump and controlled by force-sensitive resistor pressure signals.

    Science.gov (United States)

    Razak, N A Abd; Gholizadeh, H; Hasnan, N; Osman, N A Abu; Fadzil, S S Mohd; Hashim, N A

    2017-02-01

    While considering the importance of the interface between amputees and prosthesis sockets, we study an anthropomorphic prosthesis socket whose size can be dynamically changed according to the requirements of the residual limb. First, we introduce the structure and function of the anthropomorphic prosthesis socket. Second, we study the dynamic model of the prosthesis system and analyze the dynamic characteristics of the prosthesis socket system, the inputs of an oscillometric pump, and the control mechanism of force-sensitive resistor (FSR) pressure signals. Experiments on 10 healthy subjects using the designed system yield an average detection result between 102 and 112 kPa for the FSR pressure sensor and 39 and 41 kPa for the oscillometric pump. Results show the function of the FSR pressure signal in maintaining the contact pressure between the sockets and the residual limb. The potential development of an auto-adjusted socket that uses an oscillometric pump system will provide prosthetic sockets with controllable contact pressure at the residual limb. Moreover, this development is an attractive research area for researchers involved in rehabilitation engineering, prosthetics, and orthotics.

  8. Monte Carlo-based investigation of water-equivalence of solid phantoms at 137Cs energy

    International Nuclear Information System (INIS)

    Vishwakarma, Ramkrushna S.; Palani Selvam, T.; Sahoo, Sridhar; Mishra, Subhalaxmi; Chourasiya, Ghanshyam

    2013-01-01

    Investigation of solid phantom materials such as solid water, virtual water, plastic water, RW1, polystyrene, and polymethylmethacrylate (PMMA) for their equivalence to liquid water at 137 Cs energy (photon energy of 662 keV) under full scatter conditions is carried out using the EGSnrc Monte Carlo code system. Monte Carlo-based EGSnrc code system was used in the work to calculate distance-dependent phantom scatter corrections. The study also includes separation of primary and scattered dose components. Monte Carlo simulations are carried out using primary particle histories up to 5 x 10 9 to attain less than 0.3% statistical uncertainties in the estimation of dose. Water equivalence of various solid phantoms such as solid water, virtual water, RW1, PMMA, polystyrene, and plastic water materials are investigated at 137 Cs energy under full scatter conditions. The investigation reveals that solid water, virtual water, and RW1 phantoms are water equivalent up to 15 cm from the source. Phantom materials such as plastic water, PMMA, and polystyrene phantom materials are water equivalent up to 10 cm. At 15 cm from the source, the phantom scatter corrections are 1.035, 1.050, and 0.949 for the phantoms PMMA, plastic water, and polystyrene, respectively. (author)

  9. Control volume based hydrocephalus research; a phantom study

    Science.gov (United States)

    Cohen, Benjamin; Voorhees, Abram; Madsen, Joseph; Wei, Timothy

    2009-11-01

    Hydrocephalus is a complex spectrum of neurophysiological disorders involving perturbation of the intracranial contents; primarily increased intraventricular cerebrospinal fluid (CSF) volume and intracranial pressure are observed. CSF dynamics are highly coupled to the cerebral blood flows and pressures as well as the mechanical properties of the brain. Hydrocephalus, as such, is a very complex biological problem. We propose integral control volume analysis as a method of tracking these important interactions using mass and momentum conservation principles. As a first step in applying this methodology in humans, an in vitro phantom is used as a simplified model of the intracranial space. The phantom's design consists of a rigid container filled with a compressible gel. Within the gel a hollow spherical cavity represents the ventricular system and a cylindrical passage represents the spinal canal. A computer controlled piston pump supplies sinusoidal volume fluctuations into and out of the flow phantom. MRI is used to measure fluid velocity and volume change as functions of time. Independent pressure measurements and momentum flow rate measurements are used to calibrate the MRI data. These data are used as a framework for future work with live patients and normal individuals. Flow and pressure measurements on the flow phantom will be presented through the control volume framework.

  10. Construction of an analytic-realistic phantom for adaptation of the radiographic techniques in any conventional X-ray equipment

    International Nuclear Information System (INIS)

    Pina, D.R.; Ghilardi Netto, T.; Trad, C.S.; Brochi, M.A. Corte; Duarte, S.B.; Pina, S.R.

    2001-01-01

    In the present work we construct a homogeneous phantom, for calibrating the X-ray beam. Each homogeneous phantom was used in the time-scale sensitometric method for obtaining a radiographic technique which is able to produce in the film, an optical density around 1,0 higher than the density of base plus fog. These radiographic techniques were applied in a anthropomorphic phantom (Rando) and its images were analyzed by specialists in radiology. They identified the best image and then a ideal radiographic technique for a standard patient with smaller doses, at any conventional X-ray equipment. (author)

  11. Comparison of methods for individualized astronaut organ dosimetry: Morphometry-based phantom library versus body contour autoscaling of a reference phantom

    Science.gov (United States)

    Sands, Michelle M.; Borrego, David; Maynard, Matthew R.; Bahadori, Amir A.; Bolch, Wesley E.

    2017-11-01

    One of the hazards faced by space crew members in low-Earth orbit or in deep space is exposure to ionizing radiation. It has been shown previously that while differences in organ-specific and whole-body risk estimates due to body size variations are small for highly-penetrating galactic cosmic rays, large differences in these quantities can result from exposure to shorter-range trapped proton or solar particle event radiations. For this reason, it is desirable to use morphometrically accurate computational phantoms representing each astronaut for a risk analysis, especially in the case of a solar particle event. An algorithm was developed to automatically sculpt and scale the UF adult male and adult female hybrid reference phantom to the individual outer body contour of a given astronaut. This process begins with the creation of a laser-measured polygon mesh model of the astronaut's body contour. Using the auto-scaling program and selecting several anatomical landmarks, the UF adult male or female phantom is adjusted to match the laser-measured outer body contour of the astronaut. A dosimetry comparison study was conducted to compare the organ dose accuracy of both the autoscaled phantom and that based upon a height-weight matched phantom from the UF/NCI Computational Phantom Library. Monte Carlo methods were used to simulate the environment of the August 1972 and February 1956 solar particle events. Using a series of individual-specific voxel phantoms as a local benchmark standard, autoscaled phantom organ dose estimates were shown to provide a 1% and 10% improvement in organ dose accuracy for a population of females and males, respectively, as compared to organ doses derived from height-weight matched phantoms from the UF/NCI Computational Phantom Library. In addition, this slight improvement in organ dose accuracy from the autoscaled phantoms is accompanied by reduced computer storage requirements and a more rapid method for individualized phantom generation

  12. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom

    International Nuclear Information System (INIS)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Kim, Woo Sun; Kim, In-One; Ha, Seongmin

    2016-01-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose 4 , levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose 4 levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose 4 level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose 4 obtained at 1.81 mSv. (orig.)

  13. Knowledge-based iterative model reconstruction: comparative image quality and radiation dose with a pediatric computed tomography phantom.

    Science.gov (United States)

    Ryu, Young Jin; Choi, Young Hun; Cheon, Jung-Eun; Ha, Seongmin; Kim, Woo Sun; Kim, In-One

    2016-03-01

    CT of pediatric phantoms can provide useful guidance to the optimization of knowledge-based iterative reconstruction CT. To compare radiation dose and image quality of CT images obtained at different radiation doses reconstructed with knowledge-based iterative reconstruction, hybrid iterative reconstruction and filtered back-projection. We scanned a 5-year anthropomorphic phantom at seven levels of radiation. We then reconstructed CT data with knowledge-based iterative reconstruction (iterative model reconstruction [IMR] levels 1, 2 and 3; Philips Healthcare, Andover, MA), hybrid iterative reconstruction (iDose(4), levels 3 and 7; Philips Healthcare, Andover, MA) and filtered back-projection. The noise, signal-to-noise ratio and contrast-to-noise ratio were calculated. We evaluated low-contrast resolutions and detectability by low-contrast targets and subjective and objective spatial resolutions by the line pairs and wire. With radiation at 100 peak kVp and 100 mAs (3.64 mSv), the relative doses ranged from 5% (0.19 mSv) to 150% (5.46 mSv). Lower noise and higher signal-to-noise, contrast-to-noise and objective spatial resolution were generally achieved in ascending order of filtered back-projection, iDose(4) levels 3 and 7, and IMR levels 1, 2 and 3, at all radiation dose levels. Compared with filtered back-projection at 100% dose, similar noise levels were obtained on IMR level 2 images at 24% dose and iDose(4) level 3 images at 50% dose, respectively. Regarding low-contrast resolution, low-contrast detectability and objective spatial resolution, IMR level 2 images at 24% dose showed comparable image quality with filtered back-projection at 100% dose. Subjective spatial resolution was not greatly affected by reconstruction algorithm. Reduced-dose IMR obtained at 0.92 mSv (24%) showed similar image quality to routine-dose filtered back-projection obtained at 3.64 mSv (100%), and half-dose iDose(4) obtained at 1.81 mSv.

  14. Verification of gamma knife based fractionated radiosurgery with newly developed head-thorax phantom

    International Nuclear Information System (INIS)

    Bisht, Raj Kishor; Kale, Shashank Sharad; Natanasabapathi, Gopishankar; Singh, Manmohan Jit; Agarwal, Deepak; Garg, Ajay; Rath, Goura Kishore; Julka, Pramod Kumar; Kumar, Pratik; Thulkar, Sanjay; Sharma, Bhawani Shankar

    2016-01-01

    Objective: Purpose of the study is to verify the Gamma Knife Extend™ system (ES) based fractionated stereotactic radiosurgery with newly developed head-thorax phantom. Methods: Phantoms are extensively used to measure radiation dose and verify treatment plan in radiotherapy. A human upper body shaped phantom with thorax was designed to simulate fractionated stereotactic radiosurgery using Extend™ system of Gamma Knife. The central component of the phantom aids in performing radiological precision test, dosimetric evaluation and treatment verification. A hollow right circular cylindrical space of diameter 7.0 cm was created at the centre of this component to place various dosimetric devices using suitable adaptors. The phantom is made of poly methyl methacrylate (PMMA), a transparent thermoplastic material. Two sets of disk assemblies were designed to place dosimetric films in (1) horizontal (xy) and (2) vertical (xz) planes. Specific cylindrical adaptors were designed to place thimble ionization chamber inside phantom for point dose recording along xz axis. EBT3 Gafchromic films were used to analyze and map radiation field. The focal precision test was performed using 4 mm collimator shot in phantom to check radiological accuracy of treatment. The phantom head position within the Extend™ frame was estimated using encoded aperture measurement of repositioning check tool (RCT). For treatment verification, the phantom with inserts for film and ion chamber was scanned in reference treatment position using X-ray computed tomography (CT) machine and acquired stereotactic images were transferred into Leksell Gammaplan (LGP). A patient treatment plan with hypo-fractionated regimen was delivered and identical fractions were compared using EBT3 films and in-house MATLAB codes. Results: RCT measurement showed an overall positional accuracy of 0.265 mm (range 0.223 mm–0.343 mm). Gamma index analysis across fractions exhibited close agreement between LGP and film

  15. Simulation of computed tomography dose based on voxel phantom

    Science.gov (United States)

    Liu, Chunyu; Lv, Xiangbo; Li, Zhaojun

    2017-01-01

    Computed Tomography (CT) is one of the preferred and the most valuable imaging tool used in diagnostic radiology, which provides a high-quality cross-sectional image of the body. It still causes higher doses of radiation to patients comparing to the other radiological procedures. The Monte-Carlo method is appropriate for estimation of the radiation dose during the CT examinations. The simulation of the Computed Tomography Dose Index (CTDI) phantom was developed in this paper. Under a similar conditions used in physical measurements, dose profiles were calculated and compared against the measured values that were reported. The results demonstrate a good agreement between the calculated and the measured doses. From different CT exam simulations using the voxel phantom, the highest absorbed dose was recorded for the lung, the brain, the bone surface. A comparison between the different scan type shows that the effective dose for a chest scan is the highest one, whereas the effective dose values during abdomen and pelvis scan are very close, respectively. The lowest effective dose resulted from the head scan. Although, the dose in CT is related to various parameters, such as the tube current, exposure time, beam energy, slice thickness and patient size, this study demonstrates that the MC simulation is a useful tool to accurately estimate the dose delivered to any specific organs for patients undergoing the CT exams and can be also a valuable technique for the design and the optimization of the CT x-ray source.

  16. SimDoseCT: dose reporting software based on Monte Carlo simulation for a 320 detector-row cone-beam CT scanner and ICRP computational adult phantoms

    Science.gov (United States)

    Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal

    2017-08-01

    This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT

  17. A Chinese Visible Human-based computational female pelvic phantom for radiation dosimetry simulation

    International Nuclear Information System (INIS)

    Nan, H.; Jinlu, S.; Shaoxiang, Z.; Qing, H.; Li-wen, T.; Chengjun, G.; Tang, X.; Jiang, S. B.; Xiano-lin, Z.

    2010-01-01

    Accurate voxel phantom is needed for dosimetric simulation in radiation therapy for malignant tumors in female pelvic region. However, most of the existing voxel phantoms are constructed on the basis of Caucasian or non-Chinese population. Materials and Methods: A computational framework for constructing female pelvic voxel phantom for radiation dosimetry was performed based on Chinese Visible Human datasets. First, several organs within pelvic region were segmented from Chinese Visible Human datasets. Then, polygonization and voxelization were performed based on the segmented organs and a 3D computational phantom is built in the form of a set of voxel arrays. Results: The generated phantom can be converted and loaded into treatment planning system for radiation dosimetry calculation. From the observed dosimetric results of those organs and structures, we can evaluate their absorbed dose and implement some simulation studies. Conclusion: A voxel female pelvic phantom was developed from Chinese Visible Human datasets. It can be utilized for dosimetry evaluation and planning simulation, which would be very helpful to improve the clinical performance and reduce the radiation toxicity on organ at risk.

  18. Quality assurance in RapidArc with Alderson anthropomorphic phantom using radiochromic film in comparison to MATLAB; Controle de qualidade em RapidArc com simulador de corpo humano antropomorfico Alderson utilizando filme radiocromico em comparacao ao MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Paulo L.; Silva, Leonardo P.; Santos, Maira R.; Trindade, Cassia; Martins, Lais P.; Batista, Delano V.S., E-mail: Paulo8_lgarcia@hotmail.com [Instituto Nacional de Cancer (INCA), Rio de Janeiro, RJ (Brazil); Alves, Victor G. [Instituto Nacional de Cancer (SQRIS/INCA), Rio de Janeiro, RJ (Brazil). Servico de Qualidade em Radiacoes Ionizantes

    2012-12-15

    This paper presented the quality control for RapidArc using an Alderson human body phantom and radiochromic film as an alternative system to approve the treatment plan for brain tumor. Thus, it was comprised the dose distributions provided by the treatment planning system with those measured by the film radiochromic. The gamma index (Γ) analysis, to verify the acceptability of the dose distribution, was 95% of approved points, with the mostly non-compliance points in regions near the PTV’s edges. These non-compliance points may be associated to transmission blades aspects, because the regions near the edges present significant losses compared to the central areas. Also, MATLAB has proved an effective tool for that measurements and it can be used in quality assurance programs. (author)

  19. Standing adult human phantoms based on 10th, 50th and 90th mass and height percentiles of male and female Caucasian populations

    Energy Technology Data Exchange (ETDEWEB)

    Cassola, V F; Kramer, R; De Oliveira Lira, C A B; Khoury, H J [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Professor Luiz Freire, 1000, CEP 50740-540, Recife, PE (Brazil); Milian, F M, E-mail: rkramer@uol.com.br [Department of Exact Science and Technology, State University of Santa Cruz, Campus Soane Nazare de Andrade, Km 16 Rodovia Ilheus-Itabuna, CEP 45662-000, Ilheus, BA (Brazil)

    2011-07-07

    Computational anthropomorphic human phantoms are useful tools developed for the calculation of absorbed or equivalent dose to radiosensitive organs and tissues of the human body. The problem is, however, that, strictly speaking, the results can be applied only to a person who has the same anatomy as the phantom, while for a person with different body mass and/or standing height the data could be wrong. In order to improve this situation for many areas in radiological protection, this study developed 18 anthropometric standing adult human phantoms, nine models per gender, as a function of the 10th, 50th and 90th mass and height percentiles of Caucasian populations. The anthropometric target parameters for body mass, standing height and other body measures were extracted from PeopleSize, a well-known software package used in the area of ergonomics. The phantoms were developed based on the assumption of a constant body-mass index for a given mass percentile and for different heights. For a given height, increase or decrease of body mass was considered to reflect mainly the change of subcutaneous adipose tissue mass, i.e. that organ masses were not changed. Organ mass scaling as a function of height was based on information extracted from autopsy data. The methods used here were compared with those used in other studies, anatomically as well as dosimetrically. For external exposure, the results show that equivalent dose decreases with increasing body mass for organs and tissues located below the subcutaneous adipose tissue layer, such as liver, colon, stomach, etc, while for organs located at the surface, such as breasts, testes and skin, the equivalent dose increases or remains constant with increasing body mass due to weak attenuation and more scatter radiation caused by the increasing adipose tissue mass. Changes of standing height have little influence on the equivalent dose to organs and tissues from external exposure. Specific absorbed fractions (SAFs) have also

  20. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    International Nuclear Information System (INIS)

    Sun Wenjuan; Xie Tianwu; Liu Qian; Jia Xianghong; Xu Feng

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 x 2 x 4 mm 3 for radioactive particle transport simulations from isotropic protons with energies of 5000 - 10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). (author)

  1. Three-dimensional printer-generated patient-specific phantom for artificial in vivo dosimetry in radiotherapy quality assurance.

    Science.gov (United States)

    Kamomae, Takeshi; Shimizu, Hidetoshi; Nakaya, Takayoshi; Okudaira, Kuniyasu; Aoyama, Takahiro; Oguchi, Hiroshi; Komori, Masataka; Kawamura, Mariko; Ohtakara, Kazuhiro; Monzen, Hajime; Itoh, Yoshiyuki; Naganawa, Shinji

    2017-12-01

    Pretreatment intensity-modulated radiotherapy quality assurance is performed using simple rectangular or cylindrical phantoms; thus, the dosimetric errors caused by complex patient-specific anatomy are absent in the evaluation objects. In this study, we construct a system for generating patient-specific three-dimensional (3D)-printed phantoms for radiotherapy dosimetry. An anthropomorphic head phantom containing the bone and hollow of the paranasal sinus is scanned by computed tomography (CT). Based on surface rendering data, a patient-specific phantom is formed using a fused-deposition-modeling-based 3D printer, with a polylactic acid filament as the printing material. Radiophotoluminescence glass dosimeters can be inserted in the 3D-printed phantom. The phantom shape, CT value, and absorbed doses are compared between the actual and 3D-printed phantoms. The shape difference between the actual and printed phantoms is less than 1 mm except in the bottom surface region. The average CT value of the infill region in the 3D-printed phantom is -6 ± 18 Hounsfield units (HU) and that of the vertical shell region is 126 ± 18 HU. When the same plans were irradiated, the dose differences were generally less than 2%. These results demonstrate the feasibility of the 3D-printed phantom for artificial in vivo dosimetry in radiotherapy quality assurance. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    Science.gov (United States)

    Ferreira Fonseca, T. C.; Bogaerts, R.; Hunt, John; Vanhavere, F.

    2014-11-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.

  3. A methodology to develop computational phantoms with adjustable posture for WBC calibration

    International Nuclear Information System (INIS)

    Fonseca, T C Ferreira; Vanhavere, F; Bogaerts, R; Hunt, John

    2014-01-01

    A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium. (paper)

  4. The UF family of reference hybrid phantoms for computational radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Lodwick, Daniel; Hurtado, Jorge; Pafundi, Deanna; Williams, Jonathan L; Bolch, Wesley E

    2010-01-01

    Computational human phantoms are computer models used to obtain dose distributions within the human body exposed to internal or external radiation sources. In addition, they are increasingly used to develop detector efficiencies for in vivo whole-body counters. Two classes of computational human phantoms have been widely utilized for dosimetry calculation: stylized and voxel phantoms that describe human anatomy through mathematical surface equations and 3D voxel matrices, respectively. Stylized phantoms are flexible in that changes to organ position and shape are possible given avoidance of region overlap, while voxel phantoms are typically fixed to a given patient anatomy, yet can be proportionally scaled to match individuals of larger or smaller stature, but of equivalent organ anatomy. Voxel phantoms provide much better anatomical realism as compared to stylized phantoms which are intrinsically limited by mathematical surface equations. To address the drawbacks of these phantoms, hybrid phantoms based on non-uniform rational B-spline (NURBS) surfaces have been introduced wherein anthropomorphic flexibility and anatomic realism are both preserved. Researchers at the University of Florida have introduced a series of hybrid phantoms representing the ICRP Publication 89 reference newborn, 15 year, and adult male and female. In this study, six additional phantoms are added to the UF family of hybrid phantoms-those of the reference 1 year, 5 year and 10 year child. Head and torso CT images of patients whose ages were close to the targeted ages were obtained under approved protocols. Major organs and tissues were segmented from these images using an image processing software, 3D-DOCTOR(TM). NURBS and polygon mesh surfaces were then used to model individual organs and tissues after importing the segmented organ models to the 3D NURBS modeling software, Rhinoceros(TM). The phantoms were matched to four reference datasets: (1) standard anthropometric data, (2) reference

  5. Optical phantoms of varying geometry based on thin building blocks with controlled optical properties

    NARCIS (Netherlands)

    de Bruin, Daniel M.; Bremmer, Rolf H.; Kodach, Vitali M.; de Kinkelder, Roy; van Marle, Jan; van Leeuwen, Ton G.; Faber, Dirk J.

    2010-01-01

    Current innovations in optical imaging, measurement techniques, and data analysis algorithms express the need for reliable testing and comparison methods. We present the design and characterization of silicone elastomer-based optical phantoms. Absorption is included by adding a green dye and

  6. Construction of boundary-surface-based Chinese female astronaut computational phantom and proton dose estimation

    Science.gov (United States)

    Sun, Wenjuan; JIA, Xianghong; XIE, Tianwu; XU, Feng; LIU, Qian

    2013-01-01

    With the rapid development of China's space industry, the importance of radiation protection is increasingly prominent. To provide relevant dose data, we first developed the Visible Chinese Human adult Female (VCH-F) phantom, and performed further modifications to generate the VCH-F Astronaut (VCH-FA) phantom, incorporating statistical body characteristics data from the first batch of Chinese female astronauts as well as reference organ mass data from the International Commission on Radiological Protection (ICRP; both within 1% relative error). Based on cryosection images, the original phantom was constructed via Non-Uniform Rational B-Spline (NURBS) boundary surfaces to strengthen the deformability for fitting the body parameters of Chinese female astronauts. The VCH-FA phantom was voxelized at a resolution of 2 × 2 × 4 mm3for radioactive particle transport simulations from isotropic protons with energies of 5000–10 000 MeV in Monte Carlo N-Particle eXtended (MCNPX) code. To investigate discrepancies caused by anatomical variations and other factors, the obtained doses were compared with corresponding values from other phantoms and sex-averaged doses. Dose differences were observed among phantom calculation results, especially for effective dose with low-energy protons. Local skin thickness shifts the breast dose curve toward high energy, but has little impact on inner organs. Under a shielding layer, organ dose reduction is greater for skin than for other organs. The calculated skin dose per day closely approximates measurement data obtained in low-Earth orbit (LEO). PMID:23135158

  7. Development and testing of MR imaging phantoms based on specifications of the American Association of Physicists in Medicine

    International Nuclear Information System (INIS)

    Mun, S.K.

    1990-01-01

    This paper reports on a set of MR imaging phantoms developed based on AAPMMR imaging specifications. The AAPMMR imaging committee defined the basic features needed to measure the image quality and performance of MR systems. The phantoms were designed by integrating the AAPM specifications into two packages, so that a maximum number of imaging parameters can be measured within a short time. In the case of a cubical phantom, section thickness, section to section gap, spatial resolution in phase encoding and read-out directions, and resonant frequency can be measured in all three directions without changing the phantom orientations. It uses square grooves for resolution and thin hot ramps for section measurements. A larger phantom can measure uniformity of signal intensity, linearity, signal-to-noise ratio, and quadrature phase error over a large field of view. The phantom has flood section, a set of square grids, and a bubble

  8. Computational hybrid anthropometric paediatric phantom library for internal radiation dosimetry

    Science.gov (United States)

    Xie, Tianwu; Kuster, Niels; Zaidi, Habib

    2017-04-01

    Hybrid computational phantoms combine voxel-based and simplified equation-based modelling approaches to provide unique advantages and more realism for the construction of anthropomorphic models. In this work, a methodology and C++ code are developed to generate hybrid computational phantoms covering statistical distributions of body morphometry in the paediatric population. The paediatric phantoms of the Virtual Population Series (IT’IS Foundation, Switzerland) were modified to match target anthropometric parameters, including body mass, body length, standing height and sitting height/stature ratio, determined from reference databases of the National Centre for Health Statistics and the National Health and Nutrition Examination Survey. The phantoms were selected as representative anchor phantoms for the newborn, 1, 2, 5, 10 and 15 years-old children, and were subsequently remodelled to create 1100 female and male phantoms with 10th, 25th, 50th, 75th and 90th body morphometries. Evaluation was performed qualitatively using 3D visualization and quantitatively by analysing internal organ masses. Overall, the newly generated phantoms appear very reasonable and representative of the main characteristics of the paediatric population at various ages and for different genders, body sizes and sitting stature ratios. The mass of internal organs increases with height and body mass. The comparison of organ masses of the heart, kidney, liver, lung and spleen with published autopsy and ICRP reference data for children demonstrated that they follow the same trend when correlated with age. The constructed hybrid computational phantom library opens up the prospect of comprehensive radiation dosimetry calculations and risk assessment for the paediatric population of different age groups and diverse anthropometric parameters.

  9. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    Science.gov (United States)

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  10. A capillary-based perfusion phantom for simulation of brain perfusion for MRI

    International Nuclear Information System (INIS)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W.; Wille, C.; Kempski, O.; Stoeter, P.

    2010-01-01

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  11. Non-invasive ultrasound-based temperature imaging for monitoring radiofrequency heating-phantom results

    International Nuclear Information System (INIS)

    Daniels, M J; Varghese, T; Madsen, E L; Zagzebski, J A

    2007-01-01

    Minimally invasive therapies (such as radiofrequency ablation) are becoming more commonly used in the United States for the treatment of hepatocellular carcinomas and liver metastases. Unfortunately, these procedures suffer from high recurrence rates of hepatocellular carcinoma (∼34-55%) or metastases following ablation therapy. The ability to perform real-time temperature imaging while a patient is undergoing radiofrequency ablation could provide a significant reduction in these recurrence rates. In this paper, we demonstrate the feasibility of ultrasound-based temperature imaging on a tissue-mimicking phantom undergoing radiofrequency heating. Ultrasound echo signals undergo time shifts with increasing temperature, which are tracked using 2D correlation-based speckle tracking methods. Time shifts or displacements in the echo signal are accumulated, and the gradient of these time shifts are related to changes in the temperature of the tissue-mimicking phantom material using a calibration curve generated from experimental data. A tissue-mimicking phantom was developed that can undergo repeated radiofrequency heating procedures. Both sound speed and thermal expansion changes of the tissue-mimicking material were measured experimentally and utilized to generate the calibration curve relating temperature to the displacement gradient. Temperature maps were obtained, and specific regions-of-interest on the temperature maps were compared to invasive temperatures obtained using fiber-optic temperature probes at the same location. Temperature elevation during a radiofrequency ablation procedure on the phantom was successfully tracked to within ±0.5 0 C

  12. A digital phantom of the axilla based on the Visible Human Project data set

    Science.gov (United States)

    McCallum, S. J.; Welch, A. E.; Baker, L.

    2001-08-01

    In this paper, we describe the development of a new digital phantom designed for Monte Carlo simulations of breast cancer and particularly positron emission tomography (PET) imaging of the axillary lymph nodes. The phantom was based on data from the Visible Human Project female data set. The phantom covers the head-to-diaphragm regions; 17 major tissue types were segmented and 66 individual lymph nodes were identified. The authors have used the phantom in Monte Carlo simulations to model a reduced field-of-view PET imager based on two flat plate arrays placed on either side of the shoulder. Images used a simple single angle set of projections. The authors have conducted two preliminary studies: one modeling a single-frame PET acquisition 60 min after FDG injection and the other modeling a dynamic PET acquisition simulating four time frames after FDG injection. The dynamic results were processed into parametric images using the Patlak method and show the advantage to be gained by including the temporal information for legion detection. The authors' preliminary results indicate that the performance of such an imager forming projection images is not sufficient for axillary node PET imaging.

  13. A capillary-based perfusion phantom for simulation of brain perfusion for MRI; Ein kapillarbasiertes Phantom zur Simulation der Gehirnperfusion mit der Magnet-Resonanz-Tomografie

    Energy Technology Data Exchange (ETDEWEB)

    Maciak, A.; Kronfeld, A.; Mueller-Forell, W. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neuroradiologie; Wille, C. [Fachhochschule Bingen (Germany). Inst. fuer Informatik; Kempski, O. [Universitaetsklinikum Mainz (Germany). Inst. fuer Neurochirurgische Pathophysiologie; Stoeter, P. [CEDIMAT, Santo Domingo (Dominican Republic). Inst. of Neuroradiology

    2010-10-15

    Purpose: The measurement of the CBF is a non-standardized procedure and there are no reliable gold standards. This abstract shows a capillary-based perfusion-phantom for CE-DSC-MRI. It has equivalent flow properties to those within the tissue capillary system of the human brain and allows the validation of the Siemens Perfusion (MR) software. Materials and Methods: The perfusion phantom consists of a dialyzer for the simulation of the capillary system, a feeding tube for simulation of the AIF and a pulsatile pump for simulation of the heart. Using this perfusion phantom, the exact determination of the gold standard CBF due to the well-known geometry of the phantom is easy. It was validated based on different perfusion measurements. These measurements were investigated with standard software (Siemens Perfusion MR). The software determined the CBF within the capillary system. Based on this CBF, a comparison to the gold standard was made with several different flow speeds. After AIF selection, a total of 726 CBF data points were automatically extracted by the software. Results: This results in a comparison of the gold standard CBF to these 726 CBF values. Therefore, a reproducible and reliable deviation estimation between gold standard CBF and measured CBF using the software was computed. It can be shown that the deviation between gold standard and software-based evaluation ranges between 1 and 31 %. Conclusion: There is no significance for any correlation between flow speed and amount of deviation. The mean measured CBF is 11.4 % higher than the gold standard CBF (p-value < 0.001). Using this kind of perfusion-phantom, the validation of different software systems allows reliable conclusions about their quality. (orig.)

