WorldWideScience

Sample records for base tumors analysis

  1. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    Directory of Open Access Journals (Sweden)

    Narkhede Sachin G.,

    2014-02-01

    Full Text Available Image segmentation some of the challenging issues on brain magnetic resonance (MR image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI intensity and anatomical meaning. With the objective of utilizing more meaningful information to improve brain tumor segmentation, an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed. This is motivated by potential performance improvement in the general automatic brain tumor segmentation systems which are important for many medical and scientific applications. Brain Magnetic Resonance Imaging (MRI segmentation is a complex problem in the field of medical imaging despite various presented methods. MR image of human brain can be divided into several sub-regions especially soft tissues such as gray matter, white matter and cerebrospinal fluid. Although edge information is the main clue in image segmentation, it can’t get a better result in analysis the content of images without combining other information. Our goal is to detect the position and boundary of tumors automatically. Experiments were conducted on real pictures, and the results show that the algorithm is flexible and convenient.

  2. MR-based volumetric analysis of small tumor volumes: accuracy of phantom examinations of simulated eye tumors

    International Nuclear Information System (INIS)

    Purpose: The determination of tumor volume in ocular tumors is very important for the planning and success of radiation therapy. This study uses an animal model to evaluate the accuracy of MR-based volumetry of ocular tumors. Materials and methods: In a total of 25 porcine eyes obtained from the slaughterhouse, ocular tumors were produced by injecting a mixture of hand creme and Gd-DTPA under ophthalmoscopic guidance. The injected volume varied between 0.05 ml and 2.7 ml. The eyes were examined with a 1.5 Tesla scanner and a 4 cm circular surface coil especially developed for ocular MRI. After data transfer to a separate workstation, volumetric analysis was carried out by three independent radiologists using semiautomated software. The determined volume was compared with the injected volume. Results: Of the 25 prepared porcine eyes, 23 were suitable for volumetric analysis. The injection of the mixture of hand creme and GD-DTPA produced two different types of tumors. Ophthalmoscopically, 14 ellipsoid and 9 lobulated to mushroom-shaped tumors were found and confirmed by MRI. Minor deviation was found between injected volume and volume calculated by MRI, with a correlation coefficient of 0.96. Conclusion: Using appropriate technique, MRI is capable of determining small tumor volumes with high accuracy in an animal model. Minor differences can be expected when transferring the results to clinical studies. (orig.)

  3. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    OpenAIRE

    G., Narkhede Sachin; Khairnar, Vaishali; Kadu, Sujata

    2014-01-01

    Image segmentation some of the challenging issues on brain magnetic resonance image tumor segmentation caused by the weak correlation between magnetic resonance imaging intensity and anatomical meaning.With the objective of utilizing more meaningful information to improve brain tumor segmentation,an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed.This is motivated by potential performance improvement in the general automatic brain tu...

  4. Brain Tumor Detection Based On Mathematical Analysis and Symmetry Information

    OpenAIRE

    Narkhede Sachin G.,; Prof. Vaishali Khairnar

    2014-01-01

    Image segmentation some of the challenging issues on brain magnetic resonance (MR) image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI) intensity and anatomical meaning. With the objective of utilizing more meaningful information to improve brain tumor segmentation, an approach which employs bilateral symmetry information as an additional feature for segmentation is proposed. This is motivated by potential performance improvement in ...

  5. A survey of MRI-based medical image analysis for brain tumor studies

    Science.gov (United States)

    Bauer, Stefan; Wiest, Roland; Nolte, Lutz-P.; Reyes, Mauricio

    2013-07-01

    MRI-based medical image analysis for brain tumor studies is gaining attention in recent times due to an increased need for efficient and objective evaluation of large amounts of data. While the pioneering approaches applying automated methods for the analysis of brain tumor images date back almost two decades, the current methods are becoming more mature and coming closer to routine clinical application. This review aims to provide a comprehensive overview by giving a brief introduction to brain tumors and imaging of brain tumors first. Then, we review the state of the art in segmentation, registration and modeling related to tumor-bearing brain images with a focus on gliomas. The objective in the segmentation is outlining the tumor including its sub-compartments and surrounding tissues, while the main challenge in registration and modeling is the handling of morphological changes caused by the tumor. The qualities of different approaches are discussed with a focus on methods that can be applied on standard clinical imaging protocols. Finally, a critical assessment of the current state is performed and future developments and trends are addressed, giving special attention to recent developments in radiological tumor assessment guidelines.

  6. Skull Base Tumors

    Science.gov (United States)

    Schulz-Ertner, Daniela

    In skull base tumors associated with a low radiosensitivity for conventional radiotherapy (RT), irradiation with proton or carbon ion beams facilitates a safe and accurate application of high tumor doses due to the favorable beam localization properties of these particle beams. Cranial nerves, the brain stem and normal brain tissue can at the same time be optimally spared.

  7. Fourier ptychographic microscopy for filtration-based circulating tumor cell enumeration and analysis

    Science.gov (United States)

    Williams, Anthony; Chung, Jaebum; Ou, Xiaoze; Zheng, Guoan; Rawal, Siddarth; Ao, Zheng; Datar, Ram; Yang, Changhuei; Cote, Richard

    2014-06-01

    Circulating tumor cells (CTCs) are recognized as a candidate biomarker with strong prognostic and predictive potential in metastatic disease. Filtration-based enrichment technologies have been used for CTC characterization, and our group has previously developed a membrane microfilter device that demonstrates efficacy in model systems and clinical blood samples. However, uneven filtration surfaces make the use of standard microscopic techniques a difficult task, limiting the performance of automated imaging using commercially available technologies. Here, we report the use of Fourier ptychographic microscopy (FPM) to tackle this challenge. Employing this method, we were able to obtain high-resolution color images, including amplitude and phase, of the microfilter samples over large areas. FPM's ability to perform digital refocusing on complex images is particularly useful in this setting as, in contrast to other imaging platforms, we can focus samples on multiple focal planes within the same frame despite surface unevenness. In model systems, FPM demonstrates high image quality, efficiency, and consistency in detection of tumor cells when comparing corresponding microfilter samples to standard microscopy with high correlation (R2=0.99932). Based on these results, we believe that FPM will have important implications for improved, high throughput, filtration-based CTC analysis, and, more generally, image analysis of uneven surfaces.

  8. Towards Engineered Processes for Sequencing-Based Analysis of Single Circulating Tumor Cells.

    Science.gov (United States)

    Adalsteinsson, Viktor A; Love, J Christopher

    2014-05-01

    Sequencing-based analysis of single circulating tumor cells (CTCs) has the potential to revolutionize our understanding of metastatic cancer and improve clinical care. Technologies exist to enrich, identify, recover, and sequence single cells, but to enable systematic routine analysis of single CTCs from a range of cancer patients, there is a need to establish processes that efficiently integrate these specific operations. Such engineered processes should address challenges associated with the yield and viability of enriched CTCs, the robust identification of candidate single CTCs with minimal degradation of DNA, the bias in whole-genome amplification, and the efficient handling of candidate single CTCs or their amplified DNA products. Advances in methods for single-cell analysis and nanoscale technologies suggest opportunities to overcome these challenges, and could create integrated platforms that perform several of the unit operations together. Ultimately, technologies should be selected or adapted for optimal performance and compatibility in an integrated process. PMID:24839591

  9. Tumor classification: molecular analysis meets Aristotle

    OpenAIRE

    Berman Jules J

    2004-01-01

    Abstract Background Traditionally, tumors have been classified by their morphologic appearances. Unfortunately, tumors with similar histologic features often follow different clinical courses or respond differently to chemotherapy. Limitations in the clinical utility of morphology-based tumor classifications have prompted a search for a new tumor classification based on molecular analysis. Gene expression array data and proteomic data from tumor samples will provide complex data that is unobt...

  10. Convex-Optimization-Based Compartmental Pharmacokinetic Analysis for Prostate Tumor Characterization Using DCE-MRI.

    Science.gov (United States)

    Ambikapathi, ArulMurugan; Chan, Tsung-Han; Lin, Chia-Hsiang; Yang, Fei-Shih; Chi, Chong-Yung; Wang, Yue

    2016-04-01

    Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a powerful imaging modality to study the pharmacokinetics in a suspected cancer/tumor tissue. The pharmacokinetic (PK) analysis of prostate cancer includes the estimation of time activity curves (TACs), and thereby, the corresponding kinetic parameters (KPs), and plays a pivotal role in diagnosis and prognosis of prostate cancer. In this paper, we endeavor to develop a blind source separation algorithm, namely convex-optimization-based KPs estimation (COKE) algorithm for PK analysis based on compartmental modeling of DCE-MRI data, for effective prostate tumor detection and its quantification. The COKE algorithm first identifies the best three representative pixels in the DCE-MRI data, corresponding to the plasma, fast-flow, and slow-flow TACs, respectively. The estimation accuracy of the flux rate constants (FRCs) of the fast-flow and slow-flow TACs directly affects the estimation accuracy of the KPs that provide the cancer and normal tissue distribution maps in the prostate region. The COKE algorithm wisely exploits the matrix structure (Toeplitz, lower triangular, and exponential decay) of the original nonconvex FRCs estimation problem, and reformulates it into two convex optimization problems that can reliably estimate the FRCs. After estimation of the FRCs, the KPs can be effectively estimated by solving a pixel-wise constrained curve-fitting (convex) problem. Simulation results demonstrate the efficacy of the proposed COKE algorithm. The COKE algorithm is also evaluated with DCE-MRI data of four different patients with prostate cancer and the obtained results are consistent with clinical observations. PMID:26292336

  11. The analysis of respiration-induced pancreatic tumor motion based on reference measurement

    International Nuclear Information System (INIS)

    To evaluate pancreatic tumor motion and its dynamics during respiration. This retrospective study includes 20 patients with unresectable pancreatic cancer who were treated with stereotactic ablative radiotherapy. An online respiratory tumor tracking system was used. Periodical maximum and minimum tumor positions with respiration in superior-inferior (SI), latero-lateral (LL), and anterior-posterior (AP) directions were collected for tumor motion evaluation. The predictability of tumor motion in each axis, based on reference measurement, was analyzed. The use of a 20-mm and 5-mm constant margins for SI and LL/AP directions, avoids target underdosage, without the need for reference measurement. Pearson’s correlation coefficient indicated only a modest correlation between reference and subsequent measurements in the SI direction (r = 0.50) and no correlation in LL (r = 0.17) and AP (r = 0.35) directions. When margins based on the reference measurement of respiratory tumor motion are used, then 30% of patients have a risk zone of underdosage >3 mm (in average). ITV (internal target volume) optimization based on the reference measurement is possible, but allows only modest margin reduction (approximately from 20 mm to 16-17 mm) in SI direction and no reduction in AP and LL directions. Our results support the use of 20-mm margin in the SI direction and 5-mm margins in the LL and AP directions to account for respiratory motion without reference measurement. Single measurement of tumor motion allows only modest margin reduction. Further margin reduction is only possible when there is on-line tumor motion control according to internal markers

  12. Tumor type resulting in upgrade: An analysis based on 333 low grade soft tissue sarcoma

    Directory of Open Access Journals (Sweden)

    Langer, Stefan

    2014-11-01

    Full Text Available [english] Introduction: Soft tissue sarcomas (STS are rare tumors. Based on histopathological criteria, three grades are distinguished from low (G1 to intermediate (G2 and high grade (G3. After complete initial surgical resection, some G1 STS recur as lesions with an upgrade of a previous G1 STS to a recurrent G2 STS. This upgrade indicates higher malignancy of the STS. Our aim was to find possible risk factors for these upgrades including age, localization of tumor and tumor type. Methods: This retrospective case-control study evaluated 333 patients. Of these 333, 54.7% were male and 45.3% female. All patients underwent R0 resections and among these, 10% subsequently upgraded. The processed data include age, gender, tumor type, tumor localization, local recurrence and upgrade. Results: Patients with upgrades have a higher mean age of 5.5 years than our reference collective. The tumor type has a significant effect on upgrades. Patients with fibrosarcomas are at a threefold risk of an upgrade compared to patients with other G1 STS.Conclusion: Our results indicate that age and tumor type play a key role in upgrades in G1 STS. Patients, age 60 and above and diagnosed with G1 fibrosarcomas, are three times as likely to upgrade compared to patients younger than 60 with other G1 STS. We discuss the significance of these risk factors and whether aside from complete tumor resection, additional therapies (e.g. irradiation may be applied to improve therapeutic outcome.

  13. Tumor classification: molecular analysis meets Aristotle

    International Nuclear Information System (INIS)

    Traditionally, tumors have been classified by their morphologic appearances. Unfortunately, tumors with similar histologic features often follow different clinical courses or respond differently to chemotherapy. Limitations in the clinical utility of morphology-based tumor classifications have prompted a search for a new tumor classification based on molecular analysis. Gene expression array data and proteomic data from tumor samples will provide complex data that is unobtainable from morphologic examination alone. The growing question facing cancer researchers is, 'How can we successfully integrate the molecular, morphologic and clinical characteristics of human cancer to produce a helpful tumor classification?' Current efforts to classify cancers based on molecular features ignore lessons learned from millennia of experience in biological classification. A tumor classification must include every type of tumor and must provide a unique place for each tumor within the classification. Groups within a classification inherit the properties of their ancestors and impart properties to their descendants. A classification was prepared grouping tumors according to their histogenetic development. The classification is simple (reducing the complexity of information received from the molecular analysis of tumors), comprehensive (providing a place for every tumor of man), and consistent with recent attempts to characterize tumors by cytogenetic and molecular features. The clinical and research value of this historical approach to tumor classification is discussed. This manuscript reviews tumor classification and provides a new and comprehensive classification for neoplasia that preserves traditional nomenclature while incorporating information derived from the molecular analysis of tumors. The classification is provided as an open access XML document that can be used by cancer researchers to relate tumor classes with heterogeneous experimental and clinical tumor

  14. In Silico Analysis of Microarray-Based Gene Expression Profiles Predicts Tumor Cell Response to Withanolides

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2012-05-01

    Full Text Available Withania somnifera (L. Dunal (Indian ginseng, winter cherry, Solanaceae is widely used in traditional medicine. Roots are either chewed or used to prepare beverages (aqueous decocts. The major secondary metabolites of Withania somnifera are the withanolides, which are C-28-steroidal lactone triterpenoids. Withania somnifera extracts exert chemopreventive and anticancer activities in vitro and in vivo. The aims of the present in silico study were, firstly, to investigate whether tumor cells develop cross-resistance between standard anticancer drugs and withanolides and, secondly, to elucidate the molecular determinants of sensitivity and resistance of tumor cells towards withanolides. Using IC50 concentrations of eight different withanolides (withaferin A, withaferin A diacetate, 3-azerininylwithaferin A, withafastuosin D diacetate, 4-B-hydroxy-withanolide E, isowithanololide E, withafastuosin E, and withaperuvin and 19 established anticancer drugs, we analyzed the cross-resistance profile of 60 tumor cell lines. The cell lines revealed cross-resistance between the eight withanolides. Consistent cross-resistance between withanolides and nitrosoureas (carmustin, lomustin, and semimustin was also observed. Then, we performed transcriptomic microarray-based COMPARE and hierarchical cluster analyses of mRNA expression to identify mRNA expression profiles predicting sensitivity or resistance towards withanolides. Genes from diverse functional groups were significantly associated with response of tumor cells to withaferin A diacetate, e.g. genes functioning in DNA damage and repair, stress response, cell growth regulation, extracellular matrix components, cell adhesion and cell migration, constituents of the ribosome, cytoskeletal organization and regulation, signal transduction, transcription factors, and others.

  15. Optimal Design Strategies of Femur Tumor Hyperthermia Based on Finite Element Analysis of Temperature Field

    Institute of Scientific and Technical Information of China (English)

    Monan Wang∗; Lei Sun

    2015-01-01

    A 3D femoral model was built to obtain the three⁃dimensional temperature distribution of femur and its surrounding tissues and provide references for clinical applications. According to the relationship between gray⁃value and material properties, the model was assigned with various materials to make sure that it is more similar to the real femur in geometry and physical properties. 3D temperature distribution is obtained by using finite element analysis software ANSYS 11�0 on the basis of heat conduction theory, Laplace equation, Pennes bio⁃heat transfer equation, thermo physical parameters of bone tissues, the boundary condition, and initial conditions. Taken the asymmetry of the 3D distribution of temperature into account, it is necessary to adopt the heating method with multiple heat sources. This method can ensure that the temperature fields match well with the tumor tissues and kill the tumor cells efficiently under the condition of protecting the normal tissues from damage. The analysis results supply important guidance for determining the needle position and the needle number and controlling the intensity of heating.

  16. Analysis of tumor suppressor genes based on gene ontology and the KEGG pathway.

    Directory of Open Access Journals (Sweden)

    Jing Yang

    Full Text Available Cancer is a serious disease that causes many deaths every year. We urgently need to design effective treatments to cure this disease. Tumor suppressor genes (TSGs are a type of gene that can protect cells from becoming cancerous. In view of this, correct identification of TSGs is an alternative method for identifying effective cancer therapies. In this study, we performed gene ontology (GO and pathway enrichment analysis of the TSGs and non-TSGs. Some popular feature selection methods, including minimum redundancy maximum relevance (mRMR and incremental feature selection (IFS, were employed to analyze the enrichment features. Accordingly, some GO terms and KEGG pathways, such as biological adhesion, cell cycle control, genomic stability maintenance and cell death regulation, were extracted, which are important factors for identifying TSGs. We hope these findings can help in building effective prediction methods for identifying TSGs and thereby, promoting the discovery of effective cancer treatments.

  17. Analysis of precision in tumor tracking based on optical positioning system during radiotherapy.

    Science.gov (United States)

    Zhou, Han; Shen, Junshu; Li, Bing; Chen, Junting; Zhu, Xixu; Ge, Yun; Wang, Yongjian

    2016-03-19

    Tumor tracking is performed during patient set-up and monitoring of respiratory motion in radiotherapy. In the clinical setting, there are several types of equipment for this set-up such as the Electronic Portal imaging Device (EPID) and Cone Beam CT (CBCT). Technically, an optical positioning system tracks the difference between the infra ball reflected from body and machine isocenter. Our objective is to compare the clinical positioning error of patient setup between Cone Beam CT (CBCT) with the Optical Positioning System (OPS), and to evaluate the traditional positioning systems and OPS based on our proposed approach of patient positioning. In our experiments, a phantom was used, and we measured its setup errors in three directions. Specifically, the deviations in the left-to-right (LR), anterior-to-posterior (AP) and inferior-to-superior (IS) directions were measured by vernier caliper on a graph paper using the Varian Linear accelerator. Then, we verified the accuracy of OPS based on this experimental study. In order to verify the accuracy of phantom experiment, 40 patients were selected in our radiotherapy experiment. To illustrate the precise of optical positioning system, we designed clinical trials using EPID. From our radiotherapy procedure, we can conclude that OPS has higher precise than conventional positioning methods, and is a comparatively fast and efficient positioning method with respect to the CBCT guidance system. PMID:27257880

  18. Analysis of the relationship between tumor dose inhomogeneity and local control in patients with skull base chordoma

    International Nuclear Information System (INIS)

    Purpose: When irradiating a tumor that abuts or displaces any normal structures, the dose constraints to those structures (if lower than the prescribed dose) may cause dose inhomogeneity in the tumor volume at the tumor-critical structure interface. The low-dose region in the tumor volume may be one of the reasons for local failure. The aim of this study is to quantitate the effect of tumor dose inhomogeneity on local control and recurrence-free survival in patients with skull base chordoma. Methods and Materials: 132 patients with skull base chordoma were treated with combined photon and proton irradiation between 1978 and 1993. This study reviews 115 patients whose dose-volume data and follow-up data are available. The prescribed doses ranged from 66.6 Cobalt-Gray-Equivalent (CGE) to 79.2 CGE (median of 68.9 CGE). The dose to the optic structures (optic nerves and chiasma), the brain stem surface, and the brain stem center was limited to 60, 64, and 53 CGE, respectively. We used the dose-volume histogram data derived with the three-dimensional treatment planning system to evaluate several dose-volume parameters including the Equivalent Uniform Dose (EUD). We also analyzed several other patient and treatment factors in relation to local control and recurrence-free survival. Results: Local failure developed in 42 of 115 patients, with the actuarial local control rates at 5 and 10 years being 59% and 44%. Gender was a significant predictor for local control with the prognosis in males being significantly better than that in females (P 0.004, hazard ratio = 2.3). In a Cox univariate analysis, with stratification by gender, the significant predictors for local control (at the probability level of 0.05) were EUD, the target volume, the minimum dose, and the D5cc dose. The prescribed dose, histology, age, the maximum dose, the mean dose, the median dose, the D90% dose, and the overall treatment time were not significant factors. In a Cox multivariate analysis, the

  19. Frequency filtering based analysis on the cardiac induced lung tumor motion and its impact on the radiotherapy management

    International Nuclear Information System (INIS)

    Purpose/objectives: Lung tumor motion may be impacted by heartbeat in addition to respiration. This study seeks to quantitatively analyze heart-motion-induced tumor motion and to evaluate its impact on lung cancer radiotherapy. Methods/materials: Fluoroscopy images were acquired for 30 lung cancer patients. Tumor, diaphragm, and heart were delineated on selected fluoroscopy frames, and their motion was tracked and converted into temporal signals based on deformable registration propagation. The clinical relevance of heart impact was evaluated using the dose volumetric histogram of the redefined target volumes. Results: Correlation was found between tumor and cardiac motion for 23 patients. The heart-induced motion amplitude ranged from 0.2 to 2.6 mm. The ratio between heart-induced tumor motion and the tumor motion was inversely proportional to the amplitude of overall tumor motion. When the heart motion impact was integrated, there was an average 9% increase in internal target volumes for 17 patients. Dose coverage decrease was observed on redefined planning target volume in simulated SBRT plans. Conclusions: The tumor motion of thoracic cancer patients is influenced by both heart and respiratory motion. The cardiac impact is relatively more significant for tumor with less motion, which may lead to clinically significant uncertainty in radiotherapy for some patients

  20. PERFORMANCE ANALYSIS OF BRAIN TUMOR DIAGNOSIS BASED ON SOFT COMPUTING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    P. Shantha Kumar

    2014-01-01

    Full Text Available Computed tomography images are widely used in the diagnosis of brain tumor because of its faster processing, avoiding malfunctions and suitability with physician and radiologist. This study proposes a new approach to automated detection of brain tumor. This proposed work consists of various stages in their diagnosis processing such as preprocessing, anisotropic diffusion, feature extraction and classification. The local binary patterns and gray level co-occurrence features, gray level and wavelet features are extracted and these features are trained and classified using Support vector machine classifier. The achieved results and quantitatively evaluated and compared with various ground truth images. The proposed method gives fast and better segmentation and classification rate by yielding 99.4% of sensitivity, 99.6% of specificity, 97.03% of positive predictive value and 99.5% of overall accuracy.

  1. Surgical Management of Solitary Nerve Sheath Tumors of the Cervical Spine: A Retrospective Case Analysis Based on Tumor Location and Extension

    OpenAIRE

    Abe, Junya; Takami, Toshihiro; NAITO, Kentaro; Yamagata, Toru; Arima, Hironori; Ohata, Kenji

    2014-01-01

    Complete resection of spinal nerve sheath tumors (NSTs) does not always result in significant neurological deficit. The purpose of this retrospective case analysis was to discuss the optimal surgical strategy for spinal NST of the cervical spine. Twenty-four patients who underwent surgery for solitary cervical NST over the past decade were included in this retrospective study. Patients with neurofibromatosis or schwannomatosis were excluded. Seventeen of the 24 cases (70.8%) showed extradural...

  2. Surgical management of solitary nerve sheath tumors of the cervical spine: a retrospective case analysis based on tumor location and extension.

    Science.gov (United States)

    Abe, Junya; Takami, Toshihiro; Naito, Kentaro; Yamagata, Toru; Arima, Hironori; Ohata, Kenji

    2014-01-01

    Complete resection of spinal nerve sheath tumors (NSTs) does not always result in significant neurological deficit. The purpose of this retrospective case analysis was to discuss the optimal surgical strategy for spinal NST of the cervical spine. Twenty-four patients who underwent surgery for solitary cervical NST over the past decade were included in this retrospective study. Patients with neurofibromatosis or schwannomatosis were excluded. Seventeen of the 24 cases (70.8%) showed extradural dumbbell extension, most frequently at the C1 or C2 vertebral level. Neurological condition was assessed using the modified McCormick functional schema and sensory pain scale. Total removal of the tumor was achieved in 20 of 24 cases (83.3%). Staged surgery using combined anterior and posterior approaches was applied for 2 of 17 cases with extradural dumbbell extension. Tumor involvement with nerve root fibers critical for upper extremity function (C5-C8) was recognized in 6 of 24 cases (25.0%), with complete resection in all 6 cases. Final assessment of neurological function revealed satisfactory or acceptable recovery in all 6 patients. Spinal NSTs with extradural dumbbell extension are a common condition in the cervical spine. Complete removal of spinal NST of the cervical spine may carry a risk of permanent neurological deficit, but such sequelae appeared to be the exception in the present case analysis. A radical and safe surgical strategy, including staged surgery combining anterior and posterior approaches, should be tailored to the individual case. PMID:25367583

  3. Texture-based analysis of 100 MR examinations of head and neck tumors. Is it possible to discriminate between benign and malignant masses in a multicenter trial?

    International Nuclear Information System (INIS)

    To evaluate whether texture-based analysis of standard MRI sequences can help in the discrimination between benign and malignant head and neck tumors. The MR images of 100 patients with a histologically clarified head or neck mass, from two different institutions, were analyzed. Texture-based analysis was performed using texture analysis software, with region of interest measurements for 2D and 3D evaluation independently for all axial sequences. COC, RUN, GRA, ARM, and WAV features were calculated for all ROIs. 10 texture feature subsets were used for a linear discriminant analysis, in combination with k-nearest-neighbor classification. Benign and malignant tumors were compared with regard to texture-based values. There were differences in the images from different field-strength scanners, as well as from different vendors. For the differentiation of benign and malignant tumors, we found differences on STIR and T2-weighted images for 2D, and on contrast-enhanced T1-TSE with fat saturation for 3D evaluation. In a separate analysis of the subgroups 1.5 and 3 Tesla, more discriminating features were found. Texture-based analysis is a useful tool in the discrimination of benign and malignant tumors when performed on one scanner with the same protocol. We cannot recommend this technique for the use of multicenter studies with clinical data.

  4. Texture-based analysis of 100 MR examinations of head and neck tumors. Is it possible to discriminate between benign and malignant masses in a multicenter trial?

    Energy Technology Data Exchange (ETDEWEB)

    Fruehwald-Pallamar, J.; Czerny, C. [Medical University of Vienna (Austria). Subdiv. of Neuroradiology and Musculoskeletal Radiology; Hesselink, J.R.; Mafee, M.F. [UCSD Medical Center, San Diego, CA (United States). Dept. of Radiology; Holzer-Fruehwald, L.; Mayerhoefer, M.E. [Medical University of Vienna (Austria). Dept. of Biomedical Imaging and Image-Guided Therapy

    2016-02-15

    To evaluate whether texture-based analysis of standard MRI sequences can help in the discrimination between benign and malignant head and neck tumors. The MR images of 100 patients with a histologically clarified head or neck mass, from two different institutions, were analyzed. Texture-based analysis was performed using texture analysis software, with region of interest measurements for 2D and 3D evaluation independently for all axial sequences. COC, RUN, GRA, ARM, and WAV features were calculated for all ROIs. 10 texture feature subsets were used for a linear discriminant analysis, in combination with k-nearest-neighbor classification. Benign and malignant tumors were compared with regard to texture-based values. There were differences in the images from different field-strength scanners, as well as from different vendors. For the differentiation of benign and malignant tumors, we found differences on STIR and T2-weighted images for 2D, and on contrast-enhanced T1-TSE with fat saturation for 3D evaluation. In a separate analysis of the subgroups 1.5 and 3 Tesla, more discriminating features were found. Texture-based analysis is a useful tool in the discrimination of benign and malignant tumors when performed on one scanner with the same protocol. We cannot recommend this technique for the use of multicenter studies with clinical data.

  5. Automated brain tumor segmentation in magnetic resonance imaging based on sliding-window technique and symmetry analysis

    Institute of Scientific and Technical Information of China (English)

    Lian Yanyun; Song Zhijian

    2014-01-01

    Background Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning,treatment planning,monitoring of therapy.However,manual tumor segmentation commonly used in clinic is time-consuming and challenging,and none of the existed automated methods are highly robust,reliable and efficient in clinic application.An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results.Methods Based on the symmetry of human brain,we employed sliding-window technique and correlation coefficient to locate the tumor position.At first,the image to be segmented was normalized,rotated,denoised,and bisected.Subsequently,through vertical and horizontal sliding-windows technique in turn,that is,two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image,along with calculating of correlation coefficient of two windows,two windows with minimal correlation coefficient were obtained,and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor.At last,the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length,and threshold segmentation and morphological operations were used to acquire the final tumor region.Results The method was evaluated on 3D FSPGR brain MR images of 10 patients.As a result,the average ratio of correct location was 93.4% for 575 slices containing tumor,the average Dice similarity coefficient was 0.77 for one scan,and the average time spent on one scan was 40 seconds.Conclusions An fully automated,simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use.Correlation coefficient is a new and effective feature for tumor

  6. Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures

    Directory of Open Access Journals (Sweden)

    Iris Eke

    2015-11-01

    Full Text Available Analysis of signal transduction and protein phosphorylation is fundamental to understand physiological and pathological cell behavior as well as identification of novel therapeutic targets. Despite the fact that more physiological three-dimensional cell culture assays are increasingly used, particularly proteomics and phosphoproteomics remain challenging due to easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates without compromising cell adhesion before cell lysis. The samples can be used for Western blotting as well as phosphoproteome array technology. This technique would be of interest for researchers working in all fields of biology and drug development.

  7. Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in capsule endoscopy.

    Science.gov (United States)

    Liu, Gang; Yan, Guozheng; Kuang, Shuai; Wang, Yongbing

    2016-03-01

    Wireless capsule endoscopy (WCE) has been a revolutionary technique to noninvasively inspect gastrointestinal (GI) tract diseases, especially small bowel tumor. However, it is a tedious task for physicians to examine captured images. To develop a computer-aid diagnosis tool for relieving the huge burden of physicians, the intestinal video data from 89 clinical patients with the indications of potential tumors was analyzed. Out of the 89 patients, 15(16.8%) were diagnosed with small bowel tumor. A novel set of textural features that integrate multi-scale curvelet and fractal technology were proposed to distinguish normal images from tumor images. The second order textural descriptors as well as higher order moments between different color channels were computed from images synthesized by the inverse curvelet transform of the selected scales. Then, a classification approach based on support vector machine (SVM) and genetic algorithm (GA) was further employed to select the optimal feature set and classify the real small bowel images. Extensive comparison experiments validate that the proposed automatic diagnosis scheme achieves a promising tumor classification performance of 97.8% sensitivity and 96.7% specificity in the selected images from our clinical data. PMID:26829705

  8. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y [University of Kansas Hospital, Kansas City, KS (United States); Fullerton, G; Goins, B [University of Texas Health Science Center at San Antonio, San Antonio, TX (United States)

    2015-06-15

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  9. SU-E-I-83: Error Analysis of Multi-Modality Image-Based Volumes of Rodent Solid Tumors Using a Preclinical Multi-Modality QA Phantom

    International Nuclear Information System (INIS)

    Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group; 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement

  10. Diagnosis of pancreatic carcinoma based on combined measurement of multiple serum tumor markers using artificial neural network analysis

    Institute of Scientific and Technical Information of China (English)

    Yang Yingchi; Chen Hui; Wang Dong; Luo Wei; Zhu Biyun; Zhang Zhongtao

    2014-01-01

    Background Artificial neural network (ANN) has demonstrated the ability to assimilate information from multiple sources to enable the detection of subtle and complex patterns.In this reseamh,we evaluated an ANN model in the diagnosis of pancreatic cancer using multiple serum markers.Methods In this retrospective analysis,913 serum specimens collected at the Department of General Surgery of Beijing Friendship Hospital were analyzed for carbohydrate antigen 19-9 (CA19-9),carbohydrate antigen 125 (CA125),and caminoembryonic antigen (CEA).The three tumor marker values were used as inputs into an ANN and randomized into a training set of 658 (70.31% were malignant) and a test set of the remaining 255 samples (70.69% were malignant).The samples were also evaluated using a Logistic regression (LR) model.Results The ANN-derived composite index was superior to each of the serum tumor markers alone and the Logistic regression model.The areas under receiver operating characteristic curves (AUROC) was 0.905 (95% confidence Interval (CI) 0.868-0.942) for ANN,0.812 (95% CI 0.762-0.863) for the Logistic regression model,0.845 (95% CI 0.798-0.893)for CA19-9,0.795 (95% CI 0.738-0.851) for CA125,and 0.800 (95% Cl 0.746-0.854) for CEA.ANN analysis of multiple markers yielded a high level of diagnostic accuracy (83.53%) compared to LR (74.90%).Conclusion The performance of ANN model in the diagnosis of pancreatic cancer is better than the single tumor marker and LR model.

  11. Morphologic Analysis of Pulmonary Neuroendocrine Tumors

    OpenAIRE

    Lee, Seung Seok; Kang, Myunghee; Ha, Seung Yeon; An, Jungsuk; Roh, Mee Sook; Ha, Chang Won; Han, Jungho

    2013-01-01

    Background Few studies on how to diagnose pulmonary neuroendocrine tumors through morphometric analysis have been reported. In this study, we measured and analyzed the characteristic parameters of pulmonary neuroendocrine tumors using an image analyzer to aid in diagnosis. Methods Sixteen cases of typical carcinoid tumor, 5 cases of atypical carcinoid tumor, 15 cases of small cell carcinoma, and 51 cases of large cell neuroendocrine carcinoma were analyzed. Using an image analyzer, we measure...

  12. Four-dimensional computed tomography based assessment and analysis of lung tumor motion during free-breathing respiration

    International Nuclear Information System (INIS)

    Objective: To quantify the amplitudes of lung tumor motion during free-breathing using four dimensional computed tomography (4DCT), and seek the characteristics of tumors with large motion. Methods: Respiratory-induced tumor motion was analyzed for 44 tumors from 43 patients. All patients un-derwent 4DCT during free-breathing before treatment. Gross tumor volumes (GTV) on ten respiratory phases were contoured by the same doctor. The centroids of GTVs were autoplaced with treatment software (ADAC Pinnacle 7.4f), then the amplitudes of tumor motion were assessed. The various clinical and anatomic factors associated with GTV motion were analyzed. The characteristics of tumors with motion greater than 5 mm in any direction were explored. Results: The tumor motion was found to be associated with T stage, GTV size, the superior-inferior (SI) tumor location in the lung, and the attachment to rigid structures such as the chest wall, vertebrae or mediastinum. The motion over 5 mm was observed in ten tumors, which were all located in the lower or posterior half of the lung, with the greatest motion of 14.4 mm. For 95% of the tumors, the magnitude of motion was less than I 1.8 mm, 4.6 mm and 2.7 mm along the SI, anterior-posterior (AP) and lateral directions, respectively. Conclusions: Tumor motion due to breathing is associated with tumor location, volume, and T stage. The greatest motion was in the SI direction for unfixed tumor in lower-lobe, followed by tumor in upper-lobe posterior-segment. (authors)

  13. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    International Nuclear Information System (INIS)

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (Ktrans) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in Ktrans but with large uncertainty (111.6 ± 150.5) %. Conclusions: Parametric

  14. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Coolens, Catherine, E-mail: catherine.coolens@rmp.uhn.on.ca [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada); Driscoll, Brandon [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Chung, Caroline [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Shek, Tina; Gorjizadeh, Alborz [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Ménard, Cynthia [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Jaffray, David [Radiation Medicine Program, Princess Margaret Cancer Center and University Health Network, Toronto, Ontario (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario (Canada)

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from a 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions

  15. Use of sodium fluorescein in skull base tumors

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo da Silva

    2010-10-01

    Full Text Available Objective: The authors present this study using sodium fluorescein (SF to enhance skull base tumors by performing a quantitative digital analysis of tumor enhancement. The purpose of this study is to observe the grade of SF enhancement by the tumors.Methods: A prospective experiment within-subjects study design was performed which included six patients with skull base lesions. Digital pictures were taken before and after the SF systemic injection, using the same light source of the microsurgical field. The pictures were analyzed by computer software which calculated the wavelength (WL of the SF pre- and post-injection.Results: The group of tumors was as follows: one vestibular schwannoma, three meningiomas, one craniopharyngioma and one pituitary adenoma. The SF enhancement in all tumors was strongly positive. The digital analysis of the pictures, considering the SF WL pre- and post-injection, presented P = 0.028 (Wilcoxon T test.Conclusions: The enhancement of the tumors by SF was consistent and evident. The introductory results suggest the possibility of using SF as an adjuvant tool for the skull base surgery. Further studies should test the clinical application of the SF in skull base tumors.

  16. Meta-Analysis of Oxaliplatin-Based Chemotherapy Combined With Traditional Medicines for Colorectal Cancer: Contributions of Specific Plants to Tumor Response.

    Science.gov (United States)

    Chen, Menghua; May, Brian H; Zhou, Iris W; Xue, Charlie C L; Zhang, Anthony L

    2016-03-01

    This meta-analysis evaluates the clinical evidence for the addition of traditional medicines (TMs) to oxaliplatin-based regimens for colorectal cancer (CRC) in terms of tumor response rate (TRR). Eight electronic databases were searched for randomized controlled trials of oxaliplatin-based chemotherapy combined with TMs compared to the same oxaliplatin-based regimen. Data on TRR from 42 randomized controlled trials were analyzed using Review Manager 5.1. Studies were conducted in China or Japan. Publication bias was not evident. The meta-analyses suggest that the combination of the TMs with oxaliplatin-based regimens increased TRR in the palliative treatment of CRC (risk ratio [RR] 1.31 [1.20-1.42], I(2) = 0%). Benefits were evident for both injection products (RR 1.36 [1.18-1.57], I(2) = 0%) and orally administered TMs (RR 1.27 [1.15-1.41], I(2) = 0%). Further sensitivity analysis of specific plant-based TMs found that Paeonia, Curcuma, and Sophora produced consistently higher contributions to the RR results. Compounds in each of these TMs have shown growth-inhibitory effects in CRC cell-line studies. Specific combinations of TMs appeared to produce higher contributions to TRR than the TMs individually. Notable among these was the combination of Hedyotis, Astragalus, and Scutellaria. PMID:26254190

  17. Development and Application of Microarray-Based Comparative Genomic Hybridization : Analysis of Neurofibromatosis Type-2, Schwannomatosis and Related Tumors

    OpenAIRE

    Buckley, Patrick

    2005-01-01

    Neurofibromatosis type-2 (NF2) is an autosomal dominant disorder with the clinical hallmark of bilateral eighth cranial nerve schwannomas. However, the diagnostic criterion is complicated by the presence of a variable phenotype, with the severe form presenting with additional tumors such as peripheral schwannoma, meningioma and ependymoma. We constructed a microarray spanning 11Mb of 22q, encompassing the NF2 gene, to detect deletions in schwannoma. Forty seven patients were analyzed and hete...

  18. Should Patient Setup in Lung Cancer Be Based on the Primary Tumor? An Analysis of Tumor Coverage and Normal Tissue Dose Using Repeated Positron Emission Tomography/Computed Tomography Imaging

    International Nuclear Information System (INIS)

    Purpose: Evaluation of the dose distribution for lung cancer patients using a patient setup procedure based on the bony anatomy or the primary tumor. Methods and materials: For 39 patients with non–small-cell lung cancer, the planning fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) scan was registered to a repeated FDG-PET/CT scan made in the second week of treatment. Two patient setup methods were analyzed based on the bony anatomy or the primary tumor. The original treatment plan was copied to the repeated scan, and target and normal tissue structures were delineated. Dose distributions were analyzed using dose–volume histograms for the primary tumor, lymph nodes, lungs, and spinal cord. Results: One patient showed decreased dose coverage of the primary tumor caused by progressive disease and required replanning to achieve adequate coverage. For the other patients, the minimum dose to the primary tumor did not significantly deviate from the planned dose: −0.2 ± 1.7% (p = 0.71) and −0.1 ± 1.7% (p = 0.85) for the bony anatomy setup and the primary tumor setup, respectively. For patients (n = 31) with nodal involvement, 10% showed a decrease in minimum dose larger than 5% for the bony anatomy setup and 13% for the primary tumor setup. The mean lung dose exceeded the maximum allowed 20 Gy in 21% of the patients for the bony anatomy setup and in 13% for the primary tumor setup, whereas for the spinal cord this occurred in 10% and 13% of the patients, respectively. Conclusions: In 10% and 13% of patients with nodal involvement, setup based on bony anatomy or primary tumor, respectively, led to important dose deviations in nodal target volumes. Overdosage of critical structures occurred in 10–20% of the patients. In cases of progressive disease, repeated imaging revealed underdosage of the primary tumor. Development of practical ways for setup procedures based on repeated high-quality imaging of all tumor sites during

  19. Wavelet Based Image Fusion for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    CYN Dwith

    2013-01-01

    Full Text Available Brain tumor, is one of the major causes for the increase in mortality among children and adults. Detecting the regions of brain is the major challenge in tumor detection. In the field of medical image processing, multi sensor images are widely being used as potential sources to detect brain tumor. In this paper, a wavelet based image fusion algorithm is applied on the Magnetic Resonance (MR images and Computed Tomography (CT images which are used as primary sources to extract the redundant and complementary information in order to enhance the tumor detection in the resultant fused image. The main features taken into account for detection of brain tumor are location of tumor and size of the tumor, which is further optimized through fusion of images using various wavelet transforms parameters. We discuss and enforce the principle of evaluating and comparing the performance of the algorithm applied to the images with respect to various wavelets type used for the wavelet analysis. The performance efficiency of the algorithm is evaluated on the basis of PSNR values. The obtained results are compared on the basis of PSNR with gradient vector field and big bang optimization. The algorithms are analyzed in terms of performance with respect to accuracy in estimation of tumor region and computational efficiency of the algorithms.

  20. First epidemiological analysis of breast cancer incidence and tumor characteristics after implementation of population-based digital mammography screening

    International Nuclear Information System (INIS)

    Purpose: to epidemiologically evaluate the impact of digital mammography screening on incidence rates and tumor characteristics for breast cancer. Materials and methods: the first German digital screening units in the clinical routine were evaluated during the implementation period by using data from the cancer registry to compare the incidence rate of breast cancers and prognostic characteristics. 74% of women aged 50-69 within the region of Muenster/Coesfeld/Warendorf were invited between 10/2005 and 12/2007 for initial screening; 55% participated (n = 35961). Results: in 2002-2004 the average breast cancer incidence rate (per 100000) was 297.9. During the implementation of screening, the rate rose to 532.9 in 2007. Of the 349 cancers detected with screening, 76% (265/349) were invasive compared to 90% (546/608) of cases not detected with screening during the same period. 37% (97/265) of cancers detected in the screening program had a diameter of ≤ 10 mm and 75% (198/265) were node-negative compared to 15% (79/546) and 64% (322/503), respectively, in cancers detected outside the screening program. The distribution of invasive tumor size (pT categories) and the nodal status differed with statistical significance between cancers detected in and outside the program (p = 0.005 and p = 0.004, respectively). (orig.)

  1. Anterior and middle skull base reconstruction after tumor resection

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; WU Sheng-tian; LI Zhi; LIU Pi-nan

    2010-01-01

    Background Surgical management of skull base tumors is still challenging today due to its sophisticated operation procedure. Surgeons who specialize in skull base surgery are making endeavor to promote the outcome of patients with skull base tumor. A reliable skull base reconstruction after tumor resection is of paramount importance in avoiding life-threatening complications, such as cerebrospinal fluid leakage and intracranial infection. This study aimed at investigating the indication, operation approach and operation technique of anterior and middle skull base reconstruction.Methods A retrospective analysis was carried out on 44 patients who underwent anterior and middle skull base reconstruction in the Department of Neurosurgery at Beijing Tiantan Hospital between March 2005 and March 2008. Different surgical approaches were selected according to the different regions involved by the tumor. Microsurgery was carried out for tumor resection and combined endoscopic surgery was performed in some cases. According to the different locations and sizes of various defects after tumor resection, an individualized skull base soft tissue reconstruction was carried out for each case with artificial materials, pedicled flaps, free autologous tissue, and free vascularized muscle flaps, separately. A skull base bone reconstruction was carried out in some cases simultaneously.Results Soft tissue reconstruction was performed in all 44 cases with a fascia lata repair in 9 cases, a free vascularized muscle flap in 1 case, a pedicled muscle flap in 14 cases, and a pedicled periosteal flap in 20 cases. Skull base bone reconstruction was performed on 10 cases simultaneously. The materials for bone reconstruction included titanium mesh, free autogenous bone, and a Medpor implant. The result of skull base reconstruction was satisfactory in all patients. Postoperative early-stage complications occurred in 10 cases with full recovery after conventional treatment.Conclusions The specific

  2. Skull base tumors; Tumoren der Schaedelbasis

    Energy Technology Data Exchange (ETDEWEB)

    Ahlhelm, F.; Naumann, N.; Grunwald, I.; Reith, W. [Klinik fuer Diagnostische und Interventionelle Neuroradiologie des Universitaetsklinikums des Saarlandes, Homburg/Saar (Germany); Nabhan, A.; Shariat, K. [Neurochirurgische Klinik des Universitaetsklinikums des Saarlandes, Homburg/Saar (Germany)

    2005-09-01

    Modern imaging techniques have great importance in the diagnosis and therapy of skull-base pathologies. Many of these lesions, especially in relation to their specific location, can be evaluated using CT and MR imaging. Tumors commonly found in the anterior skull base include carcinoma, rhabdomyosarcoma, esthesioneuroblastoma and meningioma. In the central cranial fossa, nasopharyngeal carcinoma, metastases, meningioma, pituitary adenoma and neurinoma have to be considered. The most common neoplasms of the posterior skull base, including the CP angle, are neurinoma, meningioma, nasopharyngeal carcinoma, chordoma and paraganglioma. One major task of imaging is the evaluation of the exact tumor extent as well as its relationship to the neighboring neurovascular structures. The purpose of this review is to recapitulate the most important anatomical landmarks of the skull base. The typical imaging findings of the most common tumors involving the skull base are also presented. (orig.) [German] Die moderne Bildgebung hat einen besonderen Stellenwert bei der Diagnostik und Therapie von Schaedelbasispathologien. Zahlreiche Laesionen koennen anhand ihrer CT- und MRT-Befunde, insbesondere unter Beruecksichtigung ihrer genauen Lokalisation, artdiagnostisch eingeordnet werden. Im Bereich der vorderen Schaedelbasis sind v. a. Karzinome, Rhabdomyosarkome, Aesthesioneuroblastome und Meningeome vorzufinden. Im Bereich der mittleren Schaedelbasis ist in erster Linie an nasopharyngeale Karzinome, Karzinommetastasen, Meningeome, Hypophysenadenome und Neurinome zu denken. Zu den haeufigsten Tumoren der hinteren Schaedelgrube, unter Einschluss des Kleinhirnbrueckenwinkels, gehoeren Neurinome, Meningeome, nasopharyngeale Karzinome, Karzinommetastasen, Chordome und Paragangliome. Eine wichtige Aufgabe der Schnittbildgebung liegt in der Bestimmung der exakten Tumorausdehnung und in der Beurteilung der Lagebeziehung des Tumors zu den komplexen anatomischen Strukturen wie Hirnnerven und

  3. WE-G-18C-09: Separating Perfusion and Diffusion Components From Diffusion Weighted MRI of Rectum Tumors Based On Intravoxel Incoherent Motion (IVIM) Analysis

    International Nuclear Information System (INIS)

    Purpose: Pseudodiffusion arises from the microcirculation of blood in the randomly oriented capillary network and contributes to the signal decay acquired using a multi-b value diffusion weighted (DW)-MRI sequence. This effect is more significant at low b-values and should be properly accounted for in apparent diffusion coefficient (ADC) calculations. The purpose of this study was to separate perfusion and diffusion component based on a biexponential and a segmented monoexponential model using IVIM analysis Methods. The signal attenuation is modeled as S(b) = S0[(1−f)exp(−bD) + fexp(−bD*)]. Fitting the biexponetial decay leads to the quantification of D, the true diffusion coefficient, D*, the pseudodiffusion coefficient, and f, the perfusion fraction. A nonlinear least squares fit and two segmented monoexponential models were used to derive the values for D, D*,‘and f. In the segmented approach b = 200 s/mm2 was used as the cut-off value for calculation of D. DW-MRI's of a rectum cancer patient were acquired before chemotherapy, before radiation therapy (RT), and 4 weeks into RT and were investigated as an example case. Results: Mean ADC for the tumor drawn on the DWI cases was 0.93, 1.0 and 1.13 10−3×mm2/s before chemotherapy, before RT and 4 weeks into RT. The mean (D.10−3 × mm2/s, D* 10−3 × mm2/s, and f %) based on biexponential fit was (0.67, 18.6, and 27.2%), (0.72, 17.7, and 28.9%) and (0.83,15.1, and 30.7%) at these time points. The mean (D, D* f) based on segmented fit was (0.72, 10.5, and 12.1%), (0.72, 8.2, and 17.4%) and (.82, 8.1, 16.5%) Conclusion: ADC values are typically higher than true diffusion coefficients. For tumors with significant perfusion effect, ADC should be analyzed at higher b-values or separated from the perfusion component. Biexponential fit overestimates the perfusion fraction because of increased sensitivity to noise at low b-values

  4. Nuclear Image Analysis Study of Neuroendocrine Tumors

    OpenAIRE

    Park, Meeja; Baek, Taehwa; Baek, Jongho; Son, Hyunjin; Kang, Dongwook; Kim, Jooheon; Lee, Hyekyung

    2012-01-01

    Background There is a subjective disagreement about nuclear chromatin in the field of pathology. Objective values of red, green, and blue (RGB) light intensities for nuclear chromatin can be obtained through a quantitative analysis using digital images. Methods We examined 10 cases of well differentiated neuroendocrine tumors of the rectum, small cell lung carcinomas, and moderately differentiated squamous cell lung carcinomas respectively. For each case, we selected 30 representative cells a...

  5. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation

    Directory of Open Access Journals (Sweden)

    Vinci Maria

    2012-03-01

    Full Text Available Abstract Background There is overwhelming evidence that in vitro three-dimensional tumor cell cultures more accurately reflect the complex in vivo microenvironment than simple two-dimensional cell monolayers, not least with respect to gene expression profiles, signaling pathway activity and drug sensitivity. However, most currently available three-dimensional techniques are time consuming and/or lack reproducibility; thus standardized and rapid protocols are urgently needed. Results To address this requirement, we have developed a versatile toolkit of reproducible three-dimensional tumor spheroid models for dynamic, automated, quantitative imaging and analysis that are compatible with routine high-throughput preclinical studies. Not only do these microplate methods measure three-dimensional tumor growth, but they have also been significantly enhanced to facilitate a range of functional assays exemplifying additional key hallmarks of cancer, namely cell motility and matrix invasion. Moreover, mutual tissue invasion and angiogenesis is accommodated by coculturing tumor spheroids with murine embryoid bodies within which angiogenic differentiation occurs. Highly malignant human tumor cells were selected to exemplify therapeutic effects of three specific molecularly-targeted agents: PI-103 (phosphatidylinositol-3-kinase (PI3K-mammalian target of rapamycin (mTOR inhibitor, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG (heat shock protein 90 (HSP90 inhibitor and CCT130234 (in-house phospholipase C (PLCγ inhibitor. Fully automated analysis using a Celigo cytometer was validated for tumor spheroid growth and invasion against standard image analysis techniques, with excellent reproducibility and significantly increased throughput. In addition, we discovered key differential sensitivities to targeted agents between two-dimensional and three-dimensional cultures, and also demonstrated enhanced potency of some agents against cell migration

  6. Retrospective analysis of canine mesenchymal tumors of skin and soft tissues

    Directory of Open Access Journals (Sweden)

    Aleksić-Kovačević Sanja

    2005-01-01

    Full Text Available Out of the total number of 632 tumor specimens obtained from dogs of different breeds over the period of last 66 months, cutaneous tumors were diagnosed in 211 cases, i.e., in 123 (58.3% male dogs and 88 (41.7% bitches, aged on average 7 years. Among the total number of 211 skin tumors 32 types of cutaneous neoplasms were diagnosed, with epithelial and melanocytic tumors being the most predominant (58.3%, followed by hematopoietic tumors (22.3% and mesenchymal tumors of the skin and soft tissues (19.4%. Cutaneous hematopoietic tumors comprising the total of 47 cases and mesenchymal tumors of the skin and soft tissues (41 cases were subjected to detailed histological analysis, as well as immunohistochemical analysis if necessary, and the tumors were classified based on the most recent WHO classification of cutaneous neoplasms. The large number of cutaneous hematopoietic tumors is the result of a large number of mastocytomas and histiocytomas. These tumors were benign in 14 (29.79% cases, while the remaining 33 (70.21% were malignant. Out of the total number of canine tumors examined based on the biopsy and section materials over the last five years at the Department of Pathology, skin tumors and mammary gland tumors were proved to be the two largest groups diagnosed in 33.4% and 36% of cases, respectively.

  7. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Combs, Stephanie E.; Kessel, Kerstin; Habermehl, Daniel; Debus, Jurgen [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany)], e-mail: Stephanie.Combs@med.uni-heidelberg.de; Haberer, Thomas [Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany); Jaekel, Oliver [Univ. Hospital of Heidelberg, Dept. of Radiation Oncology, Heidelberg (Germany); Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg (Germany)

    2013-10-15

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications.

  8. Proton and carbon ion radiotherapy for primary brain tumors and tumors of the skull base

    International Nuclear Information System (INIS)

    To analyze clinical concepts, toxicity and treatment outcome in patients with brain and skull base tumors treated with photons and particle therapy. Material and methods: In total 260 patients with brain tumors and tumors of the skull base were treated at the Heidelberg Ion Therapy Center (HIT). Patients enrolled in and randomized within prospective clinical trials as well as bony or soft tissue tumors are not included in this analysis. Treatment was delivered as protons, carbon ions, or combinations of photons and a carbon ion boost. All patients are included in a tight follow-up program. The median follow-up time is 12 months (range 2-39 months). Results: Main histologies included meningioma (n = 107) for skull base lesions, pituitary adenomas (n = 14), low-grade gliomas (n = 51) as well as high-grade gliomas (n = 55) for brain tumors. In all patients treatment could be completed without any unexpected severe toxicities. No side effects > CTC Grade III were observed. To date, no severe late toxicities were observed, however, for endpoints such as secondary malignancies or neuro cognitive side effects follow-up time still remains too short. Local recurrences were mainly seen in the group of high-grade gliomas or atypical meningiomas; for benign skull base meningiomas, to date, no recurrences were observed during follow-up. Conclusion: The specific benefit of particle therapy will potentially reduce the risk of secondary malignancies as well as improve neuro cognitive outcome and quality of life (QOL); thus, longer follow-up will be necessary to confirm these endpoints. Indication-specific trials on meningiomas and gliomas are underway to elucidate the role of protons and carbon ions in these indications

  9. Quantitative analysis of PET measurements in tumors

    International Nuclear Information System (INIS)

    The positron emission tomograhpy (PET) has been used for the evaluation of the characteristics of various tumors. The role of PET in oncology has been evolved from a pure research tool to a methodology of enormous clinical potential. The unique characteristics of PET imaging make sophisticated quantitation possible. Several quantitative methods, such as standardized uptake values (SUV), simplifield quantitation method, Patlak graphical analysis, and Sokoloff's glucose metabolism measurement, have been used in the field of oncology. However, each quantitative method has limitations of its own. For example, the SUV has been used as a quantitative index of glucose metabolism for tumor classification and monitoring response to treatment, even though it depends on blood glucose level, body configuration of patient, and scanning time. The quantitative methods of PET are reviewed and strategy for implementing these methods are presented

  10. Quantitation and gompertzian analysis of tumor growth

    DEFF Research Database (Denmark)

    Rygaard, K; Spang-Thomsen, M

    1998-01-01

    Human tumor xenografts in immune-deficient animals are used to establish tumor growth curves and for studying the effect of experimental therapy on tumor growth. In this review we describe a method for making serial measurements of tumor size in the nude mouse model as well as methods used to tra...

  11. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Science.gov (United States)

    ... are in the middle of a live endoscopic pituitary tumor surgery. I'm joined by my colleagues Dr. ... Neurosurgical Specialist based here in Norfolk, Virginia. The pituitary tumor surgery historically has been done using both specialties, ...

  12. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... are in the middle of a live endoscopic pituitary tumor surgery. I'm joined by my colleagues Dr. ... Neurosurgical Specialist based here in Norfolk, Virginia. The pituitary tumor surgery historically has been done using both specialties, ...

  13. Activity-based cost analysis of hepatic tumor ablation using CT-guided high-dose rate brachytherapy or CT-guided radiofrequency ablation in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    To analyse and compare the costs of hepatic tumor ablation with computed tomography (CT)-guided high-dose rate brachytherapy (CT-HDRBT) and CT-guided radiofrequency ablation (CT-RFA) as two alternative minimally invasive treatment options of hepatocellular carcinoma (HCC). An activity based process model was created determining working steps and required staff of CT-RFA and CT-HDRBT. Prorated costs of equipment use (purchase, depreciation, and maintenance), costs of staff, and expenditure for disposables were identified in a sample of 20 patients (10 treated by CT-RFA and 10 by CT-HDRBT) and compared. A sensitivity and break even analysis was performed to analyse the dependence of costs on the number of patients treated annually with both methods. Costs of CT-RFA were nearly stable with mean overall costs of approximately 1909 €, 1847 €, 1816 € and 1801 € per patient when treating 25, 50, 100 or 200 patients annually, as the main factor influencing the costs of this procedure was the single-use RFA probe. Mean costs of CT-HDRBT decreased significantly per patient ablation with a rising number of patients treated annually, with prorated costs of 3442 €, 1962 €, 1222 € and 852 € when treating 25, 50, 100 or 200 patients, due to low costs of single-use disposables compared to high annual fix-costs which proportionally decreased per patient with a higher number of patients treated annually. A break-even between both methods was reached when treating at least 55 patients annually. Although CT-HDRBT is a more complex procedure with more staff involved, it can be performed at lower costs per patient from the perspective of the medical provider when treating more than 55 patients compared to CT-RFA, mainly due to lower costs for disposables and a decreasing percentage of fixed costs with an increasing number of treatments

  14. Analytical validation of the PAM50-based Prosigna Breast Cancer Prognostic Gene Signature Assay and nCounter Analysis System using formalin-fixed paraffin-embedded breast tumor specimens

    International Nuclear Information System (INIS)

    NanoString’s Prosigna™ Breast Cancer Prognostic Gene Signature Assay is based on the PAM50 gene expression signature. The test outputs a risk of recurrence (ROR) score, risk category, and intrinsic subtype (Luminal A/B, HER2-enriched, Basal-like). The studies described here were designed to validate the analytical performance of the test on the nCounter Analysis System across multiple laboratories. Analytical precision was measured by testing five breast tumor RNA samples across 3 sites. Reproducibility was measured by testing replicate tissue sections from 43 FFPE breast tumor blocks across 3 sites following independent pathology review at each site. The RNA input range was validated by comparing assay results at the extremes of the specified range to the nominal RNA input level. Interference was evaluated by including non-tumor tissue into the test. The measured standard deviation (SD) was less than 1 ROR unit within the analytical precision study and the measured total SD was 2.9 ROR units within the reproducibility study. The ROR scores for RNA inputs at the extremes of the range were the same as those at the nominal input level. Assay results were stable in the presence of moderate amounts of surrounding non-tumor tissue (<70% by area). The analytical performance of NanoString’s Prosigna assay has been validated using FFPE breast tumor specimens across multiple clinical testing laboratories

  15. Imaging tumors with peptide-based radioligands

    Energy Technology Data Exchange (ETDEWEB)

    Behr, T. M.; Gotthardt, M.; Barth, A.; Behe, M. [Philipps-University of Marburg, Dept. of Nuclear Medicine, Marburg (Germany)

    2001-06-01

    Regulatory peptides are small, readily diffusable and potent natural substances with a wide spectrum of receptor-mediated actions in humans. High affinity receptors for these peptides are (over)-expressed in many neoplasms, and these receptors may represent, therefore, new molecular targets for cancer diagnosis and therapy. This review aims to give an overview of the peptide-based radiopharmaceuticals which are presently already commercially available or which are in advanced stages of their clinical testing so that their broader availability is anticipated soon. Physiologically, these peptides bind to and act through G protein-coupled receptors in the cell membrane. Historically, somatostatin analogs are the first class of receptor binding peptides having gained clinical application. In {sup 111}In-DTPA-(D-Phe{sup 1})-octreotide is the first and only radio peptide which has obtained regulatory approval in Europe and the United States to date. Extensive clinical studies involving several thousands of patients have shown that the major clinical application of somatostatin receptor scintigraphy is the detection and the staging of gastroenteropancreatic neuroendocrine tumors (carcinoids). In these tumors, octreotide scintigraphy is superior to any other staging method. However, its sensitivity and accuracy in other, more frequent neoplasms is limited. Radiolabeled vasoactive intestinal peptide (VIP) has been shown to visualize the majority of gastrointestinal adenocarcinomas, as well as some neuroendocrine tumors, including insulinomas (the latter being often missed by somatostatin receptor scintigraphy). Due to the outstanding diagnostic accuracy of the pentagastrin test in detecting the presence, persistence, or recurrence of medullary thyroid cancer (MTC), it was postulated the expression of the corresponding (i.e. cholecystokinin (CCK-)-B) receptor type in human MTC. This receptor is also widely expressed on human small-cell lung. Indeed, {sup 111}In-labeled DTPA

  16. Genetic analysis of ovarian microcystic stromal tumor

    OpenAIRE

    Lee, Jae Hoon; Kim, Hyun-Soo; Cho, Nam Hoon; Lee, Jung-Yun; Kim, Sunghoon; Kim, Sang Wun; Kim, Young Tae; Nam, Eun Ji

    2016-01-01

    Microcystic stromal tumor (MCST) of the ovary is a rare subtype of ovarian tumor first described in 2009. Although high nuclear expression of β-catenin and β-catenin gene (CTNNB1) mutation are related with ovarian MCST, the origin and genetic background of ovarian MCST remain unclear. In this study, two cases of ovarian MCST are presented. Microscopically, the tumors showed a microcystic pattern and regions with lobulated cellular masses with intervening hyalinized, fibrous stroma. Tumor cell...

  17. Replicase-based plasmid DNA shows anti-tumor activity

    Directory of Open Access Journals (Sweden)

    Weiss Richard

    2011-03-01

    Full Text Available Abstract Background Double stranded RNA (dsRNA has multiple anti-tumor mechanisms. Over the past several decades, there have been numerous attempts to utilize synthetic dsRNA to control tumor growth in animal models and clinical trials. Recently, it became clear that intracellular dsRNA is more effective than extracellular dsRNA on promoting apoptosis and orchestrating adaptive immune responses. To overcome the difficulty in delivering a large dose of synthetic dsRNA into tumors, we propose to deliver a RNA replicase-based plasmid DNA, hypothesizing that the dsRNA generated by the replicase-based plasmid in tumor cells will inhibit tumor growth. Methods The anti-tumor activity of a plasmid (pSIN-β that encodes the sindbis RNA replicase genes (nsp1-4 was evaluated in mice with model tumors (TC-1 lung cancer cells or B16 melanoma cells and compared to a traditional pCMV-β plasmid. Results In cell culture, transfection of tumor cells with pSIN-β generated dsRNA. In mice with model tumors, pSIN-β more effectively delayed tumor growth than pCMV-β, and in some cases, eradicated the tumors. Conclusion RNA replicase-based plasmid may be exploited to generate intracellular dsRNA to control tumor growth.

