WorldWideScience

Sample records for baseboard heating

  1. Expert Meeting: Optimized Heating Systems Using Condensing Boilers and Baseboard Convectors

    Energy Technology Data Exchange (ETDEWEB)

    Arena, L.

    2013-01-01

    On August 11, 2011, in Denver, CO, a Building America Expert Meeting was held in conjunction with the Building America Residential Energy Efficiency Technical Update Meeting, to review and discuss results and future plans for research to improve the performance of hydronic heating systems using condensing boilers and baseboard convectors. A meeting objective was to provide an opportunity for other Building America teams and industry experts to provide feedback and specific suggestions for the planned research.

  2. Application of advanced thermal management technologies to the ATLAS SCT barrel module baseboards

    International Nuclear Information System (INIS)

    Apsimon, R.J.; Batchelor, L.E.; Beck, G.A.; Canard, P.; Carter, A.A.; Carter, J.R.; Davis, V.R.; Oliveira, R. de; Gibson, M.D.; Hominal, L.; Ilie, D.M.; Ilie, S.D.; Leboube, C.G.; Mistry, J.; Morin, J.; Morris, J.; Nagai, K.; Sexton, I.; Thery, X.; Tyndel, M.

    2006-01-01

    The paper describes the application of advanced thermal management technologies to the design and production of the barrel module baseboard of the SemiConductor Tracker (SCT) of the ATLAS experiment at the Large Hadron Collider (LHC). The barrel modules contain silicon microstrip sensors and readout ASICs for tracking charged particles, and the baseboard forms the central element of the module, providing both its necessary thermal management and its mechanical structure. The baseboard requirements and specifications are given, and design and fabrication details are described. The properties of the 3000 baseboards successfully produced for the SCT are summarised

  3. The paleorelief baseboard study by electrical soundings in the anomaly of Magnolia - Tacuarembo - Uruguay

    International Nuclear Information System (INIS)

    Perrin, J.; Bernard, J.

    1982-08-01

    This work is about the paleorelief baseboard study by electrical soundings in the anomaly of Magnolia - Tacuarembo - Uruguay. But not all electrical soundings allowed a good prevision of coating thickness.The difficulties found in the determination of the depth of the electrical resistant baseboard are explained by discontinuities levels and lateral variations in resistivities. Moreover, the re modeling of the results according to the data of drilling led to a relatively coherent interpretation that provides a basis for all future intervention in the same type of formation

  4. Baseboard depth study by electrical soundings between Centurion and Noblia (Cerro Largo)

    International Nuclear Information System (INIS)

    Bernard, J.

    1983-11-01

    This study gives an idea of the structure of the sedimentary basin between Noblia and Centurion. Appeared a rise area of baseboard (200 m.) in correlation with a heavy shaft gravimetry. To have a more precise knowledge of the area would be necessary to increase the density of drilling in areas of outcrops of the Tres Islas formation to know its resistivity

  5. Analysis of the performance and space-conditioning impacts of dedicated heat-pump water heaters

    Science.gov (United States)

    Morrison, L.; Swisher, J.

    1980-12-01

    The operation of a newly marketed dedicated heat pump water heater (HPWH) which utilizes an air to water heat pump, costs about $1000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests, is a space conditioning benefit if an air conditioning load exists and a penalty if a space heating load exists. A simulation was developed to model the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics were adapted (Madison, Wisconsin; Washington, DC; and Ft. Worth, Texas) and the system was simulated for a year with typical weather data. For each city, HPWH COPs are calculated monthly and yearly. The water heating and space conditioning energy requirements of HPWH operation are compared with those of resistance water heater operation to determine the relative performance ratio of the HPWH.

  6. Analysis of the performance and space conditioning impacts of dedicated heat pump water heaters

    Science.gov (United States)

    Morrison, L.; Swisher, J.

    The development and testing of the newly-marketed dedicated heat pump water heater (HPWH) are described. This system utilizes an air-to-water heat pump, costs about $1,000 installed, and obtains a coefficient of performance (COP) of about 2.0 in laboratory and field tests. To investigate HPWH performance and space conditioning impacts, a simulation was developed to mode the thermal performance of a residence with resistance baseboard heat, air conditioning, and either heat pump or resistance water heating. The building characteristics are adapted for three U.S. geographical areas (Madison, Wisconsin; Washington, D.C.; and Ft. Worth, Texas), and the system is simulated for a year with typical weather data. The thermal network includes both a house node and a basement node so that the water heating equipment can be simulated in an unconditioned basement in Northern cities and in a conditioned first-floor utility room in Southern cities.

  7. Heat

    CERN Document Server

    Lawrence, Ellen

    2016-01-01

    Is it possible to make heat by rubbing your hands together? Why does an ice cube melt when you hold it? In this title, students will conduct experiments to help them understand what heat is. Kids will also investigate concepts such as which materials are good at conducting heat and which are the best insulators. Using everyday items that can easily be found around the house, students will transform into scientists as they carry out step-by-step experiments to answer interesting questions. Along the way, children will pick up important scientific skills. Heat includes seven experiments with detailed, age-appropriate instructions, surprising facts and background information, a "conclusions" section to pull all the concepts in the book together, and a glossary of science words. Colorful, dynamic designs and images truly put the FUN into FUN-damental Experiments.

  8. Initial operation of a solar heating and cooling system in a full-scale solar building test facility

    Science.gov (United States)

    Knoll, R. H.; Miao, D.; Hamlet, I. L.; Jensen, R. N.

    1976-01-01

    The Solar Building Test Facility (SBTF) located at Hampton, Virginia became operational in early summer of 1976. This facility is a joint effort by NASA-Lewis and NASA-Langley to advance the technology for heating and cooling of office buildings with solar energy. Its purposes are to (1) test system components which include high-performing collectors, (2) test performance of complete solar heating and cooling system, (3) investigate component interactions and (4) investigate durability, maintenance and reliability of components. The SBTF consists of a 50,000 square foot office building modified to accept solar heated water for operation of an absorption air conditioner and for the baseboard heating system. A 12,666 square foot solar collector field with a 30,000 gallon storage tank provides the solar heated water. A description of the system and the collectors selected is given here, along with the objectives, test approach, expected system performance and some preliminary results.

  9. Technoeconomic analysis of a biomass based district heating system

    International Nuclear Information System (INIS)

    Zhang, H.; Ugursal, V.I.; Fung, A.

    2005-01-01

    This paper discussed a proposed biomass-based district heating system to be built for the Pictou Landing First Nation Community in Nova Scotia. The community centre consists of 6 buildings and a connecting arcade. The methodology used to size and design heating, ventilating and air conditioning (HVAC) systems, as well as biomass district energy systems (DES) were discussed. Annual energy requirements and biomass fuel consumption predictions were presented, along with cost estimates. A comparative assessment of the system with that of a conventional oil fired system was also conducted. It was suggested that the design and analysis methodology could be used for any similar application. The buildings were modelled and simulated using the Hourly Analysis Program (HAP), a detailed 2-in-1 software program which can be used both for HVAC system sizing and building energy consumption estimation. A techno-economics analysis was conducted to justify the viability of the biomass combustion system. Heating load calculations were performed assuming that the thermostat was set constantly at 22 degrees C. Community centre space heating loads due to individual envelope components for 3 different scenarios were summarized, as the design architecture for the buildings was not yet finalized. It was suggested that efforts should be made to ensure air-tightness and insulation levels of the interior arcade glass wall. A hydronic distribution system with baseboard space heating units was selected, comprising of a woodchip boiler, hot water distribution system, convective heating units and control systems. The community has its own logging operation which will provide the wood fuel required by the proposed system. An outline of the annual allowable harvest covered by the Pictou Landing Forestry Management Plan was presented, with details of proposed wood-chippers for the creation of biomass. It was concluded that the woodchip combustion system is economically preferable to the

  10. Monitored performance of residential geothermal heat pumps in central Texas and Southern Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, W.N.

    1997-11-01

    This report summarizes measured performance of residential geothermal heat pumps (GHP`s) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP`s installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP`s at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP`s from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

  11. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  12. District heating

    International Nuclear Information System (INIS)

    1989-03-01

    The papers presented at this meeting dealt with an international comparison of district heating, the Swiss district heating network, political aspects of nuclear district heating, nuclear and non-nuclear sources for district heating. 17 figs., 6 tabs

  13. District heating

    International Nuclear Information System (INIS)

    2005-01-01

    By request of the Dutch Lower House the Netherlands Court of Audit examined the profitability or loss-making of district heating projects between 2001 and 2003. District heating supplies heat to consumers for heating their houses and providing warm tap water. The heat is supplied via warm water that runs through a network of pipes. In the Netherlands, about 250,000 households use district heating. The request by the Dutch Lower House to conduct research on district heating coheres with the initiative District Heating Bill. The bill aims to legally guarantee the supply and affordability of heat for consumers of district heating. [mk] [nl

  14. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir NEW OSHA- ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  15. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  16. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  17. HEAT RECUPERATION

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2011-01-01

    Full Text Available Heat recovery is an effective method of shortening specific energy consumption. new constructions of recuperators for heating and cupola furnaces have been designed and successfully introduced. two-stage recuperator with computer control providing blast heating up to 600 °C and reducing fuel consumption by 30% is of special interest.

  18. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...... not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat...

  19. Heat exchanger

    International Nuclear Information System (INIS)

    Watabe, Ichiro.

    1996-01-01

    An inner cylinder is disposed coaxially in a vertical vessel, and a plurality of heat transfer pipes are wound spirally on the outer circumference of the inner cylinder. High temperature sodium descends on the outer side of the inner cylinder while exchanging heat with water in the heat transfer pipes and becomes low temperature sodium. The low temperature sodium turns at the lower portion of the vessel, rises in a sodium exit pipe inserted to the inner cylinder and is discharged from the top of the vessel to the outside of the vessel. A portion of a cover gas (an inert gas such as argon) filled to the upper portion of the vessel intrudes into the space between the outer circumference of the sodium exit pipe and the inner circumference of the inner cylinder to form a heat insulation layer of the inert gas. This prevents heat exchange between the high temperature sodium before heat exchange and low temperature sodium after heat exchange. The heat exchanger is used as a secondary heat exchanger for coolants (sodium) of an FBR type reactor. (I.N.)

  20. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  1. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  2. Heat source versus heat sink

    International Nuclear Information System (INIS)

    Aussourd, P.

    1977-01-01

    This paper is a presentation of the method by which Electricite de France proposes to satisfy industrial, urban or agricultural heat needs if these prove economically justified. The arguments in the paper demonstrate the usefulness of studies on heat take-off from standardised nuclear units. General principles for extracting heat from nuclear power stations and the limit to the amount of steam that may be tapped off each unit are discussed. A diagram describes the heat production from a nuclear power station and shows the steam take-off where it emerges from the steam generators with or without back-pressure turbine. The connection principle for heat production from several nuclear units, separate nuclear-unit circuits and one common user circuit, is presented. (M.S.)

  3. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1994-01-01

    It is approximately 10 years since the Third Edition of Heat Pipes was published and the text is now established as the standard work on the subject. This new edition has been extensively updated, with revisions to most chapters. The introduction of new working fluids and extended life test data have been taken into account in chapter 3. A number of new types of heat pipes have become popular, and others have proved less effective. This is reflected in the contents of chapter 5. Heat pipes are employed in a wide range of applications, including electronics cooling, diecasting and injection mo

  4. Heat Waves

    Science.gov (United States)

    ... quickly. - Drink plenty of water regularly and often. - Eat small meals and eat more often. - Avoid using salt tablets ... plenty of water during a heat wave and eat smaller, more frequent meals. Text from "Are You Prepared?" by the Cass ( ...

  5. HEAT EXCHANGER

    Science.gov (United States)

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  6. Unwanted heat

    International Nuclear Information System (INIS)

    Benka, M.

    2006-01-01

    The number of small heating plants using biomass is growing. According to TREND's information, Hrinovska energeticka, is the only one that controls the whole supplier chain in cooperation with its parent company in Bratislava. Starting with the collection and processing of wood chips by burning, heat production and heat distribution to the end user. This gives the company better control over costs and consequently its own prices. Last year, the engineering company, Hrinovske storjarne, decided to focus only on its core business and sold its heating plant, Hrinovske tepelne hospodarstvo, to Intech Slovakia and changed the company name to Hrinovska energeticka. Local companies and inhabitants were concerned that the new owner would increase prices. But the company publicly declared and kept promises that the heat price for households would remain at 500 Slovak crowns/gigajoule (13.33 EUR/gigajoule ), one of the lowest prices in Slovakia. This year the prices increased slightly to 570 Slovak crowns (15.2 EUR). 'We needed - even at the cost of lower profit - to satisfy our customers so that we would not lose them. We used this time for transition to biomass. This will allow us to freeze our prices in the coming years,' explained the statutory representative of the company, Ivan Dudak. (authors)

  7. Heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Jiji, L.M. [City Univ. of New York, NY (United States). Dept. of Mechanical Engineering

    2006-07-01

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the following ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters. (orig.)

  8. Heat Convection

    Science.gov (United States)

    Jiji, Latif M.

    Professor Jiji's broad teaching experience lead him to select the topics for this book to provide a firm foundation for convection heat transfer with emphasis on fundamentals, physical phenomena, and mathematical modelling of a wide range of engineering applications. Reflecting recent developments, this textbook is the first to include an introduction to the challenging topic of microchannels. The strong pedagogic potential of Heat Convection is enhanced by the follow ing ancillary materials: (1) Power Point lectures, (2) Problem Solutions, (3) Homework Facilitator, and, (4) Summary of Sections and Chapters.

  9. Renewable Heating And Cooling

    Science.gov (United States)

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  10. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... for signs of heat stroke or exhaustion. Heat Stroke and Exhaustion Symptoms of early heat exhaustion symptoms ... heavy sweating; nausea; and giddiness. Symptoms of heat stroke (late stage of heat illness) include flushed, hot, ...

  11. Heat exchangers

    International Nuclear Information System (INIS)

    1975-01-01

    The tubes of a heat exchanger tube bank have a portion thereof formed in the shape of a helix, of effective radius equal to the tube radius and the space between two adjacent tubes, to tangentially contact the straight sections of the tubes immediately adjacent thereto and thereby provide support, maintain the spacing and account for differential thermal expansion thereof

  12. Heat Rash

    Science.gov (United States)

    ... too much. The sweat gets trapped under your skin and blocks your sweat glands. If your pores cannot clear out the sweat, you may get ... irritation caused by clothing that rubs against the skin. If your rash is severe, ... can block pores even more. Living with heat rash Whether you ...

  13. Heat exchanger

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1976-01-01

    A heat exchanger of the straight tube type is described in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration

  14. Heat exchanger

    International Nuclear Information System (INIS)

    Bennett, J.C.

    1975-01-01

    A heat exchanger such as forms, for example, part of a power steam boiler is made up of a number of tubes that may be arranged in many different ways, and it is necessary that the tubes be properly supported. The means by which the tubes are secured must be as simple as possible so as to facilitate construction and must be able to continue to function effectively under the varying operating conditions to which the heat exchanger is subject. The arrangement described is designed to meet these requirements, in an improved way. The tubes are secured to a member extending past several tubes and abutment means are provided. At least some of the abutment means comprise two abutment pieces and a wedge secured to the supporting member, that acts on these pieces to maintain the engagement. (U.K.)

  15. Heat-Exchanger/Heat-Pipe Interface

    Science.gov (United States)

    Snyder, H. J.; Van Hagan, T. H.

    1987-01-01

    Monolithic assembly reliable and light in weight. Heat exchanger and evaporator ends of heat pipes integrated in monolithic halves welded together. Interface assembly connects heat exchanger of furnace, reactor, or other power source with heat pipes carrying heat to radiator or power-consuming system. One of several concepts proposed for nuclear power supplies aboard spacecraft, interface useful on Earth in solar thermal power systems, heat engines, and lightweight cooling systems.

  16. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  17. Heat exchanger

    International Nuclear Information System (INIS)

    Dostatni, A.W.; Dostatni, Michel.

    1976-01-01

    In the main patent, a description was given of a heat exchanger with an exchange surface in preformed sheet metal designed for the high pressure and temperature service particularly encountered in nuclear pressurized water reactors and which is characterised by the fact that it is composed of at least one exchanger bundle sealed in a containment, the said bundle or bundles being composed of numerous juxtaposed individual compartments whose exchange faces are built of preformed sheet metal. The present addendun certificate concerns shapes of bundles and their positioning methods in the exchanger containment enabling its compactness to be increased [fr

  18. Heat pipes

    CERN Document Server

    Dunn, Peter D

    1982-01-01

    A comprehensive, up-to-date coverage of the theory, design and manufacture of heat pipes and their applications. This latest edition has been thoroughly revised, up-dated and expanded to give an in-depth coverage of the new developments in the field. Significant new material has been added to all the chapters and the applications section has been totally rewritten to ensure that topical and important applications are appropriately emphasised. The bibliography has been considerably enlarged to incorporate much valuable new information. Thus readers of the previous edition, which has established

  19. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Emergencies A-Z Share this! Home » Emergency 101 Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  20. Radiofrequency plasma heating: proceedings

    International Nuclear Information System (INIS)

    Swenson, D.G.

    1985-01-01

    The conference proceedings include sessions on Alfven Wave Heating, ICRF Heating and Current Drive, Lower Hybrid Heating and Current Drive, and ECRF Heating. Questions of confinement, diagnostics, instabilities and technology are considered. Individual papers are cataloged separately

  1. Low temperature nuclear heat

    Energy Technology Data Exchange (ETDEWEB)

    Kotakorpi, J.; Tarjanne, R. (comps.)

    1977-08-01

    The meeting was concerned with the use of low grade nuclear heat for district heating, desalination, process heat, and agriculture and aquaculture. The sessions covered applications and demand, heat sources, and economics.

  2. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  3. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  4. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  5. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  6. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    In the current Danish energy system, the majority of electricity and heat is produced in combined heat and power plants. With increasing shares of intermittent renewable power production, it becomes a challenging task to match power and heat production, as heat demand and production capacity...... constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... are calculated using an energy system model which includes power plants, heat pumps and district heating consumption profiles. The model is developed with focus on accurate representation of the performance of the units in different locations and operating modes. The model can assist in investment decisions...

  7. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  8. Multidimensional Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of multidimensional heat conduction. General heat conduction equation in three dimensions. Steay state, analytical solutions. The Laplace equation. Method of separation of variables. Principle of superposition. Shape factors. Transient, multidimensional heat conduction....

  9. Heat Roadmap Europe 1

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    2012-01-01

    Heat Roadmap Europe (Pre-study 1) investigates the role of district heating in the EU27 energy system by mapping local conditions across Europe, identifying the potential for district heating expansion, and subsequently simulating the potential resource in an hourly model of the EU27 energy system....... In 2010, approximately 12% of the space heating demand in Europe is met by district heating, but in this study four alternative scenarios are considered for the EU27 energy system: 1. 2010 with 30% district heating 2. 2010 with 50% district heating 3. 2030 with 30% district heating 4. 2050 with 50......% district heating These scenarios are investigated in two steps. Firstly, district heating replaces individual boilers by converting condensing power plants to combined heat and power plants (CHP) to illustrate how district heating improves the overall efficiency of the energy system. In the second step...

  10. Heat Related Illnesses

    National Research Council Canada - National Science Library

    Carter, R; Cheuvront, S. N; Sawka, M. N

    2006-01-01

    .... The risk of serious heat illness can be markedly reduced by implementing a variety of countermeasures, including becoming acclimated to the heat, managing heat stress exposure, and maintaining hydration...

  11. Contact Heat Exchanger

    Science.gov (United States)

    Fleming, M. L.; Stalmach, D. D.; Cox, R. L.

    1985-01-01

    Fluid pressure controls contact between heat pipe and heat exchanger. Heat exchanger system in cross section provides contact interface between fluid system and heat pipe with easy assembly/disassembly of heat-pipe/ pumped-liquid system. Originally developed for use in space, new device applicable on Earth where fluid system is linked with heat pipe, where rapid assembly/disassembly required, or where high pressures or corrosive fluids used.

  12. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Connolly, David; Lund, Henrik

    2015-01-01

    The cost of heat savings in buildings increase as more heat savings are achieved due to the state of the building stock and hence, alternatives other than savings typically become more economically feasible at a certain level of heat reductions. It is important to identify when the cost of heat...... savings become more expensive than the cost of sustainable heat supply, so society does not overinvest in heat saving measures. This study first investigates the heat saving potentials for different countries in Europe, along with their associated costs, followed by a comparison with alternative ways...... of supplying sustainable heating. Different heat production options are included in terms of individual and community heating systems. Furthermore, the levelised cost of supplying sustainable heat is estimated for both a single technology and from an energy system perspective. The results are analysed...

  13. Solar Heating Equipment

    Science.gov (United States)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  14. Nature's Heat Exchangers.

    Science.gov (United States)

    Barnes, George

    1991-01-01

    Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)

  15. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  16. Direct fired heat exchanger

    Science.gov (United States)

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  17. District heating in Switzerland

    International Nuclear Information System (INIS)

    Herzog, F.

    1991-01-01

    District heating has been used in Switzerland for more than 50 years. Its share of the heat market is less than 3% today. An analysis of the use of district heating in various European countries shows that a high share of district heating in the heat market is always dependent on ideal conditions for its use. Market prospects and possible future developments in the use of district heating in Switzerland are described in this paper. The main Swiss producers and distributors of district heating are members of the Association of District Heating Producers and Distributors. This association supports the installation of district heating facilities where ecological, energetical and economic aspects indicate that district heating would be a good solution. (author) 2 tabs., 6 refs

  18. Introduction to heat transfer

    CERN Document Server

    SUNDÉN, B

    2012-01-01

    Presenting the basic mechanisms for transfer of heat, Introduction to Heat Transfer gives a deeper and more comprehensive view than existing titles on the subject. Derivation and presentation of analytical and empirical methods are provided for calculation of heat transfer rates and temperature fields as well as pressure drop. The book covers thermal conduction, forced and natural laminar and turbulent convective heat transfer, thermal radiation including participating media, condensation, evaporation and heat exchangers.

  19. Heat Roadmap Europe 2

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Østergaard, Poul Alberg

    are identified and then, the EU27 energy system is modelled to investigate the impact of district heating. The results indicate that a combination of heat savings, district heating in urban areas, and individual heat pumps in rural areas will enable the EU27 to reach its greenhouse gas emission targets by 2050......, but at a cheaper price than a scenario which focuses primarily on the implementation of heat savings....

  20. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  1. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Lund, Henrik

    2015-01-01

    This document is a summary of the key technical inputs for the modelling of the heat strategy for Europe outlined in the latest Heat Roadmap Europe studies [1, 2]. These studies quantify the impact of alternative heating strategies for Europe in 2030 and 2050. The study is based on geographical...... information systems (GIS) and energy system analyses. In this report, the inputs for other modelling tools such as PRIMES are presented, in order to enable other researches to generate similar heating scenarios for Europe. Although Heat Roadmap Europe presents a complete heat strategy for Europe, which...... to model increased penetrations of district heating in the EU energy system in other energy planning tools, such as the PRIMES and JRC-EU-TIMES tools. The key results from the Heat Roadmap Europe studies are that:  Heat savings have a key role to play, but there is a socio-economic limit: after reducing...

  2. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  3. Heat roadmap China

    DEFF Research Database (Denmark)

    Xiong, Weiming; Wang, Yu; Mathiesen, Brian Vad

    2015-01-01

    District heating is regarded as a key element of energy saving actions in the Chinese national energy strategy, while space heating in China is currently still dominated by coal boilers. However, there is no existing quantitative study to analyse the future heat strategy for China. Therefore....... These are compared to each other from the national energy system perspective. The comparison of the three strategies indicates that the new district heating strategy which introduces surplus heat from industry and generation plants is more economically and technically optimal than the individual heat strategy...

  4. Wound tube heat exchanger

    Science.gov (United States)

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  5. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  6. Laser Processed Heat Exchangers

    Data.gov (United States)

    National Aeronautics and Space Administration — The considerable mass of Heat Exchangers (HXs) and coldplates on spacecraft as well as the problematic coatings of the Condensing Heat Exchanger (CHX) are among the...

  7. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  8. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Be Prepared Safe Citizen Day Organize Important Medical Information ER Checklists Preparing for Emergencies Be ready to ... anyone can be affected. Here you will find information about heat cramps and heat stroke and exhaustion. ...

  9. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  10. Paleoclassical electron heat transport

    International Nuclear Information System (INIS)

    Callen, J.D.

    2005-01-01

    Radial electron heat transport in low collisionality, magnetically-confined toroidal plasmas is shown to result from paleoclassical Coulomb collision processes (parallel electron heat conduction and magnetic field diffusion). In such plasmas the electron temperature equilibrates along magnetic field lines a long length L, which is the minimum of the electron collision length and a maximum effective half length of helical field lines. Thus, the diffusing field lines induce a radial electron heat diffusivity M ≅ L/(πR 0q ) ∼ 10 >> 1 times the magnetic field diffusivity η/μ 0 ≅ ν e (c/ω p ) 2 . The paleoclassical electron heat flux model provides interpretations for many features of 'anomalous' electron heat transport: magnitude and radial profile of electron heat diffusivity (in tokamaks, STs, and RFPs), Alcator scaling in high density plasmas, transport barriers around low order rational surfaces and near a separatrix, and a natural heat pinch (or minimum temperature gradient) heat flux form. (author)

  11. Regenerative heat sources for heating networks

    International Nuclear Information System (INIS)

    Huenges, Ernst; Sperber, Evelyn; Eggers, Jan-Bleicke; Noll, Florian; Kallert, Anna Maria; Reuss, Manfred

    2015-01-01

    The ambitious goal, the German Federal Government has set itself, to reduce the emissions of greenhouse gases by 80% to 95% by the year 2050. As there are currently more than half of German energy consumption for the production of heat is required, big contributions to climate protection can be expected from this area if more renewable heat sources are used. Renewable heat sources such as bioenergy, solar thermal and geothermal energy in particular can be provided as compared to fossil fuels with significantly lower specific CO 2 emissions. Objectives in the heating market and scenarios for the transformation of the heat sector have been elaborated in the BMU Lead Study 2011. The main pillar of this scenario is the reduction of final energy consumption for heat by the energy-efficient renovation of existing buildings and further increasing demands on the energetic quality of new buildings. To cover the remaining energy demand, a focus is on the expansion of heating networks based on renewable energies. [de

  12. Solar heat receiver

    Science.gov (United States)

    Hunt, Arlon J.; Hansen, Leif J.; Evans, David B.

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  13. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... this! Home » Emergency 101 Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at Mercy Health System in Chesterfield, Missouri Heat-related illness can be caused by overexposure to the sun or any situation that involves extreme heat. Young children and the elderly are most at risk, ...

  14. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  15. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  16. A corrosive resistant heat exchanger

    Science.gov (United States)

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  17. Heat Rash (Prickly Heat or Miliaria)

    Science.gov (United States)

    ... Baby rashes Heat rash Symptoms & causes Diagnosis & treatment Advertisement Mayo Clinic does not endorse companies or products. ... a Job Site Map About This Site Twitter Facebook Google YouTube Pinterest Mayo Clinic is a not- ...

  18. Single Electrode Heat Effects

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Broers, G. H. J.

    1977-01-01

    The heat evolution at a single irreversibly working electrode is treated onthe basis of the Brønsted heat principle. The resulting equation is analogous to the expression for the total heat evolution in a galvanic cellwith the exception that –DeltaS is substituted by the Peltier entropy, Delta......SP, of theelectrode reaction. eta is the overvoltage at the electrode. This equation is appliedto a high temperature carbonate fuel cell. It is shown that the Peltier entropyterm by far exceeds the heat production due to the irreversible losses, and thatthe main part of heat evolved at the cathode is reabsorbed...

  19. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating these goals can be achieved at a lower cost, with heating and cooling costs......Six different strategies have recently been proposed for the European Union (EU) energy system in the European Commission's report, Energy Roadmap 2050. The objective for these strategies is to identify how the EU can reach its target of an 80% reduction in annual greenhouse gas emissions in 2050...... compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential...

  20. Active microchannel heat exchanger

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Pasco, WA; Roberts, Gary L [West Richland, WA; Call, Charles J [Pasco, WA; Wegeng, Robert S [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  1. District heating versus local heating - Social supportability

    International Nuclear Information System (INIS)

    Matei, Magdalena; Enescu, Diana; Varjoghie, Elena; Radu, Florin; Matei, Lucian

    2004-01-01

    District heating, DH, is an energy source which can provide a cost-effective, environmentally friendly source of heat and power for cities, but only in the case of well running systems, with reasonable technological losses. The benefits of DH system are well known: environmental friendly, energy security, economic and social advantages. DH already covers 60% of heating and hot water needs in transition economies. Today, 70 % of Russian, Latvian and Belarus homes use DH, and heating accounts for one-third of total Russian energy consumption. Yet a large number of DH systems in the region face serious financial, marketing or technical problems because of the policy framework. How can DH issues be best addressed in national and local policy? What can governments do to create the right conditions for the sustainable development of DH while improving service quality? What policies can help capture the economic, environmental and energy security benefits of co-generation and DH? To address these questions, the International Energy Agency (IEA) hosted in 2002 and 2004 conference focusing on the crucial importance of well-designed DH policies, for exchanging information on policy approaches. The conclusions of the conference have shown that 'DH systems can do much to save energy and boost energy security, but stronger policy measures are needed to encourage wise management and investment. With a stronger policy framework, DH systems in formerly socialist countries could save the equivalent of 80 billion cubic meters of natural gas a year through supply side efficiency improvements. This is greater than total annual natural gas consumption in Italy'. More efficient systems will also decrease costs, reducing household bills and making DH competitive on long-term. This paper presents the issues: -Theoretical benefits of the district heating and cooling systems; - Municipal heating in Romania; - Technical and economic problems of DH systems and social supportability; - How

  2. Absorption heat pumps

    Science.gov (United States)

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  3. 24 CFR 3280.506 - Heat loss/heat gain.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  4. Optimization of Heat Exchangers

    International Nuclear Information System (INIS)

    Catton, Ivan

    2010-01-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics (pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger design.