  14. Population of 224 realistic human subject-based computational breast phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, David W. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Wells, Jered R., E-mail: jered.wells@duke.edu [Clinical Imaging Physics Group and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Sturgeon, Gregory M. [Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 (United States); Samei, Ehsan [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics, Electrical and Computer Engineering, and Biomedical Engineering, and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Dobbins, James T. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Physics and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Segars, W. Paul [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States); Lo, Joseph Y. [Department of Radiology and Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina 27705 and Departments of Electrical and Computer Engineering and Biomedical Engineering and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27705 (United States)

    2016-01-15

    Purpose: To create a database of highly realistic and anatomically variable 3D virtual breast phantoms based on dedicated breast computed tomography (bCT) data. Methods: A tissue classification and segmentation algorithm was used to create realistic and detailed 3D computational breast phantoms based on 230 + dedicated bCT datasets from normal human subjects. The breast volume was identified using a coarse three-class fuzzy C-means segmentation algorithm which accounted for and removed motion blur at the breast periphery. Noise in the bCT data was reduced through application of a postreconstruction 3D bilateral filter. A 3D adipose nonuniformity (bias field) correction was then applied followed by glandular segmentation using a 3D bias-corrected fuzzy C-means algorithm. Multiple tissue classes were defined including skin, adipose, and several fractional glandular densities. Following segmentation, a skin mask was produced which preserved the interdigitated skin, adipose, and glandular boundaries of the skin interior. Finally, surface modeling was used to produce digital phantoms with methods complementary to the XCAT suite of digital human phantoms. Results: After rejecting some datasets due to artifacts, 224 virtual breast phantoms were created which emulate the complex breast parenchyma of actual human subjects. The volume breast density (with skin) ranged from 5.5% to 66.3% with a mean value of 25.3% ± 13.2%. Breast volumes ranged from 25.0 to 2099.6 ml with a mean value of 716.3 ± 386.5 ml. Three breast phantoms were selected for imaging with digital compression (using finite element modeling) and simple ray-tracing, and the results show promise in their potential to produce realistic simulated mammograms. Conclusions: This work provides a new population of 224 breast phantoms based on in vivo bCT data for imaging research. Compared to previous studies based on only a few prototype cases, this dataset provides a rich source of new cases spanning a wide range

  15. Phantom evaluation of a cardiac SPECT/VCT system that uses a common set of solid-state detectors for both emission and transmission scans.

    Science.gov (United States)

    Bai, Chuanyong; Conwell, Richard; Kindem, Joel; Babla, Hetal; Gurley, Mike; De Los Santos, Romer; Old, Rex; Weatherhead, Randy; Arram, Samia; Maddahi, Jamshid

    2010-06-01

    We developed a cardiac SPECT system (X-ACT) with low dose volume CT transmission-based attenuation correction (AC). Three solid-state detectors are configured to form a triple-head system for emission scans and reconfigured to form a 69-cm field-of-view detector arc for transmission scans. A near mono-energetic transmission line source is produced from the collimated fluorescence x-ray emitted from a lead target when the target is illuminated by a narrow polychromatic x-ray beam from an x-ray tube. Transmission scans can be completed in 1 min with insignificant patient dose (deep dose equivalent used phantom studies to evaluate (1) the accuracy of the reconstructed attenuation maps, (2) the effect of AC on image uniformity, and (3) the effect of AC on defect contrast (DC). The phantoms we used included an ACR phantom, an anthropomorphic phantom with a uniform cardiac insert, and an anthropomorphic phantom with two defects in the cardiac insert. The reconstructed attenuation coefficient of water at 140 keV was .150 +/- .003/cm in the uniform region of the ACR phantom, .151 +/- .003/cm and .151 +/- .002/cm in the liver and cardiac regions of the anthropomorphic phantom. The ACR phantom images with AC showed correction of the bowing effect due to attenuation in the images without AC (NC). The 17-segment scores of the images of the uniform cardiac insert were 78.3 +/- 6.5 before and 87.9 +/- 3.3 after AC (average +/- standard deviation). The inferior-to-anterior wall ratio and the septal-to-lateral wall ratio were .99 and 1.16 before and 1.02 and 1.00 after AC. The DC of the two defects was .528 and .156 before and .628 and .173 after AC. The X-ACT system generated accurate attenuation maps with 1-minute transmission scans. AC improved image quality and uniformity over NC.

  16. Are anthropomorphic persuasive appeals effective? The role of the recipient's motivations.

    Science.gov (United States)

    Tam, Kim-Pong

    2015-03-01

    Anthropomorphic persuasive appeals are prevalent. However, their effectiveness has not been well studied. The present research addresses this issue with two experiments in the context of environmental persuasion. It shows that anthropomorphic messages, relative to non-anthropomorphic ones, appear to motivate more conservation behaviour and elicit more favourable message responses only among recipients who have a strong need for effectance or social connection. Among recipients whose such need is weak, anthropomorphic appeals seem to backfire. These findings extend the research on motivation and persuasion and add evidence to the motivational bases of anthropomorphism. In addition, joining some recent studies, the present research highlights the implications of anthropomorphism of nature for environmental conservation efforts, and offers some practical suggestions for environmental persuasion. © 2014 The British Psychological Society.

  17. Dosimetric intercomparison for multicenter clinical trials using a patient-based anatomic pelvic phantom

    International Nuclear Information System (INIS)

    Ebert, M. A.; Harrison, K. M.; Howlett, S. J.; Cornes, D.; Bulsara, M.; Hamilton, C. S.; Kron, T.; Joseph, D. J.; Denham, J. W.

    2011-01-01

    Purpose: To assess dose delivery accuracy to clinically significant points in a realistic patient geometry for two separate pelvic radiotherapy scenarios. Methods: An inhomogeneous pelvic phantom was transported to 36 radiotherapy centers in Australia and New Zealand. The phantom was treated according to Phase III rectal and prostate trial protocols. Point dose measurements were made with thermoluminescent dosimeters (TLDs) and an ionisation chamber. Comprehensive site-demographic, treatment planning, and physical data were collected for correlation with measurement outcomes. Results: Dose delivery to the prescription point for the rectal treatment was consistent with planned dose (mean difference between planned and measured dose - 0.1 ± 0.3% std err). Dose delivery in the region of the sacral hollow was consistently higher than planned (+1.2 ± 0.2%). For the prostate treatment, dose delivery to the prostate volume was consistent with planned doses (-0.49 ± 0.2%) and planned dose uniformity, though with a tendency to underdose the PTV at the prostate-rectal border. Measured out-of-field doses were significantly higher than planned. Conclusions: A phantom based on realistic anatomy and heterogeneity can be used to comprehensively assess the influence of multiple aspects of the radiotherapy treatment process on dose delivery. The ability to verify dose delivery for two trials with a single phantom was advantageous.

  18. How gestures affect students: A comparative experiment using class presentations conducted by an anthropomorphic agent

    Science.gov (United States)

    Shirakawa, Tomohiro; Sato, Hiroshi; Imao, Tomoya

    2017-07-01

    Recently, a variety of user interfaces have been developed based on human-robot and human-agent interaction, and anthropomorphic agents are used as one type of interface. However, the use of anthropomorphic agents is applied mainly to the medical and cognitive sciences, and there are few studies of their application to other fields. Therefore, we used an anthropomorphic agent of MMD in a virtual lecture to analyze the effect of gestures on students and search for ways to apply anthropomorphic agents to the field of educational technology.

  19. Using case-based reasoning for the reconstitution and manipulation of voxelized phantoms

    International Nuclear Information System (INIS)

    Henriet, J.; Fontaine, E.; Bopp, M.; Makovicka, L.; Farah, J.; Broggio, D.; Franck, D.; Chebel-Morello, B.

    2010-01-01

    The authors reports the development of the EquiVox platform, the aim of which is to allow a radioprotection expert (physician, biologist or other) to work with a phantom which will be the closest possible to the examined person in order to make an as precise as possible dosimetric assessment. The objective is to help to select the best phantom among those the expert knows depending on the assessment type he wants to make. First, they present the general principles of the case-based reasoning, and then the EquiVox platform which proposes all the steps: formalization, elaboration, comparison, and so on. Based on typical numerical values associated with different morphological characteristics, they present and discuss graphical results obtained by the platform. They also discuss their validity and reliability

  20. Monte Carlo Simulations for Homeland Security Using Anthropomorphic Phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Kimberly A. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2008-01-01

    A radiological dispersion device (RDD) is a device which deliberately releases radioactive material for the purpose of causing terror or harm. In the event that a dirty bomb is detonated, there may be airborne radioactive material that can be inhaled as well as settle on an individuals leading to external contamination.

  1. A software to edit voxel phantoms and to calculate conversion coefficients for radiation protection

    International Nuclear Information System (INIS)

    Vieira, J.W.; Stosic, B.; Lima, F.R.A.; Kramer, R.; Santos, A.M.; Lima, V.J.M.

    2005-01-01

    The MAX and FAX phantoms have been developed based on a male and female, respectively, adult body from ICRP and coupled to the Monte Carlo code (EGS4). These phantoms permit the calculating of the equivalent dose in organs and tissues of the human body for the radiation protection purposes . In the constructing of these anthropomorphic models, the software developed called FANTOMAS, which performs tasks as file format conversion, filtering 2D and 3D images, exchange of identifying numbers of organs, body mass adjustments based in volume, resampling of 2D and 3D images, resize images, preview consecutive slices of the phantom, running computational models of exposure FANTOMA/EGS4 and viewing graphics of conversion factors between equivalent dose and a measurable dosimetric quantity. This paper presents the main abilities of FANTOMAS and uses the MAX and/or FAX to exemplify some procedures

  2. Reproducibility of phantom-based quality assurance parameters in real-time ultrasound imaging.

    Science.gov (United States)

    Sipilä, Outi; Blomqvist, Päivi; Jauhiainen, Mervi; Kilpeläinen, Tiina; Malaska, Paula; Mannila, Vilma; Vinnurva-Jussila, Tuula; Virsula, Sari

    2011-07-01

    In a large radiological center, the ultrasound (US) quality assurance (QA) program involves several professionals. Although the operator and the parameters utilized can contribute to the results, the selected QA parameters should still reflect the quality of the US scanner, not the measuring process. To evaluate the reproducibility of recommended phantom-based US QA parameters in a realistic environment. Six sonographers measured six high-end US scanners with 20 transducers using a general purpose phantom. Every transducer was measured altogether seven times, using one frequency per transducer. The QA parameters studied were homogeneity, visualization depth, vertical and horizontal distance measurements, axial and lateral resolution, and the correct visibility of anechoic and high-contrast masses. The evaluation of the homogeneity was based on visual observations. Inter-observer interquartile ranges were computed for the grading of the masses. For the other QA parameters, the mean inter- and intra-observer coefficients of variation (CoV) were calculated. In addition, the symmetry of the reverberations when imaging air with a clean transducer was checked. The mean inter-observer CoVs were: visualization depth 11 ± 4%, vertical distance 1.7 ± 0.4%, horizontal distance 1.4 ± 0.6%, axial resolution 22 ± 7%, and lateral resolution 16 ± 8%. The mean intra-observer values were about half of these values with similar standard deviations. The visual evaluation of the homogeneity and the symmetry of the reverberations produced false-positive findings in 5% of the cases, but were found useful in detecting a defective transducer. The grading of the masses had mean interquartile ranges of 20-30% of the grading scale. The inter-observer variability in measuring phantom-based QA parameters can be relatively high. This should be considered when implementing a phantom-based QA protocol and evaluating the results.

  3. Development of pathological anthropomorphic models using 3D modelling techniques for numerical dosimetry

    International Nuclear Information System (INIS)

    Costa, Kleber Souza Silva; Barbosa, Antonio Konrado de Santana; Vieira, Jose Wilson; Lima, Fernando Roberto de Andrade

    2011-01-01

    Computational exposure models can be used to estimate human body absorbed dose in a series of situations such as X-Ray exams for diagnosis, accidents and medical treatments. These models are fundamentally composed of an anthropomorphic simulator (phantom), an algorithm that simulates a radioactive source and a Monte Carlo Code. The accuracy of data obtained in the simulation is strongly connected to the adequacy of such simulation to the real situation. The phantoms are one of the key factors for the researcher manipulation. They are generally developed in supine position and its anatomy is patronized by compiled data from international institutions such as ICRP or ICRU. Several pathologies modify the structure of organs and body tissues. In order to measure how significant these alterations are, an anthropomorphic model was developed for this study: patient mastectomies. This model was developed using voxel phantom FASH and then coupled with EGSnrc Monte Carlo code

  4. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation

    International Nuclear Information System (INIS)

    Qiu, R.; Li, J.; Zhang, Z.; Liu, L.; Bi, L.; Ren, L.

    2009-01-01

    A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface. (authors)

  5. Dose conversion coefficients based on the Chinese mathematical phantom and MCNP code for external photon irradiation.

    Science.gov (United States)

    Qiu, Rui; Li, Junli; Zhang, Zhan; Liu, Liye; Bi, Lei; Ren, Li

    2009-02-01

    A set of conversion coefficients from kerma free-in-air to the organ-absorbed dose are presented for external monoenergetic photon beams from 10 keV to 10 MeV based on the Chinese mathematical phantom, a whole-body mathematical phantom model. The model was developed based on the methods of the Oak Ridge National Laboratory mathematical phantom series and data from the Chinese Reference Man and the Reference Asian Man. This work is carried out to obtain the conversion coefficients based on this model, which represents the characteristics of the Chinese population, as the anatomical parameters of the Chinese are different from those of Caucasians. Monte Carlo simulation with MCNP code is carried out to calculate the organ dose conversion coefficients. Before the calculation, the effects from the physics model and tally type are investigated, considering both the calculation efficiency and precision. In the calculation irradiation conditions include anterior-posterior, posterior-anterior, right lateral, left lateral, rotational and isotropic geometries. Conversion coefficients from this study are compared with those recommended in the Publication 74 of International Commission on Radiological Protection (ICRP74) since both the sets of data are calculated with mathematical phantoms. Overall, consistency between the two sets of data is observed and the difference for more than 60% of the data is below 10%. However, significant deviations are also found, mainly for the superficial organs (up to 65.9%) and bone surface (up to 66%). The big difference of the dose conversion coefficients for the superficial organs at high photon energy could be ascribed to kerma approximation for the data in ICRP74. Both anatomical variations between races and the calculation method contribute to the difference of the data for bone surface.

  6. Measurement of hard tissue density of head phantom based on the HU by using CBCT

    International Nuclear Information System (INIS)

    Kim, Moon Sun; Kang, Dong Wan; Kim, Jae Duk

    2009-01-01

    The purpose of this study was to determine a conversion coefficient for Hounsfield Units(HU) to material density (g cm -3 ) obtained from cone-beam computed tomography (CBMercuRay TM ) data and to measure the hard tissue density based on the Hounsfield scale on dental head phantom. CT Scanner Phantom (AAPM) equipped with CT Number Insert consists of five cylindrical pins of materials with different densities and teflon ring was scanned by using the CBMercuRay TM (Hitachi, Tokyo, Japan) volume scanner. The raw data were converted into DICOM format and the HU of different areas of CT number insert measured by using CBWorks TM . Linear regression analysis and Student t-test were performed statistically. There was no significant difference (P>0.54) between real densities and measured densities. A linear regression was performed using the density, ρ (g cm -3 ), as the dependent variable in terms of the HU (H). The regression equation obtained was ρ=0.00072 H-0.01588 with an R2 value of 0.9968. Density values based on the Hounsfield scale was 1697.1 ± 24.9 HU in cortical bone, 526.5 ± 44.4 HU in trabecular bone, 2639.1 ± 48.7 HU in enamel, 1246.1 ± 39.4 HU in dentin of dental head phantom. CBCT provides an effective option for determination of material density expressed as Hounsfield Units.

  7. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    International Nuclear Information System (INIS)

    Bolch, Wesley

    2010-01-01

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2's Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2's revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-(micro)m cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-(micro)m layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  8. MicroCT-Based Skeletal Models for Use in Tomographic Voxel Phantoms for Radiological Protection

    Energy Technology Data Exchange (ETDEWEB)

    Bolch, Wesley [Univ. of Florida, Gainesville, FL (United States)

    2010-03-30

    The University of Florida (UF) proposes to develop two high-resolution image-based skeletal dosimetry models for direct use by ICRP Committee 2’s Task Group on Dose Calculation in their forthcoming Reference Voxel Male (RVM) and Reference Voxel Female (RVF) whole-body dosimetry phantoms. These two phantoms are CT-based, and thus do not have the image resolution to delineate and perform radiation transport modeling of the individual marrow cavities and bone trabeculae throughout their skeletal structures. Furthermore, new and innovative 3D microimaging techniques will now be required for the skeletal tissues following Committee 2’s revision of the target tissues of relevance for radiogenic bone cancer induction. This target tissue had been defined in ICRP Publication 30 as a 10-μm cell layer on all bone surfaces of trabecular and cortical bone. The revised target tissue is now a 50-μm layer within the marrow cavities of trabecular bone only and is exclusive of the marrow adipocytes. Clearly, this new definition requires the use of 3D microimages of the trabecular architecture not available from past 2D optical studies of the adult skeleton. With our recent acquisition of two relatively young cadavers (males of age 18-years and 40-years), we will develop a series of reference skeletal models that can be directly applied to (1) the new ICRP reference voxel man and female phantoms developed for the ICRP, and (2) pediatric phantoms developed to target the ICRP reference children. Dosimetry data to be developed will include absorbed fractions for internal beta and alpha-particle sources, as well as photon and neutron fluence-to-dose response functions for direct use in external dosimetry studies of the ICRP reference workers and members of the general public

  9. Symbol phantoms

    International Nuclear Information System (INIS)

    Yamaguchi, Hiroshi; Hongo, Syozo; Takeshita, Hiroshi

    1990-01-01

    We have developed Japanese phantoms in two procedures for computation of organ doses exposed to internal and/or external radiation sources. One method is to make mathematical phantoms on the basis of ORNL mathematical phantoms. Parameters to specify organs of Japanese mathematical phantom are determined by interpolations of the ORNL data, which define the organs of Caucasian males and females of various ages, i.e. new born, 1, 5, 10, 15 years and adult, with survey data for Japanese physiques. Another procedure is to build 'symbol phantoms' for the Japanese public. The concept and its method of the symbol phantom enables us to make a phantom for an individual when we have all of his transversal section images obtained by a medical imaging device like MRI, and thus we may achieve more realistic phantoms for Japanese public than the mathematical phantoms. Both studies are in progress in NIRS. (author)

  10. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies.

    Science.gov (United States)

    Demitri, Christian; Sannino, Alessandro; Conversano, Francesco; Casciaro, Sergio; Distante, Alessandro; Maffezzoli, Alfonso

    2008-11-01

    Ultrasound medical imaging (UMI) is the most widely used image analysis technique, and often requires advanced in-vitro set up to perform morphological and functional investigations. These studies are based on contrast properties both related to tissue structure and injectable contrast agents (CA). In this work, we present a three-dimensional structure composed of two different hydrogels reassembly the microvascular network of a human tissue. This phantom was particularly suitable for the echocontrastographic measurements in human microvascular system. This phantom has been characterized to present the acoustic properties of an animal liver, that is, acoustic impedance (Z) and attenuation coefficient (AC), in UMI signal analysis in particular; the two different hydrogels have been selected to simulate the target organ and the acoustic properties of the vascular system. The two hydrogels were prepared starting from cellulose derivatives to simulating the target organ parenchyma and using a PEG-diacrylate to reproduce the vascular system. Moreover, harmonic analysis was performed on the hydrogel mimicking the liver parenchyma hydrogel to evaluate the ultrasound (US) distortion during echographic measurement. The phantom was employed in the characterization of an experimental US CA. Perfect agreement was found when comparing the hydrogel acoustical properties materials with the corresponding living reference tissues (i.e., vascular and parenchimal tissue).

  11. International whole body counter intercomparison based on BOMAB phantom simulating 4 years old child

    International Nuclear Information System (INIS)

    Battisti, P.; Tarroni, G.

    1995-11-01

    In April 1993 a whole body counter intercomparison campaign, The 1993 Intercomparison/Intercalibration, started. The campaign has been organized by The Canadian National Reference Centre for In-Vivo Monitoring of Radiation Protection Bureau, Health Canada and The United States Department of Energy and it was based on measurements on a BOMAB type phantom simulating a 4 years old child. The phantom was filled with radioactive tissue substitute resin and an unknown quantity of radioactivity. Each facility was asked to determine the identity and amount of the radionuclide(s), knowing that the specific activity in the 10 BOMAB's sections was the same. Each facility was also asked to calculate the minimum detectable activity of all the radionuclides detected in the phantom. 35 Facilities from 20 different Countries took part in the initiative. The Institute for Radiation Protection of the Environment Department of ENEA (ENEA AMB IRP) represented Italy. Intercomparison results supplied by ENEA AMB IRP as radionuclides identification, activity data and associated precision, minimum detectable activity levels, can be considered satisfactory and comparable with results supplied by similar-facilities

  12. Experimental verification of internal dosimetry calculations: Construction of a heterogeneous phantom based on human organs

    International Nuclear Information System (INIS)

    Lauridsen, B.; Hedemann Jensen, P.

    1987-01-01

    The basic dosimetric quantity in ICRP-publication no. 30 is the aborbed fraction AF(T<-S). This parameter is the fraction of energy absorbed in a target organ T per emission of radiation from activity deposited in the source organ S. Based upon this fraction it is possible to calculate the Specific Effective Energy SEE(T<-S). From this, the committed effective dose equivalent from an intake of radioactive material can be found, and thus the annual limit of intake for given radionuclides can be determined. A male phantom has been constructed with the aim of measuring the Specific Effective Energy SEE(T<-S) in various target organs. Impressions-of real human organs have been used to produce vacuum forms. Tissue equivalent plastic sheets were sucked into the vacuum forms producing a shell with a shape identical to the original organ. Each organ has been made of two shells. The same procedure has been used for the body. Thin tubes through the organs make it possible to place TL dose meters in a matrix so the dose distribution can be measured. The phantom has been supplied with lungs, liver, kidneys, spleen, stomach, bladder, pancreas, and thyroid gland. To select a suitable body liquid for the phantom, laboratory experiments have been made with different liquids and different radionuclides. In these experiments the change in dose rate due to changes in density and composition of the liquid was determined. Preliminary results of the experiments are presented. (orig.)

  13. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gu Songxiang; Kyprianou, Iacovos [Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD (United States); Gupta, Rajiv, E-mail: songxiang.gu@fda.hhs.gov, E-mail: rgupta1@partners.org, E-mail: iacovos.kyprianou@fda.hhs.gov [Massachusetts General Hospital, Boston, MA (United States)

    2011-09-21

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  14. Computational high-resolution heart phantoms for medical imaging and dosimetry simulations

    International Nuclear Information System (INIS)

    Gu Songxiang; Kyprianou, Iacovos; Gupta, Rajiv

    2011-01-01

    Cardiovascular disease in general and coronary artery disease (CAD) in particular, are the leading cause of death worldwide. They are principally diagnosed using either invasive percutaneous transluminal coronary angiograms or non-invasive computed tomography angiograms (CTA). Minimally invasive therapies for CAD such as angioplasty and stenting are rendered under fluoroscopic guidance. Both invasive and non-invasive imaging modalities employ ionizing radiation and there is concern for deterministic and stochastic effects of radiation. Accurate simulation to optimize image quality with minimal radiation dose requires detailed, gender-specific anthropomorphic phantoms with anatomically correct heart and associated vasculature. Such phantoms are currently unavailable. This paper describes an open source heart phantom development platform based on a graphical user interface. Using this platform, we have developed seven high-resolution cardiac/coronary artery phantoms for imaging and dosimetry from seven high-quality CTA datasets. To extract a phantom from a coronary CTA, the relationship between the intensity distribution of the myocardium, the ventricles and the coronary arteries is identified via histogram analysis of the CTA images. By further refining the segmentation using anatomy-specific criteria such as vesselness, connectivity criteria required by the coronary tree and image operations such as active contours, we are able to capture excellent detail within our phantoms. For example, in one of the female heart phantoms, as many as 100 coronary artery branches could be identified. Triangular meshes are fitted to segmented high-resolution CTA data. We have also developed a visualization tool for adding stenotic lesions to the coronaries. The male and female heart phantoms generated so far have been cross-registered and entered in the mesh-based Virtual Family of phantoms with matched age/gender information. Any phantom in this family, along with user

  15. ICRU activity in the field of phantoms in diagnostic radiology

    International Nuclear Information System (INIS)

    Wambersie, A.

    1992-01-01

    The ICRU Report on 'Phantoms and Computational Models in Radiation Therapy, Diagnosis and Protection' is presented. Different types of phantoms may be defined. They may be broadly categorized according to their primary function: dosimetry, calibration and imaging. Within each functional category, there are 3 types or designs of phantoms: body phantoms (anthropomorphic), standard phantoms and reference phantoms (used in the definition and specification of certain radiation quantities). In radiological imaging, anthropomorphic body phantoms are used for measuring the absorbed dose distribution resulting from imaging procedures. Standard phantoms have simple reproducible geometry and are used for comparing measurements under standard conditions of exposure. Imaging phantoms are useful for evaluating a given imaging system; they contain different types of test pieces. The report contains a major section on human anatomy, from fetus to adult with the variations due to ethnic origin. Tolerance levels for the phantoms (composition, dimensions) are proposed and quality assurance programs are outlined. The report contains extensive appendices; human anatomical data and full specification of over 80 phantoms and computational models. ICRU Report 46 on 'Photon, electron, proton and neutron interaction data for body tissues' is closely related to the field of phantoms. It is a logical continuation on ICRU Report 44 (1989) on 'Tissue substitutes in radiation dosimetry and measurements' and contains the interaction data for more than 100 tissues, from fetal to adult, including some diseased tissues

  16. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy

    International Nuclear Information System (INIS)

    Niebuhr, Nina I.; Johnen, Wibke; Güldaglar, Timur; Runz, Armin; Echner, Gernot; Mann, Philipp; Möhler, Christian; Pfaffenberger, Asja; Greilich, Steffen; Jäkel, Oliver

    2016-01-01

    Purpose: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Methods: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effective atomic number, as well as T1- and T2-relaxation times to patient and literature values. Results: Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K_2HPO_4, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. Conclusions: The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy

  17. Technical Note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Niebuhr, Nina I., E-mail: n.niebuhr@dkfz.de; Johnen, Wibke; Güldaglar, Timur; Runz, Armin; Echner, Gernot; Mann, Philipp; Möhler, Christian; Pfaffenberger, Asja; Greilich, Steffen [Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany and Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Jäkel, Oliver [Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Im Neuenheimer Feld 280, Heidelberg 69120 (Germany); Department of Medical Physics, Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, Heidelberg 69120 (Germany)

    2016-02-15

    Purpose: Phantom surrogates were developed to allow multimodal [computed tomography (CT), magnetic resonance imaging (MRI), and teletherapy] and anthropomorphic tissue simulation as well as materials and methods to construct deformable organ shapes and anthropomorphic bone models. Methods: Agarose gels of variable concentrations and loadings were investigated to simulate various soft tissue types. Oils, fats, and Vaseline were investigated as surrogates for adipose tissue and bone marrow. Anthropomorphic shapes of bone and organs were realized using 3D-printing techniques based on segmentations of patient CT-scans. All materials were characterized in dual energy CT and MRI to adapt CT numbers, electron density, effective atomic number, as well as T1- and T2-relaxation times to patient and literature values. Results: Soft tissue simulation could be achieved with agarose gels in combination with a gadolinium-based contrast agent and NaF to simulate muscle, prostate, and tumor tissues. Vegetable oils were shown to be a good representation for adipose tissue in all modalities. Inner bone was realized using a mixture of Vaseline and K{sub 2}HPO{sub 4}, resulting in both a fatty bone marrow signal in MRI and inhomogeneous areas of low and high attenuation in CT. The high attenuation of outer bone was additionally adapted by applying gypsum bandages to the 3D-printed hollow bone case with values up to 1200 HU. Deformable hollow organs were manufactured using silicone. Signal loss in the MR images based on the conductivity of the gels needs to be further investigated. Conclusions: The presented surrogates and techniques allow the customized construction of multimodality, anthropomorphic, and deformable phantoms as exemplarily shown for a pelvic phantom, which is intended to study adaptive treatment scenarios in MR-guided radiation therapy.

  18. Anthropomorphism in Human-Robot Co-evolution.

    Science.gov (United States)

    Damiano, Luisa; Dumouchel, Paul

    2018-01-01

    Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents - social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots "social presence" and "social behaviors" that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of 'applied anthropomorphism' as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a "cheating" technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns "anthropomorphism-based" social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, "synthetic ethics," which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth.