  18. Replicase-based plasmid DNA shows anti-tumor activity

    International Nuclear Information System (INIS)

    Double stranded RNA (dsRNA) has multiple anti-tumor mechanisms. Over the past several decades, there have been numerous attempts to utilize synthetic dsRNA to control tumor growth in animal models and clinical trials. Recently, it became clear that intracellular dsRNA is more effective than extracellular dsRNA on promoting apoptosis and orchestrating adaptive immune responses. To overcome the difficulty in delivering a large dose of synthetic dsRNA into tumors, we propose to deliver a RNA replicase-based plasmid DNA, hypothesizing that the dsRNA generated by the replicase-based plasmid in tumor cells will inhibit tumor growth. The anti-tumor activity of a plasmid (pSIN-β) that encodes the sindbis RNA replicase genes (nsp1-4) was evaluated in mice with model tumors (TC-1 lung cancer cells or B16 melanoma cells) and compared to a traditional pCMV-β plasmid. In cell culture, transfection of tumor cells with pSIN-β generated dsRNA. In mice with model tumors, pSIN-β more effectively delayed tumor growth than pCMV-β, and in some cases, eradicated the tumors. RNA replicase-based plasmid may be exploited to generate intracellular dsRNA to control tumor growth

  19. Performance Analysis of Unsupervised Clustering Methods for Brain Tumor Segmentation

    Directory of Open Access Journals (Sweden)

    Tushar H Jaware

    2013-10-01

    Full Text Available Medical image processing is the most challenging and emerging field of neuroscience. The ultimate goal of medical image analysis in brain MRI is to extract important clinical features that would improve methods of diagnosis & treatment of disease. This paper focuses on methods to detect & extract brain tumour from brain MR images. MATLAB is used to design, software tool for locating brain tumor, based on unsupervised clustering methods. K-Means clustering algorithm is implemented & tested on data base of 30 images. Performance evolution of unsupervised clusteringmethods is presented.

  20. Automated tumor analysis for molecular profiling in lung cancer.

    Science.gov (United States)

    Hamilton, Peter W; Wang, Yinhai; Boyd, Clinton; James, Jacqueline A; Loughrey, Maurice B; Hougton, Joseph P; Boyle, David P; Kelly, Paul; Maxwell, Perry; McCleary, David; Diamond, James; McArt, Darragh G; Tunstall, Jonathon; Bankhead, Peter; Salto-Tellez, Manuel

    2015-09-29

    The discovery and clinical application of molecular biomarkers in solid tumors, increasingly relies on nucleic acid extraction from FFPE tissue sections and subsequent molecular profiling. This in turn requires the pathological review of haematoxylin & eosin (H&E) stained slides, to ensure sample quality, tumor DNA sufficiency by visually estimating the percentage tumor nuclei and tumor annotation for manual macrodissection. In this study on NSCLC, we demonstrate considerable variation in tumor nuclei percentage between pathologists, potentially undermining the precision of NSCLC molecular evaluation and emphasising the need for quantitative tumor evaluation. We subsequently describe the development and validation of a system called TissueMark for automated tumor annotation and percentage tumor nuclei measurement in NSCLC using computerized image analysis. Evaluation of 245 NSCLC slides showed precise automated tumor annotation of cases using Tissuemark, strong concordance with manually drawn boundaries and identical EGFR mutational status, following manual macrodissection from the image analysis generated tumor boundaries. Automated analysis of cell counts for % tumor measurements by Tissuemark showed reduced variability and significant correlation (p tissue samples for molecular profiling in discovery and diagnostics. PMID:26317646

  1. Proton radiotherapy in management of pediatric base of skull tumors

    International Nuclear Information System (INIS)

    Purpose: Primary skull base tumors of the developing child are rare and present a formidable challenge to both surgeons and radiation oncologists. Gross total resection with negative margins is rarely achieved, and the risks of functional, structural, and cosmetic deficits limit the radiation dose using conventional radiation techniques. Twenty-nine children and adolescents treated with conformal proton radiotherapy (proton RT) were analyzed to assess treatment efficacy and safety. Methods and Materials: Between July 1992 and April 1999, 29 patients with mesenchymal tumors underwent fractionated proton (13 patients) or fractionated combined proton and photon (16 patients) irradiation. The age at treatment ranged from 1 to 19 years (median 12); 14 patients were male and 15 female. Tumors were grouped as malignant or benign. Twenty patients had malignant histologic findings, including chordoma (n=10), chondrosarcoma (n=3), rhabdomyosarcoma (n=4), and other sarcomas (n=3). Target doses ranged between 50.4 and 78.6 Gy/cobalt Gray equivalent (CGE), delivered at doses of 1.8-2.0 Gy/CGE per fraction. The benign histologic findings included giant cell tumors (n=6), angiofibromas (n=2), and chondroblastoma (n=1). RT doses for this group ranged from 45.0 to 71.8 Gy/CGE. Despite maximal surgical resection, 28 (97%) of 29 patients had gross disease at the time of proton RT. Follow-up after proton RT ranged from 13 to 92 months (mean 40). Results: Of the 20 patients with malignant tumors, 5 (25%) had local failure; 1 patient had failure in the surgical access route and 3 patients developed distant metastases. Seven patients had died of progressive disease at the time of analysis. Local tumor control was maintained in 6 (60%) of 10 patients with chordoma, 3 (100%) of 3 with chondrosarcoma, 4 (100%) of 4 with rhabdomyosarcoma, and 2 (66%) of 3 with other sarcomas. The actuarial 5-year local control and overall survival rate was 72% and 56%, respectively, and the overall survival

  2. The Use of Radiation Therapy Appears to Improve Outcome in Patients With Malignant Primary Tracheal Tumors: A SEER-Based Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xie Liyi [Department of Radiation Oncology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC (United States); Fan Min [Department of Radiation Oncology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Sheets, Nathan C.; Chen, Ronald C. [Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC (United States); Jiang, Guo-Liang, E-mail: jianggl@shca.org.cn [Department of Radiation Oncology, Fudan University Shanghai Cancer Center and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Marks, Lawrence B., E-mail: marks@med.unc.edu [Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC (United States)

    2012-10-01

    Purpose: To conduct a matched pair analysis assessing the impact of radiotherapy (RT) in patients with resectable and unresectable primary malignant tracheal tumors using Surveillance, Epidemiology and End Results (SEER) database. Patients and Methods: The SEER registry was used to identify every patient (or 'case') who received RT between 1988 and 2007 for primary malignant tracheal tumors, and to search for corresponding 'controls' (not treated with RT), with the same prognostic and treatment factors (surgery on the trachea, disease extension, histology, and gender). Overall survival (OS) was calculated with the Kaplan-Meier methods. Results of OS and cumulative incidence of death from tracheal cancer in the cases and controls, and in various subsets, were compared using log-rank and Gray's tests. Results: Two hundred fifty-eight patients who received RT were identified, and 78 of these had appropriate matched controls identified, forming the basis of this analysis. In the 78 (+RT) cases, the median follow-up was 60 months (range, 10-192) in the survivors vs. 55 months (range, 2-187) in the controls (no-RT group). Patients in RT group had significantly better OS, and a lower cumulative incidence of death from tracheal cancer than no-RT patients (p < 0.05). Treatment with radiation was associated with improved survival in patients with squamous cell histology [p < 0.0001], regional disease extension [p = 0.030], or those that did not undergo resection [p = 0.038]. There were four deaths in RT group and three in no-RT group attributed to cardiac and respiratory causes. Conclusion: Our data suggest a survival benefit for the use of RT broadly for all patients with tracheal cancer. Nevertheless, the retrospective nature of this observational study limits its interpretation.

  3. mRNA-based vaccines synergize with radiation therapy to eradicate established tumors

    International Nuclear Information System (INIS)

    The eradication of large, established tumors by active immunotherapy is a major challenge because of the numerous cancer evasion mechanisms that exist. This study aimed to establish a novel combination therapy consisting of messenger RNA (mRNA)-based cancer vaccines and radiation, which would facilitate the effective treatment of established tumors with aggressive growth kinetics. The combination of a tumor-specific mRNA-based vaccination with radiation was tested in two syngeneic tumor models, a highly immunogenic E.G7-OVA and a low immunogenic Lewis lung cancer (LLC). The molecular mechanism induced by the combination therapy was evaluated via gene expression arrays as well as flow cytometry analyses of tumor infiltrating cells. In both tumor models we demonstrated that a combination of mRNA-based immunotherapy with radiation results in a strong synergistic anti-tumor effect. This was manifested as either complete tumor eradication or delay in tumor growth. Gene expression analysis of mouse tumors revealed a variety of substantial changes at the tumor site following radiation. Genes associated with antigen presentation, infiltration of immune cells, adhesion, and activation of the innate immune system were upregulated. A combination of radiation and immunotherapy induced significant downregulation of tumor associated factors and upregulation of tumor suppressors. Moreover, combination therapy significantly increased CD4+, CD8+ and NKT cell infiltration of mouse tumors. Our data provide a scientific rationale for combining immunotherapy with radiation and provide a basis for the development of more potent anti-cancer therapies. The online version of this article (doi:10.1186/1748-717X-9-180) contains supplementary material, which is available to authorized users

  4. Mapping In Vivo Tumor Oxygenation within Viable Tumor by 19F-MRI and Multispectral Analysis

    Directory of Open Access Journals (Sweden)

    Yunzhou Shi

    2013-11-01

    Full Text Available Quantifying oxygenation in viable tumor remains a major obstacle toward a better understanding of the tumor microenvironment and improving treatment strategies. Current techniques are often complicated by tumor heterogeneity. Herein, a novel in vivo approach that combines 19F magnetic resonance imaging (19F-MRIR1 mapping with diffusionbased multispectral (MS analysis is introduced. This approach restricts the partial pressure of oxygen (pO2 measurements to viable tumor, the tissue of therapeutic interest. The technique exhibited sufficient sensitivity to detect a breathing gas challenge in a xenograft tumor model, and the hypoxic region measured by MS 19F-MRI was strongly correlated with histologic estimates of hypoxia. This approach was then applied to address the effects of antivascular agents on tumor oxygenation, which is a research question that is still under debate. The technique was used to monitor longitudinal pO2 changes in response to an antibody to vascular endothelial growth factor (B20.4.1.1 and a selective dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor (GDC-0980. GDC-0980 reduced viable tumor pO2 during a 3-day treatment period, and a significant reduction was also produced by B20.4.1.1. Overall, this method provides an unprecedented view of viable tumor pO2 and contributes to a greater understanding of the effects of antivascular therapies on the tumor's microenvironment.

  5. A 3D graphene oxide microchip and a Au-enwrapped silica nanocomposite-based supersandwich cytosensor toward capture and analysis of circulating tumor cells

    Science.gov (United States)

    Li, Na; Xiao, Tingyu; Zhang, Zhengtao; He, Rongxiang; Wen, Dan; Cao, Yiping; Zhang, Weiying; Chen, Yong

    2015-10-01

    Determination of the presence and number of circulating tumor cells (CTCs) in peripheral blood can provide clinically important data for prognosis and therapeutic response patterns. In this study, a versatile supersandwich cytosensor was successfully developed for the highly sensitive and selective analysis of CTCs using Au-enwrapped silica nanocomposites (Si/AuNPs) and three-dimensional (3D) microchips. First, 3D microchips were fabricated by a photolithography method. Then, the prepared substrate was applied to bind graphene oxide, streptavidin and biotinylated epithelial-cell adhesion-molecule antibody, resulting in high stability, bioactivity, and capability for CTCs capture. Furthermore, horseradish peroxidase and anti-CA153 were co-linked to the Si/AuNPs for signal amplification. The performance of the cytosensor was evaluated with MCF7 breast cancer cells. Under optimal conditions, the proposed supersandwich cytosensor showed high sensitivity with a wide range of 101 to 107 cells per mL and a detection limit of 10 cells per mL. More importantly, it could effectively distinguish CTCs from normal cells, which indicated the promising applications of our method for the clinical diagnosis and therapeutic monitoring of cancers.

  6. Clinicopathological analysis of solitary fibrous tumor

    Institute of Scientific and Technical Information of China (English)

    Xiumei Zhang; Hai Wang; Shujing Wang; Jinfeng Miao; Zhengai Piao; Yingying Dong

    2012-01-01

    Objective: The aim of this study was to investigate the clinicopathologic characteristics, diagnosis and differential diagnosis, molecular genetics, treatment and prognosis of solitary fibrous tumor (SFT). Methods: The clinicopathological manifestations were analyzed retrospectively in 22 patients with surgically confirmed SFT. Results: There were 12 male patients and 10 female patients, with the age range 33–67 (mean 48.62) years. The SFTs originated from different from parts of the body, including 13 in the chest, 2 in the lungs, 3 in the abdomen, 1 in the lumbosacral area, 2 in the pelvis, and 1 in the left shoulder. There were 19 benign and 3 malignant tumors. Major clinical presentations were local masses and compression symptoms. Microscopy: the tumor was composed of areas of alternating hypercellularity and hypocellularity. The tumor cells were spindle to short-spindle shaped and arranged in fascicular or storiform pattern and hemangiopericytoma-like structure was presented. Immunohistochemically, Vimentin positive rate was 100% (22/22), Bcl-2 positive rate was 95.5% (21/22), CD99 positive rate was 86.4% (19/22), CD34 positive rate was 81.8 (18/22), focally positive for P53, as well as negative CK, S100 and Desmin. Ki67 labelling index was 2%–30%. Conclusion: SFT is a rare tumor which may be found in various parts of human body. SFT mostly is a benign tumor, but a few could be malignant. Its diagnosis mainly rely on its morphologic features and immunohistochemical profiles. The major treatment is to completely resect it by operation and long-term clinical follow-up is necessary.

  7. Infrared signature analysis of the thyroid tumors

    Science.gov (United States)

    Gavriloaia, Gheorghe; Ghemigian, Adina-Mariana; Gavriloaia, Mariuca-Roxana

    2009-07-01

    Cancer is a leading cause of death worldwide, and about 30% of cancer deaths can be prevented. In the next future, the number of global cancer deaths is projected to increase 45% in the future. A general treatment has not yet been found. The best defense against cancer is early detection, when tumor dimensions are very small. The methods as mammography, ultrasounds, MRI, CT, etc., can detect anatomic or structural changes like tumors and cysts. They are anatomical imaging procedures, consequently, they have the ability to locate the area of the tumor, but they cannot detect a fast-growing cancer in the pre-invasive stage. Thermograms are looking for the physiologic changes in tissue; which may indicate a risk of developing cancer in the future. The results using a new device, operating in infrared band, are described. The paper focuses on thyroid cancer because it allows investigations on larger areas before surgery and on residual, smaller areas following surgery. The experiment results for 24 patients with thyroid nodules are described. Malign tumors have a distinct infrared signature. Only the area affected is thermal registered and that has an irregular shape and a strong nonuniform structure with rapid variations on skin temperature.

  8. Brain Tumor Detection Based On Symmetry Information

    OpenAIRE

    G., Narkhede Sachin; Khairnar, Vaishali

    2013-01-01

    Advances in computing technology have allowed researchers across many fields of endeavor to collect and maintain vast amounts of observational statistical data such as clinical data, biological patient data, data regarding access of web sites, financial data, and the like. This paper addresses some of the challenging issues on brain magnetic resonance (MR) image tumor segmentation caused by the weak correlation between magnetic resonance imaging (MRI) intensity and anatomical meaning. With th...

  9. Hyaluronidase To Enhance Nanoparticle-Based Photodynamic Tumor Therapy.

    Science.gov (United States)

    Gong, Hua; Chao, Yu; Xiang, Jian; Han, Xiao; Song, Guosheng; Feng, Liangzhu; Liu, Jingjing; Yang, Guangbao; Chen, Qian; Liu, Zhuang

    2016-04-13

    Photodynamic therapy (PDT) is considered as a safe and selective way to treat a wide range of cancers as well as nononcological disorders. However, as oxygen is required in the process of PDT, the hypoxic tumor microenvironment has largely limited the efficacy of PDT to treat tumors especially those with relatively large sizes. To this end, we uncover that hyaluronidase (HAase), which breaks down hyaluronan, a major component of extracellular matrix (ECM) in tumors, would be able to enhance the efficacy of nanoparticle-based PDT for in vivo cancer treatment. It is found that the administration of HAase would lead to the increase of tumor vessel densities and effective vascular areas, resulting in increased perfusion inside the tumor. As a result, the tumor uptake of nanomicelles covalently linked with chlorine e6 (NM-Ce6) would be increased by ∼2 folds due to the improved "enhanced permeability and retention" (EPR) effect, while the tumor oxygenation level also shows a remarkable increase, effectively relieving the hypoxia state inside the tumor. Those effects taken together offer significant benefits in greatly improving the efficacy of PDT delivered by nanoparticles. Taking advantage of the effective migration of HAase from the primary tumor to its drainage sentinel lymph nodes (SLNs), we further demonstrate that this strategy would be helpful to the treatment of metastatic lymph nodes by nanoparticle-based PDT. Lastly, both enhanced EPR effect of NM-Ce6 and relieved hypoxia state of tumor are also observed after systemic injection of modified HAase, proving its potential for clinical translation. Therefore, our work presents a new concept to improve the efficacy of nanomedicine by modulating the tumor microenvironment. PMID:27022664

  10. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... for skull-base tumors. This innovative surgical procedure uses the nose as a natural orifice to remove ... approach through the nose traditionally, but with the use of the endoscope, we're able to push ...

  11. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... natural orifice to remove skull-base tumors. It's brain surgery without the surgical incisions required to remove ... quicker recovery with less blood loss than traditional brain surgery. OR-Live makes it easy for you ...

  12. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... a natural orifice to remove skull-base tumors. It's brain surgery without the surgical incisions required to ... loss than traditional brain surgery. OR-Live makes it easy for you to learn more. Just click ...

  13. In vivo analysis of fracture toughness of thyroid gland tumors

    Directory of Open Access Journals (Sweden)

    Hirschowitz Sharon

    2008-10-01

    Full Text Available Abstract Background Human solid tumors that are hard or firm on physical palpation are likely to be cancerous, a clinical maxim that has been successfully applied to cancer screening programs, such as breast self-examination. However, the biological relevance or prognostic significance of tumor hardness remains poorly understood. Here we present a fracture mechanics based in vivo approach for characterizing the fracture toughness of biological tissue of human thyroid gland tumors. Methods In a prospective study, 609 solid thyroid gland tumors were percutaneously probed using standard 25 gauge fine needles, their tissue toughness ranked on the basis of the nature and strength of the haptic force feedback cues, and subjected to standard fine needle biopsy. The tumors' toughness rankings and final cytological diagnoses were combined and analyzed. The interpreting cytopathologist was blinded to the tumors' toughness rankings. Results Our data showed that cancerous and noncancerous tumors displayed remarkable haptically distinguishable differences in their material toughness. Conclusion The qualitative method described here, though subject to some operator bias, identifies a previously unreported in vivo approach to classify fracture toughness of a solid tumor that can be correlated with malignancy, and paves the way for the development of a mechanical device that can accurately quantify the tissue toughness of a human tumor.

  14. Analysis of computed tomography of ovarian tumor

    Energy Technology Data Exchange (ETDEWEB)

    Omura, Makoto; Taniike, Keiko; Nishiguchi, Hiroyasu

    1987-07-01

    One hundred and twenty six patients with ovarian mass were studied with computed tomography (CT) and classified into five groups according to its margin and inner structure. The incidence of malignancy of cystic ovarian mass with smooth margin was low and that of solid ovarian mass with irreglar margin was high. Three cases (6.7 %) of malignant ovarian tumor demonstrated completely cystic pattern. Ovarian teratomas contained well defined component of fat density.

  15. Brain Tumor Detection Based on Bilateral Symmetry Information

    Directory of Open Access Journals (Sweden)

    Narkhede Sachin,

    2014-06-01

    Full Text Available Advances in computing technology have allowed researchers across many fields of endeavor to collect and maintain vast amounts of observational statistical data such as clinical data, biological patient data, data regarding access of web sites , financial data, and the like. Brain Magnetic Resonance Imaging (MRI segmentation is a complex problem in the field of medical imaging despite various presented methods. MR image of human brain can be divided into several sub-regions especially soft tissues such as gray matter, white matter and cerebrospinal fluid. Although edge information is the main clue in image segmentation, it can’t get a better result in analysis the content of images without combining other information. The segmentation of brain tissue in the magnetic resonance imaging (MRI is very important for detecting the existence and outlines of tumors. In this thesis , an algorithm about segmentation based on the symmetry character of brain MRI image is presented. Our goal is to detect the position and boundary of tumors automatically. Experiments were conducted on real pictures, and the results show that the algorithm is flexible and convenient.

  16. SU-E-J-200: A Dosimetric Analysis of 3D Versus 4D Image-Based Dose Calculation for Stereotactic Body Radiation Therapy in Lung Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Ma, M; Rouabhi, O; Flynn, R; Xia, J [University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Bayouth, J [University of Wisconsin, Madison, WI (United States)

    2014-06-01

    Purpose: To evaluate the dosimetric difference between 3D and 4Dweighted dose calculation using patient specific respiratory trace and deformable image registration for stereotactic body radiation therapy in lung tumors. Methods: Two dose calculation techniques, 3D and 4D-weighed dose calculation, were used for dosimetric comparison for 9 lung cancer patients. The magnitude of the tumor motion varied from 3 mm to 23 mm. Breath-hold exhale CT was used for 3D dose calculation with ITV generated from the motion observed from 4D-CT. For 4D-weighted calculation, dose of each binned CT image from the ten breathing amplitudes was first recomputed using the same planning parameters as those used in the 3D calculation. The dose distribution of each binned CT was mapped to the breath-hold CT using deformable image registration. The 4D-weighted dose was computed by summing the deformed doses with the temporal probabilities calculated from their corresponding respiratory traces. Dosimetric evaluation criteria includes lung V20, mean lung dose, and mean tumor dose. Results: Comparing with 3D calculation, lung V20, mean lung dose, and mean tumor dose using 4D-weighted dose calculation were changed by −0.67% ± 2.13%, −4.11% ± 6.94% (−0.36 Gy ± 0.87 Gy), −1.16% ± 1.36%(−0.73 Gy ± 0.85 Gy) accordingly. Conclusion: This work demonstrates that conventional 3D dose calculation method may overestimate the lung V20, MLD, and MTD. The absolute difference between 3D and 4D-weighted dose calculation in lung tumor may not be clinically significant. This research is supported by Siemens Medical Solutions USA, Inc and Iowa Center for Research By Undergraduates.

  17. Characterization of tumor dose heterogeneity for 90Y microsphere therapies using voxel- based dosimetry

    Directory of Open Access Journals (Sweden)

    Justin Mikell

    2014-03-01

    Full Text Available Purpose: Dosimetry for 90Y microsphere therapies (YMT with Standard (SM and Partition (PM models provide only uniform dose estimates to tumor and liver. Our objective is to calculate tumor dose heterogeneity, known to effect response, using voxel-based dosimetry and investigate the limitations of SM and PM.Methods: Voxel-based dosimetry was performed on 17 YMT patients using Monte Carlo DOSXYZnrc. 90Y activity and tissue/density distributions were based on quantitative 90Y bremsstrahlung SPECT/CT. Tumors (n=31, liver, and treatment lobe/segments were segmented on diagnostic CT or MR. Dose volume histograms (DVH were created for tumors and normal liver. Bland-Altman analysis compared voxel-based mean absorbed doses to tumor and liver with SM and PM. Tumor and normal liver absorbed dose heterogeneity were investigated through metrics: integral uniformity (IU, D10/D90, COV. Correlations of heterogeneity with voxel-based mean doses and volumes were evaluated.Results: Heterogeneity metrics (mean ± 1σ for tumor dose were COV = 0.48 ± 0.28, D10/D90 = 4.7 ± 3.9, and IU = 0.8 ± 0.18. Heterogeneity metrics correlated with tumor volume (r > 0.58 but not tumor mean doses (r < 0.20. Voxel-based tumor mean doses correlated with PM (r = 0.84 but not SM (r = 0.08. Both yielded poor limits of agreement with of 83 ± 174 and -28 ± 181 Gy, respectively. Normal liver heterogeneity metrics (mean ± 1σ were COV = 0.83 ± 0.29, D10/D90 = 12 ± 15, and IU = 0.97 ± 0.03. Only D10/D90 (r = 0.49 correlated with mean normal liver absorbed dose. Voxel-based normal liver/lobe mean doses correlated with PM (r = 0.96, but had poor limits of agreement (26 ± 29 Gy.Conclusion: Tumor doses have high levels of heterogeneity that increase with volume but are independent of dose. Voxel-based DVH and dose heterogeneity metrics will promote accurate characterization of tumor response following YMT.--------------------------------------Cite this article as: Mikell J, Mourtada F

  18. Proton therapy for tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Munzenrider, J.E.; Liebsch, N.J. [Dept. of Radiation Oncology, Harvard Univ. Medical School, Boston, MA (United States)

    1999-06-01

    Charged particle beams are ideal for treating skull base and cervical spine tumors: dose can be focused in the target, while achieving significant sparing of the brain, brain stem, cervical cord, and optic nerves and chiasm. For skull base tumors, 10-year local control rates with combined proton-photon therapy are highest for chondrosarcomas, intermediate for male chordomas, and lowest for female chordomas (94%, 65%, and 42%, respectively). For cervical spine tumors, 10-year local control rates are not significantly different for chordomas and chondrosarcomas (54% and 48%, respectively), nor is there any difference in local control between males and females. Observed treatment-related morbidity has been judged acceptable, in view of the major morbidity and mortality which accompany uncontrolled tumor growth. (orig.)

  19. Radiosurgery of Glomus Jugulare Tumors: A Meta-Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guss, Zachary D.; Batra, Sachin [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD (United States); Limb, Charles J. [Department of Otolaryngology, Johns Hopkins Hospital, Baltimore, MD (United States); Li, Gordon [Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA (United States); Sughrue, Michael E. [Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, CA (United States); Redmond, Kristin [Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, MD (United States); Rigamonti, Daniele [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD (United States); Parsa, Andrew T. [Department of Neurological Surgery, University of California, San Francisco, School of Medicine, San Francisco, CA (United States); Chang, Steven [Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA (United States); Kleinberg, Lawrence [Department of Radiation Oncology, Johns Hopkins Hospital, Baltimore, MD (United States); Lim, Michael, E-mail: mlim3@jhmi.edu [Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD (United States)

    2011-11-15

    Purpose: During the past two decades, radiosurgery has arisen as a promising approach to the management of glomus jugulare. In the present study, we report on a systematic review and meta-analysis of the available published data on the radiosurgical management of glomus jugulare tumors. Methods and Materials: To identify eligible studies, systematic searches of all glomus jugulare tumors treated with radiosurgery were conducted in major scientific publication databases. The data search yielded 19 studies, which were included in the meta-analysis. The data from 335 glomus jugulare patients were extracted. The fixed effects pooled proportions were calculated from the data when Cochrane's statistic was statistically insignificant and the inconsistency among studies was <25%. Bias was assessed using the Egger funnel plot test. Results: Across all studies, 97% of patients achieved tumor control, and 95% of patients achieved clinical control. Eight studies reported a mean or median follow-up time of >36 months. In these studies, 95% of patients achieved clinical control and 96% achieved tumor control. The gamma knife, linear accelerator, and CyberKnife technologies all exhibited high rates of tumor and clinical control. Conclusions: The present study reports the results of a meta-analysis for the radiosurgical management of glomus jugulare. Because of its high effectiveness, we suggest considering radiosurgery for the primary management of glomus jugulare tumors.

  20. Bioluminescence-Based Tumor Quantification Method for Monitoring Tumor Progression and Treatment Effects in Mouse Lymphoma Models.

    Science.gov (United States)

    Cosette, Jeremie; Ben Abdelwahed, Rym; Donnou-Triffault, Sabrina; Sautès-Fridman, Catherine; Flaud, Patrice; Fisson, Sylvain

    2016-01-01

    Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies. PMID:27501019

  1. 3-D in vivo brain tumor geometry study by scaling analysis

    Science.gov (United States)

    Torres Hoyos, F.; Martín-Landrove, M.

    2012-02-01

    A new method, based on scaling analysis, is used to calculate fractal dimension and local roughness exponents to characterize in vivo 3-D tumor growth in the brain. Image acquisition was made according to the standard protocol used for brain radiotherapy and radiosurgery, i.e., axial, coronal and sagittal magnetic resonance T1-weighted images, and comprising the brain volume for image registration. Image segmentation was performed by the application of the k-means procedure upon contrasted images. We analyzed glioblastomas, astrocytomas, metastases and benign brain tumors. The results show significant variations of the parameters depending on the tumor stage and histological origin.

  2. A clinicopathologic analysis of primary orbital yolk sac tumor

    Directory of Open Access Journals (Sweden)

    PENG Ji-ying

    2012-02-01

    were diffusely positive for cytokeratin (AE1/AE3 and focal positive for AFP, CD99 and CD117, but negative for PLAP, CD30, S-100, CD45 and CD34. There was no evidence of mixture of other germ cell tumor component in this tumor by serial sections. Based on clinical presentation and histological findings, a final histological diagnosis of pure primary orbital yolk sac tumor, WHO grade Ⅳ, was made according to the criteria of WHO classification. The patient has not received chemotherapy and attended follow-up for 3 months, without any neurological deficit or signs of recurrence. Conclusion Despite the lower incidence, intracranial yolk sac tumors usually develop in the midline at the pineal or suprasellar regions occurring in children with distinctive histological features and immunohistochemical phenotypes. In general, intracranial yolk sac tumors are known to entail poor prognosis even after multidisciplinary treatment of operation, radiotherapy, and chemotherapy. It is noted that intracranial yolk sac tumor should be differentiated histologically from other types of germ cell tumors and mixed germ cell tumor.

  3. Real-time PCR analysis of genes encoding tumor antigens in esophageal tumors and a cancer vaccine

    DEFF Research Database (Denmark)

    Weinert, Brian T; Krishnadath, Kausilia K; Milano, Francesca;

    2009-01-01

    Tumor antigens are the primary target of therapeutic cancer vaccines. We set out to define and compare the expression pattern of tumor antigen genes in esophagus carcinoma biopsies and in an allogeneic tumor lysate-based cancer vaccine, MelCancerVac. Cells used for vaccine production were treated...... the production of the vaccine. Quantitative PCR was used to assay 74 tumor antigen genes in patients with squamous cell carcinoma of the esophagus. 81% (13/16) of tumors expressed more than five cancer/testis (CT) antigens. A total of 96 genes were assayed in the tumor cell clone (DDM1.7) used to make...

  4. Malignant peripheral nerve sheath tumor: analysis of treatment outcome

    International Nuclear Information System (INIS)

    Purpose: To analyze the results of therapy for malignant peripheral nerve sheath tumor (MPNST) and to identify prognostic factors of survival, and of local and distant control of disease. Methods and Materials: From 1975 through 1993, 134 MPNSTs were diagnosed and treated at our institution. Tumor sites included extremities in 36 (27%) cases and non-extremities in 98 (73%). Median follow-up for survivors was 53 months (range: 7-280). There were 14 tumors of histologic grade I disease (10%), 43 of grade II disease (32%), 43 of grade III disease (32%), and 32 of grade IV (24%). Seventy-three patients (54%) underwent radiation therapy (RT) as part of their initial treatment of the primary tumor, including 14 (10%) who had brachytherapy and 16 (12%) who had intraoperative electron irradiation (IOERT) as part of their radiation course. Results: The 5- and 10-year survival rates were 52% and 34%, respectively. Local and distant failure rates at 5 years were both 49%. On univariate analysis, prognostic factors significantly related to survival (log-rank: p < 0.05) included tumor size, location of disease, history of neurofibromatosis type 1 (NF-1), history of prior irradiation, surgical margin status, use of IOERT or brachytherapy, disease stage, histologic grade and tumor subtype, as well as mitotic rate and the presence or absence of necrosis. On multivariate analysis, only history of prior irradiation (p 0.023), and surgical margin status (p = 0.0044) remained significant. For local control of disease, univariate analysis showed location of disease, surgical margin status, history of NF-1, history of prior irradiation, mitotic rate, radiation dose ≥ 60 Gy, and use of IOERT or brachytherapy to be significant prognostic factors. On multivariate analysis, only surgical margin status (p = 0.0024), RT dose (p = 0.021), and use of IOERT or brachytherapy (p = 0.016) remained significant. For distant control of disease, significant prognostic factors on univariate analysis

  5. Individual Cell-Based Models of Tumor-Environment Interactions : Multiple Effects of CD97 on Tumor Invasion

    OpenAIRE

    Galle, Joerg; Sittig, Doreen; Hanisch, Isabelle; Wobus, Manja; Wandel, Elke; Loeffler, Markus; Aust, Gabriela

    2006-01-01

    The presence of scattered tumor cells at the invading front of several carcinomas has clinical significance. These cells differ in their protein expression from cells in central tumor regions as recently shown for the EGF-TM7 receptor CD97. To understand the impact of such heterogeneity on tumor invasion, we investigated tumor cells with modified CD97 expression in vitro and in vivo. Applying an individual cell-based computer model approach, we linked specific cell properties of these cells t...

  6. FDTD analysis of a noninvasive hyperthermia system for brain tumors

    Directory of Open Access Journals (Sweden)

    Yacoob Sulafa M

    2012-08-01

    Full Text Available Abstract Background Hyperthermia is considered one of the new therapeutic modalities for cancer treatment and is based on the difference in thermal sensitivity between healthy tissues and tumors. During hyperthermia treatment, the temperature of the tumor is raised to 40–45°C for a definite period resulting in the destruction of cancer cells. This paper investigates design, modeling and simulation of a new non-invasive hyperthermia applicator system capable of effectively heating deep seated as well as superficial brain tumors using inexpensive, simple, and easy to fabricate components without harming surrounding healthy brain tissues. Methods The proposed hyperthermia applicator system is composed of an air filled partial half ellipsoidal chamber, a patch antenna, and a head model with an embedded tumor at an arbitrary location. The irradiating antenna is placed at one of the foci of the hyperthermia chamber while the center of the brain tumor is placed at the other focus. The finite difference time domain (FDTD method is used to compute both the SAR patterns and the temperature distribution in three different head models due to two different patch antennas at a frequency of 915 MHz. Results The obtained results suggest that by using the proposed noninvasive hyperthermia system it is feasible to achieve sufficient and focused energy deposition and temperature rise to therapeutic values in deep seated as well as superficial brain tumors without harming surrounding healthy tissue. Conclusions The proposed noninvasive hyperthermia system proved suitable for raising the temperature in tumors embedded in the brain to therapeutic values by carefully selecting the systems components. The operator of the system only needs to place the center of the brain tumor at a pre-specified location and excite the antenna at a single frequency of 915 MHz. Our study may provide a basis for a clinical applicator prototype capable of heating brain tumors.

  7. Application of fluorescence-based semi-automated allelotyping to the molecular characterization of tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jedlicka, A.E.; DiSilvestre, D.; Holroyd, K.J. [Johns Hopkins Medical Institutions, Baltimore, MD (United States)] [and others

    1994-09-01

    In cancer genetics, identifying loss of heterozygosity (LOH) defines candidate regions which warrant further analyses to determine the presence of tumor suppressor genes. In addition, demonstrating LOH has potential utility for improving the pathologic classification of tumors. Molecular methods that improve the efficiency and accuracy of LOH studies will be helpful in both clinical and research applications. Here we demonstrate a fluorescence-based semi-automated alleotyping method for studies of LOH in cancer, using gliomas as an example. Gliomas are tumors arising from neuroglia, the supporting tissue intermingled with essential elements of the brain and spinal cord. Since this method utilizes PCR-based highly polymorphic simple sequence repeat markers, it is suitable for small and archival tumor specimens. We collected tumor tissue from a variety of gliomas, and DNA was extracted. White blood cells from the same individuals served as a source of {open_quotes}control{close_quotes} DNA. We PCR amplified markers from tumor and genomic DNA to detect molecular alterations in six people. Simultaneous analysis of 14 loci near gene candidates on chromosomes 5, 7, 9, 10, 11, and 22, were evaluated. Strikingly, in most cases there was allelic loss in brain tumor compared to genomic DNA for at least one of these loci. In addition, alleles of lesser intensity were also shown at a few loci of the tumor DNA, suggesting possible genetic instability. We conclude from these data that fluorescent semi-automated allelotyping is a quantitative and efficient process for determining and analyzing LOH in gliomas, and possibly other tumors. These methods will facilitate the identification of candidate loci critical in the development and progression of tumors.

  8. Radiosurgery of Glomus Jugulare Tumors: A Meta-Analysis

    International Nuclear Information System (INIS)

    Purpose: During the past two decades, radiosurgery has arisen as a promising approach to the management of glomus jugulare. In the present study, we report on a systematic review and meta-analysis of the available published data on the radiosurgical management of glomus jugulare tumors. Methods and Materials: To identify eligible studies, systematic searches of all glomus jugulare tumors treated with radiosurgery were conducted in major scientific publication databases. The data search yielded 19 studies, which were included in the meta-analysis. The data from 335 glomus jugulare patients were extracted. The fixed effects pooled proportions were calculated from the data when Cochrane's statistic was statistically insignificant and the inconsistency among studies was 36 months. In these studies, 95% of patients achieved clinical control and 96% achieved tumor control. The gamma knife, linear accelerator, and CyberKnife technologies all exhibited high rates of tumor and clinical control. Conclusions: The present study reports the results of a meta-analysis for the radiosurgical management of glomus jugulare. Because of its high effectiveness, we suggest considering radiosurgery for the primary management of glomus jugulare tumors.

  9. Tumors that Mimic Asbestos-Related Mesothelioma: Time to Consider a Genetics-Based Tumor Registry?

    Directory of Open Access Journals (Sweden)

    Brent Daniel Kerger

    2014-05-01

    Full Text Available The diagnosis of mesothelioma is not always straightforward, despite known immunohistochemical markers and other diagnostic techniques. One reason for the difficulty is that extrapleural tumors resembling mesothelioma may have several possible etiologies, especially in cases with no meaningful history of amphibole asbestos exposure. When the diagnosis of mesothelioma is based on histologic features alone, primary mesotheliomas may resemble various primary or metastatic cancers that have directly invaded the serosal membranes. Some of these metastatic malignancies, particularly carcinomas and sarcomas of the pleura, pericardium and peritoneum, may undergo desmoplastic reaction in the pleura, thereby mimicking mesothelioma, rather than the primary tumor. Encasement of the lung by direct spread or metastasis, termed pseudomesotheliomatous spread, occurs with several other primary cancer types, including certain late-stage tumors from genetic cancer syndromes exhibiting chromosomal instability. Although immunohistochemical staining patterns differentiate most carcinomas, lymphomas, and mestastatic sarcomas from mesotheliomas, specific genetic markers in tumor or somatic tissues have been recently identified that may also distinguish these tumor types from asbestos-related mesothelioma. A registry for genetic screening of mesothelioma cases would help lead to improvements in diagnostic criteria, prognostic accuracy and treatment efficacy, as well as improved estimates of primary mesothelioma incidence and of background rates of cancers unrelated to asbestos that might be otherwise mistaken for mesothelioma. This information would also help better define the dose-response relationships for mesothelioma and asbestos exposure, as well as other risk factors for mesothelioma and other mesenchymal or advanced metastatic tumors that may be indistinguishable by histology and staining characteristics.

  10. Tumor Detection Based On Symmetry Information

    OpenAIRE

    Krunal J Pimple; Asst. Prof.Prateek Nahar

    2014-01-01

    Various subjects that are paired usually are not identically the same, asymmetry is perfectly normal but sometimes asymmetry can benoticeable too much. Structural and functional asymmetry in the human brain and nervous system is reviewed in a historical perspective. Brainasymmetry is one of such examples, which is a difference in size or shape, or both. Asymmetry analysis of brain has great importance because itis not only indicator for brain cancer but also predict future pot...

  11. Microchip-based immunomagnetic detection of circulating tumor cells.

    Science.gov (United States)

    Hoshino, Kazunori; Huang, Yu-Yen; Lane, Nancy; Huebschman, Michael; Uhr, Jonathan W; Frenkel, Eugene P; Zhang, Xiaojing

    2011-10-21

    -cytokeratin, DAPI and anti-CD45. Subsequent immunofluorescence images were taken for the captured cells, followed by comprehensive computer aided analysis based on fluorescence intensities and cell morphology. Rare cancer cells (from ∼1000 cells down to ∼5 cells per mL) with very low tumor cell to blood cell ratios (about 1 : 10(7) to 10(9), including red blood cells) were successfully detected. Cancer cell capture rates of 90% and 86% were demonstrated for COLO205 and SKBR3 cells, respectively. PMID:21863182

  12. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhe; Wu, Chaochao; Xie, Fang; Slysz, Gordon W.; Tolic, Nikola; Monroe, Matthew E.; Petyuk, Vladislav A.; Payne, Samuel H.; Fujimoto, Grant M.; Moore, Ronald J.; Fillmore, Thomas L.; Schepmoes, Athena A.; Levine, Douglas; Townsend, Reid; Davies, Sherri; Li, Shunqiang; Ellis, Matthew; Boja, Emily; Rivers, Robert; Rodriguez, Henry; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-01-02

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.

  13. Comprehensive Quantitative Analysis of Ovarian and Breast Cancer Tumor Peptidomes

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhe; Wu, Chaochao; Xie, Fang; Slysz, Gordon W.; Tolic, Nikola; Monroe, Matthew E.; Petyuk, Vladislav A.; Payne, Samuel H.; Fujimoto, Grant M.; Moore, Ronald J.; Fillmore, Thomas L.; Schepmoes, Athena A.; Levine, Douglas; Townsend, Reid; Davies, Sherri; Li, Shunqiang; Ellis, Matthew; Boja, Emily; Rivers, Robert; Rodriguez, Henry; Rodland, Karin D.; Liu, Tao; Smith, Richard D.

    2015-01-01

    Aberrant degradation of proteins is associated with many pathological states, including cancers. Mass spectrometric analysis of tumor peptidomes, the intracellular and intercellular products of protein degradation, has the potential to provide biological insights on proteolytic processing in cancer. However, attempts to use the information on these smaller protein degradation products from tumors for biomarker discovery and cancer biology studies have been fairly limited to date, largely due to the lack of effective approaches for robust peptidomics identification and quantification, and the prevalence of confounding factors and biases associated with sample handling and processing. Herein, we have developed an effective and robust analytical platform for comprehensive analyses of tissue peptidomes, and which is suitable for high throughput quantitative studies. The reproducibility and coverage of the platform, as well as the suitability of clinical ovarian tumor and patient-derived breast tumor xenograft samples with post-excision delay of up to 60 min before freezing for peptidomics analysis, have been demonstrated. Moreover, our data also show that the peptidomics profiles can effectively separate breast cancer subtypes, reflecting tumor-associated protease activities. Peptidomics complements results obtainable from conventional bottom-up proteomics, and provides insights not readily obtainable from such approaches.

  14. Frozen Tumor Tissue Microarray Technology for Analysis of Tumor RNA, DNA, and Proteins

    OpenAIRE

    Schoenberg Fejzo, Marlena; Slamon, Dennis J.

    2001-01-01

    Tissue microarray technology is a new method used to analyze several hundred tumor samples on a single slide allowing high throughput analysis of genes and proteins on a large cohort. The original methodology involves coring tissues from paraffin-embedded tissue donor blocks and placing them into a single paraffin block. One difficulty with paraffin-embedded tissue relates to antigenic changes in proteins and mRNA degradation induced by the fixation and embedding process. We have modified thi...

  15. Tumors that mimic asbestos-related mesothelioma: time to consider a genetics-based tumor registry?

    OpenAIRE

    Kerger, Brent D.; James, Robert C.; Galbraith, David A.

    2014-01-01

    The diagnosis of mesothelioma is not always straightforward, despite known immunohistochemical markers and other diagnostic techniques. One reason for the difficulty is that extrapleural tumors resembling mesothelioma may have several possible etiologies, especially in cases with no meaningful history of amphibole asbestos exposure. When the diagnosis of mesothelioma is based on histologic features alone, primary mesotheliomas may resemble various primary or metastatic cancers that have direc...

  16. Correcting for catchment area nonresidency in studies based on tumor-registry data

    International Nuclear Information System (INIS)

    We discuss the effect of catchment area nonresidency on estimates of cancer incidence from a tumor-registry-based cohort study and demonstrate that a relatively simple correction is possible in the context of Poisson regression analysis if individual residency histories or the probabilities of residency are known. A comparison of a complete data maximum likelihood analysis with several Poisson regression analyses demonstrates the adequacy of the simple correction in a large simulated data set. We compare analyses of stomach-cancer incidence from the Radiation Effects Research Foundation tumor registry with and without the correction. We also discuss some implications of including cases identified only on the basis of death certificates. (author)

  17. Prediction of Tumor Outcome Based on Gene Expression Data

    Institute of Scientific and Technical Information of China (English)

    Liu Juan; Hitoshi Iba

    2004-01-01

    Gene expression microarray data can be used to classify tumor types. We proposed a new procedure to classify human tumor samples based on microarray gene expressions by using a hybrid supervised learning method called MOEA+WV (Multi-Objective Evolutionary Algorithm+Weighted Voting). MOEA is used to search for a relatively few subsets of informative genes from the high-dimensional gene space, and WV is used as a classification tool. This new method has been applied to predicate the subtypes of lymphoma and outcomes of medulloblastoma. The results are relatively accurate and meaningful compared to those from other methods.

  18. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue.

    Directory of Open Access Journals (Sweden)

    Anna Lyberopoulou

    Full Text Available Circulating tumor cells (CTCs provide a non-invasive accessible source of tumor material from patients with cancer. The cellular heterogeneity within CTC populations is of great clinical importance regarding the increasing number of adjuvant treatment options for patients with metastatic carcinomas, in order to eliminate residual disease. Moreover, the molecular profiling of these rare cells might lead to insight on disease progression and therapeutic strategies than simple CTCs counting. In the present study we investigated the feasibility to detect KRAS, BRAF, CD133 and Plastin3 (PLS3 mutations in an enriched CTCs cell suspension from patients with colorectal cancer, with the hypothesis that these genes` mutations are of great importance regarding the generation of CTCs subpopulations. Subsequently, we compared CTCs mutational status with that of the corresponding primary tumor, in order to access the possibility of tumor cells characterization without biopsy. CTCs were detected and isolated from blood drawn from 52 colorectal cancer (CRC patients using a quantum-dot-labelled magnetic immunoassay method. Mutations were detected by PCR-RFLP or allele-specific PCR and confirmed by direct sequencing. In 52 patients, discordance between primary tumor and CTCs was 5.77% for KRAS, 3.85% for BRAF, 11.54% for CD133 rs3130, 7.69% for CD133 rs2286455 and 11.54% for PLS3 rs6643869 mutations. Our results support that DNA mutational analysis of CTCs may enable non-invasive, specific biomarker diagnostics and expand the scope of personalized medicine for cancer patients.

  19. RNA quality and gene expression analysis of ovarian tumor tissue undergoing repeated thaw-freezing

    DEFF Research Database (Denmark)

    Jochumsen, Kirsten Marie; Tan, Qihua; Dahlgaard, Jesper; Kruse, Torben A; Mogensen, Ole

    2007-01-01

    three thaw-freeze cycles. RNA from each aliquot was extracted on the day of division, and quantity and quality were evaluated. RNA from all three aliquots of four tumor samples underwent microarray analysis on Affymetrix Human Genome U133A 2.0 arrays. Microarray data were evaluated using both......Gene expression profiles evaluated by microarray-based quantization of RNA are used in studies of differential diagnosis and prognosis in cancer. RNA of good quality is mandatory for this evaluation. The RNA most often comes from tumor banks with limited amount of tissue, and the tissue often...... undergoes repeated thawing and freezing. We evaluated the influence of repeated division of tumor samples at room temperature, on RNA quality and quantity, in addition to the gene expression profile. Sixteen ovarian tumor samples were divided in three aliquots each, undergoing respectively one, two, and...

  20. Comparative expression pathway analysis of human and canine mammary tumors

    Directory of Open Access Journals (Sweden)

    Marconato Laura

    2009-03-01

    Full Text Available Abstract Background Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved. Results We analyzed human and dog gene expression data derived from both tumor and normal mammary samples. By analyzing the expression levels of about ten thousand dog/human orthologous genes we observed a significant overlap of genes deregulated in the mammary tumor samples, as compared to their normal counterparts. Pathway analysis of gene expression data revealed a great degree of similarity in the perturbation of many cancer-related pathways, including the 'PI3K/AKT', 'KRAS', 'PTEN', 'WNT-beta catenin' and 'MAPK cascade'. Moreover, we show that the transcriptional relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries. Conclusion Our data confirm and further strengthen the value of the canine mammary cancer model and open up new perspectives for the evaluation of novel cancer therapeutics and the development of prognostic and diagnostic biomarkers to be used in clinical studies.

  1. Predictive analysis of optical ablation in several dermatological tumoral tissues

    Science.gov (United States)

    Fanjul-Vélez, F.; Blanco-Gutiérrez, A.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2013-06-01

    Optical techniques for treatment and characterization of biological tissues are revolutionizing several branches of medical praxis, for example in ophthalmology or dermatology. The non-invasive, non-contact and non-ionizing character of optical radiation makes it specially suitable for these applications. Optical radiation can be employed in medical ablation applications, either for tissue resection or surgery. Optical ablation may provide a controlled and clean cut on a biological tissue. This is particularly relevant in tumoral tissue resection, where a small amount of cancerous cells could make the tumor appear again. A very important aspect of tissue optical ablation is then the estimation of the affected volume. In this work we propose a complete predictive model of tissue ablation that provides an estimation of the resected volume. The model is based on a Monte Carlo approach for the optical propagation of radiation inside the tissue, and a blow-off model for tissue ablation. This model is applied to several types of dermatological tumoral tissues, specifically squamous cells, basocellular and infiltrative carcinomas. The parameters of the optical source are varied and the estimated resected volume is calculated. The results for the different tumor types are presented and compared. This model can be used for surgical planning, in order to assure the complete resection of the tumoral tissue.

  2. Molecular analysis of radiation-induced experimental tumors in mice

    International Nuclear Information System (INIS)

    Molecular analysis was made on mouse tumors induced by radiation and chemicals. Expression of oncogenes was studied in 12 types of 178 mouse tumors. Southern blotting was done on tumors in which overexpression of oncogenes was noted. Amplification of the myc oncogene was found in chemically induced sarcomas, but not those induced by radiations. Radiogenic thymomas were studied in detail. These thymomas were induced in two different ways. The first was thymomas induced by direct irradiation of F1 mice between C57BL/6NxC3H/He. Southern analysis of DNA revealed deletion of specific minisatellite bands in these tumors. DNA from directly induced thymomas induced focus formation when transfected into normal Golden hamster cells. The mouse K-ras oncogene was detected in these transformants. The second type of thymomas was induced by X-irradiation of thymectomized B10.thy1.2 mice in which normal thymus from congenic B10,thy1.1. mice was grafted. Thymomas of the donor origin was analysed by transfection and the transformants by DNA from those indirectly induced thymomas did not contain activated ras oncogenes. (author)

  3. Mid-Ventilation Concept for Mobile Pulmonary Tumors: Internal Tumor Trajectory Versus Selective Reconstruction of Four-Dimensional Computed Tomography Frames Based on External Breathing Motion

    International Nuclear Information System (INIS)

    Purpose: To evaluate the accuracy of direct reconstruction of mid-ventilation and peak-phase four-dimensional (4D) computed tomography (CT) frames based on the external breathing signal. Methods and Materials: For 11 patients with 15 pulmonary targets, a respiration-correlated CT study (4D CT) was acquired for treatment planning. After retrospective time-based sorting of raw projection data and reconstruction of eight CT frames equally distributed over the breathing cycle, mean tumor position (Pmean), mid-ventilation frame, and breathing motion were evaluated based on the internal tumor trajectory. Analysis of the external breathing signal (pressure sensor around abdomen) with amplitude-based sorting of projections was performed for direct reconstruction of the mid-ventilation frame and frames at peak phases of the breathing cycle. Results: On the basis of the eight 4D CT frames equally spaced in time, tumor motion was largest in the craniocaudal direction, with 12 ± 7 mm on average. Tumor motion between the two frames reconstructed at peak phases was not different in the craniocaudal and anterior-posterior directions but was systematically smaller in the left-right direction by 1 mm on average. The 3-dimensional distance between Pmean and the tumor position in the mid-ventilation frame based on the internal tumor trajectory was 1.2 ± 1 mm. Reconstruction of the mid-ventilation frame at the mean amplitude position of the external breathing signal resulted in tumor positions 2.0 ± 1.1 mm distant from Pmean. Breathing-induced motion artifacts in mid-ventilation frames caused negligible changes in tumor volume and shape. Conclusions: Direct reconstruction of the mid-ventilation frame and frames at peak phases based on the external breathing signal was reliable. This makes the reconstruction of only three 4D CT frames sufficient for application of the mid-ventilation technique in clinical practice.

  4. Comprehensive cost analysis of sentinel node biopsy in solid head and neck tumors using a time-driven activity-based costing approach.

    Science.gov (United States)

    Crott, Ralph; Lawson, Georges; Nollevaux, Marie-Cécile; Castiaux, Annick; Krug, Bruno

    2016-09-01

    Head and neck cancer (HNC) is predominantly a locoregional disease. Sentinel lymph node (SLN) biopsy offers a minimally invasive means of accurately staging the neck. Value in healthcare is determined by both outcomes and the costs associated with achieving them. Time-driven activity-based costing (TDABC) may offer more precise estimates of the true cost. Process maps were developed for nuclear medicine, operating room and pathology care phases. TDABC estimates the costs by combining information about the process with the unit cost of each resource used. Resource utilization is based on observation of care and staff interviews. Unit costs are calculated as a capacity cost rate, measured as a Euros/min (2014), for each resource consumed. Multiplying together the unit costs and resource quantities and summing across all resources used will produce the average cost for each phase of care. Three time equations with six different scenarios were modeled based on the type of camera, the number of SLN and the type of staining used. Total times for different SLN scenarios vary between 284 and 307 min, respectively, with a total cost between 2794 and 3541€. The unit costs vary between 788€/h for the intraoperative evaluation with a gamma-probe and 889€/h for a preoperative imaging with a SPECT/CT. The unit costs for the lymphadenectomy and the pathological examination are, respectively, 560 and 713€/h. A 10 % increase of time per individual activity generates only 1 % change in the total cost. TDABC evaluates the cost of SLN in HNC. The total costs across all phases which varied between 2761 and 3744€ per standard case. PMID:27170361

  5. A new ODE tumor growth modeling based on tumor population dynamics

    International Nuclear Information System (INIS)

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan

  6. A new ODE tumor growth modeling based on tumor population dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Oroji, Amin; Omar, Mohd bin [Institute of Mathematical Sciences, Faculty of Science University of Malaya, 50603 Kuala Lumpur, Malaysia amin.oroji@siswa.um.edu.my, mohd@um.edu.my (Malaysia); Yarahmadian, Shantia [Mathematics Department Mississippi State University, USA Syarahmadian@math.msstate.edu (United States)

    2015-10-22

    In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.

  7. Molecular genetic analysis of tumor suppressor genes in ovarian cancer

    International Nuclear Information System (INIS)

    To examine the loci of putative tumor suppressor genes in ovarian cancers, we performed the molecular genetic analysis with fresh human ovarian cancers and observed the following data. Frequent allelic losses were observed on chromosomes 4p(42%), 6p(50%), 7p(43%), 8q(31%), 12p(38%), 12q(33%), 16p(33%), 16q(37%), and 19p(34%) in addition to the previously reported 6q, 11p, and 17p in ovarian caroinomas. we have used an additional probe, TCP10 to narrow down the deleted region on chromosome 6q. TCP10 was reported to be mapped to 6q 25-27. Allelic loss was found to be 40% in epithelial ovarian caroinomas. This finding suggests that chromosome 6q 24-27 is one of putative region haboring the tumor suppressor gene of epithelial ovarian cancer (particularly serous type). To examine the association between FAL(Fractional Allelic Loss) and histopathological features, the FAL value on each phenotypically different tumor was calculated as the ratio of the number of allelic losses versus the number of cases informative in each chromosomal arm. The average FALs for each phenotypically different tumor were: serous cystoadenocarcinomas. FAL=0.31 : mucinous 0.12 : and clear cell carcinoma. FAL=0.20. (Author)

  8. Numerical simulation of blood flow and interstitial fluid pressure in solid tumor microcirculation based on tumor-induced angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Gaiping Zhao; Jie Wu; Shixiong Xu; M. W. Collins; Quan Long; Carola S. K(o)nig; Yuping Jiang; Jian Wang; A. R. Padhani

    2007-01-01

    A coupled intravascular-transvascular-interstitial fluid flow model is developed to study the distributions of blood flow and interstitial fluid pressure in solid tumor microcirculation based on a tumor-induced microvascular network.This is generated from a 2D nine-point discrete mathematical model of tumor angiogenesis and contains two parent vessels.Blood flow through the microvascular network and interstitial fluid flow in tumor tissues are performed by the extended Poiseuille's law and Darcy's law, respectively, transvascular flow is described by Starling's law; effects of the vascular permeability and the interstitial hydraulic conductivity are also considered. The simulation results predict the heterogeneous blood supply, interstitial hypertension and low convectionon the inside of the tumor, which are consistent with physiological observed facts. These results may provide beneficial information for anti-angiogenesis treatment of tumor and further clinical research.

  9. [Gross tumor volume (GTV) and clinical target volume (CTV) in radiotherapy of benign skull base tumors].

    Science.gov (United States)

    Maire, J P; Liguoro, D; San Galli, F

    2001-10-01

    Skull base tumours represent about 35 to 40% of all intracranial tumours. There are now many reports in the literature confirming the fact that about 80 to 90% of such tumours are controlled with fractionated radiotherapy. Stereotactic and 3-dimensional treatment planning techniques increase local control and central nervous system tolerance. Definition of the gross tumor volume (GTV) is generally easy with currently available medical imaging systems and computers for 3-dimensional dosimetry. The definition of the clinical target volume (CTV) is more difficult to appreciate; it is defined from the CTV plus a margin, which depends on the histology and anterior therapeutic history of the tumour. It is important to take into account the visible tumour and its possible extension pathways (adjacent bone, holes at the base of skull) and/or an anatomic region (sella turcica + adjacent cavernous sinus). It is necessary to evaluate these volumes with CT Scan and MRI to appreciate tumor extension in a 3-dimentional approach, in order to reduce the risk of marginal recurrences. The aim of this paper is to discuss volume definition as a function of tumour site and tumour type to be irradiated. PMID:11715310

  10. Silicon Micropore based Electromechanical Transducer to Differentiate Tumor Cells

    Science.gov (United States)

    Ali, Waqas; Raza, Muhammad U.; Khanzada, Raja R.; Kim, Young-Tae; Iqbal, Samir M.

    2015-03-01

    Solid-state micropores have been used before to differentiate cancer cells from normal cells using size-based filtering. Tumor cells differ from normal ones not only in size but also in physical properties like elasticity, shape, motility etc. Tumor cells show different physical attributes depending on the stage and type of cancer. We report a micropore based electromechanical transducer that differentiated cancer cells based on their mechanophysical properties. The device was interfaced with a high-speed patch-clamp measurement system that biased the ionic solution across the silicon-based membrane. The bias resulted in the flow of ionic current. Electrical pulses were generated when cells passed through. Different cells depicted characteristic pulses. Translocation profiles of cells that were either small or were more elastic and flexible caused electrical pulses shorter in widths and amplitudes whereas cells with larger size or lesser elasticity/flexibility showed deeper and wider pulses. Three non-small cell lung cancer (NSCLC) cell lines NCI-H1155, A549 and NCI-H460 were successfully differentiated. NCI-H1155, due to their comparatively smaller size, were found quickest in translocating through. The solid-sate micropore based electromechanical transducer could process the whole blood sample of cancer patient without any pre-processing requirements and is ideal for point-of-care applications. Support Acknowledged from NSF through ECCS-1201878.

  11. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    International Nuclear Information System (INIS)

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  12. Linear-accelerator-based stereotactic irradiation for metastatic brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Mitsuhiro; Katsui, Kuniaki; Yoshida, Atsushi [Okayama Univ. (Japan). School of Medicine] [and others

    2003-05-01

    To assess the safety and availability of stereotactic radiotherapy (SRT) for metastatic brain tumors, we reviewed 54 consecutive cases with a total of 118 brain metastases treated with linear-accelerator-based stereotactic irradiation (STI). Nineteen patients with a total of 27 brain tumors that were larger than 3 cm or close to critical normal tissues were treated with SRT. The marginal dose of SRT was 15-21 Gy (median 21 Gy) in 3 fractions for 3 days. The median marginal dose of stereotactic radiosurgery (SRS) was 20 Gy. Effective rates of imaging studies were 72.7% and 94.4%, and those of clinical symptoms were 46.7% and 55.6% for SRT and SRS, respectively. One-year and two-year survival rates of SRT were 40.9% and 17.6%, respectively, and the median follow-up period was 6.4 months. The one-year survival rate of SRS was 32.7%, with a median follow-up of 4.6 months. Fourteen cases (7 cases each) had recurrent tumors at STI sites. Early complications were observed in one case of SRT and 8 cases of SRS, and late complications occurred in 3 cases of SRS. There were no significant differences among effective rates, survival rates, median follow-up times, recurrence rates, and complications between SRT and SRS. We concluded that SRT is a safe, effective therapy for large or eloquent area metastases. (author)

  13. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  14. A Description of the Clinical Proteomic Tumor Analysis Consortium (CPTAC) Common Data Analysis Pipeline.