  5. Optimization of Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Ivan Catton

    2010-10-01

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  6. Floor heating maximizes residents` comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tirkkanen, P.; Wikstroem, T.

    1996-11-01

    Storing heat in floors by using economical night-time electricity does not increase the specific consumption of heating. According to studies done by IVO, the optimum housing comfort is achieved if the room is heated mainly by means of floor heating that is evened out by window or ceiling heating, or by a combination of all three forms of heating. (orig.)

  7. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  8. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2003-01-01

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows

  9. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-01

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows

  10. Laser Processed Heat Exchangers

    Science.gov (United States)

    Hansen, Scott

    2017-01-01

    The Laser Processed Heat Exchanger project will investigate the use of laser processed surfaces to reduce mass and volume in liquid/liquid heat exchangers as well as the replacement of the harmful and problematic coatings of the Condensing Heat Exchangers (CHX). For this project, two scale unit test articles will be designed, manufactured, and tested. These two units are a high efficiency liquid/liquid HX and a high reliability CHX.

  11. Counterflow Regolith Heat Exchanger

    Science.gov (United States)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  12. NCSX Plasma Heating Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kugel, H. W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-18

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possiblyIBW-generated sheared flows.

  13. Advances in heat transfer

    CERN Document Server

    Hartnett, James P; Cho, Young I; Greene, George A

    2001-01-01

    Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

  14. Heat transfer II essentials

    CERN Document Server

    REA, The Editors of

    1988-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Heat Transfer II reviews correlations for forced convection, free convection, heat exchangers, radiation heat transfer, and boiling and condensation.

  15. Convection heat transfer

    CERN Document Server

    Bejan, Adrian

    2013-01-01

    Written by an internationally recognized authority on heat transfer and thermodynamics, this second edition of Convection Heat Transfer contains new and updated problems and examples reflecting real-world research and applications, including heat exchanger design. Teaching not only structure but also technique, the book begins with the simplest problem solving method (scale analysis), and moves on to progressively more advanced and exact methods (integral method, self similarity, asymptotic behavior). A solutions manual is available for all problems and exercises.

  16. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  17. Introduction to Heat Pipes

    Science.gov (United States)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. NCTS 21070-15. Course Description: This course will present operating principles of the heat pipe with emphases on the underlying physical processes and requirements of pressure and energy balance. Performance characterizations and design considerations of the heat pipe will be highlighted. Guidelines for thermal engineers in the selection of heat pipes as part of the spacecraft thermal control system, testing methodology, and analytical modeling will also be discussed.

  18. Heat Capacity Analysis Report

    International Nuclear Information System (INIS)

    Findikakis, A.

    2004-01-01

    The purpose of this report is to provide heat capacity values for the host and surrounding rock layers for the waste repository at Yucca Mountain. The heat capacity representations provided by this analysis are used in unsaturated zone (UZ) flow, transport, and coupled processes numerical modeling activities, and in thermal analyses as part of the design of the repository to support the license application. Among the reports that use the heat capacity values estimated in this report are the ''Multiscale Thermohydrologic Model'' report, the ''Drift Degradation Analysis'' report, the ''Ventilation Model and Analysis Report, the Igneous Intrusion Impacts on Waste Packages and Waste Forms'' report, the ''Dike/Drift Interactions report, the Drift-Scale Coupled Processes (DST and TH Seepage) Models'' report, and the ''In-Drift Natural Convection and Condensation'' report. The specific objective of this study is to determine the rock-grain and rock-mass heat capacities for the geologic stratigraphy identified in the ''Mineralogic Model (MM3.0) Report'' (BSC 2004 [DIRS 170031], Table 1-1). This report provides estimates of the heat capacity for all stratigraphic layers except the Paleozoic, for which the mineralogic abundance data required to estimate the heat capacity are not available. The temperature range of interest in this analysis is 25 C to 325 C. This interval is broken into three separate temperature sub-intervals: 25 C to 95 C, 95 C to 114 C, and 114 C to 325 C, which correspond to the preboiling, trans-boiling, and postboiling regimes. Heat capacity is defined as the amount of energy required to raise the temperature of a unit mass of material by one degree (Nimick and Connolly 1991 [DIRS 100690], p. 5). The rock-grain heat capacity is defined as the heat capacity of the rock solids (minerals), and does not include the effect of water that exists in the rock pores. By comparison, the rock-mass heat capacity considers the heat capacity of both solids and pore

  19. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    David, Andrei; Mathiesen, Brian Vad; Averfalk, Helge

    2017-01-01

    The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document that suc......The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document......, refrigerants, efficiency and types of operation of 149 units with 1580 MW of thermal output, the study further uses this data to analyze if the deployment of this technology on a large-scale is possible in other locations in Europe. It finally demonstrates that the technical level of the existing heat pumps...... is mature enough to make them suitable for replication in other locations in Europe....

  20. Heat and mass exchanger

    Science.gov (United States)

    Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas

    2007-09-18

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  1. Planetary heat flow measurements.

    Science.gov (United States)

    Hagermann, Axel

    2005-12-15

    The year 2005 marks the 35th anniversary of the Apollo 13 mission, probably the most successful failure in the history of manned spaceflight. Naturally, Apollo 13's scientific payload is far less known than the spectacular accident and subsequent rescue of its crew. Among other instruments, it carried the first instrument designed to measure the flux of heat on a planetary body other than Earth. The year 2005 also should have marked the launch of the Japanese LUNAR-A mission, and ESA's Rosetta mission is slowly approaching comet Churyumov-Gerasimenko. Both missions carry penetrators to study the heat flow from their target bodies. What is so interesting about planetary heat flow? What can we learn from it and how do we measure it?Not only the Sun, but all planets in the Solar System are essentially heat engines. Various heat sources or heat reservoirs drive intrinsic and surface processes, causing 'dead balls of rock, ice or gas' to evolve dynamically over time, driving convection that powers tectonic processes and spawns magnetic fields. The heat flow constrains models of the thermal evolution of a planet and also its composition because it provides an upper limit for the bulk abundance of radioactive elements. On Earth, the global variation of heat flow also reflects the tectonic activity: heat flow increases towards the young ocean ridges, whereas it is rather low on the old continental shields. It is not surprising that surface heat flow measurements, or even estimates, where performed, contributed greatly to our understanding of what happens inside the planets. In this article, I will review the results and the methods used in past heat flow measurements and speculate on the targets and design of future experiments.

  2. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  3. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  4. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Dr. Glenn Mitchell , Emergency physician at Mercy Health System in Chesterfield, Missouri Heat-related illness can be caused by overexposure to the sun or any situation that involves extreme heat. Young children and the elderly are most at risk, but anyone can be affected. Here ...

  5. Mechanisms of Coronal Heating

    Indian Academy of Sciences (India)

    The Sun is a mysterious star. The high temperature of the chromosphere and corona present one of the most puzzling problems of solar physics. Observations show that the solar coronal heating problem is highly complex with many different facts. It is likely that different heating mechanisms are at work in solar corona.

  6. Scraped surface heat exchangers.

    Science.gov (United States)

    Rao, Chetan S; Hartel, Richard W

    2006-01-01

    Scraped surface heat exchangers (SSHEs) are commonly used in the food, chemical, and pharmaceutical industries for heat transfer, crystallization, and other continuous processes. They are ideally suited for products that are viscous, sticky, that contain particulate matter, or that need some degree of crystallization. Since these characteristics describe a vast majority of processed foods, SSHEs are especially suited for pumpable food products. During operation, the product is brought in contact with a heat transfer surface that is rapidly and continuously scraped, thereby exposing the surface to the passage of untreated product. In addition to maintaining high and uniform heat exchange, the scraper blades also provide simultaneous mixing and agitation. Heat exchange for sticky and viscous foods such as heavy salad dressings, margarine, chocolate, peanut butter, fondant, ice cream, and shortenings is possible only by using SSHEs. High heat transfer coefficients are achieved because the boundary layer is continuously replaced by fresh material. Moreover, the product is in contact with the heating surface for only a few seconds and high temperature gradients can be used without the danger of causing undesirable reactions. SSHEs are versatile in the use of heat transfer medium and the various unit operations that can be carried out simultaneously. This article critically reviews the current understanding of the operations and applications of SSHEs.

  7. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Medicine's Front Line Observation Emergency Care Fact Sheet Health & Safety Tips Campaigns SUBSCRIBE Emergencies A-Z Share this! Home » Emergency 101 Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at Mercy Health System in Chesterfield, Missouri Heat-related illness can ...

  8. Heat sterilization of wood

    Science.gov (United States)

    Xiping Wang

    2010-01-01

    Two important questions should be considered in heat sterilizing solid wood materials: First, what temperature–time regime is required to kill a particular pest? Second, how much time is required to heat the center of any wood configuration to the kill temperature? The entomology research on the first question has facilitated the development of international standards...

  9. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David

    2017-01-01

    This paper compares the electricity, heating, and cooling sectors at national level for various European countries. Annual energy demands are compared for all 28 EU countries, while peak hourly demands are compared for four countries that vary significantly. The results indicate that the heat dem...

  10. Combined Heat and Power

    Science.gov (United States)

    CHP is on-site electricity generation that captures the heat that would otherwise be wasted to provide useful thermal energy such as steam or hot water than can be used for space heating, cooling, domestic hot water and industrial processes.

  11. Plumbing and Heating Curriculum.

    Science.gov (United States)

    EASTCONN Regional Educational Services Center, North Windham, CT.

    Theory and experience in the following areas are included in this plumbing curriculum: (1) plumbing fixtures and heating; (2) city water service; (3) fixture roughing; (4) venting; and (5) solar heating systems. The plumbing program manual includes the following sections: (1) general objectives for grades 10, 11, and 12; (2) a list of 33 major…

  12. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  13. Mesoscopic photon heat transistor

    DEFF Research Database (Denmark)

    Ojanen, T.; Jauho, Antti-Pekka

    2008-01-01

    We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-typ......We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be controlled with an intermediate quantum circuit-leading to the device concept of a mesoscopic photon heat transistor (MPHT). Our theoretical analysis is based on a novel Meir......-Wingreen-Landauer-type of conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the case when the intermediate circuit can be described as an electromagnetic resonator. We discuss...

  14. Heat Pipe Systems

    Science.gov (United States)

    1993-01-01

    The heat pipe was developed to alternately cool and heat without using energy or any moving parts. It enables non-rotating spacecraft to maintain a constant temperature when the surface exposed to the Sun is excessively hot and the non Sun-facing side is very cold. Several organizations, such as Tropic-Kool Engineering Corporation, joined NASA in a subsequent program to refine and commercialize the technology. Heat pipes have been installed in fast food restaurants in areas where humid conditions cause materials to deteriorate quickly. Moisture removal was increased by 30 percent in a Clearwater, FL Burger King after heat pipes were installed. Relative humidity and power consumption were also reduced significantly. Similar results were recorded by Taco Bell, which now specifies heat pipe systems in new restaurants in the Southeast.

  15. Graphene heat dissipating structure

    Science.gov (United States)

    Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.

    2017-08-01

    Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.

  16. Improved solar heating systems

    Science.gov (United States)

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  17. Solar heating system

    Science.gov (United States)

    Schreyer, James M.; Dorsey, George F.

    1982-01-01

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  18. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  19. Chapter 11. Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.; Culver, Gene

    1998-01-01

    Most geothermal fluids, because of their elevated temperature, contain a variety of dissolved chemicals. These chemicals are frequently corrosive toward standard materials of construction. As a result, it is advisable in most cases to isolate the geothermal fluid from the process to which heat is being transferred. The task of heat transfer from the geothermal fluid to a closed process loop is most often handled by a plate heat exchanger. The two most common types used in geothermal applications are: bolted and brazed. For smaller systems, in geothermal resource areas of a specific character, downhole heat exchangers (DHEs) provide a unique means of heat extraction. These devices eliminate the requirement for physical removal of fluid from the well. For this reason, DHE-based systems avoid entirely the environmental and practical problems associated with fluid disposal. Shell and tube heat exchangers play only a minor role in low-temperature, direct-use systems. These units have been in common use in industrial applications for many years and, as a result, are well understood. For these reasons, shell and tube heat exchangers will not be covered in this chapter.

  20. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  1. Paste heat exchange

    Energy Technology Data Exchange (ETDEWEB)

    1943-07-30

    The subject of coal paste heat exchangers is discussed in this letter report from Gelsenberg A.G. to I.G. Farbenindustrie A.G. Gelsenberg had given little consideration to the heating of coal paste by means of regeneration (heat exchange) because of the lack of experience in paste regeneration with bituminous coal, especially at 700 atmospheres. At the I.G. Farben plant at Poelitz, paste regeneration was carried out so that low concentration coal paste was heated in the regenerator together with the process gas, and the remaining coal was fed into the cold pass of the preheater in a thicker paste. Later tests proved this process viable. Gelsenberg heated normal coal paste and the gas in heat exchangers with the goal of relieving the preheater. Good results were achieved without change in design. The coal paste was heated with process gas in the regenerator at up to 315 degrees with constant pressure difference, so that after three months no decrease in K-values and no deposition or thickening was observed. Through the omission of paste gas, the pressure difference of the system became more constant and did not rise above the former level. The temperature also was more controllable, the chamber smoother running. Principal thermal data are given in a table. 1 table, 1 graph.

  2. Pioneering Heat Pump Project

    Energy Technology Data Exchange (ETDEWEB)

    Aschliman, Dave [Indiana Inst. of Technology, Inc., Fort Wayne, IN (United States); Lubbehusen, Mike [Indiana Inst. of Technology, Inc., Fort Wayne, IN (United States)

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  3. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  4. [Clothing and heat disorder].

    Science.gov (United States)

    Satsumoto, Yayoi

    2012-06-01

    The influence of the clothing material properties(like water absorbency and rapid dryness, water vapor absorption, water vapor permeability and air permeability) and the design factor of the clothing(like opening condition and fitting of clothing), which contributed to prevent heat disorder, was outlined. WBGT(wet-bulb globe temperature) is used to show a guideline for environmental limitation of activities to prevent heat disorder. As the safety function is more important than thermal comfort for some sportswear and protective clothing with high cover area, clothing itself increases the risk of heat disorder. WBGT is corrected by CAF (clothing adjustment factor) in wearing such kind of protective clothing.

  5. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  6. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  7. Waste heat recovery system

    International Nuclear Information System (INIS)

    Phi Wah Tooi

    2010-01-01

    Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the

  8. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  9. Pulsating Heat Pipes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced heat transport technology is presented that can enable space nuclear power systems to transfer reactor heat, convert heat into electricity, reject waste...

  10. Counterflow Regolith Heat Exchanger Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat...

  11. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... ICE” in Your Cell Phone Prepare for Disasters Communication With Your Family And Your Doctor About Your ... Dr. Glenn Mitchell , Emergency physician at Mercy Health System in Chesterfield, Missouri Heat-related illness can be ...

  12. Heat Island Compendium

    Science.gov (United States)

    Heat islands can be mitigated through measures like planting trees and vegetation, installing green roofs and cool roofs, and using cool pavements. The compendium describes all of these strategies and shows how communities around the country are being used

  13. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  14. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool ...

  15. Heat and spin interconversion

    International Nuclear Information System (INIS)

    Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji

    2017-01-01

    Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)

  16. Variable Heat Rejection (VHR)

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop advanced technologies to enable a variable heat rejection Thermal Control System (TCS) capable of operating through a wide range of thermal environments...

  17. Heat and mass transfer

    CERN Document Server

    Karwa, Rajendra

    2017-01-01

    This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...

  18. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Medicine's Front Line Observation Emergency Care Fact Sheet Health & Safety Tips Campaigns SUBSCRIBE Emergencies A-Z Share ... Illnesses Dr. Glenn Mitchell , Emergency physician at Mercy Health System in Chesterfield, Missouri Heat-related illness can ...

  19. Policies for Renewable Heat

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    This paper builds on IEA publications, Deploying Renewables, Principles for Effective Policies and Deploying Renewables, Best and Future Policy Practice, that discuss the 'integrated policy approach,' whereby renewable energy technologies require different support policies at different stages of their maturity pathways. The paper discusses how the integrated policy approach applies to renewable heat. It attempts to provide guidance for policy-makers on renewable heat throughout the different phases of the policy lifecycle, allowing for the specific challenges of renewable heat and needs of the many stakeholders involved. Stimulating a market for heat involves challenges that are different and, often, more difficult to overcome than in the electricity and transport sectors.

  20. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with these ... loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the ...

  1. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  2. Analytical heat transfer

    CERN Document Server

    Han, Je-Chin

    2012-01-01

    … it will complete my library … [and] complement the existing literature on heat transfer. It will be of value for both graduate students and faculty members.-Bengt Sunden, Lund University, Sweden

  3. Radiative heat transfer

    CERN Document Server

    Modest, Michael F

    2013-01-01

    The third edition of Radiative Heat Transfer describes the basic physics of radiation heat transfer. The book provides models, methodologies, and calculations essential in solving research problems in a variety of industries, including solar and nuclear energy, nanotechnology, biomedical, and environmental. Every chapter of Radiative Heat Transfer offers uncluttered nomenclature, numerous worked examples, and a large number of problems-many based on real world situations-making it ideal for classroom use as well as for self-study. The book's 24 chapters cover the four major areas in the field: surface properties; surface transport; properties of participating media; and transfer through participating media. Within each chapter, all analytical methods are developed in substantial detail, and a number of examples show how the developed relations may be applied to practical problems. It is an extensive solution manual for adopting instructors. Features: most complete text in the field of radiative heat transfer;...

  4. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with these ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the ...

  5. Heat-Related Illnesses

    Science.gov (United States)

    ... I Waiting So Long? Admission to the Hospital Heroes on Medicine's Front Line Observation ... illness can be caused by overexposure to the sun or any situation that involves extreme heat. Young children and the elderly are most at risk, but ...

  6. Heat treatment for superalloy

    Science.gov (United States)

    Harf, Fredric H. (Inventor)

    1987-01-01

    A cobalt-free nickel-base superalloy composed of in weight % 15 Cr-5 Mo-3.5 Ti-4 Al-0.07 (max) C-remainder Ni is given a modified heat treatment. With this heat treatment the cobalt-free alloy achieves certain of the mechanical properties of the corresponding cobalt-containing nickel-base superalloy at 1200 F (650 C). Thus, strategic cobalt can be replaced by nickel in the alloy.

  7. Heat transport and storage

    International Nuclear Information System (INIS)

    Despois, J.

    1977-01-01

    Recalling the close connections existing between heat transport and storage, some general considerations on the problem of heat distribution and transport are presented 'in order to set out the problem' of storage in concrete form. This problem is considered in its overall plane, then studied under the angle of the different technical choices it involves. The two alternatives currently in consideration are described i.e.: storage in a mined cavity and underground storage as captive sheet [fr

  8. Heat transfer. V. 1

    International Nuclear Information System (INIS)

    1992-01-01

    This volume contains the 4 key-note lectures and 83 of the 148 papers presented at the 3rd UK National Conference on Heat Transfer. The papers are grouped under the following broad headings: boiling and condensation; heat exchangers; refrigeration and air-conditioning; natural convection; process safety and nuclear reactors; two-phase flow; post dry-out; combustion, radiation and chemical reaction. Separate abstracts have been prepared for 13 papers of relevance to nuclear reactors. (UK)

  9. Heat-Related Illnesses

    Science.gov (United States)

    1988-04-01

    after the dog star Sirius which accompanies the staner sun.1 4 2 Many military campaigns have been lost due to lack of heat acclimatization and...the dominant mechanism of heat loss. Panting mammals such as dogs have an oropharyngeal countercurrent flow mechanism (carotid rete) which results in...increased glucose utilization and hepatic damage resulting in impaired gluconeogenesis . 7 6 Coagulopathy is frequent. 1 6 7 PATHOPHYSIOLOGY OF HEATSTROKE: A

  10. Cold Climate Heat Pump

    Science.gov (United States)

    2013-08-01

    more than 50 years ago, but have been recently upgraded and now feature modern HVAC systems, tankless water heaters , and sheet metal roofs... electrical conductivity EES Engineering Equation Solver EF water temperature EIA Energy Information Administration EPA U.S. Environmental Protection... electric resistance heaters have a COP of 1 at best, providing one unit of heat for every unit of electricity . In addition, at -4°C conventional heat

  11. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  12. VII international district heating conference

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings of the 7th International District Heating Conference contain the full texts of the 89 presented papers of which 11 fall under the INIS Subject Scope. The conference met in seven sessions and dealt with the following problem areas: design and optimization of systems of district heating, integration of the power system and the district heating systems, cooperation of nuclear and fossil burning sources in district heating systems, the use of specific nuclear power plants for heating purposes, questions of the control of systems of district heating, the development of components of heating networks, the reliability and design of heat supply pipes. (Z.M.)

  13. Improved Thin, Flexible Heat Pipes

    Science.gov (United States)

    Rosenfeld, John H.; Gernert, Nelson J.; Sarraf, David B.; Wollen, Peter J.; Surina, Frank C.; Fale, John E.

    2004-01-01

    Flexible heat pipes of an improved type are fabricated as layers of different materials laminated together into vacuum- tight sheets or tapes. In comparison with prior flexible heat pipes, these flexible heat pipes are less susceptible to leakage. Other advantages of these flexible heat pipes, relative to prior flexible heat pipes, include high reliability and greater ease and lower cost of fabrication. Because these heat pipes are very thin, they are highly flexible. When coated on outside surfaces with adhesives, these flexible heat pipes can be applied, like common adhesive tapes, to the surfaces of heat sinks and objects to be cooled, even if those surfaces are curved.

  14. Convective heat flow probe

    Science.gov (United States)

    Dunn, James C.; Hardee, Harry C.; Striker, Richard P.

    1985-01-01

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packer-type seals are provided along the probe above and below the heater pads.

  15. Heat transfer system

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1983-01-01

    An intermediate heat exchanger that provides the required physical isolation between the primary reactor coolant loops and a secondary liquid loop in which steam is generated was developed. The intermediate heat exchanger is contained within a sealed vapor chamber that includes a bottom interior portion and an adjacent upper interior portion in vertical communication with one another. The chamber is exhausted of all noncondensible gases at ambient temperature. A heat transfer medium within the chamber maintains a two phase liquid-vapor-liquid system at the design heat transfer temperature. A first set of tubes in the bottom portion of the vapor chamber is supplied with primary reactor coolant. A second set of tubes in the upper portion of the chamber is supplied with water or steam. A thermal linkage is provided between the two sets of tubes by the heat transfer medium, which is evaporated in the vicinity of the first set and is condensed in the vicinity of the second set. This results in a latent heat transport system, condensate return being accomplished by gravity

  16. Radial flow heat exchanger

    Science.gov (United States)

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  17. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  18. Heat flux experiments on heat pipes for plasma facing applications

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, H. [Forschungszentrum Juelich GmbH (Germany); Kohlhaas, W. [Forschungszentrum Juelich GmbH (Germany); Duwe, R. [Forschungszentrum Juelich GmbH (Germany); Gervash, A. [D.V. Efremov Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation); Linke, J. [Forschungszentrum Juelich GmbH (Germany); Mazul, I. [D.V. Efremov Inst. of Electrophysical Apparatus, St. Petersburg (Russian Federation)

    1995-12-31

    The heat removal from the leading edge of limiter blades is a critical issue for the technical feasibility of the pump limiter concept. The aim of the present work was to investigate the capability of heat pipes to remove concentrated local heat fluxes. Tubular and flat heat pipes were subjected to local surface heat loads in the JUDITH electron beam facility. The heat pipes were tested until failure or until the operational limit of the component was reached. The absorbed heat fluxes at this point were of the order of several hundred W/cm{sup 2}. (orig.).

  19. Heating plant privatization stagnates

    International Nuclear Information System (INIS)

    Janoska, J.; Benka, M.; Sobinkovic, B.; Haluza, I.

    2005-01-01

    The state has been talking about privatization of 6 municipal heating plants since 2001. The tenders were to start last year. But nothing has happened and the future is uncertain. The city councils would prefer to receive, if not 100%, then at least a majority stake in the heating plants free of charge. But the Cabinet has decided to sell 51% to investors. The privatization agency - the National Property Fund (FNM) is preparing a proposal to increase the stake offered for sale to 67%. According to information provided by the FNM the sale will begin after Cabinet approval. The Fund intends to apply the same model to the sale of all the heating plants. Last year, a major German company Verbundnetz Gas declared its interest in purchasing large municipal heating plants in Slovakia. But it has been waiting for a response ever since. The French company - Dalkia, which has 10-years' experience of doing business in Slovakia, is interested in all the heating plants to be offered for sale. The Austrian company - Stefe is not new to the business either, it is interested mainly in the regions where it has already established itself - Central and Eastern Slovakia. Strategic investors expect financial groups to show interest too. The Penta Group has not hid its ambitions - it has already privatised a company which represents the key to the future development of heat management in Bratislava - Paroplynovy cyklus. Whereas Penta is not new to the heat production business another financial group - Slavia Capital is still surveying the sector. Should it not succeed, it plans several projects that would allow it to take a stake in the sector

  20. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  1. Enceladus' Enigmatic Heat Flow

    Science.gov (United States)

    Howett, C.; Spencer, J. R.; Spencer, D.; Verbiscer, A.; Hurford, T.; Segura, M.

    2013-12-01

    Accurate knowledge of Enceladus' heat flow is important because it provides a vital constraint on Enceladus' tidal dissipation mechanisms, orbital evolution, and the physical processes that generate the plumes. In 2011 we published an estimate of the current heat flow from Enceladus' active south polar terrain: 15.8 +/- 3.1 GW (Howett et al., 2011). This value was calculated by first estimating by modeling, and then removing, the passive component from 17 to 1000 micron observations made of the entire south polar terrain by Cassini's Composite Infrared Spectrometer (CIRS). The heat flow was then directly calculated from the residual, assumed endogenic, component. The derived heat flow of 15.8 GW was surprisingly high, about 10 times greater than that predicted by steady-state tidal heating (Meyer and Wisdom, 2007). CIRS has also returned high spatial resolution observations of Enceladus' active south polar terrain. Two separate observations are used: 9 to 16 micron observations taken over nearly the complete south polar terrain and a single 17 to 1000 micron scan over Damascus, Baghdad and Cairo. The shorter wavelength observations are only sensitive to high temperature emission (>70 K), and so longer wavelength observations are required (despite their limited spatial coverage) to estimate the low temperature emission from the stripes. Analysis of these higher resolution observations tells a different story of Enceladus' endogenic heat flow: the preliminary estimate of the heat flow from the active tiger stripes using these observations is 4.2 GW. An additional 0.5 GW must be added to this number to account for the latent heat release by the plumes (Ingersoll and Pankine 2009), giving a total preliminary estimate of 4.9 GW. The discrepancy in these two numbers is significant and we are currently investigating the cause. One possible reason is that there is significantly higher endogenic emission from the regions between the tiger stripes than we currently estimate

  2. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  3. Heat shielding device

    International Nuclear Information System (INIS)

    Yatabe, Hiroshi; Motoya, Koji; Kodama, Hiroshi.

    1997-01-01

    Panel-like water cooling tubes are disposed on a shielding concrete wall as a floor surface on which a reactor pressure vessel of a HTGR type reactor is settled. The panel like water cooling tube comprises a large number of water cooling tubes and fin plates connecting them with each other. A heat shielding device is disposed to the opening of an air vent hole on the shielding concrete wall. The heat shielding device has a plurality of supports are disposed between a disk-like upper support plate larger than the opening of the vent hole and covered with a heat insulation material and a lower support plate having a vent hole at the center. The lower support plate is connected with the fin plate. A portion between the supports is formed as pressure releasing channels. Radiation heat from the reactor pressure vessel is transferred to the fin plate by way of the upper support plate, support and a lower support plate and transferred to cooling water of a water-cooling pipeline. Accordingly, radiation heat of the reactor pressure vessel is not transferred to the vent holes. (I.N.)

  4. Heat exchanger-accumulator

    Science.gov (United States)

    Ecker, Amir L.

    1980-01-01

    What is disclosed is a heat exchanger-accumulator for vaporizing a refrigerant or the like, characterized by an upright pressure vessel having a top, bottom and side walls; an inlet conduit eccentrically and sealingly penetrating through the top; a tubular overflow chamber disposed within the vessel and sealingly connected with the bottom so as to define an annular outer volumetric chamber for receiving refrigerant; a heat transfer coil disposed in the outer volumetric chamber for vaporizing the liquid refrigerant that accumulates there; the heat transfer coil defining a passageway for circulating an externally supplied heat exchange fluid; transferring heat efficiently from the fluid; and freely allowing vaporized refrigerant to escape upwardly from the liquid refrigerant; and a refrigerant discharge conduit penetrating sealingly through the top and traversing substantially the length of the pressurized vessel downwardly and upwardly such that its inlet is near the top of the pressurized vessel so as to provide a means for transporting refrigerant vapor from the vessel. The refrigerant discharge conduit has metering orifices, or passageways, penetrating laterally through its walls near the bottom, communicating respectively interiorly and exteriorly of the overflow chamber for controllably carrying small amounts of liquid refrigerant and oil to the effluent stream of refrigerant gas.