  19. Development of a hybrid multi-scale phantom for Monte-Carlo based internal dosimetry

    International Nuclear Information System (INIS)

    Marcatili, S.; Villoing, D.; Bardies, M.

    2015-01-01

    Full text of publication follows. Aim: in recent years several phantoms were developed for radiopharmaceutical dosimetry in clinical and preclinical settings. Voxel-based models (Zubal, Max/Fax, ICRP110) were developed to reach a level of realism that could not be achieved by mathematical models. In turn, 'hybrid' models (XCAT, MOBY/ROBY, Mash/Fash) allow a further degree of versatility by offering the possibility to finely tune each model according to various parameters. However, even 'hybrid' models require the generation of a voxel version for Monte-Carlo modeling of radiation transport. Since absorbed dose simulation time is strictly related to geometry spatial sampling, a compromise should be made between phantom realism and simulation speed. This trade-off leads on one side in an overestimation of the size of small radiosensitive structures such as the skin or hollow organs' walls, and on the other hand to unnecessarily detailed voxellization of large, homogeneous structures. The Aim of this work is to develop a hybrid multi-resolution phantom model for Geant4 and Gate, to better characterize energy deposition in small structures while preserving reasonable computation times. Materials and Methods: we have developed a pipeline for the conversion of preexisting phantoms into a multi-scale Geant4 model. Meshes of each organ are created from raw binary images of a phantom and then voxellized to the smallest spatial sampling required by the user. The user can then decide to re-sample the internal part of each organ, while leaving a layer of smallest voxels at the edge of the organ. In this way, the realistic shape of the organ is maintained while reducing the voxel number in the inner part. For hollow organs, the wall is always modeled using the smallest voxel sampling. This approach allows choosing different voxel resolutions for each organ according to a specific application. Results: preliminary results show that it is possible to

  20. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.; Dias, Humberto G.

    2013-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  1. Phantom dosimetry at 15 MV conformal radiation therapy

    International Nuclear Information System (INIS)

    Thompson, Larissa; Campos, Tarcisio P.R.

    2015-01-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  2. Anthropomorphism in god concepts

    DEFF Research Database (Denmark)

    Westh, Peter

    2011-01-01

    There is an emerging consensus among current, cognitive theories of religion that the detection and representation of intentional agents and their actions are fundamental to religion. By no means a monolithic theory, this is an argument with several separate lines of reasoning, and several...... different kinds of empirical evidence to support it. This essay focuses specifically on the notion that people tend to spontaneously make inferences about gods based on intuitive, ontological assumptions, and on one of the main pieces of evidence that is cited to support it, the narrative comprehension...

  3. Comparison of different phantoms used in digital diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bor, Dogan, E-mail: bor@eng.ankara.edu.tr [Ankara University, Faculty of Engineering, Department of Engineering Physics. Tandogan, 06100 Ankara (Turkey); Unal, Elif, E-mail: elf.unall@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey); Uslu, Anil, E-mail: m.aniluslu@gmail.com [Radat Dosimetry Laboratory Services, 06830, Golbasi, Ankara (Turkey)

    2015-09-21

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  4. Patient specific 3D printed phantom for IMRT quality assurance

    International Nuclear Information System (INIS)

    Ehler, Eric D; Higgins, Patrick D; Dusenbery, Kathryn E; Barney, Brett M

    2014-01-01

    The purpose of this study was to test the feasibility of a patient specific phantom for patient specific dosimetric verification. Using the head and neck region of an anthropomorphic phantom as a substitute for an actual patient, a soft-tissue equivalent model was constructed with the use of a 3D printer. Calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was compared for a parallel-opposed head and neck field geometry to establish tissue equivalence. A nine-field IMRT plan was constructed and dose verification measurements were performed for the 3D printed phantom as well as traditional standard phantoms. The maximum difference in calculated dose was 1.8% for the parallel-opposed configuration. Passing rates of various dosimetric parameters were compared for the IMRT plan measurements; the 3D printed phantom results showed greater disagreement at superficial depths than other methods. A custom phantom was created using a 3D printer. It was determined that the use of patient specific phantoms to perform dosimetric verification and estimate the dose in the patient is feasible. In addition, end-to-end testing on a per-patient basis was possible with the 3D printed phantom. Further refinement of the phantom construction process is needed for routine use. (paper)

  5. Performance of a coumarin-based liquid dosimeter for phantom evaluations of internal dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Ae [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States)]. E-mail: miaepark@bwh.Harvard.edu; Moore, Stephen C. [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States); Limpa-Amara, Naengnoi [Department of Radiology, Brigham and Women' s Hospital, Boston, MA 02115 (United States): Harvard Medical School, Boston, MA 02115 (United States); Kang Zhuang [Department of Physics, University of Massachusettes at Lowell, Lowell, MA 01854 (United States); Makrigiorgos, G. Mike [Dana Faber-Brigham and Women' s Cancer Center, Boston, MA 01225 (United States): Harvard Medical School, Boston, MA 02115 (United States)

    2006-12-20

    Targeted radionuclide therapy (TRT) requires accurate absorbed dose estimation in individual patients. It has been shown that a coumarin-based liquid dosimeter is useful for various phantom geometries of relevance to patient-specific internal dosimetry. The purpose of this study was to refine the performance limits of the coumarin-3-carboxylic acid (CCA) dosimeter using the high-energy {beta}-emitter, Y-90, by measuring the dosimeter's dependence on dose rate, by finding the maximum dose limit, and by comparing measured dose values to those from Monte Carlo (MC) simulation. Non-fluorescent CCA is converted to highly fluorescent 7-hydroxyl-coumarin-3-carboxylic acid (7-OH-CCA) upon irradiation. We measured the Y-90-induced fluorescence from 7-OH-CCA under different conditions. Fluorescence was measured using activity concentrations from 1.1 to 181 MBq/cc, providing initial dose rates from 0.7 to 117 cGy/min. To determine the maximum dose limit, fluorescence was measured for different elapsed times from 4 to 150 h, using a fixed activity concentration, 3.7 MBq/cc. A Cs-137 irradiator was used for calibration, to convert fluorescence measurements to absorbed dose. We calculated absorbed dose using the DOSXYZnrc MC program. We modeled the geometry of cuvettes realistically, including plastic walls, surrounding air, and Y-90 in liquid. S-values of Y-90 in water were calculated using 1-mm cubic voxels. A linear dependence of fluorescence on dose rate was observed up to 80 cGy/min, and the dependence on total dose was linear up to {approx}20 Gy The average difference between calculated and measured dose values over 9 samples was 3.6{+-}2%. For our geometry, the dose based on voxel S-values was within 1% of that calculated using MC simulation of the phantom. We refined the performance limits of a CCA-based dosimeter for phantom studies of TRT using Y-90, and confirmed a close agreement between measured and calculated dose values. CCA dosimetry is a promising technique

  6. Development of a high resolution voxelised head phantom for medical physics applications.

    Science.gov (United States)

    Giacometti, V; Guatelli, S; Bazalova-Carter, M; Rosenfeld, A B; Schulte, R W

    2017-01-01

    Computational anthropomorphic phantoms have become an important investigation tool for medical imaging and dosimetry for radiotherapy and radiation protection. The development of computational phantoms with realistic anatomical features contribute significantly to the development of novel methods in medical physics. For many applications, it is desirable that such computational phantoms have a real-world physical counterpart in order to verify the obtained results. In this work, we report the development of a voxelised phantom, the HIGH_RES_HEAD, modelling a paediatric head based on the commercial phantom 715-HN (CIRS). HIGH_RES_HEAD is unique for its anatomical details and high spatial resolution (0.18×0.18mm 2 pixel size). The development of such a phantom was required to investigate the performance of a new proton computed tomography (pCT) system, in terms of detector technology and image reconstruction algorithms. The HIGH_RES_HEAD was used in an ad-hoc Geant4 simulation modelling the pCT system. The simulation application was previously validated with respect to experimental results. When compared to a standard spatial resolution voxelised phantom of the same paediatric head, it was shown that in pCT reconstruction studies, the use of the HIGH_RES_HEAD translates into a reduction from 2% to 0.7% of the average relative stopping power difference between experimental and simulated results thus improving the overall quality of the head phantom simulation. The HIGH_RES_HEAD can also be used for other medical physics applications such as treatment planning studies. A second version of the voxelised phantom was created that contains a prototypic base of skull tumour and surrounding organs at risk. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. 3D printed phantoms mimicking cortical bone for the assessment of ultrashort echo time magnetic resonance imaging.

    Science.gov (United States)

    Rai, Robba; Manton, David; Jameson, Michael G; Josan, Sonal; Barton, Michael B; Holloway, Lois C; Liney, Gary P

    2018-02-01

    Human cortical bone has a rapid T2∗ decay, and it can be visualized using ultrashort echo time (UTE) techniques in magnetic resonance imaging (MRI). These sequences operate at the limits of gradient and transmit-receive signal performance. Development of multicompartment anthropomorphic phantoms that can mimic human cortical bone can assist with quality assurance and optimization of UTE sequences. The aims of this study were to (a) characterize the MRI signal properties of a photopolymer resin that can be 3D printed, (b) develop multicompartment phantoms based on the resin, and (c) demonstrate the feasibility of using these phantoms to mimic human anatomy in the assessment of UTE sequences. A photopolymer resin (Prismlab China Ltd, Shanghai, China) was imaged on a 3 Tesla MRI system (Siemens Skyra) to characterize its MRI properties with emphasis on T2∗ signal and longevity. Two anthropomorphic phantoms, using the 3D printed resin to simulate skeletal anatomy, were developed and imaged using UTE sequences. A skull phantom was developed and used to assess the feasibility of using the resin to develop a complex model with realistic morphological human characteristics. A tibia model was also developed to assess the suitability of the resin at mimicking a simple multicompartment anatomical model and imaged using a three-dimensional UTE sequence (PETRA). Image quality measurements of signal-to-noise ratio (SNR) and contrast factor were calculated and these were compared to in vivo values. The T2∗ and T 1 (mean ± standard deviation) of the photopolymer resin was found to be 411 ± 19 μs and 74.39 ± 13.88 ms, respectively, and demonstrated no statistically significant change during 4 months of monitoring. The resin had a similar T2∗ decay to human cortical bone; however, had lower T 1 properties. The bone water concentration of the resin was 59% relative to an external water reference phantom, and this was higher than in vivo values reported for human cortical

  8. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, R; Cassola, V F; Khoury, H J [Department of Nuclear Energy, Federal University of Pernambuco, Avenida Prof. Luiz Freire, 1000, CEP 50740-540, Recife (Brazil); Vieira, J W [Federal Institute of Education, Science and Technology of Pernambuco, Recife (Brazil); De Melo Lima, V J [Department of Anatomy, Federal University of Pernambuco, Recife (Brazil); Robson Brown, K [Imaging Laboratory, Department of Archaeology and Anthropology, University of Bristol, Bristol (United Kingdom)], E-mail: rkramer@uol.com.br

    2010-01-07

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  9. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: II. Dosimetric calculations

    Science.gov (United States)

    Kramer, R.; Cassola, V. F.; Khoury, H. J.; Vieira, J. W.; de Melo Lima, V. J.; Robson Brown, K.

    2010-01-01

    Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been developed in the first part of this study using 3D animation software and anatomical atlases to replace the image-based FAX06 and the MAX06 voxel phantoms. 3D modelling methods allow for phantom development independent from medical images of patients, volunteers or cadavers. The second part of this study investigates the dosimetric implications for organ and tissue equivalent doses due to the anatomical differences between the new and the old phantoms. These differences are mainly caused by the supine position of human bodies during scanning in order to acquire digital images for voxel phantom development. Compared to an upright standing person, in image-based voxel phantoms organs are often coronally shifted towards the head and sometimes the sagittal diameter of the trunk is reduced by a gravitational change of the fat distribution. In addition, volumes of adipose and muscle tissue shielding internal organs are sometimes too small, because adaptation of organ volumes to ICRP-based organ masses often occurs at the expense of general soft tissues, such as adipose, muscle or unspecified soft tissue. These effects have dosimetric consequences, especially for partial body exposure, such as in x-ray diagnosis, but also for whole body external exposure and for internal exposure. Using the EGSnrc Monte Carlo code, internal and external exposure to photons and electrons has been simulated with both pairs of phantoms. The results show differences between organ and tissue equivalent doses for the upright standing FASH/MASH and the image-based supine FAX06/MAX06 phantoms of up to 80% for external exposure and up to 100% for internal exposure. Similar differences were found for external exposure between FASH/MASH and REGINA/REX, the reference voxel phantoms of the International Commission on Radiological Protection. Comparison of effective doses for external photon

  10. Dielectric properties of single wall carbon nanotubes-based gelatin phantoms

    Science.gov (United States)

    Altarawneh, M. M.; Alharazneh, G. A.; Al-Madanat, O. Y.

    In this work, we report the dielectric properties of Single wall Carbon Nanotubes (SWCNTs)-based phantom that is mainly composed of gelatin and water. The fabricated gelatin-based phantom with desired dielectric properties was fabricated and doped with different concentrations of SWCNTs (e.g., 0%, 0.05%, 0.10%, 0.15%, 0.2%, 0.4% and 0.6%). The dielectric constants (real ɛ‧ and imaginary ɛ‧‧) were measured at different positions for each sample as a function of frequency (0.5-20GHz) and concentrations of SWCNTs and their averages were found. The Cole-Cole plot (ɛ‧ versus ɛ‧‧) was obtained for each concentration of SWCNTs and was used to obtain the static dielectric constant ɛs, the dielectric constant at the high limit of frequency ɛ∞ and the average relaxation time τ. The measurements showed that the fabricated samples are in good homogeneity and the SWCNTs are dispersed well in the samples as an acceptable standard deviation is achieved. The study showed a linear increase in the static dielectric constant ɛs and invariance of the average relaxation time τ and the value of ɛ∞ at room temperature for the investigated concentrations of SWCNTs.

  11. Orthodox representations of God and implicit anthropomorphic reasoning

    Directory of Open Access Journals (Sweden)

    Tatiana Malevich

    2017-12-01

    Full Text Available The phenomenon of theological incorrectness is primarily the result of the coexistence of two parallel levels of religious representations constituting a continuum of cognitive complexity. This article presents results of the replication experiment based on the classical study by J. L. Barrett and F. Keil (1996 aimed at diff erentiating levels of implicit anthropomorphic and explicit non-anthropomorphic reasoning about God. The data which were obtained in the experiment and based on the Russian Orthodox sample of Theology students have confi rmed the cross-cultural universality and stability of the phenomenon of theological incorrectness described by J. L. Barrett and now widely accepted in the cognitive religious science. In a real-thinking mode aimed at rapid solutions to problems, complicated and cognitively cumbersome theological concepts do undergo systematic deformation and optimisation and acquire anthropomorphic properties corresponding to our default ontological assumptions. Such a tacit deformation seems to be independent from theological representations and occurs even in the presence of explicitly held non-anthropomorphic concepts of God.

  12. Design and implementation of a ''cheese'' phantom-based Tomotherapy TLD dose intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Schiefer, Hans; Buchauer, Konrad; Heinze, Simon [Medical Physics Group, Department of Radiation Oncology, St. Gallen (Switzerland); Henke, Guido; Plasswilm, Ludwig [Department of Radiation Oncology, St. Gallen (Switzerland)

    2015-11-15

    The unique beam-delivery technique of Tomotherapy machines (Accuray Inc., Sunnyvale, Calif.) necessitates tailored quality assurance. This requirement also applies to external dose intercomparisons. Therefore, the aim of the 2014 SSRMP (Swiss Society of Radiobiology and Medical Physics) dosimetry intercomparison was to compare two set-ups with different phantoms. A small cylindrical Perspex phantom, which is similar to the IROC phantom (Imaging and Radiation Oncology Core, Houston, Tex.), and the ''cheese'' phantom, which is provided by the Tomotherapy manufacturer to all institutions, were used. The standard calibration plans for the TomoHelical and TomoDirect irradiation techniques were applied. These plans are routinely used for dose output calibration in Tomotherapy institutions. We tested 20 Tomotherapy machines in Germany and Switzerland. The ratio of the measured (D{sub m}) to the calculated (D{sub c}) dose was assessed for both phantoms and irradiation techniques. The D{sub m}/D{sub c} distributions were determined to compare the suitability of the measurement set-ups investigated. The standard deviations of the TLD-measured (thermoluminescent dosimetry) D{sub m}/D{sub c} ratios for the ''cheese'' phantom were 1.9 % for the TomoHelical (19 measurements) and 1.2 % (11 measurements) for the TomoDirect irradiation techniques. The corresponding ratios for the Perspex phantom were 2.8 % (18 measurements) and 1.8 % (11 measurements). Compared with the Perspex phantom-based set-up, the ''cheese'' phantom-based set-up without individual planning was demonstrated to be more suitable for Tomotherapy dose checks. Future SSRMP dosimetry intercomparisons for Tomotherapy machines will therefore be based on the ''cheese'' phantom set-up. (orig.) [German] Die einzigartige Bestrahlungstechnik mit Tomotherapie-Bestrahlungsgeraeten (Accuray Inc., Sunnyvale, CA, USA) erfordert spezifische

  13. Comparison study of reconstruction algorithms for prototype digital breast tomosynthesis using various breast phantoms.

    Science.gov (United States)

    Kim, Ye-seul; Park, Hye-suk; Lee, Haeng-Hwa; Choi, Young-Wook; Choi, Jae-Gu; Kim, Hak Hee; Kim, Hee-Joung

    2016-02-01

    Digital breast tomosynthesis (DBT) is a recently developed system for three-dimensional imaging that offers the potential to reduce the false positives of mammography by preventing tissue overlap. Many qualitative evaluations of digital breast tomosynthesis were previously performed by using a phantom with an unrealistic model and with heterogeneous background and noise, which is not representative of real breasts. The purpose of the present work was to compare reconstruction algorithms for DBT by using various breast phantoms; validation was also performed by using patient images. DBT was performed by using a prototype unit that was optimized for very low exposures and rapid readout. Three algorithms were compared: a back-projection (BP) algorithm, a filtered BP (FBP) algorithm, and an iterative expectation maximization (EM) algorithm. To compare the algorithms, three types of breast phantoms (homogeneous background phantom, heterogeneous background phantom, and anthropomorphic breast phantom) were evaluated, and clinical images were also reconstructed by using the different reconstruction algorithms. The in-plane image quality was evaluated based on the line profile and the contrast-to-noise ratio (CNR), and out-of-plane artifacts were evaluated by means of the artifact spread function (ASF). Parenchymal texture features of contrast and homogeneity were computed based on reconstructed images of an anthropomorphic breast phantom. The clinical images were studied to validate the effect of reconstruction algorithms. The results showed that the CNRs of masses reconstructed by using the EM algorithm were slightly higher than those obtained by using the BP algorithm, whereas the FBP algorithm yielded much lower CNR due to its high fluctuations of background noise. The FBP algorithm provides the best conspicuity for larger calcifications by enhancing their contrast and sharpness more than the other algorithms; however, in the case of small-size and low

  14. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models

    International Nuclear Information System (INIS)

    Jarry, G; De Marco, J J; Beifuss, U; Cagnon, C H; McNitt-Gray, M F

    2003-01-01

    The purpose of this work is to develop and test a method to estimate the relative and absolute absorbed radiation dose from axial and spiral CT scans using a Monte Carlo approach. Initial testing was done in phantoms and preliminary results were obtained from a standard mathematical anthropomorphic model (MIRD V) and voxelized patient data. To accomplish this we have modified a general purpose Monte Carlo transport code (MCNP4B) to simulate the CT x-ray source and movement, and then to calculate absorbed radiation dose in desired objects. The movement of the source in either axial or spiral modes was modelled explicitly while the CT system components were modelled using published information about x-ray spectra as well as information provided by the manufacturer. Simulations were performed for single axial scans using the head and body computed tomography dose index (CTDI) polymethylmethacrylate phantoms at both central and peripheral positions for all available beam energies and slice thicknesses. For comparison, corresponding physical measurements of CTDI in phantom were made with an ion chamber. To obtain absolute dose values, simulations and measurements were performed in air at the scanner isocentre for each beam energy. To extend the verification, the CT scanner model was applied to the MIRD V model and compared with published results using similar technical factors. After verification of the model, the generalized source was simulated and applied to voxelized models of patient anatomy. The simulated and measured absolute dose data in phantom agreed to within 2% for the head phantom and within 4% for the body phantom at 120 and 140 kVp; this extends to 8% for the head and 9% for the body phantom across all available beam energies and positions. For the head phantom, the simulated and measured absolute dose data agree to within 2% across all slice thicknesses at 120 kVp. Our results in the MIRD phantom agree within 11% of all the different organ dose values

  15. OEDIPE: a new graphical user interface for fast construction of numerical phantoms and MCNP calculations.

    Science.gov (United States)

    Franck, D; de Carlan, L; Pierrat, N; Broggio, D; Lamart, S

    2007-01-01

    Although great efforts have been made to improve the physical phantoms used to calibrate in vivo measurement systems, these phantoms represent a single average counting geometry and usually contain a uniform distribution of the radionuclide over the tissue substitute. As a matter of fact, significant corrections must be made to phantom-based calibration factors in order to obtain absolute calibration efficiencies applicable to a given individual. The importance of these corrections is particularly crucial when considering in vivo measurements of low energy photons emitted by radionuclides deposited in the lung such as actinides. Thus, it was desirable to develop a method for calibrating in vivo measurement systems that is more sensitive to these types of variability. Previous works have demonstrated the possibility of such a calibration using the Monte Carlo technique. Our research programme extended such investigations to the reconstruction of numerical anthropomorphic phantoms based on personal physiological data obtained by computed tomography. New procedures based on a new graphical user interface (GUI) for development of computational phantoms for Monte Carlo calculations and data analysis are being developed to take advantage of recent progress in image-processing codes. This paper presents the principal features of this new GUI. Results of calculations and comparison with experimental data are also presented and discussed in this work.

  16. TH-AB-209-12: Tissue Equivalent Phantom with Excised Human Tissue for Assessing Clinical Capabilities of Coherent Scatter Imaging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, K; Morris, R; Spencer, J [Medical Physics Graduate Program, Duke University, Durham, NC (United States); Greenberg, J [Dept. of Electrical and Computer Engineering, Duke University, Durham, NC (United States); Kapadia, A [Carl E Ravin Advanced Imaging Laboratories, Durham, NC (United States)

    2016-06-15

    Purpose: Previously we reported the development of anthropomorphic tissue-equivalent scatter phantoms of the human breast. Here we present the first results from the scatter imaging of the tissue equivalent breast phantoms for breast cancer diagnosis. Methods: A breast phantom was designed to assess the capability of coded aperture coherent x-ray scatter imaging to classify different types of breast tissue (adipose, fibroglandular, tumor). The phantom geometry was obtained from a prone breast geometry scanned on a dedicated breast CT system. The phantom was 3D printed using the segmented DICOM breast CT data. The 3D breast phantom was filled with lard (as a surrogate for adipose tissue) and scanned in different geometries alongside excised human breast tissues (obtained from lumpectomy and mastectomy procedures). The raw data were reconstructed using a model-based reconstruction algorithm and yielded the location and form factor (i.e., momentum transfer (q) spectrum) of the materials that were imaged. The measured material form factors were then compared to the ground truth measurements acquired by x-ray diffraction (XRD) imaging. Results: Our scatter imaging system was able to define the location and composition of the various materials and tissues within the phantom. Cancerous breast tissue was detected and classified through automated spectral matching and an 86% correlation threshold. The total scan time for the sample was approximately 10 minutes and approaches workflow times for clinical use in intra-operative or other diagnostic tasks. Conclusion: This work demonstrates the first results from an anthropomorphic tissue equivalent scatter phantom to characterize a coherent scatter imaging system. The functionality of the system shows promise in applications such as intra-operative margin detection or virtual biopsy in the diagnosis of breast cancer. Future work includes using additional patient-derived tissues (e.g., human fat), and modeling additional organs

  17. Anthropomorphism in Human–Robot Co-evolution

    Directory of Open Access Journals (Sweden)

    Luisa Damiano

    2018-03-01

    Full Text Available Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents – social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots “social presence” and “social behaviors” that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of ‘applied anthropomorphism’ as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a “cheating” technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns “anthropomorphism-based” social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, “synthetic ethics,” which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth.

  18. Anthropomorphism in Human–Robot Co-evolution

    Science.gov (United States)

    Damiano, Luisa; Dumouchel, Paul

    2018-01-01

    Social robotics entertains a particular relationship with anthropomorphism, which it neither sees as a cognitive error, nor as a sign of immaturity. Rather it considers that this common human tendency, which is hypothesized to have evolved because it favored cooperation among early humans, can be used today to facilitate social interactions between humans and a new type of cooperative and interactive agents – social robots. This approach leads social robotics to focus research on the engineering of robots that activate anthropomorphic projections in users. The objective is to give robots “social presence” and “social behaviors” that are sufficiently credible for human users to engage in comfortable and potentially long-lasting relations with these machines. This choice of ‘applied anthropomorphism’ as a research methodology exposes the artifacts produced by social robotics to ethical condemnation: social robots are judged to be a “cheating” technology, as they generate in users the illusion of reciprocal social and affective relations. This article takes position in this debate, not only developing a series of arguments relevant to philosophy of mind, cognitive sciences, and robotic AI, but also asking what social robotics can teach us about anthropomorphism. On this basis, we propose a theoretical perspective that characterizes anthropomorphism as a basic mechanism of interaction, and rebuts the ethical reflections that a priori condemns “anthropomorphism-based” social robots. To address the relevant ethical issues, we promote a critical experimentally based ethical approach to social robotics, “synthetic ethics,” which aims at allowing humans to use social robots for two main goals: self-knowledge and moral growth. PMID:29632507

  19. Towards Vision-Based Control of a Handheld Micromanipulator for Retinal Cannulation in an Eyeball Phantom

    Science.gov (United States)

    Becker, Brian C.; Yang, Sungwook; MacLachlan, Robert A.; Riviere, Cameron N.

    2012-01-01

    Injecting clot-busting drugs such as t-PA into tiny vessels thinner than a human hair in the eye is a challenging procedure, especially since the vessels lie directly on top of the delicate and easily damaged retina. Various robotic aids have been proposed with the goal of increasing safety by removing tremor and increasing precision with motion scaling. We have developed a fully handheld micromanipulator, Micron, that has demonstrated reduced tremor when cannulating porcine retinal veins in an “open sky” scenario. In this paper, we present work towards handheld robotic cannulation with the goal of vision-based virtual fixtures guiding the tip of the cannula to the vessel. Using a realistic eyeball phantom, we address sclerotomy constraints, eye movement, and non-planar retina. Preliminary results indicate a handheld micromanipulator aided by visual control is a promising solution to retinal vessel occlusion. PMID:24649479

  20. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Sun Qi; Groth, Alexandra; Bertram, Matthias; Waechter, Irina; Bruijns, Tom; Hermans, Roel; Aach, Til [Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany) and Institute of Imaging and Computer Vision, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen (Germany); Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany); Philips Healthcare, X-Ray Pre-Development, Veenpluis 4-6, 5684PC Best (Netherlands); Institute of Imaging and Computer Vision, RWTH Aachen University, Sommerfeldstrasse 24, 52074 Aachen (Germany)

    2010-09-15

    Purpose: Recently, image-based computational fluid dynamics (CFD) simulation has been applied to investigate the hemodynamics inside human cerebral aneurysms. The knowledge of the computed three-dimensional flow fields is used for clinical risk assessment and treatment decision making. However, the reliability of the application specific CFD results has not been thoroughly validated yet. Methods: In this work, by exploiting a phantom aneurysm model, the authors therefore aim to prove the reliability of the CFD results obtained from simulations with sufficiently accurate input boundary conditions. To confirm the correlation between the CFD results and the reality, virtual angiograms are generated by the simulation pipeline and are quantitatively compared to the experimentally acquired angiograms. In addition, a parametric study has been carried out to systematically investigate the influence of the input parameters associated with the current measuring techniques on the flow patterns. Results: Qualitative and quantitative evaluations demonstrate good agreement between the simulated and the real flow dynamics. Discrepancies of less than 15% are found for the relative root mean square errors of time intensity curve comparisons from each selected characteristic position. The investigated input parameters show different influences on the simulation results, indicating the desired accuracy in the measurements. Conclusions: This study provides a comprehensive validation method of CFD simulation for reproducing the real flow field in the cerebral aneurysm phantom under well controlled conditions. The reliability of the CFD is well confirmed. Through the parametric study, it is possible to assess the degree of validity of the associated CFD model based on the parameter values and their estimated accuracy range.

  1. Phantom-based experimental validation of computational fluid dynamics simulations on cerebral aneurysms

    International Nuclear Information System (INIS)

    Sun Qi; Groth, Alexandra; Bertram, Matthias; Waechter, Irina; Bruijns, Tom; Hermans, Roel; Aach, Til

    2010-01-01

    Purpose: Recently, image-based computational fluid dynamics (CFD) simulation has been applied to investigate the hemodynamics inside human cerebral aneurysms. The knowledge of the computed three-dimensional flow fields is used for clinical risk assessment and treatment decision making. However, the reliability of the application specific CFD results has not been thoroughly validated yet. Methods: In this work, by exploiting a phantom aneurysm model, the authors therefore aim to prove the reliability of the CFD results obtained from simulations with sufficiently accurate input boundary conditions. To confirm the correlation between the CFD results and the reality, virtual angiograms are generated by the simulation pipeline and are quantitatively compared to the experimentally acquired angiograms. In addition, a parametric study has been carried out to systematically investigate the influence of the input parameters associated with the current measuring techniques on the flow patterns. Results: Qualitative and quantitative evaluations demonstrate good agreement between the simulated and the real flow dynamics. Discrepancies of less than 15% are found for the relative root mean square errors of time intensity curve comparisons from each selected characteristic position. The investigated input parameters show different influences on the simulation results, indicating the desired accuracy in the measurements. Conclusions: This study provides a comprehensive validation method of CFD simulation for reproducing the real flow field in the cerebral aneurysm phantom under well controlled conditions. The reliability of the CFD is well confirmed. Through the parametric study, it is possible to assess the degree of validity of the associated CFD model based on the parameter values and their estimated accuracy range.