    Science.gov (United States)

    Rudnick, Paul A; Markey, Sanford P; Roth, Jeri; Mirokhin, Yuri; Yan, Xinjian; Tchekhovskoi, Dmitrii V; Edwards, Nathan J; Thangudu, Ratna R; Ketchum, Karen A; Kinsinger, Christopher R; Mesri, Mehdi; Rodriguez, Henry; Stein, Stephen E

    2016-03-01

    The Clinical Proteomic Tumor Analysis Consortium (CPTAC) has produced large proteomics data sets from the mass spectrometric interrogation of tumor samples previously analyzed by The Cancer Genome Atlas (TCGA) program. The availability of the genomic and proteomic data is enabling proteogenomic study for both reference (i.e., contained in major sequence databases) and nonreference markers of cancer. The CPTAC laboratories have focused on colon, breast, and ovarian tissues in the first round of analyses; spectra from these data sets were produced from 2D liquid chromatography-tandem mass spectrometry analyses and represent deep coverage. To reduce the variability introduced by disparate data analysis platforms (e.g., software packages, versions, parameters, sequence databases, etc.), the CPTAC Common Data Analysis Platform (CDAP) was created. The CDAP produces both peptide-spectrum-match (PSM) reports and gene-level reports. The pipeline processes raw mass spectrometry data according to the following: (1) peak-picking and quantitative data extraction, (2) database searching, (3) gene-based protein parsimony, and (4) false-discovery rate-based filtering. The pipeline also produces localization scores for the phosphopeptide enrichment studies using the PhosphoRS program. Quantitative information for each of the data sets is specific to the sample processing, with PSM and protein reports containing the spectrum-level or gene-level ("rolled-up") precursor peak areas and spectral counts for label-free or reporter ion log-ratios for 4plex iTRAQ. The reports are available in simple tab-delimited formats and, for the PSM-reports, in mzIdentML. The goal of the CDAP is to provide standard, uniform reports for all of the CPTAC data to enable comparisons between different samples and cancer types as well as across the major omics fields. PMID:26860878

  15. Estimating tumor/non-tumor uptake from radiolabeled monoclonal antibodies, based on scintigraphic imaging to avoid killing the animal models

    International Nuclear Information System (INIS)

    Tumor imaging using monoclonal antibodies carrying radioisotopes is a promising approach toward improving early diagnosis of cancer in nuclear medicine. A biodistribution study in animal models bearing tumors is one of the most important procedures in evaluation of fractional uptake of radiopharmaceuticals in the tumor and non-tumor organs. This examination is often performed on rodents to extrapolate potential doses of these agents to humans. It is obvious that if we can design a non-invasive method to evaluate biodistribution, the need for large amount of monoclonal antibody (which is expensive and very difficult to produce) and the number of animals to be sacrificed (due to moral considerations) is decreased. The aim of this study was to develop a new method to determine activities that accumulated in the main organs as well as tumor without killing the animals based on scintigraphy images taken by a double head gamma camera. (author)

  16. Methylation-based classification of benign and malignant peripheral nerve sheath tumors.

    Science.gov (United States)

    Röhrich, Manuel; Koelsche, Christian; Schrimpf, Daniel; Capper, David; Sahm, Felix; Kratz, Annekathrin; Reuss, Jana; Hovestadt, Volker; Jones, David T W; Bewerunge-Hudler, Melanie; Becker, Albert; Weis, Joachim; Mawrin, Christian; Mittelbronn, Michel; Perry, Arie; Mautner, Victor-Felix; Mechtersheimer, Gunhild; Hartmann, Christian; Okuducu, Ali Fuat; Arp, Mirko; Seiz-Rosenhagen, Marcel; Hänggi, Daniel; Heim, Stefanie; Paulus, Werner; Schittenhelm, Jens; Ahmadi, Rezvan; Herold-Mende, Christel; Unterberg, Andreas; Pfister, Stefan M; von Deimling, Andreas; Reuss, David E

    2016-06-01

    The vast majority of peripheral nerve sheath tumors derive from the Schwann cell lineage and comprise diverse histological entities ranging from benign schwannomas and neurofibromas to high-grade malignant peripheral nerve sheath tumors (MPNST), each with several variants. There is increasing evidence for methylation profiling being able to delineate biologically relevant tumor groups even within the same cellular lineage. Therefore, we used DNA methylation arrays for methylome- and chromosomal profile-based characterization of 171 peripheral nerve sheath tumors. We analyzed 28 conventional high-grade MPNST, three malignant Triton tumors, six low-grade MPNST, four epithelioid MPNST, 33 neurofibromas (15 dermal, 8 intraneural, 10 plexiform), six atypical neurofibromas, 43 schwannomas (including 5 NF2 and 5 schwannomatosis associated cases), 11 cellular schwannomas, 10 melanotic schwannomas, 7 neurofibroma/schwannoma hybrid tumors, 10 nerve sheath myxomas and 10 ganglioneuromas. Schwannomas formed different epigenomic subgroups including a vestibular schwannoma subgroup. Cellular schwannomas were not distinct from conventional schwannomas. Nerve sheath myxomas and neurofibroma/schwannoma hybrid tumors were most similar to schwannomas. Dermal, intraneural and plexiform neurofibromas as well as ganglioneuromas all showed distinct methylation profiles. Atypical neurofibromas and low-grade MPNST were indistinguishable with a common methylation profile and frequent losses of CDKN2A. Epigenomic analysis finds two groups of conventional high-grade MPNST sharing a frequent loss of neurofibromin. The larger of the two groups shows an additional loss of trimethylation of histone H3 at lysine 27 (H3K27me3). The smaller one retains H3K27me3 and is found in spinal locations. Sporadic MPNST with retained neurofibromin expression did not form an epigenetic group and most cases could be reclassified as cellular schwannomas or soft tissue sarcomas. Widespread immunohistochemical loss

  17. An algorithm for classifying tumors based on genomic aberrations and selecting representative tumor models

    Directory of Open Access Journals (Sweden)

    Coon John

    2010-06-01

    Full Text Available Abstract Background Cancer is a heterogeneous disease caused by genomic aberrations and characterized by significant variability in clinical outcomes and response to therapies. Several subtypes of common cancers have been identified based on alterations of individual cancer genes, such as HER2, EGFR, and others. However, cancer is a complex disease driven by the interaction of multiple genes, so the copy number status of individual genes is not sufficient to define cancer subtypes and predict responses to treatments. A classification based on genome-wide copy number patterns would be better suited for this purpose. Method To develop a more comprehensive cancer taxonomy based on genome-wide patterns of copy number abnormalities, we designed an unsupervised classification algorithm that identifies genomic subgroups of tumors. This algorithm is based on a modified genomic Non-negative Matrix Factorization (gNMF algorithm and includes several additional components, namely a pilot hierarchical clustering procedure to determine the number of clusters, a multiple random initiation scheme, a new stop criterion for the core gNMF, as well as a 10-fold cross-validation stability test for quality assessment. Result We applied our algorithm to identify genomic subgroups of three major cancer types: non-small cell lung carcinoma (NSCLC, colorectal cancer (CRC, and malignant melanoma. High-density SNP array datasets for patient tumors and established cell lines were used to define genomic subclasses of the diseases and identify cell lines representative of each genomic subtype. The algorithm was compared with several traditional clustering methods and showed improved performance. To validate our genomic taxonomy of NSCLC, we correlated the genomic classification with disease outcomes. Overall survival time and time to recurrence were shown to differ significantly between the genomic subtypes. Conclusions We developed an algorithm for cancer classification

  18. Effect of blood vessel segmentation on the outcome of electroporation-based treatments of liver tumors.

    Directory of Open Access Journals (Sweden)

    Marija Marčan

    Full Text Available Electroporation-based treatments rely on increasing the permeability of the cell membrane by high voltage electric pulses applied to tissue via electrodes. To ensure that the whole tumor is covered with sufficiently high electric field, accurate numerical models are built based on individual patient anatomy. Extraction of patient's anatomy through segmentation of medical images inevitably produces some errors. In order to ensure the robustness of treatment planning, it is necessary to evaluate the potential effect of such errors on the electric field distribution. In this work we focus on determining the effect of errors in automatic segmentation of hepatic vessels on the electric field distribution in electroporation-based treatments in the liver. First, a numerical analysis was performed on a simple 'sphere and cylinder' model for tumors and vessels of different sizes and relative positions. Second, an analysis of two models extracted from medical images of real patients in which we introduced variations of an error of the automatic vessel segmentation method was performed. The results obtained from a simple model indicate that ignoring the vessels when calculating the electric field distribution can cause insufficient coverage of the tumor with electric fields. Results of this study indicate that this effect happens for small (10 mm and medium-sized (30 mm tumors, especially in the absence of a central electrode inserted in the tumor. The results obtained from the real-case models also show higher negative impact of automatic vessel segmentation errors on the electric field distribution when the central electrode is absent. However, the average error of the automatic vessel segmentation did not have an impact on the electric field distribution if the central electrode was present. This suggests the algorithm is robust enough to be used in creating a model for treatment parameter optimization, but with a central electrode.

  19. Automatización de un registro hospitalario de tumores Automatization of a hospital-based tumor registry

    Directory of Open Access Journals (Sweden)

    Josepa Ribes

    2005-06-01

    Full Text Available Introducción: El Instituto Catalán de Oncología automatizó los procedimientos manuales de captación de la información de las bases de datos del alta hospitalaria (AH y anatomía patológica (APA mediante una aplicación informática (ASEDAT con el objetivo de aumentar la fiabilidad de los datos y reducir los costes del Registro Hospitalario de Tumores (RHT. Material y Método: ASEDAT detecta los tumores incidentes del centro a partir de las bases de datos de APA y de las AH mediante la selección de la información básica para cada uno de ellos. Se resolvió el RHT para el período 1999-2000 mediante el procedimiento manual y automatizado, y se compararon entre sí los resultados. Resultados: Se detectaron 10.498 pacientes oncológicos. La resolución manual detectó 8.309 tumores incidentes y 2.374 tumores prevalentes. ASEDAT resolvió automáticamente 8.901 pacientes (84,8%, en los cuales se detectaron 8.367 tumores incidentes, 58 tumores más que con el procedimiento manual. La validación de la concordancia se realizó en los tumores incidentes detectados por ambos métodos (7.063 tumores. En 6.185 tumores (87,6%, la información coincidió en todas las variables. De los tumores discordantes, 692 (9,8% fueron generados por el personal del RHT en la resolución manual y el resto (n = 186; 2,6% por la aplicación (resolución automática. Conclusiones: La automatización de un registro de cáncer es posible siempre y cuando el centro disponga de las bases de datos de APA y AH codificadas e informatizadas.Introduction: To increase data reliability and reduce the costs associated with the HTR, the Catalan Institute of Oncology programmed the manual procedures of data collection from databases by means of a computer application (ASEDAT. Material and method: ASEDAT detects the incident tumors of the registry from the databases of the pathology records (PR and discharge records (DR and selects the basic information from both databases. Data

  20. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    International Nuclear Information System (INIS)

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy

  1. Computer-aided breast MR image feature analysis for prediction of tumor response to chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Aghaei, Faranak; Tan, Maxine; Liu, Hong; Zheng, Bin, E-mail: Bin.Zheng-1@ou.edu [School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Hollingsworth, Alan B. [Mercy Women’s Center, Mercy Health Center, Oklahoma City, Oklahoma 73120 (United States); Qian, Wei [Department of Electrical and Computer Engineering, University of Texas, El Paso, Texas 79968 (United States)

    2015-11-15

    Purpose: To identify a new clinical marker based on quantitative kinetic image features analysis and assess its feasibility to predict tumor response to neoadjuvant chemotherapy. Methods: The authors assembled a dataset involving breast MR images acquired from 68 cancer patients before undergoing neoadjuvant chemotherapy. Among them, 25 patients had complete response (CR) and 43 had partial and nonresponse (NR) to chemotherapy based on the response evaluation criteria in solid tumors. The authors developed a computer-aided detection scheme to segment breast areas and tumors depicted on the breast MR images and computed a total of 39 kinetic image features from both tumor and background parenchymal enhancement regions. The authors then applied and tested two approaches to classify between CR and NR cases. The first one analyzed each individual feature and applied a simple feature fusion method that combines classification results from multiple features. The second approach tested an attribute selected classifier that integrates an artificial neural network (ANN) with a wrapper subset evaluator, which was optimized using a leave-one-case-out validation method. Results: In the pool of 39 features, 10 yielded relatively higher classification performance with the areas under receiver operating characteristic curves (AUCs) ranging from 0.61 to 0.78 to classify between CR and NR cases. Using a feature fusion method, the maximum AUC = 0.85 ± 0.05. Using the ANN-based classifier, AUC value significantly increased to 0.96 ± 0.03 (p < 0.01). Conclusions: This study demonstrated that quantitative analysis of kinetic image features computed from breast MR images acquired prechemotherapy has potential to generate a useful clinical marker in predicting tumor response to chemotherapy.

  2. The Role of Fast Cell Cycle Analysis in Pediatric Brain Tumors.

    Science.gov (United States)

    Alexiou, George A; Vartholomatos, George; Stefanaki, Kalliopi; Lykoudis, Efstathios G; Patereli, Amalia; Tseka, Georgia; Tzoufi, Meropi; Sfakianos, George; Prodromou, Neofytos

    2015-01-01

    Cell cycle analysis by flow cytometry has not been adequately studied in pediatric brain tumors. We investigated the value of a modified rapid (within 6 min) cell cycle analysis protocol for the characterization of malignancy of pediatric brain tumors and for the differentiation of neoplastic from nonneoplastic tissue for possible intraoperative application. We retrospectively studied brain tumor specimens from patients treated at our institute over a 5-year period. All tumor samples were histopathologically verified before flow-cytometric analysis. The histopathological examination of permanent tissue sections was the gold standard. There were 68 brain tumor cases. All tumors had significantly lower G0/G1 and significantly higher S phase and mitosis fractions than normal brain tissue. Furthermore low-grade tumors could be differentiated from high-grade tumors. DNA aneuploidy was detected in 35 tumors. A correlation between S phase fraction and Ki-67 index was found in medulloblastomas and anaplastic ependymomas. Rapid cell cycle analysis by flow cytometry is a promising method for the identification of neoplastic tissue intraoperatively. Low-grade tumors could be differentiated from high-grade tumors. Thus, cell cycle analysis can be a valuable adjunct to the histopathological evaluation of pediatric brain tumors, whereas its intraoperative application warrants further investigation. PMID:26287721

  3. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples.

    OpenAIRE

    Isola, J; DeVries, S; Chu, L; Ghazvini, S.; Waldman, F.

    1994-01-01

    Analysis of previously unknown genetic aberrations in solid tumors has become possible through the use of comparative genomic hybridization (CGH), which is based on competitive binding of tumor and control DNA to normal metaphase chromosomes. CGH allows detection of DNA sequence copy number changes (deletions, gains, and amplifications) on a genome-wide scale in a single hybridization. We describe here an improved CGH technique, which enables reliable detection of copy number changes in archi...

  4. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... of all brain tumors that come to clinical attention. The way that pituitary tumors typically present is ... large size oftentimes before they come to clinical attention. And again, the most common symptoms are loss ...

  5. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... as your thyroid, the thyroid gland, cortisol, the adrenal gland. It also influences the kidney with urine ... right, Joe, is the majority of the pituitary mass is -- or tumors -- most of the pituitary tumors ...

  6. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... kind of -- any kind of tumor resection or cancer resection, what's important is tissue plane. And you ... re able to see the normal tumor or cancer interface. And so here we're actually working ...

  7. Radiotherapy planning for glioblastoma based on a tumor growth model: Improving target volume delineation

    CERN Document Server

    Unkelbach, Jan; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2013-01-01

    Glioblastoma are known to infiltrate the brain parenchyma instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In clinical practice, a uniform margin is applied to account for microscopic spread of disease. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth: Anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain...

  8. Computational hepatocellular carcinoma tumor grading based on cell nuclei classification.

    Science.gov (United States)

    Atupelage, Chamidu; Nagahashi, Hiroshi; Kimura, Fumikazu; Yamaguchi, Masahiro; Tokiya, Abe; Hashiguchi, Akinori; Sakamoto, Michiie

    2014-10-01

    Hepatocellular carcinoma (HCC) is the most common histological type of primary liver cancer. HCC is graded according to the malignancy of the tissues. It is important to diagnose low-grade HCC tumors because these tissues have good prognosis. Image interpretation-based computer-aided diagnosis (CAD) systems have been developed to automate the HCC grading process. Generally, the HCC grade is determined by the characteristics of liver cell nuclei. Therefore, it is preferable that CAD systems utilize only liver cell nuclei for HCC grading. This paper proposes an automated HCC diagnosing method. In particular, it defines a pipeline-path that excludes nonliver cell nuclei in two consequent pipeline-modules and utilizes the liver cell nuclear features for HCC grading. The significance of excluding the nonliver cell nuclei for HCC grading is experimentally evaluated. Four categories of liver cell nuclear features were utilized for classifying the HCC tumors. Results indicated that nuclear texture is the dominant feature for HCC grading and others contribute to increase the classification accuracy. The proposed method was employed to classify a set of regions of interest selected from HCC whole slide images into five classes and resulted in a 95.97% correct classification rate. PMID:26158066

  9. Automatic Diagnosis of Abnormal Tumor Region from Brain Computed Tomography Images Using Wavelet Based Statistical Texture Features

    CERN Document Server

    Padma, A

    2011-01-01

    The research work presented in this paper is to achieve the tissue classification and automatically diagnosis the abnormal tumor region present in Computed Tomography (CT) images using the wavelet based statistical texture analysis method. Comparative studies of texture analysis method are performed for the proposed wavelet based texture analysis method and Spatial Gray Level Dependence Method (SGLDM). Our proposed system consists of four phases i) Discrete Wavelet Decomposition (ii) Feature extraction (iii) Feature selection (iv) Analysis of extracted texture features by classifier. A wavelet based statistical texture feature set is derived from normal and tumor regions. Genetic Algorithm (GA) is used to select the optimal texture features from the set of extracted texture features. We construct the Support Vector Machine (SVM) based classifier and evaluate the performance of classifier by comparing the classification results of the SVM based classifier with the Back Propagation Neural network classifier(BPN...

  10. Pattern of malignant tumors in children: a hospital based study

    International Nuclear Information System (INIS)

    From 1990 to 1999 data from 32743 cancer patients (males 18502, females 14241) were analyzed to know the frequency of the most common cancers in local and well as well as afghan refugees. There were 3760 children with biopsy proven cancers 2910 belonged to the north-west frontier province (NWFP), while the remaining 850 were Afghan refugees. Among children of NWFP male were 1945 (67%) and 965(33%) females. In Afghan children, males were 570(67%) and females were 280(33%). The most common tumors in children of NWFP were lymphoid leukemia, lymphoma, tumors of the central nervous system (CNS), myeloid leukemia, soft tissue sarcoma wilms, tumours, retinoblastoma, bone tumor neuroblastoma, and ovarian tumors. Whereas Afghan children had Lymphoid leukemia, lymphoma, myeloid leukemia, wilms, tumor, retinoblastoma, tumors of soft tissue bones CNS, neuroblastoma and ovarian tumors. (author)

  11. Quantitative image analysis of intra-tumoral bFGF level as a molecular marker of paclitaxel resistance

    Directory of Open Access Journals (Sweden)

    Wientjes M Guillaume

    2008-01-01

    Full Text Available Abstract Background The role of basic fibroblast growth factor (bFGF in chemoresistance is controversial; some studies showed a relationship between higher bFGF level and chemoresistance while other studies showed the opposite finding. The goal of the present study was to quantify bFGF levels in archived tumor tissues, and to determine its relationship with chemosensitivity. Methods We established an image analysis-based method to quantify and convert the immunostaining intensity of intra-tumor bFGF to concentrations; this was accomplished by generating standard curves using human xenograft tumors as the renewable tissue source for simultaneous image analysis and ELISA. The relationships between bFGF concentrations and tumor chemosensitivity of patient tumors (n = 87 to paclitaxel were evaluated using linear regression analysis. Results The image analysis results were compared to our previous results obtained using a conventional, semi-quantitative visual scoring method. While both analyses indicated an inverse relationship between bFGF level and tumor sensitivity to paclitaxel, the image analysis method, by providing bFGF levels in individual tumors and therefore more data points (87 numerical values as opposed to four groups of staining intensities, further enabled the quantitative analysis of the relationship in subgroups of tumors with different pathobiological properties. The results show significant correlation between bFGF level and tumor sensitivity to the antiproliferation effect, but not the apoptotic effect, of paclitaxel. We further found stronger correlations of bFGF level and paclitaxel sensitivity in four tumor subgroups (high stage, positive p53 staining, negative aFGF staining, containing higher-than-median bFGF level, compared to all other groups. These findings suggest that the relationship between intra-tumoral bFGF level and paclitaxel sensitivity was context-dependent, which may explain the previous contradictory findings

  12. Mutational analysis of the NF1 GAP-related domain in neuroectodermal tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vinanzi, C.; Basso, G.; Perilongo, G. [Universita di Padova (Italy)] [and others

    1994-09-01

    To try to contribute to the more precise characterization of the function of the NF1 gene in tumorigenesis we have analyzed the most conserved region of its coding sequence, the GAP-related domain (NF1 GRD), which is attributed with tumor suppressor function. The rationale for the study was based on the likelihood of finding structural alterations resulting in loss of function of this region, in situations such as tumors of neuroepithelial tissues. In these situations, the activity of the NF1 gene product, neurofibromis, a GTPase activating protein, seems to be crucial in regulating the mechanisms of signal transduction mediated by p21 ras. We have studied the NF1 GRD region by PCR amplification of each exon (exons 21-27a) followed by subsequent PAGE and SSCP analysis of the amplification products in 60 primary sporadic neuroectodermal tumors. Our sample included: 14 neuroblastoma, 11 glioblastoma, 8 medulloblastoma, 7 ependimoma, 6 peripheral PNET, 1 ganglioneuroma, 1 glioma, 1 Ewing sarcoma, 1 meningioma and 1 schwannoma. We have not identified structural alterations of the NF1 GRD region in the tumors analysed, with one possible exception now in the process of being characterized. We can conclude that the loss of the NF1 gene tumor suppressor function that might lead or contribute to the development of malignancies in tissues of neuroectodermal origin is not due to structural abnormalities of the region of the gene interacting with p21 ras, either as a negative regulator or as a downstream effector of it. These data, together with the observation that the oncogene ras 21 is not typically mutated in neuroectodermal tumors, and that GTP-ras has been found normally regulated in neurofibromis-deficient melanoma and neuroblastoma cell lines, seem to support the hypothesis that the antioncogene activity of the NF1 gene could be totally independent from its interaction with ras.

  13. Diaphragm motion characterization using chest motion data for biomechanics-based lung tumor tracking during EBRT

    Science.gov (United States)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2016-03-01

    Despite recent advances in image-guided interventions, lung cancer External Beam Radiation Therapy (EBRT) is still very challenging due to respiration induced tumor motion. Among various proposed methods of tumor motion compensation, real-time tumor tracking is known to be one of the most effective solutions as it allows for maximum normal tissue sparing, less overall radiation exposure and a shorter treatment session. As such, we propose a biomechanics-based real-time tumor tracking method for effective lung cancer radiotherapy. In the proposed algorithm, the required boundary conditions for the lung Finite Element model, including diaphragm motion, are obtained using the chest surface motion as a surrogate signal. The primary objective of this paper is to demonstrate the feasibility of developing a function which is capable of inputting the chest surface motion data and outputting the diaphragm motion in real-time. For this purpose, after quantifying the diaphragm motion with a Principal Component Analysis (PCA) model, correlation coefficient between the model parameters of diaphragm motion and chest motion data was obtained through Partial Least Squares Regression (PLSR). Preliminary results obtained in this study indicate that the PCA coefficients representing the diaphragm motion can be obtained through chest surface motion tracking with high accuracy.

  14. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    Science.gov (United States)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  15. Treatment Results and Prognostic Indicators in Thymic Epithelial Tumors: A Clinicopathological Analysis of 45 Patients

    Directory of Open Access Journals (Sweden)

    Mansour Ansari

    2014-07-01

    Full Text Available Background: Thymomas are rare epithelial tumors arising from thymus gland. This study aims at investigating the clinical presentation, prognostic factors and treatment outcome of forty five patients with thymoma and thymic carcinoma. Methods: Forty-five patients being histologically diagnosed with thymoma or thymic carcinoma that were treated and followed-up at a tertiary academic hospital during January 1987 and December 2008 were selected for the present study. Twelve patients were solely treated with surgery, 14 with surgery followed by adjuvant radiotherapy, 12 with sequential combined treatment of surgery, radiotherapy and/or chemotherapy and 7 with non-surgical approach including radiotherapy and/or chemotherapy. Tumors were classified based on the new World Health Organization (WHO histological classification. Results: There were 18 women and 27 men with a median age of 43 years. Twelve patients (26.7% had stage I, 7 (17.8% had stage II, 23 (51% had stage III and 2 (4.5% had stage IV disease. Tumors types were categorized as type A (n=4, type AB (n=10, type B1 (n=9, type B2 (n=10, type B3 (n=5 and type C (n=7. In univariate analysis for overall survival, disease stage (P=0.001, tumor size (P=0.017 and the extent of surgical resection (P<0.001 were prognostic factors. Regarding the multivariate analysis, only the extent of the surgical resection (P<0.001 was the independent prognostic factor and non-surgical treatment had a negative influence on the survival. The 5-year and 10-year overall survival rates were 70.8% and 62.9%, respectively. Conclusion: Complete surgical resection is the most important prognostic factor in patients with thymic epithelial tumors.

  16. Evaluation of inoperable pancreatic carcinoma based on tumor metastasis

    International Nuclear Information System (INIS)

    Many pancreatic cancers are detected only after they are far advanced, and thus show a poor prognosis. We evaluated the survival of patients with inoperable pancreatic carcinoma, and strategy treatment. Subjects were 72 persons with advanced inoperable pancreatic carcinoma selected from among 144 examined at our department from May 1992 to March 2001. Patient factors (age, gender, and nutrition), tumor factors (hepatic metastasis, peritoneal dissemination, and distant metastasis), and treatment (radiotherapy, systemic chemotherapy, and hepatic arterial infusion therapy (HAI)) were studied and survival evaluated statistically. Overall mean survival was 175 days and the 1-year survival ratio was 13.5%. With multivariate analysis, prognostic factors were hepatic metastasis and radiotherapy. We therefore re-evaluated 56 patients treated with radiotherapy. In the group with no hepatic metastasis whose mean survival was 247 days, the prognostic factor was systemic chemotherapy. In the group with hepatic metastasis, mean survival was 140 days and the prognostic factor was the prognostic nutritional index (PNI) on admission. HAI was also a significant factor, which prolonged survival time with univariate analysis. Radiotherapy will be conducted for all inoperable pancreatic carcinomas. For the group with no hepatic metastasis, systemic chemotherapy is effective and for the group with hepatic metastasis. HAI will be selected. (author)

  17. Dendritic-Tumor Fusion Cell-Based Cancer Vaccines

    OpenAIRE

    Shigeo Koido

    2016-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that play a critical role in the induction of antitumor immunity. Therefore, various strategies have been developed to deliver tumor-associated antigens (TAAs) to DCs as cancer vaccines. The fusion of DCs and whole tumor cells to generate DC-tumor fusion cells (DC-tumor FCs) is an alternative strategy to treat cancer patients. The cell fusion method allows DCs to be exposed to the broad array of TAAs originally expressed by whol...

  18. Curettage of benign bone tumors and tumor like lesions: A retrospective analysis

    Directory of Open Access Journals (Sweden)

    Zile Singh Kundu

    2013-01-01

    Full Text Available Background: Curettage is one of the most common treatment options for benign lytic bone tumors and tumor like lesions. The resultant defect is usually filled. We report our outcome curettage of benign bone tumors and tumor like lesions without filling the cavity. Materials and Methods: We retrospectively studied 42 patients (28 males and 14 females with benign bone tumors who had undergone curettage without grafting or filling of the defect by any other bone graft substitute. The age of the patients ranged from 14 to 66 years. The most common histological diagnosis was that of giant cell tumor followed by simple bone cyst, aneurysamal bone cyst, enchondroma, fibrous dysplasia, chondromyxoid fibroma, and chondroblastoma and giant cell reparative granuloma. Of the 15 giant cell tumors, 4 were radiographic grade 1 lesions, 8 were grade 2 and 3 grade 3. The mean maximum diameter of the cysts was 5.1 (range 1.1-9 cm cm and the mean volume of the lesions was 34.89 cm 3 (range 0.94-194.52 cm 3 . The plain radiographs of the part before and after curettage were reviewed to establish the size of the initial defect and the rate of reconstitution, filling and remodeling of the bone defect. Patients were reviewed every 3 monthly for a minimum period of 2 years. Results: Most of the bone defects completely reconstituted to a normal appearance while the rest filled partially. Two patients had preoperative and three had postoperative fractures. All the fractures healed uneventfully. Local recurrence occurred in three patients with giant cell tumor who were then reoperated. All other patients had unrestricted activities of daily living after surgery. The rate of bone reconstitution, risk of subsequent fracture or the incidence of complications was related to the size of the cyst/tumor at diagnosis. The benign cystic bone lesions with volume greater than approximately 70 cm 3 were found to have higher incidence of complications. Conclusion: This study

  19. Multivariate statistical analysis of Raman spectra to distinguish normal, tumor, lymph nodes and mastitis in mouse mammary tissues

    Science.gov (United States)

    Dai, H.; Thakur, J. S.; Serhatkulu, G. K.; Pandya, A. K.; Auner, G. W.; Naik, R.; Freeman, D. C.; Naik, V. M.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra ( > 680) of normal mammary gland, malignant mammary gland tumors, and lymph node tissues from mice injected with 4T1 tumor cells have been recorded using 785 nm excitation laser. The state of the tissues was confirmed by standard pathological tests. The multivariate statistical analysis methods (principle component analysis and discriminant functional analysis) have been used to categorize the Raman spectra. The statistical algorithms based on the Raman spectral peak heights, clearly separated tissues into six distinct classes, including mastitis, which is clearly separated from normal and tumor. This study suggests that the Raman spectroscopy can possibly perform a real-time analysis of the human mammary tissues for the detection of cancer.

  20. Tumor recurrence and tumor-related mortality in endometrial cancer: Analysis in 276 patients

    Directory of Open Access Journals (Sweden)

    A Tejerizo-Garcia

    2015-01-01

    Full Text Available BACKGROUND: In this manuscript, we assessed tumor recurrence and tumor-related mortality in a clinical series of endometrial cancer patients. MATERIALS AND METHODS: A retrospective evaluation of 276 patients (mean age 64 years with histologically confirmed endometrial cancer treated at a single hospital in Madrid (Spain was conducted. The median follow-up was estimated using the inverse Kaplan–Meier method. RESULTS: Salient findings were endometrioid carcinoma (84.8% of cases, grade G1 (48.9% and stages IB (35.1% and IC (23.2%. Myometrial infiltration >50% was documented in 31.2% of cases and lymphovascular space invasion in 11.9%. After surgery, 52.5% of patients were classified into the low risk group, 21.4% into the intermediate risk group and 26.1% into the high risk group. Tumor recurrence occurred in 14.5% of patients, with an estimated median follow-up of 45 months (95% confidence interval (CI: 41.2–48.8, locoregional recurrence in 42.5% and distant recurrences in 57.5%. Furthermore, 40% of tumor recurrences developed during the first year after primary treatment and 90% over the first 3 years of follow-up. The tumor-related mortality rate was 15.9%. The estimated median follow-up was 46 months (95% CI: 43.0–49.0. Furthermore, 5.07% of death because of tumor developed during the first year after primary treatment and 13.77% over the first 3 years of follow-up. CONCLUSION: The rates of tumor-related death and tumor recurrence in endometrial cancer patients are low, with the highest percentages occurring within 3 years of primary treatment. Most of the recurrences occur outside the pelvis.

  1. Analysis of CD117-negative gastrointestinal stromal tumors

    Institute of Scientific and Technical Information of China (English)

    Chin-Yuan Tzen; Bey-Liing Mau

    2005-01-01

    AIM: To identify the gastrointestinal stromal tumors(GISTs) that are negative for CD117 expression by immunohistochemistry and to characterize their malignant potential.METHODS: A total of 108 primary mesenchymal tumors of the gastrointestinal tract were screened to select CD117-negative tumors, from which KIT(exons 9, 11, 13, and 17)and PDGFRA (exons 10, 12, 14, and 18) were sequenced to identify GISTs. Tumor recurrence and distant metastasis were used as the criteria of malignancy.RESULTS: The result showed that approximately 25%(29/108) of the gastrointestinal mesenchymal tumors were negative for CD117 and approximately 6% (7/108)of the tumors were CD117-negative GISTs. All these CD117-negative tumors had a mutated KITand a wildtype PDGFRA. All CD117-negative GISTs with mutations at codons 557/558 of KIThad mitotic counts >10/50 high power field, and 75% (3/4) of them showed multiple recurrence or distant metastasis.CONCLUSION: CD1 17-negative KITmutated GISTs account for approximately 6% of the gastrointestinal mesenchymal tumors. Tumor recurrence or distant metastasis correlates to both theKITmutations at codons 557/558 and the mitotic counts, but not to the tumor size.

  2. CLINICOPATHOLOGICAL ANALYSIS OF 5785 CASES WITH RESPIRATORY SYSTEM TUMORS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study the characteristics and tendency of incidence of patients with respiratory system tumors during the past 23 y in Tianjin. Methods: All data in our research was obtained from the surgical pathology files of Department of Pathology of the general and the Second Hospitals of Tianjin Medical University between 1981 and 2003. All data was analyzed by Spss 11.5 statistics program. The comparisons were made by u-test, P<0.05 was considered as significant. Results: 1. The detection rate of malignant tumors is significantly higher than that of benign tumors (U=52.68, p=0.000) in respiratory system. 2. The common sites of benign tumors are nose and pharynx, but the common sites of malignant tumors are lung and larynx. 3. The incidence of benign tumors generally peaks between the ages of 40 and 50, but the incidence of malignant tumor generally peaks between the ages of 50 and 60. 4. The commonest histological type of malignant tumors is squamous cell carcinoma, but the commonest histological type of benign tumors is papilloma. 5. The detection rate of malignant lung tumors steadily increased between 1981 and 1999 and increased sharply from 1999 to 2003, but the detection rate of malignant Nasopharyngeal tumors steadily decreased from 1981 to 2003. Between 1981 and 1997, the detection rate of malignant laryngeal tumors steadily increased, followed by a decrease between 1997 and 2003. Conclusion: The detection rate of malignant respiratory system tumors especially lung cancer is gradually increasing. Therefore early prevention and treatment are critical to patients' prognosis.

  3. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach

    Energy Technology Data Exchange (ETDEWEB)

    Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se [Department of Radiation Physics, Göteborg University, Göteborg 41345 (Sweden); Kindblom, Jon [Department of Oncology, Sahlgrenska University Hospital, Göteborg 41345 (Sweden); Bernhardt, Peter [Department of Radiation Physics, Göteborg University, Göteborg 41345, Sweden and Department of Nuclear Medicine, Sahlgrenska University Hospital, Göteborg 41345 (Sweden)

    2014-09-15

    Purpose: To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO{sub 2})]. Methods: A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumor oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO{sub 2}), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO{sub 2} were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. Results: For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO{sub 2} distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became

  4. Oxygen distribution in tumors: A qualitative analysis and modeling study providing a novel Monte Carlo approach

    International Nuclear Information System (INIS)

    Purpose: To construct a Monte Carlo (MC)-based simulation model for analyzing the dependence of tumor oxygen distribution on different variables related to tumor vasculature [blood velocity, vessel-to-vessel proximity (vessel proximity), and inflowing oxygen partial pressure (pO2)]. Methods: A voxel-based tissue model containing parallel capillaries with square cross-sections (sides of 10 μm) was constructed. Green's function was used for diffusion calculations and Michaelis-Menten's kinetics to manage oxygen consumption. The model was tuned to approximately reproduce the oxygenational status of a renal carcinoma; the depth oxygenation curves (DOC) were fitted with an analytical expression to facilitate rapid MC simulations of tumor oxygen distribution. DOCs were simulated with three variables at three settings each (blood velocity, vessel proximity, and inflowing pO2), which resulted in 27 combinations of conditions. To create a model that simulated variable oxygen distributions, the oxygen tension at a specific point was randomly sampled with trilinear interpolation in the dataset from the first simulation. Six correlations between blood velocity, vessel proximity, and inflowing pO2 were hypothesized. Variable models with correlated parameters were compared to each other and to a nonvariable, DOC-based model to evaluate the differences in simulated oxygen distributions and tumor radiosensitivities for different tumor sizes. Results: For tumors with radii ranging from 5 to 30 mm, the nonvariable DOC model tended to generate normal or log-normal oxygen distributions, with a cut-off at zero. The pO2 distributions simulated with the six-variable DOC models were quite different from the distributions generated with the nonvariable DOC model; in the former case the variable models simulated oxygen distributions that were more similar to in vivo results found in the literature. For larger tumors, the oxygen distributions became truncated in the lower end, due

  5. Radiotherapy alone in breast cancer. I. Analysis of tumor parameters, tumor dose and local control: the experience of the Gustave-Roussy Institute and the Princess Margaret Hospital

    International Nuclear Information System (INIS)

    This retrospective study involved 463 breast cancer patients treated by radiotherapy alone at the Princess Margaret Hospital and at the Institut Gustave-Roussy. These patients either had operable tumors, but were unfit for general anesthesia, or had inoperable tumors due to local contraindications to surgery. Results were analyzed according to tumor response, local recurrence rate, tumor size, tumor fixation, nodal fixation and tumor dose. Conventional statistical analysis of local control showed two significant factors: tumor dose and tumor size. Multivariate analysis permitted to define an ''individual risk'' (IR) of local recurrence according to three independent factors: tumor size, tumor fixation, and nodal fixation. It was shown that the IR was a good prognostic factor for local control. Increase in tumor dose gave a similar effect in the local recurrence relative risk for all the IR groups. According to the slope of the dose-effect curve, it was deduced that a dose increase of 15 Gy can decrease the relative risk of local recurrence 2-fold. In fact, it was shown that tumor dose was the most significant independent factor on local control, able to produce up to a 10-fold increase compared to 2-fold decrease for tumor size. If the IR of local recurrence is known, a theoretical predictive value on local control, taking into account the tumor dose, can be determined according to the present data

  6. Ultrasonographic diagnosis of breast tumors: analysis of 604 cases

    International Nuclear Information System (INIS)

    Objective: To investigate the diagnostic value of ultrasound examination in breast tumors. Methods: The ultrasonography and pathological results of 604 patients with breast tumors were retrospectively analyzed. Results: The ultrasonographic diagnosis was correct in 512/604 (84.8%) with 94.1% (80/85) accuracy in cysts, 92.2% (141/153), and 72.3% (73/101) in intraductal papilloma. The overall diagnostic accuracy of malignant and benign tumors was 80.3% and 85.9%, respectively. 25 malignancies was misdiagnosed as benign with features of ill-defined boundary, low level echo, lack of blood supply or calcification. Conclusion: Ultrasonographic diagnosis more accurate in benign breast tumors. Main reasons for misdiagnosis included atypical features of some breast tumors, insufficient knowledge of ultrasonic appearances of rare breast tumors; lack of correlation with clinical findings, and unfamiliarity with the imaging parameters. (authors)

  7. [Endovascular management of skull base tumors. A practical review on literature].

    Science.gov (United States)

    Moscote-Salazar, Luis Rafael; Balderrama, Jorge; Alvis-Miranda, Hernando Raphael; Lee, Angel; Alcalá-Cerra, Gabriel

    2014-01-01

    Generally speaking, skull base tumors are very difficult-to-reach lesions. More or less, two thirds of those tumors correspond to meningiomas, which are highly vascular tumors. Tumors that are able to an embolization are juvenile nasopharyngeal angiofibromas, hemangiopericytomas, hemangioblastomas, meningiomas, metastatic lesions, paragangliomas, glomus tumors and other paragangliomas. Pre-operatory embolization of tumors arising in the skull base is a surgical strategy which allows to control probable hemorrhages secondary to the surgical resection of the tumor. The benefits of this sort of embolization have been partially demonstrated. However, there are concrete and objective results, as reduction in bleeding, time of surgery, post-operative hospital stay, and the use of blood transfusion; besides, another benefit reported is the lower morbimortality related to the surgical management of neural tissue and vascular structures. The aim of this article was to bring up to date the available information up to this moment, describe briefly the background of the pre-operative embolization of skull base tumors, and emphasize the knowledge related with the variables of this therapy, such as the types of hypervascular tumors, vascular anatomy related to this (according to type and position of the tumor), the types of embolization therapy in hypervascular tumors, as well as the materials that must be used. PMID:25078745

  8. Changing Histopathological Diagnostics by Genome-Based Tumor Classification

    Directory of Open Access Journals (Sweden)

    Michael Kloth

    2014-05-01

    Full Text Available Traditionally, tumors are classified by histopathological criteria, i.e., based on their specific morphological appearances. Consequently, current therapeutic decisions in oncology are strongly influenced by histology rather than underlying molecular or genomic aberrations. The increase of information on molecular changes however, enabled by the Human Genome Project and the International Cancer Genome Consortium as well as the manifold advances in molecular biology and high-throughput sequencing techniques, inaugurated the integration of genomic information into disease classification. Furthermore, in some cases it became evident that former classifications needed major revision and adaption. Such adaptations are often required by understanding the pathogenesis of a disease from a specific molecular alteration, using this molecular driver for targeted and highly effective therapies. Altogether, reclassifications should lead to higher information content of the underlying diagnoses, reflecting their molecular pathogenesis and resulting in optimized and individual therapeutic decisions. The objective of this article is to summarize some particularly important examples of genome-based classification approaches and associated therapeutic concepts. In addition to reviewing disease specific markers, we focus on potentially therapeutic or predictive markers and the relevance of molecular diagnostics in disease monitoring.

  9. Intramedullary tumors in children: analysis of 24 operated cases Tumores intramedulares em crianças: análise de 24 casos operados

    Directory of Open Access Journals (Sweden)

    Ricardo de Amoreira Gepp

    2010-06-01

    Full Text Available Intramedullary tumors are rare. The authors reviewed 24 cases operated between 1996 and 2006. The study assessed the clinical characteristics and surgical results based upon the neurological function. METHOD: Medical records of patients with intramedullary astrocytoma and ependymoma were reviewed. The minimal follow up time was 6 months and, at the end of this period, a comparative analysis of the neurological function was performed based using the McCormick scale score. RESULTS: Most patients had astrocytoma (75%. Male gender was more prevalent (58.3%. The most common type of tumor was graded as I or II, and in three cases these were malignant. The total resection of the tumor was achieved in 20.8% of the cases. The statistical analysis did not show a statistically significant difference between preoperative and postoperative grades at McCormick scale. CONCLUSION: The authors concluded that microsurgery to intramedullary tumors did not significantly alter the neurological function after six months.Os tumores intramedulares são doenças raras. Os autores analisaram 24 casos operados entre 1996 e 2006. O estudo analisou as características clínicas e o resultado da cirurgia quanto à função neurológica. MÉTODO: Foram analisados pacientes com astrocitomas e ependimomas intramedulares. O tempo mínimo de acompanhamento foi de 6 meses e ao final deste período foi realizada a avaliação comparativa da variação do estado neurológico baseado na escala de McCormick. RESULTADOS: A maioria dos pacientes era de astrocitoma (75%. O gênero masculino foi mais prevalente (58,3%. A maioria dos tumores era de grau I ou II, 3 casos eram malignos. A ressecção total do tumor ocorreu em 20,8% dos casos. A avaliação estatística demonstrou que não houve diferença significativa entre o estado neurológico na escala de McCormick pré-operatória e pós-operatória. CONCLUSÕES: Os autores concluem que a microcirurgia para ressecção dos tumores

  10. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... around the pituitary comprise about 10% of all brain tumors that come to clinical attention. The way that ... re able to see the normal tumor or cancer interface. And so here ... started going into the brain and went up pretty high. And normally this ...

  11. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... re able to see the normal tumor or cancer interface. And so here we're actually working in the cavernous sinus right here. And we're working off on ... where the tumor is at or where the cancer is at. 00:48:08 RAN VIJAI ... of the anterior intercavernous sinus. And it is right here in this area ...

  12. A novel approach for the detection and genetic analysis of live melanoma circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Melody J Xu

    Full Text Available Circulating tumor cell (CTC detection and genetic analysis may complement currently available disease assessments in patients with melanoma to improve risk stratification and monitoring. We therefore sought to establish the feasibility of a telomerase-based assay for detecting and isolating live melanoma CTCs.The telomerase-based CTC assay utilizes an adenoviral vector that, in the presence of elevated human telomerase activity, drives the amplification of green fluorescent protein. Tumor cells are then identified via an image processing system. The protocol was tested on melanoma cells in culture or spiked into control blood, and on samples from patients with metastatic melanoma. Genetic analysis of the isolated melanoma CTCs was then performed for BRAF mutation status.The adenoviral vector was effective for all melanoma cell lines tested with sensitivity of 88.7% (95%CI 85.6-90.4% and specificity of 99.9% (95%CI 99.8-99.9%. In a pilot trial of patients with metastatic disease, CTCs were identified in 9 of 10 patients, with a mean of 6.0 CTCs/mL. At a cutoff of 1.1 CTCs/mL, the telomerase-based assay exhibits test performance of 90.0% sensitivity and 91.7% specificity. BRAF mutation analysis of melanoma cells isolated from culture or spiked control blood, or from pilot patient samples was found to match the known BRAF mutation status of the cell lines and primary tumors.To our knowledge, this is the first report of a telomerase-based assay effective for detecting and isolating live melanoma CTCs. These promising findings support further studies, including towards integrating into the management of patients with melanoma receiving multimodality therapy.

  13. Detection of Tumor Multifocality Is Important for Prediction of Tumor Recurrence in Papillary Thyroid Microcarcinoma: A Retrospective Study and Meta-Analysis

    Science.gov (United States)

    Pyo, Jung-Soo; Sohn, Jin Hee; Kang, Guhyun

    2016-01-01

    Background: The clinicopathological characteristics and conclusive treatment modality for multifocal papillary thyroid microcarcinoma (mPTMC) have not been fully established. Methods: A retrospective study, systematic review, and meta-analysis were conducted to elucidate the clinicopathological significance of mPTMC. We investigated the multiplicity of 383 classical papillary thyroid microcarcinomas (PTMCs) and the clinicopathological significance of incidental mPTMCs. Correlation between tumor recurrence and multifocality in PTMCs was evaluated through a systematic review and meta-analysis. Results: Tumor multifocality was identified in 103 of 383 PTMCs (26.9%). On linear regression analysis, primary tumor diameter was significantly correlated with tumor number (R2=0.014, p=.021) and supplemental tumor diameter (R2=0.117, p=.023). Of 103 mPTMCs, 61 (59.2%) were non-incidental, with tumor detected on preoperative ultrasonography, and 42 (40.8%) were diagnosed (incidental mPTMCs) on pathological examination. Lymph node metastasis and higher tumor stage were significantly correlated with tumor multifocality. However, there was no difference in nodal metastasis or tumor stage between incidental and non-incidental mPTMCs. On meta-analysis, tumor multifocality was significantly correlated with tumor recurrence in PTMCs (odds ratio, 2.002; 95% confidence interval, 1.475 to 2.719, paggressive tumor behavior. PMID:27271109

  14. Predicting Ovarian Cancer Patients' Clinical Response to Platinum-Based Chemotherapy by Their Tumor Proteomic Signatures.

    Science.gov (United States)

    Yu, Kun-Hsing; Levine, Douglas A; Zhang, Hui; Chan, Daniel W; Zhang, Zhen; Snyder, Michael

    2016-08-01

    Ovarian cancer is the deadliest gynecologic malignancy in the United States with most patients diagnosed in the advanced stage of the disease. Platinum-based antineoplastic therapeutics is indispensable to treating advanced ovarian serous carcinoma. However, patients have heterogeneous responses to platinum drugs, and it is difficult to predict these interindividual differences before administering medication. In this study, we investigated the tumor proteomic profiles and clinical characteristics of 130 ovarian serous carcinoma patients analyzed by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), predicted the platinum drug response using supervised machine learning methods, and evaluated our prediction models through leave-one-out cross-validation. Our data-driven feature selection approach indicated that tumor proteomics profiles contain information for predicting binarized platinum response (P drug responses as well as provided insights into the biological processes influencing the efficacy of platinum-based therapeutics. Our analytical approach is also extensible to predicting response to other antineoplastic agents or treatment modalities for both ovarian and other cancers. PMID:27312948

  15. Tailoring nanoparticle designs to target cancer based on tumor pathophysiology

    Science.gov (United States)

    Sykes, Edward A.; Dai, Qin; Sarsons, Christopher D.; Chen, Juan; Rocheleau, Jonathan V.; Hwang, David M.; Zheng, Gang; Cramb, David T.; Rinker, Kristina D.; Chan, Warren C. W.

    2016-03-01

    Nanoparticles can provide significant improvements in the diagnosis and treatment of cancer. How nanoparticle size, shape, and surface chemistry can affect their accumulation, retention, and penetration in tumors remains heavily investigated, because such findings provide guiding principles for engineering optimal nanosystems for tumor targeting. Currently, the experimental focus has been on particle design and not the biological system. Here, we varied tumor volume to determine whether cancer pathophysiology can influence tumor accumulation and penetration of different sized nanoparticles. Monte Carlo simulations were also used to model the process of nanoparticle accumulation. We discovered that changes in pathophysiology associated with tumor volume can selectively change tumor uptake of nanoparticles of varying size. We further determine that nanoparticle retention within tumors depends on the frequency of interaction of particles with the perivascular extracellular matrix for smaller nanoparticles, whereas transport of larger nanomaterials is dominated by Brownian motion. These results reveal that nanoparticles can potentially be personalized according to a patient's disease state to achieve optimal diagnostic and therapeutic outcomes.

  16. MOLECULAR AND CYTOGENETIC ANALYSIS OF LUNG TUMOR CELL LINES

    Science.gov (United States)

    We have measured the levels of amplification of oncogenes and tumor marker genes or other genes of interest in nine human lung tumor cell lines in comparison to normal human bronchial epithelial cells or normal blood lymphocytes to test the hypothesis that aberrant amplification ...

  17. Retrospective analysis of oral peripheral nerve sheath tumors in Brazilians

    Directory of Open Access Journals (Sweden)

    Juliana Tito Salla

    2009-03-01

    Full Text Available Traumatic neuroma, neurofibroma, neurilemmoma, palisaded encapsulated neuroma and malignant peripheral nerve sheath tumor (MPNST are peripheral nerve sheath tumors and present neural origin. The goal of this study was to describe the epidemiological data of oral peripheral nerve sheath tumors in a sample of the Brazilian population. Biopsies requested from the Oral Pathology Service, School of Dentistry, Federal University of Minas Gerais (MG, Brazil, between 1966 and 2006 were evaluated. Lesions diagnosed as peripheral nerve sheath tumors were submitted to morphologic and to immunohistochemical analyses. All cases were immunopositive to the S-100 protein. Thirty-five oral peripheral nerve sheath tumors were found, representing 0.16% of all lesions archived in the Oral Pathology Service. Traumatic neuroma (15 cases most frequently affected the mental foramen. Solitary neurofibroma (10 cases was more frequently observed in the palate. Neurofibroma associated with neurofibromatosis type I (2 cases was observed in the gingival and alveolar mucosa. Neurilemmoma (4 cases was more commonly observed in the buccal mucosa. Malignant peripheral nerve sheath tumors (3 cases occurred in the mandible, palate, and tongue. Palisaded encapsulated neuroma (1 case occurred in the buccal mucosa. The data confirmed that oral peripheral nerve sheath tumors are uncommon in the oral region, with some lesions presenting a predilection for a specific gender or site. This study may be useful in clinical dentistry and oral pathology practice and may be used as baseline data regarding oral peripheral nerve sheath tumors in other populations.

  18. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  19. Quantitative Analysis of Chemotherapeutic Effects in Tumors Using In Vivo Staining and Correlative Histology

    OpenAIRE

    Choi, Heung Kook; Yessayan, Doreen; Choi, Hyun Ju; Schellenberger, Eyk; Bogdanov, Alex; Josephson, Lee; Weissleder, Ralph; Ntziachristos, Vasilis

    2005-01-01

    Aims: To microscopically analyze the chemotherapeutic response of tumors using in vivo staining based on an annexinV-Cy5.5 probe and independently asses their apoptotic count using quantitative histological analysis. Methods: Lewis Lung Carcinomas cells, that are sensitive (CS-LLC) and resistant (CR-LLC) to chemotherapy were implanted in nude mice and grown to tumours. Mice were treated with cyclophosphamide and injected with a Cy5.5-annexinV fluorescent probe. In vivo imaging was performed u...

  20. Quantitative Analysis of Chemotherapeutic Effects in Tumors Using In Vivo Staining and Correlative Histology

    OpenAIRE

    Choi, Heung Kook; Yessayan, Doreen; Choi, Hyun Ju; Schellenberger, Eyk; Bogdanov, Alex; Josephson, Lee; Weissleder, Ralph; Ntziachristos, Vasilis

    2005-01-01

    Aims: To microscopically analyze the chemotherapeutic response of tumors using in vivo staining based on an annexinV-Cy5.5 probe and independently asses their apoptotic count using quantitative histological analysis. Methods:: Lewis Lung Carcinomas cells, that are sensitive (CS-LLC) and resistant (CR-LLC) to chemotherapy were implanted in nude mice and grown to tumours. Mice were treated with cyclophosphamide and injected with a Cy5.5-annexinV fluorescent probe. In vivo imaging was performed ...

  1. Pharmacokinetic Analysis of (64)Cu-ATSM Dynamic PET in Human Xenograft Tumors in Mice

    DEFF Research Database (Denmark)

    Li, Fan; Jørgensen, Jesper Tranekjær; Madsen, Jacob; Kjaer, Andreas

    2015-01-01

    PET scans with (64)Cu-ATSM and CT scans with contrast. Irreversible and reversible two-tissue compartment models were fitted to time activity curves (TACs) obtained from whole tumor volumes and compared using the Akaike information criterion (AIC). Based on voxel-wise pharmacokinetic analysis...... early tracer uptake (mean spearman R = 0.88) 5 min post injection (pi). Moreover, positive relationships were found between late tracer uptake (90 min pi) and both k₃ and the net influx rate constant, Ki (mean spearman R = 0.56 and R = 0.86; respectively). CONCLUSION: This study shows the feasibility to...

  2. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... With a minimally invasive technique, there is less disruption of tissues. It keeps anatomy close to normal ... which is a tumor of the normal pituitary cells that just grows out of control. And we' ...

  3. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... what's above us is what we call the roof of the sphenoid sinus, or the planum. 00: ... the image guidance. The tumor is highlighted in green and you can plan different trajectories to it ...

  4. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... MD: Okay, the -- has any of the more superior tumor started to deliver itself down into the ... fibrin glue. There are some other commercially available products that are used as sealants in and around ...

  5. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... artery surgery as well. He had presented some time ago with headache and visual lost. The patient ... the CAT scan, and you have a hard time telling where the tumor is at. But if ...

  6. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... here we're actually working in the cavernous sinus right here. And we're working off on ... side. So there's tumor eviding into the cavernous sinus, as you guys saw on the MRI, and ...

  7. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... comes across pretty well. And that's a nice innovation to use a CT plus an MRI, because ... layer somewhat incompetent, and sometimes you have to open it to remove the tumor. And we'll ...

  8. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... which is a tumor of the normal pituitary cells that just grows out of control. And we' ... re working just in front of the brain stem here. If you remember the previous MRI, we ...

  9. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... there in the live situation? It's normally very soft and pliable, is that what it looks like ... planes as clearly. The tumor kind of looks soft, kind of -- kind of grainy. Soft, grainy feel. ...

  10. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... which is a tumor of the normal pituitary cells that just grows out of control. And we' ... we're working just in front of the brain stem here. If you remember the previous MRI, ...

  11. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... and the abnormality is discovered -- discovered on blood tests. We -- we have listed here some other tumors ... likely to get that, unless it's appropriately taken care of during the time of the surgery to ...

  12. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... thyroid gland, cortisol, the adrenal gland. It also influences the kidney with urine output and so forth. ... does not secrete any particular hormone or directly influence any particular hormone level, so those -- those tumors ...

  13. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... come from the eyes and of course enable vision. So you can see as a tumor grows ... again, the most common symptoms are loss of vision and perhaps headache or pressure behind the eyes. ...

  14. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... really bordered by the optic nerves, the brain stem is right here just behind the tumor, and ... re working just in front of the brain stem here. If you remember the previous MRI, we ...

  15. A voxel-based multiscale model to simulate the radiation response of hypoxic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, I., E-mail: iespinoza@fis.puc.cl [Institute of Physics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile and Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Peschke, P. [Clinical Cooperation Unit Molecular Radiooncology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany); Karger, C. P. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg 69120 (Germany)

    2015-01-15

    Purpose: In radiotherapy, it is important to predict the response of tumors to irradiation prior to the treatment. This is especially important for hypoxic tumors, which are known to be highly radioresistant. Mathematical modeling based on the dose distribution, biological parameters, and medical images may help to improve this prediction and to optimize the treatment plan. Methods: A voxel-based multiscale tumor response model for simulating the radiation response of hypoxic tumors was developed. It considers viable and dead tumor cells, capillary and normal cells, as well as the most relevant biological processes such as (i) proliferation of tumor cells, (ii) hypoxia-induced angiogenesis, (iii) spatial exchange of cells leading to tumor growth, (iv) oxygen-dependent cell survival after irradiation, (v) resorption of dead cells, and (vi) spatial exchange of cells leading to tumor shrinkage. Oxygenation is described on a microscopic scale using a previously published tumor oxygenation model, which calculates the oxygen distribution for each voxel using the vascular fraction as the most important input parameter. To demonstrate the capabilities of the model, the dependence of the oxygen distribution on tumor growth and radiation-induced shrinkage is investigated. In addition, the impact of three different reoxygenation processes is compared and tumor control probability (TCP) curves for a squamous cells carcinoma of the head and neck (HNSSC) are simulated under normoxic and hypoxic conditions. Results: The model describes the spatiotemporal behavior of the tumor on three different scales: (i) on the macroscopic scale, it describes tumor growth and shrinkage during radiation treatment, (ii) on a mesoscopic scale, it provides the cell density and vascular fraction for each voxel, and (iii) on the microscopic scale, the oxygen distribution may be obtained in terms of oxygen histograms. With increasing tumor size, the simulated tumors develop a hypoxic core. Within the

  16. Immunohistochemical analysis of CD34 expression in salivary gland tumors

    Directory of Open Access Journals (Sweden)

    Saede Atarbashi Moghadam

    2015-01-01

    Full Text Available Background: Tumor growth depends on angiogenesis which is assessed by measuring the tumor microvessel density (MVD through CD34 immunostaining. The present study was performed to evaluate the situation of angiogenic activity in salivary gland neoplasms. The possible role of CD34 in progression and invasion of salivary gland tumors is also investigated. Materials and Methods: Tissue specimens of 15 pleomorphic adenoma (PA and 15 malignant salivary gland tumors including mucoepidermoid carcinoma (MEC, adenoid cystic carcinoma (AdCC and salivary duct carcinoma (SDC were immunostained for CD34 protein. The most vascularized areas at low power magnification (hotspots were selected for vessel counting at Χ400 magnification. Then, the mean number of microvessels in three fields within the tumor mass was calculated. Results: MVD in PA and malignant salivary gland tumors were 10.93 ΁ 5.95 and 26.46 ΁ 7.32, respectively. Tumor angiogenesis in PA was much lower than other lesions (P 0.05. Conclusion: Salivary gland carcinomas demonstrated higher vascular density than benign PA despite of cell types and architecture. The reason for this higher angiogenic activity could be related to metabolic characteristics of malignant cells.

  17. Trajectory Based Traffic Analysis

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin;

    2013-01-01

    We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point-and-click a......We present the INTRA system for interactive path-based traffic analysis. The analyses are developed in collaboration with traffic researchers and provide novel insights into conditions such as congestion, travel-time, choice of route, and traffic-flow. INTRA supports interactive point......-and-click analysis, due to a novel and efficient indexing structure. With the web-site daisy.aau.dk/its/spqdemo/we will demonstrate several analyses, using a very large real-world data set consisting of 1.9 billion GPS records (1.5 million trajectories) recorded from more than 13000 vehicles, and touching most of...

  18. Tailoring Chemotherapy in Early-Stage Breast Cancer: Based on Tumor Biology or Tumor Burden?

    Science.gov (United States)

    Ribnikar, Domen; Cardoso, Fatima

    2016-01-01

    The question of whether to offer adjuvant chemotherapy to patients with early-stage breast cancer has always been challenging to answer. It is well known that a substantial proportion of patients with early-stage breast cancer are over treated, especially when staging and hormonal and HER2 receptors are solely taken into consideration. The advances in our knowledge of breast cancer biology and its clinical implications were the basis for the discovery of additional reliable prognostic markers to aid decision making for adjuvant treatment. Gene expression profiling is a molecular tool that more precisely defines the intrinsic characteristics of each individual tumor. The application of this technology has led to the development of gene signatures/profiles with relevant prognostic-and some predictive-value that have become important tools in defining which patients with early-stage breast cancer can be safely spared from chemotherapy. However, the exact clinical utility of these tools will only be determined after the results of two large prospective randomized trials, MINDACT and TailorX, evaluating their role become available. Notwithstanding the existence of these genomic tools, tumor burden (defined as tumor size and nodal status) still has independent prognostic value and must be incorporated in decision making. In addition, these gene signatures have limited predictive value, and new biomarkers and new targets are needed. Therefore close collaboration between clinicians and scientists is crucial. Lastly, issues of cost-effectiveness, reimbursement, and availability are crucial and widely variable around the globe. PMID:27249737

  19. Pretreatment Tumor Volume Estimation Based on Total Serum PSA in Patients with Localized Prostate Cancer

    OpenAIRE

    Raphael Barroso Kato; Victor Srougi; Fernanda Aburesi Salvadori; Pedro Paulo Marino Rodrigues Ayres; Katia Moreira Leite; Miguel Srougi

    2008-01-01

    OBJECTIVES: To establish a formula that estimates tumor volume in localized prostate cancer based on serum prostate specific antigen levels. One of the main prognostic variables in localized prostate cancer is tumor volume, which can be precisely defined only after prostate extirpation. The present study defines a simple method that allows for estimation of tumor volume before treatment, which can help to establish a better therapeutic strategy for each patient. METHODS: From 1997 to 2002, 73...

  20. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System

    OpenAIRE

    Lei Xu; Xueying Mao; Ahmet Imrali; Ferrial Syed; Katherine Mutsvangwa; Daniel Berney; Paul Cathcart; John Hines; Jonathan Shamash; Yong-Jie Lu

    2015-01-01

    Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier "liquid biopsy" than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to st...

  1. Quantitative Analysis of Tumor Burden in Mouse Lung via MRI

    OpenAIRE

    Tidwell, Vanessa K.; Garbow, Joel R.; Krupnick, Alexander S.; Engelbach, John A.; Nehorai, Arye

    2011-01-01

    Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Pre-clinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metasta...

  2. A sequence-based survey of the complex structural organization of tumor genomes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav; Yu, Peng; Wu, Chunxiao; Huang, Guiqing; Linardopoulou, Elena V.; Trask, Barbara J.; Waldman, Frederic; Costello, Joseph; Pienta, Kenneth J.; Mills, Gordon B.; Bajsarowicz, Krystyna; Kobayashi, Yasuko; Sridharan, Shivaranjani; Paris, Pamela; Tao, Quanzhou; Aerni, Sarah J.; Brown, Raymond P.; Bashir, Ali; Gray, Joe W.; Cheng, Jan-Fang; de Jong, Pieter; Nefedov, Mikhail; Ried, Thomas; Padilla-Nash, Hesed M.; Collins, Colin C.

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

  3. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Stemkens, Bjorn, E-mail: b.stemkens@umcutrecht.nl [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Tijssen, Rob H.N. [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands); Senneville, Baudouin D. de [Imaging Division, University Medical Center Utrecht, Utrecht (Netherlands); L' Institut de Mathématiques de Bordeaux, Unité Mixte de Recherche 5251, Centre National de la Recherche Scientifique/University of Bordeaux, Bordeaux (France); Heerkens, Hanne D.; Vulpen, Marco van; Lagendijk, Jan J.W.; Berg, Cornelis A.T. van den [Department of Radiotherapy, University Medical Center Utrecht, Utrecht (Netherlands)

    2015-03-01

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients.

