WorldWideScience

Sample records for base stacking interactions

  1. Effects of base mat flexibility and structure-soil-structure interaction on the seismic responses of a nuclear stack building

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, A.F.; Malik, L.E. [Advanced Engineering Consultants, Inc., San Francisco, CA (United States); Maryak, M.E. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-12-31

    A nuclear exhaust stack building was analyzed considering flexibility of the base mat and through-soil coupling with a nearby massive reactor building. The analysis indicated that the base mat flexibility and the proximity of the reactor building significantly affect the seismic responses of the stack building.

  2. Effects of base mat flexibility and structure-soil-structure interaction on the seismic responses of a nuclear stack building

    International Nuclear Information System (INIS)

    A nuclear exhaust stack building was analyzed considering flexibility of the base mat and through-soil coupling with a nearby massive reactor building. The analysis indicated that the base mat flexibility and the proximity of the reactor building significantly affect the seismic responses of the stack building. (author)

  3. Effects of base mat flexibility and structure-soil-structure interaction on the seismic responses of a nuclear stack building

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, A.F.; Malik, L.E. (Advanced Engineering Consultants, Inc., San Francisco, CA (United States)); Maryak, M.E. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1991-01-01

    A nuclear exhaust stack building was analyzed considering flexibility of the base mat and through-soil coupling with a nearby massive reactor building. The analysis indicated that the base mat flexibility and the proximity of the reactor building significantly affect the seismic responses of the stack building.

  4. Stacking interactions and the twist of DNA

    DEFF Research Database (Denmark)

    Cooper, V.R.; Thonhauser, T.; Puzder, A.;

    2008-01-01

    The importance of stacking interactions for the Twist and stability of DNA is investigated using the fully ab initio van der Waals density functional (vdW-DF).(1,2) Our results highlight the role that binary interactions between adjacent sets of base pairs play in defining the sequence-dependent ......The importance of stacking interactions for the Twist and stability of DNA is investigated using the fully ab initio van der Waals density functional (vdW-DF).(1,2) Our results highlight the role that binary interactions between adjacent sets of base pairs play in defining the sequence......-dependent Twists observed in high-resolution experiments. Furthermore, they demonstrate that additional stability gained by the presence of thymine is due to methyl interactions with neighboring bases, thus adding to our understanding of the mechanisms that contribute to the relative stability of DNA and RNA. Our...... mapping of the energy required to twist each of the 10 unique base pair steps should provide valuable information for future studies of nucleic acid stability and dynamics. The method introduced will enable the nonempirical theoretical study of significantly larger pieces of DNA or DNA/amino acid...

  5. Contribution of Partial Charge Interactions and Base Stacking to the Efficiency of Primer Extension at and beyond Abasic Sites in DNA

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shuangluo; Vashishtha, Ashwani; Bulkley, David; Eom, Soo Hyun; Wang, Jimin; Konigsberg, William H. (Yale); (Gwangju)

    2012-08-31

    During DNA synthesis, base stacking and Watson-Crick (WC) hydrogen bonding increase the stability of nascent base pairs when they are in a ternary complex. To evaluate the contribution of base stacking to the incorporation efficiency of dNTPs when a DNA polymerase encounters an abasic site, we varied the penultimate base pairs (PBs) adjacent to the abasic site using all 16 possible combinations. We then determined pre-steady-state kinetic parameters with an RB69 DNA polymerase variant and solved nine structures of the corresponding ternary complexes. The efficiency of incorporation for incoming dNTPs opposite an abasic site varied between 2- and 210-fold depending on the identity of the PB. We propose that the A rule can be extended to encompass the fact that DNA polymerase can bypass dA/abasic sites more efficiently than other dN/abasic sites. Crystal structures of the ternary complexes show that the surface of the incoming base was stacked against the PB's interface and that the kinetic parameters for dNMP incorporation were consistent with specific features of base stacking, such as surface area and partial charge-charge interactions between the incoming base and the PB. Without a templating nucleotide residue, an incoming dNTP has no base with which it can hydrogen bond and cannot be desolvated, so that these surrounding water molecules become ordered and remain on the PB's surface in the ternary complex. When these water molecules are on top of a hydrophobic patch on the PB, they destabilize the ternary complex, and the incorporation efficiency of incoming dNTPs is reduced.