  2. Fluence-to-dose conversion coefficients based on the posture modification of Adult Male (AM) and Adult Female (AF) reference phantoms of ICRP 110

    International Nuclear Information System (INIS)

    Galeano, D.C.; Santos, W.S.; Alves, M.C.; Souza, D.N.; Carvalho, A.B.

    2016-01-01

    The aim of this work was to modify the standing posture of the anthropomorphic reference phantoms of ICRP publication 110, AM (Adult Male) and AF (Adult Female), to the sitting posture. The change of posture was performed using the Visual Monte Carlo software (VMC) to rotate the thigh region of the phantoms and position it between the region of the leg and trunk. Scion Image software was used to reconstruct and smooth the knee and hip contours of the phantoms in a sitting posture. For 3D visualization of phantoms, the VolView software was used. In the change of postures, the organ and tissue masses were preserved. The MCNPX was used to calculate the equivalent and effective dose conversion coefficients (CCs) per fluence for photons for six irradiation geometries suggested by ICRP publication 110 (AP, PA, RLAT, LLAT, ROT and ISO) and energy range 0.010–10 MeV. The results were compared between the standing and sitting postures, for both sexes, in order to evaluate the differences of scattering and absorption of radiation for different postures. Significant differences in the CCs for equivalent dose were observed in the gonads, colon, prostate, urinary bladder and uterus, which are present in the pelvic region, and in organs distributed throughout the body, such as the lymphatic nodes, muscle, skeleton and skin, for the phantoms of both sexes. CCs for effective dose showed significant differences of up to 16% in the AP irradiation geometry, 27% in the PA irradiation geometry and 13% in the ROT irradiation geometry. These results demonstrate the importance of using phantoms in different postures in order to obtain more precise conversion coefficients for a given exposure scenario. - Highlights: • The reference phantoms AM and AF had modified its posture. • The AM and AF phantoms were irradiated in standing and sitting postures. • The irradiation geometry used were the AP, PA, LLAT, RLAT, ROT and ISO. • The CCs for standing and sitting postures were compared

  3. PID - 3D: a software to develop mathematical human phantoms for use in computational dosimetry

    International Nuclear Information System (INIS)

    Lima Filho, Jose de Melo; Vieira, Jose Wilson; Lima, Vanildo Junior de Melo; Lima, Fernando Roberto de Andrade

    2009-01-01

    The PID-3D software, written in Visual C++, contains tools developed for building and editing of three-dimensional geometric figures formed of voxels (volume pixels). These tools were projected to be used, together with those already developed by the Grupo de Dosimetria Numerica (GDN/CNPq), such as the FANTOMAS and DIP software, in computational dosimetry of ionizing radiation. The main objective of this paper is to develop various voxel-based geometric solids to build voxel phantoms (meaning models), anthropomorphic or not. The domain of this technique of development of geometric solids is important for the GDN/CNPq, because it allows the use of just one Monte Carlo code to simulate the transportation, interaction and deposition of radiation in tomographic and mathematical phantoms. Building a particular geometric solid the user needs to inform to the PID-3D software, the location and the size of the parallelepiped that involves it. Each built solid can be saved in a binary file of the type SGI (file containing the size and the numeric values that constitutes the 3D matrix that represents the solid, commonly used by GDN/CNPq). The final mathematical phantom is built starting from these SGI files and the SGI file resulting constitutes a voxel phantom. With this approach the software's user does not have to manipulate the equations and inequalities of the solids that represent the organs and tissues of the phantom. The 3D-PID software, associated with the FANTOMAS and DIP software are tools produced by GDN/CNPq, providing a new technique for building of 3D scenes in dosimetric evaluations using voxel phantoms. To validate the PID-3D software one built, step by step, a phantom similar to the MIRD-5 stylized phantom. (author)

  4. Neuronavigation accuracy dependence on CT and MR imaging parameters: a phantom-based study

    International Nuclear Information System (INIS)

    Poggi, S; Pallotta, S; Russo, S; Gallina, P; Torresin, A; Bucciolini, M

    2003-01-01

    Clinical benefits from neuronavigation are well established. However, the complexity of its technical environment requires a careful evaluation of different types of errors. In this work, a detailed phantom study which investigates the accuracy in a neuronavigation procedure is presented. The dependence on many different imaging parameters, such as field of view, slice thickness and different kind of sequences (sequential and spiral for CT, T1-weighted and T2-weighted for MRI), is quantified. Moreover, data based on CT images are compared to those based on MR images, taking into account MRI distortion. Finally, the contributions to global accuracy coming from image acquisition, registration and navigation itself are discussed. Results demonstrate the importance of imaging accuracy. Procedures based on CT proved to be more accurate than procedures based on MRI. In the former, values from 2 to 2.5 mm are obtained for 95% fractiles of cumulative distribution of Euclidean distances between the intended target and the reached one while, in the latter, the measured values range from 3 to 4 mm. The absence of imaging distortion proved to be crucial for registration accuracy in MR-based procedures

  5. Reminders of Social Connection Can Attenuate Anthropomorphism.

    Science.gov (United States)

    Bartz, Jennifer A; Tchalova, Kristina; Fenerci, Can

    2016-12-01

    It is a fundamental human need to secure and sustain a sense of social belonging. Previous research has shown that individuals who are lonely are more likely than people who are not lonely to attribute humanlike traits (e.g., free will) to nonhuman agents (e.g., an alarm clock that makes people get up by moving away from the sleeper), presumably in an attempt to fulfill unmet needs for belongingness. We directly replicated the association between loneliness and anthropomorphism in a larger sample ( N = 178); furthermore, we showed that reminding people of a close, supportive relationship reduces their tendency to anthropomorphize. This finding provides support for the idea that the need for belonging has causal effects on anthropomorphism. Last, we showed that attachment anxiety-characterized by intense desire for and preoccupation with closeness, fear of abandonment, and hypervigilance to social cues-was a stronger predictor of anthropomorphism than loneliness was. This finding helps clarify the mechanisms underlying anthropomorphism and supports the idea that anthropomorphism is a motivated process reflecting the active search for potential sources of connection.

  6. Development of 5 and 10 years old infant phantoms based on polygonal meshes

    International Nuclear Information System (INIS)

    Lima, Vanildo Junior de Melo; Kramer, Richard; Cassola, Vagner Ferreira; Lira, Carlos Alberto Brayner de Oliveira; Khoury, Helen Jamil; Vieira, Jose Wilson; Universidade de Pernambuco

    2011-01-01

    This paper focuses the development of reference infant phantoms of 5 and 10 years old to be used in calculation of equivalent doses in the area of radiological protection. The method uses tools developed for the modelling of 3D objects. The forms and positions are available in the literature. The mass values of each organ and tissue were adjusted according to the reference data published by the International Commission Radiological Protection. The results are presented in image of organs and tissues, and in tables. Dosimetric calculations show concordance with adult and infant phantoms, considering the differences among phantoms

  7. Characterization of paraffin based breast tissue equivalent phantom using a CdTe detector pulse height analysis.

    Science.gov (United States)

    Cubukcu, Solen; Yücel, Haluk

    2016-12-01

    In this study, paraffin was selected as a base material and mixed with different amounts of CaSO 4 ·2H 2 O and H 3 BO 3 compounds in order to mimic breast tissue. Slab phantoms were produced with suitable mixture ratios of the additives in the melted paraffin. Subsequently, these were characterized in terms of first half-value layer (HVL) in the mammographic X-ray range using a pulse-height spectroscopic analysis with a CdTe detector. Irradiations were performed in the energy range of 23-35 kV p under broad beam conditions from Mo/Mo and Mo/Rh target/filter combinations. X-ray spectra were acquired with a CdTe detector without and with phantom material interposition in increments of 1 cm thickness and then evaluated to obtain the transmission data. The net integral areas of the spectra for the slabs were used to plot the transmission curves and these curves were fitted to the Archer model function. The results obtained for the slabs were compared with those of standard mammographic phantoms such as CIRS BR series phantoms and polymethylmethacrylate plates (PMMA). From the evaluated transmission curves, the mass attenuation coefficients and HVLs of some mixtures are close to those of the commercially available standard mammography phantoms. Results indicated that when a suitable proportion of H 3 BO 3 and CaSO 4 ·2H 2 O is added to the paraffin, the resulting material may be a good candidate for a breast tissue equivalent phantom.

  8. Fetal organ dosimetry for the Techa River and Ozyorsk offspring cohorts. Pt. 1. A Urals-based series of fetal computational phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Matthew R.; Bolch, Wesley E. [University of Florida, Advanced Laboratory for Radiation Dosimetry Studies (ALRADS), J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL (United States); Shagina, Natalia B.; Tolstykh, Evgenia I.; Degteva, Marina O. [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Fell, Tim P. [Public Health England, Centre for Radiation, Chemical and Environmental Health, Didcot, Chilton, Oxon (United Kingdom)

    2015-03-15

    The European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) project aims to improve understanding of cancer risks associated with chronic in utero radiation exposure. A comprehensive series of hybrid computational fetal phantoms was previously developed at the University of Florida in order to provide the SOLO project with the capability of computationally simulating and quantifying radiation exposures to individual fetal bones and soft tissue organs. To improve harmonization between the SOLO fetal biokinetic models and the computational phantoms, a subset of those phantoms was systematically modified to create a novel series of phantoms matching anatomical data representing Russian fetal biometry in the Southern Urals. Using previously established modeling techniques, eight computational Urals-based phantoms aged 8, 12, 18, 22, 26, 30, 34, and 38 weeks post-conception were constructed to match appropriate age-dependent femur lengths, biparietal diameters, individual bone masses and whole-body masses. Bone and soft tissue organ mass differences between the common ages of the subset of UF phantom series and the Urals-based phantom series illustrated the need for improved understanding of fetal bone densities as a critical parameter of computational phantom development. In anticipation for SOLO radiation dosimetry studies involving the developing fetus and pregnant female, the completed phantom series was successfully converted to a cuboidal voxel format easily interpreted by radiation transport software. (orig.)

  9. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    Science.gov (United States)

    Cassola, V. F.; de Melo Lima, V. J.; Kramer, R.; Khoury, H. J.

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI_AM and female RPI_AF phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  10. FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy

    International Nuclear Information System (INIS)

    Cassola, V F; Kramer, R; Khoury, H J; De Melo Lima, V J

    2010-01-01

    Among computational models, voxel phantoms based on computer tomographic (CT), nuclear magnetic resonance (NMR) or colour photographic images of patients, volunteers or cadavers have become popular in recent years. Although being true to nature representations of scanned individuals, voxel phantoms have limitations, especially when walled organs have to be segmented or when volumes of organs or body tissues, like adipose, have to be changed. Additionally, the scanning of patients or volunteers is usually made in supine position, which causes a shift of internal organs towards the ribcage, a compression of the lungs and a reduction of the sagittal diameter especially in the abdominal region compared to the regular anatomy of a person in the upright position, which in turn can influence organ and tissue absorbed or equivalent dose estimates. This study applies tools developed recently in the areas of computer graphics and animated films to the creation and modelling of 3D human organs, tissues, skeletons and bodies based on polygon mesh surfaces. Female and male adult human phantoms, called FASH (Female Adult meSH) and MASH (Male Adult meSH), have been designed using software, such as MakeHuman, Blender, Binvox and ImageJ, based on anatomical atlases, observing at the same time organ masses recommended by the International Commission on Radiological Protection for the male and female reference adult in report no 89. 113 organs, bones and tissues have been modelled in the FASH and the MASH phantoms representing locations for adults in standing posture. Most organ and tissue masses of the voxelized versions agree with corresponding data from ICRP89 within a margin of 2.6%. Comparison with the mesh-based male RPI A M and female RPI A F phantoms shows differences with respect to the material used, to the software and concepts applied, and to the anatomies created.

  11. Comparison of the ANSI, RSD, KKH, and BRMD thyroid-neck phantoms for 125I thyroid monitoring.

    Science.gov (United States)

    Kramer, G H; Olender, G; Vlahovich, S; Hauck, B M; Meyerhof, D P

    1996-03-01

    The Human Monitoring Laboratory, which acts as the Canadian National Calibration Reference Centre for In Vivo Monitoring, has determined the performance characteristics of four thyroid phantoms for 125I thyroid monitoring. The phantoms were a phantom built to the specifications of the American National Standards Institute Standard N44.3; the phantom available from Radiology Support Devices; the phantom available from Kyoto Kagaku Hyohon; the phantom manufactured by the Human Monitoring Laboratory and known as the BRMD phantom. The counting efficiencies of the phantoms for 125I were measured at different phantom-to-detector distances. The anthropomorphic characteristics of the phantoms have been compared with the average man parameters. It was concluded that the BRMD, American National Standards Institute, and Radiology Support Devices phantoms have the same performance characteristics when the neck-to-detector distances are greater than 12 cm and all phantoms are essentially equivalent at 30 cm or more. The Kyoto Kagaku Hyohon phantom showed lower counting efficiencies at phantom-to-detector distances less than 30 cm. This was attributed to the design of the phantom. This study has also shown that the phantom need not be highly anthropomorphic provided the calibration is not performed at short neck-detector distances. Indeed, it might be possible to use t simple point source of 125I placed behind a 1.5 cm block of lucite at neck detector distances of 12 cm or more.

  12. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom.

    Science.gov (United States)

    Lesperance, Marielle; Inglis-Whalen, M; Thomson, R M

    2014-02-01

    To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with(125)I, (103)Pd, or (131)Cs seeds, and to investigate doses to ocular structures. An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20-30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%-10% and 13%-14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%-17% and 29%-34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up to 16%. In the full eye model

  13. Model-based dose calculations for COMS eye plaque brachytherapy using an anatomically realistic eye phantom

    International Nuclear Information System (INIS)

    Lesperance, Marielle; Inglis-Whalen, M.; Thomson, R. M.

    2014-01-01

    Purpose : To investigate the effects of the composition and geometry of ocular media and tissues surrounding the eye on dose distributions for COMS eye plaque brachytherapy with 125 I, 103 Pd, or 131 Cs seeds, and to investigate doses to ocular structures. Methods : An anatomically and compositionally realistic voxelized eye model with a medial tumor is developed based on a literature review. Mass energy absorption and attenuation coefficients for ocular media are calculated. Radiation transport and dose deposition are simulated using the EGSnrc Monte Carlo user-code BrachyDose for a fully loaded COMS eye plaque within a water phantom and our full eye model for the three radionuclides. A TG-43 simulation with the same seed configuration in a water phantom neglecting the plaque and interseed effects is also performed. The impact on dose distributions of varying tumor position, as well as tumor and surrounding tissue media is investigated. Each simulation and radionuclide is compared using isodose contours, dose volume histograms for the lens and tumor, maximum, minimum, and average doses to structures of interest, and doses to voxels of interest within the eye. Results : Mass energy absorption and attenuation coefficients of the ocular media differ from those of water by as much as 12% within the 20–30 keV photon energy range. For all radionuclides studied, average doses to the tumor and lens regions in the full eye model differ from those for the plaque in water by 8%–10% and 13%–14%, respectively; the average doses to the tumor and lens regions differ between the full eye model and the TG-43 simulation by 2%–17% and 29%–34%, respectively. Replacing the surrounding tissues in the eye model with water increases the maximum and average doses to the lens by 2% and 3%, respectively. Substituting the tumor medium in the eye model for water, soft tissue, or an alternate melanoma composition affects tumor dose compared to the default eye model simulation by up

  14. Absorbed dose estimates to structures of the brain and head using a high-resolution voxel-based head phantom

    International Nuclear Information System (INIS)

    Evans, Jeffrey F.; Blue, Thomas E.; Gupta, Nilendu

    2001-01-01

    The purpose of this article is to demonstrate the viability of using a high-resolution 3-D head phantom in Monte Carlo N-Particle (MCNP) for boron neutron capture therapy (BNCT) structure dosimetry. This work describes a high-resolution voxel-based model of a human head and its use for calculating absorbed doses to the structures of the brain. The Zubal head phantom is a 3-D model of a human head that can be displayed and manipulated on a computer. Several changes were made to the original head phantom which now contains over 29 critical structures of the brain and head. The modified phantom is a 85x109x120 lattice of voxels, where each voxel is 2.2x2.2x1.4 mm 3 . This model was translated into MCNP lattice format. As a proof of principle study, two MCNP absorbed dose calculations were made (left and right lateral irradiations) using a uniformly distributed neutron disk source with an 1/E energy spectrum. Additionally, the results of these two calculations were combined to estimate the absorbed doses from a bilateral irradiation. Radiobiologically equivalent (RBE) doses were calculated for all structures and were normalized to 12.8 Gy-Eq. For a left lateral irradiation, the left motor cortex receives the limiting RBE dose. For a bilateral irradiation, the insula cortices receive the limiting dose. Among the nonencephalic structures, the parotid glands receive RBE doses that were within 15% of the limiting dose

  15. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    Science.gov (United States)

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Silicone-based composite materials simulate breast tissue to be used as ultrasonography training phantoms.

    Science.gov (United States)

    Ustbas, Burcin; Kilic, Deniz; Bozkurt, Ayhan; Aribal, Mustafa Erkin; Akbulut, Ozge

    2018-03-02

    A silicone-based composite breast phantom is fabricated to be used as an education model in ultrasonography training. A matrix of silicone formulations is tracked to mimic the ultrasonography and tactile response of human breast tissue. The performance of two different additives: (i) silicone oil and (ii) vinyl-terminated poly (dimethylsiloxane) (PDMS) are monitored by a home-made acoustic setup. Through the use of 75 wt% vinyl-terminated PDMS in two-component silicone elastomer mixture, a sound velocity of 1.29 ± 0.09 × 10 3  m/s and an attenuation coefficient of 12.99 ± 0.08 dB/cm-values those match closely to the human breast tissue-are measured with 5 MHz probe. This model can also be used for needle biopsy as well as for self-exam trainings. Herein, we highlight the fabrication of a realistic, durable, accessible, and cost-effective training platform that contains skin layer, inner breast tissue, and tumor masses. Copyright © 2018. Published by Elsevier B.V.

  17. Study of a method based on TLD detectors for in-phantom dosimetry in BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G. [Dept. of Physics of the Univ., Via Celoria 16, 20133 Milan (Italy); INFN, Natl. Inst. of Nuclear Physics, Via Celoria 16, 20133 Milan (Italy); Klamert, V. [Dept. of Nuclear Eng. of Polytechnic, CESNEF, Via Ponzio 34/3, 20133 Milan (Italy); Agosteo, S. [INFN, Natl. Inst. of Nuclear Physics, Via Celoria 16, 20133 Milan (Italy); Dept. of Nuclear Eng. of Polytechnic, CESNEF, Via Ponzio 34/3, 20133 Milan (Italy); Birattari, C.; Gay, S. [Dept. of Physics of the Univ., Via Celoria 16, 20133 Milan (Italy); INFN, Natl. Inst. of Nuclear Physics, Via Celoria 16, 20133 Milan (Italy); Rosi, G. [FIS-ION, ENEA, Casaccia, Via Anguillarese 301, 00060 Santa Maria di Galeria, Rome (Italy); Scolari, L. [Dept. of Physics of the Univ., Via Celoria 16, 20133 Milan (Italy); INFN, Natl. Inst. of Nuclear Physics, Via Celoria 16, 20133 Milan (Italy)

    2004-07-01

    A method has been developed, based on thermoluminescent dosemeters (TLD), aimed at measuring the absorbed dose in tissue-equivalent phantoms exposed to thermal or epithermal neutrons, separating the contributions of various secondary radiation generated by neutrons. The proposed method takes advantage of the very low sensitivity of CaF{sub 2}:Tm (TLD-300) to low energy neutrons and to the different responses to thermal neutrons of LiF:Mg,Ti dosemeters with different {sup 6}Li percentage (TLD-100, TLD-700, TLD-600). The comparison of the results with those obtained by means of gel dosemeters and activation foils has confirmed the reliability of the method. The experimental modalities allowing reliable results have been studied. The glow curves of TLD-300 after gamma or neutron irradiation have been compared; moreover, both internal irradiation effect and energy dependence have been investigated. For TLD-600, TLD-100 and TLD-700, the suitable fluence limits have been determined in order to avoid radiation damage and loss of linearity. (authors)

  18. ACCURATUM: improved calcium volume scoring using a mesh-based algorithm - a phantom study

    International Nuclear Information System (INIS)

    Saur, Stefan C.; Szekely, Gabor; Alkadhi, Hatem; Desbiolles, Lotus; Cattin, Philippe C.

    2009-01-01

    To overcome the limitations of the classical volume scoring method for quantifying coronary calcifications, including accuracy, variability between examinations, and dependency on plaque density and acquisition parameters, a mesh-based volume measurement method has been developed. It was evaluated and compared with the classical volume scoring method for accuracy, i.e., the normalized volume (measured volume/ground-truthed volume), and for variability between examinations (standard deviation of accuracy). A cardiac computed-tomography (CT) phantom containing various cylindrical calcifications was scanned using different tube voltages and reconstruction kernels, at various positions and orientations on the CT table and using different slice thicknesses. Mean accuracy for all plaques was significantly higher (p<0.0001) for the proposed method (1.220±0.507) than for the classical volume score (1.896±1.095). In contrast to the classical volume score, plaque density (p=0.84), reconstruction kernel (p=0.19), and tube voltage (p=0.27) had no impact on the accuracy of the developed method. In conclusion, the method presented herein is more accurate than classical calcium scoring and is less dependent on tube voltage, reconstruction kernel, and plaque density. (orig.)

  19. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    International Nuclear Information System (INIS)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H.

    2014-08-01

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  20. A GPU-based Monte Carlo dose calculation code for photon transport in a voxel phantom

    Energy Technology Data Exchange (ETDEWEB)

    Bellezzo, M.; Do Nascimento, E.; Yoriyaz, H., E-mail: mbellezzo@gmail.br [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil)

    2014-08-15

    As the most accurate method to estimate absorbed dose in radiotherapy, Monte Carlo method has been widely used in radiotherapy treatment planning. Nevertheless, its efficiency can be improved for clinical routine applications. In this paper, we present the CUBMC code, a GPU-based Mc photon transport algorithm for dose calculation under the Compute Unified Device Architecture platform. The simulation of physical events is based on the algorithm used in Penelope, and the cross section table used is the one generated by the Material routine, als present in Penelope code. Photons are transported in voxel-based geometries with different compositions. To demonstrate the capabilities of the algorithm developed in the present work four 128 x 128 x 128 voxel phantoms have been considered. One of them is composed by a homogeneous water-based media, the second is composed by bone, the third is composed by lung and the fourth is composed by a heterogeneous bone and vacuum geometry. Simulations were done considering a 6 MeV monoenergetic photon point source. There are two distinct approaches that were used for transport simulation. The first of them forces the photon to stop at every voxel frontier, the second one is the Woodcock method, where the photon stop in the frontier will be considered depending on the material changing across the photon travel line. Dose calculations using these methods are compared for validation with Penelope and MCNP5 codes. Speed-up factors are compared using a NVidia GTX 560-Ti GPU card against a 2.27 GHz Intel Xeon CPU processor. (Author)

  1. Construction of Korean female voxel phantom and its application to dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Choon Ik

    2001-08-15

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established.

  2. Construction of Korean female voxel phantom and its application to dosimetry

    International Nuclear Information System (INIS)

    Lee, Choon Ik

    2001-08-01

    A Korean female voxel phantom was constructed to overcome the limitations of anatomical description of the existing MRD-type mathematical anthropomorphic phantom and the example dose calculations were carried out for the radiation protection by using it. This whole body voxel phantom was based on the MRIs of the Korean adult female who falls into the reference Korean female group. The cross sectional human pictures from VHP of NLM was adopted for the modification and compensation of the missing MRIs of Korean adult female that include legs below upper thighs. From the gastrointestinal and respiratory organ which make obscure organ edges because of their continuing motion, the general anatomical knowledge were applied for the segmentation process. The Korean female whole body voxel phantom named in HYWOMAN is composed of 1,392,400 voxels that have width x length x height of 4mm x 4mm x 8mm for each with the total of 20 organs identified. With MDNP4B code the tissue equivalent doses were calculated for the four different energies of 0.4, 0.8, 2 and 8 MeV broad parallel gamma beam in AP, PA, LLAT and RLAT directions. The tissue equivalent doses were compared with those of ORNL adult female phantom under the same irradiation conditions. Despite of the small organ differences there could be found the considerable differences in tissue equivalent doses for some organs including thyroid, esophagus, kidneys and spleen. The cause of these discrepancies were proved to be the position of the organs in the phantom and the consequent shielding effects. With the methodology of this study, Korean reference male and female age-grouped voxel phantoms can be constructed and consequently the dosimetry system for typical Korean people is to be established

  3. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    International Nuclear Information System (INIS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-01-01

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ 2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ 2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies

  4. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Bauk, Sabar [School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Hashim, Rokiah [School of Industrial Technologies, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  5. A phantom-based study for assessing the error and uncertainty of a neuronavigation system

    Directory of Open Access Journals (Sweden)

    Natalia Izquierdo-Cifuentes

    2017-01-01

    Full Text Available This document describes a calibration protocol with the intention to introduce a guide to standardize the metrological vocabulary among manufacturers of image-guided surgery systems. Two stages were developed to measure the errors and estimate the uncertainty of a neuronavigator in different situations, on the first one it was determined a mechanical error on a virtual model of an acrylic phantom, on the second it was determined a coordinate error on the computerized axial tomography scan of the same phantom. Ten standard coordinates of the phantom were compared with the coordinates generated by the NeuroCPS. After measurement model was established, there were identified the sources of uncertainty and the data was processed according the guide to the expression of uncertainty in measurement.

  6. Influence of dose reduction and iterative reconstruction on CT calcium scores : a multi-manufacturer dynamic phantom study

    NARCIS (Netherlands)

    van der Werf, N R; Willemink, M J; Willems, T P; Greuter, M J W; Leiner, T

    To evaluate the influence of dose reduction in combination with iterative reconstruction (IR) on coronary calcium scores (CCS) in a dynamic phantom on state-of-the-art CT systems from different manufacturers. Calcified inserts in an anthropomorphic chest phantom were translated at 20 mm/s

  7. Phantom Pain

    Science.gov (United States)

    ... Because this is yet another version of tangled sensory wires, the result can be pain. A number of other factors are believed to contribute to phantom pain, including damaged nerve endings, scar tissue at the site of the amputation and the physical memory of pre-amputation pain in the affected area. ...

  8. Titanium Dioxide Nanoparticles as Radiosensitisers: An In vitro and Phantom-Based Study.

    Science.gov (United States)

    Youkhana, Esho Qasho; Feltis, Bryce; Blencowe, Anton; Geso, Moshi

    2017-01-01

    Objective: Radiosensitisation caused by titanium dioxide nanoparticles (TiO 2 -NPs) is investigated using phantoms (PRESAGE ® dosimeters) and in vitro using two types of cell lines, cultured human keratinocyte (HaCaT) and prostate cancer (DU145) cells. Methods: Anatase TiO 2 -NPs were synthesised, characterised and functionalised to allow dispersion in culture-medium for in vitro studies and halocarbons (PRESAGE ® chemical compositions). PRESAGE ® dosimeters were scanned with spectrophotometer to determine the radiation dose enhancement. Clonogenic and cell viability assays were employed to determine cells survival curves from which the dose enhancement levels "radiosensitisation" are deduced. Results: Comparable levels of radiosensitisation were observed in both phantoms and cells at kilovoltage ranges of x-ray energies (slightly higher in vitro) . Significant radiosensitisation (~67 %) of control was also noted in cells at megavoltage energies (commonly used in radiotherapy), compared to negligible levels detected by phantoms. This difference is attributed to biochemical effects, specifically the generation of reactive oxygen species (ROS) such as hydroxyl radicals ( • OH), which are only manifested in aqueous environments of cells and are non-existent in case of phantoms. Conclusions: This research shows that TiO 2 -NPs improve the efficiency of dose delivery, which has implications for future radiotherapy treatments. Literature shows that Ti 2 O 3 -NPs can be used as imaging agents hence with these findings renders these NPs as theranostic agents.

  9. Depth dose of critical organs of phantom based on surface dose exposed with Dual X-ray absorptiometry: pencil beam using TLD dosimetry

    Directory of Open Access Journals (Sweden)

    Ali Akbar Sharafi

    2009-02-01

    Full Text Available Introduction: Dual X-ray absorptiometry (DXA is one of the most widely used techniques fornon-invasive assessment of bone status. Radiation dosimetry is well established technique for pencilbeam and fan beam DXA system, for the assessment of the surface absorbed dose. No publishedassessment of the absorbed dose for the various depths of the critical organs such as the thyroid anduterus was found. Therefore, in this study, we measured the surface dose and depth dose of criticalorgans to determine the correlation between the depth dose and the surface dose.Materials and Methods: A Lunar DPX-MD (pencil beam system was used in this study. Ananthropomorphic phantom was designed. AP spine and femur scan modes were used to measure thesurface and depth doses of the thyroid left and right lobes and uterus in various deeps and scan centers.TLDs-400 were placed at the surface, near the source and also inserted at different depths in thyroidand uterus of the anthropomorphic phantom. Absorbed doses were measured on the phantom for APspine and femur scans. The correlation between the absorbed dose and the depth was found using thelinear regression analysis.Results: There was no significant correlation between the depth dose and the scan center doseexcept in the femur scan. AP spine effective dose were calculated as 0.064, 0.059, 0.061 and 0.242μSv for thyroid left, right lobes, uterus and ovary, respectively.Conclusion: It is concluded that there is significant correlation between the surface and the doseof various depths of the scanned sections.