  4. Optimizing 4-Dimensional Magnetic Resonance Imaging Data Sampling for Respiratory Motion Analysis of Pancreatic Tumors

    International Nuclear Information System (INIS)

    Purpose: To determine the optimum sampling strategy for retrospective reconstruction of 4-dimensional (4D) MR data for nonrigid motion characterization of tumor and organs at risk for radiation therapy purposes. Methods and Materials: For optimization, we compared 2 surrogate signals (external respiratory bellows and internal MRI navigators) and 2 MR sampling strategies (Cartesian and radial) in terms of image quality and robustness. Using the optimized protocol, 6 pancreatic cancer patients were scanned to calculate the 4D motion. Region of interest analysis was performed to characterize the respiratory-induced motion of the tumor and organs at risk simultaneously. Results: The MRI navigator was found to be a more reliable surrogate for pancreatic motion than the respiratory bellows signal. Radial sampling is most benign for undersampling artifacts and intraview motion. Motion characterization revealed interorgan and interpatient variation, as well as heterogeneity within the tumor. Conclusions: A robust 4D-MRI method, based on clinically available protocols, is presented and successfully applied to characterize the abdominal motion in a small number of pancreatic cancer patients

  5. The differentiation of malignant and benign musculoskeletal tumors by F-18 FDG PET/CT studies-determination of maxSUV by analysis of ROC curve

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Eun Jung; Cho, Ihn Ho; Chun, Kyung Ah; Won, Kyu Chang; Lee, Hyung Woo; Choi, Jun Heok; Shin, Duk Seop [Yeungnam University College of Medicine, Daegu (Korea, Republic of)

    2007-12-15

    We evaluated the standard uptake value (SUV) of F-18 FDG at PET/CT for differentiation of benign from malignant tumor in primary musculoskeletal tumors. Forty-six tumors (11 benign and 12 malignant soft tissue tumors, 9 benign and 14 malignant bone tumors) were examined with F-18 FDG PET/CT (Discovery ST, GE) prior to tissue diagnosis. The maxSUV(maximum value of SUV) were calculated and compared between benign and malignant lesions. The lesion analysis was based on the transverse whole body image. The maxSUV with cutoff of 4.1 was used in distinguishing benign from malignant soft tissue tumor and 3.05 was used in bone tumor by ROC curve. There was a statistically significant difference in maxSUV between benign (n = 11; maxSUV 3.4 {+-} 3.2) and malignant (n = 12; maxSUV 14.8 {+-} 12.2) lesion in soft tissue tumor ({rho} = 0.001). Between benign bone tumor (n = 9; maxSUV 5.4 {+-} 4.0) and malignant bone tumor (n = 14; maxSUV 7.3 {+-} 3.2), there was not a significant difference in maxSUV. The sensitivity and specificity for differentiating malignant from benign soft tissue tumor was 83% and 91%, respectively. There were four false positive malignant bone tumor cases to include fibrous dysplasia, Langerhans-cell histiocytosis (n = 2) and osteoid osteoma. Also, one false positive case of malignant soft tissue tumor was nodular fasciitis. The maxSUV was useful for differentiation of benign from malignant lesion in primary soft tissue tumors. In bone tumor, the low maxSUV correlated well with benign lesions but high maxSUV did not always mean malignancy.

  6. Blood-based Tumor Markers in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Caicun ZHOU

    2015-12-01

    Full Text Available In recent years, "liquid biopsy" received enormous attentionas a new detecting method. As a non-invasive tumor screening method, the applications of liquid biopsyinclude early detection, monitoring relapse, assessment of therapy and molecule expression in lung cancer. The main source of liquid biopsy comes from circulating tumor cells (CTCs, ctDNA, and so on. This review will explore the biological characteristics, detection technologies and clinical applications of CTCs, ctDNA and other tumor markers in lung cancerand summarize liquid biopsy which in accord with three important criteria of high sensitivity (highspecificity, clinical utility and repeatability, especially a new method of ligand-targeted PCR (LT-PCR that showed a high sensitivity of 67.2% in stage I lung cancer. We expect that "liquid biopsy" could be really explored from scientific research to clinical application.

  7. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    International Nuclear Information System (INIS)

    Purpose: To investigate the effect of tumor site, measurement precision, tumor–surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor–surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor–surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3–3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  8. Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

    Science.gov (United States)

    Park, Emily S; Jin, Chao; Guo, Quan; Ang, Richard R; Duffy, Simon P; Matthews, Kerryn; Azad, Arun; Abdi, Hamidreza; Todenhöfer, Tilman; Bazov, Jenny; Chi, Kim N; Black, Peter C; Ma, Hongshen

    2016-04-01

    Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechanism leverages the deformation of single cells through tapered micrometer scale constrictions using oscillatory flow in order to generate a ratcheting effect that produces distinct flow paths for CTCs, leukocytes, and erythrocytes. A label-free separation of circulating tumor cells from whole blood is demonstrated, where target cells can be separated from background cells based on deformability despite their nearly identical size. In doping experiments, this microfluidic device is able to capture >90% of cancer cells from unprocessed whole blood to achieve 10(4) -fold enrichment of target cells relative to leukocytes. In patients with metastatic castration-resistant prostate cancer, where CTCs are not significantly larger than leukocytes, CTCs can be captured based on deformability at 25× greater yield than with the conventional CellSearch system. Finally, the CTCs separated using this approach are collected in suspension and are available for downstream molecular characterization. PMID:26917414

  9. Risk factors for brain injury after carbon ion radiotherapy for skull base tumors

    International Nuclear Information System (INIS)

    Background and purpose: This study aimed to determine the risk factors for radiation-induced brain injury (RIBI) after carbon ion radiotherapy (CIRT) for treating skull base tumors. Materials and methods: Between April 1997 and January 2009, CIRT at a total dose of 48.0–60.8 Gy equivalent (GyE) was administered in 16 fractions to 47 patients with skull base tumors. Of these patients, 39 who were followed up with magnetic resonance imaging (MRI) for more than 24 months were analyzed. RIBI was assessed according to the MRI findings based on the Late Effects of Normal Tissue-Subjective, Objective, Management, Analytic criteria; clinical symptoms were assessed according to the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer tables. The correlations of clinical and dosimetric parameters with incidence of ⩾grade 2 RIBI were retrospectively analyzed. Results: The median follow-up period was 67 months. The 5-year actuarial likelihoods of ⩾grade 2 RIBI and ⩾grade 2 clinical symptoms were 24.5% and 7.0%, respectively. Multivariate analysis demonstrated that the brain volume receiving more than 50 GyE (V50) was a significant risk factor for the development of ⩾grade 2 RIBI (p = 0.004). Conclusion: V50 was a significant risk factor for ⩾grade 2 RIBI after CIRT using a 16-fraction regimen

  10. Characterization of sonographically indeterminate ovarian tumors with MR imaging. A logistic regression analysis

    International Nuclear Information System (INIS)

    Purpose: The goal of this study was to maximize the discrimination between benign and malignant masses in patients with sonographically indeterminate ovarian lesions by means of unenhanced and contrast-enhanced MR imaging, and to develop a computer-assisted diagnosis system. Material and Methods: Findings in precontrast and Gd-DTPA contrast-enhanced MR images of 104 patients with 115 sonographically indeterminate ovarian masses were analyzed, and the results were correlated with histopathological findings. Of 115 lesions, 65 were benign (23 cystadenomas, 13 complex cysts, 11 teratomas, 6 fibrothecomas, 12 others) and 50 were malignant (32 ovarian carcinomas, 7 metastatic tumors of the ovary, 4 carcinomas of the fallopian tubes, 7 others). A logistic regression analysis was performed to discriminate between benign and malignant lesions, and a model of a computer-assisted diagnosis was developed. This model was prospectively tested in 75 cases of ovarian tumors found at other institutions. Results: From the univariate analysis, the following parameters were selected as significant for predicting malignancy (p≤0.05): A solid or cystic mass with a large solid component or wall thickness greater than 3 mm; complex internal architecture; ascites; and bilaterality. Based on these parameters, a model of a computer-assisted diagnosis system was developed with the logistic regression analysis. To distinguish benign from malignant lesions, the maximum cut-off point was obtained between 0.47 and 0.51. In a prospective application of this model, 87% of the lesions were accurately identified as benign or malignant. (orig.)

  11. Characterization of sonographically indeterminate ovarian tumors with MR imaging. A logistic regression analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y. [Dept. of Radiology, Kumamoto Univ. School of Medicine (Japan); Hatanaka, Y. [Dept. of Radiology, Kumamoto Univ. School of Medicine (Japan); Torashima, M. [Dept. of Radiology, Kumamoto Univ. School of Medicine (Japan); Takahashi, M. [Dept. of Radiology, Kumamoto Univ. School of Medicine (Japan); Miyazaki, K. [Dept. of Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan); Okamura, H. [Dept. of Obstetrics and Gynecology, Kumamoto Univ. School of Medicine (Japan)

    1997-07-01

    Purpose: The goal of this study was to maximize the discrimination between benign and malignant masses in patients with sonographically indeterminate ovarian lesions by means of unenhanced and contrast-enhanced MR imaging, and to develop a computer-assisted diagnosis system. Material and Methods: Findings in precontrast and Gd-DTPA contrast-enhanced MR images of 104 patients with 115 sonographically indeterminate ovarian masses were analyzed, and the results were correlated with histopathological findings. Of 115 lesions, 65 were benign (23 cystadenomas, 13 complex cysts, 11 teratomas, 6 fibrothecomas, 12 others) and 50 were malignant (32 ovarian carcinomas, 7 metastatic tumors of the ovary, 4 carcinomas of the fallopian tubes, 7 others). A logistic regression analysis was performed to discriminate between benign and malignant lesions, and a model of a computer-assisted diagnosis was developed. This model was prospectively tested in 75 cases of ovarian tumors found at other institutions. Results: From the univariate analysis, the following parameters were selected as significant for predicting malignancy (p{<=}0.05): A solid or cystic mass with a large solid component or wall thickness greater than 3 mm; complex internal architecture; ascites; and bilaterality. Based on these parameters, a model of a computer-assisted diagnosis system was developed with the logistic regression analysis. To distinguish benign from malignant lesions, the maximum cut-off point was obtained between 0.47 and 0.51. In a prospective application of this model, 87% of the lesions were accurately identified as benign or malignant. (orig.).

  12. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... image guidance system, it's -- we're using a CT and MRI together, and we've fused it together so we can get a better look at the tumor, and so, Allison, can you show what it looks like with just the CAT scan? And so that's what it looks like with ...

  13. Modeling of nanotherapeutics delivery based on tumor perfusion

    Science.gov (United States)

    van de Ven, Anne L.; Abdollahi, Behnaz; Martinez, Carlos J.; Burey, Lacey A.; Landis, Melissa D.; Chang, Jenny C.; Ferrari, Mauro; Frieboes, Hermann B.

    2013-05-01

    Heterogeneities in the perfusion of solid tumors prevent optimal delivery of nanotherapeutics. Clinical imaging protocols for obtaining patient-specific data have proven difficult to implement. It is challenging to determine which perfusion features hold greater prognostic value and to relate measurements to vessel structure and function. With the advent of systemically administered nanotherapeutics whose delivery is dependent on overcoming diffusive and convective barriers to transport, such knowledge is increasingly important. We describe a framework for the automated evaluation of vascular perfusion curves measured at the single vessel level. Primary tumor fragments, collected from triple-negative breast cancer patients and grown as xenografts in mice, were injected with fluorescence contrast and monitored using intravital microscopy. The time to arterial peak and venous delay, two features whose probability distributions were measured directly from time-series curves, were analyzed using a fuzzy c-mean supervised classifier in order to rank individual tumors according to their perfusion characteristics. The resulting rankings correlated inversely with experimental nanoparticle accumulation measurements, enabling the modeling of nanotherapeutics delivery without requiring any underlying assumptions about tissue structure or function, or heterogeneities contained therein. With additional calibration, these methodologies may enable the investigation of nanotherapeutics delivery strategies in a variety of tumor models.

  14. A Genomics-Based Classification of Human Lung Tumors

    NARCIS (Netherlands)

    Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Fernandez-Cuesta, Lynnette; Leenders, Frauke; Lu, Xin; Ansen, Sascha; Gardizi, Masyar; Nguyen, Chau; Berg, Johannes; Russell, Prudence; Wainer, Zoe; Schildhaus, Hans-Ulrich; Rogers, Toni-Maree; Solomon, Benjamin; Pao, William; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Thunnissen, Erik; Travis, William D.; Perner, Sven; Wright, Gavin; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman; Gabler, Franziska; Wilkening, Ines; Mueller, Christian; Dahmen, Ilona; Menon, Roopika; Koenig, Katharina; Albus, Kerstin; Merkelbach-Bruse, Sabine; Fassunke, Jana; Schmitz, Katja; Kuenstlinger, Helen; Kleine, Michaela; Binot, Elke; Querings, Silvia; Altmueller, Janine; Boessmann, Ingelore; Nuemberg, Peter; Schneider, Peter; Bogus, Magdalena; Buettner, Reinhard; Perner, Sven; Russell, Prudence; Thunnissen, Erik; Travis, William D.; Brambilla, Elisabeth; Soltermann, Alex; Moch, Holger; Brustugun, Odd Terje; Solberg, Steinar; Lund-Iversen, Marius; Helland, Aslaug; Muley, Thomas; Hoffmann, Hans; Schnabel, Philipp A.; Chen, Yuan; Groen, Herman; Timens, Wim; Sietsma, Hannie; Clement, Joachim H.; Weder, Walter; Saenger, Joerg; Stoelben, Erich; Ludwig, Corinna; Engel-Riedel, Walburga; Smit, Egbert; Heideman, Danille A. M.; Snijders, Peter J. F.; Nogova, Lucia; Sos, Martin L.; Mattonet, Christian; Toepelt, Karin; Scheffler, Matthias; Goekkurt, Eray; Kappes, Rainer; Krueger, Stefan; Kambartel, Kato; Behringer, Dirk; Schulte, Wolfgang; Galetke, Wolfgang; Randerath, Winfried; Heldwein, Matthias; Schlesinger, Andreas; Serke, Monika; Hekmat, Khosro; Frank, Konrad F.; Schnell, Roland; Reiser, Marcel; Huenerlituerkoglu, Ali-Nuri; Schmitz, Stephan; Meffert, Lisa; Ko, Yon-Dschun; Litt-Lampe, Markus; Gerigk, Ulrich; Fricke, Rainer; Besse, Benjamin; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Moro-Sibilot, Denis; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John K.; Hyde, Russell; Validire, Pierre; Girard, Philippe; Muscarella, Lucia A.; Fazio, Vito M.; Hallek, Michael; Soria, Jean-Charles; Carter, Scott L.; Getz, Gad; Hayes, D. Neil; Wilkerson, Matthew D.; Achter, Viktor; Lang, Ulrich; Seidel, Danila; Zander, Thomas; Heukamp, Lukas C.; Peifer, Martin; Bos, Marc; Pao, William; Travis, William D.; Brambilla, Elisabeth; Buettner, Reinhard; Wolf, Juergen; Thomas, Roman K.

    2013-01-01

    We characterized genome alterations in 1255 clinically annotated lung tumors of all histological subgroups to identify genetically defined and clinically relevant subtypes. More than 55% of all cases had at least one oncogenic genome alteration potentially amenable to specific therapeutic interventi

  15. Analysis of a mathematical model describing necrotic tumor growth

    CERN Document Server

    Escher, Joachim; Matioc, Bogdan-Vasile

    2010-01-01

    In this paper we study a model describing the growth of necrotic tumors in different regimes of vascularisation. The tumor consists of a necrotic core of death cells and a surrounding nonnecrotic shell. The corresponding mathematical formulation is a moving boundary problem where both boundaries delimiting the nonnecrotic shell are allowed to evolve in time.We determine all radially symmetric stationary solutions of the problem and reduce the moving boundary problem into a nonlinear evolution. Parabolic theory provides us the perfect context in order to show local well-posed of the problem for small initial data.

  16. Dose painting based on tumor uptake of Cu-ATSM and FDG

    DEFF Research Database (Denmark)

    Clausen, Malene Martini; Hansen, Anders Elias; Lundemann, Michael;

    2014-01-01

    Background: Hypoxia and increased glycolytic activity of tumors are associated with poor prognosis. The of this study was to investigate differences in radiotherapy (RT) dose painting based on the uptake of 2-deoxy-2-[18 F]- fluorodeoxyglucose (FDG) and the proposed hypoxia tracer, copper...... the GTV was 45 Gy (100%) and it was linearly escalated to a maximum of 150%. The correlations between dose painting plans were analyzed with of dose distribution density maps and quality volume histograms (QVH). Correlation between high-dose regions was investigated with Dice correlation coefficients...... agreement, indicating potential benefit of using multiple tracers for dose painting. QVH analysis revealed that FDG-based dose painting plans adequately covered approximately 50% of the hypoxic regions. Conclusion: Radiotherapy plans optimized with the current approach for cut-off values and dose region...

  17. A RETROSPECTIVE ANALYSIS OF SURGICAL TREATMENT FOR BREAST MALIGNANT TUMORS

    Institute of Scientific and Technical Information of China (English)

    范志民; 刘国津; 盖学良; 王晓军; 辛志泳

    2002-01-01

    Objective: To review the evolution of the current surgical treatment for breast malignant tumors over the past twenty years in the First Hospital of Jilin University (the former Bethune University of Medical Sciences). Methods: 1195 eligible patients with primary breast malignant tumor diagnosed and surgically treated at the First Teaching Hospital from January 1980 and December 2000 were retrospectively analyzed. Results: The peak frequency was in 40-49 years of age (40.00%), the age of the patients with breast malignant tumors trends to become young. The most common pTNM classification was Stage Ⅱ. The most common histological type was infiltrating ductal carcinoma (398 patients, 33.31%), and simple carcinoma (279 patients, 23.53%). Modified radical mastectomy was the most common operation procedure performed (779 patients, 65.19%), and was increasingly used while radical mastectomy was adopted decreasingly in recent decade. Conclusion: The variation of operation procedures performed on patients with breast malignant tumors reflected the advance of our understanding of the biology of cancer and the progression of new treatment principles.

  18. Improved classification of lung cancer tumors based on structural and physicochemical properties of proteins using data mining models.

    Directory of Open Access Journals (Sweden)

    R Geetha Ramani

    Full Text Available Detecting divergence between oncogenic tumors plays a pivotal role in cancer diagnosis and therapy. This research work was focused on designing a computational strategy to predict the class of lung cancer tumors from the structural and physicochemical properties (1497 attributes of protein sequences obtained from genes defined by microarray analysis. The proposed methodology involved the use of hybrid feature selection techniques (gain ratio and correlation based subset evaluators with Incremental Feature Selection followed by Bayesian Network prediction to discriminate lung cancer tumors as Small Cell Lung Cancer (SCLC, Non-Small Cell Lung Cancer (NSCLC and the COMMON classes. Moreover, this methodology eliminated the need for extensive data cleansing strategies on the protein properties and revealed the optimal and minimal set of features that contributed to lung cancer tumor classification with an improved accuracy compared to previous work. We also attempted to predict via supervised clustering the possible clusters in the lung tumor data. Our results revealed that supervised clustering algorithms exhibited poor performance in differentiating the lung tumor classes. Hybrid feature selection identified the distribution of solvent accessibility, polarizability and hydrophobicity as the highest ranked features with Incremental feature selection and Bayesian Network prediction generating the optimal Jack-knife cross validation accuracy of 87.6%. Precise categorization of oncogenic genes causing SCLC and NSCLC based on the structural and physicochemical properties of their protein sequences is expected to unravel the functionality of proteins that are essential in maintaining the genomic integrity of a cell and also act as an informative source for drug design, targeting essential protein properties and their composition that are found to exist in lung cancer tumors.

  19. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study

    International Nuclear Information System (INIS)

    Scaffold-based tumor engineering is rapidly evolving the study of cancer progression. However, the effects of scaffolds and environment on tumor formation have seldom been investigated. In this study, four types of injectable hydrogels, namely, collagen type I, Matrigel, alginate and agarose gels, were loaded with human ovarian cancer SKOV3 cells and then injected into nude mice subcutaneously. The growth of the tumors in vitro was also investigated. After four weeks, the specimens were harvested and analyzed. We found that tumor formation by SKOV3 cells was best supported by collagen, followed by Matrigel, alginate, control (without scaffold) and agarose in vivo. The collagen I group exhibited a larger tumor volume with increased neovascularization and increased necrosis compared with the other materials. Further, increased MMP activity, upregulated expression of laminin and fibronectin and higher levels of HIF-1α and VEGF-A in the collagen group revealed that the engineered tumor is closer to human ovarian carcinoma. In order, collagen, Matrigel, alginate, control (without scaffold) and agarose exhibited decreases in tumor formation. All evidence indicated that the in vivo engineered tumor is scaffold-dependent. Bioactive hydrogels are superior to inert hydrogels at promoting tumor regeneration. In particular, biomimetic hydrogels are advantageous because they provide a microenvironment that mimics the ECM of natural tumors. On the other hand, typical features of cancer cells and the expression of genes related to cancer malignancy were far less similar to the natural tumor in vitro, which indicated the importance of culture environment in vivo. Superior to the in vitro culture, nude mice can be considered satisfactory in vivo ‘bioreactors’ for the screening of favorable cell vehicles for tumor engineering in vitro. (paper)

  20. PCR Expression Analysis Of the Estrogeninducible Gene Bcei in Gastrointestinal and Other Human Tumors

    Directory of Open Access Journals (Sweden)

    Iris Wundrack

    1994-01-01

    Full Text Available A polymerase chain reaction (PCR assay was developed to test for tumor cell specific expression of the BCEI gene. This new marker gene, reported at first for human breast cancer, was found specifically active in various gastrointestinal carcinomas by previously applying immunohistochemistry and RNA (Northern blot analysis. Presently, by using reverse transcription -PCR analysis, a series of primary tumor tissues and established tumor cell lines were testcd for BCEI transcription. This approach was compared to immunostaining achieved by an antibody directed against the BCEI gene’s product. The result demonstrate the superior sensitivity of PCR by indicating the gene’ s expression in cases where immunohistochemical testing remained negative.

  1. Identification of tumor epithelium and stroma in tissue microarrays using texture analysis

    Directory of Open Access Journals (Sweden)

    Linder Nina

    2012-03-01

    Full Text Available Abstract Background The aim of the study was to assess whether texture analysis is feasible for automated identification of epithelium and stroma in digitized tumor tissue microarrays (TMAs. Texture analysis based on local binary patterns (LBP has previously been used successfully in applications such as face recognition and industrial machine vision. TMAs with tissue samples from 643 patients with colorectal cancer were digitized using a whole slide scanner and areas representing epithelium and stroma were annotated in the images. Well-defined images of epithelium (n = 41 and stroma (n = 39 were used for training a support vector machine (SVM classifier with LBP texture features and a contrast measure C (LBP/C as input. We optimized the classifier on a validation set (n = 576 and then assessed its performance on an independent test set of images (n = 720. Finally, the performance of the LBP/C classifier was evaluated against classifiers based on Haralick texture features and Gabor filtered images. Results The proposed approach using LPB/C texture features was able to correctly differentiate epithelium from stroma according to texture: the agreement between the classifier and the human observer was 97 per cent (kappa value = 0.934, P Conclusions The method illustrates the capability of automated segmentation of epithelial and stromal tissue in TMAs based on texture features and an SVM classifier. Applications include tissue specific assessment of gene and protein expression, as well as computerized analysis of the tumor microenvironment. Virtual slides The virtual slide(s for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/4123422336534537

  2. BRAIN TUMOR CLASSIFICATION USING NEURAL NETWORK BASED METHODS

    OpenAIRE

    Kalyani A. Bhawar*, Prof. Nitin K. Bhil

    2016-01-01

    MRI (Magnetic resonance Imaging) brain neoplasm pictures Classification may be a troublesome tasks due to the variance and complexity of tumors. This paper presents two Neural Network techniques for the classification of the magnetic resonance human brain images. The proposed Neural Network technique consists of 3 stages, namely, feature extraction, dimensionality reduction, and classification. In the first stage, we have obtained the options connected with tomography pictures victimization d...

  3. Selected Reaction Monitoring (SRM Analysis of Epidermal Growth Factor Receptor (EGFR in Formalin Fixed Tumor Tissue

    Directory of Open Access Journals (Sweden)

    Hembrough Todd

    2012-05-01

    Full Text Available Abstract Background Analysis of key therapeutic targets such as epidermal growth factor receptor (EGFR in clinical tissue samples is typically done by immunohistochemistry (IHC and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies. Methods A mass spectrometry-based Selected Reaction Monitoring (SRM assay for the EGFR protein (EGFR-SRM was developed utilizing the Liquid Tissue®-SRM technology platform. Tissue culture cells (n = 4 were analyzed by enzyme-linked immunosorbent assay (ELISA to establish quantitative EGFR levels. Matching formalin fixed cultures were analyzed by the EGFR-SRM assay and benchmarked against immunoassay of the non-fixed cultured cells. Xenograft human tumor tissue (n = 10 of non-small cell lung cancer (NSCLC origin and NSCLC patient tumor tissue samples (n = 23 were microdissected and the EGFR-SRM assay performed on Liquid Tissue lysates prepared from microdissected tissue. Quantitative curves and linear regression curves for correlation between immunoassay and SRM methodology were developed in Excel. Results The assay was developed for quantitation of a single EGFR tryptic peptide for use in FFPE patient tissue with absolute specificity to uniquely distinguish EGFR from all other proteins including the receptor tyrosine kinases, IGF-1R, cMet, Her2, Her3, and Her4. The assay was analytically validated against a collection of tissue culture cell lines where SRM analysis of the formalin fixed cells accurately reflects EGFR protein levels in matching non-formalin fixed cultures as established by ELISA sandwich immunoassay (R2 = 0.9991. The SRM assay was applied to a collection of FFPE NSCLC xenograft tumors where SRM data range from 305amol/μg to 12,860amol/μg and

  4. Flow cytometric DNA analysis and MR imaging of salivary gland tumors

    International Nuclear Information System (INIS)

    We correlated the histopathology of 32 cases of salivary gland tumors with MR imaging and flow cytometric DNA analysis. All malignant tumors were invasive and/or had an ill-defined margin. Fifty-seven percent of the pleomorphic adenomas were shown as a high signal intensity area on T2 weighted images. Fifty-six percent of Warthin tumors were shown as a low or iso signal intensity area on T2 weighted images associated with the cystic portion. Sixty-seven percent of malignant tumors were characterized by DNA aneuploidy and/or a total percentage of the S-phase fraction plus the G2+M fraction higher than 10%. It was less than 10% and the Ki-67 positive fraction was higher than 20% in all pleomorphic adenomas. The Ki-67 positive fraction was less than 20% in 78% of Warthin tumors. The histopathology of all malignant tumors, 86% of the pleomorphic adenomas, and 89% of Warthin tumors was correctly predicted by the combination of MR images and flow cytometry. We suggest that the MR images combined with flow cytometric analysis of fine needle aspiration-derived materials is useful in the pre-operative histopathologic diagnosis of salivary gland tumors. (author)

  5. Improving the accuracy of brain tumor surgery via Raman-based technology

    Science.gov (United States)

    Hollon, Todd; Lewis, Spencer; Freudiger, Christian W.; Xie, X. Sunney; Orringer, Daniel A.

    2016-01-01

    Despite advances in the surgical management of brain tumors, achieving optimal surgical results and identification of tumor remains a challenge. Raman spectroscopy, a laser-based technique that can be used to nondestructively differentiate molecules based on the inelastic scattering of light, is being applied toward improving the accuracy of brain tumor surgery. Here, the authors systematically review the application of Raman spectroscopy for guidance during brain tumor surgery. Raman spectroscopy can differentiate normal brain from necrotic and vital glioma tissue in human specimens based on chemical differences, and has recently been shown to differentiate tumor-infiltrated tissues from noninfiltrated tissues during surgery. Raman spectroscopy also forms the basis for coherent Raman scattering (CRS) microscopy, a technique that amplifies spontaneous Raman signals by 10,000-fold, enabling real-time histological imaging without the need for tissue processing, sectioning, or staining. The authors review the relevant basic and translational studies on CRS microscopy as a means of providing real-time intraoperative guidance. Recent studies have demonstrated how CRS can be used to differentiate tumor-infiltrated tissues from noninfiltrated tissues and that it has excellent agreement with traditional histology. Under simulated operative conditions, CRS has been shown to identify tumor margins that would be undetectable using standard bright-field microscopy. In addition, CRS microscopy has been shown to detect tumor in human surgical specimens with near-perfect agreement to standard H & E microscopy. The authors suggest that as the intraoperative application and instrumentation for Raman spectroscopy and imaging matures, it will become an essential component in the neurosurgical armamentarium for identifying residual tumor and improving the surgical management of brain tumors. PMID:26926067

  6. Semiquantitative Analysis Using Thallium-201 SPECT for Differential Diagnosis Between Tumor Recurrence and Radiation Necrosis After Gamma Knife Surgery for Malignant Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography (201Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of 201Tl SPECT data used the early ratio (ER) and the delayed ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with 201Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P201Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most valuable index for this purpose.

  7. Fractal analysis of nuclear histology integrates tumor and stromal features into a single prognostic factor of the oral cancer microenvironment

    International Nuclear Information System (INIS)

    The lack of prognostic biomarkers in oral squamous cell carcinoma (OSCC) has hampered treatment decision making and survival in OSCC remains poor. Histopathological features are used for prognostication in OSCC and, although useful for predicting risk, manual assessment of histopathology is subjective and labour intensive. In this study, we propose a method that integrates multiple histopathological features of the tumor microenvironment into a single, digital pathology-based biomarker using nuclear fractal dimension (nFD) analysis. One hundred and seven consecutive OSCC patients diagnosed between 1998 and 2006 in Calgary, Canada were included in the study. nFD scores were generated from DAPI-stained images of tissue microarray (TMA) cores. Ki67 protein expression was measured in the tumor using fluorescence immunohistochemistry (IHC) and automated quantitative analysis (AQUA®). Lymphocytic infiltration (LI) was measured in the stroma from haematoxylin-eosin (H&E)-stained TMA slides by a pathologist. Twenty-five (23.4%) and 82 (76.6%) patients were classified as high and low nFD, respectively. nFD was significantly associated with pathological tumor-stage (pT-stage; P = 0.01) and radiation treatment (RT; P = 0.01). High nFD of the total tumor microenvironment (stroma plus tumor) was significantly associated with improved disease-specific survival (DSS; P = 0.002). No association with DSS was observed when nFD of either the tumor or the stroma was measured separately. pT-stage (P = 0.01), pathological node status (pN-status; P = 0.02) and RT (P = 0.03) were also significantly associated with DSS. In multivariate analysis, nFD remained significantly associated with DSS [HR 0.12 (95% CI 0.02-0.89, P = 0.04)] in a model adjusted for pT-stage, pN-status and RT. We also found that high nFD was significantly associated with high tumor proliferation (P < 0.0001) and high LI (P < 0.0001), factors that we and others have shown to be associated with improved survival in OSCC

  8. Analysis of a free-boundary tumor model with angiogenesis

    Science.gov (United States)

    Friedman, Avner; Lam, King-Yeung

    2015-12-01

    We consider a free boundary problem for a spherically symmetric tumor with free boundary r 0 if lim inf t → ∞ α (t) > 0. Surprisingly, we exhibit solutions (when μ is not small) where α (t) → 0 exponentially in t while R (t) → ∞ exponentially in t. Finally, we prove the global asymptotic stability of steady state when μ is sufficiently small.

  9. Pediatric brain stem tumors: analysis of 25 cases

    International Nuclear Information System (INIS)

    The charts of 25 pediatric patients with brain stem tumors have been reviewed. The use of computed tomography was found to have been valuable in diagnosis and follow-up, as well as in the design of radiation therapy portals. Radiotherapy and combination chemotherapy with VM-26 (4'-1 demethyl-epipodophyllo toxin B-D-thenylidene glucoside) and CCNU(1-2-chloroethyl-methyl-3-Cyclohexyl-1-nitrosourea) were the treatment employed. (M.A.C.)

  10. Genome wide in silico SNP-tumor association analysis

    International Nuclear Information System (INIS)

    Carcinogenesis occurs, at least in part, due to the accumulation of mutations in critical genes that control the mechanisms of cell proliferation, differentiation and death. Publicly accessible databases contain millions of expressed sequence tag (EST) and single nucleotide polymorphism (SNP) records, which have the potential to assist in the identification of SNPs overrepresented in tumor tissue. An in silico SNP-tumor association study was performed utilizing tissue library and SNP information available in NCBI's dbEST (release 092002) and dbSNP (build 106). A total of 4865 SNPs were identified which were present at higher allele frequencies in tumor compared to normal tissues. A subset of 327 (6.7%) SNPs induce amino acid changes to the protein coding sequences. This approach identified several SNPs which have been previously associated with carcinogenesis, as well as a number of SNPs that now warrant further investigation This novel in silico approach can assist in prioritization of genes and SNPs in the effort to elucidate the genetic mechanisms underlying the development of cancer

  11. Demographic and histopathologic profile of pediatric brain tumors: A hospital-based study

    Directory of Open Access Journals (Sweden)

    Harshil C Shah

    2015-01-01

    Full Text Available Background: Very few hospital-based or population-based studies are published in the context to the epidemiologic profile of pediatric brain tumors (PBTs in India and Indian subcontinent. Aim: To study the demographic and histopathologic profile of PBTs according to World Health Organization 2007 classification in a single tertiary health care center in India. Materials and Methods: Data regarding age, gender, topography, and histopathology of 76 pediatric patients (0–19 years with brain tumors operated over a period of 24 months (January-2012 to December-2013 was collected retrospectively and analyzed using EpiInfo 7. Chi-square test and test of proportions (Z-test were used wherever necessary. Results: PBTs were more common in males (55.3% as compared to females (44.7% with male to female ratio of 1.23:1. Mean age was 10.69 years. Frequency of tumors was higher in childhood age group (65.8% when compared to adolescent age group (34.2%. The most common anatomical site was cerebellum (39.5%, followed by hemispheres (22.4%. Supratentorial tumors (52.6% were predominant than infratentorial tumors (47.4%. Astrocytomas (40.8% and embryonal tumors (29.0% were the most common histological types almost contributing more than 2/3rd of all tumors. Craniopharyngiomas (11.8% and ependymomas (6.6% were the third and fourth most common tumors, respectively. Conclusion: Astrocytomas and medulloblastomas are the most common tumors among children and adolescents in our region, which needs special attention from the neurosurgical department of our institute. Demographic and histopathologic profile of cohort in the present study do not differ substantially from that found in other hospital-based and population-based studies except for slight higher frequency of craniopharyngiomas.

  12. Adaptation and applications of a realistic digital phantom based on patient lung tumor trajectories

    International Nuclear Information System (INIS)

    Digital phantoms continue to play a significant role in modeling and characterizing medical imaging. The currently available XCAT phantom incorporates both the flexibility of mathematical phantoms and the realistic nature of voxelized phantoms. This phantom generates images based on a regular breathing pattern and can include arbitrary lung tumor trajectories. In this work, we present an algorithm that modifies the current XCAT phantom to generate 4D imaging data based on irregular breathing. First, a parameter is added to the existing XCAT phantom to include any arbitrary tumor motion. This modification introduces the desired tumor motion but, comes at the cost of decoupled diaphragm, chest wall and lung motion. To remedy this problem diaphragm and chest wall motion is first modified based on initial tumor location and then input to the XCAT phantom. This generates a phantom with synchronized respiratory motion. Mapping of tumor motion trajectories to diaphragm and chest wall motion is done by adaptively calculating a scale factor based on tumor to lung contour distance. The distance is calculated by projecting the initial tumor location to lung edge contours characterized by quadratic polynomials. Data from ten patients were used to evaluate the accuracy between actual independent tumor location and the location obtained from the modified XCAT phantom. The RMSE and standard deviations for ten patients in x, y, and z directions are: (0.29 ± 0.04, 0.54 ± 0.17, and0.39 ± 0.06) mm. To demonstrate the utility of the phantom, we use the new phantom to simulate a 4DCT acquisition as well as a recently published method for phase sorting. The modified XCAT phantom can be used to generate more realistic imaging data for enhanced testing of algorithms for CT reconstruction, tumor tracking, and dose reconstruction. (paper)

  13. Preoperative surgical planning and simulation of complex cranial base tumors in virtual reality

    Institute of Scientific and Technical Information of China (English)

    YI Zhi-qiang; LI Liang; MO Da-peng; ZHANG Jia-yong; ZHANG Yang; BAO Sheng-de

    2008-01-01

    @@ The extremely complex anatomic relationships among bone,tumor,blood vessels and cranial nerves remains a big challenge for cranial base tumor surgery.Therefore.a good understanding of the patient specific anatomy and a preoperative planning are helpful and crocial for the neurosurgeons.Three dimensional (3-D) visualization of various imaging techniques have been widely explored to enhance the comprehension of volumetric data for surgical planning.1 We used the Destroscope Virtual Reality (VR) System (Singapore,Volume Interaction Pte Ltd,software:RadioDexterTM 1.0) to optimize preoperative plan in the complex cranial base tumors.This system uses patient-specific,coregistered,fused radiology data sets that may be viewed stereoscopically and can be manipulated in a virtual reality environment.This article describes our experience with the Destroscope VR system in preoperative surgical planning and simulation for 5 patients with complex cranial base tumors and evaluates the clinical usefulness of this system.

  14. Efficacy of HPV-16 E7 Based Vaccine in a TC-1 Tumoric Animal Model of Cervical Cancer - page 483

    Directory of Open Access Journals (Sweden)

    Maryam Fazeli

    2011-01-01

    Full Text Available Objective: The human papillomavirus as an etiological agent of cervical cancer doesnot grow adequately in tissue culture systems. The tumor cell line TC-1 continuously expressesthe E6 and E7 oncogenic proteins of HPV, and is considered a suitable tool inlaboratory investigations and vaccine researches against cervical cancer.Materials and Methods: The TC-1 cell line was grown in RPMI 1650 supplemented with10% FBS, glutamine and antibiotics, and was used for tumor development in mice. Six toseven week-old tumor bearing C57BL/6 mice were divided into 3 groups consisting of 7mice per group. The first group received pcDNA-E7, the second group received pcDNA3,and the third group received phosphate buffered saline (PBS. The treated animals weremonitored for their tumor size progression and survival. At last, the tumoric tissues fromautopsied animals were fixed and examined with Mayer's hematoxylin and eosin (H&E.All experiments were done in accordance with guidelines of the Laboratory Animal EthicalCommission of Tarbiat Modares University. Data analysis was performed using the onewayANOVA followed by Tukey's test in both experimental and control groups. A p-value<0.05 was considered significant.Results: There were significant decreases in tumor growth; there were also improvementsin survival among mice in the treated groups (p<0.041. H&E stained sections fromuntreated mice were studied independently in a blinded fashion by two observers andshowed malignant neoplasms composed of severely pleomorphic tumor cells with nuclearenlargement, high nuclear-cytoplasmic (N/C ratios, and prominent nucleoli in solid andfascicular patterns of growth. High mitotic activity with extensive necrosis was also notedin both test and control groups.Conclusion: The TC-1 lung metastatic model can be used to test the efficacy of variousE7-based therapeutic cancer vaccine strategies for cervical cancer and the prevention ofHPV-related neoplasia.

  15. Synthesis of dimeric cyclic RGD based near-infrared probe for in vivo tumor diagnosis

    Science.gov (United States)

    Cao, Jie; Wan, Shunan; Tian, Junmei; Chi, Xuemei; Du, Changli; Deng, Dawei; Chen, Wei R.; Gu, Yueqing

    2012-03-01

    Cell adhesion molecule integrin αvβ3 is an excellent target for tumor interventions because of its unique expression on the surface of several types of solid tumor cells and on almost all sprouting tumor vasculatures. In this manuscript, we describe the synthesis of near-infrared (NIR) fluorochrome ICG-Der-02-labeled dimeric cyclic RGD peptides (ICG-Der-02-c(RGDyK)2) for in vivo tumor integrin targeting. The optical properties and structure of the probe were intensively characterized. Afterwards, the integrin specificity of the fluorescent probe was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous MDA-MB-231 and U87MG tumor targeting. The results indicated that after labeling RGD peptide, the optical properties of ICG-Der-02 showed no obvious change. Besides, in vitro and in vivo tumor targeting experiment indicated that the ICG-Der-02-c(RGDyK)2 probe with high integrin affinity showed excellent tumor activity accumulation. Noninvasive NIR fluorescence imaging is able to detect tumor integrin expression based upon the highly potent RGD peptide probe.

  16. Vascular bone tumors: a proposal of a classification based on clinicopathological, radiographic and genetic features

    Energy Technology Data Exchange (ETDEWEB)

    Errani, Costantino [Istituto Ortopedico Rizzoli, Ortopedia Generale, Orthopaedic Service, Bagheria (Italy); Struttura Complessa Ortopedia Generale, Dipartimento Rizzoli-Sicilia, Bagheria, PA (Italy); Vanel, Daniel; Gambarotti, Marco; Alberghini, Marco [Istituto Ortopedico Rizzoli, Pathology Service, Bologna (Italy); Picci, Piero [Istituto Ortopedico Rizzoli, Laboratory for Cancer Research, Bologna (Italy); Faldini, Cesare [Istituto Ortopedico Rizzoli, Ortopedia Generale, Orthopaedic Service, Bagheria (Italy)

    2012-12-15

    The classification of vascular bone tumors remains challenging, with considerable morphological overlap spanning across benign to malignant categories. The vast majority of both benign and malignant vascular tumors are readily diagnosed based on their characteristic histological features, such as the formation of vascular spaces and the expression of endothelial markers. However, some vascular tumors have atypical histological features, such as a solid growth pattern, epithelioid change, or spindle cell morphology, which complicates their diagnosis. Pathologically, these tumors are remarkably similar, which makes differentiating them from each other very difficult. For this rare subset of vascular bone tumors, there remains considerable controversy with regard to the terminology and the classification that should be used. Moreover, one of the most confusing issues related to vascular bone tumors is the myriad of names that are used to describe them. Because the clinical behavior and, consequently, treatment and prognosis of vascular bone tumors can vary significantly, it is important to effectively and accurately distinguish them from each other. Upon review of the nomenclature and the characteristic clinicopathological, radiographic and genetic features of vascular bone tumors, we propose a classification scheme that includes hemangioma, hemangioendothelioma, angiosarcoma, and their epithelioid variants. (orig.)

  17. Vascular bone tumors: a proposal of a classification based on clinicopathological, radiographic and genetic features

    International Nuclear Information System (INIS)

    The classification of vascular bone tumors remains challenging, with considerable morphological overlap spanning across benign to malignant categories. The vast majority of both benign and malignant vascular tumors are readily diagnosed based on their characteristic histological features, such as the formation of vascular spaces and the expression of endothelial markers. However, some vascular tumors have atypical histological features, such as a solid growth pattern, epithelioid change, or spindle cell morphology, which complicates their diagnosis. Pathologically, these tumors are remarkably similar, which makes differentiating them from each other very difficult. For this rare subset of vascular bone tumors, there remains considerable controversy with regard to the terminology and the classification that should be used. Moreover, one of the most confusing issues related to vascular bone tumors is the myriad of names that are used to describe them. Because the clinical behavior and, consequently, treatment and prognosis of vascular bone tumors can vary significantly, it is important to effectively and accurately distinguish them from each other. Upon review of the nomenclature and the characteristic clinicopathological, radiographic and genetic features of vascular bone tumors, we propose a classification scheme that includes hemangioma, hemangioendothelioma, angiosarcoma, and their epithelioid variants. (orig.)

  18. Malignancy and metastatic spread of Ewing Tumors explored based on the identification of angiogenic target structures

    OpenAIRE

    Fasan, Annette

    2011-01-01

    Ewing Family Tumors (EFT) are characterized by a high metastatic potential and malignant features were correlated with hypoxia and angiogenesis. Its transcriptome analysis revealed two genes highly up regulated or even specifically expressed in EFT. Chondromodulin-1 (CHM1), a cartilage specific angiogenesis inhibitor is believed to be involved in vasculogenic mimicry of tumor cells. GPR64, an orphan 7-transmembrane G-protein coupled receptor is specifically expressed on epithelial cells of th...

  19. Dose painting based on tumor uptake of Cu-ATSM and FDG: a comparative study

    International Nuclear Information System (INIS)

    Hypoxia and increased glycolytic activity of tumors are associated with poor prognosis. The purpose of this study was to investigate differences in radiotherapy (RT) dose painting based on the uptake of 2-deoxy-2-[18 F]-fluorodeoxyglucose (FDG) and the proposed hypoxia tracer, copper(II)diacetyl-bis(N4)-methylsemithiocarbazone (Cu-ATSM) using spontaneous clinical canine tumor models. Positron emission tomography/computed tomography scans of five spontaneous canine sarcomas and carcinomas were obtained; FDG on day 1 and 64Cu-ATSM on day 2 and 3 (approx. 3 and 24 hours pi.). Sub-volumes for dose escalation were defined by a threshold-based method for both tracers and five dose escalation levels were formed in each sub-volume. Volumetric modulated arc therapy plans were optimized based on the dose escalation regions for each scan for a total of three dose plans for each dog. The prescription dose for the GTV was 45 Gy (100%) and it was linearly escalated to a maximum of 150%. The correlations between dose painting plans were analyzed with construction of dose distribution density maps and quality volume histograms (QVH). Correlation between high-dose regions was investigated with Dice correlation coefficients. Comparison of dose plans revealed varying degree of correlation between cases. Some cases displayed a separation of high-dose regions in the comparison of FDG vs. 64Cu-ATSM dose plans at both time points. Among the Dice correlation coefficients, the high dose regions showed the lowest degree of agreement, indicating potential benefit of using multiple tracers for dose painting. QVH analysis revealed that FDG-based dose painting plans adequately covered approximately 50% of the hypoxic regions. Radiotherapy plans optimized with the current approach for cut-off values and dose region definitions based on FDG, 64Cu-ATSM 3 h and 24 h uptake in canine tumors had different localization of the regional dose escalation levels. This indicates that 64Cu-ATSM at two

  20. Valine-based biphenylsulphonamide matrix metalloproteinase inhibitors as tumor imaging agents

    International Nuclear Information System (INIS)

    Among matrix metalloproteinases (MMPs), the subfamily of gelatinases (MMP-2, MMP-9) is of particular interest due to their ability to degrade type IV collagen and other non-fibrillar collagen domains and proteins such as fibronectin and laminin. Whilst malignant cells often over-express various MMPs, the gelatinases have been most consistently detected in malignant tissues and associated with tumor growth, metastatic potential and angiogenesis. Radiosynthesis of carboxylic (1') and hydroxamic (2') MMPIs resulted in radiochemical yields of 70+/-5% (n=6) and 60+/-5% (n=4), respectively. Evaluation in A549-inoculated athymic mice showed a tumor uptake of 2.0+/-0.7%ID/g (3h p.i.), a tumor/blood ratio of 0.5 and a tumor/muscle ratio of 4.6 at 48hp.i. for 1'. For compound 2' a tumor uptake of 0.7+/-0.2%ID/g (3hp.i.), a tumor/blood ratio of 1.2 and a tumor/muscle ratio of 1.8 at 24hp.i. were observed. HPLC analysis of the blood (plasma) showed no dehalogenation or other metabolites of 1' 2hp.i. For compound 2', 65.4% of intact compound was found in the blood (plasma) and one polar metabolite (31%) was detected whereas in the tumor 91.8% of the accumulated activity was caused by intact compound and only 8.1% by the metabolite. Planar imaging, using a Toshiba GCA-9300A/hg SPECT camera, showed that tumor tissue could be visualized and that image quality improved by decreasing specific activity resulting in lower liver uptake, indicating some degree of saturable binding in the liver. In vivo evaluation of these radioiodinated carboxylic and hydroxamic MMP inhibitor tracers revealed that MMP inhibitors could have potential as tumor imaging agents, but that further research is necessary

  1. Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model

    Directory of Open Access Journals (Sweden)

    Hyejin Choi

    2015-02-01

    Full Text Available Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments.

  2. Transcriptome analysis of individual stromal cell populations identifies stroma-tumor crosstalk in mouse lung cancer model.

    Science.gov (United States)

    Choi, Hyejin; Sheng, Jianting; Gao, Dingcheng; Li, Fuhai; Durrans, Anna; Ryu, Seongho; Lee, Sharrell B; Narula, Navneet; Rafii, Shahin; Elemento, Olivier; Altorki, Nasser K; Wong, Stephen T C; Mittal, Vivek

    2015-02-24

    Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC) has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments. PMID:25704820

  3. Association rule mining based study for identification of clinical parameters akin to occurrence of brain tumor.

    Science.gov (United States)

    Sengupta, Dipankar; Sood, Meemansa; Vijayvargia, Poorvika; Hota, Sunil; Naik, Pradeep K

    2013-01-01

    Healthcare sector is generating a large amount of information corresponding to diagnosis, disease identification and treatment of an individual. Mining knowledge and providing scientific decision-making for the diagnosis & treatment of disease from the clinical dataset is therefore increasingly becoming necessary. Aim of this study was to assess the applicability of knowledge discovery in brain tumor data warehouse, applying data mining techniques for investigation of clinical parameters that can be associated with occurrence of brain tumor. In this study, a brain tumor warehouse was developed comprising of clinical data for 550 patients. Apriori association rule algorithm was applied to discover associative rules among the clinical parameters. The rules discovered in the study suggests - high values of Creatinine, Blood Urea Nitrogen (BUN), SGOT & SGPT to be directly associated with tumor occurrence for patients in the primary stage with atleast 85% confidence and more than 50% support. A normalized regression model is proposed based on these parameters along with Haemoglobin content, Alkaline Phosphatase and Serum Bilirubin for prediction of occurrence of STATE (brain tumor) as 0 (absent) or 1 (present). The results indicate that the methodology followed will be of good value for the diagnostic procedure of brain tumor, especially when large data volumes are involved and screening based on discovered parameters would allow clinicians to detect tumors at an early stage of development. PMID:23888095

  4. Ultrasonic spectrum analysis for in vivo characterization of tumor microstructural changes in the evaluation of tumor response to chemotherapy using diagnostic ultrasound

    International Nuclear Information System (INIS)

    There is a strong need for early assessment of tumor response to chemotherapy in order to avoid the adverse effects of unnecessary chemotherapy and to allow early transition to second-line therapy. The purpose of this study was to determine the feasibility of ultrasonic spectral analysis for the in vivo characterization of changes in tumor microstructure in the evaluation of tumor response to chemotherapy using diagnostic ultrasound. Experiments were approved by the regional animal care committee. Twenty-four MCF-7 breast cancer bearing nude mice were treated with adriamycin or sterile saline administered by intraperitoneal injection. Ultrasonic radio-frequency (RF) data was collected using a clinically available ultrasound scanner (6-MHz linear transducer). Linear regression parameters (spectral slope and midband-fit) regarding the calibrated power spectra from the RF signals were tested to monitor tumor response to treatment. The section equivalent to the ultrasound imaging plane was stained with hematoxylin and eosin to allow for assessment of the density of tumor cell nuclei. Treatment with adriamycin significantly reduced tumor growth in comparison with the control group (p = 0.003). Significant changes were observed in the ultrasonic parameters of the treated relative to the untreated tumors (p < 0.05). The spectral slope increased by 48.5%, from −10.66 ± 2.96 to −5.49 ± 2.69; the midband-fit increased by 12.8%, from −57.10 ± 7.68 to −49.81 ± 5.40. Treated tumors were associated with a significant decrease in the density of tumor cell nuclei as compared with control tumors (p < 0.001). Ultrasonic spectral analysis can detect changes in tumor microstructure after chemotherapy, and this will be helpful in the early evaluation tumor response to chemotherapy

  5. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  6. PD-L1 and Survival in Solid Tumors: A Meta-Analysis

    OpenAIRE

    Wu, Pin; Wu, Dang; LI, Lijun; Chai, Ying; Huang, Jian

    2015-01-01

    Background Numerous agents targeting PD-L1/PD-1 check-point are in clinical development. However, the correlation between PD-L1expression and prognosis of solid tumor is still in controversial. Here, we elicit a systematic review and meta-analysis to investigate the potential value of PD-L1 in the prognostic prediction in human solid tumors. Methods Electronic databases were searched for studies evaluating the expression of PD-L1 and overall survival (OS) of patients with solid tumors. Odds r...

  7. Analysis of Extracellular Vesicles in the Tumor Microenvironment.

    Science.gov (United States)

    Al-Nedawi, Khalid; Read, Jolene

    2016-01-01

    Extracellular vesicles (ECV) are membrane compartments shed from all types of cells in various physiological and pathological states. In recent years, ECV have gained an increasing interest from the scientific community for their role as an intercellular communicator that plays important roles in modifying the tumor microenvironment. Multiple techniques have been established to collect ECV from conditioned media of cell culture or physiological fluids. The gold standard methodology is differential centrifugation. Although alternative techniques exist to collect ECV, these techniques have not proven suitable as a substitution for the ultracentrifugation procedure. PMID:27581023

  8. Biomarker- versus drug-driven tumor growth inhibition models: an equivalence analysis.

    Science.gov (United States)

    Sardu, Maria Luisa; Poggesi, Italo; De Nicolao, Giuseppe

    2015-12-01

    The mathematical modeling of tumor xenograft experiments following the dosing of antitumor drugs has received much attention in the last decade. Biomarker data can further provide useful insights on the pathological processes and be used for translational purposes in the early clinical development. Therefore, it is of particular interest the development of integrated pharmacokinetic-pharmacodynamic (PK-PD) models encompassing drug, biomarker and tumor-size data. This paper investigates the reciprocal consistency of three types of models: drug-to-tumor, such as established drug-driven tumor growth inhibition (TGI) models, drug-to-biomarker, e.g. indirect response models, and biomarker-to-tumor, e.g. the more recent biomarker-driven TGI models. In particular, this paper derives a mathematical relationship that guarantees the steady-state equivalence of the cascade of drug-to-biomarker and biomarker-to-tumor models with a drug-to-tumor TGI model. Using the Simeoni TGI model as a reference, conditions for steady-state equivalence are worked out and used to derive a new biomarker-driven model. Simulated and real data are used to show that in realistic cases the steady-state equivalence extends also to transient responses. The possibility of predicting the drug-to-tumor potency of a new candidate drug based only on biomarker response is discussed. PMID:26209955

  9. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Noonan, K.E.; Beck, C.; Holzmayer, T.A.; Chin, J.E.; Roninson, I.B. (Univ. of Illinois, Chicago (USA)); Wunder, J.S.; Andrulis, I.L. (Mount Sinai Hospital, Toronto, Ontario (Canada)); Gazdar, A.F. (National Cancer Inst., Bethesda, MD (USA)); Willman, C.L.; Griffith, B. (Univ. of New Mexico, Albuquerque (USA)); Von Hoff, D.D. (Univ. of Texas, San Antonio (USA))

    1990-09-01

    The resistance of tumor cells ot chemotheraprutic drugs is a major obstacle to successful cancer chemotherapy. In human cells, expression of the MDR1 gene, encoding a transmembrane efflux pump (P-glycoprotein), leads to decreased intracellular accumulation and resistance to a variety of lipophilic drugs (multidrug resistance; MDR). The levels of MDR in cell lines selected in bitro have been shown to correlate with the steady-state levels of MDR1 mRNA and P-glycoprotein. In cells with a severalfold increase in cellular drug resistance, MDR1 expression levels are close to the limits of detection by conventional assays. MDR1 expression has been frequently observed in human tumors after chemotherapy and in some but not all types of clinically refactory tumors untreated with chemotherapeutic drugs. The authors have devised a highly sensitive, specific, and quantitative protocol for measuring the levels of MDR1 mRNA in clincal samples, based on the polymerase chain reaction. They have used this assay to measure MDR1 gene expression in MDR cell lines and >300 normal tissues, tumor-derived cell lines, and clinical specimens of untreated tumors of the types in which MDR1 expression was rarely observed by standard assays. Low levels of MDR1 expression were found by polymerase chain reaction in most solid tumors and leukemias tested. The frequency of samples without detectable MDR1 expression varied among different types of tumors; MDR1-negative samples were ost common among tumor types known to be relatively responsive to chemotherapy.

  10. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H.; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A.

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  11. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation

    International Nuclear Information System (INIS)

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher–Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  12. Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation.

    Science.gov (United States)

    Unkelbach, Jan; Menze, Bjoern H; Konukoglu, Ender; Dittmann, Florian; Le, Matthieu; Ayache, Nicholas; Shih, Helen A

    2014-02-01

    Glioblastoma differ from many other tumors in the sense that they grow infiltratively into the brain tissue instead of forming a solid tumor mass with a defined boundary. Only the part of the tumor with high tumor cell density can be localized through imaging directly. In contrast, brain tissue infiltrated by tumor cells at low density appears normal on current imaging modalities. In current clinical practice, a uniform margin, typically two centimeters, is applied to account for microscopic spread of disease that is not directly assessable through imaging. The current treatment planning procedure can potentially be improved by accounting for the anisotropy of tumor growth, which arises from different factors: anatomical barriers such as the falx cerebri represent boundaries for migrating tumor cells. In addition, tumor cells primarily spread in white matter and infiltrate gray matter at lower rate. We investigate the use of a phenomenological tumor growth model for treatment planning. The model is based on the Fisher-Kolmogorov equation, which formalizes these growth characteristics and estimates the spatial distribution of tumor cells in normal appearing regions of the brain. The target volume for radiotherapy planning can be defined as an isoline of the simulated tumor cell density. This paper analyzes the model with respect to implications for target volume definition and identifies its most critical components. A retrospective study involving ten glioblastoma patients treated at our institution has been performed. To illustrate the main findings of the study, a detailed case study is presented for a glioblastoma located close to the falx. In this situation, the falx represents a boundary for migrating tumor cells, whereas the corpus callosum provides a route for the tumor to spread to the contralateral hemisphere. We further discuss the sensitivity of the model with respect to the input parameters. Correct segmentation of the brain appears to be the most

  13. The Correlation between Apparent Diffusion Coefficient and Tumor Cellularity in Patients: A Meta-Analysis

    OpenAIRE

    Chen, Lihua; Liu, Min; Bao, Jing; XIA, YUNBAO; Zhang, Jiuquan; Zhang, Lin; Huang, Xuequan; Jian WANG

    2013-01-01

    Objective To perform a meta-analysis exploring the correlation between the apparent diffusion coefficient (ADC) and tumor cellularity in patients. Materials and Methods We searched medical and scientific literature databases for studies discussing the correlation between the ADC and tumor cellularity in patients. Only studies that were published in English or Chinese prior to November 2012 were considered for inclusion. Summary correlation coefficient (r) values were extracted from each study...

  14. Detection of Brain Tumor in EEG Signals Using Independent Component Analysis

    OpenAIRE

    Rashid, Akram; Tahir, Seema; Choudhury, Aamer Saleem

    2015-01-01

    The Electroencephalogram(EEG) is Scientifically becoming an important tool of measuring brain activity. The EEG data is used to diagnose brain diseases and brain abnormalities. EEG helps to suit the increasing demand of brain tumor detection on affordable prices with better clinical and healthcare services. This research work presents a technique of efficient brain tumor detection in EEG signals using Independent Component Analysis(ICA). EEG signals which actually are carrying information reg...

  15. A Method for Detecting Circulating Tumor Cells Based on the Measurement of Single-Cell Metabolism in Droplet-Based Microfluidics.

    Science.gov (United States)

    Del Ben, Fabio; Turetta, Matteo; Celetti, Giorgia; Piruska, Aigars; Bulfoni, Michela; Cesselli, Daniela; Huck, Wilhelm T S; Scoles, Giacinto

    2016-07-18

    The number of circulating tumor cells (CTCs) in blood is strongly correlated with the progress of metastatic cancer. Current methods to detect CTCs are based on immunostaining or discrimination of physical properties. Herein, a label-free method is presented exploiting the abnormal metabolic behavior of cancer cells. A single-cell analysis technique is used to measure the secretion of acid from individual living tumor cells compartmentalized in microfluidically prepared, monodisperse, picoliter (pL) droplets. As few as 10 tumor cells can be detected in a background of 200 000 white blood cells and proof-of-concept data is shown on the detection of CTCs in the blood of metastatic patients. PMID:27247024

  16. Staging of gastroenteropancreatic neuroendocrine tumors: how we do it based on an evidence-based approach.

    LENUS (Irish Health Repository)

    McDermott, Shaunagh

    2013-01-01

    In contrast to other common types of malignant tumors, the vast majority of gastroenteropancreatic neuroendocrine tumors are well differentiated and slowly growing with only a minority showing aggressive behavior. It is important to accurately stage patients radiologically so the correct treatment can be implemented and to improve prognosis. In this article, we critically appraise the current literature in an effort to establish the current role of radiologic imaging in the staging of neuroendocrine tumors. We also discuss our protocol for staging neuroendocrine tumors.

  17. Evaluation of an Automatic Registration-Based Algorithm for Direct Measurement of Volume Change in Tumors

    International Nuclear Information System (INIS)

    Purpose: Assuming that early tumor volume change is a biomarker for response to therapy, accurate quantification of early volume changes could aid in adapting an individual patient’s therapy and lead to shorter clinical trials. We investigated an image registration–based approach for tumor volume change quantification that may more reliably detect smaller changes that occur in shorter intervals than can be detected by existing algorithms. Methods and Materials: Variance and bias of the registration-based approach were evaluated using retrospective, in vivo, very-short-interval diffusion magnetic resonance imaging scans where true zero tumor volume change is unequivocally known and synthetic data, respectively. The interval scans were nonlinearly registered using two similarity measures: mutual information (MI) and normalized cross-correlation (NCC). Results: The 95% confidence interval of the percentage volume change error was (−8.93% to 10.49%) for MI-based and (−7.69%, 8.83%) for NCC-based registrations. Linear mixed-effects models demonstrated that error in measuring volume change increased with increase in tumor volume and decreased with the increase in the tumor’s normalized mutual information, even when NCC was the similarity measure being optimized during registration. The 95% confidence interval of the relative volume change error for the synthetic examinations with known changes over ±80% of reference tumor volume was (−3.02% to 3.86%). Statistically significant bias was not demonstrated. Conclusion: A low-noise, low-bias tumor volume change measurement algorithm using nonlinear registration is described. Errors in change measurement were a function of tumor volume and the normalized mutual information content of the tumor.

  18. A fully continuous individual-based model of tumor cell invasion

    OpenAIRE

    Gómez-Mourelo, Pablo; Sánchez Mañes, Eva María; Casasús Latorre, Pedro Luis; Webb, F.Glenn

    2008-01-01

    The aim of this work is to develop and study a fully continuous individual-based model (IBM) for cancer tumor invasion into a spatial environment of surrounding tissue. The IBM improves previous spatially discrete models, because it is continuous in all variables (including spatial variables), and thus not constrained to lattice frameworks. The IBM includes four types of individual elements: tumor cells, extracellular macromolecules (MM), a matrix degradative enzyme (MDE), and oxygen. The alg...

  19. Enhanced tumor contrast during breast lumpectomy provided by independent component analysis of localized reflectance measures

    Science.gov (United States)

    Eguizabal, Alma; Laughney, Ashley M.; Garcia Allende, Pilar Beatriz; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; Lopez-Higuera, Jose M.; Conde, Olga M.