  6. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  7. Edge-edge interactions in stacked graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Silva, Eduardo [ORNL; Terrones Maldonado, Humberto [ORNL; Terrones Maldonado, Mauricio [ORNL; Jia, Xiaoting [Massachusetts Institute of Technology (MIT); Sumpter, Bobby G [ORNL; Dresselhaus, M [Massachusetts Institute of Technology (MIT); Meunier, V. [Rensselaer Polytechnic Institute (RPI)

    2013-01-01

    High-resolution transmission electron microscopy (HRTEM) studies show the dynamics of small graphene platelets on larger graphene layers. The platelets move nearly freely to eventually lock in at well-defined positions close to the edges of the larger underlying graphene sheet. While such movement is driven by a shallow potential energy surface described by an interplane interaction, the lock-in position occurs by via edge-edge interactions of the platelet and the graphene surface located underneath. Here we quantitatively study this behavior using van der Waals density functional calculations. Local interactions at the open edges are found to dictate stacking configurations that are different from Bernal (AB) stacking. These stacking configurations are known to be otherwise absent in edge-free two-dimensional (2D) graphene. The results explain the experimentally observed platelet dynamics and provide a detailed account of the new electronic properties of these combined systems.

  8. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    Science.gov (United States)

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-04-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers.

  9. Interaction driven quantum Hall effect in artificially stacked graphene bilayers

    Science.gov (United States)

    Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa

    2016-01-01

    The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387

  10. Supramolecular self-assembly of a coumarine-based acylthiourea synthon directed by π-stacking interactions: Crystal structure and Hirshfeld surface analysis

    Science.gov (United States)

    Saeed, Aamer; Ashraf, Saba; Flörke, Ulrich; Delgado Espinoza, Zuly Yuliana; Erben, Mauricio F.; Pérez, Hiram

    2016-05-01

    The structure of 1-(2-oxo-2H-chromene-3-carbonyl)-3-(2-methoxy-phenyl)thiourea (1) has been determined by single-crystal X-ray crystallography. This compound crystallizes in the monoclinic space group P21/c with a = 7.455 (2) Å, b = 12.744 (3) Å, c = 16.892 (4) Å, β = 90.203 (6)° and Z = 4. Both, the coumarin and the phenyl rings are nearly coplanar with the central 1-acylthiourea group, with the Cdbnd O and Cdbnd S bonds adopting an opposite orientation. Intramolecular N-H···O, C-H···O, and C-H···S hydrogen bonds are favored by the planar conformation. The molecules are packed through C-H···O, C-H···S and C-H···C hydrogen bonds, and two π···π interactions with offset arrangement. Inter-centroid distance of 3.490 (2) Å, slip angles of 18.5 and 20.9°, and vertical displacements of 1.10 and 1.24 Å are the stacking parameters corresponding to the stronger π···π interaction. Hirshfeld surface analysis was performed for visualizing, exploring and quantifying intermolecular interactions in the crystal lattice of compound 1, and compared with two closely related species. Shape index and Curvedness surfaces indicated π-stacking with different features in opposed sides of the molecule. Fingerprint plot showed C···C contacts with similar contributions to the crystal packing in comparison with those associated to hydrogen bonds. Enrichment ratios for H···H, O···H, S···H and C···C contacts revealed a high propensity to form in the crystal.

  11. Strong Orbital Interaction in pi-pi Stacking System

    CERN Document Server

    Fu, Xiao-Xiao; Zhang, Rui-Qin

    2016-01-01

    A simple prototypical model of aromatic pi-pi stacking system -- benzene sandwich dimer is investigated by ab initio calculations based on second-order Moller-Plesset perturbation theory (MP2) and Minnesota hybrid functional M06-2X.

  12. Desalting of phosphopeptides by tandem polypyrrole-c18 reverse phase micropipette tip (TMTip{sub PPY-C18}) based on hybrid electrostatic, {Pi}-{Pi} stacking and hydrophobic interactions for mass spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Shi; Wang Xiaoli; Fu Jieying; Hu Xuejiao; Xiao Xiao; Huang Lulu; Zhou Youe [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China); Zhong Hongying, E-mail: hyzhong@mail.ccnu.edu.cn [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China)

    2012-04-29

    Highlights: Black-Right-Pointing-Pointer A new micropipette tip TMTip{sub PPY-C18} was developed for desalting of phosphopeptides. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} is based on polypyrrole in tandem with C18 chromatographic material. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} combines electrostatic, {Pi}-{Pi} stacking and hydrophobic interactions. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} can be used in both acidic and basic experimental conditions. - Abstract: Desalting and concentration of peptides using reverse phase (RP) C18 chromatographic material based on hydrophobic interaction is a routine approach used in mass spectrometry (MS)-based proteomics. However, MS detection of small hydrophilic peptides, in particular, phosphopeptides that bear multiple negative charges, is challenging due to the insufficient binding to C18 stationary phase. We described here the development of a new desalting method that takes the unique properties of polypyrrole (PPY). The presence of positively charged nitrogen atoms under acidic conditions and polyunsaturated bonds in polypyrrole provide a prospect for enhanced adsorption of phosphopeptides or hydrophilic peptides through extra electrostatic and {Pi}-{Pi} stacking interactions in addition to hydrophobic interactions. In tandem with reversed phase C18 chromatographic material, the new type of desalting method termed as TMTip{sub PPY-C18} can significantly improve the MS detection of phosphopeptides with multiple phosphate groups and other small hydrophilic peptides. It has been applied to not only tryptic digest of model proteins but also the analysis of complex lysates of zebrafish eggs. The number of detected phosphate groups on a peptide ranged from 1 to 6. Particularly, polypyrrole based method can also be used in basic condition. Thus it provides a useful means to handle peptides that may not be detectable in acidic condition. It can be envisioned that the TMTip{sub PPY-C18} should be able to