  5. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized

  6. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4A was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the identified tube. The leaking tube was removed and examined metallurgically to determine the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summary herein

  7. Heat exchanger restart evaluation

    International Nuclear Information System (INIS)

    Morrison, J.M.; Hirst, C.W.; Lentz, T.F.

    1992-01-01

    On December 24, 1991, the K-Reactor was in the shutdown mode with full AC process water flow and full cooling water flow. Safety rod testing was being performed as part of the power ascension testing program. The results of cooling water samples indicated tritium concentrations higher than allowable. Further sampling and testing confirmed a Process Water System to Cooling Water System leak in heat exchanger 4A (HX 4A). The heat exchanger was isolated and the plant shutdown. Heat exchanger 4kA was removed from the plant and moved to C-Area prior to performing examinations and diagnostic testing. This included locating and identifying the leaking tube or tubes, eddy current examination of the leaking tube and a number of adjacent tubes, visually inspecting the leaking tube from both the inside as well as the area surrounding the failure mechanism. In addition ten other tubes that either exhibited eddy current indications or would represent a baseline condition were removed from heat exchanger 4A for metallurgical examination. Additional analysis and review of heat exchanger leakage history was performed to determine if there are any patterns which can be used for predictive purposes. Compensatory actions have been taken to improve the sensitivity and response time to any future events of this type. The results of these actions are summarized herein

  8. Experiments Demonstrate Geothermal Heating Process

    Science.gov (United States)

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  9. After-heat removing device

    International Nuclear Information System (INIS)

    Iwashige, Kengo; Otsuka, Masaya; Yokoyama, Iwao; Yamakawa, Masanori.

    1990-01-01

    The present invention concerns an after-heat removing device for first reactors. A heat accumulation portion provided in a cooling channel of an after-heat removing device is disposed before a coil-like heat conduction pipe for cooling of the after-heat removing device. During normal reactor operation, the temperature in the heat accumulation portion is near the temperature of the high temperature plenum due to heat conduction and heat transfer from the high temperature plenum. When the reactor is shutdown and the after-heat removing device is started, coolants cooled in the air cooler start circulation. The coolants arriving at the heat accumulation portion deprive heat from the heat accumulation portion and, ion turn, increase their temperature and then reach the cooling coil. Subsequently, the heat calorie possessed in the heat accumulation portion is reduced and the after-heat removing device is started for the operation at a full power. This can reduce the thermal shocks applied to the cooling coil or structures in a reactor vessel upon starting the after-heat removing device. (I.N.)

  10. Structures to radiate heat softly

    Energy Technology Data Exchange (ETDEWEB)

    Perilae, T.; Wikstroem, T. [ed.

    1997-11-01

    Over the past fifty years, heating systems in single-family houses have taken a great leap forward. First wood-burning stoves gave way to oil heaters; then these were superseded by central heating systems; and now conventional central heating systems have lost their way with the increasingly widespread use of room-specific heating systems

  11. Fluctuation relation for heat engines

    International Nuclear Information System (INIS)

    Sinitsyn, N A

    2011-01-01

    We derive the exact equality, referred to as the fluctuation relation for heat engines (FRHE), that relates statistics of heat extracted from one of the two heat baths and the work per one cycle of a heat engine operation. Carnot's inequality of classical thermodynamics follows as a direct consequence of the FRHE. (paper)

  12. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  13. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  14. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  15. WAYS TO MANAGE HEATING INERTIA

    Directory of Open Access Journals (Sweden)

    E. V. Biloshytskyi

    2017-08-01

    Full Text Available Purpose. The research paper proposes to estimate the effect of heat inertia of the water heating system, in transient operation modes, on the temperature condition in the passenger car, as well as to offer technical solutions intended to reduce the heating system inertia effect and to maintain a stable temperature condition in the passenger car premises in transitional modes of the heating system. Methodology. The author developed the method for controlling the heat transfer of heating system pipes with the help of regulating casing. To control the heating system and the heat transfer of heating pipes, two types of temperature control sensors were used in the passenger car: certain sensors interacted with regulatory casings, while the others interacted with high-voltage tubular heating element control devices. To assess the efficiency of heat interchange regulation of heating pipes and the heating system control, with installed regulating casings, the operation of the heating system with regulating casings and two types of sensors was mathematically modelled. Mathematical modelling used the experimental test data. The results of experimental tests and mathematical modelling were compared. Findings. Currently in operated passenger cars, control of heating appliances is not constructively provided. Automatic maintenance of the set temperature in a passenger car is limited to switching on and off of high-voltage tubular heating elements. The use of regulating casings on heating pipes allows reducing the effects of heat inertia and maintaining stable thermal conditions in a passenger car, using the heating system as a heat accumulator, and also provides the opportunity to realize an individual control of air temperature in the compartment. Originality. For the first time, the paper studied the alternative ways of regulating the temperature condition in a passenger car. Using of the heating system as a heat accumulator. Practical value. The

  16. Intensification of Convective Heat Transfer in Heating Device of Mobile Heating System with BH-Heat Generator

    Directory of Open Access Journals (Sweden)

    N. A. Nesenchuk

    2013-01-01

    Full Text Available Directions pertaining to intensification of convective heat transfer in a soft heating device have been experimentally investigated  in the paper and the most efficient one has been selected that is creation of artificial roughness on the device surface. The considered heating device for a heat supply system of a mobile object has been made of soft polymer material (polyvinyl chloride. Following  evaluation results of  heat exchange intensification a criteria equation has been obtained for calculation of external heat transfer with due account of heat transfer intensification.

  17. Shape memory heat engines

    Science.gov (United States)

    Salzbrenner, R.

    1984-06-01

    The mechanical shape memory effect associated with a thermoelastic martensitic transformation can be used to convert heat directly into mechanical work. Laboratory simulation of two types of heat engine cycles (Stirling and Ericsson) has been performed to measure the amount of work available/cycle in a Ni-45 at. pct Ti alloy. Tensile deformations at ambient temperature induced martensite, while a subsequent increase in temperature caused a reversion to the parent phase during which a load was carried through the strain recovery (i.e., work was accomplished). The amount of heat necessary to carry the engines through a cycle was estimated from calorimeter measurements and the work performed/cycle. The measured efficiency of the system tested reached a maximum of 1.4 percent, which was well below the theoretical (Carnot) maximum efficiency of 35.6 percent.

  18. Nuclear district heating

    International Nuclear Information System (INIS)

    Ricateau, P.

    1976-01-01

    An economic study of nuclear district heating is concerned with: heat production, its transmission towards the area to be served and the distribution management towards the consumers. Foreign and French assessments show that the high cost of now existing techniques of hot water transport defines the competing limit distance between the site and township to be below some fifty kilometers for the most important townships (provided that the fuel price remain stationary). All studies converge towards the choice of a high transport temperature as soon as the distance is of some twenty kilometers. As for fossile energy saving, some new possibilities appear with process heat reactors; either PWR of about 1000MWth for large townships, or pool-type reactors of about 100MWth when a combination with an industrial steam supply occurs [fr

  19. Thermal radiation heat transfer

    CERN Document Server

    Howell, John R; Mengüç, M Pinar

    2011-01-01

    Providing a comprehensive overview of the radiative behavior and properties of materials, the fifth edition of this classic textbook describes the physics of radiative heat transfer, development of relevant analysis methods, and associated mathematical and numerical techniques. Retaining the salient features and fundamental coverage that have made it popular, Thermal Radiation Heat Transfer, Fifth Edition has been carefully streamlined to omit superfluous material, yet enhanced to update information with extensive references. Includes four new chapters on Inverse Methods, Electromagnetic Theory, Scattering and Absorption by Particles, and Near-Field Radiative Transfer Keeping pace with significant developments, this book begins by addressing the radiative properties of blackbody and opaque materials, and how they are predicted using electromagnetic theory and obtained through measurements. It discusses radiative exchange in enclosures without any radiating medium between the surfaces-and where heat conduction...

  20. Microgravity condensing heat exchanger

    Science.gov (United States)

    Thomas, Christopher M. (Inventor); Ma, Yonghui (Inventor); North, Andrew (Inventor); Weislogel, Mark M. (Inventor)

    2011-01-01

    A heat exchanger having a plurality of heat exchanging aluminum fins with hydrophilic condensing surfaces which are stacked and clamped between two cold plates. The cold plates are aligned radially along a plane extending through the axis of a cylindrical duct and hold the stacked and clamped portions of the heat exchanging fins along the axis of the cylindrical duct. The fins extend outwardly from the clamped portions along approximately radial planes. The spacing between fins is symmetric about the cold plates, and are somewhat more closely spaced as the angle they make with the cold plates approaches 90.degree.. Passageways extend through the fins between vertex spaces which provide capillary storage and communicate with passageways formed in the stacked and clamped portions of the fins, which communicate with water drains connected to a pump externally to the duct. Water with no entrained air is drawn from the capillary spaces.

  1. Heat and mass transfer

    CERN Document Server

    Baehr, Hans Dieter

    2011-01-01

    This comprehensive textbook provides a solid foundation of knowledge on the principles of heat and mass transfer and shows how to solve problems by applying modern methods. The basic theory is developed systematically, exploring in detail the solution methods to all important problems.   The thoroughly revised 3rd edition includes an introduction to the numerical solution of Finite Elements. A new section on heat and mass transfer in porous media has also been added.   The book will be useful not only to upper-level and graduate students, but also to practicing scientists and engineers, offering a firm understanding of the principles of heat and mass transfer, and showing how to solve problems by applying modern methods. Many completed examples and numerous exercises with solutions facilitate learning and understanding, and an appendix includes data on key properties of important substances.

  2. Acclimatization to extreme heat

    Science.gov (United States)

    Warner, M. E.; Ganguly, A. R.; Bhatia, U.

    2017-12-01

    Heat extremes throughout the globe, as well as in the United States, are expected to increase. These heat extremes have been shown to impact human health, resulting in some of the highest levels of lives lost as compared with similar natural disasters. But in order to inform decision makers and best understand future mortality and morbidity, adaptation and mitigation must be considered. Defined as the ability for individuals or society to change behavior and/or adapt physiologically, acclimatization encompasses the gradual adaptation that occurs over time. Therefore, this research aims to account for acclimatization to extreme heat by using a hybrid methodology that incorporates future air conditioning use and installation patterns with future temperature-related time series data. While previous studies have not accounted for energy usage patterns and market saturation scenarios, we integrate such factors to compare the impact of air conditioning as a tool for acclimatization, with a particular emphasis on mortality within vulnerable communities.

  3. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  4. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate.......9% in the third screening with 41 selected cultivars. The Fv/Fm was influenced by heat stress and the difference between the cultivars appeared only during the heat stress. Further analysis of other chlorophyll fluorescence parameters showed similar or higher GD, but they did not reveal the genetic difference....... The correlation of the cultivar response in intact plant versus detached leaf was low. Overall, the result suggests that selection of cultivars by detached leaves may operate for different genetic factors than in intact plants. In the third study, the previously selected high and low groups of cultivars (from...

  5. Modular heat exchanger

    Science.gov (United States)

    Culver, Donald W.

    1978-01-01

    A heat exchanger for use in nuclear reactors includes a heat exchange tube bundle formed from similar modules each having a hexagonal shroud containing a large number of thermally conductive tubes which are connected with inlet and outlet headers at opposite ends of each module, the respective headers being adapted for interconnection with suitable inlet and outlet manifold means. In order to adapt the heat exchanger for operation in a high temperature and high pressure environment and to provide access to all tube ports at opposite ends of the tube bundle, a spherical tube sheet is arranged in sealed relation across the chamber with an elongated duct extending outwardly therefrom to provide manifold means for interconnection with the opposite end of the tube bundle.

  6. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... for physiological traits that may confer better adaptation to changing climatic conditions. Eventually, combining all the identified “good genes” may aid in developing stress tolerant cultivars to overcome environmental constraints and thereby, meet the increasing demand of future food security....

  7. Elements of heat transfer

    CERN Document Server

    Rathakrishnan, Ethirajan

    2012-01-01

    1 Basic Concepts and Definitions1.1 Introduction1.1.1 Driving Potential1.2 Dimensions and Units1.2.1 Dimensional Homogeneity1.3 Closed and Open Systems1.3.1 Closed System (ControlMass)1.3.2 Isolated System1.3.3 Open System (ControlVolume)1.4 Forms of Energy1.4.1 Internal Energy1.5 Properties of a System1.5.1 Intensive and Extensive Properties1.6 State and Equilibrium1.7 Thermal and Calorical Properties1.7.1 Specific Heat of an Incompressible Substance1.7.2 Thermally Perfect Gas 1.8 The Perfect Gas1.9 Summary1.10 Exercise ProblemsConduction Heat Transfer2.1 Introduction2.2 Conduction Heat Trans

  8. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  9. Solar industrial process heat

    Energy Technology Data Exchange (ETDEWEB)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  10. Nanocrystallinity induced by heating

    DEFF Research Database (Denmark)

    Mørup, Steen; Meaz, T.M.; Bender Koch, C.

    1997-01-01

    Samples of akaganeite (beta-FeOOH) and goethite (alpha-FeOOH) have been studied after heating at various temperatures up to 800 C. X-ray diffraction and Mossbauer spectroscopy measurements showed that slightly below the temperatures at which the samples transform to hematite (alpha-Fe2O3) the oxy......Samples of akaganeite (beta-FeOOH) and goethite (alpha-FeOOH) have been studied after heating at various temperatures up to 800 C. X-ray diffraction and Mossbauer spectroscopy measurements showed that slightly below the temperatures at which the samples transform to hematite (alpha-Fe2O3...

  11. Heat exchanger panel

    Science.gov (United States)

    Warburton, Robert E. (Inventor); Cuva, William J. (Inventor)

    2005-01-01

    The present invention relates to a heat exchanger panel which has broad utility in high temperature environments. The heat exchanger panel has a first panel, a second panel, and at least one fluid containment device positioned intermediate the first and second panels. At least one of the first panel and the second panel have at least one feature on an interior surface to accommodate the at least one fluid containment device. In a preferred embodiment, each of the first and second panels is formed from a high conductivity, high temperature composite material. Also, in a preferred embodiment, the first and second panels are joined together by one or more composite fasteners.

  12. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  13. Engineering heat transfer

    International Nuclear Information System (INIS)

    Welty, J.R.

    1974-01-01

    The basic concepts of heat transfer are covered with special emphasis on up-to-date techniques for formulating and solving problems in the field. The discussion progresses logically from phenomenology to problem solving, and treats numerical, integral, and graphical methods as well as traditional analytical ones. The book is unique in its thorough coverage of the fundamentals of numerical analysis appropriate to solving heat transfer problems. This coverage includes several complete and readable examples of numerical solutions, with discussions and interpretations of results. The book also contains an appendix that provides students with physical data for often-encountered materials. An index is included. (U.S.)

  14. A heat transfer textbook

    CERN Document Server

    Lienhard, John H

    2011-01-01

    This introduction to heat transfer offers advanced undergraduate and graduate engineering students a solid foundation in the subjects of conduction, convection, radiation, and phase-change, in addition to the related topic of mass transfer. A staple of engineering courses around the world for more than three decades, it has been revised and updated regularly by the authors, a pair of recognized experts in the field. The text addresses the implications, limitations, and meanings of many aspects of heat transfer, connecting the subject to its real-world applications and developing students' ins

  15. Alfven wave heating

    International Nuclear Information System (INIS)

    Stix, H.

    1981-01-01

    The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered

  16. Harnessing solar heat

    CERN Document Server

    Norton, Brian

    2013-01-01

    Systems engineered by man to harness solar heat in a controlled manner now include a diverse range of technologies each serving distinctive needs in particular climate contexts. This text covers the breadth of solar energy technologies for the conversion of solar energy to provide heat, either as the directly-used output or as an intermediary to other uses such as power generation or cooling. It is a wholly updated, extended and revised version of “Solar Energy Thermal Technology” first published in 1992. The text draws on the own author’s research and that of numerous colleagues and

  17. Geothermal heating saves energy

    International Nuclear Information System (INIS)

    Romsaas, Tor

    2003-01-01

    The article reviews briefly a pioneer project for a construction area of 200000 m''2 with residences, business complexes, a hotel and conference centre and a commercial college in Oslo. The energy conservation potential is estimated to be about 60-70 % compared to direct heating with oil, gas or electricity as sources. There will also be substantial reduction in environmentally damaging emissions. The proposed energy central combines geothermal energy sources with heat pump technology, utilises water as energy carrier and uses terrestrial wells for energy storage. A cost approximation is presented

  18. Urban district heating using nuclear heat - a survey

    International Nuclear Information System (INIS)

    Beresovski, T.; Oliker, I.

    1979-01-01

    The use of heat from nuclear power plants is of great interest in connection with projected future expansions of large urban district heating systems. Oil price escalation and air pollution from increased burning of fossil fuels are substantial incentivers for the adoption of nuclear heat and power plants. The cost of the hot water piping system from the nuclear plant to the city is a major factor in determining the feasibility of using nuclear heat. To achieve reasonable costs, the heat load should be at least 1500 MW(th), transport temperatures 125-200 0 C and distances preferably 50 km or less. Heat may be extracted from the turbines of conventional power reactors. Alternatively, some special-purpose smaller reactors are under development which are specially suited to production of heat with little or no power coproduct. Many countries are conducting studies of future expansions of district heating systems to use nuclear heat. Several countries are developing technology suitable for this application. Actual experience with the use of nuclear heat for district heating is currently being gained only in the USSR, however. While district heating appears to be a desirable technology at a time of increasing fossil-fuel costs, the use of nuclear heat will require siting of nuclear plants within transmission radius of cities. The institutional barries toward use of nuclear heating will have to be overcome before the energy conservation potential of this approach can be realized on a significant scale. (author)

  19. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  20. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  1. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    . Groundwater, seawater and air heat sources were compared with each other as well as to a scenario consisting of a combination of these heat sources. In addition, base load and peak load units were included. Characteristic parameters were the coefficient of performance, the number of full load hours...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  2. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  3. Heat loss from Buildings

    DEFF Research Database (Denmark)

    Karlsson, Kenneth; Næraa, Rikke

    1997-01-01

    Determination of heat loss coefficients for buildings in Denmark. The coefficient are determined for 15 building groups and 3 year intervals. They are based on the BBR-registre and assumptions of U-values(W/K*m2)and computed in a simple spreed sheet model.The results are used in the REVEILLE...

  4. Heating Systems Specialist.

    Science.gov (United States)

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice heating systems specialists. Training includes instruction in fundamentals and pipefitting; basic electricity; controls, troubleshooting, and oil burners; solid and gas fuel burners and warm air distribution systems; hot water…

  5. Flexible Heat Pipe

    Science.gov (United States)

    Bienert, W. B.; Wolf, D. A.

    1985-01-01

    Narrow Tube carries 10 watts or more to moving parts. Heat pipe 12 inches long and diameter of 0.312 inch (7.92mm). Bent to minimum radius of 2.5 blocks. Flexible section made of 321 stainless steel tubing (Cajon Flexible Tubing or equivalent). Evaporator and condenser made of oxygen free copper. Working fluid methanol.

  6. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Fact Sheet Health & Safety Tips Campaigns SUBSCRIBE Emergencies A-Z Share this! Home » Emergency 101 Heat-Related ... if the person becomes unconscious. READ IN EMERGENCIES A-Z Adverse Drug Reactions Your Blood Pressure Score ...

  7. Congenital heat disease

    International Nuclear Information System (INIS)

    Higgins, C.B.; Silverman, N.H.; Kersting-Somerhoff, B.A.

    1990-01-01

    The book covers the tomographic anatomy of the normal and congenitally malformed heart and tomographic imaging of the normal heat. It then compares echocardiographic evaluation and the use of MR imaging in the diagnosis and evaluation of individual congenital cardiac malformations

  8. Heat pumps for industry

    Science.gov (United States)

    1991-09-01

    Research activities, both in the laboratory and in the field, confirm that heat pumps can improve energy efficiency and productivity for a multitude of process types. By using heat pumps, process industries can save significant amounts of energy and money and successfully control emissions. Those industries with special needs, such as recovering solvents, can meet them more energy efficiently and cost effectively with heat pumps. Through the years, the Office of Industrial Technologies (OIT) has helped industry solve its energy problems by joining in cooperative agreements with companies willing to do the research. The companies involved in these agreements share the costs of the research and benefit directly from the technology developed. OIT then has information from demonstration projects that it can pass on to others within industry. All the projects described in this brochure were joint ventures between DOE and industry participants. OIT will assist in accelerating the use of heat pumps in the industrial marketplace by continuing to work with industry on research and demonstration projects and to transfer research results and project performance information to the rest of industry. Successfully transferring this technology could conserve as much as 1.5 quads of energy annually at a savings of more than $4 billion at today's prices.

  9. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Fact Sheet Health & Safety Tips Campaigns SUBSCRIBE Emergencies A-Z Share this! Home » Emergency 101 Heat-Related ... if the person becomes unconscious. READ IN EMERGENCIES A-Z Seizures Sunburn and Sun Safety Stroke Resources ...

  10. Solar Energy: Heat Storage.

    Science.gov (United States)

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  11. Heat stress in Tunisia

    African Journals Online (AJOL)

    RACHID BOURAOUI

    Humidity Index (THI), examine heat stress effects on lactating cows and to suggest potential management strategies that can be ... monthly temperature and relative humidity data from different weather stations. ... The objectives of the current work were to characterize the environmental conditions to which dairy cows are ...

  12. Heat of vaporization spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D. Jr.

    1979-03-01

    Multilayer desorption measurements of various substances adsorbed on a stainless-steel substrate are found to exhibit desorption profiles consistent with a zeroth-order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification.

  13. Heat of vaporization spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification.

  14. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... I Waiting So Long? Admission to the Hospital Heroes on Medicine's Front Line Observation ... illness can be caused by overexposure to the sun or any situation that involves extreme heat. Young children and the elderly are most at risk, but ...

  15. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  16. Member for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1975-01-01

    Should a radioisotope-powered engine (e.g., a Stirling cycle engine for generating electricity) stop working for any reason, the radioisotope heat source will continue to generate heat. This will result in a rise in temperature which may cause overheating of and possible damage to the engine as well as to the heat source itself. The invention provides a support/location member for conducting excess heat from the heat source and which, in normal operation of the engine, will impede the conduction of heat away from the heat source and so reduce thermal losses. The member is of elongated form and comprises a stack of heat-conductive slugs disposed in a tube and in interspaced relationship along the axis of the tube. The tube supports the slugs in axial alignment. Means are provided for attaching an end one of the slugs to the heat source and means operable on overheating of said end one of the slugs are also provided whereby the slugs are able to move into heat-conducting contact with each other so as to conduct the excess heat away from said heat source. The slugs may be brazed to the tube whereby progressive overheating of the slugs along the stack results in an overheated slug being freed from attachment to the tube so as to allow the overheated slug to move along the stack and engage the next slug in line in heat-conducting contact. (U.S.)

  17. Transferring heat during a bounce

    Science.gov (United States)

    Shiri, Samira; Bird, James

    2015-11-01

    When a hot liquid drop impacts a cold non-wetting surface, the temperature difference drives heat transfer. If the drop leaves the surface before reaching thermal equilibrium, the amount of heat transfer may depend on the contact time. Past studies exploring finite-time heat exchange with droplets focus on the Leidenfrost condition where heat transfer is regulated by a thin layer of vapor. Here, we present systematic experiments to measure the heat transferred by a bouncing droplet in non-Leidenfrost conditions. We propose a physical model of this heat transfer and compare our model to the experiments.

  18. Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring

    International Nuclear Information System (INIS)

    Mihalina, M.; Djetelic, N.

    2010-01-01

    The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e

  19. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  20. Droplet heat transfer and chemical reactions during direct containment heating

    International Nuclear Information System (INIS)

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences

  1. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  2. Urban heat island 1

    DEFF Research Database (Denmark)

    Bühler, Oliver; Jensen, Marina Bergen; Petersen, Karen Sejr

    2010-01-01

    Urban Heat Island beskriver det forhold, at temperaturen i byområder er højere end temperaturen i tilgrænsede landområder. Årsagen hertil ligger i den urbane arealanvendelse, hvor en mindre andel af arealerne er dækket af vegetation, og en større andel består af forseglede arealer.......Urban Heat Island beskriver det forhold, at temperaturen i byområder er højere end temperaturen i tilgrænsede landområder. Årsagen hertil ligger i den urbane arealanvendelse, hvor en mindre andel af arealerne er dækket af vegetation, og en større andel består af forseglede arealer....

  3. Hybrid Heat Exchangers

    Science.gov (United States)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  4. Heat-resistant materials

    CERN Document Server

    1997-01-01

    This handbook covers the complete spectrum of technology dealing with heat-resistant materials, including high-temperature characteristics, effects of processing and microstructure on high-temperature properties, materials selection guidelines for industrial applications, and life-assessment methods. Also included is information on comparative properties that allows the ranking of alloy performance, effects of processing and microstructure on high-temperature properties, high-temperature oxidation and corrosion-resistant coatings for superalloys, and design guidelines for applications involving creep and/or oxidation. Contents: General introduction (high-temperature materials characteristics, and mechanical and corrosion properties, and industrial applications); Properties of Ferrous Heat-Resistant Alloys (carbon, alloy, and stainless steels; alloy cast irons; and high alloy cast steels); Properties of superalloys (metallurgy and processing, mechanical and corrosion properties, degradation, and protective coa...

  5. Impedance and component heating

    CERN Document Server

    Métral, E; Mounet, N; Pieloni, T; Salvant, B

    2015-01-01

    The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.

  6. The projective heat map

    CERN Document Server

    Schwartz, Richard Evan

    2017-01-01

    This book introduces a simple dynamical model for a planar heat map that is invariant under projective transformations. The map is defined by iterating a polygon map, where one starts with a finite planar N-gon and produces a new N-gon by a prescribed geometric construction. One of the appeals of the topic of this book is the simplicity of the construction that yet leads to deep and far reaching mathematics. To construct the projective heat map, the author modifies the classical affine invariant midpoint map, which takes a polygon to a new polygon whose vertices are the midpoints of the original. The author provides useful background which makes this book accessible to a beginning graduate student or advanced undergraduate as well as researchers approaching this subject from other fields of specialty. The book includes many illustrations, and there is also a companion computer program.

  7. Performance in the heat

    DEFF Research Database (Denmark)

    Nybo, Lars; Rasmussen, Peter; Sawka, Michael N.

    2014-01-01

    This article presents a historical overview and an up-to-date review of hyperthermia-induced fatigue during exercise in the heat. Exercise in the heat is associated with a thermoregulatory burden which mediates cardiovascular challenges and influence the cerebral function, increase the pulmonary...... oxygen delivery to the skeletal muscles. Regardless, performance is markedly deteriorated and exercise-induced hyperthermia is associated with central fatigue as indicated by impaired ability to sustain maximal muscle activation during sustained contractions. The central fatigue appears to be influenced...... by neurotransmitter activity of the dopaminergic system, but inhibitory signals from thermoreceptors arising secondary to the elevated core, muscle and skin temperatures and augmented afferent feedback from the increased ventilation and the cardiovascular stressing (perhaps baroreceptor sensing of blood pressure...

  8. Large Scale Solar Heating

    DEFF Research Database (Denmark)

    Heller, Alfred

    2001-01-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the simulation tool for design studies and on a local energy planning case. The evaluation was mainly carried out...... based on measurements on the Marstal plant, Denmark, and through comparison with published and unpublished data from other plants. Evaluations on the thermal, economical and environmental performance are repored, based on experiences from the last decade. For detailed designing, a computer simulation...... model is designed and validated on the Marstal case. Applying the Danish Reference Year, a design tool is presented. The simulation tool is used for proposals for application of alternative designs, including high-performance solar collector types (trough solar collectors, vaccum pipe collectors...

  9. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  10. Heat pipe applications workshop report

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  11. VTX HyHeat Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project Orbital Technologies Corporation (ORBITEC) will utilize its unique vortex propulsion technology to develop a high-capacity heating system to heat...

  12. Heat Pumps in Subarctic Areas

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Oddsson, Gudmundur Valur; Unnthorsson, Runar

    2017-01-01

    Geothermal heat pumps use the temperature difference between inside and outside areas to modify a refrigerant, either for heating or cooling. Doing so can lower the need for external heating energy for a household to some extent. The eventual impact depends on various factors, such as the external...... source for heating or cooling and the temperature difference. The use of geothermal heat pumps, and eventual benefits has not been studied in the context of frigid areas, such as in Iceland. In Iceland, only remote areas do not have access to district heating from geothermal energy where households may...... therefor benefit from using geothermal heat pumps. It is the intent of this study to explore the observed benefits of using geothermal heat pumps in Iceland, both financially and energetically. This study further elaborates on incentives provided by the Icelandic government. Real data was gathered from...

  13. Transient heating of moving objects

    Directory of Open Access Journals (Sweden)

    E.I. Baida

    2014-06-01

    Full Text Available A mathematical model of transient and quasistatic heating of moving objects by various heat sources is considered. The mathematical formulation of the problem is described, examples of thermal calculation given.