    2012-03-01

    A spectral analysis technique to enhance tumor contrast during breast conserving surgery is proposed. A set of 29 surgically-excised breast tissues have been imaged in local reflectance geometry. Measures of broadband reflectance are directly analyzed using Principle Component Analysis (PCA), on a per sample basis, to extract areas of maximal spectral variation. A dynamic selection threshold has been applied to obtain the final number of principal components, accounting for inter-patient variability. A blind separation technique based on Independent Component Analysis (ICA) is then applied to extract diagnostically powerful results. ICA application reveals that the behavior of one independent component highly correlates with the pathologic diagnosis and it surpasses the contrast obtained using empirical models. Moreover, blind detection characteristics (no training, no comparisons with training reference data) and no need for parameterization makes the automated diagnosis simple and time efficient, favoring its translation to the clinical practice. Correlation coefficient with model-based results up to 0.91 has been achieved.

  20. Quantification of iodine-131 in tumors using a threshold based on image contrast

    Energy Technology Data Exchange (ETDEWEB)

    DeNardo, G.L.; Shen, Sui; DeNardo, S.J.; Liao Shuquinn; DeNardo, D.A.; Yuan, A. [Department of Internal Medicine, University of California at Davis, Sacramento, California (United States); Lamborn, K.R. [Department of Neurological Surgery, University of California San Francisco, San Francisco, California (United States)

    1998-05-01

    Accurate and reproducible quantification of tumor radioactivity by imaging requires definition of a region of interest (ROI) for the tumor. The use of a threshold for creating the tumor ROI based on tumor-to-background image contrast (image contrast) was examined. Quantification of iodine-131 in spheres in a phantom that simulated tumors in patients was investigated using planar imaging and geometric-mean and effective-point-source methods. Thresholds that provided the least quantitative error for spheres with different diameters (1-5 cm) and locations (0-11 cm deep in the body), {sup 131}I concentrations (0.037-3.2 MBq/ml), and sphere-to-background concentration ratios (1:0, 14:1 and 7:1) were investigated. The correlation between threshold and sphere image contrast was examined. The phantom study showed that an appropriate threshold value for quantification of tumor radioactivity could be determined using image contrast for a single view, provided that image contrast was {>=}1.5. The error of quantification was less than 10% for spheres with high image contrast ({>=}1.5) but was greater than 17% for spheres with low image contrast (<1.5). When image contrast-dependent thresholds were applied to patient studies, {sup 131}I concentrations determined by imaging were in good agreement with the concentrations determined by counting biopsy samples. Additionally, reproducibility was improved when compared with a visual boundary method. It is concluded that accurate and reproducible quantification of radioactivity in tumors is achievable using thresholds based on image contrast if image contrast is greater than or equal to 1.5. Optimal thresholds for quantification of tumor radioactivity were similar if image contrast was similar despite differing tumor diameters, locations and {sup 131}I concentrations. Under certain circumstances, the effective-point-source method was preferable to the geometric-mean method. (orig.) With 6 figs., 2 tabs., 29 refs.

  1. Quantification of iodine-131 in tumors using a threshold based on image contrast

    International Nuclear Information System (INIS)

    Accurate and reproducible quantification of tumor radioactivity by imaging requires definition of a region of interest (ROI) for the tumor. The use of a threshold for creating the tumor ROI based on tumor-to-background image contrast (image contrast) was examined. Quantification of iodine-131 in spheres in a phantom that simulated tumors in patients was investigated using planar imaging and geometric-mean and effective-point-source methods. Thresholds that provided the least quantitative error for spheres with different diameters (1-5 cm) and locations (0-11 cm deep in the body), 131I concentrations (0.037-3.2 MBq/ml), and sphere-to-background concentration ratios (1:0, 14:1 and 7:1) were investigated. The correlation between threshold and sphere image contrast was examined. The phantom study showed that an appropriate threshold value for quantification of tumor radioactivity could be determined using image contrast for a single view, provided that image contrast was ≥1.5. The error of quantification was less than 10% for spheres with high image contrast (≥1.5) but was greater than 17% for spheres with low image contrast (131I concentrations determined by imaging were in good agreement with the concentrations determined by counting biopsy samples. Additionally, reproducibility was improved when compared with a visual boundary method. It is concluded that accurate and reproducible quantification of radioactivity in tumors is achievable using thresholds based on image contrast if image contrast is greater than or equal to 1.5. Optimal thresholds for quantification of tumor radioactivity were similar if image contrast was similar despite differing tumor diameters, locations and 131I concentrations. Under certain circumstances, the effective-point-source method was preferable to the geometric-mean method. (orig.)

  2. PD-L1 and Survival in Solid Tumors: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Pin Wu

    Full Text Available Numerous agents targeting PD-L1/PD-1 check-point are in clinical development. However, the correlation between PD-L1 expression and prognosis of solid tumor is still in controversial. Here, we elicit a systematic review and meta-analysis to investigate the potential value of PD-L1 in the prognostic prediction in human solid tumors.Electronic databases were searched for studies evaluating the expression of PD-L1 and overall survival (OS of patients with solid tumors. Odds ratios (ORs from individual studies were calculated and pooled by using a random-effect model, and heterogeneity and publication bias analyses were also performed.A total of 3107 patients with solid tumor from 28 published studies were included in the meta-analysis. The median percentage of solid tumors with PD-L1 overexpression was 52.5%. PD-L1 overexpression was associated with worse OS at both 3 years (OR = 2.43, 95% confidence interval (CI = 1.60 to 3.70, P < 0.0001 and 5 years (OR = 2.23, 95% CI = 1.40 to 3.55, P = 0.0008 of solid tumors. Among the tumor types, PD-L1 was associated with worse 3 year-OS of esophageal cancer, gastric cancer, hepatocellular carcinoma, and urothelial cancer, and 5 year-OS of esophageal cancer, gastric cancer and colorectal cancer.These results suggest that expression of PD-L1 is associated with worse survival in solid tumors. However, the correlations between PD-L1 and prognosis are variant among different tumor types. More studies are needed to investigate the clinical value of PD-L1 expression in prognostic prediction and treatment option.

  3. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    Science.gov (United States)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  4. Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions.

    Science.gov (United States)

    Chen, Yong; Wang, Hengtong; Zhang, Jiangang; Chen, Ke; Li, Yumin

    2015-01-01

    All tumors, both benign and metastatic, undergo an avascular growth stage with nutrients supplied by the surrounding tissue. This avascular growth process is much easier to carry out in more qualitative and quantitative experiments starting from tumor spheroids in vitro with reliable reproducibility. Essentially, this tumor progression would be described as a sequence of phenotypes. Using agent-based simulation in a two-dimensional spatial lattice, we constructed a composite growth model in which the phenotypic behavior of tumor cells depends on not only the local nutrient concentration and cell count but also the game among cells. Our simulation results demonstrated that in silico tumors are qualitatively similar to those observed in tumor spheroid experiments. We also found that the payoffs in the game between two living cell phenotypes can influence the growth velocity and surface roughness of tumors at the same time. Finally, this current model is flexible and can be easily extended to discuss other situations, such as environmental heterogeneity and mutation. PMID:26648395

  5. A bispecific peptide based near-infrared probe for in vivo tumor diagnosis

    Science.gov (United States)

    Ding, Li; Chen, Wei R.; Gu, Yueqing

    2013-02-01

    The epidermal growth factor receptor EGFR and HER2 are members of recepeter tyrosine kinase family. Overexpression of EGFR and HER2 has been observed in a variety of human tumors, making these receptors promising targets for tumor diagnosis. An affibody targeting HER2 and a nanobody targeting EGFR were reported before. In this Manuscript, we described an bispecific peptide combined with an affibody and a nanonbody through a linker―(G4S)3 . And the bispecific peptide was labeled with near-infrared (NIR) fluorochrome ICG-Der-02 for in vivo tumor EGFR and HER2 targeting. Afterwards, the EGFR and HER2 specificity of the fluorescent probe was tested in vitro for receptor binding assay and fluorescence microscopy and in vivo for subcutaneous MDA-MB-231 tumor targeting. The results indicated that the bispecific peptide had a high affinity to EGFR and HER2. Besides, in vitro and in vivo tumor targeting experiment indicated that the ICG-Der-02-( bispecific peptide) showed excellent tumor activity accumulation. Noninvasive NIR fluorescence imaging is able to detect tumor EGFR and HER2 expression based upon the highly potent bispecific peptide probe.

  6. Systemic Administration of Interleukin 2 Enhances the Therapeutic Efficacy of Dendritic Cell-Based Tumor Vaccines

    Science.gov (United States)

    Shimizu, K.; Fields, R. C.; Giedlin, M.; Mule, J. J.

    1999-03-01

    We have reported previously that murine bone marrow-derived dendritic cells (DC) pulsed with whole tumor lysates can mediate potent antitumor immune responses both in vitro and in vivo. Because successful therapy was dependent on host immune T cells, we have now evaluated whether the systemic administration of the T cell stimulatory/growth promoting cytokine interleukin-2 (IL-2) could enhance tumor lysate-pulsed DC-based immunizations to further promote protective immunity toward, and therapeutic rejection of, syngeneic murine tumors. In three separate approaches using a weakly immunogenic sarcoma (MCA-207), the systemic administration of non-toxic doses of recombinant IL-2 (20,000 and 40,000 IU/dose) was capable of mediating significant increases in the potency of DC-based immunizations. IL-2 could augment the efficacy of tumor lysate-pulsed DC to induce protective immunity to lethal tumor challenge as well as enhance splenic cytotoxic T lymphocyte activity and interferon-γ production in these treated mice. Moreover, treatment with the combination of tumor lysate-pulsed DC and IL-2 could also mediate regressions of established pulmonary 3-day micrometastases and 7-day macrometastases as well as established 14- and 28-day s.c. tumors, leading to either significant cure rates or prolongation in overall survival. Collectively, these findings show that nontoxic doses of recombinant IL-2 can potentiate the antitumor effects of tumor lysate-pulsed DC in vivo and provide preclinical rationale for the use of IL-2 in DC-based vaccine strategies in patients with advanced cancer.

  7. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    NARCIS (Netherlands)

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-

  8. Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: is the dog a suitable animal model for human breast cancer?

    Science.gov (United States)

    Burrai, G P; Tanca, A; De Miglio, M R; Abbondio, M; Pisanu, S; Polinas, M; Pirino, S; Mohammed, S I; Uzzau, S; Addis, M F; Antuofermo, E

    2015-11-01

    Canine mammary tumors (CMTs) share many features with human breast cancer (HBC), specifically concerning cancer-related pathways. Although the human epidermal growth factor receptor 2 (HER2) plays a significant role as a therapeutic and prognostic biomarker in HBC, its relevance in the pathogenesis and prognosis of CMT is still controversial. The aim of this study was to investigate HER2 expression in canine mammary hyperplasic and neoplastic tissues as well as to evaluate the specificity of the most commonly used polyclonal anti HER2 antibody by multiple molecular approaches. HER2 protein and RNA expression were determined by immunohistochemistry (IHC) and by quantitative real-time (qRT) PCR. A strong cell membrane associated with non-specific cytoplasmic staining was observed in 22% of carcinomas by IHC. Adenomas and carcinomas exhibited a significantly higher HER2 mRNA expression when compared to normal mammary glands, although no significant difference between benign and malignant tumors was noticed by qRT-PCR. The IHC results suggest a lack of specificity of the FDA-approved antibody in CMT samples as further demonstrated by Western immunoblotting (WB) and reverse phase protein arrays (RPPA). Furthemore, HER2 was not detected by mass spectrometry (MS) in a protein-expressing carcinoma at the IHC investigation. This study highlights that caution needs to be used when trying to translate from human to veterinary medicine information concerning cancer-related biomarkers and pathways. Further investigations are necessary to carefully assess the diagnostic and biological role specifically exerted by HER2 in CMTs and the use of canine mammary tumors as a model of HER2 over-expressing breast cancer. PMID:26088453

  9. A kernel-based method for markerless tumor tracking in kV fluoroscopic images

    International Nuclear Information System (INIS)

    Markerless tracking of respiration-induced tumor motion in kilo-voltage (kV) fluoroscopic image sequence is still a challenging task in real time image-guided radiation therapy (IGRT). Most of existing markerless tracking methods are based on a template matching technique or its extensions that are frequently sensitive to non-rigid tumor deformation and involve expensive computation. This paper presents a kernel-based method that is capable of tracking tumor motion in kV fluoroscopic image sequence with robust performance and low computational cost. The proposed tracking system consists of the following three steps. To enhance the contrast of kV fluoroscopic image, we firstly utilize a histogram equalization to transform the intensities of original images to a wider dynamical intensity range. A tumor target in the first frame is then represented by using a histogram-based feature vector. Subsequently, the target tracking is then formulated by maximizing a Bhattacharyya coefficient that measures the similarity between the tumor target and its candidates in the subsequent frames. The numerical solution for maximizing the Bhattacharyya coefficient is performed by a mean-shift algorithm. The proposed method was evaluated by using four clinical kV fluoroscopic image sequences. For comparison, we also implement four conventional template matching-based methods and compare their performance with our proposed method in terms of the tracking accuracy and computational cost. Experimental results demonstrated that the proposed method is superior to conventional template matching-based methods. (paper)

  10. Neural Network Based Augmented Reality for Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    P.Mithun

    2013-04-01

    Full Text Available The development in technology opened the door of fiction and reached reality. Major medical applications deals on robot-assisted surgery and image guided surgery. Because of this, substantial research is going on to implement Augmented Reality (AR in instruments which incorporate the surgeon’s intuitive capabilities. Augmented reality is the grouping of virtual entity or 3D stuffs which are overlapped on live camera feed information. The decisive aim of augmented reality is to enhancing the virtual video and a 3D object onto a real world on which it will raise the person’s conceptual understanding of the subject. In this paper we described a solution for initial prediction of tumour cells in MRI images of human brain using image processing technique the output of which will be the 3D slicedimage of the human brain. The sliced image is then virtually embedded on the top of human head during the time of surgery so that the surgeon can exactly locate the spot to be operated. Before augmenting the 3D sliced image Artificial neural network is used to select the appropriate image that contains tumor automatically in order to make the system more efficient.

  11. Tumor Content Chart-Assisted HER2/CEP17 Digital PCR Analysis of Gastric Cancer Biopsy Specimens

    Science.gov (United States)

    Matsusaka, Keisuke; Ishikawa, Shumpei; Nakayama, Atsuhito; Ushiku, Tetsuo; Nishimoto, Aiko; Urabe, Masayuki; Kaneko, Nobuyuki; Kunita, Akiko; Kaneda, Atsushi; Aburatani, Hiroyuki; Fujishiro, Mitsuhiro; Seto, Yasuyuki; Fukayama, Masashi

    2016-01-01

    Evaluating HER2 gene amplification is an essential component of therapeutic decision-making for advanced or metastatic gastric cancer. A simple method that is applicable to small, formalin-fixed, paraffin-embedded biopsy specimens is desirable as an adjunct to or as a substitute for currently used HER2 immunohistochemistry and in situ hybridization protocols. In this study, we developed a microfluidics-based digital PCR method for determining HER2 and chromosome 17 centromere (CEP17) copy numbers and estimating tumor content ratio (TCR). The HER2/CEP17 ratio is determined by three variables—TCR and absolute copy numbers of HER2 and CEP17—by examining tumor cells; only the ratio of the latter two can be obtained by digital PCR using the whole specimen without purifying tumor cells. TCR was determined by semi-automatic image analysis. We developed a Tumor Content chart, which is a plane of rectangular coordinates consisting of HER2/CEP17 digital PCR data and TCR that delineates amplified, non-amplified, and equivocal areas. By applying this method, 44 clinical gastric cancer biopsy samples were classified as amplified (n = 13), non-amplified (n = 25), or equivocal (n = 6). By comparison, 11 samples were positive, 11 were negative, and 22 were equivocally immunohistochemistry. Thus, our novel method reduced the number of equivocal samples from 22 to 6, thereby obviating the need for confirmation by fluorescence or dual-probe in situ hybridization to < 30% of cases. Tumor content chart-assisted digital PCR analysis is also applicable to multiple sites in surgically resected tissues. These results indicate that this analysis is a useful alternative to HER2 immunohistochemistry in gastric cancers that can serve as a basis for the automated evaluation of HER2 status. PMID:27119558

  12. Stem cell-based therapies for tumors in the brain: are we there yet?

    Science.gov (United States)

    Shah, Khalid

    2016-08-01

    Advances in understanding adult stem cell biology have facilitated the development of novel cell-based therapies for cancer. Recent developments in conventional therapies (eg, tumor resection techniques, chemotherapy strategies, and radiation therapy) for treating both metastatic and primary tumors in the brain, particularly glioblastoma have not resulted in a marked increase in patient survival. Preclinical studies have shown that multiple stem cell types exhibit inherent tropism and migrate to the sites of malignancy. Recent studies have validated the feasibility potential of using engineered stem cells as therapeutic agents to target and eliminate malignant tumor cells in the brain. This review will discuss the recent progress in the therapeutic potential of stem cells for tumors in the brain and also provide perspectives for future preclinical studies and clinical translation. PMID:27282399

  13. Gene analysis and dynamics of tumor stem cell in human glioblastoma cells after radiation

    International Nuclear Information System (INIS)

    Because glioblastoma is the most malignant central nervous system (CNS) tumor, it is very difficult to cure despite surgery and adjuvant therapy. At present, surgery, radiotherapy, and chemotherapy are combined in the treatment of each patient. However, glioblastoma have radiotherapy and chemotherapy resistance, and this is not a radical treatment. We suspect that the tumor stem cell affects the recurrence, radiotherapy resistance and chemotherapy resistance of the tumor. Many studies suggest that tumor stem cells play an important role in tumorgenesis and tumor progression. Using human glioblastoma cell lines (T98G, A172), irradiated (0 Gy, 30 Gy, 60 Gy) glioblastoma cells were prepared under the same conditions as clinical therapy. We performed the analysis of cell proliferation rate, side population analysis by fluorescence-activated cell sorter (FACS), isolation of CD133+ cells and genetic analysis (human stem cell), using these cells. In the results of this study, the stem cell-related genes were highly expressed in the CD133+ cells compared with the CD133- cells. Therefore, it suggested that the CD133+ cells may contain tumor stem cells. In T98G, when compared to unirradiated cells and 60 Gy-irradiated cells, the cell proliferation rate for 30 Gy-irradiated cells tended to be higher, and stem cell-related genes were highly expressed in 30 Gy-irradiated CD133+ cells. In other words, in T98G, from the viewpoint of antitumor effects, the results suggest that chemotherapy may show more effect in 30 Gy-irradiated. In this genetic analysis, we suggest that CD133+ cells strongly affect tumor proliferation. In addition, CD133+ cells affect the resistance and the effect of treatments because some kind of changes occur in CD133+ cells after radiation. (author)

  14. Analysis of enhancement pattern of sellar and parasellar tumors using two-phase helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Ji Young; Na, Dong Gyu; Roh, Hong Gee; Byun, Hong Sik; Ryoo, Jae Wook [Medical School of Sungkyunkwan Univ., Seoul (Korea, Republic of)

    2002-01-01

    To assess the enhancement patterns of sellar and parasellar tumors at two-phase helical CT. Thirty-two patients with pathologically proven sellar and parasellar tumors (meningioma (n=17), pituitary mocroadenoma (n=6), neurogenic tumor (n=5), cavernous angioma (n=1), chondrosarcoma (n=1), osteosarcoma (n=1), sphenoid carcinoma (n=1)) were included in this study. Two-phase helical CT was performed after the injection of 90 mL of contrast materials at a rate of 3 mL/sec. Transverse helical CT scans were obtained during the early and late phases, with scannin dealys of 30 and 120 seconds, respectively. Delayed coronal images were obtained after delayed axial images. Attenuation change and the enhancement patterns of the tumors were visually assessed; the former was also assessed quantitatively as the ratio of the CT number at late-phase axial and coronal scanning to that at early-phase scanning. Visual assessment of two-phase helical CT images revealed decreased attenuation in all 17 meningiomas, no change in all six pituitary macroadenomas and increased attenuation in 5 all five neurogenic tumors on late-phase axial scans as compared with early phase scans. Coronal images showed decreased attenuation in all 17 meningiomas, increased attenuation in all five neurogenic tumors and no change in four pituitary macroadenomas (66.7%). The ratio of CT numbers was significantly different between meningiomas, neurogenic tumors and pituitary macroadenomas (p< 0.05). According to their histopathology, sellar and parasellar tumors showed characteristic enhancement patterns at two-phase helical CT. An analysis of the observed enhancement patterns can be useful in the differential diagnosis of juxtasellar tumors.

  15. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Mihaila, M.A. [Institute of Virusology “Stefan S. Nicolau”, Center of Immunology, Bravu Road, No. 285, 030304 Bucharest (Romania); Kaya, D.A. [Department of Field Crops, Faculty of Agriculture, Mustafa Kemal University, 31030 Antakya, Hatay (Turkey); Stan, R., E-mail: rl_stan2000@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Meghea, A. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania)

    2015-11-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL{sup −1} has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL{sup −1} lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor

  16. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    International Nuclear Information System (INIS)

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL−1 has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL−1 lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor cells. • 50

  17. Molecular analysis of anaplastic oligodendroglial tumors in a prospective randomized study: A report from EORTC study 26951.

    Science.gov (United States)

    Kouwenhoven, Mathilde C M; Gorlia, Thierry; Kros, Johan M; Ibdaih, Ahmed; Brandes, Alba A; Bromberg, Jacolien E C; Mokhtari, Karima; van Duinen, Sjoerd G; Teepen, Johannes L; Wesseling, Pieter; Vandenbos, Fanny; Grisold, Wolfgang; Sipos, László; Mirimanoff, Rene; Vecht, Charles J; Allgeier, Anouk; Lacombe, Denis; van den Bent, Martin J

    2009-12-01

    Recent studies have shown that the clinical outcome of anaplastic oligodendroglial tumors is variable, but also that the histological diagnosis is subject to interobserver variation. We investigated whether the assessment of 1p/19q codeletion, polysomy of chromosome 7, epidermal growth factor receptor (EGFR) gene amplification (EGFR(amp)), and loss of chromosome 10 or 10q offers additional prognostic information to the histological diagnosis and would allow molecular subtyping. For this study, we used the clinical data and tumor samples of the patients included in multicenter prospective phase III European Organisation for Research and Treatment of Cancer (EORTC) study 26951 on the effects of adjuvant procarbazine, chloroethyl cyclohexylnitrosourea (lomustine), and vincristine chemotherapy in anaplastic oligodendroglial tumors. Fluorescence in situ hybridization was used to assess copy number aberrations of chromosome 1p, 19q, 7, 10, and 10q and EGFR. Three different analyses were performed: on all included patients based on local pathology diagnosis, on the patients with confirmed anaplastic oligodendroglial tumors on central pathology review, and on this latter group but after excluding anaplastic oligoastrocytoma (AOA) with necrosis. As a reference set for glioblastoma multiforme (GBM), patients from the prospective randomized phase III study on GBM (EORTC 26981) were used as a benchmark. In 257 of 368 patients, central pathology review confirmed the presence of an anaplastic oligodendroglial tumor. Tumors with combined 1p and 19q loss (1p(loss)19q(loss)) were histopathologically diagnosed as anaplastic oligodendroglioma, were more frequently located in the frontal lobe, and had a better outcome. Anaplastic oligodendroglial tumors with EGFR(amp) were more frequently AOA, were more often localized outside the frontal lobe, and had a survival similar to that for GBM. Survival of patients with AOA harboring necrosis was in a similar range as for GBM, while patients

  18. Differentiation of benign and malignant parotid tumors using deconvolution-based perfusion CT imaging: Feasibility of the method and initial results

    International Nuclear Information System (INIS)

    Aim: We evaluated the feasibility of perfusion CT (CTP) of the parotid gland and attempted to differentiate benign from malignant tumors. Materials and methods: CTP was performed in 17 patients with benign tumors and 10 patients with malignant parotid tumors. Data were postprocessed by using deconvolution-based perfusion analysis. Postprocessing-generated maps showed blood flow (BF), blood volume (BV), mean transit time (MTT), and capillary permeability surface product (PS). Regions of interest were placed through the tumor site and the contralateral healthy parotid tissue. Ratios of the perfusion values between the tumors and the contralateral healthy structures were also calculated. Pearson correlation coefficients were determined to compare the agreement between the two readers. Results: Perfusion maps of all tumors were successfully obtained. High Pearson correlation coefficients comparing the two readers' visually measured abnormalities were observed (r = 0.79-0.86, P = 0.001) for all perfusion maps, The MTT and PS values between malignant and benign tumors were not significantly different. The BF and BV values were statistically significant different between the benign and malignant tumors (0.00 < P < 0.02). Only the BV ratio criterion between malignant and benign neoplasms was statistically significant (P < 0.004). Conclusions: CTP of the parotid gland is feasible and may differentiate malignant from non-malignant lesions by means of absolute BF, BV and BV ratio values

  19. Three-dimensional MR imaging of skull-base tumors

    International Nuclear Information System (INIS)

    This paper demonstrates skull base lesions and to evaluate the diagnostic value of three-dimensional (3D) MR imaging performed with 3D reconstruction of the head. MR imaging was performed at 1.0 T and a 1.5 T, M before and after application of Gd-DTPA. Twenty-one healthy volunteers and 19 patients with skull base lesions were examined with standard 2D MR imaging and 3D fast low-angle shot imaging. A 3D reconstruction mode, based on the ray-tracing model, enabled us to construct arbitrarily complex extraction schemes. All 3D-reconstructions were compared with the surgical findings. The diagnoses included 10 benign skull base lesions and nine malignant lesions of the anterior and middle skull base. Gd-DTPA proved helpful in 82% of the cases

  20. Analysis of dendritic cells in tumor-free and tumor-containing sentinel lymph nodes from patients with breast cancer

    International Nuclear Information System (INIS)

    Sentinel lymph node (SLN) biopsy allows identification of the first lymph node into which a primary tumor drains. In breast cancer, identification of tumor cells in the SLNs is a predictor of the tumor's metastatic potential. In the present article, we tested the hypotheses that a positive immune response can occur in tumor-free SLNs and that the activation state of dendritic cells (DCs), the major antigen presenting cells within SLNs, predicts the immune status and metastatic potential of the tumor. Fifty paraffin-embedded SLN sections, 25 tumor-free and 25 tumor-containing, from patients with breast cancer were analyzed by immunohistochemistry to determine the immune maturation state of their DCs. In addition, 12 lymph nodes from noncancer-containing breasts were analyzed. Tissues were stained with antibodies against CD3, MHC class II, CD1a, CD83, IL-10, and IL-12. Mature DCs were defined by CD83 expression and immature DCs by CD1a expression. We found a trend toward higher numbers of mature CD83-positive DCs in tumor-free SLNs than in tumor-containing SLNs (P = 0.07). In addition, tumor-free SLNs were more likely to contain cells expressing IL-10 (P = 0.02) and, to a lesser extent, IL-12 (P = 0.12). In contrast, when all SLNs, both tumor-free and tumor-containing, were compared with uninvolved lymph nodes, the numbers of mature and immature DCs were similar. Our results suggest tumor-free SLNs are immunologically competent and potentially a site of tumor-specific T-cell activation, as evidenced by the presence of greater numbers of mature DCs and cytokine-producing cells in tumor-free SLNs

  1. Analysis of ovarian tumor pathology by Fourier Transform Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Mehrotra Ranjana

    2010-12-01

    Full Text Available Abstract Background Ovarian cancer is the second most common cancer among women and the leading cause of death among gynecologic malignancies. In recent years, infrared (IR spectroscopy has gained attention as a simple and inexpensive method for the biomedical study of several diseases. In the present study infrared spectra of normal and malignant ovarian tissues were recorded in the 650 cm-1 to 4000 cm-1 region. Methods Post surgical tissue samples were taken from the normal and tumor sections of the tissue. Fourier Transform Infrared (FTIR data on twelve cases of ovarian cancer with different grades of malignancy from patients of different age groups were analyzed. Results Significant spectral differences between the normal and the ovarian cancerous tissues were observed. In particular changes in frequency and intensity in the spectral region of protein, nucleic acid and lipid vibrational modes were observed. It was evident that the sample-to-sample or patient-to-patient variations were small and the spectral differences between normal and diseased tissues were reproducible. Conclusion The measured spectroscopic features, which are the spectroscopic fingerprints of the tissues, provided the important differentiating information about the malignant and normal tissues. The findings of this study demonstrate the possible use of infrared spectroscopy in differentiating normal and malignant ovarian tissues.

  2. Alternative polyadenylation site analysis of tumor-related genes based on 3'RACE in gastric cancer cells%基于3'RACE的胃癌细胞肿瘤相关基因的APA位点分析

    Institute of Scientific and Technical Information of China (English)

    赖登攀; 陈健; 康亚妮

    2014-01-01

    Objective To analyze the alteration in alternative polyadenylation (APA) sites of tumor-related genes in gastric cancer cells. Methods We used 3'RACE to capture the APA sites of two tumor-related genes (HSP90αand SEC11A) in gastric cancer cell lines MKN45, MKN28 and AGS, and compared the results with annotated poly(A) sites in UCSC database. Results We found new APA sites in the two tumor-related genes in gastric cancer cells to produce new mRNA isoforms with different 3'UTRs. Conclusions There are new mRNA isoforms of HSP90αand SEC11A derived from ATA in gastric cancer cells, which provides new insights into the mechanisms of gastric tumorigenesis.%目的:分析胃癌细胞中肿瘤相关基因的APA(alternative polyadenylation)位点变化。方法我们选取肿瘤相关基因HSP90α和SEC11A,利用3'RACE方法在胃癌细胞系MKN45、MKN28和AGS中扩增其mRNA的3'端序列,经过测序,与已知数据库UCSC比对分析其APA位点变化。结果与正常数据库相比,胃癌细胞中HSP90α和SEC11A两个基因均出现新的APA位点,产生含有不同长度的3'UTR(untranslated region)的新mRNA异构体。结论胃癌细胞中HSP90α和SEC11A的APA位点发生变化,产生新的mRNA异构体,为研究肿瘤发生发展提供了新思路。

  3. Model-Based Evaluation of Spontaneous Tumor Regression in Pilocytic Astrocytoma.

    Directory of Open Access Journals (Sweden)

    Thomas Buder

    2015-12-01

    Full Text Available Pilocytic astrocytoma (PA is the most common brain tumor in children. This tumor is usually benign and has a good prognosis. Total resection is the treatment of choice and will cure the majority of patients. However, often only partial resection is possible due to the location of the tumor. In that case, spontaneous regression, regrowth, or progression to a more aggressive form have been observed. The dependency between the residual tumor size and spontaneous regression is not understood yet. Therefore, the prognosis is largely unpredictable and there is controversy regarding the management of patients for whom complete resection cannot be achieved. Strategies span from pure observation (wait and see to combinations of surgery, adjuvant chemotherapy, and radiotherapy. Here, we introduce a mathematical model to investigate the growth and progression behavior of PA. In particular, we propose a Markov chain model incorporating cell proliferation and death as well as mutations. Our model analysis shows that the tumor behavior after partial resection is essentially determined by a risk coefficient γ, which can be deduced from epidemiological data about PA. Our results quantitatively predict the regression probability of a partially resected benign PA given the residual tumor size and lead to the hypothesis that this dependency is linear, implying that removing any amount of tumor mass will improve prognosis. This finding stands in contrast to diffuse malignant glioma where an extent of resection threshold has been experimentally shown, below which no benefit for survival is expected. These results have important implications for future therapeutic studies in PA that should include residual tumor volume as a prognostic factor.

  4. Model-Based Evaluation of Spontaneous Tumor Regression in Pilocytic Astrocytoma.

    Science.gov (United States)

    Buder, Thomas; Deutsch, Andreas; Klink, Barbara; Voss-Böhme, Anja

    2015-12-01

    Pilocytic astrocytoma (PA) is the most common brain tumor in children. This tumor is usually benign and has a good prognosis. Total resection is the treatment of choice and will cure the majority of patients. However, often only partial resection is possible due to the location of the tumor. In that case, spontaneous regression, regrowth, or progression to a more aggressive form have been observed. The dependency between the residual tumor size and spontaneous regression is not understood yet. Therefore, the prognosis is largely unpredictable and there is controversy regarding the management of patients for whom complete resection cannot be achieved. Strategies span from pure observation (wait and see) to combinations of surgery, adjuvant chemotherapy, and radiotherapy. Here, we introduce a mathematical model to investigate the growth and progression behavior of PA. In particular, we propose a Markov chain model incorporating cell proliferation and death as well as mutations. Our model analysis shows that the tumor behavior after partial resection is essentially determined by a risk coefficient γ, which can be deduced from epidemiological data about PA. Our results quantitatively predict the regression probability of a partially resected benign PA given the residual tumor size and lead to the hypothesis that this dependency is linear, implying that removing any amount of tumor mass will improve prognosis. This finding stands in contrast to diffuse malignant glioma where an extent of resection threshold has been experimentally shown, below which no benefit for survival is expected. These results have important implications for future therapeutic studies in PA that should include residual tumor volume as a prognostic factor. PMID:26658166

  5. High Birth Weight Increases the Risk for Bone Tumor: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Songfeng Chen

    2015-09-01

    Full Text Available There have been several epidemiologic studies on the relationship between high birth weight and the risk for bone tumor in the past decades. However, due to the rarity of bone tumors, the sample size of individual studies was generally too small for reliable conclusions. Therefore, we have performed a meta-analysis to pool all published data on electronic databases with the purpose to clarify the potential relationship. According to the inclusion and exclusion criteria, 18 independent studies with more than 2796 cases were included. As a result, high birth weight was found to increase the risk for bone tumor with an Odds Ratio (OR of 1.13, with the 95% confidence interval (95% CI ranging from 1.01 to 1.27. The OR of bone tumor for an increase of 500 gram of birth weight was 1.01 (95% CI 1.00–1.02; p = 0.048 for linear trend. Interestingly, individuals with high birth weight had a greater risk for osteosarcoma (OR = 1.22, 95% CI 1.06–1.40, p = 0.006 than those with normal birth weight. In addition, in the subgroup analysis by geographical region, elevated risk was detected among Europeans (OR = 1.14, 95% CI 1.00–1.29, p = 0.049. The present meta-analysis supported a positive association between high birth weight and bone tumor risk.

  6. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... there is less disruption of tissues. It keeps anatomy close to normal on the way in and ... because the CT can show us the bony anatomy, which -- which is critical for skull-base surgery. ...

  7. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... go back to the video. So could you explain to us again what we're seeing there, ... opening in the base of the skull. Just making sure all the bleeding, all that venous oozing, ...

  8. Radiation-Induced Middle Ear and Mastoid Opacification in Skull Base Tumors Treated With Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Gary V. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Ahmed, Salmaan [Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Allen, Pamela [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Gidley, Paul W. [Department of Head and Neck Surgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Woo, Shiao Y. [Department of Radiation Oncology, University of Louisville, Louisville, KY (United States); DeMonte, Franco [Department of Neurosurgery, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Chang, Eric L. [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States); Mahajan, Anita, E-mail: amahajan@mdanderson.org [Department of Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX (United States)

    2011-12-01

    Purpose: To assess the incidence of middle ear (ME) pathology in patients treated with radiotherapy (RT) for skull base tumors. Methods and Materials: A retrospective analysis of 61 patients treated with RT between 2003 and 2008 for skull base tumors was conducted. Clinical outcomes and demographics were reviewed. Dose-volume histogram analysis was performed on the eustachian canal (EC), ME, mastoid air cells, vestibular apparatus, cochlea, internal auditory canal, lateral and posterior nasopharynx, and temporal lobes to relate doses to symptoms and radiographic change. Otomastoid opacification was rated 0 (none), 1 (mild), 2 (moderate), and 3 (severe) by a neuroradiologist blinded to clinical outcomes and doses. Results: The median prescribed dose was 50.4 Gy (range, 14-74 Gy). The ME mean dose was 14 Gy and 34 Gy for Grade 0-1 and 2-3 opacification, respectively (p < 0.0001). The mean mastoid dose was 10 Gy and 26 Gy for Grade 0-1 and 2-3, respectively (p < 0.0001). The mean EC dose was 17 Gy and 32 Gy for Grade 0-1 and 2-3, respectively (p = 0.0001). Otomastoid opacification resolved in 17 of 40 patients (42.5%), at a mean of 17 months after RT (range, 2-45 months). Otomastoid opacification persisted in 23 of 40 patients (57.5%), with a mean follow-up of 23 months (range, 2-55 months). Multivariate analysis showed that mastoid dose >30 Gy (odds ratio = 28.0, p < 0.001) and posterior nasopharynx dose of >30 Gy (odds ratio = 4.9, p = 0.009) were associated with Grade 2-3 effusions, whereas other factors including dose to EC and ME were not significant. Conclusions: A mean RT dose >30 Gy to the mastoid air cells or posterior nasopharynx is associated with increased risk of moderate to severe otomastoid opacification, which persisted in more than half of patients at 2-year follow-up.

  9. Image-based modeling of tumor shrinkage in head and neck radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chao Ming; Xie Yaoqin; Moros, Eduardo G.; Le, Quynh-Thu; Xing Lei [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305-5847 and Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, Arkansas 72205-1799 (United States); Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305-5847 (United States); Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, Arkansas 72205-1799 (United States); Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305-5847 (United States)

    2010-05-15

    Purpose: Understanding the kinetics of tumor growth/shrinkage represents a critical step in quantitative assessment of therapeutics and realization of adaptive radiation therapy. This article presents a novel framework for image-based modeling of tumor change and demonstrates its performance with synthetic images and clinical cases. Methods: Due to significant tumor tissue content changes, similarity-based models are not suitable for describing the process of tumor volume changes. Under the hypothesis that tissue features in a tumor volume or at the boundary region are partially preserved, the kinetic change was modeled in two steps: (1) Autodetection of homologous tissue features shared by two input images using the scale invariance feature transformation (SIFT) method; and (2) establishment of a voxel-to-voxel correspondence between the images for the remaining spatial points by interpolation. The correctness of the tissue feature correspondence was assured by a bidirectional association procedure, where SIFT features were mapped from template to target images and reversely. A series of digital phantom experiments and five head and neck clinical cases were used to assess the performance of the proposed technique. Results: The proposed technique can faithfully identify the known changes introduced when constructing the digital phantoms. The subsequent feature-guided thin plate spline calculation reproduced the ''ground truth'' with accuracy better than 1.5 mm. For the clinical cases, the new algorithm worked reliably for a volume change as large as 30%. Conclusions: An image-based tumor kinetic algorithm was developed to model the tumor response to radiation therapy. The technique provides a practical framework for future application in adaptive radiation therapy.

  10. Multiple template-based fluoroscopic tracking of lung tumor mass without implanted fiducial markers

    Science.gov (United States)

    Cui, Ying; Dy, Jennifer G.; Sharp, Gregory C.; Alexander, Brian; Jiang, Steve B.

    2007-10-01

    Precise lung tumor localization in real time is particularly important for some motion management techniques, such as respiratory gating or beam tracking with a dynamic multi-leaf collimator, due to the reduced clinical tumor volume (CTV) to planning target volume (PTV) margin and/or the escalated dose. There might be large uncertainties in deriving tumor position from external respiratory surrogates. While tracking implanted fiducial markers has sufficient accuracy, this procedure may not be widely accepted due to the risk of pneumothorax. Previously, we have developed a technique to generate gating signals from fluoroscopic images without implanted fiducial markers using a template matching method (Berbeco et al 2005 Phys. Med. Biol. 50 4481-90, Cui et al 2007 Phys. Med. Biol. 52 741-55). In this paper, we present an extension of this method to multiple-template matching for directly tracking the lung tumor mass in fluoroscopy video. The basic idea is as follows: (i) during the patient setup session, a pair of orthogonal fluoroscopic image sequences are taken and processed off-line to generate a set of reference templates that correspond to different breathing phases and tumor positions; (ii) during treatment delivery, fluoroscopic images are continuously acquired and processed; (iii) the similarity between each reference template and the processed incoming image is calculated; (iv) the tumor position in the incoming image is then estimated by combining the tumor centroid coordinates in reference templates with proper weights based on the measured similarities. With different handling of image processing and similarity calculation, two such multiple-template tracking techniques have been developed: one based on motion-enhanced templates and Pearson's correlation score while the other based on eigen templates and mean-squared error. The developed techniques have been tested on six sequences of fluoroscopic images from six lung cancer patients against the reference

  11. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  12. Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging.

    Science.gov (United States)

    Lee, Jae-Young; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-04-01

    Nano-sized self-assemblies based on amphiphilic iodinated hyaluronic acid (HA) were developed for use in cancer diagnosis and therapy. 2,3,5-Triiodobenzoic acid (TIBA) was conjugated to an HA oligomer as a computed tomography (CT) imaging modality and a hydrophobic residue. Nanoassembly based on HA-TIBA was fabricated for tumor-targeted delivery of doxorubicin (DOX). Cellular uptake of DOX from nanoassembly, compared to a DOX solution group, was enhanced via an HA-CD44 receptor interaction, and subsequently, the in vitro antitumor efficacy of DOX-loaded nanoassembly was improved in SCC7 (CD44 receptor positive squamous cell carcinoma) cells. Cy5.5, a near-infrared fluorescence (NIRF) dye, was attached to the HA-TIBA conjugate and the in vivo tumor targetability of HA-TIBA nanoassembly, which is based on the interaction between HA and CD44 receptor, was demonstrated in a NIRF imaging study using an SCC7 tumor-xenografted mouse model. Tumor targeting and cancer diagnosis with HA-TIBA nanoassembly were verified in a CT imaging study using the SCC7 tumor-xenografted mouse model. In addition to efficient cancer diagnosis using NIRF and CT imaging modalities, improved antitumor efficacies were shown. HA and TIBA can be used to produce HA-TIBA nanoassembly that may be a promising theranostic nanosystem for cancers that express the CD44 receptor. PMID:26874284

  13. Addition of magnetic resonance imaging to computed tomography-based three-dimensional conformal radiotherapy planning for postoperative treatment of astrocytomas: Changes in tumor volume and isocenter shift

    Directory of Open Access Journals (Sweden)

    Puneet Kumar Bagri

    2015-01-01

    Full Text Available Introduction: Postoperative radiotherapy is the current gold standard treatment in astrocytomas. Computed tomography (CT-based radiotherapy planning leads to either missing of the tumor volume or underdosing. The aim of this prospective study was to study the changes in tumor volume on addition of magnetic resonance imaging (MRI to CT-based three-dimensional radiotherapy treatment planning of astrocytomas. Materials and Methods: Twenty-five consecutive patients of astrocytoma (WHO grades I-IV for postoperative three-dimensional conformal radiotherapy were included in this prospective study. Postoperative tumor volumes were contoured on CT-based images and recontoured on CT-MRI images after automated MRI co-registration on treatment planning system Eclipse 8.9.15 as per ICRU-50 report. Tumor volumes were compared with each other. Result: The MRI-based mean and median tumor volume was 24.24 cc ± 13.489 and 18.72 cc (range 5.6-46.48 cc, respectively, while for CT it was 19.4 cc ± 11.218 and 16.24 cc (range: 5.1-38.72 cc, respectively. The mean and median isocenter shift between CT and MRI was 4.05 mm and 4.39 mm (range 0.92-6.32 mm, respectively. There is a linear relationship between MRI and CT volume with a good correlation coefficient of R2 = 0.989, and MRI-based tumor volume was 1.208 times as compared to CT volume. Statistical analysis using paired sample t-test for the difference in CT and MRI tumor volume was highly significant (P < 0.001. Conclusion: Addition of MRI to the CT-based three-dimensional radiation treatment planning reduces the chances of geographical miss or tumor under dosing. Thus, MRI should be an integral part of three-dimensional planning of astrocytomas.

  14. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas

    Energy Technology Data Exchange (ETDEWEB)

    Pyka, Thomas; Hiob, Daniela; Wester, Hans-Juergen [Klinikum Rechts der Isar der TU Muenchen, Department of Nuclear Medicine, Munich (Germany); Gempt, Jens; Ringel, Florian; Meyer, Bernhard [Klinikum Rechts der Isar der TU Muenchen, Neurosurgic Department, Munich (Germany); Schlegel, Juergen [Klinikum Rechts der Isar der TU Muenchen, Institute of Pathology and Neuropathology, Munich (Germany); Bette, Stefanie [Klinikum Rechts der Isar der TU Muenchen, Neuroradiologic department, Munich (Germany); Foerster, Stefan [Klinikum Rechts der Isar der TU Muenchen, Department of Nuclear Medicine, Munich (Germany); Klinikum Rechts der Isar der TU Muenchen, TUM Neuroimaging Center (TUM-NIC), Munich (Germany)

    2016-01-15

    Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation did not

  15. Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas

    International Nuclear Information System (INIS)

    Amino acid positron emission tomography (PET) with [18F]-fluoroethyl-L-tyrosine (FET) is well established in the diagnostic work-up of malignant brain tumors. Analysis of FET-PET data using tumor-to-background ratios (TBR) has been shown to be highly valuable for the detection of viable hypermetabolic brain tumor tissue; however, it has not proven equally useful for tumor grading. Recently, textural features in 18-fluorodeoxyglucose-PET have been proposed as a method to quantify the heterogeneity of glucose metabolism in a variety of tumor entities. Herein we evaluate whether textural FET-PET features are of utility for grading and prognostication in patients with high-grade gliomas. One hundred thirteen patients (70 men, 43 women) with histologically proven high-grade gliomas were included in this retrospective study. All patients received static FET-PET scans prior to first-line therapy. TBR (max and mean), volumetric parameters and textural parameters based on gray-level neighborhood difference matrices were derived from static FET-PET images. Receiver operating characteristic (ROC) and discriminant function analyses were used to assess the value for tumor grading. Kaplan-Meier curves and univariate and multivariate Cox regression were employed for analysis of progression-free and overall survival. All FET-PET textural parameters showed the ability to differentiate between World Health Organization (WHO) grade III and IV tumors (p < 0.001; AUC 0.775). Further improvement in discriminatory power was possible through a combination of texture and metabolic tumor volume, classifying 85 % of tumors correctly (AUC 0.830). TBR and volumetric parameters alone were correlated with tumor grade, but showed lower AUC values (0.644 and 0.710, respectively). Furthermore, a correlation of FET-PET texture but not TBR was shown with patient PFS and OS, proving significant in multivariate analysis as well. Volumetric parameters were predictive for OS, but this correlation did not

  16. Tumor Targeting Potential of Lipid-Based Nano-Pharmaceuticals (LNPs)

    Science.gov (United States)

    Gupta, Kshitij; Yavlovich, Amichai; Puri, Anu; Blumenthal, Robert

    2013-09-01

    Nanoparticle-mediated targeted drug delivery has become the modality of interest for cancer/tumor therapy as it reduces the undesirable delivery to normal cells and improves efficacy of the pharmaceuticals. Among all the nanosystems, lipid-based nano-pharmaceuticals (LNPs) have been most extensively studied for cancer therapy. Doxil formulation was the first LNP that has been approved for cancer treatment. When conjugated with ligands, LNPs can be targeted to tumor cells. This chapter focuses on the targeting potential of LNPs for cancer therapy. We will discuss the advantages of enhanced permeability and retention (EPR) effect (passive targeting) for preferential tumor accumulation of LNPs, the importance of pegylation to avoid reticulo-endothelial system uptake and active targeting strategies using various targeting ligands that can be coupled to the LNP surface to target the tumor region (tumor cells/tumor vasculature). Targeted LNPs show higher binding affinity, greater intracellular localization and thereby increased cancer cell killing in comparison to non targeted LNPs. However, contrasting reports exist that pose challenges to the notion that targeted LNPs are advantageous. Recent trends have also demonstrated the concept of dual targeting that simultaneously homes LNPs to receptors on the tumor cells and biomarkers expressed on the tumor vasculature. In addition, targeting with multiple ligands on the LNPs has also been explored. These approaches may prove to be a better answer for next generation of LNPs for delivery of anti-cancer agents. However, more extensive studies are required to get their clinical approval in anti-cancer therapy.

  17. Image-Based Monitoring of Magnetic Resonance-Guided Thermoablative Therapies for Liver Tumors

    International Nuclear Information System (INIS)

    Minimally invasive treatment options for liver tumor therapy have been increasingly used during the last decade because their benefit has been proven for primary and inoperable secondary liver tumors. Among these, radiofrequency ablation has gained widespread consideration. Optimal image-guidance offers precise anatomical information, helps to position interventional devices, and allows for differentiation between already-treated and remaining tumor tissue. Patient safety and complete ablation of the entire tumor are the overriding objectives of tumor ablation. These may be achieved most elegantly with magnetic resonance (MR)-guided therapy, where monitoring can be performed based on precise soft-tissue imaging and additional components, such as diffusion-weighted imaging and temperature mapping. New MR scanner types and newly developed sequence techniques have enabled MR-guided intervention to move beyond the experimental phase. This article reviews the current role of MR imaging in guiding radiofrequency ablation. Signal characteristics of primary and secondary liver tumors are identified, and signal alteration during therapy is described. Diffusion-weighted imaging (DWI) and temperature mapping as special components of MR therapy monitoring are introduced. Practical information concerning coils, sequence selection, and parameters, as well as sequence gating, is given. In addition, sources of artifacts are identified and techniques to decrease them are introduced, and the characteristic signs of residual tumor in T1-, T2-, and DWI are described. We hope to enable the reader to choose MR sequences that allow optimal therapy monitoring depending on the initial signal characteristics of the tumor as well as its size and location in the liver.

  18. Numerical modelling and in vivo analysis of fluorescent and laser light backscattered from glial brain tumors

    Science.gov (United States)

    Savelieva, Tatiana A.; Kalyagina, Nina A.; Kholodtsova, Maria N.; Loschenov, Victor B.; Goryainov, Sergey A.; Potapov, Aleksander A.

    2012-03-01

    Brain glial tumors have peculiar features of the perifocal region extension, characterized by its indistinct area, which complicates determination of the borders for tissue resection. In the present study filter-reduced back-scattered laser light signals, compared to the data from mathematical modeling, were used for description of the brain white matter. The simulations of the scattered light distributions were performed in a Monte Carlo program using scattering and absorption parameters of the different grades of the brain glial tumors. The parameters were obtained by the Mie calculations for three main types of scatterers: myelinated axon fibers, cell nuclei and mitochondria. It was revealed that diffuse-reflected light, measured at the perifocal areas of the glial brain tumors, shows a significant difference relative to the signal, measured at the normal tissue, which signifies the possibility to provide diagnostically useful information on the tissue state, and to determine the borders of the tumor, thus to reduce the recurrence appearance. Differences in the values of ratios of diffuse reflectance from active growth parts of tumors and normal white matter can be useful for determination of the degree of tumor progress during the spectroscopic analysis.

  19. AN ANALYSIS OF CLINICOPATHOLOGICAL AND SURGICAL OUTCOME IN SALIVARY GLAND TUMORS OF 178 PATIENTS OF TELANGANA

    Directory of Open Access Journals (Sweden)

    Boda

    2015-10-01

    with a s ensitivity of 63.48%. Facial nerve paralysis was reported in 3.37% and recurrence rate was more with pleomorphic adenomas 6.17%. CONCLUSIONS: The analysis of SGTs from this part of India showed the incidence was higher in females than males. Pleomorphic ad enoma was the commonest tumor observed in the present study. Parotid gland was involved in majority of the tumors followed by hard palate involving minor salivary glands. CT scan and MRI proved to be helpful in the diagnosis and determining the approach wi th a sensitivity of 63.48%. Primary excision of benign tumors resulted in low recurrence rate. Malignant tumors showed better results with surgery and RT combined. Incidence of Facial palsy following SGTs surgery was lowest reported from the center

  20. Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis

    Science.gov (United States)

    Klement, Rainer J.; Champ, Colin E.; Otto, Christoph; Kämmerer, Ulrike

    2016-01-01

    Background Currently ketogenic diets (KDs) are hyped as an anti-tumor intervention aimed at exploiting the metabolic abnormalities of cancer cells. However, while data in humans is sparse, translation of murine tumor models to the clinic is further hampered by small sample sizes, heterogeneous settings and mixed results concerning tumor growth retardation. The aim was therefore to synthesize the evidence for a growth inhibiting effect of KDs when used as a monotherapy in mice. Methods We conducted a Bayesian random effects meta-analysis on all studies assessing the survival (defined as the time to reach a pre-defined endpoint such as tumor volume) of mice on an unrestricted KD compared to a high carbohydrate standard diet (SD). For 12 studies meeting the inclusion criteria either a mean survival time ratio (MR) or hazard ratio (HR) between the KD and SD groups could be obtained. The posterior estimates for the MR and HR averaged over four priors on the between-study heterogeneity τ2 were MR = 0.85 (95% highest posterior density interval (HPDI) = [0.73, 0.97]) and HR = 0.55 (95% HPDI = [0.26, 0.87]), indicating a significant overall benefit of the KD in terms of prolonged mean survival times and reduced hazard rate. All studies that used a brain tumor model also chose a late starting point for the KD (at least one day after tumor initiation) which accounted for 26% of the heterogeneity. In this subgroup the KD was less effective (MR = 0.89, 95% HPDI = [0.76, 1.04]). Conclusions There was an overall tumor growth delaying effect of unrestricted KDs in mice. Future experiments should aim at differentiating the effects of KD timing versus tumor location, since external evidence is currently consistent with an influence of both of these factors. PMID:27159218

  1. Transnasal Endoscopic Surgery for Skull-Based Tumors

    Medline Plus

    Full Text Available ... opinion and was referred to our skull-base team. The next slide describes what we're doing ... exposure for our patients or the O.R. team. So we've fast-forwarded here a bit, ...

  2. WE-E-17A-01: Characterization of An Imaging-Based Model of Tumor Angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Adhikarla, V; Jeraj, R [Medical College of Wisconsin, Milwaukee, WI (United States)

    2014-06-15

    Purpose: Understanding the transient dynamics of tumor oxygenation is important when evaluating tumor-vasculature response to anti-angiogenic therapies. An imaging-based tumor-vasculature model was used to elucidate factors that affect these dynamics. Methods: Tumor growth depends on its doubling time (Td). Hypoxia increases pro-angiogenic factor (VEGF) concentration which is modeled to reduce vessel perfusion, attributing to its effect of increasing vascular permeability. Perfused vessel recruitment depends on the existing perfused vasculature, VEGF concentration and maximum VEGF concentration (VEGFmax) for vessel dysfunction. A convolution-based algorithm couples the tumor to the normal tissue vessel density (VD-nt). The parameters are benchmarked to published pre-clinical data and a sensitivity study evaluating the changes in the peak and time to peak tumor oxygenation characterizes them. The model is used to simulate changes in hypoxia and proliferation PET imaging data obtained using [Cu- 61]Cu-ATSM and [F-18]FLT respectively. Results: Td and VD-nt were found to be the most influential on peak tumor pO2 while VEGFmax was marginally influential. A +20 % change in Td, VD-nt and VEGFmax resulted in +50%, +25% and +5% increase in peak pO2. In contrast, Td was the most influential on the time to peak oxygenation with VD-nt and VEGFmax playing marginal roles. A +20% change in Td, VD-nt and VEGFmax increased the time to peak pO2 by +50%, +5% and +0%. A −20% change in the above parameters resulted in comparable decreases in the peak and time to peak pO2. Model application to the PET data was able to demonstrate the voxel-specific changes in hypoxia of the imaged tumor. Conclusion: Tumor-specific doubling time and vessel density are important parameters to be considered when evaluating hypoxia transients. While the current model simulates the oxygen dynamics of an untreated tumor, incorporation of therapeutic effects can make the model a potent tool for analyzing

  3. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    International Nuclear Information System (INIS)

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution

  4. Molecular analysis of childhood primitive neuroectodermal tumors defines markers associated with poor outcome

    DEFF Research Database (Denmark)

    Scheurlen, W G; Schwabe, G C; Joos, S; Mollenhauer, J; Sörensen, N; Kühl, J

    1998-01-01

    PURPOSE: The diagnostic and prognostic significance of well-defined molecular markers was investigated in childhood primitive neuroectodermal tumors (PNET). MATERIALS AND METHODS: Using microsatellite analysis, Southern blot analysis, and fluorescence in situ hybridization (FISH), 30 primary tumors...... and six CSF metastasis specimens were analyzed for loss of heterozygosity (LOH) of chromosomes 1q31, 6q, 9q22, 10q, 11, 16q22, and 17p13.1 and/or high-level amplification of the c-myc gene. Experimental data were compared with clinical stage and outcome. RESULTS: LOH of chromosome 17p13.1 was found...... most frequently (14 of 30 tumors, six of six CSF metastasis specimens); LOH of chromosomes 10q, 16q22, 11, 6, 9q22, and 1q31 was observed in 20.6%, 20%, 14.3%, 12%, 10%, and 0%, respectively. Eight of 32 tumors and CSF specimens showed amplification of c-myc. All tumors with amplification of c-myc were...

  5. Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Mukundan, Harshini [Los Alamos National Laboratory; Swanson, Basil I [Los Alamos National Laboratory; Xie, Hongzhi [Los Alamos National Laboratory; Anderson, Aaron S [Los Alamos National Laboratory; Grace, W Kevin [Los Alamos National Laboratory; Shively, John E [NON LANL

    2008-01-01

    The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor for the detection of biomarkers associated with the disease. We have previously demonstrated the application of this technology to the sensitive detection of carcinoembryonic antigen in serum and nipple aspirate fluid from breast cancer patients. In this publication, we report improvements to this technology that will facilitate transition to a point-of-care diagnostic system and/or robust research tool.

  6. A Case of Multiple Primary Tumors of the Anterior Skull Base

    OpenAIRE

    Lenarz, Minoo; Durisin, Martin; Becker, Hartmut; Brandis, Almuth; Lenarz, Thomas

    2007-01-01

    We report a case of synchronous olfactory bulb meningioma and undifferentiated carcinoma of the nose and paranasal sinuses that involved and destroyed the anterior skull base and mimicked intracranial invasion by a carcinoma. The heterogeneity of tissue types in the skull base gives rise to a diverse variety of benign and malignant neoplasms which have totally different prognoses. Synchronous development of benign and malignant primary tumors both originating from and involving the skull base...

  7. MDM2 SNP309 contributes to tumor susceptibility: A meta-analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaoman Wo; Dong Han; Haiming Sun; Yang Liu; Xiangning Meng; Jing Bai; Feng Chen

    2011-01-01

    The potentially functional polymorphism,SNP309,in the promoter region of MDM2 gene has been implicated in cancer risk,but individual published studies showed inconclusive results.To obtain a more precise estimate of the association between MDM2 SNP309 and risk of cancer,we performed a meta-analysis of 70 individual studies in 59 publications that included 26,160 cases with different types of tumors and 33,046 controls.Summary odds ratios (OR) and corresponding 95% confidence intervals (CIs) were estimated using fixed- and random-effects models when appropriate.Overall,the variant genotypes were associated with a significantly increased cancer risk for all cancer types in different genetic models (GG vs.TT:OR,1.123; 95% CI,1.056-1.193; GG/GT vs.TT:OR,1.028; 95% CI,1.006-1.050).In the stratified analyses,the increased risk remained for the studies of most types of cancers,Asian populations,and hospital-/population-based studies in different genetic models,whereas significantly decreased risk was found in prostate cancer (GG vs.TT:OR,0.606; 95% CI,0.407-0.903; GG/GT vs.TT:OR,0.748; 95% CI,0.579-0.968).In conclusion,the data of meta-analysis suggests that MDM2 SNP309 is a potential biomarker for cancer risk.

  8. Radiological classification of renal angiomyolipomas based on 127 tumors

    Directory of Open Access Journals (Sweden)

    Prando Adilson

    2003-01-01

    Full Text Available PURPOSE: Demonstrate radiological findings of 127 angiomyolipomas (AMLs and propose a classification based on the radiological evidence of fat. MATERIALS AND METHODS: The imaging findings of 85 consecutive patients with AMLs: isolated (n = 73, multiple without tuberous sclerosis (TS (n = 4 and multiple with TS (n = 8, were retrospectively reviewed. Eighteen AMLs (14% presented with hemorrhage. All patients were submitted to a dedicated helical CT or magnetic resonance studies. All hemorrhagic and non-hemorrhagic lesions were grouped together since our objective was to analyze the presence of detectable fat. Out of 85 patients, 53 were monitored and 32 were treated surgically due to large perirenal component (n = 13, hemorrhage (n = 11 and impossibility of an adequate preoperative characterization (n = 8. There was not a case of renal cell carcinoma (RCC with fat component in this group of patients. RESULTS: Based on the presence and amount of detectable fat within the lesion, AMLs were classified in 4 distinct radiological patterns: Pattern-I, predominantly fatty (usually less than 2 cm in diameter and intrarenal: 54%; Pattern-II, partially fatty (intrarenal or exophytic: 29%; Pattern-III, minimally fatty (most exophytic and perirenal: 11%; and Pattern-IV, without fat (most exophytic and perirenal: 6%. CONCLUSIONS: This proposed classification might be useful to understand the imaging manifestations of AMLs, their differential diagnosis and determine when further radiological evaluation would be necessary. Small (< 1.5 cm, pattern-I AMLs tend to be intra-renal, homogeneous and predominantly fatty. As they grow they tend to be partially or completely exophytic and heterogeneous (patterns II and III. The rare pattern-IV AMLs, however, can be small or large, intra-renal or exophytic but are always homogeneous and hyperdense mass. Since no renal cell carcinoma was found in our series, from an evidence-based practice, all renal mass with detectable

  9. Radiological classification of renal angiomyolipomas based on 127 tumors

    Energy Technology Data Exchange (ETDEWEB)

    Prando, Adilson [Hospital Vera Cruz, Campinas, SP (Brazil). Dept. de Radiologia]. E-mail: aprando@mpc.com.br

    2003-05-15

    Purpose: Demonstrate radiological findings of 127 angiomyolipomas (AMLs) and propose a classification based on the radiological evidence of fat. Materials And Methods: The imaging findings of 85 consecutive patients with AMLs: isolated (n = 73), multiple without tuberous sclerosis (TS) (n = 4) and multiple with TS (n = 8), were retrospectively reviewed. Eighteen AMLs (14%) presented with hemorrhage. All patients were submitted to a dedicated helical CT or magnetic resonance studies. All hemorrhagic and non-hemorrhagic lesions were grouped together since our objective was to analyze the presence of detectable fat. Out of 85 patients, 53 were monitored and 32 were treated surgically due to large perirenal component (n = 13), hemorrhage (n = 11) and impossibility of an adequate preoperative characterization (n = 8). There was not a case of renal cell carcinoma (RCC) with fat component in this group of patients. Results: Based on the presence and amount of detectable fat within the lesion, AMLs were classified in 4 distinct radiological patterns: Pattern-I, predominantly fatty (usually less than 2 cm in diameter and intrarenal): 54%; Pattern-II, partially fatty (intrarenal or exo phytic): 29%; Pattern-III, minimally fatty (most exo phytic and peri renal): 11%; and Pattern-IV, without fat (most exo phytic and peri renal): 6%. Conclusions: This proposed classification might be useful to understand the imaging manifestations of AMLs, their differential diagnosis and determine when further radiological evaluation would be necessary. Small (< 1.5 cm), pattern-I AMLs tend to be intra-renal, homogeneous and predominantly fatty. As they grow they tend to be partially or completely exo phytic and heterogeneous (patterns II and III). The rare pattern-IV AMLs, however, can be small or large, intra-renal or exo phytic but are always homogeneous and hyperdense mass. Since no renal cell carcinoma was found in our series, from an evidence-based practice, all renal mass with

  10. Radiological classification of renal angiomyolipomas based on 127 tumors

    International Nuclear Information System (INIS)

    Purpose: Demonstrate radiological findings of 127 angiomyolipomas (AMLs) and propose a classification based on the radiological evidence of fat. Materials And Methods: The imaging findings of 85 consecutive patients with AMLs: isolated (n = 73), multiple without tuberous sclerosis (TS) (n = 4) and multiple with TS (n = 8), were retrospectively reviewed. Eighteen AMLs (14%) presented with hemorrhage. All patients were submitted to a dedicated helical CT or magnetic resonance studies. All hemorrhagic and non-hemorrhagic lesions were grouped together since our objective was to analyze the presence of detectable fat. Out of 85 patients, 53 were monitored and 32 were treated surgically due to large perirenal component (n = 13), hemorrhage (n = 11) and impossibility of an adequate preoperative characterization (n = 8). There was not a case of renal cell carcinoma (RCC) with fat component in this group of patients. Results: Based on the presence and amount of detectable fat within the lesion, AMLs were classified in 4 distinct radiological patterns: Pattern-I, predominantly fatty (usually less than 2 cm in diameter and intrarenal): 54%; Pattern-II, partially fatty (intrarenal or exo phytic): 29%; Pattern-III, minimally fatty (most exo phytic and peri renal): 11%; and Pattern-IV, without fat (most exo phytic and peri renal): 6%. Conclusions: This proposed classification might be useful to understand the imaging manifestations of AMLs, their differential diagnosis and determine when further radiological evaluation would be necessary. Small (< 1.5 cm), pattern-I AMLs tend to be intra-renal, homogeneous and predominantly fatty. As they grow they tend to be partially or completely exo phytic and heterogeneous (patterns II and III). The rare pattern-IV AMLs, however, can be small or large, intra-renal or exo phytic but are always homogeneous and hyperdense mass. Since no renal cell carcinoma was found in our series, from an evidence-based practice, all renal mass with

  11. Analysis of tumor template from multiple compartments in a blood sample provides complementary access to peripheral tumor biomarkers.