  13. Desalting of phosphopeptides by tandem polypyrrole-c18 reverse phase micropipette tip (TMTipPPY-C18) based on hybrid electrostatic, Π–Π stacking and hydrophobic interactions for mass spectrometric analysis

    International Nuclear Information System (INIS)

    Highlights: ► A new micropipette tip TMTipPPY-C18 was developed for desalting of phosphopeptides. ► TMTipPPY-C18 is based on polypyrrole in tandem with C18 chromatographic material. ► TMTipPPY-C18 combines electrostatic, Π–Π stacking and hydrophobic interactions. ► TMTipPPY-C18 can be used in both acidic and basic experimental conditions. - Abstract: Desalting and concentration of peptides using reverse phase (RP) C18 chromatographic material based on hydrophobic interaction is a routine approach used in mass spectrometry (MS)-based proteomics. However, MS detection of small hydrophilic peptides, in particular, phosphopeptides that bear multiple negative charges, is challenging due to the insufficient binding to C18 stationary phase. We described here the development of a new desalting method that takes the unique properties of polypyrrole (PPY). The presence of positively charged nitrogen atoms under acidic conditions and polyunsaturated bonds in polypyrrole provide a prospect for enhanced adsorption of phosphopeptides or hydrophilic peptides through extra electrostatic and Π–Π stacking interactions in addition to hydrophobic interactions. In tandem with reversed phase C18 chromatographic material, the new type of desalting method termed as TMTipPPY-C18 can significantly improve the MS detection of phosphopeptides with multiple phosphate groups and other small hydrophilic peptides. It has been applied to not only tryptic digest of model proteins but also the analysis of complex lysates of zebrafish eggs. The number of detected phosphate groups on a peptide ranged from 1 to 6. Particularly, polypyrrole based method can also be used in basic condition. Thus it provides a useful means to handle peptides that may not be detectable in acidic condition. It can be envisioned that the TMTipPPY-C18 should be able to facilitate the exploration of large scale phosphoproteome.

  14. Free energy analysis and mechanism of base pair stacking in nicked DNA.

    Science.gov (United States)

    Häse, Florian; Zacharias, Martin

    2016-09-01

    The equilibrium of stacked and unstacked base pairs is of central importance for all nucleic acid structure formation processes. The stacking equilibrium is influenced by intramolecular interactions between nucleosides but also by interactions with the solvent. Realistic simulations on nucleic acid structure formation and flexibility require an accurate description of the stacking geometry and stability and its sequence dependence. Free energy simulations have been conducted on a series of double stranded DNA molecules with a central strand break (nick) in one strand. The change in free energy upon unstacking was calculated for all ten possible base pair steps using umbrella sampling along a center-of-mass separation coordinate and including a comparison of different water models. Comparison to experimental studies indicates qualitative agreement of the stability order but a general overestimation of base pair stacking interactions in the simulations. A significant dependence of calculated nucleobase stacking free energies on the employed water model was observed with the tendency of stacking free energies being more accurately reproduced by more complex water models. The simulation studies also suggest a mechanism of stacking/unstacking that involves significant motions perpendicular to the reaction coordinate and indicate that the equilibrium nicked base pair step may slightly differ from regular B-DNA geometry in a sequence-dependent manner. PMID:27407106

  15. Stacking of purines in water: the role of dipolar interactions in caffeine.

    Science.gov (United States)

    Tavagnacco, L; Di Fonzo, S; D'Amico, F; Masciovecchio, C; Brady, J W; Cesàro, A

    2016-05-11

    During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations. PMID:27127808

  16. Stack zooming for multifocus interaction in skewed-aspect visual spaces.

    Science.gov (United States)