  14. Urban heat island 1

    DEFF Research Database (Denmark)

    Bühler, Oliver; Jensen, Marina Bergen; Petersen, Karen Sejr

    2010-01-01

    Urban Heat Island beskriver det forhold, at temperaturen i byområder er højere end temperaturen i tilgrænsede landområder. Årsagen hertil ligger i den urbane arealanvendelse, hvor en mindre andel af arealerne er dækket af vegetation, og en større andel består af forseglede arealer....

  15. Induced current heating probe

    International Nuclear Information System (INIS)

    Thatcher, G.; Ferguson, B.G.; Winstanley, J.P.

    1984-01-01

    An induced current heating probe is of thimble form and has an outer conducting sheath and a water flooded flux-generating unit formed from a stack of ferrite rings coaxially disposed in the sheath. The energising coil is made of solid wire which connects at one end with a coaxial water current tube and at the other end with the sheath. The stack of ferrite rings may include non-magnetic insulating rings which help to shape the flux. (author)

  16. Heat Transfer Analogies

    International Nuclear Information System (INIS)

    Bhattacharyya, A.

    1965-11-01

    This report contains descriptions of various analogues utilised to study different steady-state and unsteady-state heat transfer problems. The analogues covered are as follows: 1 . Hydraulic: a) water flow b) air flow 2. Membrane 3. Geometric Electrical: a) Electrolytic-tank b) Conducting sheet 4. Network; a) Resistance b) R-C A comparison of the different analogues is presented in the form of a table

  17. Heat exchanger tube mounts

    Science.gov (United States)

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  18. Heat Capacity Mapping Mission

    Science.gov (United States)

    Nilsson, C. S.; Andrews, J. C.; Scully-Power, P.; Ball, S.; Speechley, G.; Latham, A. R. (Principal Investigator)

    1980-01-01

    The Tasman Front was delineated by airborne expendable bathythermograph survey; and an Heat Capacity Mapping Mission (HCMM) IR image on the same day shows the same principal features as determined from ground-truth. It is clear that digital enhancement of HCMM images is necessary to map ocean surface temperatures and when done, the Tasman Front and other oceanographic features can be mapped by this method, even through considerable scattered cloud cover.

  19. Getting the Heat Out

    Science.gov (United States)

    2009-03-04

    to 20g  Nanostructured wick for enhanced heat transfer and fluid transport  Structural, flexible, thin, & light-weight materials that match the TEC ...Flexible, TEC -matched Casing Nanostructured WickVapor Cavity Approved For Public Release, Distribution Unlimited TJunction A New Thermal Opportunity chip...complements the Thermal Ground Plane (TGP) program. Microtechnologies for Air Cooled Exchangers (MACE) Nano -textured fins to enhance convection surface

  20. Underground storage of heat

    International Nuclear Information System (INIS)

    Despois, J.; Nougarede, F.

    1976-01-01

    The interest laying in heat storage is envisaged taking account of the new energy context, with a view to optimizing the use of production means of heat sources hardly modulated according to the demand. In such a way, a natural medium, without any constructions cost but only an access cost is to be used. So, porous and permeable rocky strata allowing the use of a pressurized water flow as a transfer fluid are well convenient. With such a choice high temperatures (200 deg C) may be obtained, that are suitable for long transmissions. A mathematical model intended for solving the conservation equations in the case of heat storage inside a confined water layer is discussed. An approach of the operating conditions of storage may involve either a line-up arrangement (with the hot drilling at the center, the cold drillings being aligned on both sides) or a radial arrangement (with cold drillings at the peripheral edge encircling the hot drilling at the center of the layer). The three principal problems encountered are: starting drilling, and the circuit insulation and control [fr

  1. Heating solar coronal holes

    Science.gov (United States)

    Parker, E. N.

    1991-01-01

    It has been shown that the coronal hole, and the associated high-speed stream in the solar wind, are powered by a heat input of the order of 500,000 ergs/sq cm s, with most of the heat injected in the first 1-2 solar radii, and perhaps 100,000 ergs/sq cm s introduced at distances of several solar radii to provide the high speed of the issuing solar wind. The traditional view has been that this energy is obtained from Alfven waves generated in the subphotospheric convection, which dissipate as they propagate outward, converting the wave energy into heat. This paper reviews the generation of waves and the known wave dissipation mechanisms, to show that the necessary Alfven waves are not produced under the conditions presently understood to exist in the sun, nor would such waves dissipate significantly in the first 1-2 solar radii if they existed. Wave dissipation occurs only over distances of the order of 5 solar radii or more.

  2. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  3. Solar energy heating panel

    Energy Technology Data Exchange (ETDEWEB)

    McMurtrie, T.

    1984-08-14

    A solar energy collecting and radiating panel for heating a fluid such as air circulating in an enclosure disposed behind the panel. The panel is in the form of a pan made of sheet metal, such as thin aluminum, darkened on its irradiated surface, the blackened or darkened surface being protected by a pane of glass. The panel has a plurality of dome-shaped dimples embossed on and projecting from its irradiated surface such as to present a large surface area to exposure to sun rays and to capture solar energy independently of the sun height or position relative to the horizon. The heat absorbed by the panel is conveyed by its back surface to air circulating by convection or by forced circulation in a thermally insulated enclosure, for heating a building or for any other utilization. A plurality of panels may be disposed side by side to form a solar energy collecting array preferably mounted on an outside wall of a building, in a southerly orientation.

  4. Generalized reflood heat transfer correlation

    International Nuclear Information System (INIS)

    Hsuj-Chieh Yeh; Dodge, C.E.; Hochreiter, L.E.

    1978-01-01

    A reflood heat transfer correlation has been developed from the FLECHT reflood data for different axial power shapes and arbitrary variable flooding rate conditions. This correlation consists of a separate quench correlation and a heat transfer coefficient correlation. The reflood correlation predicts both the quench front, location and the heat transfer coefficient above the quench front.. The reflood heat transfer correlation prediction is in good agreement with both the cosine and the skewed axial power shape FLECHT reflooding data. (author)

  5. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  6. Heat distribution and the future competitiveness of district heating

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Urban; Werner, Sven [School of Business and Engineering, Halmstad University, PO Box 823, SE-30118 Halmstad (Sweden)

    2011-03-15

    The competitiveness of present and future district heating systems can be at risk when residential and service sector heat demands are expected to decrease in the future. In this study, the future competitiveness of district heating has been examined by an in depth analysis of the distribution capital cost at various city characteristics, city sizes, and heat demands. Hereby, this study explores an important market condition often neglected or badly recognised in traditional comparisons between centralised and decentralised heat supply. By a new theoretical approach, the traditional and empirical expression for linear heat density is transformed into an analytical expression that allows modelling of future distribution capital cost levels also in areas where no district heating exists today. The independent variables in this new analytical expression are population density, specific building space, specific heat demand and effective width. Model input data has primarily been collected from national and European statistical sources on heat use, city populations, city districts and residential living areas. Study objects were 83 cities in Belgium, Germany, France, and the Netherlands. The average heat market share for district heat within these cities was 21% during 2006. The main conclusion is that the future estimated capital costs for district heat distribution in the study cities are rather low, since the cities are very dense. At the current situation, a market share of 60% can be reached with a marginal distribution capital cost of only 2.1 EUR/GJ, corresponding to an average distribution capital cost of 1.6 EUR/GJ. The most favourable conditions appear in large cities and in inner city areas. In the future, there is a lower risk for reduced competitiveness due to reduced heat demands in these areas, since the increased distribution capital cost is low compared to the typical prices of district heat and competing heat supply. However, district heating will lose

  7. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  8. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  9. Climate Fundamentals for Solar Heating.

    Science.gov (United States)

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  10. Heating being put into service

    CERN Multimedia

    2016-01-01

    The SMB-SE group would like to inform you that, the central heating will start this year, on Monday 3 October 2016, and will be progressively and depending on the weather forecast put into service throughout. All buildings will have heating within the following few days. Thank you for your understanding. The CERN heating team SMB-SE

  11. Magnetic heating in the sun

    International Nuclear Information System (INIS)

    Chiuderi, C.

    1981-01-01

    The observational evidence for magnetic heating in the solar corona is presented. The possible ways of investigating theoretically the nature of the heating processes are critically discussed. Merits and disadvantages of the basic mechanisms so far proposed are reviewed. Finally, a preliminary application of the magnetic heating concept to stellar coronae is presented. (orig.)

  12. Heat pumps are a dream

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The fact that heat pumps do not achieve what their manufacturers promise in costs efficiency has been realized by the market. In 1981 the sales of heat pumps decreased by 50% of the 1980 market. Public utilities give the reason as economic, since fuel oil is too cheap. The author refutes this argument and presents arguments against heat pumps.

  13. Milk fouling in heat exchangers

    NARCIS (Netherlands)

    Jeurnink, T.J.M.

    1996-01-01


    The mechanisms of fouling of heat exchangers by milk were studied. Two major fouling mechanisms were indentified during the heat treatment of milk: (i) the formation and the subsequent deposition of activated serum protein molecules as a result of the heat denaturation; (ii) the

  14. Large molten pool heat transfer

    International Nuclear Information System (INIS)

    1994-01-01

    This workshop on large molten pool heat transfer is composed of 5 sessions which titles are: feasibility of in-vessel core debris cooling; experiments on molten pool heat transfer; calculational efforts on molten pool convection; heat transfer to the surrounding water, experimental techniques; future experiments and ex-vessel studies (RASPLAV, TOLBIAC, BALI, SULTAN, CORVIS, VULCANO, CORINE programs)

  15. Heat tracer methods

    Science.gov (United States)

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    The flow of heat in the subsurface is closely linked to the movement of water (Ingebritsen et al., 2006). As such, heat has been used as a tracer in groundwater studies for more than 100 years (Anderson, 2005). As with chemical and isotopic tracers (Chapter 7), spatial or temporal trends in surface and subsurface temperatures can be used to infer rates of water movement. Temperature can be measured accurately, economically, at high frequencies, and without the need to obtain water samples, facts that make heat an attractive tracer. Temperature measurements made over space and time can be used to infer rates of recharge from a stream or other surface water body (Lapham, 1989; Stonestrom and Constantz, 2003); measurements can also be used to estimate rates of steady drainage through depth intervals within thick unsaturated zones (Constantz et al., 2003; Shan and Bodvarsson, 2004). Several thorough reviews of heat as a tracer in hydrologic studies have recently been published (Constantz et al., 2003; Stonestrom and Constantz, 2003; Anderson, 2005; Blasch et al., 2007; Constantz et al., 2008). This chapter summarizes heat-tracer approaches that have been used to estimate recharge.Some clarification in terminology is presented here to avoid confusion in descriptions of the various approaches that follow. Diffuse recharge is that which occurs more or less uniformly across large areas in response to precipitation, infiltration, and drainage through the unsaturated zone. Estimates of diffuse recharge determined using measured temperatures in the unsaturated zone are referred to as potential recharge because it is possible that not all of the water moving through the unsaturated zone will recharge the aquifer; some may be lost to the atmosphere by evaporation or plant transpiration. Estimated fluxes across confining units in the saturated zone are referred to as interaquifer flow (Chapter 1). Focused recharge is that which occurs directly from a point or line source, such

  16. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  17. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  18. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    Domestic heat pumps for shallow geothermal heating of family houses are popular and the range and supply of standard solutions is large. However, in applications for large capacities and temperatures, like district heating in the mega Watt range, standard solutions for high temperatures are scarce...... and usually not suitable off-the-shelf, which demands customized industrial heat pumps to be designed to fit the specific application. At the Brædstrup CHP plant in Denmark, a pilot project deployed in 2012, is being tested involving a seasonal thermal energy storage system in underground boreholes, charged...... by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  19. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  20. Measuring of heat transfer coefficient

    DEFF Research Database (Denmark)

    Henningsen, Poul; Lindegren, Maria

    Subtask 3.4 Measuring of heat transfer coefficient Subtask 3.4.1 Design and setting up of tests to measure heat transfer coefficient Objective: Complementary testing methods together with the relevant experimental equipment are to be designed by the two partners involved in order to measure...... the heat transfer coefficient for a wide range of interface conditions in hot and warm forging processes. Subtask 3.4.2 Measurement of heat transfer coefficient The objective of subtask 3.4.2 is to determine heat transfer values for different interface conditions reflecting those typically operating in hot...

  1. Heat pumps for the home

    CERN Document Server

    Cantor, John

    2013-01-01

    In recent years, heat pumps have emerged as a promising new form of technology with a relatively low environmental impact. Moreover, they have presented householders with an opportunity to reduce their heating bills. Heat pumps can heat a building by 'pumping' heat from either the ground or the air outside: an intriguing process which utilizes principles that are somewhat analogous to those employed in the domestic refrigerator. Armed with the practical information contained in these pages, homeowners will have the necessary knowledge to take advantage of this potentially low-carbon t

  2. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  3. Heat transfer and thermal control

    Science.gov (United States)

    Crosbie, A. L.

    Radiation heat transfer is considered along with conduction heat transfer, heat pipes, and thermal control. Attention is given to the radiative properties of a painted layer containing nonspherical pigment, bidirectional reflectance measurements of specular and diffuse surfaces with a simple spectrometer, the radiative equilibrium in a general plane-parallel environment, and the application of finite-element techniques to the interaction of conduction and radiation in participating medium, a finite-element approach to combined conductive and radiative heat transfer in a planar medium. Heat transfer in irradiated shallow layers of water, an analytical and experimental investigation of temperature distribution in laser heated gases, numerical methods for the analysis of laser annealing of doped semiconductor wafers, and approximate solutions of transient heat conduction in a finite slab are also examined. Consideration is also given to performance testing of a hydrogen heat pipe, heat pipe performance with gravity assist and liquid overfill, vapor chambers for an atmospheric cloud physics laboratory, a prototype heat pipe radiator for the German Direct Broadcasting TV Satellite, free convection in enclosures exposed to compressive heating, and a thermal analysis of a multipurpose furnace for material processing in space.

  4. Heating entrepreneur activity in 2003

    International Nuclear Information System (INIS)

    Nikkola, A.; Solmio, H.

    2004-01-01

    According to TTS Institute information, at the end of 2003 there were heating entrepreneurs responsible for fuel management and heat production in at least 212 heating plants in Finland. The number of operative plants increased by 36 from the previous year. At the end of 2003, the total boiler capacity for solid fuel in the plants managed by the heating entrepreneurs exceeded 100 megawatts. The average boiler capacity of the plants was 0.5 megawatts. Heating entrepreneur-ship was most common in west Finland, where 40 percent of the plants are located. There were some 94 heating plants managed by cooperatives or limited companies. Single entrepre neurs or entrepreneur networks consisting of several entrepreneurs were responsible for heat production in 117 plants. Heating entrepreneurs used approximately 290,000 loose cubic metres of forest chips, which is about seven percent of the volume used for heating and power plant energy production in 2003. In addition, the heating entrepreneurs used a total of 40,000 loose cubic metres of other wood fuel and an estimated 20,000 loose cubic metres of sod and milled peat. Municipalities are still the most important customer group for heating entrepreneurs. However, thenumber of private customers is growing. Industrial company, other private company or properly was the main customer already for every fourth plant established during 2003. (orig.)

  5. Next Generation Microchannel Heat Exchangers

    CERN Document Server

    Ohadi, Michael; Dessiatoun, Serguei; Cetegen, Edvin

    2013-01-01

    In Next Generation Microchannel Heat Exchangers, the authors’ focus on the new generation highly efficient heat exchangers and presentation of novel data and technical expertise not available in the open literature.  Next generation micro channels offer record high heat transfer coefficients with pressure drops much less than conventional micro channel heat exchangers. These inherent features promise fast penetration into many mew markets, including high heat flux cooling of electronics, waste heat recovery and energy efficiency enhancement applications, alternative energy systems, as well as applications in mass exchangers and chemical reactor systems. The combination of up to the minute research findings and technical know-how make this book very timely as the search for high performance heat and mass exchangers that can cut costs in materials consumption intensifies.

  6. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    In the current Danish energy system, the majority of electricity and heat is produced in combined heat and power (CHP) plants. With increasing shares of intermittent renewable power production, it becomes a challenging task to match power and heat production to its demand curves, as production...... that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas....... Six vapour compression heat pump (VCHP) systems were considered along with the ammonia-water hybrid absorption compression heat pump (HACHP), corresponding to an upper limit of the sink temperature of up to 150 °C. The best available technology was determined for each set of heat sink and source...

  7. Nuclear heat for industrial purposes and district heating

    International Nuclear Information System (INIS)

    1974-01-01

    Studies on the various possibilities for the application of heat from nuclear reactors in the form of district heat or process steam for industrial purposes had been made long before the present energy crisis. Although these studies have indicated technical feasibility and economical justification of such utilization, the availability of relatively cheap oil and difficulties in locating a nuclear heat source inside industrial areas did not stimulate much further development. Since the increase of oil prices, the interest in nuclear heat application is reawakened, and a number of new potential areas have been identified. It now seems generally recognized that the heat from nuclear reactors should play an important role in primary energy supply, not only for electricity production but also as direct heat. At present three broad areas of nuclear heat application are identified: Direct heat utilization in industrial processing requiring a temperature above 800 deg. C; Process steam utilization in various industries, requiring a temperature mainly in the range of 200-300 deg. C; Low temperature and waste heat utilization from nuclear power plants for desalination of sea water and district heating. Such classification is mainly related to the type and characteristics of the heat source or nuclear reactor which could be used for a particular application. Modified high temperature reactor types (HTR) are the candidates for direct heat application, while the LWR reactors can satisfy most of the demands for process steam. Production of waste heat is a characteristic of all thermal power plants, and its utilization is a major challenge in the field of power production

  8. Engineering heat transfer

    CERN Document Server

    Annaratone, Donatello

    2010-01-01

    This book is a generalist textbook; it is designed for anybody interested in heat transmission, including scholars, designers and students. Two criteria constitute the foundation of Annaratone's books, including the present one. The first one consists of indispensable scientific rigor without theoretical exasperation. The inclusion in the book of some theoretical studies, even if admirable for their scientific rigor, would have strengthened the scientific foundation of this publication, yet without providing the reader with further applicable know-how. The second criterion is to deliver practi

  9. Theory of heat

    CERN Document Server

    Maxwell, James Clerk

    2001-01-01

    Though James Clerk Maxwell (1831-1879) is best remembered for his epochal achievements in electricity and magnetism, he was wide-ranging in his scientific investigations, and he came to brilliant conclusions in virtually all of them. As James R. Newman put it, Maxwell ""combined a profound physical intuition, an exquisite feeling for the relationship of objects, with a formidable mathematical capacity to establish orderly connections among diverse phenomena. This blending of the concrete and the abstract was the chief characteristic of almost all his researches.""Maxwell's work on heat and st

  10. Cryogenic regenerative heat exchangers

    CERN Document Server

    Ackermann, Robert A

    1997-01-01

    An in-depth survey of regenerative heat exchangers, this book chronicles the development and recent commercialization of regenerative devices for cryogenic applications. Chapters cover historical background, concepts, practical applications, design data, and numerical solutions, providing the latest information for engineers to develop advanced cryogenic machines. The discussions include insights into the operation of a regenerator; descriptions of the cyclic and fluid temperature distributions in a regenerator; data for various matrix geometries and materials, including coarse and fine bronze, stainless steel-woven wire mesh screens, and lead spheres; and unique operating features of cryocoolers that produce deviations from ideal regenerator theory.

  11. Method and means for heating buildings in a district heating system with waste heat from a thermal power plant

    International Nuclear Information System (INIS)

    Margen, P.H.E.

    1975-01-01

    The waste heat from a thermal power plant is transported through a municipal heating network to a plurality of buildings to be heated. The quantity of heat thus supplied to the buildings is higher than that required for the heating of the buildings. The excess heat is released from the buildings to the atmosphere in the form of hot air

  12. Heat transfer characteristics of various kinds of ground heat exchangers for ground source heat pump system

    Science.gov (United States)

    Miyara, A.; Kariya, K.; Ali, Md. H.; Selamat, S. B.; Jalaluddin

    2017-01-01

    Three kinds of vertical-type ground heat exchangers, U-tube; double-tube; multi-tube, and two kinds of horizontal-type ground heat exchangers, standing Slinky; reclined Slinky, were experimentally and numerically investigated in order to clarify their heat transfer characteristics. Experiments and simulations were carried out under two operation conditions which are continuous operation mode and discontinuous operation mode and effects of temperature recovery and thermal storage on the heat transfer rate were shown. Differences of the heat transfer rate between standing Slinky and reclined Slinky were also indicated.

  13. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat

    Directory of Open Access Journals (Sweden)

    Borna Doračić

    2018-03-01

    Full Text Available District heating plays a key role in achieving high primary energy savings and the reduction of the overall environmental impact of the energy sector. This was recently recognized by the European Commission, which emphasizes the importance of these systems, especially when integrated with renewable energy sources, like solar, biomass, geothermal, etc. On the other hand, high amounts of heat are currently being wasted in the industry sector, which causes low energy efficiency of these processes. This excess heat can be utilized and transported to the final customer by a distribution network. The main goal of this research was to calculate the potential for excess heat utilization in district heating systems by implementing the levelized cost of excess heat method. Additionally, this paper proves the economic and environmental benefits of switching from individual heating solutions to a district heating system. This was done by using the QGIS software. The variation of different relevant parameters was taken into account in the sensitivity analysis. Therefore, the final result was the determination of the maximum potential distance of the excess heat source from the demand, for different available heat supplies, costs of pipes, and excess heat prices.

  14. Simultaneousness of room heating and ventilation air heating

    International Nuclear Information System (INIS)

    Mathisen, Hans Martin

    2006-01-01

    The report is part of NTNU-SINTEF's Smart Buildings program, Smart Energy Efficient Buildings (2002-2006), subprogram 3.1 Heating, ventilation and cooling systems. An important part of this subprogram is the development and implementation of heating distribution systems with low return temperature. A comparison has been made of the simultaneousness of room heating and ventilation air heating in six buildings. Existing measuring data with hourly measurements of effect requirements for the different purposes have been employed. Based on the measuring data the relation between the requirements for room heating and ventilation is estimated. A 'fictitious' return temperature has also been estimated. The result shows a significant variation between the buildings. For all there are short periods where the efficiency need for room heating and ventilation is equal (ml)

  15. Supply of Prague with heat from a nuclear heat source

    International Nuclear Information System (INIS)

    Poul, F.

    1976-01-01

    The proposals are discussed of supplying Prague, the Czechoslovak Capital, with nuclear reactor-generated heat energy. The proposals meet the requirements of the general urban plan of development. The first nuclear heating plant is to be sited in the Kojetice locality, in the northern Prague suburb. It will be commissioned by 1984 and 1985. It is estimated that the maximum heat output in form of hot water will be 821 MW. By 1995 the construction of the second nuclear heating plant should be started southeast or east of Prague. The connection of these two nuclear plants to the hot water mains together with other conventional heating plants will secure the heat supply for Prague and its new housing estates and industrial works. (Oy)

  16. Thermodynamics and heat power

    CERN Document Server

    Granet, Irving

    2014-01-01

    Fundamental ConceptsIntroductionThermodynamic SystemsTemperatureForce and MassElementary Kinetic Theory of GasesPressureReviewKey TermsEquations Developed in This ChapterQuestionsProblemsWork, Energy, and HeatIntroductionWorkEnergyInternal EnergyPotential EnergyKinetic EnergyHeatFlow WorkNonflow WorkReviewKey TermsEquations Developed in This ChapterQuestionsProblemsFirst Law of ThermodynamicsIntroductionFirst Law of ThermodynamicsNonflow SystemSteady-Flow SystemApplications of First Law of ThermodynamicsReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Second Law of ThermodynamicsIntroductionReversibility-Second Law of ThermodynamicsThe Carnot CycleEntropyReviewKey TermsEquations Developed in This ChapterQuestionsProblemsProperties of Liquids and GasesIntroductionLiquids and VaporsThermodynamic Properties of SteamComputerized PropertiesThermodynamic DiagramsProcessesReviewKey TermsEquations Developed in This ChapterQuestionsProblemsThe Ideal GasIntroductionBasic ConsiderationsSpecific Hea...

  17. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  18. A sublimation heat engine

    Science.gov (United States)

    Wells, Gary G.; Ledesma-Aguilar, Rodrigo; McHale, Glen; Sefiane, Khellil

    2015-01-01

    Heat engines are based on the physical realization of a thermodynamic cycle, most famously the liquid–vapour Rankine cycle used for steam engines. Here we present a sublimation heat engine, which can convert temperature differences into mechanical work via the Leidenfrost effect. Through controlled experiments, quantified by a hydrodynamic model, we show that levitating dry-ice blocks rotate on hot turbine-like surfaces at a rate controlled by the turbine geometry, temperature difference and solid material properties. The rotational motion of the dry-ice loads is converted into electric power by coupling to a magnetic coil system. We extend our concept to liquid loads, generalizing the realization of the new engine to both sublimation and the instantaneous vapourization of liquids. Our results support the feasibility of low-friction in situ energy harvesting from both liquids and ices. Our concept is potentially relevant in challenging situations such as deep drilling, outer space exploration or micro-mechanical manipulation. PMID:25731669

  19. Upright heat exchanger

    International Nuclear Information System (INIS)

    Martoch, J.; Kugler, V.; Krizek, V.; Strmiska, F.

    1988-01-01

    The claimed heat exchanger is characteristic by the condensate level being maintained directly in the exchanger while preserving the so-called ''dry'' tube plate. This makes it unnecessary to build another pressure vessel into the circuit. The design of the heat exchanger allows access to both tube plates, which facilitates any repair. Another advantage is the possibility of accelerating the indication of leakage from the space of the second operating medium which is given by opening the drainage pipes of the lower bundle into the collar space and from there through to the indication pipe. The exchanger is especially suitable for deployment in the circuits of nuclear power plants where the second operating medium will be hot water of considerably lower purity than is that of the condensate. A rapid display of leakage can prevent any long-term penetration of this water into the condensate, which would result in worsening water quality in the entire secondary circuit of the nuclear power plant. (J.B.). 1 fig

  20. Prinsip Umum Penatalaksanaan Cedera Olahraga Heat Stroke

    OpenAIRE

    Ade Tobing, Saharun Iso

    2016-01-01

    Exercises that are conducted in an extreme heat environment can cause heat injury. Heatinjury is associated with disturbance to temperature regulation and cardiovascular systems. Heatstroke is the most severe type of heat injury. Heat stroke is associated with high morbidity andmortality numbers, particularly if therapy treatment is delayed. In general, heat stroke is caused bytwo things, namely increase in heat production and decrease in heat loss.Heat stroke signs include: (1) rectal temper...

  1. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  2. Heat pumps in western Switzerland

    International Nuclear Information System (INIS)

    Freymond, A.

    2003-01-01

    The past ten years have seen an extraordinary expansion of heat-pump market figures in the western (French speaking) part of Switzerland. Today, more than 14,000 units are in operation. This corresponds to about 18% of all the machines installed in the whole country, compared to only 10 to 12% ten years ago. This success illustrates the considerable know-how accumulated by the leading trade and industry during these years. It is also due to the promotional program 'Energy 2000' of the Swiss Federal Department of Energy that included the heat pump as a renewable energy source. Already in 1986, the Swiss Federal Institute of Technology in Lausanne was equipped with a huge heat pump system comprising two electrically driven heat pumps of 3.5 MW thermal power each. The heat source is water drawn from the lake of Geneva at a depth of 70 meters. An annual coefficient of performance of 4.5 has been obtained since the commissioning of the plant. However, most heat pump installations are located in single-family dwellings. The preferred heat source is geothermal heat, using borehole heat exchangers and an intermediate heat transfer fluid. The average coefficient of performance of these installations has been increased from 2.5 in 1995 to 3.1 in 2002

  3. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    Energy Technology Data Exchange (ETDEWEB)

    Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odukomaiya, Adewale [Georgia Inst. of Technology, Atlanta, GA (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  4. Heat pump having improved defrost system

    Science.gov (United States)

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  5. Hybrid Heat Pipes for High Heat Flux Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The thermal transport requirements for future spacecraft missions continue to increase, approaching several kilowatts. At the same time the heat acquisition areas...

  6. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    , the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C...... higher than 82% by the better temperature match of the process to the heat sink and source is reported. Another major benefit of using ammonia and water as working pair is the possibility of reaching quite high temperatures at a significantly lower operating pressure, which makes it possible to reach...

  7. Heating performance of air-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Carrington, C.G.; Offen, R.J.; Sandle, W.J.; Meyer, L.

    1980-03-01

    Progress is reported on monitoring the heating performance of existing commercially manufactured heat pumps, reappraising existing calculations for optimum heat exchanger sizing, and investigating the performance of an air-to-air heat pump sized and constructed for optimum long term economic performance design information. Two heat pumps were monitored using multi-point recorders and (for one of the heat pumps) a magnetic tape recorder data logger designed and built under contract support. Statistical information on heat pump operation is presented and heat pump performance to date is appraised. Seasonal coefficients of performance of not less than 2.1 and 2.3 are estimated from the data. Expected annual electricity savings are 4763 kWh and 6695 kWh. Design modifications are suggested which may well increase the seasonal coefficient of performance to 3 and need not necessarily involve increased first cost. Heat pumps costing (estimated) $1000 with a coefficient of performance of 3 are expected to be economically attractive.