    Science.gov (United States)

    Strauss, William M; Carter, Chris; Simmons, Jill; Klem, Erich; Goodman, Nathan; Vahidi, Behrad; Romero, Juan; Masterman-Smith, Michael; O'Regan, Ruth; Gogineni, Keerthi; Schwartzberg, Lee; Austin, Laura K; Dempsey, Paul W; Cristofanilli, Massimo

    2016-05-01

    Targeted cancer therapeutics are promised to have a major impact on cancer treatment and survival. Successful application of these novel treatments requires a molecular definition of a patient's disease typically achieved through the use of tissue biopsies. Alternatively, allowing longitudinal monitoring, biomarkers derived from blood, isolated either from circulating tumor cell derived DNA (ctcDNA) or circulating cell-free tumor DNA (ccfDNA) may be evaluated. In order to use blood derived templates for mutational profiling in clinical decisions, it is essential to understand the different template qualities and how they compare to biopsy derived template DNA as both blood-based templates are rare and distinct from the gold-standard. Using a next generation re-sequencing strategy, concordance of the mutational spectrum was evaluated in 32 patient-matched ctcDNA and ccfDNA templates with comparison to tissue biopsy derived DNA template. Different CTC antibody capture systems for DNA isolation from patient blood samples were also compared. Significant overlap was observed between ctcDNA, ccfDNA and tissue derived templates. Interestingly, if the results of ctcDNA and ccfDNA template sequencing were combined, productive samples showed similar detection frequency (56% vs 58%), were temporally flexible, and were complementary both to each other and the gold standard. These observations justify the use of a multiple template approach to the liquid biopsy, where germline, ctcDNA, and ccfDNA templates are employed for clinical diagnostic purposes and open a path to comprehensive blood derived biomarker access. PMID:27049831

  12. Copy number and targeted mutational analysis reveals novel somatic events in metastatic prostate tumors.

    Science.gov (United States)

    Robbins, Christiane M; Tembe, Waibov A; Baker, Angela; Sinari, Shripad; Moses, Tracy Y; Beckstrom-Sternberg, Stephen; Beckstrom-Sternberg, James; Barrett, Michael; Long, James; Chinnaiyan, Arul; Lowey, James; Suh, Edward; Pearson, John V; Craig, David W; Agus, David B; Pienta, Kenneth J; Carpten, John D

    2011-01-01

    Advanced prostate cancer can progress to systemic metastatic tumors, which are generally androgen insensitive and ultimately lethal. Here, we report a comprehensive genomic survey for somatic events in systemic metastatic prostate tumors using both high-resolution copy number analysis and targeted mutational survey of 3508 exons from 577 cancer-related genes using next generation sequencing. Focal homozygous deletions were detected at 8p22, 10q23.31, 13q13.1, 13q14.11, and 13q14.12. Key genes mapping within these deleted regions include PTEN, BRCA2, C13ORF15, and SIAH3. Focal high-level amplifications were detected at 5p13.2-p12, 14q21.1, 7q22.1, and Xq12. Key amplified genes mapping within these regions include SKP2, FOXA1, and AR. Furthermore, targeted mutational analysis of normal-tumor pairs has identified somatic mutations in genes known to be associated with prostate cancer including AR and TP53, but has also revealed novel somatic point mutations in genes including MTOR, BRCA2, ARHGEF12, and CHD5. Finally, in one patient where multiple independent metastatic tumors were available, we show common and divergent somatic alterations that occur at both the copy number and point mutation level, supporting a model for a common clonal progenitor with metastatic tumor-specific divergence. Our study represents a deep genomic analysis of advanced metastatic prostate tumors and has revealed candidate somatic alterations, possibly contributing to lethal prostate cancer. PMID:21147910

  13. Tumor Classification Using High-Order Gene Expression Profiles Based on Multilinear ICA

    Directory of Open Access Journals (Sweden)

    Ming-gang Du

    2009-01-01

    Full Text Available Motivation. Independent Components Analysis (ICA maximizes the statistical independence of the representational components of a training gene expression profiles (GEP ensemble, but it cannot distinguish relations between the different factors, or different modes, and it is not available to high-order GEP Data Mining. In order to generalize ICA, we introduce Multilinear-ICA and apply it to tumor classification using high order GEP. Firstly, we introduce the basis conceptions and operations of tensor and recommend Support Vector Machine (SVM classifier and Multilinear-ICA. Secondly, the higher score genes of original high order GEP are selected by using t-statistics and tabulate tensors. Thirdly, the tensors are performed by Multilinear-ICA. Finally, the SVM is used to classify the tumor subtypes. Results. To show the validity of the proposed method, we apply it to tumor classification using high order GEP. Though we only use three datasets, the experimental results show that the method is effective and feasible. Through this survey, we hope to gain some insight into the problem of high order GEP tumor classification, in aid of further developing more effective tumor classification algorithms.

  14. Brain tumor delineation based on CT and MR imaging. Implications for radiotherapy treatment planning

    NARCIS (Netherlands)

    Heesters, M A; Wijrdeman, H K; Struikmans, H; Witkamp, T; Moerland, M A

    1993-01-01

    This paper deals with the impact MRI may have on radiotherapy treatment planning of brain tumors. The authors analyzed differences in size and position of treatment fields as indicated by three observers (two radiotherapists and one neuroradiologist) using CT or MR based radiotherapy planning proced

  15. Optimal biliary drainage for inoperable Klatskin's tumor based on Bismuth type

    OpenAIRE

    Lee, Sang Hyub; Park, Joo Kyung; Yoon, Won Jae; Lee, Jun Kyu; Ryu, Ji Kon; Yoon, Yong Bum; Kim, Yong-Tae

    2007-01-01

    AIM: To investigate differences in the effects of biliary drainage procedures in patients with inoperable Klatskin’s tumor based on Bismuth type, considering endoscopic retrograde biliary drainage (ERBD), external percutaneous transhepatic biliary drainage (EPTBD) and internal biliary stenting via the PTBD tract (IPTBD).

  16. Verification of MLC based real-time tumor tracking using an electronic portal imaging device

    OpenAIRE

    Han-Oh, Sarah; Yi, Byong Yong; Lerma, Fritz; Berman, Barry L.; Gui, Minzhi; Yu, Cedric

    2010-01-01

    Purpose: The authors have developed a novel technique using an electronic portal imaging device (EPID) to verify the geometrical accuracy of delivery of dose-rate-regulated tracking (DRRT). This technique, called verification of real-time tracking with EPID (VORTE), can potentially be used for both on-line and off-line quality assurance (QA) of MLC-based dynamic tumor tracking.

  17. Pituitary Tumors

    Science.gov (United States)

    ... Tumors Oligoastrocytoma Oligodendroglioma Pineal Tumor Pituitary Tumor PNET Schwannoma Risk Factors Brain Tumor Facts Brain Tumor Dictionary ... Tumors Oligoastrocytoma Oligodendroglioma Pineal Tumor Pituitary Tumor PNET Schwannoma Risk Factors Brain Tumor Facts Brain Tumor Dictionary ...

  18. Histogram Analysis of CT Perfusion of Hepatocellular Carcinoma for Predicting Response to Transarterial Radioembolization: Value of Tumor Heterogeneity Assessment

    International Nuclear Information System (INIS)

    PurposeTo evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE).Materials and MethodsSixteen patients (15 male; mean age 65 years; age range 47–80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogram analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters’ ability to discriminate responders from non-responders.ResultsAccording to mRECIST, 8 patients (50 %) were responders and 8 (50 %) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min−1 100 mL−1); p < 0.05], while the mean AP of HCCs (43.5 vs. 27.9 mL min−1 100 mL−1; p > 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min−1 100 mL−1, therapy response could be predicted with a sensitivity of 88 % (7/8) and specificity of 75 % (6/8).ConclusionVoxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE

  19. Histogram Analysis of CT Perfusion of Hepatocellular Carcinoma for Predicting Response to Transarterial Radioembolization: Value of Tumor Heterogeneity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, Caecilia S., E-mail: caecilia.reiner@usz.ch; Gordic, Sonja; Puippe, Gilbert; Morsbach, Fabian; Wurnig, Moritz [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology (Switzerland); Schaefer, Niklaus; Veit-Haibach, Patrick [University Hospital Zurich, Division of Nuclear Medicine (Switzerland); Pfammatter, Thomas; Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology (Switzerland)

    2016-03-15

    PurposeTo evaluate in patients with hepatocellular carcinoma (HCC), whether assessment of tumor heterogeneity by histogram analysis of computed tomography (CT) perfusion helps predicting response to transarterial radioembolization (TARE).Materials and MethodsSixteen patients (15 male; mean age 65 years; age range 47–80 years) with HCC underwent CT liver perfusion for treatment planning prior to TARE with Yttrium-90 microspheres. Arterial perfusion (AP) derived from CT perfusion was measured in the entire tumor volume, and heterogeneity was analyzed voxel-wise by histogram analysis. Response to TARE was evaluated on follow-up imaging (median follow-up, 129 days) based on modified Response Evaluation Criteria in Solid Tumors (mRECIST). Results of histogram analysis and mean AP values of the tumor were compared between responders and non-responders. Receiver operating characteristics were calculated to determine the parameters’ ability to discriminate responders from non-responders.ResultsAccording to mRECIST, 8 patients (50 %) were responders and 8 (50 %) non-responders. Comparing responders and non-responders, the 50th and 75th percentile of AP derived from histogram analysis was significantly different [AP 43.8/54.3 vs. 27.6/34.3 mL min{sup −1} 100 mL{sup −1}); p < 0.05], while the mean AP of HCCs (43.5 vs. 27.9 mL min{sup −1} 100 mL{sup −1}; p > 0.05) was not. Further heterogeneity parameters from histogram analysis (skewness, coefficient of variation, and 25th percentile) did not differ between responders and non-responders (p > 0.05). If the cut-off for the 75th percentile was set to an AP of 37.5 mL min{sup −1} 100 mL{sup −1}, therapy response could be predicted with a sensitivity of 88 % (7/8) and specificity of 75 % (6/8).ConclusionVoxel-wise histogram analysis of pretreatment CT perfusion indicating tumor heterogeneity of HCC improves the pretreatment prediction of response to TARE.

  20. Squalamine treatment of human tumors in nu/nu mice enhances platinum-based chemotherapies.

    Science.gov (United States)

    Williams, J I; Weitman, S; Gonzalez, C M; Jundt, C H; Marty, J; Stringer, S D; Holroyd, K J; Mclane, M P; Chen, Q; Zasloff, M; Von Hoff, D D

    2001-03-01

    Squalamine, an antiangiogenic aminosterol, is presently undergoing Phase II clinical trials in cancer patients. To broaden our understanding of the clinical potential for squalamine, this agent was evaluated in nu/nu mouse xenograft models using the chemoresistant MV-522 human non-small cell lung carcinoma and the SD human neuroblastoma lines. Squalamine was studied alone and in combination with either cisplatin or paclitaxel plus carboplatin. Squalamine alone produced a modest MV-522 tumor growth inhibition (TGI) and yielded a TGI with cisplatin that was better than cisplatin alone. Squalamine also significantly enhanced the activity of paclitaxel/carboplatin combination therapy in the MV-522 tumor model. Squalamine similarly improved the effectiveness of cisplatin in producing TGI when screened against the SD human neuroblastoma xenograft. Xenograft tumor shrinkage was seen for the MV-522 tumor in combination treatments including squalamine, whereas no tumor shrinkage was seen when squalamine was omitted from the treatment regimen. To gain a greater understanding of the mechanism by which squalamine inhibited tumor growth in the xenograft studies, in vitro experiments were carried out with vascular endothelial growth factor-stimulated human umbilical vein endothelial cells in culture exposed to squalamine. Squalamine treatment was found to retard two cellular events necessary for angiogenesis, inducing disorganization of F-actin stress fibers and causing a concomitant reduction of detectable cell the surface molecular endothelial cadherin (VE-cadherin). We propose that the augmentation by squalamine of cytotoxicity from platinum-based therapies is attributable to interference by squalamine with the ability of stimuli to promote endothelial cell movement and cell-cell communication necessary for growth of new blood vessels in xenografts after chemotherapeutic injury to the tumor. PMID:11297269

  1. Clinicopathological analysis of salivary gland tumors over a 15-year period

    Directory of Open Access Journals (Sweden)

    Artur Cunha VASCONCELOS

    2016-01-01

    Full Text Available Abstract Salivary gland tumors (SGT are rare neoplasms that generate interest due to their histopathological diversity and clinical behavior. The aims of the present study were to investigate clinicopathological aspects of SGTs diagnosed at a tertiary health center and compare the findings with epidemiological data from different geographic locations. Cases of tumor in the head and neck region at a single health center in the period between 1995 and 2010 were reviewed. Patient gender, age and ethnic group as well as anatomic location, histological type and clinical behavior of the tumor were recorded. Availability of complete information about these aspects was considered the inclusion criteria. Descriptive statistical analysis of the data was performed using the frequencies of categorical variables. Among the 2168 cases of tumors in the head and neck region, 243 (11.20% cases were diagnosed in the salivary glands, 109 of which met the inclusion criteria: 85 (78% benign tumors and 24 (22% malignant tumors. Mean patient age was 46.47 years. The female gender accounted for 56 cases (51.4% and the male gender accounted for 53 (48.3%. The major salivary glands were affected more (75.2% than the minor glands. The most frequent benign and malignant SGTs were pleomorphic adenoma (81.2% and adenoid cystic carcinoma (58.3%, respectively. In conclusion, pleomorphic adenoma and adenoid cystic carcinoma are the most frequent benign and malignant lesions, respectively. Comparing the present data with previous studies on SGTs, one may infer that some demographic characteristics and the predominance of malignant tumors vary in different geographic regions.

  2. The potential diagnostic power of circulating tumor cell analysis for non-small-cell lung cancer.

    Science.gov (United States)

    Ross, Kirsty; Pailler, Emma; Faugeroux, Vincent; Taylor, Melissa; Oulhen, Marianne; Auger, Nathalie; Planchard, David; Soria, Jean-Charles; Lindsay, Colin R; Besse, Benjamin; Vielh, Philippe; Farace, Françoise

    2015-01-01

    In non-small-cell lung cancer (NSCLC), genotyping tumor biopsies for targetable somatic alterations has become routine practice. However, serial biopsies have limitations: they may be technically difficult or impossible and could incur serious risks to patients. Circulating tumor cells (CTCs) offer an alternative source for tumor analysis that is easily accessible and presents the potential to identify predictive biomarkers to tailor therapies on a personalized basis. Examined here is our current knowledge of CTC detection and characterization in NSCLC and their potential role in EGFR-mutant, ALK-rearranged and ROS1-rearranged patients. This is followed by discussion of the ongoing issues such as the question of CTC partnership as diagnostic tools in NSCLC. PMID:26564313

  3. Tumor spheroid assembly on hyaluronic acid-based structures: A review.

    Science.gov (United States)

    Carvalho, Marco P; Costa, Elisabete C; Miguel, Sónia P; Correia, Ilídio J

    2016-10-01

    Two-dimensional (2D) cell culture is the main methodology used for screening anticancer therapeutics. However, these 2D cellular models misrepresent the architecture of native tumors, leading, in some cases, to unsuccessful prediction of cancer cell response to drugs. To overcome such limitations, cell growth in three dimensions (3D) arises as an alternative to reproduce in vitro the cellular arrangement found in tumors. Among the 3D cancer models developed so far, spheroids are the most attractive since these are cellular aggregates that broadly mimic many features of solid tumors affecting humans, like cell-cell interactions. One of the most applied techniques for producing spheroids is the liquid overlay technique, in which cells aggregate due to their limited adhesion to certain biomaterials, usually agarose or agar. Recently, the suitability of hyaluronic acid (HA) for spheroids assembly and HA-cell surface receptor interactions has been investigated. Ergo, this review gathers a summary of different studies where HA-based structures were developed and used for tumor spheroids production in order to be used in vitro as reliable 3D tumor models for therapeutic screening purposes. PMID:27312623

  4. An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images.

    Science.gov (United States)

    Wu, Wen-Jie; Lin, Shih-Wei; Moon, Woo Kyung

    2015-10-01

    A rapid and highly accurate diagnostic tool for distinguishing benign tumors from malignant ones is required owing to the high incidence of breast cancer. Although various computer-aided diagnosis (CAD) systems have been developed to interpret ultrasound images of breast tumors, feature selection and the setting of parameters are still essential to classification accuracy and the minimization of computational complexity. This work develops a highly accurate CAD system that is based on a support vector machine (SVM) and the artificial immune system (AIS) algorithm for evaluating breast tumors. Experiments demonstrate that the accuracy of the proposed CAD system for classifying breast tumors is 96.67%. The sensitivity, specificity, PPV, and NPV of the proposed CAD system are 96.67, 96.67, 95.60, and 97.48%, respectively. The receiver operator characteristic (ROC) area index A z is 0.9827. Hence, the proposed CAD system can reduce the number of biopsies and yield useful results that assist physicians in diagnosing breast tumors. PMID:25561066

  5. Computer-Aided Image Analysis and Fractal Synthesis in the Quantitative Evaluation of Tumor Aggressiveness in Prostate Carcinomas

    Science.gov (United States)

    Waliszewski, Przemyslaw

    2016-01-01

    The subjective evaluation of tumor aggressiveness is a cornerstone of the contemporary tumor pathology. A large intra- and interobserver variability is a known limiting factor of this approach. This fundamental weakness influences the statistical deterministic models of progression risk assessment. It is unlikely that the recent modification of tumor grading according to Gleason criteria for prostate carcinoma will cause a qualitative change and improve significantly the accuracy. The Gleason system does not allow the identification of low aggressive carcinomas by some precise criteria. The ontological dichotomy implies the application of an objective, quantitative approach for the evaluation of tumor aggressiveness as an alternative. That novel approach must be developed and validated in a manner that is independent of the results of any subjective evaluation. For example, computer-aided image analysis can provide information about geometry of the spatial distribution of cancer cell nuclei. A series of the interrelated complexity measures characterizes unequivocally the complex tumor images. Using those measures, carcinomas can be classified into the classes of equivalence and compared with each other. Furthermore, those measures define the quantitative criteria for the identification of low- and high-aggressive prostate carcinomas, the information that the subjective approach is not able to provide. The co-application of those complexity measures in cluster analysis leads to the conclusion that either the subjective or objective classification of tumor aggressiveness for prostate carcinomas should comprise maximal three grades (or classes). Finally, this set of the global fractal dimensions enables a look into dynamics of the underlying cellular system of interacting cells and the reconstruction of the temporal-spatial attractor based on the Taken’s embedding theorem. Both computer-aided image analysis and the subsequent fractal synthesis could be performed

  6. Computer-Aided Image Analysis and Fractal Synthesis in the Quantitative Evaluation of Tumor Aggressiveness in Prostate Carcinomas.

    Science.gov (United States)

    Waliszewski, Przemyslaw

    2016-01-01

    The subjective evaluation of tumor aggressiveness is a cornerstone of the contemporary tumor pathology. A large intra- and interobserver variability is a known limiting factor of this approach. This fundamental weakness influences the statistical deterministic models of progression risk assessment. It is unlikely that the recent modification of tumor grading according to Gleason criteria for prostate carcinoma will cause a qualitative change and improve significantly the accuracy. The Gleason system does not allow the identification of low aggressive carcinomas by some precise criteria. The ontological dichotomy implies the application of an objective, quantitative approach for the evaluation of tumor aggressiveness as an alternative. That novel approach must be developed and validated in a manner that is independent of the results of any subjective evaluation. For example, computer-aided image analysis can provide information about geometry of the spatial distribution of cancer cell nuclei. A series of the interrelated complexity measures characterizes unequivocally the complex tumor images. Using those measures, carcinomas can be classified into the classes of equivalence and compared with each other. Furthermore, those measures define the quantitative criteria for the identification of low- and high-aggressive prostate carcinomas, the information that the subjective approach is not able to provide. The co-application of those complexity measures in cluster analysis leads to the conclusion that either the subjective or objective classification of tumor aggressiveness for prostate carcinomas should comprise maximal three grades (or classes). Finally, this set of the global fractal dimensions enables a look into dynamics of the underlying cellular system of interacting cells and the reconstruction of the temporal-spatial attractor based on the Taken's embedding theorem. Both computer-aided image analysis and the subsequent fractal synthesis could be performed

  7. Analysis of the DNDI gene in men with sporadic and familial testicular germ cell tumors

    NARCIS (Netherlands)

    Linger, Rachel; Dudakia, Darshna; Huddart, Robert; Tucker, Kathy; Friedlander, Michael; Phillips, Kelly-Anne; Hogg, David; Jewett, Michael A. S.; Lohynska, Radka; Daugaard, Gedske; Richard, Stephane; Chompret, Agnes; Stoppa-Lyonnet, Dominique; Bonaiti-Pellie, Catherine; Heidenreich, Axel; Albers, Peter; Olah, Edith; Geczi, Lajos; Bodrogi, Istvan; Daly, Peter A.; Guilford, Parry; Fossi, Sophie D.; Heimdal, Ketil; Tjulandin, Sergei A.; Liubchenko, Ludmila; Stoll, Hans; Weber, Walter; Einhorn, Lawrence; McMaster, Mary; Korde, Larissa; Greene, Mark H.; Nathanson, Katherine L.; Cortessis, Victoria; Easton, Douglas F.; Bishop, D. Timothy; Stratton, Michael R.; Rapley, Elizabeth A.

    2008-01-01

    A base substitution in the mouse DndI gene resulting in a truncated Dnd protein has been shown to be responsible for germ cell loss and the development of testicular germ cell tumors (TGCT) in the 129 strain of mice. We investigated the human orthologue of this gene in 263 patients (165 with a famil

  8. Genome-wide copy number analysis of cerebrospinal fluid tumor cells and their corresponding archival primary tumors

    Directory of Open Access Journals (Sweden)

    Mark Jesus M. Magbanua

    2014-12-01

    Full Text Available A debilitating complication of breast cancer is the metastatic spread of tumor cells to the leptomeninges or cerebrospinal fluid (CSF. Patients diagnosed with this aggressive clinical syndrome, known as leptomeningeal carcinomatosis, have very poor prognosis. Despite improvements in detecting cerebrospinal fluid tumor cells (CSFTCs, information regarding their molecular biology is extremely limited. In our recent work, we utilized a protocol previously used for circulating tumor cell isolation to purify tumor cells from the CSF. We then performed genomic characterization of CSFTCs as well as archival tumors from the same patient. Here, we describe the microarray data and quality controls associated with our study published in the Cancer Research journal in 2013 [1]. We also provide an R script containing code for quality control of microarray data and assessment of copy number calls. The microarray data has been deposited into Gene Expression Omnibus under accession # GSE46068.

  9. Mesenchymal Stem Cell-Based Tumor-Targeted Gene Therapy in Gastrointestinal Cancer

    OpenAIRE

    Bao, Qi; Zhao, Yue; Niess, Hanno; Conrad, Claudius; Schwarz, Bettina; Jauch, Karl-Walter; Huss, Ralf; Peter J Nelson; Bruns, Christiane J.

    2012-01-01

    Mesenchymal stem (or stromal) cells (MSCs) are nonhematopoietic progenitor cells that can be obtained from bone marrow aspirates or adipose tissue, expanded and genetically modified in vitro, and then used for cancer therapeutic strategies in vivo. Here, we review available data regarding the application of MSC-based tumor-targeted therapy in gastrointestinal cancer, provide an overview of the general history of MSC-based gene therapy in cancer research, and discuss potential problems associa...

  10. Gamma knife radiosurgery for glomus jugulare tumors: Therapeutic advantages of minimalism in the skull base

    Directory of Open Access Journals (Sweden)

    Sharma Manish

    2008-01-01

    Full Text Available Context: Glomus jugulare (GJ tumors are paragangliomas found in the region of the jugular foramen. Surgery with/without embolization and conventional radiotherapy has been the traditional management option. Aim: To analyze the efficacy of gamma knife radiosurgery (GKS as a primary or an adjunctive form of therapy. Settings and Design: A retrospective analysis of patients who received GKS at a tertiary neurosurgical center was performed. Materials and Methods: Of the 1601 patients who underwent GKS from 1997 to 2006, 24 patients with GJ underwent 25 procedures. Results: The average age of the cohort was 46.6 years (range, 22-76 years and the male to female ratio was 1:2. The most common neurological deficit was IX, X, XI cranial nerve paresis (15/24. Fifteen patients received primary GKS. Mean tumor size was 8.7 cc (range 1.1-17.2 cc. The coverage achieved was 93.1% (range 90-97% using a mean tumor margin dose of 16.4 Gy (range 12-25 Gy at a mean isodose of 49.5% (range 45-50%. Thirteen patients (six primary and seven secondary were available for follow-up at a median interval of 24 months (range seven to 48 months. The average tumor size was 7.9 cc (range 1.1-17.2 cc. Using a mean tumor margin dose of 16.3 Gy (range 12-20 Gy 93.6% coverage (range 91-97% was achieved. Six patients improved clinically. A single patient developed transient trigeminal neuralgia. Magnetic resonance imaging follow-up was available for 10 patients; seven recorded a decrease in size. There was no tumor progression. Conclusions: Gamma knife radiosurgery is a safe and effective primary and secondary modality of treatment for GJ.

  11. Clinicopathological analysis of unusual rosette-forming glioneuronal tumor in brain parenchyma

    Directory of Open Access Journals (Sweden)

    Da-wei LIU

    2014-03-01

    lesion was observed to locate in brain parenchyma and there was no evidence of tumor infiltrating in ventricular system. Craniotomy was performed and the tumor was removed totally. Histological examination revealed that the tumor was distinctive in its juxtaposition of patterned neurocytic and pilocytic astroglial components. The neurocytic component showed the tumor cells had small, uniform round nuclei with scant cytoplasm and formed narrow perivascular pseudorosettes or Homer-Wright-like rosettes arrays of neurocytic nuclei around delicate eosinophilic neuropil cores. The glial component tended to exhibit pilocytic astrocytoma-like morphology with long, hair-like processes and Rosenthal fibers. Immunohistochemical staining showed that the tumor cells in glial component were diffusely positive for GFAP and S-100, but negative for NeuN, Syn and NSE. However, perivascular pseudorosettes or Homer-Wright-like rosettes were positive for Syn and Olig-2, and negative for GFAP. Ki-67 index was low and less than 1%. Based on clinical presentation and histological findings, a final histological diagnosis of RGNT in brain parenchyma, WHO grade Ⅰ, was made according to the criteria of WHO classification. The patient has not received chemotherapy and attended follow-up for 12 months, without any neurological deficit or signs of recurrence.  Conclusions RGNT is a rare tumor and classified as mixed neuronal-glial tumor. RGNT probably derives from a common progenitor cell originated from subependymal plate or brain parenchyma, able to differentiate toward both glial and neuronal phenotype. RGNT in brain parenchyma is also observed to have the similar biological behaviors and histopathological characteristics with its intra-ventricular counterpart. With similarities in histological findings, it may be difficult to differentiate RGNT from extraventricular neurocytoma, dysembry oplastic neuroepithelial tumor (DNT, and ependymoma with neuronal differentiation or neuropil-like islands

  12. A Novel Markerless Technique to Evaluate Daily Lung Tumor Motion Based on Conventional Cone-Beam CT Projection Data

    International Nuclear Information System (INIS)

    Purpose: In this study, we present a novel markerless technique, based on cone beam computed tomography (CBCT) raw projection data, to evaluate lung tumor daily motion. Method and Materials: The markerless technique, which uses raw CBCT projection data and locates tumors directly on every projection, consists of three steps. First, the tumor contour on the planning CT is used to create digitally reconstructed radiographs (DRRs) at every projection angle. Two sets of DRRs are created: one showing only the tumor, and another with the complete anatomy without the tumor. Second, a rigid two-dimensional image registration is performed to register the DRR set without the tumor to the CBCT projections. After the registration, the projections are subtracted from the DRRs, resulting in a projection dataset containing primarily tumor. Finally, a second registration is performed between the subtracted projection and tumor-only DRR. The methodology was evaluated using a chest phantom containing a moving tumor, and retrospectively in 4 lung cancer patients treated by stereotactic body radiation therapy. Tumors detected on projection images were compared with those from three-dimensional (3D) and four-dimensional (4D) CBCT reconstruction results. Results: Results in both static and moving phantoms demonstrate that the accuracy is within 1 mm. The subsequent application to 22 sets of CBCT scan raw projection data of 4 lung cancer patients includes about 11,000 projections, with the detected tumor locations consistent with 3D and 4D CBCT reconstruction results. This technique reveals detailed lung tumor motion and provides additional information than conventional 4D images. Conclusion: This technique is capable of accurately characterizing lung tumor motion on a daily basis based on a conventional CBCT scan. It provides daily verification of the tumor motion to ensure that these motions are within prior estimation and covered by the treatment planning volume.

  13. Isolation and genomic analysis of circulating tumor cells from castration resistant metastatic prostate cancer

    International Nuclear Information System (INIS)

    The number of circulating tumor cells (CTCs) in metastatic prostate cancer patients provides prognostic and predictive information. However, it is the molecular characterization of CTCs that offers insight into the biology of these tumor cells in the context of personalized treatment. We developed a novel approach to isolate CTCs away from hematopoietic cells with high purity, enabling genomic analysis of these cells. The isolation protocol involves immunomagnetic enrichment followed by fluorescence activated cell sorting (IE/FACS). To evaluate the feasibility of isolation of CTCs by IE/FACS and downstream genomic profiling, we conducted a pilot study in patients with metastatic castration resistant prostate cancer (CRPC). Twenty (20) sequential CRPC patients were assayed using CellSearch™. Twelve (12) patients positive for CTCs were subjected to immunomagnetic enrichment and fluorescence activated cell sorting (IE/FACS) to isolate CTCs. Genomic DNA of CTCs was subjected to whole genome amplification (WGA) followed by gene copy number analysis via array comparative genomic hybridization (aCGH). CTCs from nine (9) patients successfully profiled were observed to have multiple copy number aberrations including those previously reported in primary prostate tumors such as gains in 8q and losses in 8p. High-level copy number gains at the androgen receptor (AR) locus were observed in 7 (78%) cases. Comparison of genomic profiles between CTCs and archival primary tumors from the same patients revealed common lineage. However, high-level copy number gains in the AR locus were observed in CTCs, but not in the matched archival primary tumors. We developed a new approach to isolate prostate CTCs without significant leukocyte admixture, and to subject them to genome-wide copy number analysis. Our assay may be utilized to explore genomic events involved in cancer progression, e.g. development of castration resistance and to monitor therapeutic efficacy of targeted therapies in

  14. Value of combined determination of tumor markers based on two discriminative models in facilitating diagnosis of hepatic carcinoma

    Directory of Open Access Journals (Sweden)

    Xue-feng BAI

    2012-11-01

    Full Text Available Objective  To explore the value of determination of combined tumor markers based on artificial neural network (ANN discrimination model in facilitating the diagnosis of hepatic carcinoma. Methods  Serum samples were collected from three groups of subjects, including 50 cases of liver cancer, 40 cases of benign liver disease, and 50 normal controls. The levels of serum alpha fetoprotein (AFP, carbohydrate antigen 125 (CA125 and carcino-embryonic antigen (CEA were determined by chemiluminescence immunoassay. The level of serum sialic acid (SA was determined by spectrophotometry, the content of calcium in serum was measured by calcium assay kit (Azo-end method of arsenic Ⅲ. Based on the five tumor markers mentioned above as discrimination variables, Fisher discrimination and ANN were applied to set up the intelligent auxiliary diagnostic model. Results  By applying the Fisher discrimination model established in present work, the diagnostic sensitivity of liver cancer was 46.1%, the specificity was 98.9%, the accurate rate was 79.3%, the positive predictive value was 95.8%, and the negative predictive value was 76.7% for the three groups. With the application of ANN discrimination model, the diagnostic sensitivity of liver cancer was raised to 96.0%, the specificity 98.9%, the accuracy 94.3%, the positive predictive value 98.0%, and the negative predictive value was 97.8%. Conclusion  The diagnostic model based on ANN combined with 5 tumor markers is superior in diagnostic acuity to traditional Fisher discrimination analysis, thus more suitable for clinical data analysis.

  15. Random feature subspace ensemble based Extreme Learning Machine for liver tumor detection and segmentation.

    Science.gov (United States)

    Huang, Weimin; Yang, Yongzhong; Lin, Zhiping; Huang, Guang-Bin; Zhou, Jiayin; Duan, Yuping; Xiong, Wei

    2014-01-01

    This paper presents a new approach to detect and segment liver tumors. The detection and segmentation of liver tumors can be formulized as novelty detection or two-class classification problem. Each voxel is characterized by a rich feature vector, and a classifier using random feature subspace ensemble is trained to classify the voxels. Since Extreme Learning Machine (ELM) has advantages of very fast learning speed and good generalization ability, it is chosen to be the base classifier in the ensemble. Besides, majority voting is incorporated for fusion of classification results from the ensemble of base classifiers. In order to further increase testing accuracy, ELM autoencoder is implemented as a pre-training step. In automatic liver tumor detection, ELM is trained as a one-class classifier with only healthy liver samples, and the performance is compared with two-class ELM. In liver tumor segmentation, a semi-automatic approach is adopted by selecting samples in 3D space to train the classifier. The proposed method is tested and evaluated on a group of patients' CT data and experiment show promising results. PMID:25571035

  16. Dendritic cell based immunotherapy using tumor stem cells mediates potent antitumor immune responses.

    Science.gov (United States)

    Dashti, Amir; Ebrahimi, Marzieh; Hadjati, Jamshid; Memarnejadian, Arash; Moazzeni, Seyed Mohammad

    2016-04-28

    Cancer stem cells (CSCs) are demonstrated to be usually less sensitive to conventional methods of cancer therapies, resulting in tumor relapse. It is well-known that an ideal treatment would be able to selectively target and kill CSCs, so as to avoid the tumor reversion. The aim of our present study was to evaluate the effectiveness of a dendritic cell (DC) based vaccine against CSCs in a mouse model of malignant melanoma. C57BL/6 mouse bone marrow derived DCs pulsed with a murine melanoma cell line (B16F10) or CSC lysates were used as a vaccine. Immunization of mice with CSC lysate-pulsed DCs was able to induce a significant prophylactic effect by a higher increase in lifespan and obvious depression of tumor growth in tumor bearing mice. The mice vaccinated with DCs loaded with CSC-lysate were revealed to produce specific cytotoxic responses to CSCs. The proliferation assay and cytokine (IFN-γ and IL-4) secretion of mice vaccinated with CSC lysate-pulsed DCs also showed more favorable results, when compared to those receiving B16F10 lysate-pulsed DCs. These findings suggest a potential strategy to improve the efficacy of DC-based immunotherapy of cancers. PMID:26803056

  17. A clinicopathological analysis of papillary endolymphatic sac tumor in inner ear

    Directory of Open Access Journals (Sweden)

    LIN Yu-jing

    2013-05-01

    Full Text Available Background Endolymphatic sac tumor (ELST is a rare tumor originating fromendolymphatic epithelium of inner ear. This tumor exhibits low-grade malignancy with benign histopathological appearance and clinically destructive behavior which occurs in the skull base and frequently invades the posterior petrous bone, the mastoid, semicircular canal, cerebellopontine angle structures and cranial nerve. The presence of intracranial ELST always makes the diagnosis challenge for clinicians and pathologists. Herein we describe a case of ELST in skull base. The clinicopathology of this tumor and its differential diagnosis are discussed. Methods The clinical manifestation of a patient with primary ELST occurring in right cerebellopontine angle was presented retrospectively. Resected mass was routinely paraffin-embedded and stained with hematoxylin and eosin. Dako EnVision immunohistochemical staining system was used to detect the tumor antigen expressions, including cytokeratin (CK, vimentin (Vim, epithelial membrane antigen (EMA, carcinoembryonic antigen (CEA, synaptophysin (Syn, chromogranin A (CgA, S-100 protein (S-100, glial fibrillary acidic protein (GFAP, thyroglobulin (TG, thyroid transcription factor-1 (TTF-1 and Ki-67. Results A 32-year-old male patient presented with 20-year history of progressive hearing loss. MRI scan revealed an expansile lytic lesion of the mastoid process of the right petrous bone, measuring 4.20 cm × 3.30 cm × 2.00 cm, occupied the right cerebellopontine angle with infiltration of surrounding dura mater. But the lesion did not break the dura mater and invade the brain parenchyma. Craniotomy was performed and the tumor was removed totally. Histological examination revealed a papillary, cystic or glandular architecture in mass. The papillary and glandular structures were lined by a single layer of flattened cuboidal-to-columnar cells. The stroma of the papillary fronds was richly vascularized and chronically inflamed. There

  18. 3-D-conformal radiation therapy for pediatric giant cell tumors of the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E.B. [Massachusetts General Hospital, Boston, MA (United States). Dept. of Radiation Oncology; Harvard Univ., Cambridge, MA (United States). Cyclotron Lab.; Dartmouth Hitchcock Medical Center, Lebanon, NH (United States). Section of Radiation Oncology; Muenter, M.W.; Vries, A. de [Massachusetts General Hospital, Boston, MA (United States). Dept. of Radiation Oncology; Adams, J.A.; Munzenrider, J.E. [Massachusetts General Hospital, Boston, MA (United States). Dept. of Radiation Oncology; Harvard Univ., Cambridge, MA (United States). Cyclotron Lab.; Rosenberg, A.E. [Massachusetts General Hospital, Boston, MA (United States). Dept. of Pathology

    2002-05-01

    Background: Giant cell tumors (GCT) of the base of skull are rare neoplasms. This report reviews the treatment of four pediatric patients presenting with aggressive giant cell tumor, using fractionated and combined, conformal proton and photon radiation therapy at Massachusetts General Hospital and Harvard Cyclotron Laboratory. Patients and Methods: Three female patients and one adolescent male, ages 10-15 years, had undergone prior, extensive surgical resection(s) and were treated for either primary (two patients) or recurrent (two patients) disease. Gross residual tumor was evident in three patients and microscopic disease suspected in one patient. Combined proton and photon radiation theory was based on three-dimensional (3-D) planning, consisting of fractionated treatment, one fraction per day at 1.8 CGE (cobalt-gray equivalent) to total target doses of 57.6, 57.6, 59.4, and 61.2 Gy/CGE. Results: With observation times of 3.1 years, 3.3, 5.3, and 5.8 years, all four patients were alive and well and remained locally controlled without evidence of recurrent disease. Except for one patient with partial pituitary insufficiency following radiotherapy for sellar recurrent disease, thus far no late effects attributable to radiation therapy have been observed. Conclusions: 3-D conformal radiation therapy offers a realistic chance of tumor control for aggressive giant cell tumor in the skull base, either postoperatively or at time of recurrence. Conformal treatment techniques allow the safe delivery of relatively high radiation doses in the pediatric patient without apparent increase of side effects. (orig.)

  19. Anti-tumor effects of metformin in animal models of hepatocellular carcinoma: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Several studies have reported that metformin can reduce the risk of hepatocellular carcinoma (HCC in diabetes patients. However, the direct anti-HCC effects of metformin have hardly been studied in patients, but have been extensively investigated in animal models of HCC. We therefore performed a systematic review and meta-analysis of animal studies evaluating the effects of metformin on HCC.We collected the relevant studies by searching EMBASE, Medline (OvidSP, Web of Science, Scopus, PubMed Publisher, and Google Scholar. Studies were included according to the following inclusion criteria: HCC, animal study, and metformin intervention. Study quality was assessed using SYRCLE's risk of bias tool. A meta-analysis was performed for the outcome measures: tumor growth (tumor volume, weight and size, tumor number and incidence.The search resulted in 573 references, of which 13 could be included in the review and 12 included in the meta-analysis. The study characteristics of the included studies varied considerably. Two studies used rats, while the others used mice. Only one study used female animals, nine used male, and three studies didn't mention the gender of animals in their experiments. The quality of the included studies was low to moderate based on the assessment of their risk of bias. The meta-analysis showed that metformin significantly inhibited the growth of HCC tumour (SMD -2.20[-2.96,-1.43]; n=16, but no significant effect on the number of tumors (SMD-1.05[-2.13,0.03]; n=5 or the incidence of HCC was observed (RR 0.62[0.33,1.16]; n=6. To investigate the potential sources of significant heterogeneities found in outcome of tumor growth (I2=81%, subgroup analyses of scales of growth measures and of types of animal models used were performed.Metformin appears to have a direct anti-HCC effect in animal models. Although the intrinsic limitations of animal studies, this systematic review could provide an important reference for future

  20. Group Independent Component Analysis and Functional MRI Examination of Changes in Language Areas Associated with Brain Tumors at Different Locations

    OpenAIRE

    Wang, Liya; Chen, Dandan; Yang, Xiaofeng; Olson, Jeffrey J.; GOPINATH, KAUNDINYA; Fan, Tianning; Mao, Hui

    2013-01-01

    Object This study investigates the effect of tumor location on alterations of language network by brain tumors at different locations using blood oxygenation level dependent (BOLD) fMRI and group independent component analysis (ICA). Subjects and Methods BOLD fMRI data were obtained from 43 right handed brain tumor patients. Presurgical mapping of language areas was performed on all 43 patients with a picture naming task. All data were retrospectively analyzed using group ICA. Patents were di...

  1. A curcumin-based TPA four-branched copper(II) complex probe for in vivo early tumor detection

    Energy Technology Data Exchange (ETDEWEB)

    Pi, Zongxin [Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230001 (China); Wang, Jiafeng; Jiang, Bo [Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038 (China); Cheng, Gang [Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230001 (China); Zhou, Shuangsheng, E-mail: zshuangsheng@126.com [Department of Pharmacy, Anhui University of Chinese Medicine, Hefei 230038 (China); Center of Modern Experimental Technology, Anhui University, Hefei 230038 (China)

    2015-01-01

    A multibranched Cu(II) complex CuL{sub 2} curcumin-based was synthesized and characterized by single-crystal X-ray diffraction analysis. The photophysical properties of the complex have been investigated both experimentally and theoretically. The results show that the target complex exhibits higher quantum yield and larger two-photon absorption (TPA) cross-section in the near infrared (NIR) region compared with its free ligand. The cell imaging studies in vitro and in vivo reveal that the complex shows good photostability and excellent tumor targeting capability to tested cancerous cells, which can be potentially used for early tumor detection. - Graphical abstract: A multibranched Cu(II) complex was prepared from curcumin. The photophysical properties of the obtained complex have been investigated. The results exhibit that the complex has high capability to test cancerous cells and can distinguish between the cancerous and noncancerous cells, which should be potentially used for early tumor detection. - Highlights: • A novel multi-branched copper complex was synthesized. • The obtained compounds exhibited obvious TPA in high polar solvents. • The complex is a low toxicity at low-micromolar concentrations. • The complex exhibits larger TPA cross-section and brighter TPF imaging. • The complex has excellent targeting capability to tested cancerous cells.

  2. A curcumin-based TPA four-branched copper(II) complex probe for in vivo early tumor detection

    International Nuclear Information System (INIS)

    A multibranched Cu(II) complex CuL2 curcumin-based was synthesized and characterized by single-crystal X-ray diffraction analysis. The photophysical properties of the complex have been investigated both experimentally and theoretically. The results show that the target complex exhibits higher quantum yield and larger two-photon absorption (TPA) cross-section in the near infrared (NIR) region compared with its free ligand. The cell imaging studies in vitro and in vivo reveal that the complex shows good photostability and excellent tumor targeting capability to tested cancerous cells, which can be potentially used for early tumor detection. - Graphical abstract: A multibranched Cu(II) complex was prepared from curcumin. The photophysical properties of the obtained complex have been investigated. The results exhibit that the complex has high capability to test cancerous cells and can distinguish between the cancerous and noncancerous cells, which should be potentially used for early tumor detection. - Highlights: • A novel multi-branched copper complex was synthesized. • The obtained compounds exhibited obvious TPA in high polar solvents. • The complex is a low toxicity at low-micromolar concentrations. • The complex exhibits larger TPA cross-section and brighter TPF imaging. • The complex has excellent targeting capability to tested cancerous cells

  3. MASSIVE PARALLEL DNA PYROSEQUENCING ANALYSIS OF THE TUMOR SUPPRESSOR BRG1/SMARCA4 IN LUNG PRIMARY TUMORS

    OpenAIRE

    Rodriguez-Nieto, Salvador; Cañanda, Andres; Pros, Eva; Pinto, Ana Isabel; Torres-Lanzas, Juan; Lopez-Rios, Fernando; Sanchez-Verde, Lydia; Pisano, David; Sanchez-Cespedes, Montse

    2010-01-01

    Abstract The tumor suppressor gene, SMARCA4 (or BRG1), which encodes the ATPase component of the chromatin remodeling complex SWI/SNF, is commonly inactivated by mutations and deletions in lung cancer cell lines. However, SMARCA4 alterations appear to be rare in lung primary tumors. Ultra-deep sequencing technologies provide a promising alternative to achieve a sensitivity superior to that of current sequencing strategies. Here we used ultra-deep pyrosequencing to screen for mutati...

  4. SNPase-ARMS qPCR: Ultrasensitive Mutation-Based Detection of Cell-Free Tumor DNA in Melanoma Patients

    OpenAIRE

    Stadler, Julia; Eder, Johanna; Pratscher, Barbara; Brandt, Sabine; Schneller, Doris; Müllegger, Robert; Vogl, Claus; Trautinger, Franz; Brem, Gottfried; Burgstaller, Joerg P.

    2015-01-01

    Cell-free circulating tumor DNA in the plasma of cancer patients has become a common point of interest as indicator of therapy options and treatment response in clinical cancer research. Especially patient- and tumor-specific single nucleotide variants that accurately distinguish tumor DNA from wild type DNA are promising targets. The reliable detection and quantification of these single-base DNA variants is technically challenging. Currently, a variety of techniques is applied, with no appar...

  5. Odontogenic tumors: analysis of 127 cases Tumores odontogênicos: análise de 127 casos

    Directory of Open Access Journals (Sweden)

    Jean Nunes SANTOS

    2001-12-01

    Full Text Available One hundred and twenty-seven cases of histologically confirmed odontogenic tumors were retrieved from a total of 5,289 oral and maxillary lesions diagnosed at the Division of Oral Pathology, Federal University of Rio Grande do Norte, during a period of 30 years (l970-l999. The most common histological diagnosis was odontoma (50.40%, followed by ameloblastoma (30.70%. The prevalence of odontogenic tumors was greater in females and the peak incidence occurred in the second and third decades of life. The main anatomical location was the mandible, and no malignant tumors were found.De uma série de 5.289 casos de lesões orais e dos maxilares diagnosticadas no Laboratório de Patologia Oral da Faculdade de Odontologia da Universidade Federal do Rio Grande do Norte no período de 30 anos (1970-1999, foram analisados 127 casos de tumores odontogênicos confirmados histologicamente. A lesão mais freqüente foi o odontoma (50,40% seguida pelo ameloblastoma (30,70%. A prevalência de tumores odontogênicos foi maior nas mulheres e o pico de incidência ocorreu na segunda e terceira décadas de vida. A localização anatômica mais comum foi a mandíbula e não foram encontrados casos de tumores malignos.

  6. Perivascular epithelioid cell tumor (PEComa of the uterine cervix associated with intraabdominal "PEComatosis": A clinicopathological study with comparative genomic hybridization analysis

    Directory of Open Access Journals (Sweden)

    Ma Linglei

    2004-10-01

    Full Text Available Abstract Background The World Health Organization recently recognized a family of neoplasms showing at least partial morphological or immunohistochemical evidence of a putative perivascular epithelioid cell (PEC differentiation. These tumors include angiomyolipoma (AML, clear cell "sugar" tumors of the lung (CCST, lymphangioleiomyomatosis (LAM, clear cell myomelanocytic tumors of the falciform ligament and distinctive clear cell tumors at various other anatomic sites. Case presentation & methods A 41-year old gravida-1 para-1 with tuberous sclerosis presented with an incidentally identified 2.2 cm mass. The morphology and immunohistochemical profile was consistent with PEComa. Distinct aggregates of HMB-45 epithelioid cells were present in an occasionally distinctive perivascular distribution in the myometrium, small bowel lamina propria and ovarian hila. These distinctive aggregates, for which we propose the designation "PEComatosis" based on their intraabdominal distribution, did not display cytological atypia, mitotic activity or necrosis. CGH and DNA ploidy analysis showed a balanced chromosomal profile and diploid nuclei, respectively. There was no recurrence or metastases at 35 months' follow-up. Fifty-one previously reported cases of non-AML, LAM and CCST PEComas [perivascular epithelioid cell tumors- not otherwise specified (PEComa-NOS] are reviewed. Conclusions The lesions may be a reflection of tumor multicentricity, in which each may be a potential nidus for the development of future more well-developed tumors. Alternatively, they may be a manifestation of a poorly understood "field effect", in which there is an increased propensity to develop tumors of this type throughout the abdomen. Finally, and least likely in our opinion, they may represent tumor spread from its primary site.

  7. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.

    Science.gov (United States)

    Mitra, A K; Mukherjee, U K; Harding, T; Jang, J S; Stessman, H; Li, Y; Abyzov, A; Jen, J; Kumar, S; Rajkumar, V; Van Ness, B

    2016-05-01

    Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naïve MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses. PMID:26710886

  8. Grating-based phase-contrast imaging of tumor angiogenesis in lung metastases.

    Directory of Open Access Journals (Sweden)

    Huimin Lin

    Full Text Available To assess the feasibility of the grating-based phase-contrast imaging (GPI technique for studying tumor angiogenesis in nude BALB/c mice, without contrast agents.We established lung metastatic models of human gastric cancer by injecting the moderately differentiated SGC-7901 gastric cancer cell line into the tail vein of nude mice. Samples were embedded in a 10% formalin suspension and dried before imaging. Grating-based X-ray phase-contrast images were obtained at the BL13W beamline of the Shanghai Synchrotron Radiation Facility (SSRF and compared with histological sections.Without contrast agents, grating-based X-ray phase-contrast imaging still differentiated angiogenesis within metastatic tumors with high spatial resolution. Vessels, down to tens of microns, showed gray values that were distinctive from those of the surrounding tumors, which made them easily identifiable. The vessels depicted in the imaging study were similar to those identified on histopathology, both in size and shape.Our preliminary study demonstrates that grating-based X-ray phase-contrast imaging has the potential to depict angiogenesis in lung metastases.

  9. Analysis of G-banding in tumor cell lines derived from human neural stem cells

    Institute of Scientific and Technical Information of China (English)

    Junhua Zou; Yanhui Li

    2006-01-01

    BACKGROUND: The application of neural stem cell (NSC) is restricted because of its tumorigenesis, and the possible pathogenesis needs investigation.OBJECTIVE: To compare the differences of chromosomal G-banding between human NSCs (hNSCs) derived tumor cell line and hNSCs derived normal cell lines.DESIGN: A randomized controlled observation.SETTING: Building of Anatomy, Peking University Health Science Center.MATERIALS: The hNSC lines and hNSC-derived tumor cell lines were provided by the Research Center of Stem Cells, Peking University; DMEM/F12 (1:1) medium, N2 additive, B27 additive epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) were produced by GIBCO BRL Company (USA); fetal bovine serum by HYCLONE Company (USA).METHODS: The experiments were carried out in the Department of Genetics, Peking University Health Science Center from February 2003 to July 2004. Human fetal striatal NSCs were inoculated hypodermically on the right scapular of nude mice; Normal human fetal striatal NSCs were cultured to 5-8 passages as controls. Karyotyping was performed on the 5th passage of hNSC-derived tumor cells at 6 weeks after hN-SC transplantation into nude mice (T1) and tumor cells at 15 weeks after transplantation (T2). Metaphase chromosomes were examined with microscope, G-banding cytogenetic analysis and karyotyping were performed according to the Cytoscan Karyotyping FISH and CGH software system (United biotechnology USA Corporation).MAIN OUTCOME MEASURES: G-banded analytical results of human fetal striatal nerve stem cells derived tumor cell lines (T1 and T2) of metaphase chromosomes were observed.RESULTS: ① Chromosome analysis of hNSC-derived tumor cell lines 1 (T1): Twenty-five well-spread metaphases were randomly selected for analysis. The karyotypes were 64, XX (8, 32%); 65, XX (1, 4%); 67,XX (5, 20%); 68, XX (11, 44%). The modal number of chromosomes in this cell lines was 68, which were all hypotriploid. The analysis of 8 G

  10. Assessment of tumor blood flow and its correlation with histopathologic features in skull base meningiomas and schwannomas by using pseudo-continuous arterial spin labeling images

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Tatsuya, E-mail: yamatatu_01eik@yahoo.co.jp [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Takeuchi, Hiroaki, E-mail: takeu@u-fukui.ac.jp [Department of Neurosurgery, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Kinoshita, Kazuyuki, E-mail: kkino@u-fukui.ac.jp [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Kosaka, Nobuyuki, E-mail: nkosaka@u-fukui.ac.jp [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Kimura, Hirohiko, E-mail: kimura@u-fukui.ac.jp [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-05-15

    Objective: We aimed to investigate whether pseudo-continuous arterial spin labeling (pcASL)-MRI can adequately evaluate tumor perfusion even if the tumors are located in the skull base region and evaluate the correlation between tumor blood flow (TBF) and the histopathologic features of skull base meningiomas and schwannomas. Materials and methods: We enrolled 31 patients with skull base meningioma (n = 14) and schwannoma (n = 17) who underwent surgical resection. TBF was calculated from pcASL. Tissue sections were stained with CD34 to evaluate microvessel area (MVA). TBF and MVA ratio were compared between meningiomas and schwannomas using Mann–Whitney U-test. The correlations between MVA ratio and TBF were evaluated in each tumor by using single linear regression analysis and Spearman's rank correlation coefficients (r{sub s}). Results: MVA ratio and TBF were significantly higher in meningioma than in schwannoma (both p < 0.01). Correlation analyses revealed significant positive correlations between MVA ratio and both mean and max TBF for meningiomas (r{sub s} = 0.89, 0.81, both p < 0.01). There was a weak positive correlation between MVA ratio and mean TBF for schwannomas (r{sub s} = 0.43, p = 0.04). However, no significant correlation was found between MVA ratio and max TBF for schwannoma. Conclusions: pcASL-MRI is useful for evaluating tumor perfusion even if the tumors are located in the skull base region. Moreover, pcASL-TBF was significantly higher in most meningiomas compared to schwannomas, which can help in the differential diagnosis of the 2 tumor types even without the use of contrast material.

  11. First experience with a novel luminescence-based optical sensor for measurement of oxygenation in tumors

    International Nuclear Information System (INIS)

    Background. The purpose of this preliminary study was to evaluate a novel luminescence-based fiber-optic sensor (OxyLite system) for the measurement of partial pressure of oxygen (pO2) in tumors and for the detection of changes in pO2 as a function of time. The new method was used simultaneously with the laser Doppler flowmetry method for the measurement of relative tissue perfusion. Materials and methods. Blood perfusion and pO2 were measured continuously via fiber-optic sensors inserted into SA-1 tumors in anesthetized A/J mice. The changes in blood flow and oxygenation of tumors were induced by transient changes of the parameters of anesthesia and by injection of a vasoactive drug hydralazine. Results. Both optical methods used in the study successfully detected the induced changes in blood flow and pO2. The measurements of pO2 were well correlated with measurements of microcirculatory blood perfusion. In the majority of pO2 measurements, we observed an unexpected behavior of the signal during the stabilization process immediately after the insertion of the probe into tumor. This behaviour of the pO2 signal was most probably caused by local tissue damage induced by the insertion of the probe. Conclusion. The novel luminescence-based optical oximetry can reliably detect local pO2 changes in tumors as a function of time but some aspects of prolonged pO2 measurement by this method require further investigation. (author)

  12. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    International Nuclear Information System (INIS)

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  13. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Energy Technology Data Exchange (ETDEWEB)

    Min Yugang; Santhanam, Anand; Ruddy, Bari H [University of Central Florida, FL (United States); Neelakkantan, Harini; Meeks, Sanford L [M D Anderson Cancer Center Orlando, FL (United States); Kupelian, Patrick A, E-mail: anand.santhanam@orlandohealth.co [Department of Radiation Oncology, University of California, Los Angeles, CA (United States)

    2010-09-07

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  14. A GPU-based framework for modeling real-time 3D lung tumor conformal dosimetry with subject-specific lung tumor motion

    Science.gov (United States)

    Min, Yugang; Santhanam, Anand; Neelakkantan, Harini; Ruddy, Bari H.; Meeks, Sanford L.; Kupelian, Patrick A.

    2010-09-01

    In this paper, we present a graphics processing unit (GPU)-based simulation framework to calculate the delivered dose to a 3D moving lung tumor and its surrounding normal tissues, which are undergoing subject-specific lung deformations. The GPU-based simulation framework models the motion of the 3D volumetric lung tumor and its surrounding tissues, simulates the dose delivery using the dose extracted from a treatment plan using Pinnacle Treatment Planning System, Phillips, for one of the 3DCTs of the 4DCT and predicts the amount and location of radiation doses deposited inside the lung. The 4DCT lung datasets were registered with each other using a modified optical flow algorithm. The motion of the tumor and the motion of the surrounding tissues were simulated by measuring the changes in lung volume during the radiotherapy treatment using spirometry. The real-time dose delivered to the tumor for each beam is generated by summing the dose delivered to the target volume at each increase in lung volume during the beam delivery time period. The simulation results showed the real-time capability of the framework at 20 discrete tumor motion steps per breath, which is higher than the number of 4DCT steps (approximately 12) reconstructed during multiple breathing cycles.

  15. Expectant Management of Vestibular Schwannoma: A Retrospective Multivariate Analysis of Tumor Growth and Outcome

    OpenAIRE

    Hughes, Mark; Skilbeck, Christopher; Saeed, Shakeel; Bradford, Robert

    2011-01-01

    We conducted a retrospective observational study to assess the consequences of conservative management of vestibular schwannoma (VS). Data were collected from tertiary neuro-otological referral units in United Kingdom. The study included 59 patients who were managed conservatively with radiological diagnosis of VS. The main outcome measures were growth rate and rate of failure of conservative management. Multivariate analysis sought correlation between tumor growth and (i) demographic feature...

  16. Selected Reaction Monitoring (SRM) Analysis of Epidermal Growth Factor Receptor (EGFR) in Formalin Fixed Tumor Tissue

    OpenAIRE

    Hembrough Todd; Thyparambil Sheeno; Liao Wei-Li; Darfler Marlene M; Abdo Joseph; Bengali Kathleen M; Taylor Paul; Tong Jiefei; Lara-Guerra Humberto; Waddell Thomas K; Moran Michael F; Tsao Ming-Sound; Krizman David B; Burrows Jon

    2012-01-01

    Abstract Background Analysis of key therapeutic targets such as epidermal growth factor receptor (EGFR) in clinical tissue samples is typically done by immunohistochemistry (IHC) and is only subjectively quantitative through a narrow dynamic range. The development of a standardized, highly-sensitive, linear, and quantitative assay for EGFR for use in patient tumor tissue carries high potential for identifying those patients most likely to benefit from EGFR-targeted therapies. Methods A mass s...

  17. Analysis of Surgical Site Infection after Musculoskeletal Tumor Surgery: Risk Assessment Using a New Scoring System

    OpenAIRE

    Satoshi Nagano; Masahiro Yokouchi; Takao Setoguchi; Hiromi Sasaki; Hirofumi Shimada; Ichiro Kawamura; Yasuhiro Ishidou; Junichi Kamizono; Takuya Yamamoto; Hideki Kawamura; Setsuro Komiya

    2014-01-01

    Surgical site infection (SSI) has not been extensively studied in musculoskeletal tumors (MST) owing to the rarity of the disease. We analyzed incidence and risk factors of SSI in MST. SSI incidence was evaluated in consecutive 457 MST cases (benign, 310 cases and malignant, 147 cases) treated at our institution. A detailed analysis of the clinical background of the patients, pre- and postoperative hematological data, and other factors that might be associated with SSI incidence was performed...

  18. Clinical results of stereotactic body frame based fractionated radiation therapy for primary or metastatic thoracic tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Min [Univ. of Ulsan, Seoul (Korea, Republic of). Dept. of Radiation Oncology] (and others)

    2006-12-15

    The aim of this study was to evaluate the treatment outcomes of stereotactic body radiation therapy for treating primary or metastatic thoracic tumors using a stereotactic body frame. Between January 1998 and February 2004, 101 lesions from 91 patients with thoracic tumors were prospectively reviewed. A dose of 10-12 Gy per fraction was given three to four times over consecutive days to a total dose of 30-48 Gy (median 40 Gy). The overall response rate was 82%, with 20 (22%) complete responses and 55 (60%) partial responses. The one- and two-year local progression free survival rates were 90% and 81%, respectively. The patients who received 48 Gy showed a better local tumor control than those who received less than 48 Gy (Fisher exact test; p=0.004). No pulmonary complications greater than a RTOG toxicity criteria grade 2 were observed. The experience of stereotactic body frame based radiation therapy appears to be a safe and promising treatment modality for the local management of primary or metastatic lung tumors. The optimal total dose, fractionation schedule and treatment volume need to be determined after a further follow-up of these results.

  19. Involvement of HMGB1 in Resistance to Tumor Vessel-Targeted, Monoclonal Antibody-Based Immunotherapy

    Science.gov (United States)

    Pezzolo, Annalisa

    2016-01-01

    High mobility group box 1 (HMGB1) is a member of the “danger associated molecular patterns” (DAMPs) than can localize in various compartments of the cell (from the nucleus to the cell surface) and subserve different functions accordingly. HMGB1 is implicated in maintenance of genomic stability, autophagy, immune regulation, and tumor growth. HMGB1-induced autophagy promotes tumor resistance to chemotherapy, as shown in different models of malignancy, for example, osteosarcoma, leukemia, and gastric cancer. To the best of our knowledge, there is virtually no information on the relationships between HMGB1 and resistance to immunotherapy. A recent study from our group has shed new light on this latter issue. We have demonstrated that targeting of tumor-derived endothelial cells with an anti-human CD31 monoclonal antibody in a human neuroblastoma model was unsuccessful due to a complex chain of events involving the participation of HMGB1. These results are discussed in detail since they provide the first evidence for a role of HMGB1 in resistance of tumor cells to monoclonal antibody-based immunotherapy. PMID:26925422

  20. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells.