  10. Synchrotron-based DEI for bio-imaging and DEI-CT to image phantoms with contrast agents

    International Nuclear Information System (INIS)

    Rao, Donepudi V.; Swapna, Medasani; Cesareo, Roberto; Brunetti, Antonio; Akatsuka, Tako; Yuasa, Tetsuya; Zhong, Zhong; Takeda, Tohoru; Gigante, Giovanni E.

    2012-01-01

    The introduction of water, physiological, or iodine as contrast agents is shown to enhance minute image features in synchrotron-based X-ray diffraction radiographic and tomographic imaging. Anatomical features of rat kidney, such as papillary ducts, ureter, renal artery and renal vein are clearly distinguishable. Olfactory bulb, olfactory tact, and descending bundles of the rat brain are visible with improved contrast. - Highlights: ► Distinguishable anatomical structures features of rat kidney and rat brain are acquired with Sy-DEI in planar mode. ► Images of a small brain phantom and cylindrical phantom are acquired in tomography mode (Sy-DEI-CT) with contrast agents. ► Sy-DEI and Sy-DEI-CT techniques provide new source of information related to biological microanatomy.

  11. Thermal neutron dose calculations in a brain phantom from 7Li(p,n) reaction based BNCT setup

    International Nuclear Information System (INIS)

    Elshahat, B.A.; Naqvi, A.A.; Maalej, N.; Abdallah, Khalid

    2006-01-01

    Monte Carlo simulations were carried out to calculate neutron dose in a brain phantom from a 7 Li(p,n) reaction based setup utilizing a high density polyethylene moderator with graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal /(fast +thermal) neutron intensity ratio as a function of geometric parameters of the setup. Results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated Peak Therapeutic Ratio for the setup was found to be 2.15. With further improvement in the moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor. (author)

  12. Three-dimensional portal image-based dose reconstruction in a virtual phantom for rapid evaluation of IMRT plans

    International Nuclear Information System (INIS)

    Ansbacher, W.

    2006-01-01

    A new method for rapid evaluation of intensity modulated radiation therapy (IMRT) plans has been developed, using portal images for reconstruction of the dose delivered to a virtual three-dimensional (3D) phantom. This technique can replace an array of less complete but more time-consuming measurements. A reference dose calculation is first created by transferring an IMRT plan to a cylindrical phantom, retaining the treatment gantry angles. The isocenter of the fields is placed on or near the phantom axis. This geometry preserves the relative locations of high and low dose regions and has the required symmetry for the dose reconstruction. An electronic portal image (EPI) is acquired for each field, representing the dose in the midplane of a virtual phantom. The image is convolved with a kernel to correct for the lack of scatter, replicating the effect of the cylindrical phantom surrounding the dose plane. This avoids the need to calculate fluence. Images are calibrated to a reference field that delivers a known dose to the isocenter of this phantom. The 3D dose matrix is reconstructed by attenuation and divergence corrections and summed to create a dose matrix (PI-dose) on the same grid spacing as the reference calculation. Comparison of the two distributions is performed with a gradient-weighted 3D dose difference based on dose and position tolerances. Because of its inherent simplicity, the technique is optimally suited for detecting clinically significant variances from a planned dose distribution, rather than for use in the validation of IMRT algorithms. An analysis of differences between PI-dose and calculation, δ PI , compared to differences between conventional quality assurance (QA) and calculation, δ CQ , was performed retrospectively for 20 clinical IMRT cases. PI-dose differences at the isocenter were in good agreement with ionization chamber differences (mean δ PI =-0.8%, standard deviation σ=1.5%, against δ CQ =0.3%, σ=1.0%, respectively). PI

  13. On Seeing Human: A Three-Factor Theory of Anthropomorphism

    Science.gov (United States)

    Epley, Nicholas; Waytz, Adam; Cacioppo, John T.

    2007-01-01

    Anthropomorphism describes the tendency to imbue the real or imagined behavior of nonhuman agents with humanlike characteristics, motivations, intentions, or emotions. Although surprisingly common, anthropomorphism is not invariant. This article describes a theory to explain when people are likely to anthropomorphize and when they are not, focused…

  14. Comparison of low-contrast detectability between two CT reconstruction algorithms using voxel-based 3D printed textured phantoms.

    Science.gov (United States)

    Solomon, Justin; Ba, Alexandre; Bochud, François; Samei, Ehsan

    2016-12-01

    To use novel voxel-based 3D printed textured phantoms in order to compare low-contrast detectability between two reconstruction algorithms, FBP (filtered-backprojection) and SAFIRE (sinogram affirmed iterative reconstruction) and determine what impact background texture (i.e., anatomical noise) has on estimating the dose reduction potential of SAFIRE. Liver volumes were segmented from 23 abdominal CT cases. The volumes were characterized in terms of texture features from gray-level co-occurrence and run-length matrices. Using a 3D clustered lumpy background (CLB) model, a fitting technique based on a genetic optimization algorithm was used to find CLB textures that were reflective of the liver textures, accounting for CT system factors of spatial blurring and noise. With the modeled background texture as a guide, four cylindrical phantoms (Textures A-C and uniform, 165 mm in diameter, and 30 mm height) were designed, each containing 20 low-contrast spherical signals (6 mm diameter at nominal contrast levels of ∼3.2, 5.2, 7.2, 10, and 14 HU with four repeats per signal). The phantoms were voxelized and input into a commercial multimaterial 3D printer (Object Connex 350), with custom software for voxel-based printing (using principles of digital dithering). Images of the textured phantoms and a corresponding uniform phantom were acquired at six radiation dose levels (SOMATOM Flash, Siemens Healthcare) and observer model detection performance (detectability index of a multislice channelized Hotelling observer) was estimated for each condition (5 contrasts × 6 doses × 2 reconstructions × 4 backgrounds = 240 total conditions). A multivariate generalized regression analysis was performed (linear terms, no interactions, random error term, log link function) to assess whether dose, reconstruction algorithm, signal contrast, and background type have statistically significant effects on detectability. Also, fitted curves of detectability (averaged across contrast levels

  15. Normal and Pathological NCAT Image and Phantom Data Based on Physiologically Realistic Left Ventricle Finite-Element Models

    International Nuclear Information System (INIS)

    Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.; Tsui, Benjamin M.W.; Gullberg, Grant T.

    2006-01-01

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, which provides a realistic model of the normal human anatomy and cardiac and respiratory motions, is used in medical imaging research to evaluate and improve imaging devices and techniques, especially dynamic cardiac applications. One limitation of the phantom is that it lacks the ability to accurately simulate altered functions of the heart that result from cardiac pathologies such as coronary artery disease (CAD). The goal of this work was to enhance the 4D NCAT phantom by incorporating a physiologically based, finite-element (FE) mechanical model of the left ventricle (LV) to simulate both normal and abnormal cardiac motions. The geometry of the FE mechanical model was based on gated high-resolution x-ray multi-slice computed tomography (MSCT) data of a healthy male subject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees at the epicardial surface, through 0 degrees at the mid-wall, to 90 degrees at the endocardial surface. A time varying elastance model was used to simulate fiber contraction, and physiological intraventricular systolic pressure-time curves were applied to simulate the cardiac motion over the entire cardiac cycle. To demonstrate the ability of the FE mechanical model to accurately simulate the normal cardiac motion as well abnormal motions indicative of CAD, a normal case and two pathologic cases were simulated and analyzed. In the first pathologic model, a subendocardial anterior ischemic region was defined. A second model was created with a transmural ischemic region defined in the same location. The FE based deformations were incorporated into the 4D NCAT cardiac model through the control points that define the cardiac structures in the phantom which were set to move according to the predictions of the mechanical model. A simulation study was performed using the FE-NCAT combination to investigate how the

  16. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    Science.gov (United States)

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  17. VK-phantom male with 583 structures and female with 459 structures, based on the sectioned images of a male and a female, for computational dosimetry.

    Science.gov (United States)

    Park, Jin Seo; Jung, Yong Wook; Choi, Hyung-Do; Lee, Ae-Kyoung

    2018-04-05

    The anatomical structures in most phantoms are classified according to tissue properties rather than according to their detailed structures, because the tissue properties, not the detailed structures, are what is considered important. However, if a phantom does not have detailed structures, the phantom will be unreliable because different tissues can be regarded as the same. Thus, we produced the Visible Korean (VK) -phantoms with detailed structures (male, 583 structures; female, 459 structures) based on segmented images of the whole male body (interval, 1.0 mm; pixel size, 1.0 mm2) and the whole female body (interval, 1.0 mm; pixel size, 1.0 mm2), using house-developed software to analyze the text string and voxel information for each of the structures. The density of each structure in the VK-phantom was calculated based on Virtual Population and a publication of the International Commission on Radiological Protection. In the future, we will standardize the size of each structure in the VK-phantoms. If the VK-phantoms are standardized and the mass density of each structure is precisely known, researchers will be able to measure the exact absorption rate of electromagnetic radiation in specific organs and tissues of the whole body.

  18. Antenna modeling considerations for accurate SAR calculations in human phantoms in close proximity to GSM cellular base station antennas.

    Science.gov (United States)

    van Wyk, Marnus J; Bingle, Marianne; Meyer, Frans J C

    2005-09-01

    International bodies such as International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the Institute for Electrical and Electronic Engineering (IEEE) make provision for human exposure assessment based on SAR calculations (or measurements) and basic restrictions. In the case of base station exposure this is mostly applicable to occupational exposure scenarios in the very near field of these antennas where the conservative reference level criteria could be unnecessarily restrictive. This study presents a variety of critical aspects that need to be considered when calculating SAR in a human body close to a mobile phone base station antenna. A hybrid FEM/MoM technique is proposed as a suitable numerical method to obtain accurate results. The verification of the FEM/MoM implementation has been presented in a previous publication; the focus of this study is an investigation into the detail that must be included in a numerical model of the antenna, to accurately represent the real-world scenario. This is accomplished by comparing numerical results to measurements for a generic GSM base station antenna and appropriate, representative canonical and human phantoms. The results show that it is critical to take the disturbance effect of the human phantom (a large conductive body) on the base station antenna into account when the antenna-phantom spacing is less than 300 mm. For these small spacings, the antenna structure must be modeled in detail. The conclusion is that it is feasible to calculate, using the proposed techniques and methodology, accurate occupational compliance zones around base station antennas based on a SAR profile and basic restriction guidelines. (c) 2005 Wiley-Liss, Inc.

  19. Phantom-based standardization of CT angiography images for spot sign detection.

    Science.gov (United States)

    Morotti, Andrea; Romero, Javier M; Jessel, Michael J; Hernandez, Andrew M; Vashkevich, Anastasia; Schwab, Kristin; Burns, Joseph D; Shah, Qaisar A; Bergman, Thomas A; Suri, M Fareed K; Ezzeddine, Mustapha; Kirmani, Jawad F; Agarwal, Sachin; Shapshak, Angela Hays; Messe, Steven R; Venkatasubramanian, Chitra; Palmieri, Katherine; Lewandowski, Christopher; Chang, Tiffany R; Chang, Ira; Rose, David Z; Smith, Wade; Hsu, Chung Y; Liu, Chun-Lin; Lien, Li-Ming; Hsiao, Chen-Yu; Iwama, Toru; Afzal, Mohammad Rauf; Cassarly, Christy; Greenberg, Steven M; Martin, Renee' Hebert; Qureshi, Adnan I; Rosand, Jonathan; Boone, John M; Goldstein, Joshua N

    2017-09-01

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion.

  20. Phantom-based standardization of CT angiography images for spot sign detection

    International Nuclear Information System (INIS)

    Morotti, Andrea; Rosand, Jonathan; Romero, Javier M.; Jessel, Michael J.; Vashkevich, Anastasia; Schwab, Kristin; Greenberg, Steven M.; Hernandez, Andrew M.; Boone, John M.; Burns, Joseph D.; Shah, Qaisar A.; Bergman, Thomas A.; Suri, M.F.K.; Ezzeddine, Mustapha; Kirmani, Jawad F.; Agarwal, Sachin; Hays Shapshak, Angela; Messe, Steven R.; Venkatasubramanian, Chitra; Palmieri, Katherine; Lewandowski, Christopher; Chang, Tiffany R.; Chang, Ira; Rose, David Z.; Smith, Wade; Hsu, Chung Y.; Liu, Chun-Lin; Lien, Li-Ming; Hsiao, Chen-Yu; Iwama, Toru; Afzal, Mohammad Rauf; Qureshi, Adnan I.; Cassarly, Christy; Hebert Martin, Renee; Goldstein, Joshua N.

    2017-01-01

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion. (orig.)

  1. Heterogeneity phantoms for visualization of 3D dose distributions by MRI-based polymer gel dosimetry

    International Nuclear Information System (INIS)

    Watanabe, Yoichi; Mooij, Rob; Mark Perera, G.; Maryanski, Marek J.

    2004-01-01

    Heterogeneity corrections in dose calculations are necessary for radiation therapy treatment plans. Dosimetric measurements of the heterogeneity effects are hampered if the detectors are large and their radiological characteristics are not equivalent to water. Gel dosimetry can solve these problems. Furthermore, it provides three-dimensional (3D) dose distributions. We used a cylindrical phantom filled with BANG-3 registered polymer gel to measure 3D dose distributions in heterogeneous media. The phantom has a cavity, in which water-equivalent or bone-like solid blocks can be inserted. The irradiated phantom was scanned with an magnetic resonance imaging (MRI) scanner. Dose distributions were obtained by calibrating the polymer gel for a relationship between the absorbed dose and the spin-spin relaxation rate of the magnetic resistance (MR) signal. To study dose distributions we had to analyze MR imaging artifacts. This was done in three ways: comparison of a measured dose distribution in a simulated homogeneous phantom with a reference dose distribution, comparison of a sagittally scanned image with a sagittal image reconstructed from axially scanned data, and coregistration of MR and computed-tomography images. We found that the MRI artifacts cause a geometrical distortion of less than 2 mm and less than 10% change in the dose around solid inserts. With these limitations in mind we could make some qualitative measurements. Particularly we observed clear differences between the measured dose distributions around an air-gap and around bone-like material for a 6 MV photon beam. In conclusion, the gel dosimetry has the potential to qualitatively characterize the dose distributions near heterogeneities in 3D

  2. Phantom-based standardization of CT angiography images for spot sign detection

    Energy Technology Data Exchange (ETDEWEB)

    Morotti, Andrea; Rosand, Jonathan [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Romero, Javier M. [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, Neuroradiology Service, Department of Radiology, Massachusetts General Hospital, Boston, MA (United States); Jessel, Michael J.; Vashkevich, Anastasia; Schwab, Kristin; Greenberg, Steven M. [Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Hernandez, Andrew M.; Boone, John M. [University of California Davis, Department of Radiology, Sacramento, CA (United States); Burns, Joseph D. [Lahey Hospital and Medical Center, Department of Neurology, Burlington, MA (United States); Shah, Qaisar A. [Abington Memorial Hospital, Abington, PA (United States); Bergman, Thomas A. [Hennepin County Medical Center, Minneapolis, MN (United States); Suri, M.F.K. [St. Cloud Hospital, St. Cloud, MN (United States); Ezzeddine, Mustapha [University of Minnesota, Minneapolis, MN (United States); Kirmani, Jawad F. [JFK Medical Center, Stroke and Neurovascular Center, Edison, NJ (United States); Agarwal, Sachin [Columbia University Medical Center, New York, NY (United States); Hays Shapshak, Angela [University of Alabama at Birmingham, Birmingham, AL (United States); Messe, Steven R. [University of Pennsylvania, Philadelphia, PA (United States); Venkatasubramanian, Chitra [Stanford University, Stanford, CA (United States); Palmieri, Katherine [The University of Kansas Health System, Kansas City, KS (United States); Lewandowski, Christopher [Henry Ford Hospital, Detroit, MI (United States); Chang, Tiffany R. [University of Texas Medical School, Houston, TX (United States); Chang, Ira [Colorado Neurological Institute, Swedish Medical Center, Englewood, CO (United States); Rose, David Z. [Tampa General Hospital, University of South Florida College of Medicine, Tampa, FL (United States); Smith, Wade [UCSF Medical Center, San Francisco, CA (United States); Hsu, Chung Y.; Liu, Chun-Lin [China Medical University Hospital, Taichung (China); Lien, Li-Ming; Hsiao, Chen-Yu [Shin Kong Wu Ho-Su Memorial Hospital, Taipei (China); Iwama, Toru [Gifu University Hospital, Gifu (Japan); Afzal, Mohammad Rauf; Qureshi, Adnan I. [University of Minnesota, Zeenat Qureshi Stroke Research Center, Minneapolis, MN (United States); Cassarly, Christy; Hebert Martin, Renee [Medical University of South Carolina, Department of Public Health Sciences, Charleston, SC (United States); Goldstein, Joshua N. [Harvard Medical School, Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, J. P. Kistler Stroke Research Center, Massachusetts General Hospital, Boston, MA (United States); Harvard Medical School, Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA (United States); Collaboration: ATACH-II and NETT Investigators

    2017-09-15

    The CT angiography (CTA) spot sign is a strong predictor of hematoma expansion in intracerebral hemorrhage (ICH). However, CTA parameters vary widely across centers and may negatively impact spot sign accuracy in predicting ICH expansion. We developed a CT iodine calibration phantom that was scanned at different institutions in a large multicenter ICH clinical trial to determine the effect of image standardization on spot sign detection and performance. A custom phantom containing known concentrations of iodine was designed and scanned using the stroke CT protocol at each institution. Custom software was developed to read the CT volume datasets and calculate the Hounsfield unit as a function of iodine concentration for each phantom scan. CTA images obtained within 8 h from symptom onset were analyzed by two trained readers comparing the calibrated vs. uncalibrated density cutoffs for spot sign identification. ICH expansion was defined as hematoma volume growth >33%. A total of 90 subjects qualified for the study, of whom 17/83 (20.5%) experienced ICH expansion. The number of spot sign positive scans was higher in the calibrated analysis (67.8 vs 38.9% p < 0.001). All spot signs identified in the non-calibrated analysis remained positive after calibration. Calibrated CTA images had higher sensitivity for ICH expansion (76 vs 52%) but inferior specificity (35 vs 63%) compared with uncalibrated images. Normalization of CTA images using phantom data is a feasible strategy to obtain consistent image quantification for spot sign analysis across different sites and may improve sensitivity for identification of ICH expansion. (orig.)

  3. A phantom-based study for assessing the error and uncertainty of a neuronavigation system

    OpenAIRE

    Natalia Izquierdo-Cifuentes; Genaro Daza-Santacoloma; Walter Serna-Serna

    2017-01-01

    This document describes a calibration protocol with the intention to introduce a guide to standardize the metrological vocabulary among manufacturers of image-guided surgery systems. Two stages were developed to measure the errors and estimate the uncertainty of a neuronavigator in different situations, on the first one it was determined a mechanical error on a virtual model of an acrylic phantom, on the second it was determined a coordinate error on the computerized axial tomography scan of ...

  4. Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: Instrumentation and phantom validation

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Yu [Department of Radiation Oncology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305-5847 and Medical Physics Program, University of Nevada, Las Vegas, Nevada 89154-3037 (United States); Pratx, Guillem; Bazalova, Magdalena; Qian Jianguo; Meng Bowen; Xing Lei [Department of Radiation Oncology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305-5847 (United States)

    2013-03-15

    Purpose: Developing an imaging method to directly monitor the spatial distribution of platinum-based (Pt) drugs at the tumor region is of critical importance for early assessment of treatment efficacy and personalized treatment. In this study, the authors investigated the feasibility of imaging platinum (Pt)-based drug distribution using x-ray fluorescence (XRF, a.k.a. characteristic x ray) CT (XFCT). Methods: A 5-mm-diameter pencil beam produced by a polychromatic x-ray source equipped with a tungsten anode was used to stimulate emission of XRF photons from Pt drug embedded within a water phantom. The phantom was translated and rotated relative to the stationary pencil beam in a first-generation CT geometry. The x-ray energy spectrum was collected for 18 s at each position using a cadmium telluride detector. The spectra were then used for the K-shell XRF peak isolation and sinogram generation for Pt. The distribution and concentration of Pt were reconstructed with an iterative maximum likelihood expectation maximization algorithm. The capability of XFCT to multiplexed imaging of Pt, gadolinium (Gd), and iodine (I) within a water phantom was also investigated. Results: Measured XRF spectrum showed a sharp peak characteristic of Pt with a narrow full-width at half-maximum (FWHM) (FWHM{sub K{alpha}1}= 1.138 keV, FWHM{sub K{alpha}2}= 1.052 keV). The distribution of Pt drug in the water phantom was clearly identifiable on the reconstructed XRF images. Our results showed a linear relationship between the XRF intensity of Pt and its concentrations (R{sup 2}= 0.995), suggesting that XFCT is capable of quantitative imaging. A transmission CT image was also obtained to show the potential of the approach for providing attenuation correction and morphological information. Finally, the distribution of Pt, Gd, and I in the water phantom was clearly identifiable in the reconstructed images from XFCT multiplexed imaging. Conclusions: XFCT is a promising modality for monitoring

  5. The four-dimensional non-uniform rational B-splines-based cardiac-torso phantom and its application in medical imaging research

    International Nuclear Information System (INIS)

    Li Chongguo; Wu Dake; Lang Jinyi

    2008-01-01

    Simulation skill is playing an increasingly important role in medical imaging research. four-dimensional non-uniform rational B-splines-based cardiac-torso (4D NCAT) phantom is new tool for meoical imaging res catch and when combined with accurate models for the imaging process a wealth of realistic imaging data from subjects of various anatomies. Can be provided 4D NCAT phantoms have bend widely used in medical research such as SPECT, PET, CT and so on. 4D NCAT phantoms have also been used in inverse planning system of intensity modulated radiation therapy. (authors)

  6. Construction of Chinese reference female phantom

    International Nuclear Information System (INIS)

    Sheng Yinxiangzi; Liu Lixing; Xia Xiaobin

    2013-01-01

    In this study, a Voxel-based Chinese Reference female Phantom (VCRP-woman) is developed from an individual female phantom which was based on high resolution cross-sectional color photographs. An in-house C ++ program was developed to adjust the phantom. Finally, a reference female phantom with have the same height, weighte and similar organs masses with the Chinese reference adult female data. The adjusted phantom is then imported to MCNPX to calculate the organs absorbed dose and effective dose conversion coefficients. Results are compared between VCRP-woman and the ICRP adult reference female phantom. (authors)

  7. Electrical impedance spectroscopy (EIS)-based evaluation of biological tissue phantoms to study multifrequency electrical impedance tomography (Mf-EIT) systems

    KAUST Repository

    Bera, Tushar Kanti

    2016-03-18

    Abstract: Electrical impedance tomography (EIT) phantoms are essential for the calibration, comparison and evaluation of the EIT systems. In EIT, the practical phantoms are typically developed based on inhomogeneities surrounded by a homogeneous background to simulate a suitable conductivity contrast. In multifrequency EIT (Mf-EIT) evaluation, the phantoms must be developed with the materials which have recognizable or distinguishable impedance variations over a wide range of frequencies. In this direction the impedance responses of the saline solution (background) and a number vegetable and fruit tissues (inhomogeneities) are studied with electrical impedance spectroscopy (EIS) and the frequency responses of bioelectrical impedance and conductivity are analyzed. A number of practical phantoms with different tissue inhomogeneities and different inhomogeneity configurations are developed and the multifrequency impedance imaging is studied with the Mf-EIT system to evaluate the phantoms. The conductivity of the vegetable inhomogeneities reconstructed from the EIT imaging is compared with the conductivity values obtained from the EIS studies. Experimental results obtained from multifrequency EIT reconstruction demonstrate that the electrical impedance of all the biological tissues inhomogenity decreases with frequency. The potato tissue phantom produces better impedance image in high frequency ranges compared to the cucumber phantom, because the cucumber impedance at high frequency becomes lesser than that of the potato at the same frequency range. Graphical Abstract: [Figure not available: see fulltext.] © 2016 The Visualization Society of Japan

  8. Posture-specific phantoms representing female and male adults in Monte Carlo-based simulations for radiological protection

    Science.gov (United States)

    Cassola, V. F.; Kramer, R.; Brayner, C.; Khoury, H. J.

    2010-08-01

    Does the posture of a patient have an effect on the organ and tissue absorbed doses caused by x-ray examinations? This study aims to find the answer to this question, based on Monte Carlo (MC) simulations of commonly performed x-ray examinations using adult phantoms modelled to represent humans in standing as well as in the supine posture. The recently published FASH (female adult mesh) and MASH (male adult mesh) phantoms have the standing posture. In a first step, both phantoms were updated with respect to their anatomy: glandular tissue was separated from adipose tissue in the breasts, visceral fat was separated from subcutaneous fat, cartilage was segmented in ears, nose and around the thyroid, and the mass of the right lung is now 15% greater than the left lung. The updated versions are called FASH2_sta and MASH2_sta (sta = standing). Taking into account the gravitational effects on organ position and fat distribution, supine versions of the FASH2 and the MASH2 phantoms have been developed in this study and called FASH2_sup and MASH2_sup. MC simulations of external whole-body exposure to monoenergetic photons and partial-body exposure to x-rays have been made with the standing and supine FASH2 and MASH2 phantoms. For external whole-body exposure for AP and PA projection with photon energies above 30 keV, the effective dose did not change by more than 5% when the posture changed from standing to supine or vice versa. Apart from that, the supine posture is quite rare in occupational radiation protection from whole-body exposure. However, in the x-ray diagnosis supine posture is frequently used for patients submitted to examinations. Changes of organ absorbed doses up to 60% were found for simulations of chest and abdomen radiographs if the posture changed from standing to supine or vice versa. A further increase of differences between posture-specific organ and tissue absorbed doses with increasing whole-body mass is to be expected.

  9. Development of pathological anthropomorphic models using 3D modelling techniques for numerical dosimetry; Desenvolvimento de modelos antropomorficos patologicos usando tecnicas de modelagem 3D para dosimetria numerica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Kleber Souza Silva [Faculdade Integrada de Pernambuco (FACIPE), Recife, PE (Brazil); Barbosa, Antonio Konrado de Santana; Vieira, Jose Wilson [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco, Recife, PE (Brazil); Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2011-10-26

    Computational exposure models can be used to estimate human body absorbed dose in a series of situations such as X-Ray exams for diagnosis, accidents and medical treatments. These models are fundamentally composed of an anthropomorphic simulator (phantom), an algorithm that simulates a radioactive source and a Monte Carlo Code. The accuracy of data obtained in the simulation is strongly connected to the adequacy of such simulation to the real situation. The phantoms are one of the key factors for the researcher manipulation. They are generally developed in supine position and its anatomy is patronized by compiled data from international institutions such as ICRP or ICRU. Several pathologies modify the structure of organs and body tissues. In order to measure how significant these alterations are, an anthropomorphic model was developed for this study: patient mastectomies. This model was developed using voxel phantom FASH and then coupled with EGSnrc Monte Carlo code

  10. Low contrast detectability and spatial resolution with model-based iterative reconstructions of MDCT images: a phantom and cadaveric study

    Energy Technology Data Exchange (ETDEWEB)

    Millon, Domitille; Coche, Emmanuel E. [Universite Catholique de Louvain, Department of Radiology and Medical Imaging, Cliniques Universitaires Saint Luc, Brussels (Belgium); Vlassenbroek, Alain [Philips Healthcare, Brussels (Belgium); Maanen, Aline G. van; Cambier, Samantha E. [Universite Catholique de Louvain, Statistics Unit, King Albert II Cancer Institute, Brussels (Belgium)

    2017-03-15

    To compare image quality [low contrast (LC) detectability, noise, contrast-to-noise (CNR) and spatial resolution (SR)] of MDCT images reconstructed with an iterative reconstruction (IR) algorithm and a filtered back projection (FBP) algorithm. The experimental study was performed on a 256-slice MDCT. LC detectability, noise, CNR and SR were measured on a Catphan phantom scanned with decreasing doses (48.8 down to 0.7 mGy) and parameters typical of a chest CT examination. Images were reconstructed with FBP and a model-based IR algorithm. Additionally, human chest cadavers were scanned and reconstructed using the same technical parameters. Images were analyzed to illustrate the phantom results. LC detectability and noise were statistically significantly different between the techniques, supporting model-based IR algorithm (p < 0.0001). At low doses, the noise in FBP images only enabled SR measurements of high contrast objects. The superior CNR of model-based IR algorithm enabled lower dose measurements, which showed that SR was dose and contrast dependent. Cadaver images reconstructed with model-based IR illustrated that visibility and delineation of anatomical structure edges could be deteriorated at low doses. Model-based IR improved LC detectability and enabled dose reduction. At low dose, SR became dose and contrast dependent. (orig.)

  11. Normal and Pathological NCAT Image and PhantomData Based onPhysiologically Realistic Left Ventricle Finite-Element Models

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Segars, W. Paul; Weiss, Jeffrey A.; Tsui,Benjamin M.W.; Gullberg, Grant T.