  8. Optimum heat storage design for heat integrated multipurpose batch plants

    CSIR Research Space (South Africa)

    Stamp, J

    2011-01-01

    Full Text Available June 2011 Accepted 7 June 2011 Available online xxx Keywords: a b s t r a c t Heat integration to minimis for more than two decade which leads to suboptimal leading to improved results optimisation of heat storag exhibits MINLP structure, w a... different thermal storage systems were designed to store the heat released during an exothermic reaction phase and reuse the heat for preheating the reactants in the following batch. Savings between 50% and 70% could be achieved, however, payback time...

  9. Compression Pad Cavity Heating Augmentation on Orion Heat Shield

    Science.gov (United States)

    Hollis, Brian R.

    2011-01-01

    An experimental study has been conducted to assess the effects of compression pad cavities on the aeroheating environment of the Project Orion Crew Exploration Vehicle heat shield. Testing was conducted in Mach 6 and 10 perfect-gas wind tunnels to obtain heating measurements in and around the compression pads cavities using global phosphor thermography. Data were obtained over a wide range of Reynolds numbers that produced laminar, transitional, and turbulent flow within and downstream of the cavities. The effects of cavity dimensions on boundary-layer transition and heating augmentation levels were studied. Correlations were developed for transition onset and for the average cavity-heating augmentation.

  10. Hybrid Heat Pipes for High Heat Flux Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The thermal transport requirements for future spacecraft missions continue to increase, approaching several kilowatts. At the same time the heat acquisition areas...

  11. Biofuelled heating plants

    International Nuclear Information System (INIS)

    Gulliksson, Hans; Wennerstaal, L.; Zethraeus, B.; Johansson, Bert-Aake

    2001-11-01

    The purpose of this report is to serve as a basis to enable establishment and operation of small and medium-sized bio-fuel plants, district heating plants and local district heating plants. Furthermore, the purpose of this report is to serve as a guideline and basis when realizing projects, from the first concept to established plant. Taking into account all the phases, from selection of heating system, fuel type, selection of technical solutions, authorization request or application to operate a plant, planning, construction and buying, inspection, performance test, take-over and control system of the plant. Another purpose of the report is to make sure that best available technology is used and to contribute to continuous development of the technology. The report deals mainly with bio-fuelled plants in the effect range 0.3 to10 MW. The term 'plant' refers to combined power and heating plants as well as 'simpler' district heating plants. The last-mentioned is also often referred to as 'local heating plant'. In this context, the term bio fuel refers to a wide range of fuel types. The term bio fuel includes processed fractions like powders, pellets, and briquettes along with unprocessed fractions, such as by-products from the forest industry; chips and bark. Bio fuels also include straw, energy crops and cereal waste products, but these have not been expressly studied in this report. The report is structured with appendixes regarding the various phases of the projects, with the purpose of serving as a helping handbook, or manual for new establishment, helping out with technical and administrative advice and environmental requirements. Plants of this size are already expanding considerably, and the need for guiding principles for design/technology and environmental requirements is great. These guiding principles should comply with the environmental legislation requirements, and must contain advice and recommendations for bio fuel plants in this effect range, also in

  12. Heat exchanger leakage problem location

    Directory of Open Access Journals (Sweden)

    Jícha Miroslav

    2012-04-01

    Full Text Available Recent compact heat exchangers are very often assembled from numerous parts joined together to separate heat transfer fluids and to form the required heat exchanger arrangement. Therefore, the leak tightness is very important property of the compact heat exchangers. Although, the compact heat exchangers have been produced for many years, there are still technological problems associated with manufacturing of the ideal connection between the individual parts, mainly encountered with special purpose heat exchangers, e.g. gas turbine recuperators. This paper describes a procedure used to identify the leakage location inside the prime surface gas turbine recuperator. For this purpose, an analytical model of the leaky gas turbine recuperator was created to assess its performance. The results obtained are compared with the experimental data which were acquired during the recuperator thermal performance analysis. The differences between these two data sets are used to indicate possible leakage areas.

  13. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  14. Heat exchanger and related methods

    Science.gov (United States)

    Turner, Terry D.; McKellar, Michael G.

    2015-12-22

    Heat exchangers include a housing having an inlet and an outlet and forming a portion of a transition chamber. A heating member may form another portion of the transition chamber. The heating member includes a first end having a first opening and a second end having a second opening larger than the first opening. Methods of conveying a fluid include supplying a first fluid into a transition chamber of a heat exchanger, supplying a second fluid into the transition chamber, and altering a state of a portion of the first fluid with the second fluid. Methods of sublimating solid particles include conveying a first fluid comprising a material in a solid state into a transition chamber, heating the material to a gaseous state by directing a second fluid through a heating member and mixing the first fluid and the second fluid.

  15. Large-scale solar heating

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Advanced Energy Systems

    1998-10-01

    Solar heating market is growing in many European countries and annually installed collector area has exceeded one million square meters. There are dozens of collector manufacturers and hundreds of firms making solar heating installations in Europe. One tendency in solar heating is towards larger systems. These can be roof integrated, consisting of some tens or hundreds of square meters of collectors, or they can be larger centralized solar district heating plants consisting of a few thousand square meters of collectors. The increase of size can reduce the specific investments of solar heating systems, because e.g. the costs of some components (controllers, pumps, and pipes), planning and installation can be smaller in larger systems. The solar heat output can also be higher in large systems, because more advanced technique is economically viable

  16. Heat Transfer Basics and Practice

    CERN Document Server

    Böckh, Peter

    2012-01-01

    The book provides an easy way to understand the fundamentals of heat transfer. The reader will acquire the ability to design and analyze heat exchangers. Without extensive derivation of the fundamentals, the latest correlations for heat transfer coefficients and their application are discussed. The following topics are presented - Steady state and transient heat conduction - Free and forced convection - Finned surfaces - Condensation and boiling - Radiation - Heat exchanger design - Problem-solving After introducing the basic terminology, the reader is made familiar with the different mechanisms of heat transfer. Their practical application is demonstrated in examples, which are available in the Internet as MathCad files for further use. Tables of material properties and formulas for their use in programs are included in the appendix. This book will serve as a valuable resource for both students and engineers in the industry. The author’s experience indicates that students, after 40 lectures and exercises ...

  17. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul J.; LaFontaine, Frank J.; Crane, Dakota L.

    2016-01-01

    Heat waves are the largest cause of environment-related deaths globally. On average, over 6,000 people in the United States alone are hospitalized each summer due to excessive heat. Key elements leading to these disasters are elevated humidity and the urban heat island effect, which act together to increase apparent temperature and amplify the effects of a heat wave. Urban demographics and socioeconomic factors also play a role in determining individual risk. Currently, advisories of impending heat waves are often too generalized, with limited or no spatial variability over urban regions. This frequently contributes to a lack of specific response on behalf of the population. A goal of this project is to develop a product that has the potential to provide more specific heat wave guidance invoking greater awareness and action.

  18. HEAT TREATMENT OF ELECTROPLATED URANIUM

    Science.gov (United States)

    Hoglund, P.F.

    1958-07-01

    A method is described for improving electroplated coatings on uranium. Such coatings are often porous, and in an effort to remedy this, the coatings are heat treated by immersing the coated specimen ln a bath of fused salt or molten methl. Since the hase metal, uranium, is an active metal, such a procedure often results in reactions between the base metal and the heating medium. This difficulty can be overcome by using liquid organopolysiloxanes as the heating medium.

  19. Large-scale solar heat

    Energy Technology Data Exchange (ETDEWEB)

    Tolonen, J.; Konttinen, P.; Lund, P. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Engineering Physics and Mathematics

    1998-12-31

    In this project a large domestic solar heating system was built and a solar district heating system was modelled and simulated. Objectives were to improve the performance and reduce costs of a large-scale solar heating system. As a result of the project the benefit/cost ratio can be increased by 40 % through dimensioning and optimising the system at the designing stage. (orig.)

  20. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    with an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period of up to 3...... years for 283 residential heat pumps installed and operating in Denmark. The results are used to assess the flexibility of domestic heat pumps and their ability to follow production....

  1. Heat stress in growing pigs

    OpenAIRE

    Huynh Thi Thanh Thuy

    2005-01-01

    Compared to other species of farm animals, pigs are more sensitive to high environmental temperatures, because they cannot sweat and do not pant so well. Furthermore, fast-growing lean pigs generate more heat than their congeners living in the wild. This, in combination with confined housing, makes it difficult for these pigs to regulate their heat balance. Heat stressed pigs have low performance, poor welfare, and, by pen fouling, they give higher emissions of odour and ammonia.Above certain...

  2. Heating by the Raman instability

    International Nuclear Information System (INIS)

    Estabrook, K.G.; Kruer, W.L.

    1980-01-01

    Computer simulations are presented of the reflection and heating due to stimulated Raman backscatter of intense laser light in large regions of underdense plasma. The heated electron distribution is found to be approximately a Maxwellian of temperature (m/sub e//2)v/sub p/ 2 , where v/sub p/ is the phase velocity of the electron plasma wave. A simple model of the reflection is presented. Raman may cause a pre-heat problem with large laser fusion reactor targets

  3. Poisoning of Heat Pipes

    Science.gov (United States)

    Gillies, Donald; Lehoczky, Sandor; Palosz, Witold; Carpenter, Paul; Salvail, Pat

    2007-01-01

    Thermal management is critical to space exploration efforts. In particular, efficient transfer and control of heat flow is essential when operating high energy sources such as nuclear reactors. Thermal energy must be transferred to various energy conversion devices, and to radiators for safe and efficient rejection of excess thermal energy. Applications for space power demand exceptionally long periods of time with equipment that is accessible for limited maintenance only. Equally critical is the hostile and alien environment which includes high radiation from the reactor and from space (galactic) radiation. In space or lunar applications high vacuum is an issue, while in Martian operations the systems will encounter a CO2 atmosphere. The effect of contact at high temperature with local soil (regolith) in surface operations on the moon or other terrestrial bodies (Mars, asteroids) must be considered.

  4. Compact cryocooler heat exchangers

    International Nuclear Information System (INIS)

    Luna, J.; Frederking, T.H.K.

    1991-01-01

    Compact heat exchangers are subject to different constraints as a room temperature gas is cooled down by a cold stream returning from a JT valve (or a similar cryoprocess component). In particular, the optimization of exchangers for liquid helium systems has to cover a wide range in temperature and density of the fluid. In the present work we address the following thermodynamic questions: 1. The optimization of intermediate temperatures which optimize stage operation (a stage is assumed to have a constant cross section); 2. The optimum temperature difference available for best overall economic performance values. The results are viewed in the context of porous media concepts applied to rather low speeds of fluid flow in narrow passages. In this paper examples of fluid/solid constraints imposed in this non-classical low temperature area are presented

  5. Heat flux solarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Sartarelli, A.; Vera, S.; Cyrulies, E. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Echarri, R. [Instituto de Desarrollo Humano, Univ. Nac. de Gral. Sarmiento (IDH, UNGS), Los Polvorines (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Samson, I. [INTEC (Instituto Tecnologico Santo Domingo), Santo Domingo (Dominican Republic)

    2010-12-15

    The solarimeter presented in this work is easy to assemble. It is calibrated and its performance is validated by means of Hottel's method. Finally, the curves obtained with this solarimeter are compared to the ones obtained with a commercial solarimeter. This device is based on the evaluation of the heat flow in a metal rod. In consequence, measurements are not affected by ambient temperature variations. On the other hand, there is a linear relationship between the temperatures measured at the rod ends and the incident radiation, as can be concluded both from the theory of its operation and the calibration lines obtained. The results obtained from the global irradiance measurements in the area of Los Polvorines (Buenos Aires Province), together with a preliminary evaluation of the solarimeter's response time, are presented in this work. (author)

  6. Waste heat recovery system

    Science.gov (United States)

    Ernst, Timothy C.; Zigan, James A.

    2017-12-19

    A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.

  7. Combined Heat and Power

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    At their 2007 Summit in Heiligendamm, G8 leaders called on countries to 'adopt instruments and measures to significantly increase the share of combined heat and power (CHP) in the generation of electricity.' As a result, energy, economic, environmental and utility regulators are looking for tools and information to understand the potential of CHP and to identify appropriate policies for their national circumstances. This report forms the first part of the response. It includes answers to policy makers' questions about the potential economic, energy and environmental benefits of an increased policy commitment to CHP. It also includes for the first time integrated IEA data on global CHP installations, and analyses the benefits of increased CHP investment in the G8+5 countries. A companion report will be produced later in 2008 to document best practice policy approaches that have been used to expand the use of CHP in a variety of countries.

  8. Solar chemical heat pipe

    International Nuclear Information System (INIS)

    Levy, M.; Levitan, R.; Rosin, H.; Rubin, R.

    1991-08-01

    The performance of a solar chemical heat pipe was studied using CO 2 reforming of methane as a vehicle for storage and transport of solar energy. The endothermic reforming reaction was carried out in an Inconel reactor, packed with a Rh catalyst. The reactor was suspended in an insulated box receiver which was placed in the focal plane of the Schaeffer Solar Furnace of the Weizman Institute of Science. The exothermic methanation reaction was run in a 6-stage adiabatic reactor filled with the same Rh catalyst. Conversions of over 80% were achieved for both reactions. In the closed loop mode the products from the reformer and from the metanator were compressed into separate storage tanks. The two reactions were run either separately or 'on-line'. The complete process was repeated for over 60 cycles. The overall performance of the closed loop was quite satisfactory and scale-up work is in progress in the Solar Tower. (authors). 35 refs., 2 figs

  9. Photoelectric heating of interstellar gas

    International Nuclear Information System (INIS)

    Draine, B.T.

    1978-01-01

    Photoelectric emission from interstellar grains is reexamined, and it is argued that some of the assumptions made by other authors lead to an overestimate of the heating rate associated with this process, particularly at temperatures T> or approx. =3000 K. Steady-state solutions for the temperature of diffuse gas (including radiative cooling and recombination, cosmic ray or X-ray heating and ionization, grain photoelectric heating, and other heating mechanisms) are found. Grains do not contribute significantly to the heating of the ''hot'' (Tapprox. =8000 K) phase, although they dominate the heating of the ''cold'' (Tapprox. =100 K) phase. The minimum pressure for which the ''cold'' phase can exist is sensitive to the choice of grain properties and grain abundance, and under some circumstances the coexistence of two distinct phases in pressure equilibrium is forbidden. A steady-state model with intercloud H I heated by soft X-rays and clouds heated by grain photoemission is in accord with some observations but lacks intermediate-temperature H I. The time-dependent cooling of a fossil H II region is calculated; grain photoelectric heating significantly prolongs the time required for the gas to cool. Fossil H II in the wakes of runaway O stars may produce significant amounts of the intermediate temperatue (500> or approx. =T> or approx. =3000 K) H I inferred from 21 cm observations

  10. Heating experiments of JT-60

    International Nuclear Information System (INIS)

    1987-01-01

    In JT-60, after the finish of the first stage Joule experiment, the heating facilities were installed, and the heating experiment was started in August, 1986. As to neutral beam injection, the beam injection experiment at the maximum rating 20 MW carried out, and also as to RF, the injection experiment up to 1.4 MW was carried out in both ion cyclotron and low band hybrid waves. The results worthy of special mention in the heating experiment were the success in the current drive up to 1.7 MA at maximum using low band hybrid waves and the improvement of plasma confinement characteristics obtained by the compound heating of NBI and RF. In this paper, the main results of these heating experiments and their significance are explained. The JT-60 is the testing facilities for attaining the critical plasma condition by additionally heating the plasma which is generated by Joule electric discharge with NBI and RF heatings. The experimental operation cycle of the JT-60 consists of the unit cycle of two weeks, and the number of days in operation is nine days. The temperature of heated plasma rose to 70 million deg C in the 20 MW NBI heating. Hereafter, the improvement of confinement time by increasing the stored energy of plasma is attempted. (Kako, I.)

  11. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  12. Portable Heat Pump Testing Device

    Science.gov (United States)

    Kłosowiak, R.; Bartoszewicz, J.; Urbaniak, R.

    2015-08-01

    The aim of this paper is to present the design and working principle of a portable testing device for heat pumps in the energy recirculation system. The presented test stand can be used for any refrigerating/reverse flow cycle device to calculate the device energy balance. The equipment is made of two portable containers of the capacity of 250 liters to simulate the air heat source and ground heat source with a system of temperature stabilization, compressor heat pump of the coefficient of performance (COP) of = 4.3, a failsafe system and a control and measurement system.

  13. District heating in greater Stockholm

    International Nuclear Information System (INIS)

    In Greater Stockholm more than ten municipalities operate more or less extensive district heating networks, whereas a couple of municipalities have still not decided in principle what form of heating will be employed in the future. About 1,2 million people live and work in these municipalities, which together occupy an area of about 1500 km 2 . In this general survey the planning of the extensive work in the municipalities and the alternatives of heat systems in Greater Stockholm, including large integrated district heating systems based on nuclear dual-purpose plants as well as systems based on fossil fuels and several combined plants are discussed. (M.S.)

  14. The theory of heat radiation

    CERN Document Server

    Planck, Max

    2003-01-01

    Nobel laureate's classic exposition of the theory of radiant heat in terms of quantum action. Kirchoff's law, black radiation, Maxwell's radiation pressure, entropy, other topics. 1914 edition. Bibliography.

  15. Users of electric heating rewarded

    Energy Technology Data Exchange (ETDEWEB)

    Haapakoski, M. [ed.

    1998-07-01

    When the building industry plunged into the deep recession of the early 1990s this did not paralyse research and development work on electric heating. In fact, IVO and power companies launched the `Electrically Heated Homes in the New Millennium` project in 1992. Its purpose was to verify the efficiency, energy economy and residential comfort of model systems using state-of-the-art electric heating technology. The research project launched six years ago is now nearing completion. Its findings indicate that electricity brings ever more unparalleled benefits when it is used for heating. These benefits involve residential comfort, ease of use and economy

  16. Logistics Reduction: Heat Melt Compactor

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Exploration Systems (AES) Logistics Reduction (LR) project Heat Melt Compactor (HMC) technology is a waste management technology. Currently, there are...

  17. Convective heat transfer on Mars

    International Nuclear Information System (INIS)

    Arx, A.V. von; Delgado, A. Jr.

    1991-01-01

    An examination was made into the feasibility of using convective heat transfer on Mars to reject the waste heat from a Closed Brayton Cycle. Forced and natural convection were compared to thermal radiation. For the three radiator configurations studied, it was concluded that thermal radiation will yield the minimum mass and forced convection will result in the minimum area radiator. Other issues such as reliability of a fan motor were not addressed. Convective heat transfer on Mars warrants further investigation. However, the low density of the Martian atmosphere makes it difficult to utilize convective heat transfer without incurring a weight penalty

  18. Carbonization heat of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    H. Ueda; V. Zymla; F. Honnart [Nippon Steel (Japan)

    2005-07-01

    The heat of carbonization is an important element of the coke oven heat balance. It is therefore important to know its absolute value or, at least, its relative variation when coal properties and process parameters change, in order for it to be taken into account by automatic heating control systems. An experimental procedure was thus developed, enabling the heat flow over the whole carbonization temperature range (25-1100{sup o}C) to be measured by DTA. Five coals of different ranks (from 18 to 34% volatile matter) were tested. Results show that all of them exhibit similar behaviour: an endothermic effect below 500{sup o}C and an exothermic effect at higher temperatures. It was established that the heat of carbonization varies with coal rank. The highest exothermic peak was measured for medium volatile hard coking coal. Having ascertained the right measurement procedure, the influence of coal weathering and plastic addition to coal blends on carbonisation heat were studied as well. It was found that the weight loss of oxidized coals during a heating in nitrogen was reduced (coke yield increased) and the heat of carbonization dramatically decreased, especially for medium and high volatile coals. The copyrolysis of coals and plastics (PE, PP, PS, PET) showed also a notable decrease of exothermic heat of carbonization, even for relatively low percentage plastic addition (less then 2%). 6 refs., 5 figs.

  19. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  20. Heat Flux Instrumentation Laboratory (HFIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Heat Flux Instrumentation Laboratory is used to develop advanced, flexible, thin film gauge instrumentation for the Air Force Research Laboratory....

  1. Gas turbine heat transfer and cooling technology

    CERN Document Server

    Han, Je-Chin; Ekkad, Srinath

    2012-01-01

    FundamentalsNeed for Turbine Blade CoolingTurbine-Cooling TechnologyTurbine Heat Transfer and Cooling IssuesStructure of the BookReview Articles and Book Chapters on Turbine Cooling and Heat TransferNew Information from 2000 to 2010ReferencesTurbine Heat TransferIntroductionTurbine-Stage Heat TransferCascade Vane Heat-Transfer ExperimentsCascade Blade Heat TransferAirfoil Endwall Heat TransferTurbine Rotor Blade Tip Heat TransferLeading-Edge Region Heat TransferFlat-Surface Heat TransferNew Information from 2000 to 20102.10 ClosureReferencesTurbine Film CoolingIntroductionFilm Cooling on Rotat

  2. Transient heat transfer characteristics of liquid helium

    International Nuclear Information System (INIS)

    Tsukamoto, Osami

    1976-01-01

    The transient heat transfer characteristics of liquid helium are investigated. The critical burnout heat fluxes for pulsive heating are measured, and empirical relations between the critical burnout heat flux and the length of the heat pulse are given. The burnout is detected by observing the super-to-normal transition of the temperature sensor which is a thin lead film prepared on the heated surface by vacuum evaporation. The mechanism of boiling heat transfer for pulsive heating is discussed, and theoretical relations between the critical burnout heat flux and the length of the heat pulse are derived. The empirical data satisfy the theoretical relations fairly well. (auth.)

  3. Industrial excess heat for district heating in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Karlsson, Kenneth Bernard

    2017-01-01

    Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which an...

  4. What Is Heat? Inquiry regarding the Science of Heat

    Science.gov (United States)

    Rascoe, Barbara

    2010-01-01

    This lab activity uses inquiry to help students define heat. It is generic in that it can be used to introduce a plethora of science content across middle and high school grade levels and across science disciplines that include biology, Earth and space science, and physical science. Even though heat is a universal science phenomenon that is…

  5. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  6. Heat Transfer of Nanofluid in a Double Pipe Heat Exchanger.

    Science.gov (United States)

    Aghayari, Reza; Maddah, Heydar; Zarei, Malihe; Dehghani, Mehdi; Kaskari Mahalle, Sahar Ghanbari

    2014-01-01

    This paper investigates the enhancement of heat transfer coefficient and Nusselt number of a nanofluid containing nanoparticles (γ-AL2O3) with a particle size of 20 nm and volume fraction of 0.1%-0.3% (V/V). Effects of temperature and concentration of nanoparticles on Nusselt number changes and heat transfer coefficient in a double pipe heat exchanger with counter turbulent flow are investigated. Comparison of experimental results with valid theoretical data based on semiempirical equations shows an acceptable agreement. Experimental results show a considerable increase in heat transfer coefficient and Nusselt number up to 19%-24%, respectively. Also, it has been observed that the heat transfer coefficient increases with the operating temperature and concentration of nanoparticles.

  7. Internally Heated Screw Pyrolysis Reactor (IHSPR) heat transfer performance study

    Science.gov (United States)

    Teo, S. H.; Gan, H. L.; Alias, A.; Gan, L. M.

    2018-04-01

    1.5 billion end-of-life tyres (ELT) were discarded globally each year and pyrolysis is considered the best solution to convert the ELT into valuable high energy-density products. Among all pyrolysis technologies, screw reactor is favourable. However, conventional screw reactor risks plugging issue due to its lacklustre heat transfer performance. An internally heated screw pyrolysis reactor (IHSPR) was developed by local renewable energy industry, which serves as the research subject for heat transfer performance study of this particular paper. Zero-load heating test (ZLHT) was first carried out to obtain the operational parameters of the reactor, followed by the one dimensional steady-state heat transfer analysis carried out using SolidWorks Flow Simulation 2016. Experiments with feed rate manipulations and pyrolysis products analyses were conducted last to conclude the study.

  8. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  9. Water pipe network as a heat source for heat pump integrated into a district heating

    Science.gov (United States)

    Jadwiszczak, Piotr; Niemierka, Elżbieta

    2017-11-01

    The paper will present a technical analysis of the performance of the Heat Pumps (HP) installed in the domestic water pipe network for a big city scale. The HP integration scheme predicts the domestic water flow as a heat source and the district heating as a heat sink. The technical factors which influence on the estimated thermal power and performance of HP unit will be identified. Additionally, the pros and cons of HP operation in water intake will be determined. The analysis will be based on long-term measurement data from Głogów city.

  10. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  11. Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Balyk, Olexandr

    2014-01-01

    The paper examines implementation of heat saving measures in buildings in 2050, under the assumption that heat and power supply comes solely from renewable resources in Denmark.Balmorel – a linear optimisation model of heat and power sectors in Denmark is used for investigating economically viable...... levels of heat savings, which can be implemented by reducing heat transmission losses through building elements and by installing ventilation systems with heat recovery, in different future Danish heat and power system scenarios. Today almost 50% of heat demand in Denmark is covered by district heating....... A further expansion of district heating network in Denmark is assessed and penetration of heat savings is analysed in this context.If all heat saving measures, included in the model, are implemented, heat demand in Danish buildings in 2050 could be reduced by around 40%. Results show that it is cost...

  12. Intumescent coatings under fast heating

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2012-01-01

    Intumescent coatings are widely used to delay or minimise the destructive effects of fire. They are usually tested under conditions that simulate the relatively slow build-up of heat in a normal fire. Here, the effects of damage during a fire causing sudden heating of the coating were studied....

  13. The Heating Curve Adjustment Method

    NARCIS (Netherlands)

    Kornaat, W.; Peitsman, H.C.

    1995-01-01

    In apartment buildings with a collective heating system usually a weather compensator is used for controlling the heat delivery to the various apartments. With this weather compensator the supply water temperature to the apartments is regulated depending on the outside air temperature. With

  14. Solar Heating Systems: Student Manual.

    Science.gov (United States)

    Green, Joanne; And Others

    This Student Manual for a Solar Heating System curriculum contains 22 units of instructional materials for students to use in a course or courses on solar heating systems (see note). For each unit (task), objectives, assignment sheets, laboratory assignments, information sheets, checkpoints (tests), and job sheets are provided. Materials are set…

  15. Solar Heating Systems: Instructor's Guide.

    Science.gov (United States)

    Green, Joanne; And Others

    This Instructor's Guide for a Solar Heating System Curriculum is designed to accompany the Student Manual and the Progress Checks and Test Manual for the course (see note), in order to facilitate the instruction of classes on solar heating systems. The Instructor's Guide contains a variety of materials used in teaching the courses, including…

  16. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  17. Heat Roadmap Europe 3 (STRATEGO)

    DEFF Research Database (Denmark)

    Connolly, David; Hansen, Kenneth; Drysdale, David

    Heat Roadmap Europe 3 is from work package 2 of the STRATEGO project (http://stratego-project.eu/). It quantifies the impact of implementing various energy efficiency measures in the heating and cooling sectors of five EU Member States: Czech Republic, Croatia, Italy, Romania, and the United King...... States to simultaneously reduce energy demand, imported fossil fuels, carbon dioxide emissions, and the cost of the heating, cooling, and electricity sectors......., and electricity sectors is reduced by an average of ~15% in each country. These initial investments are primarily required in heat savings for the buildings, district heating in urban areas, and electric heat pumps in rural areas. In essence, energy efficiency measures in the heating sector will enable EU Member...... of approximately €1.1 trillion in energy efficiency measures across all five of these countries, between 2010 and 2050, will save enough fuel to reduce the costs of their energy systems. After considering both the initial investment and the resulting savings, the total annual cost of the heating, cooling...

  18. Wrong way: Heating with wood

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Energy experts state that 'Heating with wood is a hobby, at the most'. Of course, one can save oil by heating with wood, but cost calculations shaw that it is a highly uneconomical substitute. On the other hand, wood can be recommended for thermal insulation.

  19. Heat treatment of nickel alloys

    International Nuclear Information System (INIS)

    Smith, D.F. Jr.; Clatworthy, E.F.

    1975-01-01

    A heat treating process is described that can be used to produce desired combinations of strength, ductility, and fabricability characteristics in heat resistant age-hardenable alloys having precipitation-hardening amounts of niobium, titanium, and/or tantalum in a nickel-containing matrix. (U.S.)

  20. Frictional heating of tribological contacts

    NARCIS (Netherlands)

    Bos, Johannes

    1995-01-01

    Wherever friction occurs, mechanical energy is transformed into heat. The tem­ perature rise associated with this heating can have an important influence on the tribological behaviour of the contacting components. Apart from determining per­ formance, thermal phenomena affect reliability and may

  1. Protect Yourself from Heat Stress

    Centers for Disease Control (CDC) Podcasts

    2016-07-19

    Heat stress can be a major concern for indoor and outdoor workers, especially during the hot summer months. Learn how to identify the symptoms and protect yourself from heat stress.  Created: 7/19/2016 by National Institute for Occupational Safety and Health (NIOSH).   Date Released: 7/19/2016.

  2. Heat recovery system series arrangements

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Justin P.; Welch, Andrew M.; Dawson, Gregory R.; Minor, Eric N.