    Science.gov (United States)

    Hvichia, G E; Parveen, Z; Wagner, C; Janning, M; Quidde, J; Stein, A; Müller, V; Loges, S; Neves, R P L; Stoecklein, N H; Wikman, H; Riethdorf, S; Pantel, K; Gorges, T M

    2016-06-15

    Circulating tumor cells (CTCs) were introduced as biomarkers more than 10 years ago, but capture of viable CTCs at high purity from peripheral blood of cancer patients is still a major technical challenge. Here, we report a novel microfluidic platform designed for marker independent capture of CTCs. The Parsortix™ cell separation system provides size and deformability-based enrichment with automated staining for cell identification, and subsequent recovery (harvesting) of cells from the device. Using the Parsortix™ system, average cell capture inside the device ranged between 42% and 70%. Subsequent harvest of cells from the device ranged between 54% and 69% of cells captured. Most importantly, 99% of the isolated tumor cells were viable after processing in spiking experiments as well as after harvesting from patient samples and still functional for downstream molecular analysis as demonstrated by mRNA characterization and array-based comparative genomic hybridization. Analyzing clinical blood samples from metastatic (n = 20) and nonmetastatic (n = 6) cancer patients in parallel with CellSearch(®) system, we found that there was no statistically significant difference between the quantitative behavior of the two systems in this set of twenty six paired separations. In conclusion, the epitope independent Parsortix™ system enables the isolation of viable CTCs at a very high purity. Using this system, viable tumor cells are easily accessible and ready for molecular and functional analysis. The system's ability for enumeration and molecular characterization of EpCAM-negative CTCs will help to broaden research into the mechanisms of cancer as well as facilitating the use of CTCs as "liquid biopsies." PMID:26789903

  1. [Operational Management of Multidisciplinary Organ-Based Tumor Units in Our Cancer Center].

    Science.gov (United States)

    Kato, Hiroaki; Tsujie, Masanori; Ichimura, Noriko; Yukawa, Masao; Inoue, Masatoshi

    2016-05-01

    Owing to the advances in diagnosis and treatment, it is imperative to develop a multidisciplinary approach for the management of cancer patients. In our cancer center, multidisciplinary organ-based tumor units have been organized for team medical care. These units consist of cancer specialists from multiple departments including medical oncology, surgery, radiology, histopathology, and nursing. Members of each unit regularly conduct meetings to discuss diagnostic and therapeutic aspects, as well as to report the progress of cancer patients. Co-operation with the counseling and support center, utilization of the computerized medical record system, and using brochures for advertisement, all play important roles in adequate management of multidisciplinary organ-based tumor units. PMID:27210090

  2. Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing

    International Nuclear Information System (INIS)

    In abdomen computed tomography (CT), repeated radiation exposures are often inevitable for cancer patients who receive surgery or radiotherapy guided by CT images. Low-dose scans should thus be considered in order to avoid the harm of accumulative x-ray radiation. This work is aimed at improving abdomen tumor CT images from low-dose scans by using a fast dictionary learning (DL) based processing. Stemming from sparse representation theory, the proposed patch-based DL approach allows effective suppression of both mottled noise and streak artifacts. The experiments carried out on clinical data show that the proposed method brings encouraging improvements in abdomen low-dose CT images with tumors. (paper)

  3. Analysis of the prognostic impact of tumor embolization before definitive radiotherapy for cervical carcinoma

    International Nuclear Information System (INIS)

    Purpose To assess whether embolization compromises the radiocurability of primary cervical cancer. Methods and Materials Two hundred fifty-four patients with primary cervical cancer (International Federation of Gynecology and Obstetrics [FIGO] stages IB: 47; II: 91; IIIB: 102; IV: 14) were treated with external beam irradiation and Ir-192 high-dose-rate brachytherapy over a period of 15 years. Of these, 24 patients (9.4%) (FIGO stages IB: 1; II: 8; IIIB: 12; IV: 3) had had bilateral embolization of the internal iliac arteries before referral. The median age of the entire cohort was 66 years (range, 34-85 years). Tumor size was >5 cm and paraortic nodes were enlarged (≥1 cm) on pretreatment CAT scan in 39.4% and 9.1% of patients, respectively. All patients with hemoglobin levels (hb-l) ≤11g/dL (28.3%) received packed red cell transfusions (PRCT) before and/or during radiotherapy in an attempt to maintain levels >11g/dL throughout treatment. Cross-table tests were used to compare the distribution of FIGO stage, tumor size, lymph node status, and pretreatment and treatment hb-l of embolized and nonembolized patients. The impact of embolization, along with the above-listed tumor characteristics, on disease-specific survival (DSS), pelvic control (PC), and distant metastases-free survival (MFS) was determined by univariate and multivariate analyses. Results Embolized patients presented at a statistically significant younger median age (55 vs. 67 years; p = 0.003), with larger tumors (66.7% vs. 36.5%; p = 0.007), and lower pretreatment hb-l (75% vs. 23.5%; p < 0.001) than nonembolized patients. There was no significant difference in stage distribution or lymph node status, and although embolized patients responded better to PRCT (50% vs. 29.6%), this difference was not statistically significant. Univariate analysis showed a trend toward decreased DSS (p = 0.09) and PC (p = 0.07) for embolized patients but no effect on MFS, whereas all other variables tested were

  4. Prevalencia de tumores odontogénicos en el Hospital Base Valdivia: periodo 1989-2008

    Directory of Open Access Journals (Sweden)

    L.C. Thiers

    2013-12-01

    Full Text Available Objetivo: Este artículo corresponde a un estudio observacional de tipo descriptivo de corte transversal, tiene como objetivo determinar la prevalencia de tumores odontogénicos en la población atendida en el Hospital Base Valdivia, en un periodo de 20 años (1989-2008, según la nueva clasificación de lesiones tumorales de la WHO, 2005. Metodología: Se revisaron 2.078 informes de biopsias correspondientes a lesiones de la cavidad oral de los archivos de informes del servicio de Anatomía Patológica, Hospital Base Valdivia entre enero del año 1989 y diciembre del año 2008. Como criterios de inclusión están la presencia de un diagnóstico histopatológico en la ficha y legibilidad de ésta. Las variables a analizar incluyen: edad, género, diagnóstico histopatológico, tipo de tumor y área de localización. Los datos recolectados fueron tabulados en planilla de base de datos, para su posterior análisis estadístico. Resultados: De las 2.078 biopsias del territorio bucal, 31 corresponden a tumores odontogénicos, lo que representa un 1,5% de todas las lesiones biopsiadas del territorio oral. Una lesión maligna fue encontrada y corresponde a carcinoma ameloblástico infiltrante. La lesión más frecuente correspondió a tumor odontogénico queratoquístico (41,9%, seguido por el ameloblastoma (22,6% y, por último, odontoma (16,1%. El promedio de edad de 35,7 años. El área más frecuente de presentación es el área molar mandibular (54,8%. Conclusión: Los tumores odontogénicos son de baja prevalencia en la población valdiviana atendida en el Hosptial Base Valdivia entre los años 1989-2008. No tiene predilección por género. La lesión más prevalente es el tumor odontogénico queratoqísitico.

  5. New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis

    Directory of Open Access Journals (Sweden)

    Florian Rambow

    2015-10-01

    Full Text Available Molecular signatures specific to particular tumor types are required to design treatments for resistant tumors. However, it remains unclear whether tumors and corresponding cell lines used for drug development share such signatures. We developed similarity core analysis (SCA, a universal and unsupervised computational framework for extracting core molecular features common to tumors and cell lines. We applied SCA to mRNA/miRNA expression data from various sources, comparing melanoma cell lines and metastases. The signature obtained was associated with phenotypic characteristics in vitro, and the core genes CAPN3 and TRIM63 were implicated in melanoma cell migration/invasion. About 90% of the melanoma signature genes belong to an intrinsic network of transcription factors governing neural development (TFAP2A, DLX2, ALX1, MITF, PAX3, SOX10, LEF1, and GAS7 and miRNAs (211-5p, 221-3p, and 10a-5p. The SCA signature effectively discriminated between two subpopulations of melanoma patients differing in overall survival, and classified MEKi/BRAFi-resistant and -sensitive melanoma cell lines.

  6. In vitro analysis of transport and metabolism of 4′-thiothymidine in human tumor cells

    International Nuclear Information System (INIS)

    Introduction: The use of thymidine (TdR) and thymidine analogs such as 3′-fluoro-3′-deoxythymidine (FLT) as positron emission tomography (PET)-based proliferation markers can provide information on tumor response to treatment. Studies on another TdR analog, 4′-thiothymidine (4DST), suggest that it might be a better PET-based proliferation tracer than either TdR or FLT. 4DST is resistant to the catabolism that complicates analysis of TdR in PET studies, but unlike FLT, 4DST is incorporated into DNA. Methods: To further evaluate 4DST, the kinetics of 4DST transport and metabolism were determined and compared to FLT and TdR. Transport and metabolism of FLT, TdR and 4DST were examined in the human adenocarcinoma cell line A549 under exponential-growth conditions. Single cell suspensions were incubated in buffer supplemented with radiolabeled tracer in the presence or absence of nitrobenzylmercaptopurine ribonucleoside (NBMPR), an inhibitor of equilibrative nucleoside transporters (ENT). Kinetics of tracer uptake was determined in whole cells and tracer metabolism measured by high performance liquid chromatography of cell lysates. Results: TdR and 4DST were qualitatively similar in terms of ENT-dependent transport, shapes of uptake curves, and relative levels of DNA incorporation. FLT did not incorporate into DNA, showed a significant temperature effect for uptake, and its transport had a significant NBMPR-resistant component. Overall 4DST metabolism was significantly slower than either TdR or FLT. Conclusions: 4DST provides a good alternative for TdR in PET and has advantages over FLT in proliferation measurement. However, slow 4DST metabolism and the short half-life of the 11C label might limit widespread use in PET

  7. Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells

    DEFF Research Database (Denmark)

    Zhang, Wen; Bao, Li; Yang, Shaoxing;

    2016-01-01

    Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase...

  8. Tumor estromal gastrointestinal: análise de fatores relacionados ao prognóstico Gastrointesinal stromal tumor: analysis of factors related to the prognostic

    Directory of Open Access Journals (Sweden)

    Rodrigo Panno Basilio de Oliveira

    2007-12-01

    Full Text Available OBJETIVO: estudar os critérios morfológicos e imunoistoquímicos relacionados ao prognóstico dos tumores estromais gastrointestinais. MÉTODOS: o estudo foi retrospectivo de 42 casos de tumor estromal gastrointestinal (GIST. Vinte e cinco casos foram obtidos no arquivo do Serviço de Anatomia Patológica do Hospital Universitário Gaffrée e Guinle e os outros dezessete, do Serviço de Anatomia Patológica do Hospital Universitário Clementino Fraga Filho. RESULTADOS: de acordo com a análise univariada os tumores maiores que 5 cm, com número de mitoses maior que 5/50 CGA, presença de necrose, de alto risco, revelaram significância em relação a redução da sobrevida (p= 0,017, 0,010, 0,001 e 0,016, respectivamente. Os outros fatores analisados (subtipo histológico, topografia e imunofenótipo não mostraram significância. CONCLUSÃO: os resultados confirmam a utilidade do grau de risco, do tamanho tumoral, do índice mitótico e da necrose como fatores preditores do comportamento biológico dos tumores estromais gastrointestinais.OBJECTIVE: study the morphologic criteria and immunohistochemical related with the prognostic of the gastrointestinal stromal tumors. METHODS: the study was retrospective of 42 cases of gastrointestinal stromal tumor (GIST. Twenty-five cases were obtained in the file of the Services of Pathological Anatomy of the Hospital Gaffrée and Guinle and the other 17 of Pathological Anatomy of the Hospital Clementino Fraga Filho. RESULTS: in agreement with the univaried analysis, the tumors largest than 5 cm, with mitoses number greater than 5/50 CGA, presence of necrosis, high risk, revealed significance with regarding the reduction of the survival (P = 0.017, 0.01, 0.001 and 0.016, respectively. The other analyzed factors (histological subtype, topography and imunophenotype they didn't show significance. CONCLUSION: the results confirm the usefulness of the risk degree, the tumorous size, the mitotic index and the

  9. Evaluation and comparison of New 4DCT based strategies for proton treatment planning for lung tumors

    International Nuclear Information System (INIS)

    To evaluate different strategies for proton lung treatment planning based on four-dimensional CT (4DCT) scans. Twelve cases, involving only gross tumor volumes (GTV), were evaluated. Single image sets of (1) maximum intensity projection (MIP3) of end inhale (EI), middle exhale (ME) and end exhale (EE) images; (2) average intensity projection (AVG) of all phase images; and (3) EE images from 4DCT scans were selected as primary images for proton treatment planning. Internal target volumes (ITVs) outlined by a clinician were imported into MIP3, AVG, and EE images as planning targets. Initially, treatment uncertainties were not included in planning. Each plan was imported into phase images of 4DCT scans. Relative volumes of GTVs covered by 95% of prescribed dose and mean ipsilateral lung dose of a phase image obtained by averaging the dose in inspiration and expiration phases were used to evaluate the quality of a plan for a particular case. For comparing different planning strategies, the mean of the averaged relative volumes of GTVs covered by 95% of prescribed dose and its standard deviation for each planning strategy for all cases were used. Then, treatment uncertainties were included in planning. Each plan was recalculated in phase images of 4DCT scans. Same strategies were used for plan evaluation except dose-volume histograms of the planning target volumes (PTVs) instead of GTVs were used and the mean and standard deviation of the relative volumes of PTVs covered by 95% of prescribed dose and the ipsilateral lung dose were used to compare different planning strategies. MIP3 plans without treatment uncertainties yielded 96.7% of the mean relative GTV covered by 95% of prescribed dose (standard deviations of 5.7% for all cases). With treatment uncertainties, MIP3 plans yielded 99.5% of mean relative PTV covered by 95% of prescribed dose (standard deviations of 0.7%). Inclusion of treatment uncertainties improved PTV dose coverage but also increased the ipsilateral

  10. Comparison of conformal and intensity modulated radiation therapy techniques for treatment of pelvic tumors. Analysis of acute toxicity

    International Nuclear Information System (INIS)

    This retrospective analysis reports on the comparative outcome of acute gastrointestinal (GI) and genitourinary (GU) toxicities between conformal radiation therapy (CRT) and intensity modulated radiation therapy (IMRT) techniques in the treatment of patients with pelvic tumors. From January 2002 to December 2008, 69 patients with pelvic tumors underwent whole pelvic CRT and 65 underwent whole pelvic IMRT to treat pelvic lymph nodes and primary tumor regions. Total dose to the whole pelvis ranged from 50 to 50.4 Gy in 25 to 28 daily fractions. Chemotherapy (CT) regimen, when employed, was based upon primary tumor. Acute GI and GU toxicities were graded by RTOG/EORTC acute radiation morbidity criteria. Absence of GI symptoms during radiotherapy (grade 0) was more frequently observed in the IMRT group (43.1% versus 8.7; p < 0.001) and medication for diarrhea (Grade 2) was more frequently used in the CRT group (65.2% versus 38.5%; p = 0.002). Acute GI grade 1 and 3 side effects incidence was similar in both groups (18.5% versus 18.8%; p = 0.95 and 0% versus 7.2%; p = 0.058, respectively). Incidence of GU toxicity was similar in both groups (grade 0: 61.5% versus 66.6%, p = 0.54; grade 1: 20% versus 8.7%, p = 0.06; grade 2: 18.5% versus 23.5%, p = 0.50 and grade 3: 0% versus 1.5%, p > 0.99). This comparative case series shows less grade 2 acute GI toxicity in patients treated with whole pelvic IMRT in comparison with those treated with CRT. Incidence of acute GU toxicity was similar in both groups

  11. Electroporation-based treatment planning for deep-seated tumors based on automatic liver segmentation of MRI images.

    Directory of Open Access Journals (Sweden)

    Denis Pavliha

    Full Text Available Electroporation is the phenomenon that occurs when a cell is exposed to a high electric field, which causes transient cell membrane permeabilization. A paramount electroporation-based application is electrochemotherapy, which is performed by delivering high-voltage electric pulses that enable the chemotherapeutic drug to more effectively destroy the tumor cells. Electrochemotherapy can be used for treating deep-seated metastases (e.g. in the liver, bone, brain, soft tissue using variable-geometry long-needle electrodes. To treat deep-seated tumors, patient-specific treatment planning of the electroporation-based treatment is required. Treatment planning is based on generating a 3D model of the organ and target tissue subject to electroporation (i.e. tumor nodules. The generation of the 3D model is done by segmentation algorithms. We implemented and evaluated three automatic liver segmentation algorithms: region growing, adaptive threshold, and active contours (snakes. The algorithms were optimized using a seven-case dataset manually segmented by the radiologist as a training set, and finally validated using an additional four-case dataset that was previously not included in the optimization dataset. The presented results demonstrate that patient's medical images that were not included in the training set can be successfully segmented using our three algorithms. Besides electroporation-based treatments, these algorithms can be used in applications where automatic liver segmentation is required.

  12. Intra-fractional uncertainties in cone-beam CT based image-guided radiotherapy (IGRT) of pulmonary tumors

    International Nuclear Information System (INIS)

    Purpose: Intra-fractional variability of tumor position and breathing motion was evaluated in cone-beam CT (CB-CT) based image-guided radiotherapy (IGRT) of pulmonary tumors. Materials and methods: Twenty-four patients (27 lesions: prim. NSCLC n = 6; metastases n = 21) were treated with stereotactic body radiotherapy (SBRT) (one to eight fractions). Prior to every treatment fraction (n = 66) and immediately after treatment a CB-CT was acquired. Patient motion, absolute drift and drift of the tumor relative to the bony anatomy were measured. Tumor motion was investigated based on the density distribution in the CB-CT. Results: Absolute intra-fractional drift (3D vector) of the tumor position was 2.8 mm ± 1.6 mm (mean ± SD), maximum 7.2 mm. Poor correlation between patient motion and absolute tumor drift was observed. Changes of the tumor position due to patient motion and due to drifts independently from the bony anatomy were of similar magnitude with 2.1 mm ± 1.4 mm and 2.3 mm ± 1.6 mm, respectively. No systematic increase or decrease of breathing motion was seen. The intra-fractional change of breathing motion was more than 2 mm and 3 mm in 39% and 16%, respectively. Conclusion: Intra-fractional tumor position and breathing motion were stable. In IGRT of pulmonary tumors we suggest an ITV-to-PTV margin of 5 mm to compensate intra-fractional changes

  13. Analysis of reproducibility of respiration-triggered gated radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Purpose: Respiration-gated radiotherapy (RGRT) can decrease the toxicity of chemo-radiotherapy (CT-RT) by allowing use of smaller treatment fields. RGRT requires a predictable relationship between tumor position and external surrogate, which must be verified during treatment. Time-integrated electronic portal imaging (TI-EPI) identifies mean intra-fractional positions of moving structures, and was used to study reproducibility of anatomy during RGRT for lung tumors. Materials and methods: TI-EPIs were acquired using an amorphous silicon-based electronic portal imaging system (EPID, aS500) in continuous image acquisition mode in 11 patients treated with audio-coached RGRT at end-inspiration. The Varian Real-time Position Management (RPM) system was used for 4DCT imaging and RGRT delivery. All TI-EPI portals were co-registered to corresponding digitally reconstructed radiographs (DRR) of the planning 4DCT using the spinal column. Displacements in tumor position or that of an adjacent bronchus during RGRT was measured relative to the reference structure on the DRR. Results: Vertebra-matched portals revealed systematic (Σ) and random (σ) errors of 1.8 and 1.3 mm in medial-lateral direction and 1.7 and 1.7 mm in cranial-caudal direction, indicating a reproducible tumor/bronchus position during the RPM-triggered gates. Conclusions: RGRT delivery at end-inspiration can achieve reproducible internal anatomy in 'gated' fields delivered with audio-coaching

  14. Analysis of colon tumors in rats by near-infrared Raman spectroscopy

    Science.gov (United States)

    Duarte, Janaína; Hage, Raduan; Silveira, Landulfo, Jr.; Silveira, Fabricio; Pacheco, Marcos Tadeu T.; Munin, Egberto; Plapler, Hélio

    2007-02-01

    Biomedical applications of near-infrared Raman spectroscopy have increased their importance at the last ten years. This technique can determinate the molecular composition of materials, allowing a sensible and fast biological diagnosis. It has showed to be a promising tool for health diagnosis due to its high sensibility. Colorectal cancer (CRC) is one of the most common malignant tumors in humans beings. In the last decades many experimental models have been developed in animals based in the use of chemical composites to induce the formation and development of these tumors, many of them present similar characteristics to those of natural occurrence aiming to the attainment of information on genesis, evolution, as well as diagnosis and more efficient therapies for treating these neoplasias. Amongst the most used chemical composites is the 1,2- dimetilhydrazine (DMH) because its morphological and histological similarity to those tumors. This study aims to compare in vivo normal colon tissue and tumoral colon tissue, induced by DMH, in rats by near-infrared Raman spectroscopy to permit the use in the near future for an efficient diagnosis in real time besides being useful as an auxiliary method for several therapies, including the photodynamic therapy.

  15. Risk analysis of fatal and incidental lung tumors in wister rats after inhalation of plutonium dioxide

    International Nuclear Information System (INIS)

    Cancer risk analysis was done in animal studies for inhalation of plutonium dioxide. Female Wister rats were exposed to an aerosol of plutonium with AMAD of 0.4-0.5 μm and followed up until they died. We made some model analyses using their likelihood function. This approach enables us to consider temporal variation in dose-response analysis. Each rat contributes to the total likelihood depending on fatal or incidental tumors. In Weibul model analysis, the logarithm of the hazard function can be linearly modeled with the term of log (dose), log-L model, and additional term of the square of log (dose), log-LQ model. The likelihood ratio statistics gave a significantly better fit of the log-LQ model. However, if data more than 4 Gy were excluded, there was no significant difference between both models. The ratio of hazard function at 1 Gy and 0 Gy, the excess relative risk, showed 30 for total tumors. This result was much different from those in PNL data (Sanders et al.). The difference of pulmonary deposition depending upon particle size would cause different tumor incidence. Our studies indicated significant increase of occurrence of fatal lung cancer at an average dose of 0.5 Gy and thus did not suggest that a life-span effective threshold for death was about 1 Gy to the lung, which is shown in some papers. In contrast PNL, the incidence of adenoma showing the maximum at 0.5 Gy decreased with increasing lung dose from 1.5 Gy or higher, where malignant tumors such as adenocarcinomas increased. This phenomenon was analyzed with carcinogenesis models. (author)

  16. Challenges in management of phyllodes tumors of the breast: A retrospective analysis of 150 patients

    Directory of Open Access Journals (Sweden)

    P Ramakant

    2013-01-01

    Full Text Available Introduction: Phyllodes tumors (PT of the breast seem to get pre-operatively misdiagnosed as fibroadenomas resulting in inadequate resections and high local recurrence rates. Materials and Methods: Data of 150 patients with PT of the breast managed from January, 2003 to February, 2013 were retrospectively analyzed. Statistical analysis performed using SPSS version 17 (Pearson Chi-square test and analysis of variance test for analysis. Aim: The aim of this study is to compare clinico-pathological profile and recurrence rates in patients with benign (B, borderline malignant (BL and malignant (M PT. Results: In a total of 150 patients with PT (n = 77 B, n = 24 BL, n = 49 M, mean age was 36.92, 44.04 and 40.46 years respectively (P 0.015 and mean tumor size being 8.15 cm, 14.7 cm and 12.9 cm respectively (P 0.000. Pre-operatively cytology suggestive of PT in 24% patients with B PT and 63% in M PT; core tissue biopsy suggestive of PT in 85.4% patients with B PT and 100% in M PT. Recurrence seen in 34.7% out of which 32.7% were post-lumpectomy performed elsewhere. Majority of B PT had lumpectomy (49.3%/wide local excision (WLE, 31.2% compared with M PT where 55.1% had simple mastectomy (SM due to large tumor size. Local recurrence was more in M PT (53% compared with B PT (20%. We found recurrence rates in L (39.3% compared with WLE (27.3% and SM (33.9% (P 0.049. Conclusions: Larger tumor size, incomplete resection and M/BL histology predicted higher recurrence in PT. Core biopsy is much more accurate than fine needle cytology in the diagnosis.

  17. Multifunctional nanosheets based on folic acid modified manganese oxide for tumor-targeting theranostic application

    Science.gov (United States)

    Hao, Yongwei; Wang, Lei; Zhang, Bingxiang; Zhao, Hongjuan; Niu, Mengya; Hu, Yujie; Zheng, Cuixia; Zhang, Hongling; Chang, Junbiao; Zhang, Zhenzhong; Zhang, Yun

    2016-01-01

    It is highly desirable to develop smart nanocarriers with stimuli-responsive drug-releasing and diagnostic-imaging functions for cancer theranostics. Herein, we develop a reduction and pH dual-responsive tumor theranostic platform based on degradable manganese dioxide (MnO2) nanosheets. The MnO2 nanosheets with a size of 20-60 nm were first synthesized and modified with (3-Aminopropyl) trimethoxysilane (APTMS) to get amine-functionalized MnO2, and then functionalized by NH2-PEG2000-COOH (PEG). The tumor-targeting group, folic acid (FA), was finally conjugated with the PEGylated MnO2 nanosheets. Then, doxorubicin (DOX), a chemotherapeutic agent, was loaded onto the modified nanosheets through a physical adsorption, which was designated as MnO2-PEG-FA/DOX. The prepared MnO2-PEG-FA/DOX nanosheets with good biocompatibility can not only efficiently deliver DOX to tumor cells in vitro and in vivo, leading to enhanced anti-tumor efficiency, but can also respond to a slightly acidic environment and high concentration of reduced glutathione (GSH), which caused degradation of MnO2 into manganese ions enabling magnetic resonance imaging (MRI). The longitudinal relaxation rate r 1 was 2.26 mM-1 s-1 at pH 5.0 containing 2 mM GSH. These reduction and pH dual-responsive biodegradable nanosheets combining efficient MRI and chemotherapy provide a novel and promising platform for tumor-targeting theranostic application.

  18. SVM-based glioma grading. Optimization by feature reduction analysis

    International Nuclear Information System (INIS)

    We investigated the predictive power of feature reduction analysis approaches in support vector machine (SVM)-based classification of glioma grade. In 101 untreated glioma patients, three analytic approaches were evaluated to derive an optimal reduction in features; (i) Pearson's correlation coefficients (PCC), (ii) principal component analysis (PCA) and (iii) independent component analysis (ICA). Tumor grading was performed using a previously reported SVM approach including whole-tumor cerebral blood volume (CBV) histograms and patient age. Best classification accuracy was found using PCA at 85% (sensitivity = 89%, specificity = 84%) when reducing the feature vector from 101 (100-bins rCBV histogram + age) to 3 principal components. In comparison, classification accuracy by PCC was 82% (89%, 77%, 2 dimensions) and 79% by ICA (87%, 75%, 9 dimensions). For improved speed (up to 30%) and simplicity, feature reduction by all three methods provided similar classification accuracy to literature values (∝87%) while reducing the number of features by up to 98%. (orig.)

  19. Error analysis of tumor blood flow measurement using dynamic contrast-enhanced data and model-independent deconvolution analysis

    International Nuclear Information System (INIS)

    We performed error analysis of tumor blood flow (TBF) measurement using dynamic contrast-enhanced data and model-independent deconvolution analysis, based on computer simulations. For analysis, we generated a time-dependent concentration of the contrast agent in the volume of interest (VOI) from the arterial input function (AIF) consisting of gamma-variate functions using an adiabatic approximation to the tissue homogeneity model under various plasma flow (Fp), mean capillary transit time (Tc), permeability-surface area product (PS) and signal-to-noise ratio (SNR) values. Deconvolution analyses based on truncated singular value decomposition with a fixed threshold value (TSVD-F), with an adaptive threshold value (TSVD-A) and with the threshold value determined by generalized cross validation (TSVD-G) were used to estimate Fp values from the simulated concentration-time curves in the VOI and AIF. First, we investigated the relationship between the optimal threshold value and SNR in TSVD-F, and then derived the equation describing the relationship between the threshold value and SNR for TSVD-A. Second, we investigated the dependences of the estimated Fp values on Tc, PS, the total duration for data acquisition and the shape of AIF. Although TSVD-F with a threshold value of 0.025, TSVD-A with the threshold value determined by the equation derived in this study and TSVD-G could estimate the Fp values in a similar manner, the standard deviation of the estimates was the smallest and largest for TSVD-A and TSVD-G, respectively. PS did not largely affect the estimates, while Tc did in all methods. Increasing the total duration significantly improved the variations in the estimates in all methods. TSVD-G was most sensitive to the shape of AIF, especially when the total duration was short. In conclusion, this study will be useful for understanding the reliability and limitation of model-independent deconvolution analysis when applied to TBF measurement using an extravascular

  20. BRAIN TUMOR CLASSIFICATION BASED ON CLUSTERED DISCRETE COSINE TRANSFORM IN COMPRESSED DOMAIN

    Directory of Open Access Journals (Sweden)

    V. Anitha

    2014-01-01

    Full Text Available This study presents a novel method to classify the brain tumors by means of efficient and integrated methods so as to increase the classification accuracy. In conventional systems, the problem being the same to extract the feature sets from the database and classify tumors based on the features sets. The main idea in plethora of earlier researches related to any classification method is to increase the classification accuracy.The actual need is to achieve a better accuracy in classification, by extracting more relevant feature sets after dimensionality reduction. There exists a trade-off between accuracy and the number of feature sets. Hence the focus in this study is to implement Discrete Cosine Transform (DCT on the brain tumor images for various classes. Using DCT, by itself, it offers a fair dimension reduction in feature sets.Later on, sequentially K-means algorithm is applied on DCT coefficients to cluster the feature sets. These cluster information are considered as refined feature sets and classified using Support Vector Machine (SVM is proposed in this study. This method of using DCT helps to adjust and vary the performance of classification based on the count of the DCT coefficients taken into account. There exists a good demand for an automatic classification of brain tumors which grealtly helps in the process of diagnosis. In this novel work, an average of 97% and a maximum of 100% classification accuracy has been achieved. This research is basically aiming and opening a new way of classification under compressed domain. Hence this study may be highly suitable for diagnosing under mobile computing and internet based medical diagnosis.

  1. Real-time tumor motion estimation using respiratory surrogate via memory-based learning

    International Nuclear Information System (INIS)

    Respiratory tumor motion is a major challenge in radiation therapy for thoracic and abdominal cancers. Effective motion management requires an accurate knowledge of the real-time tumor motion. External respiration monitoring devices (optical, etc) provide a noninvasive, non-ionizing, low-cost and practical approach to obtain the respiratory signal. Due to the highly complex and nonlinear relations between tumor and surrogate motion, its ultimate success hinges on the ability to accurately infer the tumor motion from respiratory surrogates. Given their widespread use in the clinic, such a method is critically needed. We propose to use a powerful memory-based learning method to find the complex relations between tumor motion and respiratory surrogates. The method first stores the training data in memory and then finds relevant data to answer a particular query. Nearby data points are assigned high relevance (or weights) and conversely distant data are assigned low relevance. By fitting relatively simple models to local patches instead of fitting one single global model, it is able to capture highly nonlinear and complex relations between the internal tumor motion and external surrogates accurately. Due to the local nature of weighting functions, the method is inherently robust to outliers in the training data. Moreover, both training and adapting to new data are performed almost instantaneously with memory-based learning, making it suitable for dynamically following variable internal/external relations. We evaluated the method using respiratory motion data from 11 patients. The data set consists of simultaneous measurement of 3D tumor motion and 1D abdominal surface (used as the surrogate signal in this study). There are a total of 171 respiratory traces, with an average peak-to-peak amplitude of ∼15 mm and average duration of ∼115 s per trace. Given only 5 s (roughly one breath) pretreatment training data, the method achieved an average 3D error of 1.5 mm and 95

  2. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors

    International Nuclear Information System (INIS)

    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy

  3. Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Altered patterns of DNA methylation are key features of cancer. Nasopharyngeal carcinoma (NPC) has the highest incidence in Southern China. Aberrant methylation at the promoter region of tumor suppressors is frequently reported in NPC; however, genome-wide methylation changes have not been comprehensively investigated. Therefore, we systematically analyzed methylome data in 25 primary NPC tumors and nontumor counterparts using a high-throughput approach with the Illumina HumanMethylation450 BeadChip. Comparatively, we examined the methylome data of 11 types of solid tumors collected by The Cancer Genome Atlas (TCGA). In NPC, the hypermethylation pattern was more dominant than hypomethylation and the majority of de novo methylated loci were within or close to CpG islands in tumors. The comparative methylome analysis reveals hypermethylation at chromosome 6p21.3 frequently occurred in NPC (false discovery rate; FDR=1.33 × 10−9), but was less obvious in other types of solid tumors except for prostate and Epstein–Barr virus (EBV)-positive gastric cancer (FDR<10−3). Bisulfite pyrosequencing results further confirmed the aberrant methylation at 6p in an additional patient cohort. Evident enrichment of the repressive mark H3K27me3 and active mark H3K4me3 derived from human embryonic stem cells were found at these regions, indicating both DNA methylation and histone modification function together, leading to epigenetic deregulation in NPC. Our study highlights the importance of epigenetic deregulation in NPC. Polycomb Complex 2 (PRC2), responsible for H3K27 trimethylation, is a promising therapeutic target. A key genomic region on 6p with aberrant methylation was identified. This region contains several important genes having potential use as biomarkers for NPC detection

  4. Blood interference in fluorescence spectrum : Experiment, analysis and comparison with intraoperativemeasurements on brain tumor

    OpenAIRE

    Lowndes, Shannely

    2010-01-01

    The optical touch pointer (OTP), a fluorescence spectroscopy based system, assists brain surgeons during guided brain tumor resection in patients with glioblastoma multiforme (GBM). After recording and analyzing the autofluorescence spectrum of the tissue, it is possible to distinguish malignant from healthy brain tissue. A challenge during the intraoperative measurements is the interference of blood. If it gets in contact with the laser pointer, the blood blocks the light transmission to and...

  5. BISPECTRAL ANALYSIS OF SCALP ELECTROENCEPHALOGRAMS: QUADRATIC PHASECOUPLING PHENOMENON IN DETECTING BRAIN TUMOR

    Directory of Open Access Journals (Sweden)

    V. Salai Selvam

    2013-01-01

    Full Text Available Since the power spectral analysis of a non-Gaussian process generated by a nonlinear mechanism e.g., EEG, does not provide much information on the underlying nonlinear dynamics due to the lack of phase information, the higher-order statistics such as the bispectra are used to better understand the underlying nonlinear dynamics e.g., the quadratic phase coupling phenomena. The quadratic phase couplings have been observed in the EEG by the researchers over a decade for many diagnostic applications such as epilepsy, sleep, mental states. This study discusses the use of bispectral analysis of the EEG recorded from the posterior region of the head of the brain tumor patient in quantifying the quadratic phase couplings to indicate the presence of the tumor. The Bicoherence Index (BCI or simply the Bicoherence (BIC has been used for the purpose. Self-couplings (around 27-52% in the [8-13] Hz (alpha band and phase couplings (around 23-42% in the [1-8] Hz (delta-theta band have been observed for the normal subjects while only self-couplings (around 0.05 to the BIC in discriminating the brain tumor case from the normal one.

  6. Electroporation-Based Treatment Planning for Deep-Seated Tumors Based on Automatic Liver Segmentation of MRI Images

    OpenAIRE

    Pavliha, Denis; Serša, Gregor; Marolt-Mušič, Maja; Miklavčič, Damijan

    2013-01-01

    Electroporation is the phenomenon that occurs when a cell is exposed to a high electric field, which causes transient cell membrane permeabilization. A paramount electroporation-based application is electrochemotherapy, which is performed by delivering high-voltage electric pulses that enable the chemotherapeutic drug to more effectively destroy the tumor cells. Electrochemotherapy can be used for treating deep-seated metastases (e.g. in the liver, bone, brain, soft tissue) using variable-geo...

  7. DNA Analysis in Samples From Younger Patients With Germ Cell Tumors and Their Parents or Siblings

    Science.gov (United States)

    2016-04-07

    Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Embryonal Carcinoma; Testicular Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor

  8. Dosimetric impact of a frame-based strategy in stereotactic radiotherapy of lung tumors

    International Nuclear Information System (INIS)

    Introduction. Technological innovations have taken stereotactic body radiotherapy (SBRT) from frame-based strategies to image-guided strategies. In this study, cone beam computed tomography (CBCT) images acquired prior to SBRT of patients with lung tumors was used to study the dosimetric impact of a pure frame-based strategy. Material and methods. Thirty patients with inoperable lung tumors were retrospectively analyzed. All patients had received CBCT-guided SBRT with 3 fractions of 15 Gy to the planning target volume (PTV) margin including immobilization in a stereotactic body frame (SBF). Using the set-up corrections from the co-registration of the CBCT with the planning CT, all individual dose plans were recalculated with an isocenter position equal to the initial set-up position. Dose Volume Histogram (DVH) parameters of the recalculated dose plans were then analyzed. Results. The simulated plans showed that 88% of all fractions resulted in minimum 14.5 Gy to the internal target volume (ITV). For the simulated summed treatment (3 fractions per patient), 83% of the patients would minimum receive the prescription dose (45 Gy) to 100% of the ITV and all except one would receive the prescription dose to more than 90% of the ITV. Conclusions. SBRT including SBF, but without image guidance, results in appropriate dose coverage in most cases, using the current margins. With image guidance, margins for SBRT of lung tumors could possibly be reduced

  9. Electrosprayed nanocomposites based on hyaluronic acid derivative and Soluplus for tumor-targeted drug delivery.

    Science.gov (United States)

    Lee, Song Yi; Lee, Jeong-Jun; Park, Ju-Hwan; Lee, Jae-Young; Ko, Seung-Hak; Shim, Jae-Seong; Lee, Jongkook; Heo, Moon Young; Kim, Dae-Duk; Cho, Hyun-Jong

    2016-09-01

    Nanocomposite (NC) based on hyaluronic acid-ceramide (HACE) and Soluplus (SP) was fabricated by electrospraying for the tumor-targeted delivery of resveratrol (RSV). Amphiphilic property of both HACE and SP has been used to entrap RSV in the internal cavity of NC. Electrospraying with established experimental conditions produced HACE/SP/RSV NC with 230nm mean diameter, narrow size distribution, negative zeta potential, and >80% drug entrapment efficiency. Sustained and pH-dependent drug release profiles were observed in drug release test. Cellular uptake efficiency of HACE/SP NC was higher than that of SP NC, mainly based on HA-CD44 receptor interaction, in MDA-MB-231 (CD44 receptor-positive human breast cancer) cells. Selective tumor targetability of HACE/SP NC, compared to SP NC, was also confirmed in MDA-MB-231 tumor-xenograted mouse model using a near-infrared fluorescence (NIRF) imaging. According to the results of pharmacokinetic study in rats, decreased in vivo clearance and increased half-life of RSV in NC group, compared to drug solution group, were shown. Given that these experimental results, developed HACE/SP NC can be a promising theranostic nanosystem for CD44 receptor-expressed cancers. PMID:27208440

  10. Metabolic imaging of the tumor treated by KillerRed fluorescent protein-based photodynamic therapy in mice

    Science.gov (United States)

    Sha, Shuang; Qin, Lingsong; Wang, Anle; Liu, Zheng; Yang, Fei; Jin, Honglin; Zhang, Zhihong

    2014-02-01

    KillerRed is a unique red fluorescent protein exhibiting excellent phototoxic properties. It has the ability to produce reactive oxygen species (ROS), for killing tumor cells in vitro upon laser irradiation and has the potential to act as a photosensitizer in the application of tumor therapy. Here, we investigated the effects of KillerRed-based photodynamic therapy (PDT) on tumor growth in vivo and examined the subsequent tumor metabolic states including the changes of pyridine nucleotide (PN) and flavoprotein (Fp), two important metabolic coenzymes of tumor cells. Results showed that the tumor was scabbed in response to 561 nm laser irradiation at 80 mV for 3 min, and the tumor growth had been significantly inhibited by KillerRed-based PDT treatment compared to control groups. More importantly, a home-made cryo-imaging redox scanner was used to measure intrinsic fluorescence and exogenous KillerRed fluorescence signals in tumors. The flavoprotein was remarkable elevated and the PN was seldom increased with concomitant photobleaching of KillerRed fluorescence after irradiation, suggesting that flavoprotein and PN were oxidized in the course of KillerRed-based PDT.

  11. The first protocol of stable isotope ratio assessment in tumor tissues based on original research.

    Science.gov (United States)

    Taran, Katarzyna; Frączek, Toma; Kamiński, Rafal; Sitkiewicz, Anna; Kobos, Jozef; Paneth, Piotr

    2015-09-01

    Thanks to proteomics and metabolomics, for the past several years there has been a real explosion of information on the biology of cancer, which has been achieved by spectroscopic methods, including mass spectrometry. These modern techniques can provide answers to key questions about tissue structure and mechanisms of its pathological changes. However, despite the thousands of spectroscopic studies in medicine, there is no consensus on issues ranging from the choice of research tools, acquisition and preparation of test material to the interpretation and validation of the results, which greatly reduces the possibility of transforming the achieved knowledge to progress in the treatment of individual patients. The aim of this study was to verify the utility of isotope ratio mass spectrometry in the evaluation of tumor tissues. Based on experimentation on animal tissues and human neoplasms, the first protocol of stable isotope ratio assessment of carbon and nitrogen isotopes in tumor tissues was established. PMID:26619108

  12. Tumor accumulation of ε-poly-lysines-based polyamines conjugated with boron clusters

    International Nuclear Information System (INIS)

    Boron Neutron Capture Therapy (BNCT) is one of the potent cancer radiotherapies using nuclear reaction between 10B atoms and the neutron. Whether BNCT will succeed or not depends on tumor selective delivery of 10B compounds. ε-Poly-L-lysine is a naturally occurring polyamine characterized by the peptide linkages between the carboxyl and ε-amino groups of L-lysine. Because of high safety ε-PLL is applied practically as a food additive due to its strong antimicrobial activity. In this study, we focus on a development of a novel polymeric delivery system for BNCT using biodegradable ε-PLL conjugated with 10B-containing clusters (BSH). This polymeric boron carrier will be expected to deliver safely and efficiently into tumor tissues based on Enhanced Permeability and Retention (EPR) effect.

  13. Stromal tumors of the gastrointestinal tract. Morphological analysis and immunohistochemistry value in its definition

    International Nuclear Information System (INIS)

    mucosae, so the immunotyping not be relevant for some authors and should not be included on the casuistry,in that case would GIST 77.5% of the mesenchymal tumors. In 8 cases of GIST were coexpression CD117- AML in 2 is weak positivity was diffuse in the focal rest. Hence the importance the panel include at least two muscle differentiation markers. With S100 were recognized + intratumoral multiple fillets in all GIST. Conclusions: The diagnosis of GIST is based on the gross and microscopic findings in conjunction with the immunohistochemical determination Positivity for CD34 and CD117 in most cases negative for AML, DES and S100. Intratumoral neural hyperplasia found in GISTs, which was not observed in tumors of muscle differentiation. Malignant GIST were proportionally more frequent in ID and colorectum

  14. A multifunctional metal-organic framework based tumor targeting drug delivery system for cancer therapy

    Science.gov (United States)

    Wang, Xiao-Gang; Dong, Zhi-Yue; Cheng, Hong; Wan, Shuang-Shuang; Chen, Wei-Hai; Zou, Mei-Zhen; Huo, Jia-Wei; Deng, He-Xiang; Zhang, Xian-Zheng

    2015-09-01

    Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects.Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free ``green'' post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects. Electronic supplementary information (ESI) available

  15. Noninvasive assessment of tumor hypoxia with 99mTc labeled Schiff base derivative of metronidazole

    International Nuclear Information System (INIS)

    Full text: The presence of hypoxic cells in cancerous lesions is believed to be one of the major reasons for the failure of radiotherapy. Metronidazole is a nitroimidazole derivative which has a tendency to accumulate in the hypoxic regions. Imidazoles are reduced intracellularly in all cells, but in the absence of adequate supplies of oxygen, they undergo further reduction to more reactive products that bind to cell components. The reduction pathway can proceed in successive steps past the hydroxylamine derivative to terminate at the relatively inactive amine derivative. This leads to the possibility of envisaging these compounds as radiosensitive, the agents, which enhance the lethal effect of ionizing radiations for hypoxic tissues. Materials and Methods: Metronidazole was reacted with 2-iodoxybenzoic acid followed by the subsequent reaction with diethylenetriamine resulting into synthesis of Schiff base derivative which was characterized on the basis of spectroscopic techniques. Radiocomplexation was performed with 99mTc for in vivo tumor imaging applications, blood kinetics and biodistribution studies of the radiotracer developed. Result: The newly synthesized Schiff base of metronidazole was fully characterized by spectroscopic techniques, 1H, 13C NMR, mass spectroscopy and IR spectroscopy. The radioconjugate was found to be sufficiently stable in vitro as well as in vivo upto 24 h. Blood clearance of the radiotracer in rabbit was found to be more rapid (t1/2(F)=27±1.4 minutes) and (t1/2(S)=3hr 48±8.4 minutes). The biodistribution in athymic mice showed high tumor uptake (4.93 ± 0.22% ID/g) and low normal organs uptake. Conclusion: Above results showed that 99mTc labeled compound acts as a specific marker accumulated in hypoxic tumor. Excellent biodistribution characteristics support the concept of its utility as specific radiopharmaceutical for imaging hypoxic tumors

  16. Local control of extra-abdominal desmoid tumors: systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Michelle A. Ghert

    2013-02-01

    Full Text Available The local control of desmoid tumors constitutes a continuing treatment dilemma due to its high recurrence rates. The purpose of this systematic review was to critically examine the current treatment of these rare tumors and to specifically evaluate the local failure and response rates of surgery, radiation and systemic therapy. We comprehensively searched the literature for relevant studies across Cinahl, Embase, Medline and the Cochrane databases. Articles were categorized as surgery, radiation, surgery + radiation and systemic therapy (including cytotoxic and non cytotoxic. Methodological quality of included studies was assessed using the Newcastle-Ottawa Scale. Pooled odd ratios (OR for comparative studies and weighted proportions with 95% confidence intervals (CI are reported. Thirty-five articles were included in the final analysis. Weighted mean local failure rates were 22% [95% CI (16-28%], 35% [95% CI (26-44%] and 28% [95% CI (18-39%] for radiation alone, surgery alone and surgery + radiation respectively. In the analysis of comparative studies, surgery and radiation in combination had lower local failure rates than radiation alone [OR 0.7 (0.4, 1.2] and surgery alone [OR 0.7 (0.4, 1.0]. Weighted mean stable disease rates were 91% [95% CI (85-96%] and 52% [95% CI (38-65%] for non cytotoxic and cytotoxic chemotherapy respectively. The current evidence suggests that surgery alone has a consistently high rate of local recurrence in managing extra-abdominal desmoid tumors. Radiation therapy in combination with surgery improves local control rates. However, the limited data on systemic therapy for this rare tumor suggests the benefit of using both cytotoxic and non cytotoxic chemotherapy to achieve stable disease.

  17. Hand-Based Biometric Analysis

    Science.gov (United States)

    Bebis, George (Inventor); Amayeh, Gholamreza (Inventor)

    2015-01-01

    Hand-based biometric analysis systems and techniques are described which provide robust hand-based identification and verification. An image of a hand is obtained, which is then segmented into a palm region and separate finger regions. Acquisition of the image is performed without requiring particular orientation or placement restrictions. Segmentation is performed without the use of reference points on the images. Each segment is analyzed by calculating a set of Zernike moment descriptors for the segment. The feature parameters thus obtained are then fused and compared to stored sets of descriptors in enrollment templates to arrive at an identity decision. By using Zernike moments, and through additional manipulation, the biometric analysis is invariant to rotation, scale, or translation or an in put image. Additionally, the analysis utilizes re-use of commonly-seen terms in Zernike calculations to achieve additional efficiencies over traditional Zernike moment calculation.

  18. Tumor-based case-control studies of infection and cancer: muddling the when and where of molecular epidemiology.

    Science.gov (United States)

    Engels, Eric A; Wacholder, Sholom; Katki, Hormuzd A; Chaturvedi, Anil K

    2014-10-01

    We describe the "tumor-based case-control" study as a type of epidemiologic study used to evaluate associations between infectious agents and cancer. These studies assess exposure using diseased tissues from affected individuals (i.e., evaluating tumor tissue for cancer cases), but they must utilize nondiseased tissues to assess control subjects, who do not have the disease of interest. This approach can lead to exposure misclassification in two ways. First, concerning the "when" of exposure assessment, retrospective assessment of tissues may not accurately measure exposure at the key earlier time point (i.e., during the etiologic window). Second, concerning the "where" of exposure assessment, use of different tissues in cases and controls can have different accuracy for detecting the exposure (i.e., differential exposure misclassification). We present an example concerning the association of human papillomavirus with various cancers, where tumor-based case-control studies likely overestimate risk associated with infection. In another example, we illustrate how tumor-based case-control studies of Helicobacter pylori and gastric cancer underestimate risk. Tumor-based case-control studies can demonstrate infection within tumor cells, providing qualitative information about disease etiology. However, measures of association calculated in tumor-based case-control studies are prone to over- or underestimating the relationship between infections and subsequent cancer risk. PMID:25063520

  19. Comparative analysis of CT and pathological findings of peripheral nerve sheath tumors

    Institute of Scientific and Technical Information of China (English)

    张雪林; 王晓琪; 邱士军

    2003-01-01

    Objective: To improve the qualitative diagnosis of peripheral nerve sheath tumors by computed tomography (CT). Methods: CT findings of 64 cases of pathologically confirmed nerve sheath tumors were compared with the pathological findings of the tumors. Results: Low density of the tumors shown in plain CT images was related to dominating reticular structure in the tumor as found pathologically. Tumors with intact capsule found by pathological findings were shown with smooth margin in CT images. Inhomogeneous density and enhancement of the tumors in CT images was related to tumor necrosis, liquefaction and cystic degeneration, and inhomogeneous enhancement also involved the reticular structure. Conclusion: Nerve sheath tumors are characterized by distribution along the nerves, lower density than that of muscles in plain CT images, and inhomogeneous enhancement in enhanced CT, which can help differentiate nerve sheath tumors from other soft tissue tumors. When nerve sheath tumors lack distinctive CT features, the diagnoses have to depend on their pathological findings.

  20. A novel sparse coding algorithm for classification of tumors based on gene expression data.

    Science.gov (United States)

    Kolali Khormuji, Morteza; Bazrafkan, Mehrnoosh

    2016-06-01

    High-dimensional genomic and proteomic data play an important role in many applications in medicine such as prognosis of diseases, diagnosis, prevention and molecular biology, to name a few. Classifying such data is a challenging task due to the various issues such as curse of dimensionality, noise and redundancy. Recently, some researchers have used the sparse representation (SR) techniques to analyze high-dimensional biological data in various applications in classification of cancer patients based on gene expression datasets. A common problem with all SR-based biological data classification methods is that they cannot utilize the topological (geometrical) structure of data. More precisely, these methods transfer the data into sparse feature space without preserving the local structure of data points. In this paper, we proposed a novel SR-based cancer classification algorithm based on gene expression data that takes into account the geometrical information of all data. Precisely speaking, we incorporate the local linear embedding algorithm into the sparse coding framework, by which we can preserve the geometrical structure of all data. For performance comparison, we applied our algorithm on six tumor gene expression datasets, by which we demonstrate that the proposed method achieves higher classification accuracy than state-of-the-art SR-based tumor classification algorithms. PMID:26337064

  1. Designing PDT-based combinations to overcome chemoresistance in heterocellular 3D tumor models (Conference Presentation)

    Science.gov (United States)

    Rizvi, Imran; Briars, Emma A.; Bulin, Anne-Laure; Anbil, Sriram; Vecchio, Daniela; Alkhateeb, Ahmed; Hanna, William R.; Celli, Jonathan P.; Hasan, Tayyaba

    2016-03-01

    A major barrier to treating advanced-stage cancers is heterogeneity in the responsiveness of metastatic disease to conventional therapies leading to resistance and treatment failure. Photodynamic therapy (PDT) has been shown to synergize with conventional agents and to overcome the evasion pathways that cause resistance. Developing PDT-based combinations that target resistant tumor populations and cooperate mechanistically with conventional agents is an increasingly promising approach to improve therapeutic efficacy while minimizing toxicity, particularly in complex disease sites. Identifying the molecular, cellular, and microenvironmental cues that lead to heterogeneity and treatment resistance is critical to developing strategies to target unresponsive regions of stubborn disease. Cell-based research platforms that integrate key microenvironmental cues are emerging as increasingly important tools to improve the translational efficiency of new agents, and to design combination regimens. Among the challenges associated with developing and scaling complex cell-based screening platforms is the need to integrate, and balance, biological relevance with appropriate, high-content imaging routines that provide meaningful quantitative readouts of therapeutic response. The benefits and challenges associated with deriving meaningful insights from complex cell-based models will be presented, with a particular emphasis on overcoming chemoresistance mediated by physical stress and communication with stromal partners (e.g. tumor endothelial cells, which are emerging as dynamic regulators of treatment resistance) using PDT-based combinations.

  2. Clinical Outcome of Patients with Breast Phyllodes Tumors: A Retrospective Analysis of 129 Cases in Shiraz, Southern Iran

    Directory of Open Access Journals (Sweden)

    Majid Akrami

    2015-10-01

    Full Text Available Background: Phyllodes tumors are uncommon neoplasms of the breast. Data about their outcome is limited. This study aims to evaluate patients diagnosed with phyllodes tumors in terms of local recurrence, distant metastasis and overall survival. Methods: We retrospectively reviewed the medical records of 129 women with phyllodes tumors who referred to our center from 1999 to 2013. Clinical and pathological features, local and regional recurrence, distant metastasis and overall survival were determined. SPSS 15.0 statistical software was used for analysis. Results:Mean patient age was 39 years (17-67 years. Mean size of the tumor was 5.38 cm. There were 105 (81.4% benign, 8 (6.2% borderline and 16 (12.4% malignant tumors. The mean follow-up period of patients was 28 months (6 to 128 months. The rate of local recurrence among benign tumors was 3.8% (4 cases; in borderline cases the rate was 12.5% (1 case and for malignant cases, it was 18.7% (3 cases. Three patients each recurred twice and one patient had local recurrence for a third time. Two patients died of malignant tumor-related disease - one due to advanced regional recurrence and lung metastasis, and the other to wide-spread metastasis. Another patient died from an unrelated cause (myocardial infarction one year after surgery. For those with malignant phyllodes tumors, the five-year overall survival was 77.8% and disease-free survival rate was 85.7%. Conclusion: Although, the prognosis for phyllodes tumors is good, the malignancy rate is higher in older patients and those with larger tumors. A higher local recurrence rate in malignant phyllodes tumors suggests the importance for adequate resection of margins in surgical management of these tumors.

  3. CGH analysis of secondary genetic changes in Ewing tumors: correlation with metastatic disease in a series of 43 cases.

    Science.gov (United States)

    Brisset, S; Schleiermacher, G; Peter, M; Mairal, A; Oberlin, O; Delattre, O; Aurias, A

    2001-10-01

    The occurrence of secondary chromosome changes is frequent in Ewing tumors, in particular trisomies for chromosomes 8 and 12, and unbalanced (1;16) translocations leading to gains of 1q and losses of 16q. The prognostic value of these secondary aberrations has not been statistically demonstrated. We report here a CGH analysis of a series of 43 primary tumors corresponding to 21 localized and 22 metastatic tumors. For five of them, a sufficient amount of DNA for the CGH analysis was available from the frozen samples. For 19 samples, a preliminary step of DOP-PCR amplification of the DNA was necessary. For the last 19 tumors, DNA was obtained after DOP-PCR amplification of small amount of DNA contaminating the RNA. As a whole, the main chromosome imbalances previously described, such as trisomies for 1q, 8, and 12, were observed. It is noteworthy that the mean number of imbalances was more frequent in localized versus metastatic tumors. Gain of 1q was more frequent in metastatic than in localized tumors. Nevertheless, these two results do not reach statistical significance. Conversely, a statistically significant excess of copy number of chromosome 2 was observed in non-metastatic tumors, suggesting that this imbalance, which has never been previously reported, could be associated with more favorable tumor behavior. PMID:11672775

  4. Tumor targeting profiling of hyaluronan-coated lipid based-nanoparticles

    Science.gov (United States)

    Mizrahy, Shoshy; Goldsmith, Meir; Leviatan-Ben-Arye, Shani; Kisin-Finfer, Einat; Redy, Orit; Srinivasan, Srimeenakshi; Shabat, Doron; Godin, Biana; Peer, Dan

    2014-03-01

    Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, <10 kDa) HA has been reported to provoke inflammatory responses, such as induction of cytokines, chemokines, reactive nitrogen species and growth factors. Herein, we prepared and characterized two types of HA coated (LMw and HMw) lipid-based targeted and stabilized nanoparticles (tsNPs) and tested their binding to tumor cells expressing the HA receptor (CD44), systemic immunotoxicity, and biodistribution in tumor bearing mice. In vitro, the Mw of the surface anchored HA had a significant influence on the affinity towards CD44 on B16F10 murine melanoma cells. LMw HA-tsNPs exhibited weak binding, while binding of tsNPs coated with HMw HA was characterized by high binding. Both types of tsNPs had no measured effect on cytokine induction in vivo following intravenous administration to healthy C57BL/6 mice suggesting no immune activation. HMw HA-tsNPs showed enhanced circulation time and tumor targeting specificity, mainly by accumulating in the tumor and its vicinity compared with LMw HA-tsNPs. Finally, we show that methotrexate (MTX), a drug commonly used in cancer chemotherapy, entrapped in HMw HA-tsNPs slowly diffused from the particles with a half-life of 13.75 days, and improved the therapeutic outcome in a murine B16F10 melanoma model compared with NPs suggesting an active cellular targeting beyond the Enhanced Permeability and Retention (EPR) effect. Taken together, these findings have major implications for the use of high molecular weight HA in nanomedicine as a selective and safe active cellular

  5. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression

    International Nuclear Information System (INIS)

    Cancer cell adopts peculiar metabolic strategies aimed to sustain the continuous proliferation in an environment characterized by relevant fluctuations in oxygen and nutrient levels. Monocarboxylate transporters MCT1 and MCT4 can drive such adaptation permitting the transport across plasma membrane of different monocarboxylic acids involved in energy metabolism. Role of MCTs in tumor-stroma metabolic relationship was investigated in vitro and in vivo using transformed prostate epithelial cells, carcinoma cell lines and normal fibroblasts. Moreover prostate tissues from carcinoma and benign hypertrophy cases were analyzed for individuating clinical-pathological implications of MCT1 and MCT4 expression. Transformed prostate epithelial (TPE) and prostate cancer (PCa) cells express both MCT1 and MCT4 and demonstrated variable dependence on aerobic glycolysis for maintaining their proliferative rate. In glucose-restriction the presence of L-lactate determined, after 24 h of treatment, in PCa cells the up-regulation of MCT1 and of cytochrome c oxidase subunit I (COX1), and reduced the activation of AMP-activated protein kinase respect to untreated cells. The blockade of MCT1 function, performed by si RNA silencing, determined an appreciable antiproliferative effect when L-lactate was utilized as energetic fuel. Accordingly L-lactate released by high glycolytic human diploid fibroblasts WI-38 sustained survival and growth of TPE and PCa cells in low glucose culture medium. In parallel, the treatment with conditioned medium from PCa cells was sufficient to induce glycolytic metabolism in WI-38 cells, with upregulation of HIF-1a and MCT4. Co-injection of PCa cells with high glycolytic WI-38 fibroblasts determined an impressive increase in tumor growth rate in a xenograft model that was abrogated by MCT1 silencing in PCa cells. The possible interplay based on L-lactate shuttle between tumor and stroma was confirmed also in human PCa tissue where we observed a positive

  6. A modeling-based factor extraction method for determining spatial heterogeneity of Ga-68 EDTA kinetics in brain tumor

    International Nuclear Information System (INIS)

    ROI method used in Ga-68 EDTA PET dynamic study for quantitative determination of brain tumor BBB permeability assumes that the tumor is homogeneous in terms of Ga-68 EDTA kinetics, even though it is known to be highly heterogeneous. It is desirable to examine regions of different kinetics separately. In this study, we have developed an efficient and effective method to separate tissue regions of different Ga-68 EDTA kinetics. The method uses a two-compartment model to extract three principal component factors (vascular component, fast and slow components) from whole-tumor kinetics by model fitting, then each pixel kinetics in the tumor was expressed in terms of these factors by least-square regression to provide factor images. The whole tumor was separated into two regions - one with mainly fast kinetics and one with slow kinetics. The two regions have markedly different uptake and clearance rate. This method has combined the advantage of statistical factor analysis and modeling approach

  7. p53 Mutation analysis in breast tumors by a DNA microarray method.

    Science.gov (United States)

    Tennis, Meredith; Krishnan, Shiva; Bonner, Matthew; Ambrosone, Christine B; Vena, John E; Moysich, Kirsten; Swede, Helen; McCann, Susan; Hall, Per; Shields, Peter G; Freudenheim, Jo L

    2006-01-01

    The p53 gene acts as a regulator of cell growth and DNA repair in normal cells; inactivation of the gene seems to lead to cancer. It is the most commonly mutated gene in human cancers, and a high-throughput sequencing method is needed for cancer etiology studies using large sample sets. In our population-based case-control study of breast cancer, the p53 gene was amplified by PCR for 392 subjects from seven hospitals in Western New York using the Affymetrix GeneChip technology. One hundred thirty-eight (35%) of the breast tumors had p53 mutations, of which 88% were located in exons 5 to 8. New hotspots were identified at codons 179, 195, 196, 213, 217, 249, 254, 278, 281, and 298, and previously reported hotspots were found at codons 175, 248, and 273. Manual sequencing for exons 5 to 9 of the p53 gene was done for 139 tumors to validate the Affymetrix assay. The two methods had 100% concordance for mutations detectable by the Affymetrix assay. We also successfully assayed paraffin-embedded breast and lung tumors from as early as 1958 and employed a nested PCR strategy to improve weak PCR amplification. To have statistical power, the investigation of gene environment interactions and cancer requires a large number of tumor analyses, which are frequently only available from archived tissue from multiple sources. We have shown the utility of the Affymetrix GeneChip method under these challenging conditions and provided new data for the mutational spectra of breast cancer in a population-based study. PMID:16434591

  8. Centralized databases available for describing primary brain tumor incidence, survival, and treatment: Central Brain Tumor Registry of the United States; Surveillance, Epidemiology, and End Results; and National Cancer Data Base.

    OpenAIRE

    Davis, F. G.; McCarthy, B J; Berger, M.S.