    2006-08-02

    The 4D NURBS-based Cardiac-Torso (NCAT) phantom, whichprovides a realistic model of the normal human anatomy and cardiac andrespiratory motions, is used in medical imaging research to evaluate andimprove imaging devices and techniques, especially dynamic cardiacapplications. One limitation of the phantom is that it lacks the abilityto accurately simulate altered functions of the heart that result fromcardiac pathologies such as coronary artery disease (CAD). The goal ofthis work was to enhance the 4D NCAT phantom by incorporating aphysiologically based, finite-element (FE) mechanical model of the leftventricle (LV) to simulate both normal and abnormal cardiac motions. Thegeometry of the FE mechanical model was based on gated high-resolutionx-ray multi-slice computed tomography (MSCT) data of a healthy malesubject. The myocardial wall was represented as transversely isotropichyperelastic material, with the fiber angle varying from -90 degrees atthe epicardial surface, through 0 degreesat the mid-wall, to 90 degreesat the endocardial surface. A time varying elastance model was used tosimulate fiber contraction, and physiological intraventricular systolicpressure-time curves were applied to simulate the cardiac motion over theentire cardiac cycle. To demonstrate the ability of the FE mechanicalmodel to accurately simulate the normal cardiac motion as well abnormalmotions indicative of CAD, a normal case and two pathologic cases weresimulated and analyzed. In the first pathologic model, a subendocardialanterior ischemic region was defined. A second model was created with atransmural ischemic region defined in the same location. The FE baseddeformations were incorporated into the 4D NCAT cardiac model through thecontrol points that define the cardiac structures in the phantom whichwere set to move according to the predictions of the mechanical model. Asimulation study was performed using the FE-NCAT combination toinvestigate how the differences in contractile function

  12. SU-E-T-13: A Feasibility Study of the Use of Hybrid Computational Phantoms for Improved Historical Dose Reconstruction in the Study of Late Radiation Effects for Hodgkin's Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Petroccia, H; O' Reilly, S; Bolch, W [J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL (United States); Mendenhall, N; Li, Z; Slopsema, R [Radiation Oncology, University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

    2014-06-01

    Purpose: Radiation-induced cancer effects are well-documented following radiotherapy. Further investigation is needed to more accurately determine a dose-response relationship for late radiation effects. Recent dosimetry studies tend to use representative patients (Taylor 2009) or anthropomorphic phantoms (Wirth 2008) for estimating organ mean doses. In this study, we compare hybrid computational phantoms to patient-specific voxel phantoms to test the accuracy of University of Florida Hybrid Phantom Library (UFHP Library) for historical dose reconstructions. Methods: A cohort of 10 patients with CT images was used to reproduce the data that was collected historically for Hodgkin's lymphoma patients (i.e. caliper measurements and photographs). Four types of phantoms were generated to show a range of refinement from reference hybrid-computational phantom to patient-specific phantoms. Each patient is matched to a reference phantom from the UFHP Library based on height and weight. The reference phantom is refined in the anterior/posterior direction to create a ‘caliper-scaled phantom’. A photograph is simulated using a surface rendering from segmented CT images. Further refinement in the lateral direction is performed using ratios from a simulated-photograph to create a ‘photograph and caliper-scaled phantom’; breast size and position is visually adjusted. Patient-specific hybrid phantoms, with matched organ volumes, are generated and show the capabilities of the UF Hybrid Phantom Library. Reference, caliper-scaled, photograph and caliper-scaled, and patient-specific hybrid phantoms are compared with patient-specific voxel phantoms to determine the accuracy of the study. Results: Progression from reference phantom to patient specific hybrid shows good agreement with the patient specific voxel phantoms. Each stage of refinement shows an overall trend of improvement in dose accuracy within the study, which suggests that computational phantoms can show

  13. [The model of geometrical human body phantom for calculating tissue doses in the service module of the International Space Station].

    Science.gov (United States)

    Bondarenko, V A; Mitrikas, V G

    2007-01-01

    The model of a geometrical human body phantom developed for calculating the shielding functions of representative points of the body organs and systems is similar to the anthropomorphic phantom. This form of phantom can be integrated with the shielding model of the ISS Russian orbital segment to make analysis of radiation loading of crewmembers in different compartments of the vehicle. Calculation of doses absorbed by the body systems in terms of the representative points makes it clear that doses essentially depend on the phantom spatial orientation (eye direction). It also enables the absorbed dose evaluation from the shielding functions as the mean of the representative points and phantom orientation.

  14. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mahdipour, Seyed Ali [Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mowlavi, Ali Asghar, E-mail: amowlavi@hsu.ac.ir [Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); ICTP, Associate Federation Scheme, Medical Physics Field, Trieste (Italy)

    2016-07-01

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth−dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8 MeV proton, 190.1 MeV alpha, and 1060 MeV carbon ions that have the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam's Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.

  15. Ion therapy for uveal melanoma in new human eye phantom based on GEANT4 toolkit

    International Nuclear Information System (INIS)

    Mahdipour, Seyed Ali; Mowlavi, Ali Asghar

    2016-01-01

    Radiotherapy with ion beams like proton and carbon has been used for treatment of eye uveal melanoma for many years. In this research, we have developed a new phantom of human eye for Monte Carlo simulation of tumors treatment to use in GEANT4 toolkit. Total depth−dose profiles for the proton, alpha, and carbon incident beams with the same ranges have been calculated in the phantom. Moreover, the deposited energy of the secondary particles for each of the primary beams is calculated. The dose curves are compared for 47.8 MeV proton, 190.1 MeV alpha, and 1060 MeV carbon ions that have the same range in the target region reaching to the center of tumor. The passively scattered spread-out Bragg peak (SOBP) for each incident beam as well as the flux curves of the secondary particles including neutron, gamma, and positron has been calculated and compared for the primary beams. The high sharpness of carbon beam's Bragg peak with low lateral broadening is the benefit of this beam in hadrontherapy but it has disadvantages of dose leakage in the tail after its Bragg peak and high intensity of neutron production. However, proton beam, which has a good conformation with tumor shape owing to the beam broadening caused by scattering, can be a good choice for the large-size tumors.

  16. Revisiting the Effect of Anthropomorphizing a Social Cause Campaign.

    Directory of Open Access Journals (Sweden)

    Lisa A Williams

    Full Text Available Recent research suggests that anthropomorphism can be harnessed as a tool to boost intentions to comply with social cause campaigns. Drawing on the human tendency to extend moral concern to entities portrayed as humanlike, it has been argued that adding personified features to a social campaign elevates anticipated guilt at failing to comply, and this subsequently boosts intentions to comply with that campaign. The present research aimed to extend extant research by disentangling the effects of emotional and non-emotional anthropomorphism, and differentiating amongst other emotional mechanisms of the anthropomorphism-compliance effect (namely, anticipated pride and anticipated regret. Experiment 1 (N = 294 compared the effectiveness of positive, negative, and emotionally-neutral anthropomorphized campaign posters for boosting campaign compliance intentions against non-anthropomorphized posters. We also measured potential mechanisms including anticipated guilt, regret, and pride. Results failed to support the anthropomorphism-compliance effect, and no changes in anticipated emotion according to anthropomorphism emerged. Experiments 2 (N = 150 and 3 (N = 196 represented further tests of the anthropomorphism-compliance effect. Despite high statistical power and efforts to closely replicate the conditions under which the anthropomorphism-compliance effect had been previously observed, no differences in compliance intention or anticipated emotion according to anthropomorphism emerged. A meta-analysis of the effects of anthropomorphism on compliance and anticipated emotion across the three experiments revealed effect size estimates that did not differ significantly from zero. The results of these three experiments suggest that the anthropomorphism-compliance effect is fragile and perhaps subject to contextual and idiographic influences. Thus, this research provides important insight and impetus for future research on the applied and theoretical

  17. Revisiting the Effect of Anthropomorphizing a Social Cause Campaign.

    Science.gov (United States)

    Williams, Lisa A; Masser, Barbara; Sun, Jessie

    2015-01-01

    Recent research suggests that anthropomorphism can be harnessed as a tool to boost intentions to comply with social cause campaigns. Drawing on the human tendency to extend moral concern to entities portrayed as humanlike, it has been argued that adding personified features to a social campaign elevates anticipated guilt at failing to comply, and this subsequently boosts intentions to comply with that campaign. The present research aimed to extend extant research by disentangling the effects of emotional and non-emotional anthropomorphism, and differentiating amongst other emotional mechanisms of the anthropomorphism-compliance effect (namely, anticipated pride and anticipated regret). Experiment 1 (N = 294) compared the effectiveness of positive, negative, and emotionally-neutral anthropomorphized campaign posters for boosting campaign compliance intentions against non-anthropomorphized posters. We also measured potential mechanisms including anticipated guilt, regret, and pride. Results failed to support the anthropomorphism-compliance effect, and no changes in anticipated emotion according to anthropomorphism emerged. Experiments 2 (N = 150) and 3 (N = 196) represented further tests of the anthropomorphism-compliance effect. Despite high statistical power and efforts to closely replicate the conditions under which the anthropomorphism-compliance effect had been previously observed, no differences in compliance intention or anticipated emotion according to anthropomorphism emerged. A meta-analysis of the effects of anthropomorphism on compliance and anticipated emotion across the three experiments revealed effect size estimates that did not differ significantly from zero. The results of these three experiments suggest that the anthropomorphism-compliance effect is fragile and perhaps subject to contextual and idiographic influences. Thus, this research provides important insight and impetus for future research on the applied and theoretical utility of

  18. Fluence-to-effective dose conversion coefficients from a Saudi population based phantom for monoenergetic photon beams from 10 keV to 20 MeV

    International Nuclear Information System (INIS)

    Ma, Andy K; Hussein, Mohammed Adel; Altaher, Khalid Mohammed; Farid, Khalid Yousif; Amer, Mamun; Aldhafery, Bander Fuhaid; Alghamdi, Ali A

    2015-01-01

    Fluence-to-dose conversion coefficients are important quantities for radiation protection, derived from Monte Carlo simulations of the radiation particles through a stylised phantom or voxel based phantoms. The voxel phantoms have been developed for many ethnic groups for their accurate reflection of the anatomy. In this study, we used the Monte Carlo code MCNPX to calculate the photon fluence-to-effective dose conversion coefficients with a voxel phantom based on the Saudi Arabian male population. Six irradiation geometries, anterior–posterior (AP), posterior–anterior (PA), left lateral (LLAT), right lateral (RLAT), rotational (ROT) and isotropic (ISO) were simulated for monoenergetic photon beams from 10 keV to 20 MeV. We compared the coefficients with the reference values in ICRP Publication 116. The coefficients in the AP and PA geometries match the reference values to 9% and 12% on average as measured by root mean square while those in the LLAT, RLAT ROT and ISO geometries differ, mostly below, from the reference by 23, 22, 15 and 16%, respectively. The torso of the Saudi phantom is wider than the ICRP reference male phantom and likely to cause more attenuation to the lateral beam. The ICRP reference coefficients serve well for the Saudi male population as conservative estimations for the purpose of radiation protection. (paper)

  19. CT-based attenuation correction and resolution compensation for I-123 IMP brain SPECT normal database: a multicenter phantom study.

    Science.gov (United States)

    Inui, Yoshitaka; Ichihara, Takashi; Uno, Masaki; Ishiguro, Masanobu; Ito, Kengo; Kato, Katsuhiko; Sakuma, Hajime; Okazawa, Hidehiko; Toyama, Hiroshi

    2018-03-19

    Statistical image analysis of brain SPECT images has improved diagnostic accuracy for brain disorders. However, the results of statistical analysis vary depending on the institution even when they use a common normal database (NDB), due to different intrinsic spatial resolutions or correction methods. The present study aimed to evaluate the correction of spatial resolution differences between equipment and examine the differences in skull bone attenuation to construct a common NDB for use in multicenter settings. The proposed acquisition and processing protocols were those routinely used at each participating center with additional triple energy window (TEW) scatter correction (SC) and computed tomography (CT) based attenuation correction (CTAC). A multicenter phantom study was conducted on six imaging systems in five centers, with either single photon emission computed tomography (SPECT) or SPECT/CT, and two brain phantoms. The gray/white matter I-123 activity ratio in the brain phantoms was 4, and they were enclosed in either an artificial adult male skull, 1300 Hounsfield units (HU), a female skull, 850 HU, or an acrylic cover. The cut-off frequency of the Butterworth filters was adjusted so that the spatial resolution was unified to a 17.9 mm full width at half maximum (FWHM), that of the lowest resolution system. The gray-to-white matter count ratios were measured from SPECT images and compared with the actual activity ratio. In addition, mean, standard deviation and coefficient of variation images were calculated after normalization and anatomical standardization to evaluate the variability of the NDB. The gray-to-white matter count ratio error without SC and attenuation correction (AC) was significantly larger for higher bone densities (p correction. The proposed protocol showed potential for constructing an appropriate common NDB from SPECT images with SC, AC and spatial resolution compensation.

  20. Generating human-like movements on an anthropomorphic robot using an interior point method

    Science.gov (United States)

    Costa e Silva, E.; Araújo, J. P.; Machado, D.; Costa, M. F.; Erlhagen, W.; Bicho, E.

    2013-10-01

    In previous work we have presented a model for generating human-like arm and hand movements on an anthropomorphic robot involved in human-robot collaboration tasks. This model was inspired by the Posture-Based Motion-Planning Model of human movements. Numerical results and simulations for reach-to-grasp movements with two different grip types have been presented previously. In this paper we extend our model in order to address the generation of more complex movement sequences which are challenged by scenarios cluttered with obstacles. The numerical results were obtained using the IPOPT solver, which was integrated in our MATLAB simulator of an anthropomorphic robot.

  1. Quantitative Assessment of Optical Coherence Tomography Imaging Performance with Phantom-Based Test Methods And Computational Modeling

    Science.gov (United States)

    Agrawal, Anant

    Optical coherence tomography (OCT) is a powerful medical imaging modality that uniquely produces high-resolution cross-sectional images of tissue using low energy light. Its clinical applications and technological capabilities have grown substantially since its invention about twenty years ago, but efforts have been limited to develop tools to assess performance of OCT devices with respect to the quality and content of acquired images. Such tools are important to ensure information derived from OCT signals and images is accurate and consistent, in order to support further technology development, promote standardization, and benefit public health. The research in this dissertation investigates new physical and computational models which can provide unique insights into specific performance characteristics of OCT devices. Physical models, known as phantoms, are fabricated and evaluated in the interest of establishing standardized test methods to measure several important quantities relevant to image quality. (1) Spatial resolution is measured with a nanoparticle-embedded phantom and model eye which together yield the point spread function under conditions where OCT is commonly used. (2) A multi-layered phantom is constructed to measure the contrast transfer function along the axis of light propagation, relevant for cross-sectional imaging capabilities. (3) Existing and new methods to determine device sensitivity are examined and compared, to better understand the detection limits of OCT. A novel computational model based on the finite-difference time-domain (FDTD) method, which simulates the physics of light behavior at the sub-microscopic level within complex, heterogeneous media, is developed to probe device and tissue characteristics influencing the information content of an OCT image. This model is first tested in simple geometric configurations to understand its accuracy and limitations, then a highly realistic representation of a biological cell, the retinal

  2. Development and application of a set of mesh-based and age-dependent Chinese family phantoms for radiation protection dosimetry: Preliminary Data for external photon beams

    Science.gov (United States)

    Pi, Yifei; Zhang, Lian; Huo, Wanli; Feng, Mang; Chen, Zhi; Xu, X. George

    2017-09-01

    A group of mesh-based and age-dependent family phantoms for Chinese populations were developed in this study. We implemented a method for deforming original RPI-AM and RPI-AF models into phantoms of different ages: 5, 10 ,15 and adult. More than 120 organs for each model were processed to match with the values of the Chinese reference parameters within 0.5%. All of these phantoms were then converted to voxel format for Monte Carlo simulations. Dose coefficients for adult models were counted to compare with those of RPI-AM and RPI-AF. The results show that there are significant differences between absorbed doses of RPI phantoms and these of our adult phantoms at low energies. Comparisons for the dose coefficients among different ages and genders were also made. it was found that teenagers receive more radiation doses than adults under the same irradiation condition. This set of phantoms can be utilized to estimate dosimetry for Chinese population for radiation protection, medical imaging, and radiotherapy.

  3. Attenuation properties and percentage depth dose of tannin-based Rhizophora spp. particleboard phantoms using computed tomography (CT) and treatment planning system (TPS) at high energy x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, M. F. Mohd, E-mail: mfahmi@usm.my [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia); Abdullah, R. [School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan (Malaysia); Tajuddin, A. A. [School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia); Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Kepala Batas, Penang (Malaysia); Hashim, R. [School of Industrial Technologies, Universiti Sains Malaysia, 11800 Penang (Malaysia); Bauk, S. [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2016-01-22

    A set of tannin-based Rhizophora spp. particleboard phantoms with dimension of 30 cm x 30 cm was fabricated at target density of 1.0 g/cm{sup 3}. The mass attenuation coefficient of the phantom was measured using {sup 60}Co gamma source. The phantoms were scanned using Computed Tomography (CT) scanner and the percentage depth dose (PDD) of the phantom was calculated using treatment planning system (TPS) at 6 MV and 10 MV x-ray and compared to that in solid water phantoms. The result showed that the mass attenuation coefficient of tannin-based Rhizohora spp. phantoms was near to the value of water with χ{sup 2} value of 1.2. The measured PDD also showed good agreement with solid water phantom at both 6 MV and 10 MV x-ray with percentage deviation below 8% at depth beyond the maximum dose, Z{sub max}.

  4. Use of a modified natural-rubber phantom for radiotherapy dosimetry measurements

    International Nuclear Information System (INIS)

    Bradley, D.A.; Ng, K.-H.; Aziz, Y.B.

    1988-01-01

    The utility of a phantom material, based on SMR(L) [Standard Malaysian Rubber] grade natural rubber and a formulation used for the proprietary rubber phantom-material, Temex, has been examined for the 1-MeV photon-energy range using γ radiation from a 60 Co source. Measurement has also been performed with 60-keV photons using the radionuclide 241 Am. At photon-therapy energy levels the measured response, when compared with tabulated central-axis percentage depth doses for defined measuring conditions, produces everywhere (in the range 1-19 cm depth) better than 2% deviation. The favourable measured response characteristics combined with the ease of processing and casting the phantom material provide the basis for useful radiotherapy machine calibration and anthropomorphic dosimetry measurements. The measured mass-attenuation coefficient, at 60 keV, of 0.204 cm 2 g -1 (± 3%) is in close agreement with tabulated values for water (0.2055 cm 2 g -1 ). (author)

  5. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, Rulon [Henry Jackson Foundation, Bethesda, Maryland 20817 (United States); Liacouras, Peter [Walter Reed National Military Medical Center, Bethesda, Maryland 20899 (United States); Thomas, Andrew [ATC Healthcare, Washington, District of Columbia 20006 (United States); Kang, Minglei; Lin, Liyong; Simone, Charles B. [Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  6. Experimental dosimetric evaluation in pelvis phantom, subjected to prostate radiation therapy protocol at 15 MV Linac

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Andrea Silva Dias de; Campos, Tarcisio P.R., E-mail: campos@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Humberto Galvao [Centro de Radioterapia Hospital Luxemburgo, Belo Horizonte, MG (Brazil)

    2011-07-01

    Among the existing malignant neoplasia, the prostate cancer is most common among male population. Due to its high incidence and morbidity, there is a need for investment in advanced technology for better treatment associated with research and social mobilization to prevent the disease. As an efficient method of treatment for such tumor, radiation teletherapy brings favorable results for the patient, particularly when the cancer is diagnosed early. There are, however, the needs to assess the absorbed doses that reach the prostate in the radiation protocols in order to certify the treatment efficacy. The present research goal is to obtain the profile of absorbed dose distributed in a synthetic prostate on male pelvis phantom following a standard radiation therapy protocol. The methodology makes use of a NRI made phantom and a 15MV Linac accelerator. This phantom has anthropomorphic and anthropometric features containing the major internal organs, including bone, prostate, intestine, and bladder. The exposition was made in a 15 MV linear accelerator taken the isocenter in four fields as a 'BOX' of opposing beams. The dosimetry was prepared using GafChromic EBT type 2 radiochromic film and calibration in a solid water phantom. The radiochromic films were digitized on the Microtek Scan Maker 6900XL model scanner operating in the transmission mode and optical density readings based on RGB mode in the computer program Imagedig. The absorbance readings were performed in the spectrophotometer SP-220 mark BIOSPECTRO obtaining calibration curves generated by the collected data. The results reproduce the dose distribution generated in two orthogonal radiochromic films positioned onto the synthetic prostate. Discussions regarding the characteristics of the phantom and methods of irradiation in relation to the achieved dose profile will be addressed. (author)

  7. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry

    International Nuclear Information System (INIS)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B.

    2015-01-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor’s trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  8. 3D printer generated thorax phantom with mobile tumor for radiation dosimetry.

    Science.gov (United States)

    Mayer, Rulon; Liacouras, Peter; Thomas, Andrew; Kang, Minglei; Lin, Liyong; Simone, Charles B

    2015-07-01

    This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between

  9. Experimental dosimetric evaluation in pelvis phantom, subjected to prostate radiation therapy protocol at 15 MV Linac

    International Nuclear Information System (INIS)

    Matos, Andrea Silva Dias de; Campos, Tarcisio P.R.

    2011-01-01

    Among the existing malignant neoplasia, the prostate cancer is most common among male population. Due to its high incidence and morbidity, there is a need for investment in advanced technology for better treatment associated with research and social mobilization to prevent the disease. As an efficient method of treatment for such tumor, radiation teletherapy brings favorable results for the patient, particularly when the cancer is diagnosed early. There are, however, the needs to assess the absorbed doses that reach the prostate in the radiation protocols in order to certify the treatment efficacy. The present research goal is to obtain the profile of absorbed dose distributed in a synthetic prostate on male pelvis phantom following a standard radiation therapy protocol. The methodology makes use of a NRI made phantom and a 15MV Linac accelerator. This phantom has anthropomorphic and anthropometric features containing the major internal organs, including bone, prostate, intestine, and bladder. The exposition was made in a 15 MV linear accelerator taken the isocenter in four fields as a 'BOX' of opposing beams. The dosimetry was prepared using GafChromic EBT type 2 radiochromic film and calibration in a solid water phantom. The radiochromic films were digitized on the Microtek Scan Maker 6900XL model scanner operating in the transmission mode and optical density readings based on RGB mode in the computer program Imagedig. The absorbance readings were performed in the spectrophotometer SP-220 mark BIOSPECTRO obtaining calibration curves generated by the collected data. The results reproduce the dose distribution generated in two orthogonal radiochromic films positioned onto the synthetic prostate. Discussions regarding the characteristics of the phantom and methods of irradiation in relation to the achieved dose profile will be addressed. (author)

  10. Evaluation of amplitude-based sorting algorithm to reduce lung tumor blurring in PET images using 4D NCAT phantom.

    Science.gov (United States)

    Wang, Jiali; Byrne, James; Franquiz, Juan; McGoron, Anthony

    2007-08-01

    develop and validate a PET sorting algorithm based on the respiratory amplitude to correct for abnormal respiratory cycles. using the 4D NCAT phantom model, 3D PET images were simulated in lung and other structures at different times within a respiratory cycle and noise was added. To validate the amplitude binning algorithm, NCAT phantom was used to simulate one case of five different respiratory periods and another case of five respiratory periods alone with five respiratory amplitudes. Comparison was performed for gated and un-gated images and for the new amplitude binning algorithm with the time binning algorithm by calculating the mean number of counts in the ROI (region of interest). an average of 8.87+/-5.10% improvement was reported for total 16 tumors with different tumor sizes and different T/B (tumor to background) ratios using the new sorting algorithm. As both the T/B ratio and tumor size decreases, image degradation due to respiration increases. The greater benefit for smaller diameter tumor and lower T/B ratio indicates a potential improvement in detecting more problematic tumors.

  11. A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom.

    Science.gov (United States)

    Cutolo, Fabrizio; Meola, Antonio; Carbone, Marina; Sinceri, Sara; Cagnazzo, Federico; Denaro, Ennio; Esposito, Nicola; Ferrari, Mauro; Ferrari, Vincenzo

    2017-12-01

    Benefits of minimally invasive neurosurgery mandate the development of ergonomic paradigms for neuronavigation. Augmented Reality (AR) systems can overcome the shortcomings of commercial neuronavigators. The aim of this work is to apply a novel AR system, based on a head-mounted stereoscopic video see-through display, as an aid in complex neurological lesion targeting. Effectiveness was investigated on a newly designed patient-specific head mannequin featuring an anatomically realistic brain phantom with embedded synthetically created tumors and eloquent areas. A two-phase evaluation process was adopted in a simulated small tumor resection adjacent to Broca's area. Phase I involved nine subjects without neurosurgical training in performing spatial judgment tasks. In Phase II, three surgeons were involved in assessing the effectiveness of the AR-neuronavigator in performing brain tumor targeting on a patient-specific head phantom. Phase I revealed the ability of the AR scene to evoke depth perception under different visualization modalities. Phase II confirmed the potentialities of the AR-neuronavigator in aiding the determination of the optimal surgical access to the surgical target. The AR-neuronavigator is intuitive, easy-to-use, and provides three-dimensional augmented information in a perceptually-correct way. The system proved to be effective in guiding skin incision, craniotomy, and lesion targeting. The preliminary results encourage a structured study to prove clinical effectiveness. Moreover, our testing platform might be used to facilitate training in brain tumour resection procedures.

  12. A phantom based method for deriving typical patient doses from measurements of dose-area product on populations of patients

    International Nuclear Information System (INIS)

    Chapple, C.-L.; Broadhead, D.A.

    1995-01-01

    One of the chief sources of uncertainty in the comparison of patient dosimetry data is the influence of patient size on dose. Dose has been shown to relate closely to the equivalent diameter of the patient. This concept has been used to derive a prospective, phantom based method for determining size correction factors for measurements of dose-area product. The derivation of the size correction factor has been demonstrated mathematically, and the appropriate factor determined for a number of different X-ray sets. The use of phantom measurements enables the effect of patient size to be isolated from other factors influencing patient dose. The derived factors agree well with those determined retrospectively from patient dose survey data. Size correction factors have been applied to the results of a large scale patient dose survey, and this approach has been compared with the method of selecting patients according to their weight. For large samples of data, mean dose-area product values are independent of the analysis method used. The chief advantage of using size correction factors is that it allows all patient data to be included in a survey, whereas patient selection has been shown to exclude approximately half of all patients. (author)

  13. TH-CD-202-07: A Methodology for Generating Numerical Phantoms for Radiation Therapy Using Geometric Attribute Distribution Models

    Energy Technology Data Exchange (ETDEWEB)

    Dolly, S; Chen, H; Mutic, S; Anastasio, M; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)

    2016-06-15

    Purpose: A persistent challenge for the quality assessment of radiation therapy treatments (e.g. contouring accuracy) is the absence of the known, ground truth for patient data. Moreover, assessment results are often patient-dependent. Computer simulation studies utilizing numerical phantoms can be performed for quality assessment with a known ground truth. However, previously reported numerical phantoms do not include the statistical properties of inter-patient variations, as their models are based on only one patient. In addition, these models do not incorporate tumor data. In this study, a methodology was developed for generating numerical phantoms which encapsulate the statistical variations of patients within radiation therapy, including tumors. Methods: Based on previous work in contouring assessment, geometric attribute distribution (GAD) models were employed to model both the deterministic and stochastic properties of individual organs via principle component analysis. Using pre-existing radiation therapy contour data, the GAD models are trained to model the shape and centroid distributions of each organ. Then, organs with different shapes and positions can be generated by assigning statistically sound weights to the GAD model parameters. Organ contour data from 20 retrospective prostate patient cases were manually extracted and utilized to train the GAD models. As a demonstration, computer-simulated CT images of generated numerical phantoms were calculated and assessed subjectively and objectively for realism. Results: A cohort of numerical phantoms of the male human pelvis was generated. CT images were deemed realistic both subjectively and objectively in terms of image noise power spectrum. Conclusion: A methodology has been developed to generate realistic numerical anthropomorphic phantoms using pre-existing radiation therapy data. The GAD models guarantee that generated organs span the statistical distribution of observed radiation therapy patients

  14. TH-CD-202-07: A Methodology for Generating Numerical Phantoms for Radiation Therapy Using Geometric Attribute Distribution Models

    International Nuclear Information System (INIS)

    Dolly, S; Chen, H; Mutic, S; Anastasio, M; Li, H

    2016-01-01

    Purpose: A persistent challenge for the quality assessment of radiation therapy treatments (e.g. contouring accuracy) is the absence of the known, ground truth for patient data. Moreover, assessment results are often patient-dependent. Computer simulation studies utilizing numerical phantoms can be performed for quality assessment with a known ground truth. However, previously reported numerical phantoms do not include the statistical properties of inter-patient variations, as their models are based on only one patient. In addition, these models do not incorporate tumor data. In this study, a methodology was developed for generating numerical phantoms which encapsulate the statistical variations of patients within radiation therapy, including tumors. Methods: Based on previous work in contouring assessment, geometric attribute distribution (GAD) models were employed to model both the deterministic and stochastic properties of individual organs via principle component analysis. Using pre-existing radiation therapy contour data, the GAD models are trained to model the shape and centroid distributions of each organ. Then, organs with different shapes and positions can be generated by assigning statistically sound weights to the GAD model parameters. Organ contour data from 20 retrospective prostate patient cases were manually extracted and utilized to train the GAD models. As a demonstration, computer-simulated CT images of generated numerical phantoms were calculated and assessed subjectively and objectively for realism. Results: A cohort of numerical phantoms of the male human pelvis was generated. CT images were deemed realistic both subjectively and objectively in terms of image noise power spectrum. Conclusion: A methodology has been developed to generate realistic numerical anthropomorphic phantoms using pre-existing radiation therapy data. The GAD models guarantee that generated organs span the statistical distribution of observed radiation therapy patients

  15. Evaluation of data reduction methods for dynamic PET series based on Monte Carlo techniques and the NCAT phantom

    International Nuclear Information System (INIS)

    Thireou, Trias; Rubio Guivernau, Jose Luis; Atlamazoglou, Vassilis; Ledesma, Maria Jesus; Pavlopoulos, Sotiris; Santos, Andres; Kontaxakis, George

    2006-01-01

    A realistic dynamic positron-emission tomography (PET) thoracic study was generated, using the 4D NURBS-based (non-uniform rational B-splines) cardiac-torso (NCAT) phantom and a sophisticated model of the PET imaging process, simulating two solitary pulmonary nodules. Three data reduction and blind source separation methods were applied to the simulated data: principal component analysis, independent component analysis and similarity mapping. All methods reduced the initial amount of image data to a smaller, comprehensive and easily managed set of parametric images, where structures were separated based on their different kinetic characteristics and the lesions were readily identified. The results indicate that the above-mentioned methods can provide an accurate tool for the support of both visual inspection and subsequent detailed kinetic analysis of the dynamic series via compartmental or non-compartmental models

  16. Anthropomorphic reasoning about neuromorphic AGI safety

    Science.gov (United States)

    Jilk, David J.; Herd, Seth J.; Read, Stephen J.; O'Reilly, Randall C.