    2017-11-14

    The present disclosure is directed to heat recovery systems that employ two or more organic Rankine cycle (ORC) units disposed in series. According to certain embodiments, each ORC unit includes an evaporator that heats an organic working fluid, a turbine generator set that expands the working fluid to generate electricity, a condenser that cools the working fluid, and a pump that returns the working fluid to the evaporator. The heating fluid is directed through each evaporator to heat the working fluid circulating within each ORC unit, and the cooling fluid is directed through each condenser to cool the working fluid circulating within each ORC unit. The heating fluid and the cooling fluid flow through the ORC units in series in the same or opposite directions.

  3. Heat transport through atomic contacts.

    Science.gov (United States)

    Mosso, Nico; Drechsler, Ute; Menges, Fabian; Nirmalraj, Peter; Karg, Siegfried; Riel, Heike; Gotsmann, Bernd

    2017-05-01

    Heat transport and dissipation at the nanoscale severely limit the scaling of high-performance electronic devices and circuits. Metallic atomic junctions serve as model systems to probe electrical and thermal transport down to the atomic level as well as quantum effects that occur in one-dimensional (1D) systems. Whereas charge transport in atomic junctions has been studied intensively in the past two decades, heat transport remains poorly characterized because it requires the combination of a high sensitivity to small heat fluxes and the formation of stable atomic contacts. Here we report heat-transfer measurements through atomic junctions and analyse the thermal conductance of single-atom gold contacts at room temperature. Simultaneous measurements of charge and heat transport reveal the proportionality of electrical and thermal conductance, quantized with the respective conductance quanta. This constitutes a verification of the Wiedemann-Franz law at the atomic scale.

  4. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  5. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  6. Heat exchanger design

    OpenAIRE

    Vítek, Tomáš

    2017-01-01

    Tato bakalářská práce řeší návrh výměníku tepla pro teplovodní kotel se zplyňovací komorou pro předehřev spalovacího vzduchu odpadním teplem spalin. Hodnoty pro výpočet byly experimentálně naměřeny. Práce obsahuje stručný popis trubkového výměníku tepla, stechiometrický vypočet spalování, návrh geometrických rozměrů výměníku, výpočet tlakových ztrát a výpočet výkonu. Její součástí je také výkresová dokumentace navrženého výměníku. This bachelor thesis solves design of a heat exchanger for ...

  7. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  8. Characteristics of heat flow in recuperative heat exchangers

    Directory of Open Access Journals (Sweden)

    Lalović Milisav

    2005-01-01

    Full Text Available A simplified model of heat flow in cross-flow tube recuperative heat exchangers (recuperators was presented in this paper. One of the purposes of this investigation was to analyze changes in the values of some parameters of heat transfer in recuperators during combustion air preheating. The logarithmic mean temperature (Atm and overall heat transfer coefficient (U, are two basic parameters of heat flow, while the total heated area surface (A is assumed to be constant. The results, presented as graphs and in the form of mathematical expressions, were obtained by analytical methods and using experimental data. The conditions of gaseous fuel combustions were defined by the heat value of gaseous fuel Qd = 9263.894 J.m-3, excess air ratio λ= 1.10, content of oxygen in combustion air ν(O2 = 26%Vol, the preheating temperature of combustion air (cold fluid outlet temperature tco = 100-500°C, the inlet temperature of combustion products (hot fluid inlet temperature thi = 600-1100°C.

  9. EFFECTIVE SOLUTIONS FOR THERMOELECTRIC HEAT TRANSFORMERS USING HEAT CONVERTERS

    Directory of Open Access Journals (Sweden)

    A. S. Marchenko

    2016-01-01

    Full Text Available Objectives. The present article is based on the examination of the causes of thermodynamic heat loss in thermoelectric heat transformers. It is shown that the external loss in a real system is comparable to the internal loss in thermoelements at the present stage of thermoelectric engineering instrument development. External technical losses are attributed to the irreversibility of processes in system elements. These are determined by their technical resolution and can be lowered by means of specific approaches to design and construction. Methods. Examples of effective technical solutions for thermoelectric units of the "air-to-air" and "air-to-liquid" types, in which external losses are minimised due to the application of heat exchangers based on two-phase thermosyphons of special configuration, are given. For air coolers with a classic all-metal fin design based on the sensitivity analysis method, the dependence of the thermoelectric unit efficiency on the heat exchanger characteristics was calculated. Results. As a result, calculations of the dependence of cooling unit refrigeration capacity on the energy transformation ratio, power transfer coefficient, energy conversion efficiency (ECE and the relative energetic efficiency of ECE were performed based on the characteristic of the heat exchanger air passage geometry. There is a dependence relationship between the thermoelectric conversion cooling unit refrigeration capacity and transformation ratio within the function of material and thickness of the ribs on the intercostal distance and on the height of the air heat exchanger channel. Conclusion. Examples of the proposed effective thermal circuit technical solutions are based on thermoelectricheat transformers with heat flow direction change and with heat exchangers, which are based on two-phase thermosyphons. Classical solutions of all-metal heat exchangers can also be optimised on the basis of the sensitivity analysis methodology. 

  10. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Directory of Open Access Journals (Sweden)

    Giovanni Maria Carlomagno

    2014-11-01

    Full Text Available This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors’ research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described.

  11. Heat Flux Sensors for Infrared Thermography in Convective Heat Transfer

    Science.gov (United States)

    Carlomagno, Giovanni Maria; de Luca, Luigi; Cardone, Gennaro; Astarita, Tommaso

    2014-01-01

    This paper reviews the most dependable heat flux sensors, which can be used with InfraRed (IR) thermography to measure convective heat transfer coefficient distributions, and some of their applications performed by the authors' research group at the University of Naples Federico II. After recalling the basic principles that make IR thermography work, the various heat flux sensors to be used with it are presented and discussed, describing their capability to investigate complex thermo-fluid-dynamic flows. Several applications to streams, which range from natural convection to hypersonic flows, are also described. PMID:25386758

  12. A Heat Dynamic Model for Intelligent Heating of Buildings

    DEFF Research Database (Denmark)

    Thavlov, Anders; Bindner, Henrik W.

    2015-01-01

    This article presents a heat dynamic model for prediction of the indoor temperature in an office building. The model has been used in several flexible load applications, where the indoor temperature is allowed to vary around a given reference to provide power system services by shifting the heating...... of the building in time. This way the thermal mass of the building can be used to absorb energy from renewable energy source when available and postpone heating in periods with lack of renewable energy generation. The model is used in a model predictive controller to ensure the residential comfort over a given...

  13. Energy absorber for sodium-heated heat exchanger

    Science.gov (United States)

    Essebaggers, J.

    1975-12-01

    A heat exchanger is described in which water-carrying tubes are heated by liquid sodium and in which the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes is minimized. An energy absorbing chamber contains a compressible gas and is connected to the body of flowing sodium by a channel so that, in the event of a sodium-water reaction, products of the reaction will partially fill the energy absorbing chamber to attenuate the rise in pressure within the heat exchanger.

  14. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  15. Investigation of Heat Exchange Efficiency in the Heat Exchanger Waste Heat Recovery with Granular Nozzle

    Directory of Open Access Journals (Sweden)

    Boshkova I.L.

    2016-12-01

    Full Text Available The article analyzes the characteristics of the heat transfer process between the dispersed and gaseous medium for the moving and fixed layer of particulate material. The methods of calculus of thermal and hydraulic regimes of heat exchangers with a dense layer of particles were elaborated. The results of experimental studies of the process of heating of different kinds of granular material, intended for use as a nozzle in the recuperative heat exchanger. The influence of the height of heating chamber, the particle diameter on the output temperature of the granular material has been determined. The dependence of the temperature of the gas and solid components of the height of the nozzle has been presented.

  16. Disaster related heat illness

    International Nuclear Information System (INIS)

    Miyake, Yasufumi

    2012-01-01

    Explained and discussed are the outline of heat illness (HI), its raised risk and measures taken at the disaster of the Fukushima Nuclear Power Plant Accident (FNPPA; Mar. 2011). High temperature and humid environment induce HI through the fervescence and dehydration resulting in the intestinal ischemia/hypoxia and organ failure. Epidemiologic data of the heatstroke in Japan suggest its seemingly parallel incidence to seasonal hotness of the summer. HI is classified in either classical (non-exertional) or exertional heatstroke, both with severity of I (slight), II (slight symptom of the central nervous system (CNS); necessary for consultation) and III (most serious; having dysfunction of CNS, organ or coagulation). Therapy depends on the severity: I for the first aid on site, II necessary for carrying to hospital and III for hospitalization. Protection is possible by personal, neighbors' and managers' carefulness, and supply of sufficient water and minerals. Risk of HI was suddenly raised at taking measures to meet with the FNPPA. Japanese Association for Acute Medicine (JAAM) promptly organized JAAM-FNPPA Working Group to treat the emergent multiple incidents including the radiation exposure and HI as well. Exertional HI was mainly in labors wearing rather sealed closes to protect radiation to work for steps of the Accident, and which was similar to evacuees temporarily entering the evacuation area for visit to their own vacant houses. In the summer, classical HI was also a problem mainly in elderly living in the evacuation dwellings. Document of HI incidents and patients at FNPPA should be recorded for the reference to possible disaster in future. (T.T.)

  17. Global risk of deadly heat

    Science.gov (United States)

    Mora, Camilo; Dousset, Bénédicte; Caldwell, Iain R.; Powell, Farrah E.; Geronimo, Rollan C.; Bielecki, Coral R.; Counsell, Chelsie W. W.; Dietrich, Bonnie S.; Johnston, Emily T.; Louis, Leo V.; Lucas, Matthew P.; McKenzie, Marie M.; Shea, Alessandra G.; Tseng, Han; Giambelluca, Thomas W.; Leon, Lisa R.; Hawkins, Ed; Trauernicht, Clay

    2017-07-01

    Climate change can increase the risk of conditions that exceed human thermoregulatory capacity. Although numerous studies report increased mortality associated with extreme heat events, quantifying the global risk of heat-related mortality remains challenging due to a lack of comparable data on heat-related deaths. Here we conducted a global analysis of documented lethal heat events to identify the climatic conditions associated with human death and then quantified the current and projected occurrence of such deadly climatic conditions worldwide. We reviewed papers published between 1980 and 2014, and found 783 cases of excess human mortality associated with heat from 164 cities in 36 countries. Based on the climatic conditions of those lethal heat events, we identified a global threshold beyond which daily mean surface air temperature and relative humidity become deadly. Around 30% of the world's population is currently exposed to climatic conditions exceeding this deadly threshold for at least 20 days a year. By 2100, this percentage is projected to increase to ~48% under a scenario with drastic reductions of greenhouse gas emissions and ~74% under a scenario of growing emissions. An increasing threat to human life from excess heat now seems almost inevitable, but will be greatly aggravated if greenhouse gases are not considerably reduced.

  18. High intensity heat pulse problem

    International Nuclear Information System (INIS)

    Yalamanchili, R.

    1977-01-01

    The use of finite-difference methods for the solution of partial differential equations is common in both design and research and development because of the advance of computers. The numerical methods for the unsteady heat diffusion equation received most attention not only because of heat transfer problems but also happened to be the basis for any study of parabolic partial differential equations. It is common to test the heat equation first even the methods developed for complex nonlinear parabolic partial differential equations arising in fluid mechanics or convective heat transfer. It is concluded that the finite-element method is conservative in both stability and monoscillation characteristics than the finite-difference method but not as conservative as the method of weighted-residuals. Since the finite-element is unique because of Gurtin's variational principle and numerous finite-differences can be constructed, it is found that some finite-difference schemes are better than the finite-element scheme in accuracy also. Therefore, further attention is focused here on finite-difference schemes only. Various physical problems are considered in the field of heat transfer. These include: numerous problems in steady and unsteady heat conduction; heat pulse problems, such as, plasma torch; problems arising from machining operations, such as, abrasive cut-off and surface grinding. (Auth.)

  19. Heat fluctuations and initial ensembles

    Science.gov (United States)

    Kim, Kwangmoo; Kwon, Chulan; Park, Hyunggyu

    2014-09-01

    Time-integrated quantities such as work and heat increase incessantly in time during nonequilibrium processes near steady states. In the long-time limit, the average values of work and heat become asymptotically equivalent to each other, since they only differ by a finite energy change in average. However, the fluctuation theorem (FT) for the heat is found not to hold with the equilibrium initial ensemble, while the FT for the work holds. This reveals an intriguing effect of everlasting initial memory stored in rare events. We revisit the problem of a Brownian particle in a harmonic potential dragged with a constant velocity, which is in contact with a thermal reservoir. The heat and work fluctuations are investigated with initial Boltzmann ensembles at temperatures generally different from the reservoir temperature. We find that, in the infinite-time limit, the FT for the work is fully recovered for arbitrary initial temperatures, while the heat fluctuations significantly deviate from the FT characteristics except for the infinite initial-temperature limit (a uniform initial ensemble). Furthermore, we succeed in calculating finite-time corrections to the heat and work distributions analytically, using the modified saddle point integral method recently developed by us. Interestingly, we find noncommutativity between the infinite-time limit and the infinite-initial-temperature limit for the probability distribution function (PDF) of the heat.

  20. Polar heating in Saturn's thermosphere

    Directory of Open Access Journals (Sweden)

    C. G. A. Smith

    2005-10-01

    Full Text Available A 3-D numerical global circulation model of the Kronian thermosphere has been used to investigate the influence of polar heating. The distributions of temperature and winds resulting from a general heat source in the polar regions are described. We show that both the total energy input and its vertical distribution are important to the resulting thermal structure. We find that the form of the topside heating profile is particularly important in determining exospheric temperatures. We compare our results to exospheric temperatures from Voyager occultation measurements (Smith et al., 1983; Festou and Atreya, 1982 and auroral H3+ temperatures from ground-based spectroscopic observations (e.g. Miller et al., 2000. We find that a polar heat source is consistent with both the Smith et al. determination of T∞~400 K at ~30° N and auroral temperatures. The required heat source is also consistent with recent estimates of the Joule heating rate at Saturn (Cowley et al., 2004. However, our results show that a polar heat source can probably not explain the Festou and Atreya determination of T∞~800 K at ~4° N and the auroral temperatures simultaneously. Keywords. Ionosphere (Planetary ionosphere – Magnetospherica physics (Planetary magnetospheres – Meterology and atmospheric dynamics (Thermospheric dynamics

  1. Variable Heat Rejection Loop Heat Pipe radiator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal control systems are sized for the maximum heat load in the warmest continuous environment. This design process results in a larger radiator surface area than...

  2. A susceptor heating structure in MOVPE reactor by induction heating

    International Nuclear Information System (INIS)

    Li, Zhiming; Li, Hailing; Zhang, Jincheng; Li, Jinping; Jiang, Haiying; Fu, Xiaoqian; Han, Yanbin; Xia, Yingjie; Huang, Yimei; Yin, Jianqin; Zhang, Lejuan; Hu, Shigang

    2014-01-01

    A novel susceptor with a revolutionary V-shaped slot of solid of revolution form is proposed in the metalorganic vapor phase epitaxy (MOVPE) reactor by induction heating. This slot changes the heat transfer rate as the generated heat is transferred from the high temperature region of the susceptor to the substrate, which improves the uniformity of the substrate temperature distribution. By using finite element method (FEM), the susceptor with this structure for heating the substrate of six inches in diameter is optimized. It is observed that this optimized susceptor with the V-shaped slot makes the uniformity of the substrate temperature distribution improve more than 80%, which can be beneficial to the film growth. - Highlights: •A novel susceptor with V-shaped slot in MOVPE reactor is proposed. •Temperature in the substrate is optimized. •Great temperature uniformity of the substrate is obtained

  3. The research of heating efficiency of different induction heating systems

    Directory of Open Access Journals (Sweden)

    Konesev Sergey

    2017-01-01

    Full Text Available Computer models of tape and coil inductors are described, and a comparison of the heating efficiency depending on various parameters is made. The developed computer model was made in the ELCUT 6.0. As a result of the simulation, data on the heating characteristics (depending on the various parameters of the heating elements are obtained. The average statistical data of a series of experiments with a tape inductor are given. It is shown that for the same parameters (values of inductance and number of wires, the tape version inductor heats up a pipe to a higher temperature (by 5.08% than the inductor in the coil version in 10 minutes.

  4. Diffusion of heat from a finite, rectangular, plane heat source

    International Nuclear Information System (INIS)

    Ferreri, J.C.; Caballero, C.H.

    1985-01-01

    Non-dimensional results for the temperature field originating in a rectangular, finite, plane heat source with infinitesimal thickness are introduced. The source decays in time, zero decay being a particular case. Results are useful for obtaining an aproximation of the maximum temperature of a system holding an internal heat source. The range selected for the parameters is specially useful in the case of a nuclear waste repository. The application to the case of mass diffussion arises from analogy. (Author) [es

  5. Heat removing under hypersonic conditions

    Directory of Open Access Journals (Sweden)

    Semenov Mikhail E.

    2016-01-01

    Full Text Available In this paper we consider the heat transfer properties of the axially symmetric body with parabolic shape at hypersonic speeds (with a Mach number M > 5. We use the numerical methods based on the implicit difference scheme (Fedorenko method with direct method based on LU-decomposition and iterative method based on the Gauss-Seigel method. Our numerical results show that the heat removing process should be performed in accordance with the nonlinear law of heat distribution over the surface taking into account the hypersonic conditions of motion.

  6. The "Stube" and its Heating

    DEFF Research Database (Denmark)

    Atzbach, Rainer

    2014-01-01

    This paper discusses the concept of smoke-free heated living rooms between the Alps and the Norh Sea with a special focus on the tile stove. In the circum-Alpine zone, a new heating system was invented between the 8th and 11th century. It consisted of a clay cupola oven with inserted ceramic...... vessels and was mostly run as a "breechloader". This provided not only a comfortable living room, but also tended to create a specific ground plan for the house - with a core of the heated stube and an adjacent kitchen. The tile stove and the corresponding ground plan spread, but was also modified...

  7. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  8. Heating oil markets in 1988

    Energy Technology Data Exchange (ETDEWEB)

    Mohnfeld, J.

    1989-05-01

    The net consumption of light heating oils in the Federal Republic of Germany amounted to 36.5 million tons in 1987 and 1988. The fact that, disregarding temperature influences, there was a slight increase in the consumption of heating oils for space heating purposes, is indicative of a standstill rather than of a reverse energy conservation trend. Stockpiling on the part of users late in 1988 resulted in slumping sales in the first quarter of 1989 and is responsible for the sales resistance expected to be making itself felt throughout 1989. (orig.).

  9. High performance flexible heat pipes

    Science.gov (United States)

    Shaubach, R. M.; Gernert, N. J.

    1985-01-01

    A Phase I SBIR NASA program for developing and demonstrating high-performance flexible heat pipes for use in the thermal management of spacecraft is examined. The program combines several technologies such as flexible screen arteries and high-performance circumferential distribution wicks within an envelope which is flexible in the adiabatic heat transport zone. The first six months of work during which the Phase I contract goal were met, are described. Consideration is given to the heat-pipe performance requirements. A preliminary evaluation shows that the power requirement for Phase II of the program is 30.5 kilowatt meters at an operating temperature from 0 to 100 C.

  10. Heat exchanger with ceramic elements

    Science.gov (United States)

    Corey, John A.

    1986-01-01

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  11. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  12. Fundamental principles of heat transfer

    CERN Document Server

    Whitaker, Stephen

    1977-01-01

    Fundamental Principles of Heat Transfer introduces the fundamental concepts of heat transfer: conduction, convection, and radiation. It presents theoretical developments and example and design problems and illustrates the practical applications of fundamental principles. The chapters in this book cover various topics such as one-dimensional and transient heat conduction, energy and turbulent transport, forced convection, thermal radiation, and radiant energy exchange. There are example problems and solutions at the end of every chapter dealing with design problems. This book is a valuable int

  13. Hybrid district heating system with heat supply from nuclear source

    International Nuclear Information System (INIS)

    Havelka, Z.; Petrovsky, I.

    1987-01-01

    Several designs are described of heat supply from large remote power sources (e.g., WWER-1000 nuclear power plants with a 1000 MW turbine) to localities where mainly steam distribution networks have been built but only some or none networks for hot water distribution. The benefits of the designs stem from the fact that they do not require the conversion of the local steam distribution system to a hot water system. They are based on heat supply from the nuclear power plant to the consumer area in hot water of a temperature of 150 degC to 200 degC. Part of the hot water heat will be used for the production of low-pressure steam which will be compressed using heat pumps (steam compressors) to achieve the desired steam distribution network specifications. Water of lower temperature can be used in the hot water network. The hot water feeder forms an automatic pressure safety barrier in heat supply of heating or technological steam from a nuclear installation. (Z.M.). 5 figs., 9 refs

  14. Analysis of angular heat conduction in rotary heat regenerators

    Energy Technology Data Exchange (ETDEWEB)

    Reis, M.C.; Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], Emails: lasphaier@mec.uff.br, marcelloreis@vm.uff.br

    2010-07-01

    Heat regenerators can be found in a considerable number of engineering applications, and are either used as pair of fixed matrices or as single rotary matrix. The thermal design of these devices is usually done considering models that rely on well-established simplifying assumptions. While most of these assumptions comprise reasonable considerations, some of them could lead to noticeable errors on some occasions. One such assumption is that there is no heat transfer between adjacent channels within the regenerator matrix. While this is quite reasonable for fixed-bed exchangers, this might not be a good choice for rotary exchangers on some occasions. Since rotary matrices can operate between two process streams presenting a large temperature difference between them, a large temperature gradient may develop within the plane normal to the flow direction, especially in the angular direction. This paper proposes a new model for simulating rotary heat regenerators, taking into account this previously unconsidered matrix heat conduction effect. A numerical solution of a test case with angular heat conduction is carried-out. With this solution, a parametric analysis is performed, showing how the effects that gradually increasing the angular heat conduction can affect the temperature distributions within the matrix and regenerator outlet. (author)

  15. Heat resistant wire and cable and heat shrinkable tubes

    International Nuclear Information System (INIS)

    Keiji Ueno

    1994-01-01

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR's, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of Eβ radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 ∼ 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented

  16. MATHEMATICAL MODELING OF HEATING RATE PRODUCT AT HIGH HEAT TREATMENT

    Directory of Open Access Journals (Sweden)

    M. M. Akhmedova

    2014-01-01

    Full Text Available Methods of computing and mathematical modeling are all widely used in the study of various heat exchange processes that provide the ability to study the dynamics of the processes, as well as to conduct a reasonable search for the optimal technological parameters of heat treatment.This work is devoted to the identification of correlations among the factors that have the greatest effect on the rate of heating of the product at hightemperature heat sterilization in a stream of hot air, which are chosen as the temperature difference (between the most and least warming up points and speed cans during heat sterilization.As a result of the experimental data warming of the central and peripheral layers compote of apples in a 3 liter pot at high-temperature heat treatment in a stream of hot air obtained by the regression equation in the form of a seconddegree polynomial, taking into account the effects of pair interaction of these parameters. 

  17. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  18. District heating in sequential energy supply

    International Nuclear Information System (INIS)

    Persson, Urban; Werner, Sven

    2012-01-01

    Highlights: ► European excess heat recovery and utilisation by district heat distribution. ► Heat recovery in district heating systems – a structural energy efficiency measure. ► Introduction of new theoretical concepts to express excess heat recovery. ► Fourfold potential for excess heat utilisation in EU27 compared to current levels. ► Large scale excess heat recovery – a collaborative challenge for future Europe. -- Abstract: Increased recovery of excess heat from thermal power generation and industrial processes has great potential to reduce primary energy demands in EU27. In this study, current excess heat utilisation levels by means of district heat distribution are assessed and expressed by concepts such as recovery efficiency, heat recovery rate, and heat utilisation rate. For two chosen excess heat activities, current average EU27 heat recovery levels are compared to currently best Member State practices, whereby future potentials of European excess heat recovery and utilisation are estimated. The principle of sequential energy supply is elaborated to capture the conceptual idea of excess heat recovery in district heating systems as a structural and organisational energy efficiency measure. The general conditions discussed concerning expansion of heat recovery into district heating systems include infrastructure investments in district heating networks, collaboration agreements, maintained value chains, policy support, world market energy prices, allocation of synergy benefits, and local initiatives. The main conclusion from this study is that a future fourfold increase of current EU27 excess heat utilisation by means of district heat distribution to residential and service sectors is conceived as plausible if applying best Member State practice. This estimation is higher than the threefold increase with respect to direct feasible distribution costs estimated by the same authors in a previous study. Hence, no direct barriers appear with

  19. Descartes, Cardiac Heat, and Alchemy.

    Science.gov (United States)

    Heitsch, Dorothea

    2016-11-01

    René Descartes (1596-1650) insisted on a heat and light theory to explain cardiac movement, and used concepts such as distillation of the vital spirits, fermentation in the digestive process, and fermentation in the circulation of the blood. I argue that his theory of the body as a heat-exchange system was based on alchemical and natural philosophical notions of fire and light expounded by precursors and contemporaries who included Jean D'Espagnet, Jean Fernel, Jan Baptist van Helmont, and Andreas Libavius. Descartes endeavoured to mechanise their approaches, creating a theory in which fire and heat, a legacy from thermal explanations of physiology, were transformed into alchemical fire, and then into mechanistic or physicalist heat.

  20. Heated brine secondary recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, B.W.

    1988-03-15

    A method for recovering residual hydrocarbons from a subterranean formating is described comprising: extending an injection well and a producing well into the formation of horizontally spaced locations; treating water containing in excess of 1,000 ppm total dissolved solids, and significant quantities of sale-forming ions, with a water soluble scale inhibitor compound in the minimum amount of such inhibitor required to maintain at least 90% of the scale forming ions in solution during subsequent heating of the water to a temperature not exceeding 400/sup 0/F; heating the water by contact with a heat exchange medium having a temperature not exceeding 400/sup 0/F; then pumping the heated water containing the inhibitor down the injection well and into the formation under a pressure adequate to displace hydrocarbons toward the production well.

  1. Multi-lead heat sink

    Science.gov (United States)

    Roose, L.D.

    1982-08-25

    The disclosure relates to a heat sink used to protect integrated circuits from the heat resulting from soldering them to circuit boards. A tubular housing contains a slidable member which engages somewhat inwardly extending connecting rods, each of which is rotatably attached at one end to the bottom of the housing. The other end of each rod is fastened to an expandable coil spring loop. As the member is pushed downward in the housing, its bottom edge engages and forces outward the connecting rods, thereby expanding the spring so that it will fit over an integrated circuit. After the device is in place, the member is slid upward and the spring contracts about the leads of the integrated circuit. Soldering is now conducted and the spring absorbs excess heat therefrom to protect the integrated circuit. The placement steps are repeated in reverse order to remove the heat sink for use again.

  2. Improved Heat-Stress Algorithm

    Science.gov (United States)

    Teets, Edward H., Jr.; Fehn, Steven

    2007-01-01

    NASA Dryden presents an improved and automated site-specific algorithm for heat-stress approximation using standard atmospheric measurements routinely obtained from the Edwards Air Force Base weather detachment. Heat stress, which is the net heat load a worker may be exposed to, is officially measured using a thermal-environment monitoring system to calculate the wet-bulb globe temperature (WBGT). This instrument uses three independent thermometers to measure wet-bulb, dry-bulb, and the black-globe temperatures. By using these improvements, a more realistic WBGT estimation value can now be produced. This is extremely useful for researchers and other employees who are working on outdoor projects that are distant from the areas that the Web system monitors. Most importantly, the improved WBGT estimations will make outdoor work sites safer by reducing the likelihood of heat stress.

  3. Behaviour : Seeing heat saves energy

    NARCIS (Netherlands)

    Steg, Linda

    2016-01-01

    Household energy conservation can help to significantly lower energy consumption. Visual cues provided by thermal imaging of heat loss in buildings are now shown to increase energy conserving behaviours and implementations among homeowners more effectively than just performing carbon footprint

  4. Heat exchanger with steam overheating

    International Nuclear Information System (INIS)

    Manek, O.; Motejl, V.; Quitta, R.; Schlinger, S.

    1975-01-01

    A heat exchanger incorporating steam superheating is proposed suitable for nuclear power plants having heat transfer surfaces housed in the pressure vessel. The heat exchanger is characterized by the fact that on the primary side the steam overheating surface is parallel to the afterheating and evaporating surfaces. The parallel heat transfer surfaces, afterheating and evaporating surfaces are connected to a common tube plate. The superheated steam outlet is formed by the central tube, the saturated steam by-pass channel is formed by a concentric tube. The steam superheating surface is formed by a cluster of U-tubes. Spatial U-tubes form the afterheating and the evaporating surfaces outside of the superheating surface. (Oy)

  5. Hot Hydrogen Heat Source Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop a  hot hydrogen heat source that would produce  a high temperature hydrogen flow which would be comparable to that produced...

  6. Navy Heat Source Safety Tests

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, C. G.; Cartmill, W. B.

    1975-06-18

    The purpose of these tests was to validate the integrity of the Navy Heat Source after imposing conditions which might, in the extreme, be encountered singly or serially so that safety would be assured.

  7. Nonlocal heat transfer in nanostructures

    International Nuclear Information System (INIS)

    Kanavin, A.P.; Uryupin, S.A.

    2008-01-01

    Kinetics of electrons in a degenerate conductor heated up by absorption of a high-frequency field localized in a region of about hundred nanometers has been studied. A new law for nonlocal electron thermal flux has been predicted

  8. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  9. Data for decay Heat Predictions

    International Nuclear Information System (INIS)

    1987-01-01

    These proceedings of a specialists' meeting on data for decay heat predictions are based on fission products yields, on delayed neutrons and on comparative evaluations on evaluated and experimental data for thermal and fast fission. Fourteen conferences were analysed

  10. VT - Vermont Heat Vulnerability Index

    Data.gov (United States)

    Vermont Center for Geographic Information — This map shows: The overall vulnerability of each town to heat related illness. This index is a composite of the following themes: Population Theme, Socioeconomic...