    1999-01-01

    Characteristics of three databases--the Central Brain Tumor Registry of the United States (CBTRUS) database; the Surveillance, Epidemiology and End Results (SEER) database; and the National Cancer Data Base (NCDB)--containing information on primary brain tumors are discussed. The recently developed population-based CBTRUS database comprises incidence data on all primary brain tumors from 11 collaborating state registries; however, follow-up data are not available. SEER, the population-based g...

  9. Protein expression based multimarker analysis of breast cancer samples

    Directory of Open Access Journals (Sweden)

    Rajasekaran Ayyappan K

    2011-06-01

    Full Text Available Abstract Background Tissue microarray (TMA data are commonly used to validate the prognostic accuracy of tumor markers. For example, breast cancer TMA data have led to the identification of several promising prognostic markers of survival time. Several studies have shown that TMA data can also be used to cluster patients into clinically distinct groups. Here we use breast cancer TMA data to cluster patients into distinct prognostic groups. Methods We apply weighted correlation network analysis (WGCNA to TMA data consisting of 26 putative tumor biomarkers measured on 82 breast cancer patients. Based on this analysis we identify three groups of patients with low (5.4%, moderate (22% and high (50% mortality rates, respectively. We then develop a simple threshold rule using a subset of three markers (p53, Na-KATPase-β1, and TGF β receptor II that can approximately define these mortality groups. We compare the results of this correlation network analysis with results from a standard Cox regression analysis. Results We find that the rule-based grouping variable (referred to as WGCNA* is an independent predictor of survival time. While WGCNA* is based on protein measurements (TMA data, it validated in two independent Affymetrix microarray gene expression data (which measure mRNA abundance. We find that the WGCNA patient groups differed by 35% from mortality groups defined by a more conventional stepwise Cox regression analysis approach. Conclusions We show that correlation network methods, which are primarily used to analyze the relationships between gene products, are also useful for analyzing the relationships between patients and for defining distinct patient groups based on TMA data. We identify a rule based on three tumor markers for predicting breast cancer survival outcomes.

  10. Protein expression based multimarker analysis of breast cancer samples

    International Nuclear Information System (INIS)

    Tissue microarray (TMA) data are commonly used to validate the prognostic accuracy of tumor markers. For example, breast cancer TMA data have led to the identification of several promising prognostic markers of survival time. Several studies have shown that TMA data can also be used to cluster patients into clinically distinct groups. Here we use breast cancer TMA data to cluster patients into distinct prognostic groups. We apply weighted correlation network analysis (WGCNA) to TMA data consisting of 26 putative tumor biomarkers measured on 82 breast cancer patients. Based on this analysis we identify three groups of patients with low (5.4%), moderate (22%) and high (50%) mortality rates, respectively. We then develop a simple threshold rule using a subset of three markers (p53, Na-KATPase-β1, and TGF β receptor II) that can approximately define these mortality groups. We compare the results of this correlation network analysis with results from a standard Cox regression analysis. We find that the rule-based grouping variable (referred to as WGCNA*) is an independent predictor of survival time. While WGCNA* is based on protein measurements (TMA data), it validated in two independent Affymetrix microarray gene expression data (which measure mRNA abundance). We find that the WGCNA patient groups differed by 35% from mortality groups defined by a more conventional stepwise Cox regression analysis approach. We show that correlation network methods, which are primarily used to analyze the relationships between gene products, are also useful for analyzing the relationships between patients and for defining distinct patient groups based on TMA data. We identify a rule based on three tumor markers for predicting breast cancer survival outcomes

  11. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    International Nuclear Information System (INIS)

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy. (paper)

  12. Enhancement of brain tumor MR images based on intuitionistic fuzzy sets

    Science.gov (United States)

    Deng, Wankai; Deng, He; Cheng, Lifang

    2015-12-01

    Brain tumor is one of the most fatal cancers, especially high-grade gliomas are among the most deadly. However, brain tumor MR images usually have the disadvantages of low resolution and contrast when compared with the optical images. Consequently, we present a novel adaptive intuitionistic fuzzy enhancement scheme by combining a nonlinear fuzzy filtering operation with fusion operators, for the enhancement of brain tumor MR images in this paper. The presented scheme consists of the following six steps: Firstly, the image is divided into several sub-images. Secondly, for each sub-image, object and background areas are separated by a simple threshold. Thirdly, respective intuitionistic fuzzy generators of object and background areas are constructed based on the modified restricted equivalence function. Fourthly, different suitable operations are performed on respective membership functions of object and background areas. Fifthly, the membership plane is inversely transformed into the image plane. Finally, an enhanced image is obtained through fusion operators. The comparison and evaluation of enhancement performance demonstrate that the presented scheme is helpful to determine the abnormal functional areas, guide the operation, judge the prognosis, and plan the radiotherapy by enhancing the fine detail of MR images.

  13. Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system

    International Nuclear Information System (INIS)

    Purpose: VERO is a novel platform for image guided stereotactic body radiotherapy. Orthogonal gimbals hold the linac-MLC assembly allowing real-time moving tumor tracking. This study determines the geometric accuracy of the tracking. Materials and methods: To determine the tracking error, an 1D moving phantom produced sinusoidal motion with frequencies up to 30 breaths per minute (bpm). Tumor trajectories of patients were reproduced using a 2D robot and pursued with the gimbals tracking system prototype. Using the moving beam light field and a digital-camera-based detection unit tracking errors, system lag and equivalence of pan/tilt performance were measured. Results: The system lag was 47.7 ms for panning and 47.6 ms for tilting. Applying system lag compensation, sinusoidal motion tracking was accurate, with a tracking error 90% percentile E90% 90% of 0.54 mm, and tracking error standard deviations of 0.20 mm for pan and 0.22 mm for tilt. Conclusions: In terms of dynamic behavior, the gimbaled linac of the VERO system showed to be an excellent approach for providing accurate real-time tumor tracking in radiation therapy.

  14. Segmentation of tumor ultrasound image in HIFU therapy based on texture and boundary encoding

    Science.gov (United States)

    Zhang, Dong; Xu, Menglong; Quan, Long; Yang, Yan; Qin, Qianqing; Zhu, Wenbin

    2015-02-01

    It is crucial in high intensity focused ultrasound (HIFU) therapy to detect the tumor precisely with less manual intervention for enhancing the therapy efficiency. Ultrasound image segmentation becomes a difficult task due to signal attenuation, speckle effect and shadows. This paper presents an unsupervised approach based on texture and boundary encoding customized for ultrasound image segmentation in HIFU therapy. The approach oversegments the ultrasound image into some small regions, which are merged by using the principle of minimum description length (MDL) afterwards. Small regions belonging to the same tumor are clustered as they preserve similar texture features. The mergence is completed by obtaining the shortest coding length from encoding textures and boundaries of these regions in the clustering process. The tumor region is finally selected from merged regions by a proposed algorithm without manual interaction. The performance of the method is tested on 50 uterine fibroid ultrasound images from HIFU guiding transducers. The segmentations are compared with manual delineations to verify its feasibility. The quantitative evaluation with HIFU images shows that the mean true positive of the approach is 93.53%, the mean false positive is 4.06%, the mean similarity is 89.92%, the mean norm Hausdorff distance is 3.62% and the mean norm maximum average distance is 0.57%. The experiments validate that the proposed method can achieve favorable segmentation without manual initialization and effectively handle the poor quality of the ultrasound guidance image in HIFU therapy, which indicates that the approach is applicable in HIFU therapy.

  15. SERS-based nanobiosensing for ultrasensitive detection of the p53 tumor suppressor

    Directory of Open Access Journals (Sweden)

    Domenici F

    2011-09-01

    Full Text Available Fabio Domenici, Anna Rita Bizzarri, Salvatore Cannistraro Biophysics and Nanoscience Centre, Faculty of Science, Università della Tuscia, Viterbo, Italy Background: One of the main challenges in biomedicine is improvement of detection sensitivity to achieve tumor marker recognition at a very low concentration when the disease is not significantly advanced. A pivotal role in cancer defense is played by the p53 tumor suppressor, therefore its detection with high sensitivity may contribute considerably to early diagnosis of cancer. In this work, we present a new analytical method based on surface-enhanced Raman spectroscopy which could significantly increase the sensitivity of traditional bioaffinity techniques. p53 molecules were anchored to gold nanoparticles by means of the bifunctional linker 4-aminothiophenol (4-ATP. The characteristic vibrational bands of the p53-4-ATP nanoparticle system were then used to identify the p53 molecules when they were captured by a recognition substrate comprising a monolayer of azurin in molecules possessing significant affinity for this tumor suppressor. The Raman signal enhancement achieved by 4-ATP-mediated crosslinking of p53 to 50 nm gold nanoparticles enabled detect of this protein at a concentration down to 5 × 10-13 M. Keywords: surface-enhanced Raman spectroscopy, p53, ultrasensitive detection, atomic force microscopy

  16. Neuropsychological function in adults after high dose fractionated radiation therapy of skull base tumors

    International Nuclear Information System (INIS)

    Purpose: To evaluate the long term effects of high dose fractionated radiation therapy on brain functioning prospectively in adults without primary brain tumors. Methods and Materials: Seventeen patients with histologically confirmed chordomas and low grade chondrosarcomas of the skull base were evaluated with neuropsychological measures of intelligence, language, memory, attention, motor function and mood following surgical resection/biopsy of the tumor prior to irradiation, and then at about 6 months, 2 years and 4 years following completion of treatment. None received chemotherapy. Results: In the patients without tumor recurrence or radiation necrosis, there were no indications of adverse effects on cognitive functioning in the post-acute through the late stages after brain irradiation. Even in patients who received doses of radiation up to 66 Cobalt Gy equivalent through nondiseased (temporal lobe) brain tissue, memory and cognitive functioning remained stable for up to 5 years after treatment. A mild decline in psycho-motor speed was seen in more than half of the patients, and motor slowing was related to higher radiation doses in midline and temporal lobe brain structures. Conclusion: Results suggest that in adults, tolerance for focused radiation is relatively high in cortical brain structures

  17. Performance analysis of a dedicated breast MR-HIFU system for tumor ablation in breast cancer patients

    Science.gov (United States)

    Deckers, R.; Merckel, L. G.; de Senneville, B. Denis; Schubert, G.; Köhler, M.; Knuttel, F. M.; Mali, W. P. Th M.; Moonen, C. T. W.; van den Bosch, M. A. A. J.; Bartels, L. W.

    2015-07-01

    MR-guided HIFU ablation is a promising technique for the non-invasive treatment of breast cancer. A phase I study was performed to assess the safety and treatment accuracy and precision of MR-HIFU ablation in breast cancer patients (n=10 ) using a newly developed MR-HIFU platform dedicated to applications in the breast. In this paper a technical analysis of the performance of the dedicated breast MR-HIFU system during breast tumors ablation is described. The main points of investigation were the spatial targeting accuracy and precision of the system and the performance of real-time respiration-corrected MR thermometry. The mean targeting accuracy was in the range of 2.4-2.6 mm, whereas the mean targeting precision was in the range of 1.5-1.8 mm. To correct for respiration-induced magnetic field fluctuations during MR temperature mapping a look-up-table (LUT)-based correction method was used. An optimized procedural sedation protocol in combination with the LUT-based correction method allowed for precise MR thermometry during the ablation procedure (temperature standard deviation HIFU system allows for safe, accurate and precise ablation of breast tumors.

  18. Survival analysis of colorectal cancer patients with tumor recurrence using global score test methodology

    International Nuclear Information System (INIS)

    Colorectal cancer is the third and the second most common cancer worldwide in men and women respectively, and the second in Malaysia for both genders. Surgery, chemotherapy and radiotherapy are among the options available for treatment of patients with colorectal cancer. In clinical trials, the main purpose is often to compare efficacy between experimental and control treatments. Treatment comparisons often involve several responses or endpoints, and this situation complicates the analysis. In the case of colorectal cancer, sets of responses concerned with survival times include: times from tumor removal until the first, the second and the third tumor recurrences, and time to death. For a patient, the time to recurrence is correlated to the overall survival. In this study, global score test methodology is used in combining the univariate score statistics for comparing treatments with respect to each survival endpoint into a single statistic. The data of tumor recurrence and overall survival of colorectal cancer patients are taken from a Malaysian hospital. The results are found to be similar to those computed using the established Wei, Lin and Weissfeld method. Key factors such as ethnic, gender, age and stage at diagnose are also reported

  19. Clinical Evaluation and Cost-Effectiveness Analysis of Serum Tumor Markers in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2013-01-01

    Full Text Available The detection of serum tumor markers is valuable for the early diagnosis of lung cancer. Tumor markers are frequently used for the management of cancer patients. However, single markers are less efficient but marker combinations increase the cost, which is troublesome for clinics. To find an optimal serum marker combination panel that benefits the patients and the medical management system as well, four routine lung cancer serum markers (SCCA, NSE, CEA, and CYFRA21-1 were evaluated individually and in combination. Meanwhile, the costs and effects of these markers in clinical practice in China were assessed by cost-effectiveness analysis. As expected, combinations of these tumor markers improved their sensitivity for lung cancer and different combination panels had their own usefulness. NSE + CEA + CYFRA21-1 was the optimal combination panel with highest Youden’s index (0.64, higher sensitivity (75.76%, and specificity (88.57%, which can aid the clinical diagnosis of lung cancer. Nevertheless, the most cost-effective combination was SCCA + CEA, which can be used to screen the high-risk group.

  20. Survival analysis of colorectal cancer patients with tumor recurrence using global score test methodology

    Science.gov (United States)

    Zain, Zakiyah; Aziz, Nazrina; Ahmad, Yuhaniz; Azwan, Zairul; Raduan, Farhana; Sagap, Ismail

    2014-12-01

    Colorectal cancer is the third and the second most common cancer worldwide in men and women respectively, and the second in Malaysia for both genders. Surgery, chemotherapy and radiotherapy are among the options available for treatment of patients with colorectal cancer. In clinical trials, the main purpose is often to compare efficacy between experimental and control treatments. Treatment comparisons often involve several responses or endpoints, and this situation complicates the analysis. In the case of colorectal cancer, sets of responses concerned with survival times include: times from tumor removal until the first, the second and the third tumor recurrences, and time to death. For a patient, the time to recurrence is correlated to the overall survival. In this study, global score test methodology is used in combining the univariate score statistics for comparing treatments with respect to each survival endpoint into a single statistic. The data of tumor recurrence and overall survival of colorectal cancer patients are taken from a Malaysian hospital. The results are found to be similar to those computed using the established Wei, Lin and Weissfeld method. Key factors such as ethnic, gender, age and stage at diagnose are also reported.

  1. Survival analysis of colorectal cancer patients with tumor recurrence using global score test methodology

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Zakiyah, E-mail: zac@uum.edu.my; Ahmad, Yuhaniz, E-mail: yuhaniz@uum.edu.my [School of Quantitative Sciences, Universiti Utara Malaysia, UUM Sintok 06010, Kedah (Malaysia); Azwan, Zairul, E-mail: zairulazwan@gmail.com, E-mail: farhanaraduan@gmail.com, E-mail: drisagap@yahoo.com; Raduan, Farhana, E-mail: zairulazwan@gmail.com, E-mail: farhanaraduan@gmail.com, E-mail: drisagap@yahoo.com; Sagap, Ismail, E-mail: zairulazwan@gmail.com, E-mail: farhanaraduan@gmail.com, E-mail: drisagap@yahoo.com [Surgery Department, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Bandar Tun Razak, Kuala Lumpur (Malaysia); Aziz, Nazrina, E-mail: nazrina@uum.edu.my

    2014-12-04

    Colorectal cancer is the third and the second most common cancer worldwide in men and women respectively, and the second in Malaysia for both genders. Surgery, chemotherapy and radiotherapy are among the options available for treatment of patients with colorectal cancer. In clinical trials, the main purpose is often to compare efficacy between experimental and control treatments. Treatment comparisons often involve several responses or endpoints, and this situation complicates the analysis. In the case of colorectal cancer, sets of responses concerned with survival times include: times from tumor removal until the first, the second and the third tumor recurrences, and time to death. For a patient, the time to recurrence is correlated to the overall survival. In this study, global score test methodology is used in combining the univariate score statistics for comparing treatments with respect to each survival endpoint into a single statistic. The data of tumor recurrence and overall survival of colorectal cancer patients are taken from a Malaysian hospital. The results are found to be similar to those computed using the established Wei, Lin and Weissfeld method. Key factors such as ethnic, gender, age and stage at diagnose are also reported.

  2. Spectral domain optical coherence tomography for ex vivo brain tumor analysis

    Science.gov (United States)

    Lenz, Marcel; Krug, Robin; Jaedicke, Volker; Stroop, Ralf; Schmieder, Kirsten; Hofmann, Martin R.

    2015-07-01

    Non-contact imaging methods to distinguish between healthy tissue and brain tumor tissue during surgery would be highly desirable but are not yet available. Optical Coherence Tomography (OCT) is a non-invasive imaging technology with a resolution around 1-15 μm and a penetration depth of 1-2 mm that may satisfy the demands. To analyze its potential, we measured ex vivo human brain tumor tissue samples from 10 patients with a Spectral Domain OCT system (Thorlabs Callisto: center wavelength of 930 nm) and compared the results with standard histology. In detail, three different measurements were made for each sample. First the sample was measured directly after surgery. Then it was embedded in paraffin (also H and E staining) and examined for the second time. At last, the slices of each paraffin block cut by the pathology were measured. Each time a B-scan was created and for a better comparison with the histology a 3D image was generated, in order to get the corresponding en face images. In both, histopathological diagnosis and the analysis of the OCT images, different types of brain tumor showed difference in structure. This has been affirmed by two blinded investigators. Nevertheless the difference between two images of samples taken directly after surgery is less distinct. To enhance the contrast in the images further, we employ Spectroscopic OCT and pattern recognition algorithms and compare these results to the histopathological standard.

  3. Feasibility and Utility of Telephone-Based Psychological Support for People with Brain Tumor: A Single-Case Experimental Study

    OpenAIRE

    Jones, Stephanie; Ownsworth, Tamara; Shum, David H.K.

    2015-01-01

    Rates of psychological distress are high following diagnosis and treatment of brain tumor. There can be multiple barriers to accessing psychological support, including physical and cognitive impairments and geographical limitations. Tele-based support could provide an effective and more flexible option for delivering psychological interventions. The present study aimed to investigate the feasibility and utility of a telephone-based psychotherapy intervention for people with brain tumor. A sin...

  4. Involvement of specific matrix metalloproteinases during tumor necrosis factor/IFNgamma-based cancer therapy in mice.

    Science.gov (United States)

    Van Roy, Maarten; Van Lint, Philippe; Van Laere, Ineke; Wielockx, Ben; Wilson, Carole; López-Otin, Carlos; Shapiro, Stephen; Libert, Claude

    2007-09-01

    The potent antitumor activity of tumor necrosis factor (TNF) in combination with IFN-gamma can only be applied in local regimens due to their strong proinflammatory properties. It has been shown that the broad-spectrum matrix metalloproteinase (MMP) inhibitor BB-94 protects against TNF/IFNgamma-induced toxicity without blocking the antitumor effect. Here, we tried to explain this protective role of BB-94 and sought to assign roles to specific MMPs in TNF/IFNgamma-induced toxicity. By studying the expression of MMP genes in different organs and in the tumor, we observed that the expression levels of MMP-7, MMP-8, MMP-9, and MMP-12 and tissue inhibitor of metalloproteinase-4 are clearly up-regulated in the liver during therapy. MMP-8 and MMP-9 are also up-regulated in the lung and kidney, respectively. In the tumor, most MMP genes are expressed, but only MMP-3 is up-regulated during TNF/IFNgamma treatment. Using MMP-deficient or double-deficient mice, we have shown a mediating role for MMP-3 during TNF/IFNgamma treatment in tumor-free and B16BL6 melanoma-bearing mice. By contrast, MMP-12 seemed to have some protective role in both models. However, because most phenotypes were not extremely outspoken, we have to conclude, based on the set of MMP-deficient mice we have studied, that inhibition of a single MMP will probably not increase the therapeutic value of TNF/IFNgamma, but that rather, broad-spectrum MMP inhibitors will be required. PMID:17876053

  5. Brain tumor

    International Nuclear Information System (INIS)

    BNCT in the past was not widely accepted because of poor usability of a nuclear reactor as a neutron source. Recently, technical advancements in the accelerator field have made accelerator-based BNCT feasible. Consequently, clinical trials of intractable brain tumors have started using it since 2012. In this review, our clinical results obtained from conventional reactor-based BNCT for treatment of brain tumors are introduced. It is strong hope that accelerator-based BNCT becomes a standard therapy for current intractable brain tumors. (author)

  6. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xing [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Wang, Yinyan [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Capital Medical University, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing (China); Wang, Kai; Ma, Jun; Li, Shaowu [Capital Medical University, Department of Neuroradiology, Beijing Tiantan Hospital, Beijing (China); Liu, Shuai [Chinese Academy of Medical Sciences and Peking Union Medical College, Departments of Neurosurgery, Peking Union Medical College Hospital, Beijing (China); Liu, Yong [Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing (China); Jiang, Tao [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Beijing Academy of Critical Illness in Brain, Department of Clinical Oncology, Beijing (China)

    2016-01-15

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  7. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    International Nuclear Information System (INIS)

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  8. Combined analysis of cell growth and apoptosis-regulating proteins in HPVs associated anogenital tumors

    International Nuclear Information System (INIS)

    The clinical course of human papillomavirus (HPV) associated with Bowenoid papulosis and condyloma acuminatum of anogenital tumors are still unknown. Here we evaluated molecules that are relevant to cellular proliferation and regulation of apoptosis in HPV associated anogenital tumors. We investigated the levels of telomerase activity, and inhibitor of apoptosis proteins (IAPs) family (c-IAP1, c-IAP2, XIAP) and c-Myc mRNA expression levels in 20 specimens of Bowenoid papulosis and 36 specimens of condyloma acuminatum in anogenital areas. Overall, phosphorylated (p-) AKT, p-ribosomal protein S6 (S6) and p-4E-binding protein 1 (4EBP1) expression levels were examined by immunohistochemistry in anogenital tumors both with and without positive telomerase activity. Positive telomerase activity was detected in 41.7% of Bowenoid papulosis and 27.3% of condyloma acuminatum compared to normal skin (p < 0.001). In contrast, the expression levels of Bowenoid papulosis indicated that c-IAP1, c-IAP2 and XIAP mRNA were significantly upregulated compared to those in both condyloma acuminatum samples (p < 0.001, p < 0.001, p = 0.022, respectively) and normal skin (p < 0.001, p = 0.002, p = 0.034, respectively). Overall, 30% of Bowenoid papulosis with high risk HPV strongly promoted IAPs family and c-Myc but condyloma acuminatum did not significantly activate those genes. Immunohistochemically, p-Akt and p-S6 expressions were associated with positive telomerase activity but not with p-4EBP1 expression. Combined analysis of the IAPs family, c-Myc mRNA expression, telomerase activity levels and p-Akt/p-S6 expressions may provide clinically relevant molecular markers in HPV associated anogenital tumors

  9. Microarray analysis in clinical oncology: pre-clinical optimization using needle core biopsies from xenograft tumors

    International Nuclear Information System (INIS)

    labeled, would generate representative array profiles compared to larger excisional biopsy material. In this analysis correlation coefficients were obtained ranging from 0.750–0.834 between U251 biopsy cores and excised tumors, and 0.812–0.846 between DU145 biopsy cores and excised tumors. These data suggest that needle core biopsies can be used as reliable tissue samples for tumor microarray analysis after linear amplification and either indirect or direct labeling of the starting RNA

  10. Plasmacytoma of the Skull Base: A Meta-Analysis.

    Science.gov (United States)

    Na'ara, Shorook; Amit, Moran; Gil, Ziv; Billan, Salem

    2016-02-01

    Objective Extramedullary plasmacytomas are rare tumors. In the current study we aim to characterize its clinical course at the skull base and define the most appropriate therapeutic protocol. Methods We conducted a meta-analysis of articles in the English language that included data on the treatment and outcome of plasmacytoma of the base of skull. Results The study cohort consisted of 47 patients. The tumor originated from the clivus and sphenoclival region in 28 patients (59.5%), the nasopharynx in 10 patients (21.2%), the petrous apex in 5 patients (10.6%), and the orbital roof in 4 patients (8.5%). The chief complaints at presentation included recurrent epistaxis and cranial nerve palsy, according to the site of tumor. Twenty-two patients (46.8%) had surgical treatment; 25 (53.2%) received radiation therapy. Adjuvant therapy was administered in 11 cases (50%) with concurrent multiple myeloma. The 2-year and 5-year overall survival rates were 78% and 59%, respectively. Clear margin resection was achieved in a similar proportion of patients who underwent endoscopic surgery and open surgery (p = 0.83). A multivariate analysis of outcome showed a similar survival rate of patients treated surgically or with radiotherapy. Conclusions The mainstay of treatment for plasmacytoma is based on radiation therapy, but when total resection is feasible, endoscopic resection is a valid option. PMID:26949590

  11. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-05-01

    Full Text Available Abstract Background The tumor suppressor gene p53 is involved in multiple cellular pathways including apoptosis, transcriptional control, and cell cycle regulation. In the last decade it has been demonstrated that the single nucleotide polymorphism (SNP at codon 72 of the p53 gene is associated with the risk for development of various neoplasms. MDM2 SNP309 is a single nucleotide T to G polymorphism located in the MDM2 gene promoter. From the time that this well-characterized functional polymorphism was identified, a variety of case-control studies have been published that investigate the possible association between MDM2 SNP309 and cancer risk. However, the results of the published studies, as well as the subsequent meta-analyses, remain contradictory. Methods To investigate whether currently published epidemiological studies can clarify the potential interaction between MDM2 SNP309 and the functional genetic variant in p53 codon72 (Arg72Pro and p53 mutation status, we performed a meta-analysis of the risk estimate on 27,813 cases with various tumor types and 30,295 controls. Results The data we reviewed indicated that variant homozygote 309GG and heterozygote 309TG were associated with a significant increased risk of all tumor types (homozygote comparison: odds ratio (OR = 1.25, 95% confidence interval (CI = 1.13-1.37; heterozygote comparison: OR = 1.10, 95% CI = 1.03-1.17. We also found that the combination of GG and Pro/Pro, TG and Pro/Pro, GG and Arg/Arg significantly increased the risk of cancer (OR = 3.38, 95% CI = 1.77-6.47; OR = 1.88, 95% CI = 1.26-2.81; OR = 1.96, 95% CI = 1.01-3.78, respectively. In a stratified analysis by tumor location, we also found a significant increased risk in brain, liver, stomach and uterus cancer (OR = 1.47, 95% CI = 1.06-2.03; OR = 2.24, 95%CI = 1.57-3.18; OR = 1.54, 95%CI = 1.04-2.29; OR = 1.34, 95%CI = 1.07-1.29, respectively. However, no association was seen between MDM2 SNP309 and tumor susceptibility

  12. MDM2 SNP309, gene-gene interaction, and tumor susceptibility: an updated meta-analysis

    International Nuclear Information System (INIS)

    The tumor suppressor gene p53 is involved in multiple cellular pathways including apoptosis, transcriptional control, and cell cycle regulation. In the last decade it has been demonstrated that the single nucleotide polymorphism (SNP) at codon 72 of the p53 gene is associated with the risk for development of various neoplasms. MDM2 SNP309 is a single nucleotide T to G polymorphism located in the MDM2 gene promoter. From the time that this well-characterized functional polymorphism was identified, a variety of case-control studies have been published that investigate the possible association between MDM2 SNP309 and cancer risk. However, the results of the published studies, as well as the subsequent meta-analyses, remain contradictory. To investigate whether currently published epidemiological studies can clarify the potential interaction between MDM2 SNP309 and the functional genetic variant in p53 codon72 (Arg72Pro) and p53 mutation status, we performed a meta-analysis of the risk estimate on 27,813 cases with various tumor types and 30,295 controls. The data we reviewed indicated that variant homozygote 309GG and heterozygote 309TG were associated with a significant increased risk of all tumor types (homozygote comparison: odds ratio (OR) = 1.25, 95% confidence interval (CI) = 1.13-1.37; heterozygote comparison: OR = 1.10, 95% CI = 1.03-1.17). We also found that the combination of GG and Pro/Pro, TG and Pro/Pro, GG and Arg/Arg significantly increased the risk of cancer (OR = 3.38, 95% CI = 1.77-6.47; OR = 1.88, 95% CI = 1.26-2.81; OR = 1.96, 95% CI = 1.01-3.78, respectively). In a stratified analysis by tumor location, we also found a significant increased risk in brain, liver, stomach and uterus cancer (OR = 1.47, 95% CI = 1.06-2.03; OR = 2.24, 95%CI = 1.57-3.18; OR = 1.54, 95%CI = 1.04-2.29; OR = 1.34, 95%CI = 1.07-1.29, respectively). However, no association was seen between MDM2 SNP309 and tumor susceptibility in the stratified analysis by p53 mutation status

  13. Development and validation of a microRNA based diagnostic assay for primary tumor site classification of liver core biopsies

    DEFF Research Database (Denmark)

    Perell, Katharina; Vincent, Martin; Vainer, Ben;

    2015-01-01

    Identification of the primary tumor site in patients with metastatic cancer is clinically important, but remains a challenge. Hence, efforts have been made towards establishing new diagnostic tools. Molecular profiling is a promising diagnostic approach, but tissue heterogeneity and inadequacy may...... negatively affect the accuracy and usability of molecular classifiers. We have developed and validated a microRNA-based classifier, which predicts the primary tumor site of liver biopsies, containing a limited number of tumor cells. Concurrently we explored the influence of surrounding normal tissue on...... classification. MicroRNA profiling was performed using quantitative Real-Time PCR on formalin-fixed paraffin-embedded samples. 278 primary tumors and liver metastases, representing nine primary tumor classes, as well as normal liver samples were used as a training set. A statistical model was applied to adjust...

  14. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines

    International Nuclear Information System (INIS)

    Gastric cancer is one of the most common malignancies worldwide and the second most common cause of cancer related death. Gene copy number alterations play an important role in the development of gastric cancer and a change in gene copy number is one of the main mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. To highlight genes of potential biological and clinical relevance in gastric cancer, we carried out a systematic array-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines and validated the results using an affinity capture based transcript analysis (TRAC assay) and real-time qRT-PCR. Integrated microarray analysis revealed altogether 256 genes that were located in recurrent regions of gains or losses and had at least a 2-fold copy number- associated change in their gene expression. The expression levels of 13 of these genes, ALPK2, ASAP1, CEACAM5, CYP3A4, ENAH, ERBB2, HHIPL2, LTB4R, MMP9, PERLD1, PNMT, PTPRA, and OSMR, were validated in a total of 118 gastric samples using either the qRT-PCR or TRAC assay. All of these 13 genes were differentially expressed between cancerous samples and nonmalignant tissues (p < 0.05) and the association between copy number and gene expression changes was validated for nine (69.2%) of these genes (p < 0.05). In conclusion, integrated gene expression and copy number microarray analysis highlighted genes that may be critically important for gastric carcinogenesis. TRAC and qRT-PCR analyses validated the microarray results and therefore the role of these genes as potential biomarkers for gastric cancer

  15. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, T; Kearney, V; Liu, H; Jiang, L; Foster, R; Mao, W [UT Southwestern Medical Center, Dallas, Texas (United States); Rozario, T; Bereg, S [University of Texas at Dallas, Richardson, Texas (United States); Klash, S [Premier Cancer Centers, Dallas, TX (United States)

    2014-06-15

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.

  16. TH-E-17A-10: Markerless Lung Tumor Tracking Based On Beams Eye View EPID Images

    International Nuclear Information System (INIS)

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT corresponding curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant

  17. PET/CT Based In Vivo Evaluation of 64Cu Labelled Nanodiscs in Tumor Bearing Mice

    DEFF Research Database (Denmark)

    Huda, Pie; Binderup, Tina; Pedersen, Martin Cramer;

    2015-01-01

    64Cu radiolabelled nanodiscs based on the 11 α-helix MSP1E3D1 protein and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine lipids were, for the first time, followed in vivo by positron emission tomography for evaluating the biodistribution of nanodiscs. A cancer tumor bearing mouse model was...... radiolabelling of proteins via a chelating agent, DOTA, was developed. The reaction was performed at sufficiently mild conditions to be compatible with labelling of the protein part of a lipid-protein particle while fully conserving the particle structure including the amphipathic protein fold....

  18. Prevalencia de tumores odontogénicos en el Hospital Base Valdivia: periodo 1989-2008

    OpenAIRE

    L.C. Thiers; C.C. Sotomayor; F.I. Peters; P.C. Lantaño; L.S. Thiers

    2013-01-01

    Objetivo: Este artículo corresponde a un estudio observacional de tipo descriptivo de corte transversal, tiene como objetivo determinar la prevalencia de tumores odontogénicos en la población atendida en el Hospital Base Valdivia, en un periodo de 20 años (1989-2008), según la nueva clasificación de lesiones tumorales de la WHO, 2005. Metodología: Se revisaron 2.078 informes de biopsias correspondientes a lesiones de la cavidad oral de los archivos de informes del servicio de Anatomía Patológ...

  19. Esophagus sparing with IMRT in lung tumor irradiation: An EUD-based optimization technique

    International Nuclear Information System (INIS)

    Purpose: The aim of this study was to evaluate (1) the use of generalized equivalent uniform dose (gEUD) to optimize dose escalation of lung tumors when the esophagus overlaps the planning target volume (PTV) and (2) the potential benefit of further dose escalation in only the part of the PTV that does not overlap the esophagus. Methods and Materials: The treatment-planning computed tomography (CT) scans of patients with primary lung tumors located in different regions of the left and right lung were used for the optimization of beamlet intensity modulated radiation therapy (IMRT) plans. In all cases, the PTV overlapped part of the esophagus. The dose in the PTV was maximized according to 7 different primary cost functions: 2 plans that made use of mean dose (MD) (the reference plan, in which the 95% isodose surface covered the PTV and a second plan that had no constraint on the minimum isodose), 3 plans based on maximizing gEUD for the whole PTV with ever increasing assumptions for tumor aggressiveness, and 2 plans that used different gEUD values in 2 simultaneous, overlapping target volumes (the whole PTV and the PTV minus esophagus). Beam arrangements and NTCP-based costlets for the organs at risk (OARs) were kept identical to the original conformal plan for each case. Regardless of optimization method, the relative ranking of the resulting plans was evaluated in terms of the absence of cold spots within the PTV and the final gEUD computed for the whole PTV. Results: Because the MD-optimized plans lacked a constraint on minimum PTV coverage, they resulted in cold spots that affected approximately 5% of the PTV volume. When optimizing over the whole PTV volume, gEUD-optimized plans resulted in higher equivalent uniform PTV doses than did the reference plan while still maintaining normal-tissue constraints. However, only under the assumption of extremely aggressive tumors could cold spots in the PTV be avoided. Generally, high-level overall results are obtained

  20. Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models

    OpenAIRE

    Hui Guo; Dongmei Liu; Bin Gao; Xiaohui Zhang; Minli You; Hui Ren; Hongbo Zhang; Santos, Hélder A.; Feng Xu

    2016-01-01

    Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT i...

  1. Skull Base Clear Cell Carcinoma, Metastasis of Renal Primary Tumor: A Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Ilson Sepúlveda

    2013-08-01

    Full Text Available We report on a patient who presented with cranial nerve VI bilateral paresis, absence of pharyngeal reflex, dysarthria, right tongue deviation, and right facial paralysis. Imaging studies showed an expansive process in the cranial base with clivus and petrous apex osteolysis. A biopsy confirmed the presence of clear cell adenocarcinoma and suspicion of renal tumor metastases. Abdominal imaging studies revealed a mass in the right kidney. Consequently, radiotherapy was performed, and the patient was enrolled in a palliative care and pain control program.

  2. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    International Nuclear Information System (INIS)

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% threshold and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should

  3. SU-E-J-249: Characterization of Gynecological Tumor Heterogeneity Using Texture Analysis in the Context of An 18F-FDG PET Adaptive Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nawrocki, J [Duke University Medical Physics Graduate Program, Durham, NC (United States); Chino, J; Craciunescu, O [Duke University Medical Center Department of Radiation Oncology, Durham, NC (United States); Das, S [University of North Carolina School of Medicine, Chapel Hill, NC (United States)

    2015-06-15

    Purpose: We propose a method to examine gynecological tumor heterogeneity using texture analysis in the context of an adaptive PET protocol in order to establish if texture metrics from baseline PET-CT predict tumor response better than SUV metrics alone as well as determine texture features correlating with tumor response during radiation therapy. Methods: This IRB approved protocol included 29 women with node positive gynecological cancers visible on FDG-PET treated with EBRT to the PET positive nodes. A baseline and intra-treatment PET-CT was obtained. Tumor outcome was determined based on RECIST on posttreatment PET-CT. Primary GTVs were segmented using 40% threshold and a semi-automatic gradient-based contouring tool, PET Edge (MIM Software Inc., Cleveland, OH). SUV histogram features, Metabolic Volume (MV), and Total Lesion Glycolysis (TLG) were calculated. Four 3D texture matrices describing local and regional relationships between voxel intensities in the GTV were generated: co-occurrence, run length, size zone, and neighborhood difference. From these, 39 texture features were calculated. Prognostic power of baseline features derived from gradientbased and threshold GTVs were determined using the Wilcoxon rank-sum test. Receiver Operating Characteristics and logistic regression was performed using JMP (SAS Institute Inc., Cary, NC) to find probabilities of predicting response. Changes in features during treatment were determined using the Wilcoxon signed-rank test. Results: Of the 29 patients, there were 16 complete responders, 7 partial responders, and 6 non-responders. Comparing CR/PR vs. NR for gradient-based GTVs, 7 texture values, TLG, and SUV kurtosis had a p < 0.05. Threshold GTVs yielded 4 texture features and TLG with p < 0.05. From baseline to intra-treatment, 14 texture features, SUVmean, SUVmax, MV, and TLG changed with p < 0.05. Conclusion: Texture analysis of PET imaged gynecological tumors is an effective method for early prognosis and should

  4. Paclitaxel-loaded PEG-PE-based micellar nanopreparations targeted with tumor specific landscape phage fusion protein enhance apoptosis and efficiently reduce tumors

    OpenAIRE

    Tao WANG; Yang, Shenghong; Mei, Leslie A.; Parmar, Chirag K.; Gillespie, James W.; Praveen, Kulkarni P.; Petrenko, Valery A.; Torchilin, Vladimir P.

    2014-01-01

    In an effort to improve the therapeutic index of cancer chemotherapy, we developed an advanced nanopreparation based on the combination of landscape phage display to obtain new targeting ligands with micellar nanoparticles for tumor targeting of water insoluble neoplastic agents. With paclitaxel as a drug, this self-assembled nanopreparation composed of MCF-7-specific phage protein and polyethylene glycol phosphatidyl ethanolamine (PEG- PE) micelles showed selective toxicity to target cancer ...

  5. Prognosis of Hepatocellular Carcinoma with Portal Vein Tumor Thrombus:Assessment Based on Clinical and Computer Tomography Characteristics

    Directory of Open Access Journals (Sweden)

    Jia,Lizhong

    2012-04-01

    Full Text Available Patients with hepatocellular carcinoma (HCC complicated by portal vein tumor thrombus (PVTT have an extremely poor prognosis. It is important to select adequate therapeutic options based on reliable prognostic factors using imaging studies and clinical data. Prognostic factors were analyzed in patients with HCC with PVTT in the first branch or main trunk of the portal vein. From 2000 to 2007, 107 consecutive patients with HCC with PVTT in the major portal vein were reviewed, and diagnostic images and clinical characteristics were retrospectively observed. Thirty-eight possible prognostic factors for survival were analyzed by the log-rank test and multivariate analysis using Coxʼs proportional hazards model. Median overall survival was 14 months following PVTT diagnosis. Survival rates at 6 months, 1, 2, and 3 years were 72.1%, 52.6%, 32.6%, and 29.6%, respectively. Independent prognostic factors for longer survival included:patient age <65 years, Child-Pugh classification A/B, PVTT treatment, accumulation of Lipiodol in the PVTT after TACE, initial radical treatment for HCC, HCC located in a single lobe of the liver, and no invasion of HCC to the hepatic vein or bile duct. Survival was associated with liver function, tumor extension, and treatment for HCC and PVTT.

  6. Applying microsatellite multiplex PCR analysis (MMPA for determining allele copy-number status and percentage of normal cells within tumors.

    Directory of Open Access Journals (Sweden)

    Carles Garcia-Linares

    Full Text Available The study of somatic genetic alterations in tumors contributes to the understanding and management of cancer. Genetic alterations, such us copy number or copy neutral changes, generate allelic imbalances (AIs that can be determined using polymorphic markers. Here we report the development of a simple set of calculations for analyzing microsatellite multiplex PCR data from control-tumor pairs that allows us to obtain accurate information not only regarding the AI status of tumors, but also the percentage of tumor-infiltrating normal cells, the locus copy-number status and the mechanism involved in AI. We validated this new approach by re-analyzing a set of Neurofibromatosis type 1-associated dermal neurofibromas and comparing newly generated data with results obtained for the same tumors in a previous study using MLPA, Paralog Ratio Analysis and SNP-array techniques.Microsatellite multiplex PCR analysis (MMPA should be particularly useful for analyzing specific regions of the genome containing tumor suppressor genes and also for determining the percentage of infiltrating normal cells within tumors allowing them to be sorted before they are analyzed by more expensive techniques.

  7. Survival Analysis of Patients with Brain Metastasis by Weighting According to the Primary Tumor Oncotype

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Hee Keun; Kim, Woo Chul; Kim, Hun Jung; Park, Jung Hoon; Song, Chang Hoon [Inha University Hospital, Incheon (Korea, Republic of)

    2009-09-15

    This study was performed to retrospectively analyze patient survival by weighting according to the primary tumor oncotype in 160 patients with brain metastasis and who underwent whole brain radiotherapy. A total of 160 metastatic brain cancer patients who were treated with whole brain radiotherapy of 30 Gy between 2002 and 2008 were retrospectively analyzed. The primary tumor oncotype of 20 patients was breast cancer, and that of 103 patients was lung cancer. Except for 18 patients with leptomeningeal seeding, a total of 142 patients were analyzed according to the prognostic factors and the Recursive Partitioning Analysis (RPA) class. Weighted Partitioning Analysis (WPA), with the weighting being done according to the primary tumor oncotype, was performed and the results were correlated with survival and then compared with the RPA Class. The median survival of the patients in RPA Class I (8 patients) was 20.0 months, that for Class II (76 patients) was 10.0 months and that for Class III (58 patients) was 3.0 months (p<0.003). The median survival of patients in WPA Class I (3 patients) was 36 months, that for the patients in Class II (9 patients) was 23.7 months, that for the patients in Class III (70 patients) was 10.9 months and that for the patients in Class IV (60 patients) was 8.6 months (p<0.001). The WPA Class might have more accuracy in assessing survival, and it may be superior to the RPA Class for assessing survival. A new prognostic index, the WPA Class, has more prognostic value than the RPA Class for the treatment of patients with metastatic brain cancer. This WPA Class may be useful to guide the appropriate treatment of metastatic brain lesions.

  8. Circulating tumor cells (CTCs) in breast cancer: a diagnostic tool for prognosis and molecular analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaoshen Dong; R.Katherine Alpaugh; Massimo Cristofanilli

    2012-01-01

    Metastatic breast cancer (MBC) is characterized by a combination of tumor growth,proliferation and metastatic progression and is typically managed with palliative intent.The benefit of standard systemic therapies is relatively limited and the disease is considered incurable suggesting the need to investigate the biological drivers of the various phases of the metastatic process in order to improve the selection of molecularly driven therapies.The detection,enumeration and molecular analysis of circulating tumor cells (CTCs) provide an intriguing opportunity to advance this knowledge.CTCs enumerated by the Food and Drugs Administration-cleared CellSearchTM system are an independent prognostic factor of progression-free survival (PFS) and overall survival (OS) in MBC patients.Several published papers demonstrated the poor prognosis for MBC patients that presented basal CTC count ≥5 in 7.5 mL of blood.Therefore,the enumeration of CTCs during treatment for MBC provides a tool with the ability to predict progression of disease earlier than standard timing of anatomical assessment using conventional radiological tests.During the metastatic process cancer cells exhibit morphological and phenotypic plasticity undergoing epithelial-mesenchymal transition (EMT).This important phenomenon is associated with down regulation of epithelial marker (e.g.,EpCAM) with potential limitations in the applicability of current CTCs enrichment methods.Such observations translated in a number of investigations aimed at improving our capabilities to enumerate and perform molecular characterization of CTCs.Theoretically,the phenotypic analysis of CTCs can represent a "liquid" biopsy of breast tumor that is able to identify a new potential target against the metastatic disease and advance the development and monitoring of personalized therapies.

  9. Parameter estimation of brain tumors using intraoperative thermal imaging based on artificial tactile sensing in conjunction with artificial neural network

    International Nuclear Information System (INIS)

    Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors. (paper)

  10. Parameter estimation of brain tumors using intraoperative thermal imaging based on artificial tactile sensing in conjunction with artificial neural network

    Science.gov (United States)

    Sadeghi-Goughari, M.; Mojra, A.; Sadeghi, S.

    2016-02-01

    Intraoperative Thermal Imaging (ITI) is a new minimally invasive diagnosis technique that can potentially locate margins of brain tumor in order to achieve maximum tumor resection with least morbidity. This study introduces a new approach to ITI based on artificial tactile sensing (ATS) technology in conjunction with artificial neural networks (ANN) and feasibility and applicability of this method in diagnosis and localization of brain tumors is investigated. In order to analyze validity and reliability of the proposed method, two simulations were performed. (i) An in vitro experimental setup was designed and fabricated using a resistance heater embedded in agar tissue phantom in order to simulate heat generation by a tumor in the brain tissue; and (ii) A case report patient with parafalcine meningioma was presented to simulate ITI in the neurosurgical procedure. In the case report, both brain and tumor geometries were constructed from MRI data and tumor temperature and depth of location were estimated. For experimental tests, a novel assisted surgery robot was developed to palpate the tissue phantom surface to measure temperature variations and ANN was trained to estimate the simulated tumor’s power and depth. Results affirm that ITI based ATS is a non-invasive method which can be useful to detect, localize and characterize brain tumors.

  11. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base.

    Science.gov (United States)

    Li, Fang; Zheng, Chunli; Xin, Junbo; Chen, Fangcheng; Ling, Hua; Sun, Linlin; Webster, Thomas J; Ming, Xin; Liu, Jianping

    2016-01-01

    A novel method was developed here to prepare albumin-based nanoparticles (NPs) for improving the therapeutic and safety profiles of chemotherapeutic agents. This approach involved crosslinking bovine serum albumin (BSA) using a Schiff base-containing vanillin, into NPs and loading doxorubicin (DOX) into the NPs by incubation. The resultant NPs (DOX-BSA-V-NPs) displayed a particle size of 100.5±1.3 nm with a zeta potential of -23.05±1.45 mV and also showed high drug-loading efficiency and excellent stability with respect to storage and temperature. The encapsulation of DOX into the BSA-V-NPs was confirmed by dynamic scanning calorimetry and Raman spectroscopy. DOX-BSA-V-NPs exhibited a significantly faster DOX release at pH 6.5 than pH 7.4, as well as in a solution with a higher glutathione concentration. In vitro studies showed that the cellular uptake of DOX-BSA-V-NPs was time-dependent, concentration-dependent, and faster than free DOX, while the cytotoxicity of DOX-BSA-V-NPs (IC50 value of 3.693 μg/mL) was superior to free DOX (IC50 value of 4.007 μg/mL). More importantly, DOX-BSA-V-NPs showed a longer mean survival time of 24.83 days, a higher tumor inhibition rate of 56.66%, and a decreased distribution in the heart than other DOX formulations in animal studies using a tumor xenograft model. Thus, the vanillin-based albumin NPs were shown here to be a promising carrier for tumor-targeted delivery of chemotherapeutic agents and, thus, should be further studied. PMID:27574421

  12. Enhanced tumor delivery and antitumor response of doxorubicin-loaded albumin nanoparticles formulated based on a Schiff base

    Science.gov (United States)

    Li, Fang; Zheng, Chunli; Xin, Junbo; Chen, Fangcheng; Ling, Hua; Sun, Linlin; Webster, Thomas J; Ming, Xin; Liu, Jianping

    2016-01-01

    A novel method was developed here to prepare albumin-based nanoparticles (NPs) for improving the therapeutic and safety profiles of chemotherapeutic agents. This approach involved crosslinking bovine serum albumin (BSA) using a Schiff base-containing vanillin, into NPs and loading doxorubicin (DOX) into the NPs by incubation. The resultant NPs (DOX-BSA-V-NPs) displayed a particle size of 100.5±1.3 nm with a zeta potential of −23.05±1.45 mV and also showed high drug-loading efficiency and excellent stability with respect to storage and temperature. The encapsulation of DOX into the BSA-V-NPs was confirmed by dynamic scanning calorimetry and Raman spectroscopy. DOX-BSA-V-NPs exhibited a significantly faster DOX release at pH 6.5 than pH 7.4, as well as in a solution with a higher glutathione concentration. In vitro studies showed that the cellular uptake of DOX-BSA-V-NPs was time-dependent, concentration-dependent, and faster than free DOX, while the cytotoxicity of DOX-BSA-V-NPs (IC50 value of 3.693 μg/mL) was superior to free DOX (IC50 value of 4.007 μg/mL). More importantly, DOX-BSA-V-NPs showed a longer mean survival time of 24.83 days, a higher tumor inhibition rate of 56.66%, and a decreased distribution in the heart than other DOX formulations in animal studies using a tumor xenograft model. Thus, the vanillin-based albumin NPs were shown here to be a promising carrier for tumor-targeted delivery of chemotherapeutic agents and, thus, should be further studied. PMID:27574421

  13. Development of a new rapid isolation device for circulating tumor cells (CTCs using 3D palladium filter and its application for genetic analysis.

    Directory of Open Access Journals (Sweden)

    Akiko Yusa

    Full Text Available Circulating tumor cells (CTCs in the blood of patients with epithelial malignancies provide a promising and minimally invasive source for early detection of metastasis, monitoring of therapeutic effects and basic research addressing the mechanism of metastasis. In this study, we developed a new filtration-based, sensitive CTC isolation device. This device consists of a 3-dimensional (3D palladium (Pd filter with an 8 µm-sized pore in the lower layer and a 30 µm-sized pocket in the upper layer to trap CTCs on a filter micro-fabricated by precise lithography plus electroforming process. This is a simple pump-less device driven by gravity flow and can enrich CTCs from whole blood within 20 min. After on-device staining of CTCs for 30 min, the filter cassette was removed from the device, fixed in a cassette holder and set up on the upright fluorescence microscope. Enumeration and isolation of CTCs for subsequent genetic analysis from the beginning were completed within 1.5 hr and 2 hr, respectively. Cell spike experiments demonstrated that the recovery rate of tumor cells from blood by this Pd filter device was more than 85%. Single living tumor cells were efficiently isolated from these spiked tumor cells by a micromanipulator, and KRAS mutation, HER2 gene amplification and overexpression, for example, were successfully detected from such isolated single tumor cells. Sequential analysis of blood from mice bearing metastasis revealed that CTC increased with progression of metastasis. Furthermore, a significant increase in the number of CTCs from the blood of patients with metastatic breast cancer was observed compared with patients without metastasis and healthy volunteers. These results suggest that this new 3D Pd filter-based device would be a useful tool for the rapid, cost effective and sensitive detection, enumeration, isolation and genetic analysis of CTCs from peripheral blood in both preclinical and clinical settings.

  14. Classification of Extraovarian Implants in Patients With Ovarian Serous Borderline Tumors (Tumors of Low Malignant Potential) Based on Clinical Outcome.

    Science.gov (United States)

    McKenney, Jesse K; Gilks, C Blake; Kalloger, Steve; Longacre, Teri A

    2016-09-01

    The classification of extraovarian disease into invasive and noninvasive implants predicts patient outcome in patients with high-stage ovarian serous borderline tumors (tumors of low malignant potential). However, the morphologic criteria used to classify implants vary between studies. To date, there has been no large-scale study with follow-up data comparing the prognostic significance of competing criteria. Peritoneal and/or lymph node implants from 181 patients with high-stage serous borderline tumors were evaluated independently by 3 pathologists for the following 8 morphologic features: micropapillary architecture; glandular architecture; nests of epithelial cells with surrounding retraction artifact set in densely fibrotic stroma; low-power destructive tissue invasion; single eosinophilic epithelial cells within desmoplastic stroma; mitotic activity; nuclear pleomorphism; and nucleoli. Follow-up of 156 (86%) patients ranged from 11 to 264 months (mean, 89 mo; median, 94 mo). Implants with low-power destructive invasion into underlying tissue were the best predictor of adverse patient outcome with 69% overall and 59% disease-free survival (P<0.01). In the evaluation of individual morphologic features, the low-power destructive tissue invasion criterion also had excellent reproducibility between observers (κ=0.84). Extraovarian implants with micropapillary architecture or solid nests with clefts were often associated with tissue invasion but did not add significant prognostic value beyond destructive tissue invasion alone. Implants without attached normal tissue were not associated with adverse outcome and appear to be noninvasive. Because the presence of invasion in an extraovarian implant is associated with an overall survival analogous to that of low-grade serous carcinoma, the designation low-grade serous carcinoma is recommended. Even though the low-power destructive tissue invasion criterion has excellent interobserver reproducibility, it is further

  15. Podoplanin expression in tumor-free resection margins of oral squamous cell carcinomas: an immunohistochemical and fractal analysis study

    OpenAIRE

    Margaritescu, C.; Raica, M; PIRICI, D.; Simionescu, C.; Mogoanta, L.; Stinga, A.C.; Stinga, A.S.; Ribatti, Doménico

    2010-01-01

    Podoplanin is involved in tumorigenesis and cancer progression in head and neck malignancies and its expression is not restricted to lymphatic vessel endothelium. The aim of this study was to establish podoplanin expression in the tumor-free resection margins of oral squamous cell carcinomas (OSCCs) and to evaluate the geometric complexity of the lymphatic vessels in oral mucosa by utilizing fractal analysis. As concerns the podoplanin expression in noncancerous tissue, forty tumor-free r...

  16. Meta-analysis of multiple microarray datasets reveals a common gene signature of metastasis in solid tumors

    OpenAIRE

    Hilsenbeck Susan G; Daves Marla H; Lau Ching C; Man Tsz-Kwong

    2011-01-01

    Abstract Background Metastasis is the number one cause of cancer deaths. Expression microarrays have been widely used to study metastasis in various types of cancer. We hypothesize that a meta-analysis of publicly available gene expression datasets in various tumor types can identify a signature of metastasis that is common to multiple tumor types. This common signature of metastasis may help us to understand the shared steps in the metastatic process and identify useful biomarkers that could...

  17. Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model

    OpenAIRE

    Hyejin Choi; Jianting Sheng; Dingcheng Gao; Fuhai Li; Anna Durrans; Seongho Ryu; Sharrell B. Lee; Navneet Narula; Shahin Rafii; Olivier Elemento; Nasser K. Altorki; Stephen T.C. Wong; Vivek Mittal

    2015-01-01

    Emerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC) has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial c...

  18. Mutational Analysis of p27 (CDKN1 B and p18 (CDKN2C in Sporadic Pancreatic Endocrine Tumors Argues against Tumor-Suppressor Function

    Directory of Open Access Journals (Sweden)

    Daniel Lindberg

    2007-07-01

    Full Text Available Pancreatic endocrine tumors (PETs arise sporadically or are associated with multiple endocrine neoplasia type 1 (MENi syndrome or von Hippel-Lindau syndrome. About 90% of patients with familial MENi display detectable MEN1 gene (menin mutations. The cyclin-dependent kinase inhibitor p27 (CDKN1 B is a downstream target of menin and has been recently shown to be responsible for the multiple endocrine neoplasia-like syndrome in rats, where affected animals develop multiple tumors and hyperplasia in endocrine tissues, including the pancreatic islets of Langerhans. A germline nonsense truncation mutation of p27 has been recently described in a suspected MENi family without MENi mutation, raising the possibility that p27 mutation could be responsible for MENi phenotype. Somatic MENi mutations occur at low frequency in sporadic PETs; here, we subjected p27 to mutational analysis in 27 sporadic PETs. As an additional menin target, analysis of the p18(CDKN2C gene was included. In the p27 gene, one common polymorphism (V1 09G and one novel polymorphism (g/a in the noncoding part of exon 2 were identified. Three known polymorphisms were found in the p18 gene. These data suggest that p27 and p18 are unlikely to present classic tumor-suppressor genes in sporadic PETs.

  19. Value of MRI in differentiating adrenal masses: Quantitative analysis of tumor signal intensity

    International Nuclear Information System (INIS)

    Several reports show that MR imaging, especially using the chemical-shift sequence, provides highly reliable differentiation of adrenal adenomas from non-adenomas. The aim of the study was to evaluate the ability of MRI to distinguish adenomas from other adrenal masses using quantitative analysis of the tumors' signal intensity. Fifty-four patients with 57 adrenal masses underwent MRI. The tumors were determined during surgery as pheochromocytomas, metastases, adrenal cortical carcinoma, and adenomas. Nineteen masses were diagnosed as adenomas on the basis of stability on imaging followup and the absence of clinical and endocrinological dysfunction. Chemical-shift-weighted images (T1TFE sequence) and T2-weighted images (TSE sequence) were used for quantitative analysis which included the T2 index (adrenal mass SI to liver SI ratio) and the CSI ratio (the adrenal mass SI on the in-phase image minus the adrenal mass SI on the opposed-phase image divided by the adrenal mass SI on the in-phase image). Statistical analysis was performed with the Mann-Whitney U test. Receiver operating characteristic (ROC) analysis of the calculated parameters was performed. Significant differences in T2 index between adenomas (mean: 1.43±0.50) and pheochromocytomas (2.66±0.67) as well as between metastases (1.64±0.22) and pheochromocytomas were noted (p≤0.05). The Mann-Whitney U test revealed no significant difference in T2 index for adenomas vs. metastases (p=0.1). The CSI ratio was significantly different for adenomas (0.36±0.18) vs. pheochromocytomas (-0.15±0.16) as well as for adenomas vs. metastases (-0.23±0.26). No significant difference occurred in the CSI ratios between pheochromocytomas and metastases. ROC analysis showed that the discriminatory ability of adenoma diagnosis with the CSI ratio is better than with the T2 index (areas under the ROC curve: 0.980 vs. 0.867). Quantitative methods using signal intensity ratios and indexes calculated from MR images are helpful

  20. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xian; Wen-Ming Cong; Shu-Hui Zhang; Meng-Chao Wu

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments.METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD)with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated,purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data.RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size,histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene.CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcinogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis.

  1. Comparison of hand-sewn and stapled anastomoses in surgeries of gastrointestinal tumors based on clinical practice of China

    OpenAIRE

    Liu, Bin-wei; Liu, Yang; Liu, Jun-ru; Feng, Zhong-xu

    2014-01-01

    Background There is a lack of studies comparing stapled suturing and hand-sewn suturing in the surgeries of gastrointestinal tumors based on the clinical practice of Chinese surgeons. Methods Data were retrospectively collected from 499 patients who underwent surgery to remove gastrointestinal tumors from January 2008 to December 2009. The patients were divided into two groups according to the method of digestive tract reconstruction: 296 patients received stapled suturing and 203 patients re...

  2. Prognostic and predictive value of circulating tumor cell analysis in colorectal cancer patients

    Directory of Open Access Journals (Sweden)

    de Albuquerque Andreia

    2012-11-01

    Full Text Available Abstract Objective The aim of this study was to assess the prognostic and predictive values of circulating tumor cell (CTC analysis in colorectal cancer patients. Patients and methods Presence of CTCs was evaluated in 60 colorectal cancer patients before systemic therapy - from which 33 patients were also evaluable for CTC analysis during the first 3 months of treatment - through immunomagnetic enrichment, using the antibodies BM7 and VU1D9 (targeting mucin 1 and EpCAM, respectively, followed by real-time RT-PCR analysis of the tumor-associated genes KRT19, MUC1, EPCAM, CEACAM5 and BIRC5. Results Patients were stratified into groups according to CTC detection (CTC negative, when all marker genes were negative; and CTC positive when at least one of the marker genes was positive. Patients with CTC positivity at baseline had a significant shorter median progression-free survival (median PFS 181.0 days; 95% CI 146.9-215.1 compared with patients with no CTCs (median PFS 329.0 days; 95% CI 299.6-358.4; Log-rank P Conclusion The present study provides evidence of a strong correlation between CTC detection and radiographic disease progression in patients receiving chemotherapy for colorectal cancer. Our results suggest that in addition to the current prognostic factors, CTC analysis represent a potential complementary tool for prediction of colorectal cancer patients’ outcome. Moreover, the present test allows for molecular characterization of CTCs, which may be of relevance to the creation of personalized therapies.

  3. Visual outcome after fractionated stereotactic radiation therapy of benign anterior skull base tumors

    DEFF Research Database (Denmark)

    Astradsson, Arnar; Wiencke, Anne Katrine; Munck af Rosenschold, Per; Engelholm, Svend-Aage; Ohlhues, Lars; Roed, Henrik; Juhler, Marianne

    2014-01-01

    meningiomas and 100, 98.2 and 94.9% for pituitary adenomas, respectively. Patients with an impaired visual field function pre-FSRT were more likely to experience worsened function (p = 0.016). We found that RION, was a relatively uncommon event, in a large prospective cohort of patients that were......To determine visual outcome including the occurrence of radiation induced optic neuropathy (RION) as well as tumor control after fractionated stereotactic radiation therapy (FSRT) of benign anterior skull base meningiomas or pituitary adenomas. Thirty-nine patients treated with FSRT for anterior...... skull base meningiomas and 55 patients treated with FSRT for pituitary adenomas between January 1999 and December 2009 with at least 2 years follow-up were included. Patients were followed up prospectively with magnetic resonance imaging scans, visual acuity and visual field examinations. RION was found...

  4. Aptamer-based microcantilever biosensor for ultrasensitive detection of tumor marker nucleolin.

    Science.gov (United States)

    Li, Huiyan; Bai, Xiaojing; Wang, Nan; Chen, Xuejuan; Li, Jing; Zhang, Zhe; Tang, Jilin

    2016-01-01

    We present an aptamer-based microcantilever biosensor for label-free detection of nucleolin. The sensor cantilevers in the microcantilever array were functionalized with nucleolin aptamer (AS1411) while the reference cantilevers were modified by 6-mercapto-1-hexanol (MCH) to eliminate environmental disturbances. The interaction between nucleolin and AS1411 induced surface stress changes, resulting in a differential deflection between sensor and reference cantilevers. The amplitude of differential cantilever deflection had a good linear relationship with the nucleolin concentration ranging from 10 nM to 250 nM with a correlation coefficient of 0.999. The detection limit was about 1.0 nM, at a signal-to-noise ratio of 3. The aptamer-based microcantilever sensor demonstrated good selectivity and was facile, rapid, and reagentless. Our results show the potential for the application of microcantilever biosensor system as a powerful tool to detect tumor markers with high sensitivity and specificity. PMID:26695322

  5. Antiproliferative Activity and Cellular Uptake of Evodiamine and Rutaecarpine Based on 3D Tumor Models

    Directory of Open Access Journals (Sweden)

    Hui Guo

    2016-07-01

    Full Text Available Evodiamine (EVO and rutaecarpine (RUT are promising anti-tumor drug candidates. The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids of cancer cells would better recapitulate the native situation and thus better reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of 6.4–44.1 μM in 2D monolayers to 21.8–1