    2017-11-01

    One candidate approach to creating artificial general intelligence (AGI) is to imitate the essential computations of human cognition. This process is sometimes called 'reverse-engineering the brain' and the end product called 'neuromorphic.' We argue that, unlike with other approaches to AGI, anthropomorphic reasoning about behaviour and safety concerns is appropriate and crucial in a neuromorphic context. Using such reasoning, we offer some initial ideas to make neuromorphic AGI safer. In particular, we explore how basic drives that promote social interaction may be essential to the development of cognitive capabilities as well as serving as a focal point for human-friendly outcomes.

  17. Status and Trends of the Anthropomorphic Robotics

    Directory of Open Access Journals (Sweden)

    S. P. Hurs

    2016-01-01

    Full Text Available The paper considers a number of current developments in the field of anthropomorphic robotics, namely robotic exoskeletons, android platform with copying control systems, android platform with autonomous control systems, avatars, and androids. Highlights the key subsystems of the robotic platform such as sensitization tools, tools of self-diagnostics, security and prioritization, a power subsystem, and computer system. Identifies the most important subsystem of a “future soldier” to represent an equipage as a multifunctional active exoskeleton, completed with the necessary equipment.The paper shows the main problems the developers of anthropomorphic robotics face. For example, many degrees of the human body freedom curb a creation of the actuating mechanisms of robots, which fit the human anatomy as much as possible. For the human sizes the specific characteristics of traditional types of actuators, such as electromechanical, electro-hydraulic and electro-pneumatic are worse than those of the human muscles. Clearly, the greatest prospects in this area are associated with artificial muscles. There is also no so far a solution for the problem of creating the feedbacks in all kinds of senses to ensure that an operator has a feeling that he is in the place of the robot. There is much tension around the issue of creating a perfect remote control system that allows the operator to obtain unambiguous signals to control the robot. There is currently no completely autonomous control system with elements of artificial intelligence. Particular attention is paid to the problems of creating power sources that can provide affordable autonomy for mobile robotic systems. The most, presently, promising power sources are mentioned.The paper considers some development aspects of the control system, which is capable to run in a copier, supervisory, combined and offline modes. Presents the most important functions of the robot sensory system. Shows some aspects

  18. Conversion of ICRP male reference phantom to polygon-surface phantom

    Science.gov (United States)

    Yeom, Yeon Soo; Han, Min Cheol; Kim, Chan Hyeong; Jeong, Jong Hwi

    2013-10-01

    The International Commission on Radiological Protection (ICRP) reference phantoms, developed based on computed tomography images of human bodies, provide much more realism of human anatomy than the previously used MIRD5 (Medical Internal Radiation Dose) mathematical phantoms. It has been, however, realized that the ICRP reference phantoms have some critical limitations showing a considerable amount of holes for the skin and wall organs mainly due to the nature of voxels of which the phantoms are made, especially due to their low voxel resolutions. To address this problem, we are planning to develop the polygon-surface version of ICRP reference phantoms by directly converting the ICRP reference phantoms (voxel phantoms) to polygon-surface phantoms. The objective of this preliminary study is to see if it is indeed possible to construct the high-quality polygon-surface phantoms based on the ICRP reference phantoms maintaining identical organ morphology and also to identify any potential issues, and technologies to address these issues, in advance. For this purpose, in the present study, the ICRP reference male phantom was roughly converted to a polygon-surface phantom. Then, the constructed phantom was implemented in Geant4, Monte Carlo particle transport code, for dose calculations, and the calculated dose values were compared with those of the original ICRP reference phantom to see how much the calculated dose values are sensitive to the accuracy of the conversion process. The results of the present study show that it is certainly possible to convert the ICRP reference phantoms to surface phantoms with enough accuracy. In spite of using relatively less resources (original ICRP reference phantoms, it is believed that the polygon-surface version of ICRP reference phantoms properly developed will not only provide the same or similar dose values (say, difference <5 or 10%) for highly penetrating radiations, but also provide correct dose values for the weakly penetrating

  19. Solid water phantom

    International Nuclear Information System (INIS)

    Arguiropulo, M.Y.; Ghilardi Neto, T.; Pela, C.A.; Ghilardi, A.J.P.

    1992-01-01

    A phantom were developed for simulating water, based in plastics. The material was evaluated for different energies, and the measures of relative transmission showed that the transmission and the water were inside of 0,6% for gamma rays. The results of this new material were presented, showing that it could be used in photon beam calibration with energies on radiotherapy range. (C.G.C.)

  20. SU-E-I-80: Quantification of Respiratory and Cardiac Motion Effect in SPECT Acquisitions Using Anthropomorphic Models: A Monte Carlo Simulation Study

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitroulas, P; Kostou, T; Kagadis, G [University of Patras, Rion, Ahaia (Greece); Loudos, G [Technological Educational Institute of Athens, Egaleo, Attika (Greece)

    2015-06-15

    Purpose: The purpose of the present study was to quantify, evaluate the impact of cardiac and respiratory motion on clinical nuclear imaging protocols. Common SPECT and scintigraphic scans are studied using Monte Carlo (MC) simulations, comparing the resulted images with and without motion. Methods: Realistic simulations were executed using the GATE toolkit and the XCAT anthropomorphic phantom as a reference model for human anatomy. Three different radiopharmaceuticals based on 99mTc were studied, namely 99mTc-MDP, 99mTc—N—DBODC and 99mTc—DTPA-aerosol for bone, myocardium and lung scanning respectively. The resolution of the phantom was set to 3.5 mm{sup 3}. The impact of the motion on spatial resolution was quantified using a sphere with 3.5 mm diameter and 10 separate time frames, in the ECAM modeled SPECT scanner. Finally, respiratory motion impact on resolution and imaging of lung lesions was investigated. The MLEM algorithm was used for data reconstruction, while the literature derived biodistributions of the pharmaceuticals were used as activity maps in the simulations. Results: FWHM was extracted for a static and a moving sphere which was ∼23 cm away from the entrance of the SPECT head. The difference in the FWHM was 20% between the two simulations. Profiles in thorax were compared in the case of bone scintigraphy, showing displacement and blurring of the bones when respiratory motion was inserted in the simulation. Large discrepancies were noticed in the case of myocardium imaging when cardiac motion was incorporated during the SPECT acquisition. Finally the borders of the lungs are blurred when respiratory motion is included resulting to a dislocation of ∼2.5 cm. Conclusion: As we move to individualized imaging and therapy procedures, quantitative and qualitative imaging is of high importance in nuclear diagnosis. MC simulations combined with anthropomorphic digital phantoms can provide an accurate tool for applications like motion correction

  1. Anthropomorphic Networks as Representatives of Global Consciousness

    Directory of Open Access Journals (Sweden)

    Sergii Yahodzinskyi

    2018-02-01

    Full Text Available There has been analyzed a phenomenon of global consciousness, and its cultural and historical, civilizational dimensions have been substantiated. There has been demonstrated that the concept of planetary consciousness, global thinking, noosphere was described for the first time in the philosophy of cosmism. However, in modern conditions ideas of representatives of the naturalistic philosophical direction of cosmism have not lost their heuristic potential. They can be reconsidered in a new fashion within the context of emerging anthropomorphic (human dimension networks. There has been proved that global consciousness is a component of the social and cultural potential of global information networks defining vectors to prospects of humanity progress in the 21st century. Relying on methodology of the structural and functional analysis, the author arrives at a conclusion about global networks obtaining the status of representatives of global consciousness. This is the area of networks where all relevant information is concentrated – from statistical data to scientific and technical information. Access to these data is limited by human abilities and is realized in the form of discrete requests with using heuristic algorithms of information procession. A suggestion is introduced considering the fact that modern society being a self-organized system seeks to gain stable condition. Anthropomorphic networks are means of decreasing social entropy, which is growing as a result of any kind of human intervention into social processes. Thus, for the first time a human is challenged by their intellect, ability to create, discover and control.

  2. Phantom position dependence

    International Nuclear Information System (INIS)

    Thorson, M.R.; Endres, G.W.R.

    1981-01-01

    Sensitivity of the Hanford dosimeter response to its position relative to the phantom and the neutron source has always been recognized. A thorough investigation was performed to quantify dosimeter response according to: (a) dosimeter position on phantom, (b) dosimeter distance from phantom, and (c) angular relationship of dosimeter relative to neutron source and phantom. Results were obtained for neutron irradiation at several different energies

  3. Influence of the Accuracy of Angiography-Based Reconstructions on Velocity and Wall Shear Stress Computations in Coronary Bifurcations: A Phantom Study

    Science.gov (United States)

    Schrauwen, Jelle T. C.; Karanasos, Antonios; van Ditzhuijzen, Nienke S.; Aben, Jean-Paul; van der Steen, Antonius F. W.

    2015-01-01

    Introduction Wall shear stress (WSS) plays a key role in the onset and progression of atherosclerosis in human coronary arteries. Especially sites with low and oscillating WSS near bifurcations have a higher propensity to develop atherosclerosis. WSS computations in coronary bifurcations can be performed in angiography-based 3D reconstructions. It is essential to evaluate how reconstruction errors influence WSS computations in mildly-diseased coronary bifurcations. In mildly-diseased lesions WSS could potentially provide more insight in plaque progression. Materials Methods Four Plexiglas phantom models of coronary bifurcations were imaged with bi-plane angiography. The lumens were segmented by two clinically experienced readers. Based on the segmentations 3D models were generated. This resulted in three models per phantom: one gold-standard from the phantom model itself, and one from each reader. Steady-state and transient simulations were performed with computational fluid dynamics to compute the WSS. A similarity index and a noninferiority test were used to compare the WSS in the phantoms and their reconstructions. The margin for this test was based on the resolution constraints of angiography. Results The reconstruction errors were similar to previously reported data; in seven out of eight reconstructions less than 0.10 mm. WSS in the regions proximal and far distal of the stenosis showed a good agreement. However, the low WSS areas directly distal of the stenosis showed some disagreement between the phantoms and the readers. This was due to small deviations in the reconstruction of the stenosis that caused differences in the resulting jet, and consequently the size and location of the low WSS area. Discussion This study showed that WSS can accurately be computed within angiography-based 3D reconstructions of coronary arteries with early stage atherosclerosis. Qualitatively, there was a good agreement between the phantoms and the readers. Quantitatively, the

  4. Influence of the Accuracy of Angiography-Based Reconstructions on Velocity and Wall Shear Stress Computations in Coronary Bifurcations: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Jelle T C Schrauwen

    Full Text Available Wall shear stress (WSS plays a key role in the onset and progression of atherosclerosis in human coronary arteries. Especially sites with low and oscillating WSS near bifurcations have a higher propensity to develop atherosclerosis. WSS computations in coronary bifurcations can be performed in angiography-based 3D reconstructions. It is essential to evaluate how reconstruction errors influence WSS computations in mildly-diseased coronary bifurcations. In mildly-diseased lesions WSS could potentially provide more insight in plaque progression.Four Plexiglas phantom models of coronary bifurcations were imaged with bi-plane angiography. The lumens were segmented by two clinically experienced readers. Based on the segmentations 3D models were generated. This resulted in three models per phantom: one gold-standard from the phantom model itself, and one from each reader. Steady-state and transient simulations were performed with computational fluid dynamics to compute the WSS. A similarity index and a noninferiority test were used to compare the WSS in the phantoms and their reconstructions. The margin for this test was based on the resolution constraints of angiography.The reconstruction errors were similar to previously reported data; in seven out of eight reconstructions less than 0.10 mm. WSS in the regions proximal and far distal of the stenosis showed a good agreement. However, the low WSS areas directly distal of the stenosis showed some disagreement between the phantoms and the readers. This was due to small deviations in the reconstruction of the stenosis that caused differences in the resulting jet, and consequently the size and location of the low WSS area.This study showed that WSS can accurately be computed within angiography-based 3D reconstructions of coronary arteries with early stage atherosclerosis. Qualitatively, there was a good agreement between the phantoms and the readers. Quantitatively, the low WSS regions directly distal to

  5. Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system

    Science.gov (United States)

    Musarudin, M.; Saripan, M. I.; Mashohor, S.; Saad, W. H. M.; Nordin, A. J.; Hashim, S.

    2015-10-01

    Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10-50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom.

  6. The effects of iterative reconstruction in CT on low-contrast liver lesion volumetry: a phantom study

    Science.gov (United States)

    Li, Qin; Berman, Benjamin P.; Schumacher, Justin; Liang, Yongguang; Gavrielides, Marios A.; Yang, Hao; Zhao, Binsheng; Petrick, Nicholas

    2017-03-01

    Tumor volume measured from computed tomography images is considered a biomarker for disease progression or treatment response. The estimation of the tumor volume depends on the imaging system parameters selected, as well as lesion characteristics. In this study, we examined how different image reconstruction methods affect the measurement of lesions in an anthropomorphic liver phantom with a non-uniform background. Iterative statistics-based and model-based reconstructions, as well as filtered back-projection, were evaluated and compared in this study. Statistics-based and filtered back-projection yielded similar estimation performance, while model-based yielded higher precision but lower accuracy in the case of small lesions. Iterative reconstructions exhibited higher signal-to-noise ratio but slightly lower contrast of the lesion relative to the background. A better understanding of lesion volumetry performance as a function of acquisition parameters and lesion characteristics can lead to its incorporation as a routine sizing tool.

  7. Anthropomorphism in Decorative Pictures: Benefit or Harm for Learning?

    Science.gov (United States)

    Schneider, Sascha; Nebel, Steve; Beege, Maik; Rey, Günter Daniel

    2018-01-01

    When people attribute human characteristics to nonhuman objects they are amenable to anthropomorphism. For example, human faces or the insertion of personalized labels are found to trigger anthropomorphism. Two studies examine the effects of these features when included in decorative pictures in multimedia learning materials. In a first…

  8. Generation of realistic virtual nodules based on three-dimensional spatial resolution in lung computed tomography: A pilot phantom study.

    Science.gov (United States)

    Narita, Akihiro; Ohkubo, Masaki; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2017-10-01

    The aim of this feasibility study using phantoms was to propose a novel method for obtaining computer-generated realistic virtual nodules in lung computed tomography (CT). In the proposed methodology, pulmonary nodule images obtained with a CT scanner are deconvolved with the point spread function (PSF) in the scan plane and slice sensitivity profile (SSP) measured for the scanner; the resultant images are referred to as nodule-like object functions. Next, by convolving the nodule-like object function with the PSF and SSP of another (target) scanner, the virtual nodule can be generated so that it has the characteristics of the spatial resolution of the target scanner. To validate the methodology, the authors applied physical nodules of 5-, 7- and 10-mm-diameter (uniform spheres) included in a commercial CT test phantom. The nodule-like object functions were calculated from the sphere images obtained with two scanners (Scanner A and Scanner B); these functions were referred to as nodule-like object functions A and B, respectively. From these, virtual nodules were generated based on the spatial resolution of another scanner (Scanner C). By investigating the agreement of the virtual nodules generated from the nodule-like object functions A and B, the equivalence of the nodule-like object functions obtained from different scanners could be assessed. In addition, these virtual nodules were compared with the real (true) sphere images obtained with Scanner C. As a practical validation, five types of laboratory-made physical nodules with various complicated shapes and heterogeneous densities, similar to real lesions, were used. The nodule-like object functions were calculated from the images of these laboratory-made nodules obtained with Scanner A. From them, virtual nodules were generated based on the spatial resolution of Scanner C and compared with the real images of laboratory-made nodules obtained with Scanner C. Good agreement of the virtual nodules generated from

  9. Experimental and computational development of a natural breast phantom for dosimetry studies

    International Nuclear Information System (INIS)

    Nogueira, Luciana B.; Campos, Tarcisio P.R.

    2013-01-01

    This paper describes the experimental and computational development of a natural breast phantom, anthropomorphic and anthropometric for studies in dosimetry of brachytherapy and teletherapy of breast. The natural breast phantom developed corresponding to fibroadipose breasts of women aged 30 to 50 years, presenting radiographically medium density. The experimental breast phantom was constituted of three tissue-equivalents (TE's): glandular TE, adipose TE and skin TE. These TE's were developed according to chemical composition of human breast and present radiological response to exposure. Completed the construction of experimental breast phantom this was mounted on a thorax phantom previously developed by the research group NRI/UFMG. Then the computational breast phantom was constructed by performing a computed tomography (CT) by axial slices of the chest phantom. Through the images generated by CT a computational model of voxels of the thorax phantom was developed by SISCODES computational program, being the computational breast phantom represented by the same TE's of the experimental breast phantom. The images generated by CT allowed evaluating the radiological equivalence of the tissues. The breast phantom is being used in studies of experimental dosimetry both in brachytherapy as in teletherapy of breast. Dosimetry studies by MCNP-5 code using the computational model of the phantom breast are in progress. (author)

  10. Assessing patient dose in interventional fluoroscopy using patient-dependent hybrid phantoms

    Science.gov (United States)

    Johnson, Perry Barnett

    Interventional fluoroscopy uses ionizing radiation to guide small instruments through blood vessels or other body pathways to sites of clinical interest. The technique represents a tremendous advantage over invasive surgical procedures, as it requires only a small incision, thus reducing the risk of infection and providing for shorter recovery times. The growing use and increasing complexity of interventional procedures, however, has resulted in public health concerns regarding radiation exposures, particularly with respect to localized skin dose. Tracking and documenting patient-specific skin and internal organ dose has been specifically identified for interventional fluoroscopy where extended irradiation times, multiple projections, and repeat procedures can lead to some of the largest doses encountered in radiology. Furthermore, inprocedure knowledge of localized skin doses can be of significant clinical importance to managing patient risk and in training radiology residents. In this dissertation, a framework is presented for monitoring the radiation dose delivered to patients undergoing interventional procedures. The framework is built around two key points, developing better anthropomorphic models, and designing clinically relevant software systems for dose estimation. To begin, a library of 50 hybrid patient-dependent computational phantoms was developed based on the UF hybrid male and female reference phantoms. These phantoms represent a different type of anthropomorphic model whereby anthropometric parameters from an individual patient are used during phantom selection. The patient-dependent library was first validated and then used in two patient-phantom matching studies focused on cumulative organ and local skin dose. In terms of organ dose, patient-phantom matching was shown most beneficial for estimating the dose to large patients where error associated with soft tissue attenuation differences could be minimized. For small patients, inherent difference

  11. Impact of patient weight on tumor visibility based on human-shaped phantom simulation study in PET imaging system

    International Nuclear Information System (INIS)

    Musarudin, M.; Saripan, M.I.; Mashohor, S.; Saad, W.H.M.; Nordin, A.J.; Hashim, S.

    2015-01-01

    Energy window technique has been implemented in all positron emission tomography (PET) imaging protocol, with the aim to remove the unwanted low energy photons. Current practices in our institution however are performed by using default energy threshold level regardless of the weight of the patient. Phantom size, which represents the size of the patient's body, is the factor that determined the level of scatter fraction during PET imaging. Thus, the motivation of this study is to determine the optimum energy threshold level for different sizes of human-shaped phantom, to represent underweight, normal, overweight and obese patients. In this study, the scanner was modeled by using Monte Carlo code, version MCNP5. Five different sizes of elliptical-cylinder shaped of human-sized phantoms with diameter ranged from 15 to 30 cm were modeled. The tumor was modeled by a cylindrical line source filled with 1.02 MeV positron emitters at the center of the phantom. Various energy window widths, in the ranged of 10–50% were implemented to the data. In conclusion, the phantom mass volume did influence the scatter fraction within the volume. Bigger phantom caused more scattering events and thus led to coincidence counts lost. We evaluated the impact of phantom sizes on the sensitivity and visibility of the simulated models. Implementation of wider energy window improved the sensitivity of the system and retained the coincidence photons lost. Visibility of the tumor improved as an appropriate energy window implemented for the different sizes of phantom. - Highlights: • Optimizing the energy window improved the sensitivity of the PET system. • Improving the visibility of the tumors using the optimized energy window. • Recommendations on the optimized energy windows for different body sizes. • Using simulated phantom using MCNP to determine various body sizes

  12. What Is the Best Way to Contour Lung Tumors on PET Scans? Multiobserver Validation of a Gradient-Based Method Using a NSCLC Digital PET Phantom

    International Nuclear Information System (INIS)

    Werner-Wasik, Maria; Nelson, Arden D.; Choi, Walter; Arai, Yoshio; Faulhaber, Peter F.; Kang, Patrick; Almeida, Fabio D.; Xiao, Ying; Ohri, Nitin; Brockway, Kristin D.; Piper, Jonathan W.; Nelson, Aaron S.

    2012-01-01

    Purpose: To evaluate the accuracy and consistency of a gradient-based positron emission tomography (PET) segmentation method, GRADIENT, compared with manual (MANUAL) and constant threshold (THRESHOLD) methods. Methods and Materials: Contouring accuracy was evaluated with sphere phantoms and clinically realistic Monte Carlo PET phantoms of the thorax. The sphere phantoms were 10–37 mm in diameter and were acquired at five institutions emulating clinical conditions. One institution also acquired a sphere phantom with multiple source-to-background ratios of 2:1, 5:1, 10:1, 20:1, and 70:1. One observer segmented (contoured) each sphere with GRADIENT and THRESHOLD from 25% to 50% at 5% increments. Subsequently, seven physicians segmented 31 lesions (7–264 mL) from 25 digital thorax phantoms using GRADIENT, THRESHOLD, and MANUAL. Results: For spheres 20 mm (p < 0.065) and <20 mm (p < 0.015). For digital thorax phantoms, GRADIENT was the most accurate (p < 0.01), with a mean absolute % error in volume of 10.99% (11.9% SD), followed by 25% THRESHOLD at 17.5% (29.4% SD), and MANUAL at 19.5% (17.2% SD). GRADIENT had the least systematic bias, with a mean % error in volume of –0.05% (16.2% SD) compared with 25% THRESHOLD at –2.1% (34.2% SD) and MANUAL at –16.3% (20.2% SD; p value <0.01). Interobserver variability was reduced using GRADIENT compared with both 25% THRESHOLD and MANUAL (p value <0.01, Levene’s test). Conclusion: GRADIENT was the most accurate and consistent technique for target volume contouring. GRADIENT was also the most robust for varying imaging conditions. GRADIENT has the potential to play an important role for tumor delineation in radiation therapy planning and response assessment.

  13. Humanizing machines: Anthropomorphization of slot machines increases gambling.

    Science.gov (United States)

    Riva, Paolo; Sacchi, Simona; Brambilla, Marco

    2015-12-01

    Do people gamble more on slot machines if they think that they are playing against humanlike minds rather than mathematical algorithms? Research has shown that people have a strong cognitive tendency to imbue humanlike mental states to nonhuman entities (i.e., anthropomorphism). The present research tested whether anthropomorphizing slot machines would increase gambling. Four studies manipulated slot machine anthropomorphization and found that exposing people to an anthropomorphized description of a slot machine increased gambling behavior and reduced gambling outcomes. Such findings emerged using tasks that focused on gambling behavior (Studies 1 to 3) as well as in experimental paradigms that included gambling outcomes (Studies 2 to 4). We found that gambling outcomes decrease because participants primed with the anthropomorphic slot machine gambled more (Study 4). Furthermore, we found that high-arousal positive emotions (e.g., feeling excited) played a role in the effect of anthropomorphism on gambling behavior (Studies 3 and 4). Our research indicates that the psychological process of gambling-machine anthropomorphism can be advantageous for the gaming industry; however, this may come at great expense for gamblers' (and their families') economic resources and psychological well-being. (c) 2015 APA, all rights reserved).

  14. Reconstruction of voxel phantoms for skin dosimetry

    International Nuclear Information System (INIS)

    Antunes, Paula Cristina Guimaraes

    2010-01-01

    Radiotherapy is a therapeutic modality that utilizes ionizing radiation for the destruction of neoplastic human cells. One of the requirements for this treatment methodology success lays on the appropriate use of planning systems, which performs, among other information, the patient's dose distribution estimate. Nowadays, transport codes have been providing huge subsidies to these planning systems, once it enables specific and accurate patient organ and tissue dosimetry. The model utilized by these codes to describe the human anatomy in a realistic way is known as voxel phantoms, which are represented by discrete volume elements (voxels) directly associated to tomographic data. Nowadays, voxel phantoms doable of being inserted and processed by the transport code MCNP (Monte Carlo N-Particle) presents a 3-4 mm image resolution; however, such resolution limits some thin body structure discrimination, such as skin. In this context, this work proposes a calculus routine that discriminates this region with thickness and localization in the voxel phantoms similar to the real, leading to an accurate dosimetric skin dose assessment by the MCNP code. Moreover, this methodology consists in manipulating the voxel phantoms volume elements by segmenting and subdividing it in different skin thickness. In addition to validate the skin dose calculated data, a set of experimental evaluations with thermoluminescent dosimeters were performed in an anthropomorphic phantom. Due to significant differences observed on the dose distribution of several skin representations, it was found that is important to discriminate the skin thickness similar to the real. The presented methodology is useful to obtain an accurate skin dosimetric evaluation for several radiotherapy procedures, with particular interest on the electron beam radiotherapy, in which highlights the whole body irradiation therapy (TSET), a procedure under implementation at the Hospital das Clinicas da Faculdade de Medicina da

  15. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  16. Evaluation of a BGO-Based PET System for Single-Cell Tracking Performance by Simulation and Phantom Studies

    Directory of Open Access Journals (Sweden)

    Yu Ouyang PhD

    2016-05-01

    Full Text Available A recent method based on positron emission was reported for tracking moving point sources using the Inveon PET system. However, the effect of scanner background noise was not further explored. Here, we evaluate tracking with the Genisys4, a bismuth germanate-based PET system, which has no significant intrinsic background and may be better suited to tracking lower and/or faster activity sources. Position-dependent sensitivity of the Genisys4 was simulated in Geant4 Application for Tomographic Emission (GATE using a static 18F point source. Trajectories of helically moving point sources with varying activity and rotation speed were reconstructed from list-mode data as described previously. Simulations showed that the Inveon’s ability to track sources within 2 mm of localization error is limited to objects with a velocity-to-activity ratio < 0.13 mm/decay, compared to < 0.29 mm/decay for the Genisys4. Tracking with the Genisys4 was then validated using a physical phantom of helically moving [18F] fluorodeoxyglucose-in-oil droplets (< 0.24 mm diameter, 139-296 Bq, yielding < 1 mm localization error under the tested conditions, with good agreement between simulated sensitivity and measured activity (Pearson correlation R = .64, P << .05 in a representative example. We have investigated the tracking performance with the Genisys4, and results suggest the feasibility of tracking low activity, point source-like objects with this system.

  17. Computer tomographic phantom

    International Nuclear Information System (INIS)

    Lonn, A.H.R.; Jacobsen, D.R.; Zech, D.J.

    1988-01-01

    A reference phantom for computer tomography employs a flexible member with means for urging the flexible member into contact along the curved surface of the lumbar region of a human patient. In one embodiment, the reference phantom is pre-curved in an arc greater than required. Pressure from the weight of a patient laying upon the reference phantom is effective for straightening out the curvature sufficiently to achieve substantial contact along the lumbar region. The curvature of the reference phantom may be additionally distorted by a resilient pad between the resilient phantom and a table for urging it into contact with the lumbar region. In a second embodiment of the invention, a flexible reference phantom is disposed in a slot in the top of a resilient cushion. The resilient cushion and reference phantom may be enclosed in a flexible container. A partially curved reference phantom in a slot in a resilient cushion is also contemplated. (author)

  18. Evolution of dosimetric phantoms

    International Nuclear Information System (INIS)

    Reddy, A.R.

    2010-01-01

    In this oration evolution of the dosimetric phantoms for radiation protection and for medical use is briefly reviewed. Some details of the development of Indian Reference Phantom for internal dose estimation are also presented

  19. Research article – Optimisation of paediatrics computed radiographyfor full spine curvature measurements using a phantom: a pilot study

    NARCIS (Netherlands)

    de Haan, Seraphine; Reis, Cláudia; Ndlovu, Junior; Serrenho, Catarina; Akhtar, Ifrah; Garcia, José Antonio; Linde, Daniël; Thorskog, Martine; Franco, Loris; Hogg, Peter

    2015-01-01

    Aim: Optimise a set of exposure factors, with the lowest effective dose, to delineate spinal curvature with the modified Cobb method in a full spine using computed radiography (CR) for a 5-year-old paediatric anthropomorphic phantom. Methods: Images were acquired by varying a set of parameters:

  20. Synthesis and characterization of breast-phantom-based gelatine-glutaraldehyde-TiO2 as a test material for the application of breast cancer diagnosis

    Science.gov (United States)

    Ukhrowiyah, Nuril; Setyaningsih, Novi; Hikmawati, Dyah; Yasin, Moh

    2017-05-01

    Synthesis of breast-phantom-based on gelatine-glutaraldehyde-TiO2 as testing material of breast cancer diagnosis using Near Infrared-Diffuse Optical Tomography (NIR-DOT) is presented. Glutaraldehyde (GA) is added to obtain optimum breast phantom which has same elasticity modulus with mammae. First, synthesis is conducted by mixing gelatine with various amounts of 1 g, 2 g and 3 g with saline solution on 40° C temperature for 30 minutes until they become homogenous. Next, GA with concentration of 0.5 and 1.0% is added. The characterization includes FTIR test, physical test, and mechanical test used to identify group of gelatine’s functions. Elasticity modulus of breast phantom of gelatine composition 2 g and 0.5% GA is obtained at 53.46 kPA which is the approximation of mammae culture elasticity. This composition is chosen to synthesise the next step. In the second step, TiO2 is added with variation of 0.01 g, 0.015 g, 0.02 g, 0.025 g, and 0,03 g. With this variation, it is aimed to get a breast phantom providing image with optimum absorption. The test of this material uses Differential Scanning Calorimetry (DSC), homogeneity test, and analysis of coefficient absorption. The result shows the sample has a good thermal property in the range of 40 - 70° C with a good homogeneity and absorption coefficient of 0.4 mm-1.