  11. Instant Heat Maps in R

    CERN Document Server

    Raschka, Sebastian

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. Heat Maps in R: How-to is an easy to understand book that starts with a simple heat map and takes you all the way through to advanced heat maps with graphics and data manipulation.Heat Maps in R: How-to is the book for you if you want to make use of this free and open source software to get the most out of your data analysis. You need to have at least some experience in using R and know how to run basic scripts from the command line. However, knowledge of other statistical scripting

  12. Satellite Ocean Heat Content Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection contains an operational Satellite Ocean Heat Content Suite (SOHCS) product generated by NOAA National Environmental Satellite, Data, and Information...

  13. Heat kernels and critical limits

    OpenAIRE

    Pickrell, Doug

    2007-01-01

    This paper is an exposition of several questions linking heat kernel measures on infinite dimensional Lie groups, limits associated with critical Sobolev exponents, and Feynmann-Kac measures for sigma models.

  14. Pulsating Heat Pipes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Large radiator panels, based upon state of the art conventional heat pipes with attached fins for thermal load distribution and dissipation is the current baseline...

  15. Microplate Heat Exchanger, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a microplate heat exchanger for cryogenic cooling systems used for continuous flow distributed cooling systems, large focal plane arrays, multiple cooling...

  16. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  17. Indoor temperatures for calculating room heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Olesen, Bjarne W.; Fang, Lei

    2016-01-01

    In this study, a typical office room with a radiant heating system and a mechanical ventilation system was selected as the research subject. Indoor temperature formulas for calculating the room heat loss (including transmission heat loss and ventilation heat loss) and heating capacity of the hybrid...... for calculating ventilation heat loss and heating capacity of radiant heating systems combined with mechanical ventilation systems. (C) 2015 Elsevier B.V. All rights reserved....... change rates on the indoor temperatures were performed using the proposed model. When heated surface temperatures and air change rates were from 21.0 to 29.0 degrees C and from 0.5 to 4.0 h-1, the indoor temperatures for calculating the transmission heat loss and ventilation heat loss were between 20...

  18. Waste water heat recovery system

    OpenAIRE

    Markovi?, G.; Vranayov?, Z.; K?posztasov?, D.

    2016-01-01

    After heating and cooling, water heating is typically the second largest user of energy in the home. There are a lot of purposes and uses of hot water in buildings - showers, tubs, sinks, dishwashers and clothes washers etc. In most cases, these hot waste waters are discarded direct to sewer system. When we take into the account all of these purposes in every households, the wastewater retains a considerable portion of its initial energy ? energy that could be recovered and use...

  19. Basic heat and mass transfer

    CERN Document Server

    Mills, A F

    1999-01-01

    The Second Edition offers complete coverage of heat transfer with broad up-to-date coverage that includes an emphasis on engineering relevance and on problem solving. Integrates software to assist the reader in efficiently calculations. Carefully orders material to make book more reader-friendly and accessible. Offers an extensive introduction to heat exchange design to enhance the engineering and design content of course to satisfy ABET requirements. For professionals in engineering fields.

  20. Renewables for Heating and Cooling

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This timely report examines the technologies, current markets and relative costs for heat and cold production using biomass, geothermal and solar-assisted systems. It evaluates a range of national case studies and relevant policies. Should the successful and more cost-effective policies be implemented by other countries, then the relatively untapped economic potential of renewable energy heating and cooling systems could be better realised, resulting in potential doubling of the present market within the next few years.

  1. Optimizing Sustainable Geothermal Heat Extraction

    Science.gov (United States)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  2. Controlled fusion and plasma heating

    International Nuclear Information System (INIS)

    1990-06-01

    The contributions presented in the 17th European Conference on Controlled Fusion and Plasma Heating were focused on Tore Supra investigations. The following subjects were presented: ohmic discharges, lower hybrid experiments, runaway electrons, Thomson scattering, plasma density measurements, magnetic fluctuations, polarization scattering, plasma currents, plasma fluctuation measurements, evaporation of hydrogen pellets in presence of fast electrons, ripple induced stochastic diffusion of trapped particles, tearing mode stabilization, edge effects on turbulence behavior, electron cyclotron heating, micro-tearing modes, divertors, limiters

  3. A Piezoelectric Cryogenic Heat Switch

    Science.gov (United States)

    Jahromi, Amir E.; Sullivan, Dan F.

    2014-01-01

    We have measured the thermal conductance of a mechanical heat switch actuated by a piezoelectric positioner, the PZHS (PieZo electric Heat Switch), at cryogenic temperatures. The thermal conductance of the PZHS was measured between 4 K and 10 K, and on/off conductance ratios greater than 100 were achieved when the positioner applied its maximum force of 8 N. We discuss the advantages of using this system in cryogenic applications, and estimate the ultimate performance of an optimized PZHS.

  4. Natural gas vs. heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Verrips, A.M.; Canney, W.A.

    Spokesmen for gas and electric utilities describe the relative merits of using natural gas and electric heat pumps. Both argue that their product is more economical and operates more efficiently than its competitor. Rising natural gas prices are responsible for making costs more competitive, although rates for both gas and electricity vary by region. The utilities also describe heat pump advantages in terms of installation ease and cost, reliability, maintenance, and thermal comfort. Both provide documentation to support their claims. 2 tables.

  5. Calcium bromide hydration for heat storage systems

    Directory of Open Access Journals (Sweden)

    Ai Niwa

    2015-12-01

    Full Text Available A chemical reaction is a common and simple way to produce heat for a heat storage system. The reaction produces heat energy without the use of electricity or fuel. The goal of this study was to develop a heat storage system for use in automobiles, which is able to provide heat rapidly via a hydration reaction. A heat storage system without an evaporator stores high-density heat and has a high heat output rate since the solid–liquid product that is formed is transferred as a heat medium to the object that requires heat. The exothermic heat produced from the solid–liquid reaction was measured, and the relationship between the equivalence ratio and the reaction heat was evaluated. The heat output and heat recovered by the heat storage system, which comprised a reaction vessel and a heat exchanger, were measured. We selected solid CaBr2 because it was the best metal halide for a hydration reaction and had a high heat yield from the dissolution reaction. With this system, we were able to achieve a heat recovery rate of 582 kJ/L-H2O. We found no degradation in the chemical composition of CaBr2 after it being recycled 100 times.

  6. Refrigeration Playbook. Heat Reclaim; Optimizing Heat Rejection and Refrigeration Heat Reclaim for Supermarket Energy Conservation

    Energy Technology Data Exchange (ETDEWEB)

    Reis, Chuck [CTA Architects Engineers, Boise, ID (United States); Nelson, Eric [CTA Architects Engineers, Boise, ID (United States); Armer, James [CTA Architects Engineers, Boise, ID (United States); Johnson, Tim [CTA Architects Engineers, Boise, ID (United States); Hirsch, Adam [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Doebber, Ian [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.

  7. Thermal design heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells

    CERN Document Server

    Lee, H S

    2010-01-01

    The proposed is written as a senior undergraduate or the first-year graduate textbook,covering modern thermal devices such as heat sinks, thermoelectric generators and coolers, heat pipes, and heat exchangers as design components in larger systems. These devices are becoming increasingly important and fundamental in thermal design across such diverse areas as microelectronic cooling, green or thermal energy conversion, and thermal control and management in space, etc. However, there is no textbook available covering this range of topics. The proposed book may be used as a capstone design cours

  8. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  9. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  10. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can......Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... be self-made to keep the price down. The system is working, but heat exchange from plastic piping to sand is rather poor. The dimensioning of the volume is rather difficult based on common knowledge. Passive heating, hence reduction of heat demand, due to the storage and especially due to the oversized...

  11. Solar dynamic heat receiver technology

    Science.gov (United States)

    Sedgwick, Leigh M.

    1991-01-01

    A full-size, solar dynamic heat receiver was designed to meet the requirements specified for electrical power modules on the U.S. Space Station, Freedom. The heat receiver supplies thermal energy to power a heat engine in a closed Brayton cycle using a mixture of helium-xenon gas as the working fluid. The electrical power output of the engine, 25 kW, requires a 100 kW thermal input throughout a 90 minute orbit, including when the spacecraft is eclipsed for up to 36 minutes from the sun. The heat receiver employs an integral thermal energy storage system utilizing the latent heat available through the phase change of a high-temperature salt mixture. A near eutectic mixture of lithium fluoride and calcium difluoride is used as the phase change material. The salt is contained within a felt metal matrix which enhances heat transfer and controls the salt void distribution during solidification. Fabrication of the receiver is complete and it was delivered to NASA for verification testing in a simulated low-Earth-orbit environment. This document reviews the receiver design and describes its fabrication history. The major elements required to operate the receiver during testing are also described.

  12. Heat injury in youth sport.

    Science.gov (United States)

    Marshall, S W

    2010-01-01

    Heat injury is a potentially lethal condition that is considered to be completely preventable. Fatal heat injury is relatively rare (0.20 per 100 000 player-seasons in US high school football) and there are very limited data on non-fatal incidence. Expert recommendations for prevention include gradual acclimatisation of youth athletes to hot conditions, reductions in activity in hot and humid conditions, wearing light and light-coloured clothing, careful monitoring of athletes for signs of heat injury to facilitate immediate detection, having the resources to immediately and rapidly cool affected athletes, and education of athletes, care givers, and coaches about heat injury. Although a base of observational case data, physiological information, and expert opinion exists, the science surrounding this field is devoid of health communication and health behaviour research, and there is a pressing need for analytical studies to evaluate intervention programmes and/or identify new risk factors. There is also a need for ongoing data collection on heat injury incidence and on the knowledge, attitudes and behaviours towards heat injury among youth athletes, their care givers and their coaches.

  13. Turbulent Heat Transfer Behavior of Nanofluid in a Circular Tube Heated under Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Shuichi Torii

    2010-01-01

    Full Text Available The aim of the present study is to disclose the forced convective heat transport phenomenon of nanofluids inside a horizontal circular tube subject to a constant and uniform heat flux at the wall. Consideration is given to the effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region. It is found that (i heat transfer enhancement is caused by suspending nanoparticles and becomes more pronounced with the increase of the particle volume fraction, (ii its augmentation is affected by three different nanofluids employed here, and (iii the presence of particles produces adverse effects on viscosity and pressure loss that also increases with the particle volume fraction.

  14. Experimental investigations on solar heating/heat pump systems for single family houses

    DEFF Research Database (Denmark)

    Andersen, Elsa; Perers, Bengt

    In the period 2013-2017 the project “Experimental investigations on solar heat pump systems for single family houses” is carried out at Department of Civil Engineering, Technical University of Denmark. The aim of this project is to increase the knowledge of the heat and mass transfer...... in the combined solar heating/heat pump system type when the heat pump makes use of a horizontal ground source heat exchanger. The knowledge is gained by experimental investigations on a solar heating/heat pump system and forms the basis for improved marketed combined solar heating/heat pump systems....

  15. Low heat transfer oxidizer heat exchanger design and analysis

    Science.gov (United States)

    Kanic, P. G.; Kmiec, T. D.; Peckham, R. J.

    1987-01-01

    The RL10-IIB engine, a derivative of the RLIO, is capable of multi-mode thrust operation. This engine operates at two low thrust levels: tank head idle (THI), which is approximately 1 to 2 percent of full thrust, and pumped idle (PI), which is 10 percent of full thrust. Operation at THI provides vehicle propellant settling thrust and efficient engine thermal conditioning; PI operation provides vehicle tank pre-pressurization and maneuver thrust for log-g deployment. Stable combustion of the RL10-IIB engine at THI and PI thrust levels can be accomplished by providing gaseous oxygen at the propellant injector. Using gaseous hydrogen from the thrust chamber jacket as an energy source, a heat exchanger can be used to vaporize liquid oxygen without creating flow instability. This report summarizes the design and analysis of a United Aircraft Products (UAP) low-rate heat transfer heat exchanger concept for the RL10-IIB rocket engine. The design represents a second iteration of the RL10-IIB heat exchanger investigation program. The design and analysis of the first heat exchanger effort is presented in more detail in NASA CR-174857. Testing of the previous design is detailed in NASA CR-179487.

  16. Performance of a Solar Heating System with Photovoltaic Thermal Hybrid Collectors and Heat Pump

    DEFF Research Database (Denmark)

    Dannemand, Mark; Furbo, Simon; Perers, Bengt

    2017-01-01

    The energy consumption in buildings accounts for a large part of the World’s CO2 emissions. Much energy is used for appliances, domestic hot water preparation and space heating. In solar heating systems, heat is captured by solar collectors when the sun is shining and used for heating purposes....... When the solar collectors are unable to supply the heat demand an auxiliary heat source is used. Heat pumps can generate this heat. Liquid/water heat pumps have better performance than air/water heat pumps in cold climates but requires installation of a tubing system for the cold side of the heat pump....... The tubes are typically placed in the ground, requires a significant land area and increase the installation cost. A new system design of a solar heating system with two storage tanks and a liquid/water heat pump is presented. The system consists of PVT collectors that generate both heat and electricity...

  17. Heat pipe and method of production of a heat pipe

    International Nuclear Information System (INIS)

    Kemp, R.S.

    1975-01-01

    The heat pipe consists of a copper pipe in which a capillary network or wick of heat-conducting material is arranged in direct contact with the pipe along its whole length. Furthermore, the interior space of the tube contains an evaporable liquid for pipe transfer. If water is used, the capillary network consists of, e.g., a phosphorus band network. To avoid contamination of the interior of the heat pipe during sealing, its ends are closed by mechanical deformation so that an arched or plane surface is obtained which is in direct contact with the network. After evacuation of the interior space, the remaining opening is closed with a tapered pin. The ratio wall thickness/tube diameter is between 0.01 and 0.6. (TK/AK) [de

  18. Heat transfer studies on spiral plate heat exchanger

    Directory of Open Access Journals (Sweden)

    Rajavel Rangasamy

    2008-01-01

    Full Text Available In this paper, the heat transfer coefficients in a spiral plate heat exchanger are investigated. The test section consists of a plate of width 0.3150 m, thickness 0.001 m and mean hydraulic diameter of 0.01 m. The mass flow rate of hot water (hot fluid is varying from 0.5 to 0.8 kg/s and the mass flow rate of cold water (cold fluid varies from 0.4 to 0.7 kg/s. Experiments have been conducted by varying the mass flow rate, temperature, and pressure of cold fluid, keeping the mass flow rate of hot fluid constant. The effects of relevant parameters on spiral plate heat exchanger are investigated. The data obtained from the experimental study are compared with the theoretical data. Besides, a new correlation for the Nusselt number which can be used for practical applications is proposed.

  19. Evaporative Heat Transfer Mechanisms within a Heat Melt Compactor

    Science.gov (United States)

    Golliher, Eric L.; Gotti, Daniel J.; Rymut, Joseph Edward; Nguyen, Brian K; Owens, Jay C.; Pace, Gregory S.; Fisher, John W.; Hong, Andrew E.

    2013-01-01

    This paper will discuss the status of microgravity analysis and testing for the development of a Heat Melt Compactor (HMC). Since fluids behave completely differently in microgravity, the evaporation process for the HMC is expected to be different than in 1-g. A thermal model is developed to support the design and operation of the HMC. Also, low-gravity aircraft flight data is described to assess the point at which water may be squeezed out of the HMC during microgravity operation. For optimum heat transfer operation of the HMC, the compaction process should stop prior to any water exiting the HMC, but nevertheless seek to compact as much as possible to cause high heat transfer and therefore shorter evaporation times.

  20. Extended Heat Deposition in Hot Jupiters: Application to Ohmic Heating

    Science.gov (United States)

    Ginzburg, Sivan; Sari, Re'em

    2016-03-01

    The observed radii of many giant exoplanets in close orbits exceed theoretical predictions. One suggested origin for this discrepancy is heat deposited deep inside the atmospheres of these “hot Jupiters”. Here, we study extended power sources that distribute heat from the photosphere to the deep interior of the planet. Our analytical treatment is a generalization of a previous analysis of localized “point sources”. We model the deposition profile as a power law in the optical depth and find that planetary cooling and contraction halt when the internal luminosity (I.e., cooling rate) of the planet drops below the heat deposited in the planet’s convective region. A slowdown in the evolutionary cooling prior to equilibrium is possible only for sources that do not extend to the planet’s center. We estimate the ohmic dissipation resulting from the interaction between the atmospheric winds and the planet’s magnetic field, and apply our analytical model to ohmically heated planets. Our model can account for the observed radii of most inflated planets, which have equilibrium temperatures of ≈1500-2500 K and are inflated to a radius of ≈ 1.6{R}J. However, some extremely inflated planets remain unexplained by our model. We also argue that ohmically inflated planets have already reached their equilibrium phase, and no longer contract. Following Wu & Lithwick, who argued that ohmic heating could only suspend and not reverse contraction, we calculate the time it takes ohmic heating to re-inflate a cold planet to its equilibrium configuration. We find that while it is possible to re-inflate a cold planet, the re-inflation timescales are longer by a factor of ≈ 30 than the cooling time.

  1. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    OpenAIRE

    Yanfeng Liu; Tao Li; Yaowen Chen; Dengjia Wang

    2017-01-01

    This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces th...

  2. Compact heat exchanger for power plants

    International Nuclear Information System (INIS)

    Kinnunen, L.

    2001-01-01

    Vahterus Oy, located at Kalanti, has manufactured heat exchangers since the beginning of 1990s. About 90% of the equipment produced are exported. In the PSHE (Plate and Shell) solution of the Vahterus heat exchanger the heat is transferred by round plated welded to form a compact package, which is assembled into a cylindrical steel casing. The heat exchanger contains no gaskets or soldered joints, which eliminates the leak risks. Traditional heat exchanges are usually operated at higher temperatures and pressures, but the heat transfer capacities of them are lower. Plate heat exchangers, on the other hand, are efficient, but the application range of them is narrow. Additionally, the rubber gasket of the heat exchange plates, sealing the joints of the heat exchanging plates, does not stand high pressures or temperatures, or corroding fluids. The new welded plate heat exchanger combine the pressure and temperature resistance of tube heat exchangers and the high heat exchange capacity of plate heat exchangers. The new corrosion resisting heat exchanger can be applied for especially hard conditions. The operating temperature range of the PSHE heat exchanger is - 200 - 900 deg C. The pressure resistance is as high as 100 bar. The space requirement of PSHE is only one tenth of the space requirement of traditional tube heat exchangers. Adjusting the number of heat exchanging plates can change the capacity of the heat exchanger. Power range of the heat exchanger can be as high as 80 MW. Due to the corrosion preventive construction and the small dimension the PSHE heat exchanger can be applied for refrigerators using ammonia as refrigerant. These kinds of new Vahterus heat exchangers are in use in 60 countries in more than 2000 refrigerators

  3. Heat conduction within linear thermoelasticity

    CERN Document Server

    Day, William Alan

    1985-01-01

    J-B. J. FOURIER'S immensely influential treatise Theorie Analytique de la Chaleur [21J, and the subsequent developments and refinements of FOURIER's ideas and methods at the hands of many authors, provide a highly successful theory of heat conduction. According to that theory, the growth or decay of the temperature e in a conducting body is governed by the heat equation, that is, by the parabolic partial differential equation Such has been the influence of FOURIER'S theory, which must forever remain the classical theory in that it sets the standard against which all other theories are to be measured, that the mathematical investigation of heat conduction has come to be regarded as being almost identicalt with the study of the heat equation, and the reader will not need to be reminded that intensive analytical study has t But not entirely; witness, for example, those theories which would replace the heat equation by an equation which implies a finite speed of propagation for the temperature. The reader is refe...

  4. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICFR current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. the helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues. 12 refs

  5. SECURE nuclear district heating plant

    International Nuclear Information System (INIS)

    Nilsson; Hannus, M.

    1978-01-01

    The role foreseen for the SECURE (Safe Environmentally Clean Urban REactor) nuclear district heating plant is to provide the baseload heating needs of primarily the larger and medium size urban centers that are outside the range of waste heat supply from conventional nuclear power stations. The rationale of the SECURE concept is that the simplicity in design and the inherent safety advantages due to the use of low temperatures and pressures should make such reactors economically feasible in much smaller unit sizes than nuclear power reactors and should make their urban location possible. It is felt that the present design should be safe enough to make urban underground location possible without restriction according to any criteria based on actual risk evaluation. From the environmental point of view, this is a municipal heat supply plant with negligible pollution. Waste heat is negligible, gaseous radioactivity release is negligible, and there is no liquid radwaste release. Economic comparisons show that the SECURE plant is competitive with current fossil-fueled alternatives. Expected future increase in energy raw material prices will lead to additional energy cost advantages to the SECURE plant

  6. Heat generated by knee prostheses.

    Science.gov (United States)

    Pritchett, James W

    2006-01-01

    Temperature sensors were placed in 50 knees in 25 patients who had one or both joints replaced. Temperature recordings were made before walking, after walking, and after cycling. The heat generated in healthy, arthritic, and replaced knees was measured. The knee replacements were done using eight different prostheses. A rotating hinge knee prosthesis generated a temperature increase of 7 degrees C in 20 minutes and 9 degrees C in 40 minutes. An unconstrained ceramic femoral prosthesis articulating with a polyethylene tibial prosthesis generated a temperature increase of 4 degrees C compared with a healthy resting knee. The other designs using a cobalt-chrome alloy and high-density polyethylene had temperature increases of 5 degrees-7 degrees C with exercise. Frictional heat generated in a prosthetic knee is not immediately dissipated and may result in wear, creep, and other degenerative processes in the high-density polyethylene. Extended periods of elevated temperature in joints may inhibit cell growth and perhaps contribute to adverse performance via bone resorption or component loosening. Prosthetic knees generate more heat with activity than healthy or arthritic knees. More-constrained knee prostheses generate more heat than less-constrained prostheses. A knee with a ceramic femoral component generates less heat than a knee with the same design using a cobalt-chromium alloy.

  7. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  8. 46 CFR 108.213 - Heating requirements.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Heating requirements. 108.213 Section 108.213 Shipping... EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.213 Heating requirements. (a) Each accommodation space must be heated by a heating system that can maintain at least 20°C. (68°F.). (b) Radiators...

  9. `Green heat` in a UK city

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    This brief article describes the Sheffield `green heat` scheme which utilises heat from a local waste incinerator to operate an independent district heating scheme within Sheffield city centre. Standby and peak overload heat generation capacity is provided by four boiler plants ensuring integrity of supply. The benefits of the scheme and future developments are outlined. (UK)

  10. Cleaning Schedule Operations in Heat Exchanger Networks

    Directory of Open Access Journals (Sweden)

    Huda Hairul

    2018-01-01

    Full Text Available Heat exchanger networks have been known to be the essential parts in the chemical industries. Unfortunately, since the performance of heat exchanger can be decreasing in transferring the heat from hot stream into cold stream due to fouling, then cleaning the heat exchanger is needed to restore its initial performance periodically. A process of heating crude oil in a refinery plant was used as a case study. As many as eleven heat exchangers were used to heat crude oil before it was heated by a furnace to the temperature required to the crude unit distillation column. The purpose of this study is to determine the cleaning schedule of heat exchanger on the heat exchanger networks due to the decrease of the overall heat transfer coefficient by various percentage of the design value. A close study on the process of heat exchanger cleaning schedule in heat exchanger networks using the method of decreasing overall heat transfer coefficient as target. The result showed that the higher the fouling value the more often the heat exchanger is cleaned because the overall heat transfer coefficient decreases quickly.

  11. Numerical routine for magnetic heat pump cascading

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt

    Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...

  12. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...

  13. Defining and Predicting Heat Waves in Bangladesh

    NARCIS (Netherlands)

    Nissan, H.; Burkart, K.; Coughlan, E.R.; van Aalst, M.; Mason, S.

    2017-01-01

    This paper proposes a heat-wave definition for Bangladesh that could be used to trigger preparedness measures in a heat early warning system (HEWS) and explores the climate mechanisms associated with heat waves. A HEWSrequires a definition of heat waves that is both related to human health outcomes

  14. Analysis of heat and mass transfer

    International Nuclear Information System (INIS)

    Eckert, E.R.G.; Drake, R.M. Jr.

    1987-01-01

    The contents of this book are: Theory of Heat Conduction and Heat-conduction Equations; Thermal Conductivity; Steady Heat Conduction; Unsteady Heat Conduction; Forced Convection in Laminar Flow; Forced Convection in Turbulent Flow; Dimensional Analysis; Forced Convection in Separated Flow; Natural Convection; Radiation of Strongly Absorbing Media; and Radiation of Weakly Absorbing Media

  15. Aquatic Exercise and Heat-Related Injuries.

    Science.gov (United States)

    Sova, Ruth

    1991-01-01

    Heat-related injuries in aquatics classes are possible, though 100 percent preventable. The article discusses heat-related syndromes; how bodies generate and dissipate heat; how elevated heart rates that burn calories differ from those that dissipate heat; and modification of exercise intensity to provide calorie-burning workouts without…

  16. Heating milk: a study on mutagenicity.

    NARCIS (Netherlands)

    Berg, H.E.; Boekel, van M.A.J.S.; Jongen, W.M.F.

    1990-01-01

    The mutagenicity of heated milk and model systems was investigated by the Ames mutagenicity assay. Heating varied from pasteurization to in-bottle sterilization to ultra-high-temperature (UHT) heat-treatment. No mutagenic response was found in heated milk or model systems. Early Maillard reaction

  17. Numerical routine for magnetic heat pump cascading

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Lei, Tian; Engelbrecht, Kurt

    Heat pumps use low-temperature heat absorbed from the energy source to create temperature gradient (TG) across the energy sink. Magnetic heat pumps (MHP) can perform this function through operating active magnetic regeneration (AMR) cycle. For building heating, TGs of up to a few K might...... and 3 K. Changing the number of MHPs, we optimized input parameters to achieve maximum heating powers. We have found that both maximum heating power and COP decrease together with number of heat pumps, but the TGs and the temperature span can be largely increased. References [1] M. Tahavori et al., “A...

  18. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  19. Heat recovery from solids in industrial processes

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, J.J.

    1988-01-01

    Heat recovery from solids in industrial heat-treatment processes is considered. There are two main ways to improve the energy efficiency and economy of the heating process. The waste energy can again be used in the process to preheat the cool input. Another possibility is to use the waste energy in a process requiring a lower-temperature level. Heat-recovery arrangements both for continuous and discontinuous processes are presented. The energy demand of a heating or a heat-treatment process (in metal, clay, glass, and food industries) can greatly be decreased by the heat recovery. New methods for the heat-treatment processes requiring much less energy are presented. Several heat-recovery arrangements are described, and analytical solutions for the efficiency of the heat recovery are presented.

  20. Heat intolerance: predisposing factor or residual injury?

    Science.gov (United States)

    Epstein, Y

    1990-02-01

    Great individual variability exists in the ability to sustain heat stress. Some individuals are more susceptible to heat than others. Those individuals, among the young active population (athletes, military recruits, laborers), are at risk to contract exertional heat stroke. Low tolerance to heat results from either functional factors, or from congenital or acquired disturbances. In most cases heat intolerance can be foreseen. Cases of dehydration, overweight, low physical fitness, lack of acclimatization, febrile or infectious diseases, and skin disorders should be regarded a priori as predisposing factors for heat intolerance. Special attention should be paid to subjects with previous heat stroke episodes since it might reflect an underlying cause for heat susceptibility. The heat tolerance of these subjects should be tested 8-12 wk postepisode to detect a possible residual injury in the ability to thermoregulate adequately in the heat.

  1. NEP heat pipe radiators. [Nuclear Electric Propulsion

    Science.gov (United States)

    Ernst, D. M.

    1979-01-01

    This paper covers improvements of heat pipe radiators for the thermionic NEP design. Liquid metal heat pipes are suitable as spacecraft radiator elements because of high thermal conductance, low mass and reliability, but the NEP thermionic system design was too large and difficult to fabricate. The current integral collector-radiator design consisting of several layers of thermionic converters, the annular-tangential collector heat pipe, the radiator heat pipe, and the transition zone designed to minimize the temperature difference between the collector heat pipe and radiator heat pipe are described. Finally, the design of micrometeoroid armor protection and the fabrication of the stainless steel annular heat pipe with a tangential arm are discussed, and it is concluded that the heat rejection system for the thermionic NEP system is well advanced, but the collector-radiator heat pipe transition and the 8 to 10 m radiator heat pipe with two bends require evaluation.

  2. Fuel change possibilities in small heat source

    Science.gov (United States)

    Durčanský, Peter; Kapjor, Andrej; Jandačka, Jozef

    2017-09-01

    Rural areas are characterized by a larger number of older family houses with higher fuel consumption for heating. Some areas are not gasified, which means that the fuel base for heating the buildings is very limited. Heating is mainly covered by solid fuels with high emissions and low efficiency. But at the same time, the amount of energy in the form of biowaste can be evaluated and used further. We will explore the possibilities to convert biogas to heat of using a gas burner in a small heat source. However, the heat produced can be used other than for heating or hot water production. The added value for heat generation can be the production of electricity, in the use of heat energy through cogeneration unit with unconventional heat engine. The proposed solution could economically benefit the entire system, because electricity is a noble form of energy and its use is versatile.

  3. A new compact heat engine

    Directory of Open Access Journals (Sweden)

    Novaković Miodrag

    2002-01-01

    Full Text Available The Differential Cylinder Heat Engine (DCHE reported consists of two different size cylinders with pistons where four passages (channels enable fluid communications between cylinders. The pistons are connected in opposition to share the work. As the channels are open and closed by movement of pistons the working fluid passing through the adequate channel is heated, cooled or let adiabaticaly flown from one cylinder to the other. The arrangement enables different thermodynamic cycles to be performed. Here the Brayton cycle is chosen by adequate choice of volume ratio and by positioning the channel apertures. During isobaric parts of the cycle the gas is adequately heated or cooled when passing through corresponding channel. During these process temperatures remain constant (and different in each cylinder. The performance of the engine is analyzed and the parameters and efficiency determined.

  4. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  5. General Purpose Heat Source Simulator

    Science.gov (United States)

    Emrich, Bill

    2008-01-01

    The General Purpose Heat Source (GPHS) simulator project is designed to replicate through the use of electrical heaters, the form, fit, and function of actual GPHS modules which generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of spacecraft subsystems and systems without sacrificing the quantity and quality of the test data gathered. Previous GPHS activities are centered around developing robust heater designs with sizes and weights that closely matched those of actual Pu238 fueled GPHS blocks. These efforts were successful, although their maximum temperature capabilities were limited to around 850 C. New designs are being pursued which also replicate the sizes and weights of actual Pu238 fueled GPHS blocks but will allow operation up to 1100 C.

  6. Gasification with nuclear reactor heat

    International Nuclear Information System (INIS)

    Weisbrodt, I.A.

    1977-01-01

    The energy-political ultimate aims for the introduction of nuclear coal gasification and the present state of technology concerning the HTR reactor, concerning gasification and heat exchanging components are outlined. Presented on the plans a) for hydro-gasification of lignite and for steam gasification of pit coal for the production of synthetic natural gas, and b) for the introduction of a nuclear heat system. The safety and environmental problems to be expected are portrayed. The main points of development, the planned prototype plant and the schedule of the project Pototype plant Nuclear Process heat (PNP) are specified. In a market and economic viability study of nuclear coal gasification, the application potential of SNG, the possible construction programme for the FRG, as well as costs and rentability of SNG production are estimated. (GG) [de

  7. Essentials of radiation heat transfer

    CERN Document Server

    Balaji

    2014-01-01

    Essentials of Radiation Heat Transfer is a textbook presenting the essential, fundamental information required to gain an understanding of radiation heat transfer and equips the reader with enough knowledge to be able to tackle more challenging problems. All concepts are reinforced by carefully chosen and fully worked examples, and exercise problems are provided at the end of every chapter. In a significant departure from other books on this subject, this book completely dispenses with the network method to solve problems of radiation heat transfer in surfaces. It instead presents the powerful radiosity-irradiation method and shows how this technique can be used to solve problems of radiation in enclosures made of one to any number of surfaces. The network method is not easily scalable. Secondly, the book introduces atmospheric radiation, which is now being considered as a potentially important area, in which engineers can contribute to the technology of remote sensing and atmospheric sciences in general, b...

  8. High heat load synchrotron optics

    International Nuclear Information System (INIS)

    Mills, D.M.

    1993-01-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density. These high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development

  9. Heat transfer from rough surfaces

    International Nuclear Information System (INIS)

    Dalle Donne, M.

    1977-01-01

    Artificial roughness is often used in nuclear reactors to improve the thermal performance of the fuel elements. Although these are made up of clusters of rods, the experiments to measure the heat transfer and friction coefficients of roughness are performed with single rods contained in smooth tubes. This work illustrated a new transformation method to obtain data applicable to reactor fuel elements from these annulus experiments. New experimental friction data are presented for ten rods, each with a different artificial roughness made up of two-dimensional rectangular ribs. For each rod four tests have been performed, each in a different outer smooth tube. For two of these rods, each for two different outer tubes, heat transfer data are also given. The friction and heat transfer data, transformed with the present method, are correlated by simple equations. In the paper, these equations are applied to a case typical for a Gas Cooled Fast Reactor fuel element. (orig.) [de

  10. Passive solar-heated courthouse

    Energy Technology Data Exchange (ETDEWEB)

    Coupland, J.

    1997-12-01

    The Santa Fe Municipal Court Building is the first passive solar-heated courthouse in the United States. Taking advantage of the mild climate and using the sun to heat buildings are ancient traditions in northern New Mexico. One of the design team`s initial goals was to develop a project that was both environmentally responsive and responsible. The project was planned to be energy efficient and to demonstrate the use of integrated natural energy systems. The building is unique because occupants are responsible for manually operating equipment to maintain comfort levels in their individual work areas. Solar gain and light levels are modulated by adjusting mini-blinds, and temperature and ventilation are controlled by windows. This approach has proven successful, and the court employees are enthusiastic about their ability to control their environment. The paper describes the operation of the heating systems, ventilation cooling systems, and lighting. The paper also discusses energy consumption and modeling.

  11. Biomass universal district heating systems

    Science.gov (United States)

    Soltero, Victor Manuel; Rodríguez-Artacho, Salvador; Velázquez, Ramón; Chacartegui, Ricardo

    2017-11-01

    In mild climate regions Directive 27/2012 EU application for developing sustainable district heating networks in consolidated urban nucleus is a challenge. In Spain most of the municipalities above 5,000 inhabitants have a reliable natural gas network and individual heating systems at homes. In this work a new heating network paradigm is proposed, the biomass universal heating network in rural areas. This model involves all the economic, legal and technical aspects and interactions between the different agents of the systems: provider company, individual and collective end-users and local and regional administration. The continental region in Spain has 588 municipalities with a population above 1,500 inhabitants close to forest biomass with renewable use. In many of these cases the regulation identifies the ownership of the forest resources use. The universal heating networks are a great opportunity for energy saving of 2,000 GWh, avoiding 2.7 million tons of CO2 emissions and with a global annual savings for end users of 61.8 million of euros. The presented model is easily extrapolated to other small municipalities in Europe. The real application of the model is presented for three municipalities in different locations of Spain where Universal Heating Networks are under development. The analysis show the interest of the integrated model for the three cases with different structural agents and relationships between them. The use of sustainable forest resources, extracted and managed by local companies, strengths circular economy in the region with a potential global economic impact above 200 M€.

  12. Heat-pipe thermionic reactor concept

    DEFF Research Database (Denmark)

    Storm Pedersen, E.

    1967-01-01

    Main components are reactor core, heat pipe, thermionic converter, secondary cooling system, and waste heat radiator; thermal power generated in reactor core is transported by heat pipes to thermionic converters located outside reactor core behind radiation shield; thermionic emitters are in direct...... contact with outside envelope of heat pipes and collectors are in contact with liquid metal secondary cooling system that transfers waste heat to radiator....

  13. Heat Recovery Potential from Urban Underground Infrastructures

    OpenAIRE

    Davies, G; Boot-Handford, N; Grice, J; Dennis, W; Ajileye, A; Revesz, A; Maidment, GG

    2018-01-01

    This paper describes the results from a collaborative research project in the UK, focussing on the recovery of waste heat from underground railway tunnels, using London as a case study. The aim of the project was to investigate the feasibility of combining cooling of London’s underground railway tunnels with a waste heat recovery system. The recovered heat will then be transferred to a heat pump to upgrade its temperature, before delivery to a district heating network for reuse. The paper des...

  14. Human Adaptations to Heat and Cold Stress

    Science.gov (United States)

    2002-04-01

    Fed.Proc. 22: 843-845, 1963. 36. Hilton, J. G. Acetylcholine stimulation of the sympathetic ganglia: effects of taurine and nicotinic and muscarinic...reduced performance. Heat acclimation results in biological adaptations that reduce these negative effects of heat stress. One becomes acclimated to the...Exercise in the heat is the most effective method for developing heat acclimation, however, even resting in the heat results in some acclimation. The full

  15. Features of convective heat transfer in heated helium channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, S.; Heinzel, V.; Slobodtchouk, V. [Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany)

    2005-07-01

    The aim of the present work is to choose an optimal method for thermohydraulic calculation of the gas flow in channels with intense heating at the flow Reynolds number below 10,000. These conditions are typical of the cooling channels of the High-Flux-Test Module of the International-Fusion-Materials-Irradiation-Facility (IFMIF/HFTM). A low Reynolds number and a high heating rate can result in partial relaminarization of the initially turbulent flow, and hence in a decrease in the heat transfer. A number of turbulence models offered by the commercial STAR-CD code were tested on the basis of the comparison of the numerical predictions with experimental data. This comparison showed that the low-Reynolds-number {kappa}-{epsilon} turbulence models predict the heat transfer characteristics close to the experimental data. The {kappa}-{epsilon} linear low Reynolds number turbulence model of Lien was applied as more appropriate fore the thermohydraulic analysis of the IFMIF high flux test module. (author)

  16. Information campaign on solar heating for houses heated by electricity

    International Nuclear Information System (INIS)

    West, M.

    1995-09-01

    A number of NESA's (Danish electric power company) customers were offered the use of a solar water heating system for a short period of time. NESA was responsible for the marketing and consultancy service and worked in cooperation with local plumbers in connection with the delivery of the systems. The company contacted 450 households and its representatives visited 25 of these. 4 customers decided to purchase a solar heating system, fourteen decided to think about it, and four declared that they would not buy one. The company had reckoned with 25 purchases. It is concluded that the price of the solar heating systems was too high for prospective customers and the fact that they were not given a special offer had a negative effect. The economic aspect was absolutely the most important for them, especially the length of the payback period on the higher purchase system. Environmental protection aspects came second in their deliberations. NESA has a positive attitude to their customers' use of solar heating plants and recommends that households are offered very high quality consultancy services in connection with marketing. The project is described in detail. (AB)

  17. District Heating Systems Performance Analyses. Heat Energy Tariff

    Science.gov (United States)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  18. High field laser heated solenoids

    International Nuclear Information System (INIS)

    Hoffman, A.L.

    1979-01-01

    A 10 kJ pulsed CO 2 laser and 3.8 cm bore, 15 T, 8 μs rise time, 1-m long fast solenoid facility has been constructed to demonstrate the feasibility of using long wavelength lasers to heat magnetically confined plasmas. The most critical physics requirement is the necessity of creating and maintaining an on-axis electron density minimum to trap the axially directed laser beam. Satisfaction of this requirement has been demonstrated by heating 1.5 Torr deuterium fill plasmas in 2.7 cm bore plasma tubes to line energies of approximately 1 kJ/m. (Auth.)

  19. Agricultural and industrial process heat

    Science.gov (United States)

    Dollard, J.

    1978-01-01

    The application of solar energy to agricultural and industrial process heat requirements is discussed. This energy end use sector has been the largest and it appears that solar energy can, when fully developed and commercialized, displace from three to eight or more quads of oil and natural gas in U.S. industry. This potential for fossil fuel displacement in the agricultural and industrial process heat area sector represents a possible savings of 1.4 to 3.8 million barrels of oil daily.

  20. Alpha heating in toroidal devices

    Energy Technology Data Exchange (ETDEWEB)

    Miley, G.H.

    1978-01-01

    Ignition (or near-ignition) by alpha heating is a key objective for the achievement of economic fusion reactors. While good confinement of high-energy alphas appears possible in larger reactors, near-term tokamak-type ignition experiments as well as some concepts for small reactors (e.g., the Field-Reversed Mirror or FRM) potentially face marginal situations. Consequently, there is a strong motivation to develop methods to evaluate alpha losses and heating profiles in some detail. Such studies for a TFTR-size tokamak and for a small FRM are described here.

  1. Improvements in or relating to devices for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1976-01-01

    Reference is made to radioisotope powered heat engines. Should such an engine stop working for any reason the radioisotope heat source will continue to generate heat, and this may cause overheating and possible damage to the engine as well as the heat source. A device is described for conducting excess heat from the heat source to a heat sink but which in normal operation of the engine will impede heat conduction and so reduce thermal losses. The device may be used to support and/or locate the heat source. Constructional and operational details are given. (U.K.)

  2. Estimating heat-to-heat variation from a statistician's point of view

    International Nuclear Information System (INIS)

    Hebble, T.L.

    1976-01-01

    Heat-to-heat variability is the change in results that occurs when the same tests under the same conditions are applied to samples from different heats of the same material. Heat-to-heat variability reflects, among other things, difference in chemistry and in processing history. Published Japanese tensile and creep tests on types 304 and 316 stainless steel tube are used to illustrate the analysis of variance technique as a tool for isolating heat-to-heat variation. The importance of the underlying model and the role of replication are indicated. Finally, confidence intervals and tolerance limits are computed from numerical estimates of heat-to-heat variation. 17 tables

  3. Experimental investigation of an active magnetic regenerative heat circulator applied to self-heat recuperation technology

    International Nuclear Information System (INIS)

    Kotani, Yui; Kansha, Yasuki; Ishizuka, Masanori; Tsutsumi, Atsushi

    2014-01-01

    An experimental investigation into an active magnetic regenerative (AMR) heat circulator based on self-heat recuperation technology, was conducted to evaluate its energy saving potential in heat circulation. In an AMR heat circulator, magnetocaloric effect is applied to recuperate the heat exergy of the process fluid. The recuperated heat can be reused to heat the feed process fluid and realize self-heat recuperation. In this paper, AMR heat circulator has newly been constructed to determine the amount of heat circulated when applied to self-heat recuperation and the energy consumption of the heat circulator. Gadolinium and water was used as the magnetocaloric working material and the process fluid, respectively. The heat circulated amount was determined by measuring the temperature of the process fluid and gadolinium. The net work input for heat circulation was obtained from the magnetizing and demagnetizing forces and the distance travelled by the magnetocaloric bed. The results were compared with the minimum work input needed for heat circulation derived from exergy loss during heat exchange. It was seen that the experimentally obtained value was close to the minimum work input needed for heat circulation. - Highlights: • AMR heat circulator has newly been constructed for experimental evaluation. • Heat circulation in the vicinity of Curie temperature was observed. • Energy consumption of an AMR heat circulator has been measured. • Energy saving for processes near Curie temperature of working material was seen

  4. Prediction of critical heat flux for water in uniformly heated vertical ...

    African Journals Online (AJOL)

    critical heat flux for the forced convective boiling in uniformly heated vertical tubes, Int. J. Heat Mass Transfer, Vol. 27 1641–1648. [5] Whalley P.B., Hutchinson P. & Hewitt. G.F., 1974. The calculation of critical heat flux in forced convective boiling, Proceeding of. Fifth International Heat Transfer conference,. Tokyo, 290-294.

  5. Design of A District Heating System Including The Upgrading of Residual Industrial Waste Heat

    NARCIS (Netherlands)

    Falcao, P.W.; Mesbah, A.; Suherman, M.V.; Wennekes, S.

    2005-01-01

    This study was aimed to evaluate the feasibility of using a waste heat stream from DSM for a District Heating System. A conceptual design was carried out with emphasis on the unit for upgrading the residual waste heat. Having reviewed heat pump technology, mechanical heat pump was found to be the

  6. Interactions between urban heat islands and heat waves

    Science.gov (United States)

    Zhao, Lei; Oppenheimer, Michael; Zhu, Qing; Baldwin, Jane W.; Ebi, Kristie L.; Bou-Zeid, Elie; Guan, Kaiyu; Liu, Xu

    2018-03-01

    Heat waves (HWs) are among the most damaging climate extremes to human society. Climate models consistently project that HW frequency, severity, and duration will increase markedly over this century. For urban residents, the urban heat island (UHI) effect further exacerbates the heat stress resulting from HWs. Here we use a climate model to investigate the interactions between the UHI and HWs in 50 cities in the United States under current climate and future warming scenarios. We examine UHI2m (defined as urban-rural difference in 2m-height air temperature) and UHIs (defined as urban-rural difference in radiative surface temperature). Our results show significant sensitivity of the interaction between UHI and HWs to local background climate and warming scenarios. Sensitivity also differs between daytime and nighttime. During daytime, cities in the temperate climate region show significant synergistic effects between UHI and HWs in current climate, with an average of 0.4 K higher UHI2m or 2.8 K higher UHIs during HWs than during normal days. These synergistic effects, however, diminish in future warmer climates. In contrast, the daytime synergistic effects for cities in dry regions are insignificant in the current climate, but emerge in future climates. At night, the synergistic effects are similar across climate regions in the current climate, and are stronger in future climate scenarios. We use a biophysical factorization method to disentangle the mechanisms behind the interactions between UHI and HWs that explain the spatial-temporal patterns of the interactions. Results show that the difference in the increase of urban versus rural evaporation and enhanced anthropogenic heat emissions (air conditioning energy use) during HWs are key contributors to the synergistic effects during daytime. The contrast in water availability between urban and rural land plays an important role in determining the contribution of evaporation. At night, the enhanced release of stored

  7. Extreme heat changes post-heat wave community reassembly.

    Science.gov (United States)

    Seifert, Linda I; Weithoff, Guntram; Vos, Matthijs

    2015-06-01

    Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29°C and 39°C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39°C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29°C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial

  8. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  9. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  10. Cyclic high temperature heat storage using borehole heat exchangers

    Science.gov (United States)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  11. Waste heat utilization in agriculture

    International Nuclear Information System (INIS)

    Horacek, P.

    1983-01-01

    The Proceedings contain 17 papers presented at meetings of the Working Group for Waste Heat Utilization of the Committee of the European Society of Nuclear Methods in Agriculture of which 7 fall under the INIS scope. The working group met in May 1980 in Brno, Czechoslovakia, in October 1981 in Aberdeen, Scotland and in September 1982 in Brno. (Z.M.)

  12. Gas engine heat recovery unit

    Science.gov (United States)

    Kubasco, A. J.

    1991-07-01

    The objective of Gas Engine Heat Recovery Unit was to design, fabricate, and test an efficient, compact, and corrosion resistant heat recovery unit (HRU) for use on exhaust of natural gas-fired reciprocating engine-generator sets in the 50-500 kW range. The HRU would be a core component of a factory pre-packaged cogeneration system designed around component optimization, reliability, and efficiency. The HRU uses finned high alloy, stainless steel tubing wound into a compact helical coil heat exchanger. The corrosion resistance of the tubing allows more heat to be taken from the exhaust gas without fear of the effects of acid condensation. One HRU is currently installed in a cogeneration system at the Henry Ford Hospital Complex in Dearborn, Michigan. A second unit underwent successful endurance testing for 850 hours. The plan was to commercialize the HRU through its incorporation into a Caterpillar pre-packaged cogeneration system. Caterpillar is not proceeding with the concept at this time because of a downturn in the small size cogeneration market.

  13. Life explained by heat engines

    NARCIS (Netherlands)

    Muller, A.W.J.; Seckbach, J.

    2012-01-01

    Mitochondria are in essence fuel cells that use organics as reductant and oxygen as oxidant. In engineering, increasing attention is being given to the replacement of the internal combustion engine by the fuel cell. According to the Thermosynthesis theory, a similar replacement of heat engines by

  14. Heat exchanger staybolt acceptance criteria

    International Nuclear Information System (INIS)

    Lam, P.S.; Sindelar, R.L.; Barnes, D.M.

    1992-02-01

    The structural integrity demonstration of the primary coolant piping system includes evaluating the structural capacity of each component against a large break or equivalent Double-Ended Guillotine Break. A large break at the inlet or outlet heads of the heat exchangers would occur if the restraint members of the heads become inactive. The structural integrity of the heads is demonstrated by showing the redundant capacity of the staybolts to restrain the head at design conditions and under seismic loadings. The Savannah River Site heat exchanger head is attached to the tubesheet by 84 staybolts. Access to the staybolts is limited due to a welded seal cap over the staybolts. An ultrasonic testing (UT) inspection technique to provide an in-situ examination of the staybolts has recently been developed at SRS. Examination of the staybolts will be performed to ensure their service condition and configuration is within acceptance limits. An acceptance criteria methodology has been developed to disposition flaws reported in the staybolt inspections while ensuring adequate restraint capacity of the staybolts to maintain integrity of the heat exchanger heads against collapse. The methodology includes an approach for the baseline and periodic inspections of the staybolts. The heat exchanger head is analyzed with a three-dimensional finite element model. The restraint provided by the staybolts is evaluated for several postulated cases of inactive or missing staybolts. Evaluation of specific, inactive staybolt configurations based on the UT results can be performed with the finite element model and fracture methodology in this report

  15. Tube in shell heat exchangers

    International Nuclear Information System (INIS)

    Hayden, O.; Willby, C.R.; Sheward, G.E.; Ormrod, D.T.; Firth, G.F.

    1980-01-01

    An improved tube-in-shell heat exchanger to be used between liquid metal and water is described for use in the liquid metal coolant system of fast breeder reactors. It is stated that this design is less prone to failures which could result in sodium water reactions than previous exchangers. (UK)

  16. Initial heating in cold cars

    NARCIS (Netherlands)

    Daanen, H.A.M.; Teunissen, L.P.J.; Hoogh, I.M. de

    2012-01-01

    During the initial minutes after entering a cold car, people feel uncomfortably cold. Six different warming systems were investigated in a small car in order to find out how to improve the feeling of comfort using 16 volunteers. The methods were: no additional warming next to a standard heating

  17. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  18. A regenerative elastocaloric heat pump

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Dallolio, Stefano

    2016-01-01

    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years...

  19. Heat stress in growing pigs

    NARCIS (Netherlands)

    Huynh Thi Thanh Thuy,

    2005-01-01

    Compared to other species of farm animals, pigs are more sensitive to high environmental temperatures, because they cannot sweat and do not pant so well. Furthermore, fast-growing lean pigs generate more heat than their congeners living in the wild. This, in combination with confined housing, makes

  20. Ion Bernstein wave heating research

    International Nuclear Information System (INIS)

    Ono, Masayuki.

    1992-03-01

    Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity (ω/k perpendicular ∼ V Ti much-lt V α ) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α-particles. In addition, the property of IBW's that k perpendicular ρ i ∼ 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research

  1. Analytical solutions for heat conduction

    International Nuclear Information System (INIS)

    Fraley, S.K.

    1976-01-01

    Green's functions are found for steady state heat conduction in a composite rectangular parallelepiped (RPP) and in a composite right circular cylinder (RCC) assuming no contact resistance. These Green's functions may then be used to provide analytical solutions for arbitrary internal source distributions and surface temperature distributions within the RPP or RCC

  2. Prototype solar-heating system

    Science.gov (United States)

    1978-01-01

    Complete air-collector system to meet needs of single-family dwelling is designed to operate in any region of United States except extreme north and south. Design can be scaled up or down to accomodate wide range of heating and hot-water requirements for single-family, multi-family, or commercial buildings without significantly changing design concept.

  3. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  4. Polar Heat Flow on Io

    Science.gov (United States)

    Veeder, G. J.; Matson, D. L.; Johnson, T. V.; Davies, A. G.; Blaney, D. L.

    2003-01-01

    Recently, Galileo spacecraft data have revealed Io's polar regions to be much warmer than previously expected. This unexpected development came from Photo-Polarimeter Radiometer (PPR) data which show that the minimum night temperatures are in the range of 90-95 K virtually everywhere on Io. The minimum night temperatures show no dependence upon latitude and, when away from the sunset terminator, they show no dependence upon time of night. This is indeed bizarre behavior for surface units which generally had been assumed to be passive with respect to Io's pervasive volcanism. Night temperatures of 90-95 K at high, polar latitudes are particularly hard to explain. Even assuming infinite thermal inertia, at these latitudes there is insufficient sunlight to support these warm night temperatures. Thus, through the process of elimination of other possibilities, we come to the conclusion that these surfaces are volcanically heated. Taking previously passive units and turning them into new sources of heat flow is a radical departure from previous thermophysical model paradigms. However, the geological interpretation is straight forward. We are simply seeing the effect of old, cool lava flows which cover most of the surface of Io but yet have some heat to radiate. Under these new constraints, we have taken on the challenge of formulating a physical model which quantitatively reproduces all of the observations of Io's thermal emission. In the following we introduce a new parametric model which suffices to identify a previously unrecognized polar component of Io's heat flow.

  5. Heat Pumping in Nanomechanical Systems

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  6. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  7. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  8. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  9. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  10. Optimum design of a nuclear heat supply

    International Nuclear Information System (INIS)

    Borel, J.P.

    1984-01-01

    This paper presents an economic analysis for the optimum design of a nuclear heat supply to a given district-heating network. First, a general description of the system is given, which includes a nuclear power plant, a heating power plant and a district-heating network. The heating power plant is fed with steam from the nuclear power plant. It is assumed that the heating network is already in operation and that the nuclear power plant was previously designed to supply electricity. Second, a technical definition of the heat production and transportation installations is given. The optimal power of these installations is examined. The main result is a relationship between the network capacity and the level of the nuclear heat supply as a substitute for oil under the best economic conditions. The analysis also presents information for choosing the best operating mode. Finally, the heating power plant is studied in more detail from the energy, technical and economic aspects. (author)

  11. Open-loop heat-recovery dryer

    Science.gov (United States)

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  12. Intermediate temperature, heat storage and retrieval system

    Energy Technology Data Exchange (ETDEWEB)

    Greene, N.D.

    1980-10-14

    Energy is stored by heating a salt to a temperature above its latent heat of fusion to convert the salt to a liquid state. Heat is retrieved by moving a heat transfer fluid that is immiscible with the salt and has a density less than that of the salt over the top surface of the liquid salt at such a velocity that the upper layer of the salt is emulsified with the heat transfer fluid to crystallize the salt in the upper layer. Heat is thereby exothermally surrendered to the heat transfer fluid and the crystallized salt gravitates from said top surface, thereby maintaining the top surface in a liquid state. It is preferred to move the heat transfer fluid over the top surface of the salt in either a vortex pattern, or an outward radial pattern. The heat transfer liquid is a liquid selected from the group consisting essentially of therminol, caloria santowax, and di-butyl phthalate.

  13. High Energy Antimatter Telescope (HEAT) Balloon Experiment

    Science.gov (United States)

    Beatty, J. J.

    1995-01-01

    This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.

  14. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  15. Heating plant overcomes coal crisis

    International Nuclear Information System (INIS)

    Sobinkovic, B.

    2006-01-01

    At the last moment Kosice managed to overcome the threat of a more than 30-percent heating price increase. The biggest local heat producer, Teplaren Kosice, is running out of coal supplies. The only alternative would be gas, which is far more expensive. The reason for this situation was a dispute of the heating plant with one of its suppliers, Kimex. Some days ago, the dispute was settled and the heating plant is now expecting the first wagon loads of coal to arrive. These are eagerly awaited, as its supplies will not last for more than a month. It all started with a public tender for a coal supplier. Teplaren Kosice (TEKO) announced the tender for the delivery of 120,000 tons of coal in June. Kimex, one of the traditional and biggest suppliers, was disqualified in the course of the tender. The winners of the tender were Slovenergo, Bratislava and S-Plus Trade, Vranov nad Toplou. TEKO signed contracts with them but a district court in Kosice prohibited the company from purchasing coal from these contractors. Kimex filed a complaint claiming that it was disqualified unlawfully. Based on this the court issued a preliminary ruling prohibiting the purchase of coal from the winners of the tender. The heating plant had to wait for the final verdict. The problem was then solved by the company's new Board of Directors, who were appointed in mid October who managed to sign new contracts with the two winners and Kimex. The new contracts cover the purchase of 150-thousand tons of coal, which is 30,000 more than in the original tender specification. Each company will supply one third. (authors)

  16. Compact Ceramic Microchannel Heat Exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Lewinsohn, Charles [Ceramatec, Inc., Salt Lake City, UT (United States)

    2016-10-31

    The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe how this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.

  17. Landau-Placzek ratio for heat density dynamics and its application to heat capacity of liquids.

    Science.gov (United States)

    Bryk, Taras; Ruocco, Giancarlo; Scopigno, Tullio

    2013-01-21

    Exact relation for contributions to heat capacity of liquids is obtained from hydrodynamic theory. It is shown from analysis of the long-wavelength limit of heat density autocorrelation functions that the heat capacity of simple liquids is represented as a sum of two contributions due to "phonon-like" collective excitations and heat relaxation. The ratio of both contributions being the analogy of Landau-Placzek ratio for heat processes depends on the specific heats ratio. The theory of heat density autocorrelation functions in liquids is verified by computer simulations. Molecular dynamics simulations for six liquids having the ratio of specific heats γ in the range 1.1-2.3, were used for evaluation of the heat density autocorrelation functions and predicted Landau-Placzek ratio for heat processes. The dependence of contributions from collective excitations and heat relaxation process to specific heat on γ is shown to be in excellent agreement with the theory.

  18. Integration of Space Heating and Hot Water Supply in Low Temperature District Heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2014-01-01

    District heating makes it possible to provide heat for many consumers in an efficient manner. In particular, district heating based on combined heat and power production is highly efficient. One disadvantage of district heating is that there is a significant heat loss from the pipes...... pipes, where the water is at the highest temperature. The heat loss may be lowered by decreasing the temperatures in the network for which reason low temperature networks are proposed as a low loss solution for future district heating. However, the heating demand of the consumers involve both domestic...... is required by the consumer. In the present paper we study conventional district heating at different temperature levels and compare the energy efficiency, the exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature...

  19. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating......District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  20. Modeling of Heating During Food Processing

    Science.gov (United States)

    Zheleva, Ivanka; Kamburova, Veselka

    Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.