  1. SU-E-CAMPUS-I-02: Estimation of the Dosimetric Error Caused by the Voxelization of Hybrid Computational Phantoms Using Triangle Mesh-Based Monte Carlo Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C [Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (United States); Badal, A [U.S. Food ' Drug Administration (CDRH/OSEL), Silver Spring, MD (United States)

    2014-06-15

    Purpose: Computational voxel phantom provides realistic anatomy but the voxel structure may result in dosimetric error compared to real anatomy composed of perfect surface. We analyzed the dosimetric error caused from the voxel structure in hybrid computational phantoms by comparing the voxel-based doses at different resolutions with triangle mesh-based doses. Methods: We incorporated the existing adult male UF/NCI hybrid phantom in mesh format into a Monte Carlo transport code, penMesh that supports triangle meshes. We calculated energy deposition to selected organs of interest for parallel photon beams with three mono energies (0.1, 1, and 10 MeV) in antero-posterior geometry. We also calculated organ energy deposition using three voxel phantoms with different voxel resolutions (1, 5, and 10 mm) using MCNPX2.7. Results: Comparison of organ energy deposition between the two methods showed that agreement overall improved for higher voxel resolution, but for many organs the differences were small. Difference in the energy deposition for 1 MeV, for example, decreased from 11.5% to 1.7% in muscle but only from 0.6% to 0.3% in liver as voxel resolution increased from 10 mm to 1 mm. The differences were smaller at higher energies. The number of photon histories processed per second in voxels were 6.4×10{sup 4}, 3.3×10{sup 4}, and 1.3×10{sup 4}, for 10, 5, and 1 mm resolutions at 10 MeV, respectively, while meshes ran at 4.0×10{sup 4} histories/sec. Conclusion: The combination of hybrid mesh phantom and penMesh was proved to be accurate and of similar speed compared to the voxel phantom and MCNPX. The lowest voxel resolution caused a maximum dosimetric error of 12.6% at 0.1 MeV and 6.8% at 10 MeV but the error was insignificant in some organs. We will apply the tool to calculate dose to very thin layer tissues (e.g., radiosensitive layer in gastro intestines) which cannot be modeled by voxel phantoms.

  2. Effect of phantom voxelization in CT simulations

    International Nuclear Information System (INIS)

    Goertzen, Andrew L.; Beekman, Freek J.; Cherry, Simon R.

    2002-01-01

    In computer simulations of x-ray CT systems one can either use continuous geometrical descriptions for phantoms or a voxelized representation. The voxelized approach allows arbitrary phantoms to be defined without being confined to geometrical shapes. The disadvantage of the voxelized approach is that inherent errors are introduced due to the phantom voxelization. To study effects of phantom discretization, analytical CT simulations were run for a fan-beam geometry with phantom voxel sizes ranging from 0.0625 to 2 times the reconstructed pixel size and noise levels corresponding to 10 3 -10 7 photons per detector pixel prior to attenuation. The number of rays traced per detector element was varied from 1 to 16. Differences in the filtered backprojection images caused by changing the phantom matrix sizes and number of rays traced were assessed by calculating the difference between reconstructions based on the finest matrix and coarser matrix simulations. In noise free simulations, all phantom matrix sizes produced a measurable difference in comparison with the finest phantom matrix used. When even a small amount of noise was added to the projection data, the differences due to the phantom discretization were masked by the noise, and in all cases there was almost no improvement by using a phantom matrix that was more than twice as fine as the reconstruction matrix. No substantial improvement was achieved by tracing more than 4 rays per detector pixel

  3. Anthropomorphic Robot Design and User Interaction Associated with Motion

    Science.gov (United States)

    Ellis, Stephen R.

    2016-01-01

    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over

  4. Membership function used to construction of a hand homogeneous phantom

    International Nuclear Information System (INIS)

    Pavan, Ana Luiza Menegatti; Alvarez, Matheus; Alves, Allan Felipe Fattori; Rosa, Maria Eugenia Dela; Miranda, Jose Ricardo de Arruda

    2014-01-01

    Fractures and dislocations of the hand are some injuries most frequently encountered in trauma of the musculoskeletal system. In evaluating these lesions, in addition to physical examination, radiography, in at least two incidents, is the investigation of choice, and rarely is necessary the help of other images to establish the diagnosis and treatment. The image quality of X-ray examination is therefore essential. In this study, a homogeneous phantom hand was developed to be used in the optimization of images from hand using computed radiography system process. In this procedure were quantified thicknesses of different tissues that constitute an anthropomorphic phantom hand. To perform the classification and quantification of tissue was applied membership functions for histograms of CT scans. The same procedure was adopted for retrospective examinations of 30 patients of the Hospital das Clinicas, Botucatu Medicine School, UNESP (HCFMB-UNESP). The results showed agreement between the thicknesses of tissues that make up the anthropomorphic phantom and sampling of patients, presenting variations between 12.63% and 6.48% for soft tissue and bone, respectively. (author)

  5. Phantom-less bone mineral density (BMD) measurement using dual energy computed tomography-based 3-material decomposition

    Science.gov (United States)

    Hofmann, Philipp; Sedlmair, Martin; Krauss, Bernhard; Wichmann, Julian L.; Bauer, Ralf W.; Flohr, Thomas G.; Mahnken, Andreas H.

    2016-03-01

    Osteoporosis is a degenerative bone disease usually diagnosed at the manifestation of fragility fractures, which severely endanger the health of especially the elderly. To ensure timely therapeutic countermeasures, noninvasive and widely applicable diagnostic methods are required. Currently the primary quantifiable indicator for bone stability, bone mineral density (BMD), is obtained either by DEXA (Dual-energy X-ray absorptiometry) or qCT (quantitative CT). Both have respective advantages and disadvantages, with DEXA being considered as gold standard. For timely diagnosis of osteoporosis, another CT-based method is presented. A Dual Energy CT reconstruction workflow is being developed to evaluate BMD by evaluating lumbar spine (L1-L4) DE-CT images. The workflow is ROI-based and automated for practical use. A dual energy 3-material decomposition algorithm is used to differentiate bone from soft tissue and fat attenuation. The algorithm uses material attenuation coefficients on different beam energy levels. The bone fraction of the three different tissues is used to calculate the amount of hydroxylapatite in the trabecular bone of the corpus vertebrae inside a predefined ROI. Calibrations have been performed to obtain volumetric bone mineral density (vBMD) without having to add a calibration phantom or to use special scan protocols or hardware. Accuracy and precision are dependent on image noise and comparable to qCT images. Clinical indications are in accordance with the DEXA gold standard. The decomposition-based workflow shows bone degradation effects normally not visible on standard CT images which would induce errors in normal qCT results.

  6. Seeing More Than Human: Autism and Anthropomorphic Theory of Mind

    Directory of Open Access Journals (Sweden)

    Gray Atherton

    2018-04-01

    Full Text Available Theory of mind (ToM is defined as the process of taking another’s perspective. Anthropomorphism can be seen as the extension of ToM to non-human entities. This review examines the literature concerning ToM and anthropomorphism in relation to individuals with Autism Spectrum Disorder (ASD, specifically addressing the questions of how and why those on the spectrum both show an increased interest for anthropomorphism and may even show improved ToM abilities when judging the mental states of anthropomorphic characters. This review highlights that while individuals with ASD traditionally show deficits on a wide range of ToM tests, such as recognizing facial emotions, such ToM deficits may be ameliorated if the stimuli presented is cartoon or animal-like rather than in human form. Individuals with ASD show a greater interest in anthropomorphic characters and process the features of these characters using methods typically reserved for human stimuli. Personal accounts of individuals with ASD also suggest they may identify more closely with animals than other humans. It is shown how the social motivations hypothesized to underlie the anthropomorphizing of non-human targets may lead those on the spectrum to seek social connections and therefore gain ToM experience and expertise amongst unlikely sources.

  7. Embodied neurofeedback with an anthropomorphic robotic hand.

    Science.gov (United States)

    Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D; Debener, Stefan

    2016-11-21

    Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one's own body scheme, we used an anthropomorphic robotic hand to visually guide the participants' motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant's neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal's validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT.

  8. Embodied neurofeedback with an anthropomorphic robotic hand

    Science.gov (United States)

    Braun, Niclas; Emkes, Reiner; Thorne, Jeremy D.; Debener, Stefan

    2016-01-01

    Neurofeedback-guided motor imagery training (NF-MIT) has been suggested as a promising therapy for stroke-induced motor impairment. Whereas much NF-MIT research has aimed at signal processing optimization, the type of sensory feedback given to the participant has received less attention. Often the feedback signal is highly abstract and not inherently coupled to the mental act performed. In this study, we asked whether an embodied feedback signal is more efficient for neurofeedback operation than a non-embodiable feedback signal. Inspired by the rubber hand illusion, demonstrating that an artificial hand can be incorporated into one’s own body scheme, we used an anthropomorphic robotic hand to visually guide the participants’ motor imagery act and to deliver neurofeedback. Using two experimental manipulations, we investigated how a participant’s neurofeedback performance and subjective experience were influenced by the embodiability of the robotic hand, and by the neurofeedback signal’s validity. As pertains to embodiment, we found a promoting effect of robotic-hand embodiment in subjective, behavioral, electrophysiological and electrodermal measures. Regarding neurofeedback signal validity, we found some differences between real and sham neurofeedback in terms of subjective and electrodermal measures, but not in terms of behavioral and electrophysiological measures. This study motivates the further development of embodied feedback signals for NF-MIT. PMID:27869190

  9. A Software Phantom : Application in Digital Tomosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lazos, D; Kolitsi, Z; Badea, C; Pallikarakis, N [Medical Physics Laboratory, School of Medicine, Univercity of Patras (Greece)

    1999-12-31

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author) 4 refs., 3 figs

  10. A Software Phantom : Application in Digital Tomosynthesis

    International Nuclear Information System (INIS)

    Lazos, D.; Kolitsi, Z.; Badea, C.; Pallikarakis, N.

    1998-01-01

    A software phantom intended to be used in radiographic applications has been developed. The application was used for research in the field of Digital Tomosynthesis and specifically for studying tomographic noise removal methods. The application consists of a phantom design and a phantom imaging module. The radiation-matter interaction is based on the exponential relation of attenuation. Projections are formed by simulated irradiation with selectable geometrical parameters, source spectrum and detector response. Phantoms are defined either as sets containing certain geometrical objects or as groups of voxels. Comparison with real projections taken from a physical phantom with identical geometry and composition with the simulated one, showed good approximation with improved contrast due to the absence of scatter in the simulated projections. The software phantom proved to be a very useful tool for DTS investigations. Further development to include scatter is expected to expand the use of the application to more areas in radiological imaging research. (author)

  11. Response of CR-39 based personnel neutron dosemeter in terms of directional dose equivalent, in free air and on phantom

    International Nuclear Information System (INIS)

    Pal, Rupali R.; Sathian, Deepa; Jayalakshmi, V.; Chougaonkar, M.P.

    2011-01-01

    CR-39 is the most sensitive of nuclear track detectors for protons and is recommended as an effective neutron dosimeter because of it's low threshold energy of 100 keV neutrons. The fraction of protons that gives detectable tracks in CR-39 depends on the energy of the proton angle of incidence and etching conditions. As a consequence the registration efficiency of neutrons in the CR-39 plastics used for neutron personnel monitoring is strongly influenced by the direction of radiation incidence. This paper presents the relative response of CR-39 at varying neutron incident angles, for 241 Am-Be neutron source spectra in free air and on ISO phantom, in terms of operational quantities. It is observed that the angular dependence of CR-39 for irradiations in air and on phantom is essentially the same indicating that the phantom does not affect the directional response of CR-39. (author)

  12. Phantom breast syndrome

    Directory of Open Access Journals (Sweden)

    Ramesh

    2009-01-01

    Full Text Available Phantom breast syndrome is a type of condition in which patients have a sensation of residual breast tissue and can include both non-painful sensations as well as phantom breast pain. The incidence varies in different studies, ranging from approximately 30% to as high as 80% of patients after mastectomy. It seriously affects quality of life through the combined impact of physical disability and emotional distress. The breast cancer incidence rate in India as well as Western countries has risen in recent years while survival rates have improved; this has effectively increased the number of women for whom post-treatment quality of life is important. In this context, chronic pain following treatment for breast cancer surgery is a significantly under-recognized and under-treated problem. Various types of chronic neuropathic pain may arise following breast cancer surgery due to surgical trauma. The cause of these syndromes is damage to various nerves during surgery. There are a number of assumed factors causing or perpetuating persistent neuropathic pain after breast cancer surgery. Most well-established risk factors for developing phantom breast pain and other related neuropathic pain syndromes are severe acute postoperative pain and greater postoperative use of analgesics. Based upon current evidence, the goals of prophylactic strategies could first target optimal peri-operative pain control and minimizing damage to nerves during surgery. There is some evidence that chronic pain and sensory abnormalities do decrease over time. The main group of oral medications studied includes anti-depressants, anticonvulsants, opioids, N-methyl-D-asparate receptor antagonists, mexilitine, topical lidocaine, cannabinoids, topical capsaicin and glysine antagonists. Neuromodulation techniques such as motor cortex stimulation, spinal cord stimulation, and intrathecal drug therapies have been used to treat various neuropathic pain syndromes.

  13. An anthropomorphic phantom study of visualisation of surgical clips for partial breast irradiation (PBI) setup verification

    International Nuclear Information System (INIS)

    Thomas, Carys W.; Nichol, Alan M.; Park, Julie E.; Hui, Jason F.; Giddings, Alison A.; Grahame, Sheri; Otto, Karl

    2009-01-01

    Surgical clips were investigated for partial breast image-guided radiotherapy (IGRT). Small titanium clips were insufficiently well visualised. Medium tantalum clips were best for megavoltage IGRT and small tantalum clips were best for floor mounted kilovoltage IGRT (ExacTrac TM ). Both small tantalum and medium titanium clips were suitable for isocentric kilovoltage IGRT

  14. Characterization of materials for use in anthropomorphic phantoms produced by 3D printing

    International Nuclear Information System (INIS)

    Solc, J.; Burianova, L.; Vrba, T.

    2018-01-01

    This poster describes the characterization of materials suitable for 3D printing with an emphasis on the determination of photon flux fluctuation factor. Samples of different materials (ABS, HiPS, NYLON, PET, PLA, PVA, PMMA, Polycarbonate, etc.) were obtained from several commercial companies for which the density, Linear Attenuation (LA) and Hounsfield Units (HU) were determined. LA was obtained for photon energies of 59.5 keV, 121.8 and 344.5 keV using collimated volumes of radionuclide sources Am-241 and Eu-152. These energies cover the energy range of CT scanners and the most widely used therapeutic radionuclide I-131. The mean HU was determined from DICOM images obtained on the Philips Brilliance CT Big Bore radiotherapy simulator. Material parameters were compared to water and soft and fat tissues. The results show that the properties of 3D print samples are strongly dependent both on the printer type and its settings, as well as on the print thread. (authors)

  15. Evaluation of the effective dose in an anthropomorphic phantom in radiation emergencies

    International Nuclear Information System (INIS)

    Silva, L.K.; Santos, D.S.

    2015-01-01

    This study aims to perform a modeling of the human anatomy using Voxel models applied to Monte Carlo code and the Visual Monte Carlo software, simulating irradiation of the human body, so you can make the dose assessment in individuals who have been exposed to any external ionizing radiation source. Making the future, an assessment of both results with limits of validity of TECDOC-1162 expressions of the IAEA in case of point source

  16. Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms

    NARCIS (Netherlands)

    Koivisto, J.H.; Wolff, J.E.; Kiljunen, T.; Schulze, D.; Kortesniemi, M.

    2015-01-01

    The aims of this study were to characterize reinforced metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters to assess the measurement uncertainty, single exposure low-dose limit with acceptable accuracy, and the number of exposures required to attain the corresponding limit of the

  17. An anthropomorphic phantom study of visualisation of surgical clips for partial breast irradiation (PBI) setup verification.

    Science.gov (United States)

    Thomas, Carys W; Nichol, Alan M; Park, Julie E; Hui, Jason F; Giddings, Alison A; Grahame, Sheri; Otto, Karl

    2009-01-01

    Surgical clips were investigated for partial breast image-guided radiotherapy (IGRT). Small titanium clips were insufficiently well visualised. Medium tantalum clips were best for megavoltage IGRT and small tantalum clips were best for floor mounted kilovoltage IGRT (ExacTrac). Both small tantalum and medium titanium clips were suitable for isocentric kilovoltage IGRT.

  18. Performance evaluation of iterative reconstruction algorithms for achieving CT radiation dose reduction — a phantom study

    Science.gov (United States)

    Dodge, Cristina T.; Tamm, Eric P.; Cody, Dianna D.; Liu, Xinming; Jensen, Corey T.; Wei, Wei; Kundra, Vikas

    2016-01-01

    The purpose of this study was to characterize image quality and dose performance with GE CT iterative reconstruction techniques, adaptive statistical iterative reconstruction (ASiR), and model‐based iterative reconstruction (MBIR), over a range of typical to low‐dose intervals using the Catphan 600 and the anthropomorphic Kyoto Kagaku abdomen phantoms. The scope of the project was to quantitatively describe the advantages and limitations of these approaches. The Catphan 600 phantom, supplemented with a fat‐equivalent oval ring, was scanned using a GE Discovery HD750 scanner at 120 kVp, 0.8 s rotation time, and pitch factors of 0.516, 0.984, and 1.375. The mA was selected for each pitch factor to achieve CTDIvol values of 24, 18, 12, 6, 3, 2, and 1 mGy. Images were reconstructed at 2.5 mm thickness with filtered back‐projection (FBP); 20%, 40%, and 70% ASiR; and MBIR. The potential for dose reduction and low‐contrast detectability were evaluated from noise and contrast‐to‐noise ratio (CNR) measurements in the CTP 404 module of the Catphan. Hounsfield units (HUs) of several materials were evaluated from the cylinder inserts in the CTP 404 module, and the modulation transfer function (MTF) was calculated from the air insert. The results were confirmed in the anthropomorphic Kyoto Kagaku abdomen phantom at 6, 3, 2, and 1 mGy. MBIR reduced noise levels five‐fold and increased CNR by a factor of five compared to FBP below 6 mGy CTDIvol, resulting in a substantial improvement in image quality. Compared to ASiR and FBP, HU in images reconstructed with MBIR were consistently lower, and this discrepancy was reversed by higher pitch factors in some materials. MBIR improved the conspicuity of the high‐contrast spatial resolution bar pattern, and MTF quantification confirmed the superior spatial resolution performance of MBIR versus FBP and ASiR at higher dose levels. While ASiR and FBP were relatively insensitive to changes in dose and pitch, the spatial

  19. A statistical, task-based evaluation method for three-dimensional x-ray breast imaging systems using variable-background phantoms

    International Nuclear Information System (INIS)

    Park, Subok; Jennings, Robert; Liu Haimo; Badano, Aldo; Myers, Kyle

    2010-01-01

    Purpose: For the last few years, development and optimization of three-dimensional (3D) x-ray breast imaging systems, such as digital breast tomosynthesis (DBT) and computed tomography, have drawn much attention from the medical imaging community, either academia or industry. However, there is still much room for understanding how to best optimize and evaluate the devices over a large space of many different system parameters and geometries. Current evaluation methods, which work well for 2D systems, do not incorporate the depth information from the 3D imaging systems. Therefore, it is critical to develop a statistically sound evaluation method to investigate the usefulness of inclusion of depth and background-variability information into the assessment and optimization of the 3D systems. Methods: In this paper, we present a mathematical framework for a statistical assessment of planar and 3D x-ray breast imaging systems. Our method is based on statistical decision theory, in particular, making use of the ideal linear observer called the Hotelling observer. We also present a physical phantom that consists of spheres of different sizes and materials for producing an ensemble of randomly varying backgrounds to be imaged for a given patient class. Lastly, we demonstrate our evaluation method in comparing laboratory mammography and three-angle DBT systems for signal detection tasks using the phantom's projection data. We compare the variable phantom case to that of a phantom of the same dimensions filled with water, which we call the uniform phantom, based on the performance of the Hotelling observer as a function of signal size and intensity. Results: Detectability trends calculated using the variable and uniform phantom methods are different from each other for both mammography and DBT systems. Conclusions: Our results indicate that measuring the system's detection performance with consideration of background variability may lead to differences in system performance

  20. Evidence-based recommendations for musculoskeletal kinematic 4D-CT studies using wide area-detector scanners: a phantom study with cadaveric correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Formery, Anne-Sophie; Blum, Alain [CHRU-Nancy Hopital Central, Service d' Imagerie Guilloz, Nancy (France); Hossu, Gabriela [Universite de Lorraine, IADI U947, Nancy (France); INSERM, CIC-IT 1433, Nancy (France); Winninger, Daniel [IDCmem, Nancy (France); Batch, Toufik [Hopital de Mercy, Service de Radiologie, Metz (France); Gervaise, Alban [Legouest Military Instruction Hospital, Medical Imaging Department, Metz (France)

    2017-02-15

    To establish evidence-based recommendations for musculoskeletal kinematic 4D-CT on wide area-detector CT. In order to assess factors influencing image quality in kinematic CT studies, a phantom consisting of a polymethylmethacrylate rotating disk with round wells of different sizes was imaged with various acquisition protocols. Cadaveric acquisitions were performed on the ankle joint during motion in two different axes and at different speeds to allow validation of phantom data. Images were acquired with a 320 detector-row CT scanner and were evaluated by two readers. Motion artefacts were significantly correlated with various parameters (movement axis, distance to centre, rotation speed and volume acquisition speed) (p < 0.0001). The relation between motion artefacts and distance to motion fulcrum was exponential (R{sup 2} 0.99). Half reconstruction led to a 23 % increase in image noise and a 40 % decrease in motion artefacts. Cadaveric acquisitions confirmed phantom data. Based on these findings, high tube rotation speed and half reconstruction are recommended for kinematic CT. The axis of motion significantly influences image artefacts and should be considered in patient training and evaluation of acquisition protocol suitability. This study provides evidence-based recommendations for musculoskeletal kinematic 4D-CT. (orig.)

  1. Speckle tracking in a phantom and feature-based tracking in liver in the presence of respiratory motion using 4D ultrasound

    International Nuclear Information System (INIS)

    Harris, Emma J; Miller, Naomi R; Bamber, Jeffrey C; Symonds-Tayler, J Richard N; Evans, Philip M

    2010-01-01

    We have evaluated a 4D ultrasound-based motion tracking system developed for tracking of abdominal organs during therapy. Tracking accuracy and precision were determined using a tissue-mimicking phantom, by comparing tracked motion with known 3D sinusoidal motion. The feasibility of tracking 3D liver motion in vivo was evaluated by acquiring 4D ultrasound data from four healthy volunteers. For two of these volunteers, data were also acquired whilst simultaneously measuring breath flow using a spirometer. Hepatic blood vessels, tracked off-line using manual tracking, were used as a reference to assess, in vivo, two types of automated tracking algorithm: incremental (from one volume to the next) and non-incremental (from the first volume to each subsequent volume). For phantom-based experiments, accuracy and precision (RMS error and SD) were found to be 0.78 mm and 0.54 mm, respectively. For in vivo measurements, mean absolute distance and standard deviation of the difference between automatically and manually tracked displacements were less than 1.7 mm and 1 mm respectively in all directions (left-right, anterior-posterior and superior-inferior). In vivo non-incremental tracking gave the best agreement. In both phantom and in vivo experiments, tracking performance was poorest for the elevational component of 3D motion. Good agreement between automatically and manually tracked displacements indicates that 4D ultrasound-based motion tracking has potential for image guidance applications in therapy.

  2. Dixon-based MRI for assessment of muscle-fat content in phantoms, healthy volunteers and patients with achillodynia: comparison to visual assessment of calf muscle quality

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Michael A.; Pfirrmann, Christian W.A.; Buck, Florian M. [University Hospital Balgrist, Radiology, Zurich (Switzerland); Espinosa, Norman [University Hospital Balgrist, Department of Orthopedic Surgery, Zurich (Switzerland); Raptis, Dimitri A. [University Hospital Zurich, Clinic of Visceral and Transplant Surgery, Zurich (Switzerland)

    2014-06-15

    To quantify the muscle fat-content (MFC) in phantoms, volunteers and patients with achillodynia using two-point Dixon-based magnetic resonance imaging (2pt-MRI{sub DIXON}) in comparison to MR spectroscopy (MRS) and visual assessment of MFC. Two-point Dixon-based MRI was used to measure the MFC of 15 phantoms containing 0-100 % fat-content and calf muscles in 30 patients (13 women; 57 ± 15 years) with achillodynia and in 20 volunteers (10 women; 30 ± 14 years) at 1.5 T. The accuracy of 2pt-MRI{sub DIXON} in quantification of MFC was assessed in vitro using phantoms and in vivo using MRS as the standard of reference. Fat-fractions derived from 2pt-MRI{sub DIXON} (FF{sub DIXON}) and MRS (FF{sub MRS}) were related to visual assessment of MFC (Goutallier grades 0-4) and Achilles-tendon quality (grade 0-4). Excellent linear correlation was demonstrated for FF{sub DIXON} with phantoms and with FF{sub MRS} in patients (p{sub c} = 0.997/0.995; p < 0.001). FF{sub DIXON} of the gastrocnemius muscle was significantly higher (p = 0.002) in patients (7.0 % ± 4.7 %) compared with volunteers (3.6 % ± 0.7 %), whereas visual-grading showed no difference between both groups (p > 0.05). FF{sub MRS} and FF{sub DIXON} were significantly higher in subjects with (>grade 1) structural damage of the Achilles-tendon (p = 0.01). Two-point Dixon-based MRI allows for accurate quantification of MFC, outperforming visual assessment of calf muscle fat. Structural damage of the Achilles tendon is associated with a significantly higher MFC. (orig.)

  3. What Is the Best Way to Contour Lung Tumors on PET Scans? Multiobserver Validation of a Gradient-Based Method Using a NSCLC Digital PET Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Werner-Wasik, Maria, E-mail: Maria.Werner-wasik@jeffersonhospital.org [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Nelson, Arden D. [MIM Software Inc., Cleveland, OH (United States); Choi, Walter [Department of Radiation Oncology, UPMC Health Systems, Pittsburgh, PA (United States); Arai, Yoshio [Department of Radiation Oncology, Beth Israel Medical Center, New York, NY (Israel); Faulhaber, Peter F. [University Hospitals Case Medical Center, Cleveland, OH (United States); Kang, Patrick [Department of Radiology, Beth Israel Medical Center, New York, NY (Israel); Almeida, Fabio D. [Division of Nuclear Medicine, University of Arizona Health Sciences Center, Tucson, AZ (United States); Xiao, Ying; Ohri, Nitin [Department of Radiation Oncology, Thomas Jefferson University Hospital, Philadelphia, PA (United States); Brockway, Kristin D.; Piper, Jonathan W.; Nelson, Aaron S. [MIM Software Inc., Cleveland, OH (United States)

    2012-03-01

    Purpose: To evaluate the accuracy and consistency of a gradient-based positron emission tomography (PET) segmentation method, GRADIENT, compared with manual (MANUAL) and constant threshold (THRESHOLD) methods. Methods and Materials: Contouring accuracy was evaluated with sphere phantoms and clinically realistic Monte Carlo PET phantoms of the thorax. The sphere phantoms were 10-37 mm in diameter and were acquired at five institutions emulating clinical conditions. One institution also acquired a sphere phantom with multiple source-to-background ratios of 2:1, 5:1, 10:1, 20:1, and 70:1. One observer segmented (contoured) each sphere with GRADIENT and THRESHOLD from 25% to 50% at 5% increments. Subsequently, seven physicians segmented 31 lesions (7-264 mL) from 25 digital thorax phantoms using GRADIENT, THRESHOLD, and MANUAL. Results: For spheres <20 mm in diameter, GRADIENT was the most accurate with a mean absolute % error in diameter of 8.15% (10.2% SD) compared with 49.2% (51.1% SD) for 45% THRESHOLD (p < 0.005). For larger spheres, the methods were statistically equivalent. For varying source-to-background ratios, GRADIENT was the most accurate for spheres >20 mm (p < 0.065) and <20 mm (p < 0.015). For digital thorax phantoms, GRADIENT was the most accurate (p < 0.01), with a mean absolute % error in volume of 10.99% (11.9% SD), followed by 25% THRESHOLD at 17.5% (29.4% SD), and MANUAL at 19.5% (17.2% SD). GRADIENT had the least systematic bias, with a mean % error in volume of -0.05% (16.2% SD) compared with 25% THRESHOLD at -2.1% (34.2% SD) and MANUAL at -16.3% (20.2% SD; p value <0.01). Interobserver variability was reduced using GRADIENT compared with both 25% THRESHOLD and MANUAL (p value <0.01, Levene's test). Conclusion: GRADIENT was the most accurate and consistent technique for target volume contouring. GRADIENT was also the most robust for varying imaging conditions. GRADIENT has the potential to play an important role for tumor delineation in

  4. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    International Nuclear Information System (INIS)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-01-01

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and −0.1% ± 4.9%, respectively. The difference betwee