    Javed, Waqas; Elmqvist, Niklas

    2013-08-01

    Many 2D visual spaces have a virtually one-dimensional nature with very high aspect ratio between the dimensions: examples include time-series data, multimedia data such as sound or video, text documents, and bipartite graphs. Common among these is that the space can become very large, e.g., temperature measurements could span a long time period, surveillance video could cover entire days or weeks, and documents can have thousands of pages. Many analysis tasks for such spaces require several foci while retaining context and distance awareness. In this extended version of our IEEE PacificVis 2010 paper, we introduce a method for supporting this kind of multifocus interaction that we call stack zooming. The approach is based on building hierarchies of 1D strips stacked on top of each other, where each subsequent stack represents a higher zoom level, and sibling strips represent branches in the exploration. Correlation graphics show the relation between stacks and strips of different levels, providing context and distance awareness for the foci. The zoom hierarchies can also be used as graphical histories and for communicating insights to stakeholders and can be further extended with annotation and integrated statistics. PMID:23744266

  17. Stacked Deck: An Effective, School-Based Program for the Prevention of Problem Gambling

    Science.gov (United States)

    Williams, Robert J.; Wood, Robert T.; Currie, Shawn R.

    2010-01-01

    School-based prevention programs are an important component of problem gambling prevention, but empirically effective programs are lacking. Stacked Deck is a set of 5-6 interactive lessons that teach about the history of gambling; the true odds and "house edge"; gambling fallacies; signs, risk factors, and causes of problem gambling; and skills…

  18. Stacking Interactions between 9-Methyladenine and Heterocycles Commonly Found in Pharmaceuticals.

    Science.gov (United States)

    An, Yi; Doney, Analise C; Andrade, Rodrigo B; Wheeler, Steven E

    2016-05-23

    Complexes of 9-methyladenine with 46 heterocycles commonly found in drugs were located using dispersion-corrected density functional theory, providing a representative set of 408 unique stacked dimers. The predicted binding enthalpies for each heterocycle span a broad range, highlighting the strong dependence of heterocycle stacking interactions on the relative orientation of the interacting rings. Overall, the presence of NH and carbonyl groups lead to the strongest stacking interactions with 9-methyadenine, and the strength of π-stacking interactions is sensitive to the distribution of heteroatoms within the ring as well as the specific tautomer considered. Although molecular dipole moments provide a sound predictor of the strengths and orientations of the 28 monocyclic heterocycles considered, dipole moments for the larger fused heterocycles show very little correlation with the predicted binding enthalpies. PMID:27074615

  19. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.

    2009-09-02

    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  20. A theoretical study of π-stacking interactions in C-substituted tetrazoles.

    Science.gov (United States)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza; Akher, Farideh Badichi; Ebrahimi, Ali

    2016-06-01

    The π-stacking effects of benzene ring (Ben) with 1H- and 2H-tetrazole derivatives (1H-TZ-X and 2H-TZ-X) substituted at C5 (where X is Cl, COH, NO, NO2, CN, NH2, OH, OCH3, SH and H) has been investigated by the quantum mechanical calculations at the M06-2X/6-311++G** level. The results indicate the 1H-TZ-X||Ben complexes (|| donates π-stacking interaction) are more stable than 2H-TZ-X||Ben while in unstacked forms, 1H-TZ-X is less stable than 2H-TZ-X. All substituents enhance the π-stacking interaction relative to the unsubstituted ones and enhancement is higher for the electron-withdrawing substituents (EWSs). Also, investigation of the local and direct effect of substituents in stacking interaction showed that all substituents regardless of whether are electron donating or electron withdrawing have an additive effect in π-stacking interaction. Excellent correlations were found between the binding energies of the complexes and combination of substituent constant terms. The results showed that the electrostatic interaction alone is not responsible for stacking stabilization but charge penetration is important. Furthermore, analysis of aromaticity, AIM, ESP and NPA were investigated to obtain aromaticity index, non-bonding interactions, chemical reactivity and polarity (dipole moment), respectively. PMID:27258189

  1. Pi-stacked interactions in explosive crystals: buffers against external mechanical stimuli.

    Science.gov (United States)

    Zhang, Chaoyang; Wang, Xiaochuan; Huang, Hui

    2008-07-01

    The pi-stacked interactions in some explosive crystal packing are discussed. Taking a typical pi-stacked explosive 2,4,6-trinitrobenzene-1,3,5-triamine (TATB) as a sample and using molecular simulations, we investigated the nature of the pi-stacked interactions versus the external mechanical stimuli causing possible slide and compression of explosives. As a result, between the neighbor layers in the TATB unit cell, the electrostatic attraction decreases with a little decrease of vdW attraction when its top layer slides, whereas the vdW attraction increases with a decrease of electrostatic attraction when TATB crystal is compressed along its c axis. Meanwhile, we studied the correlation between the pi-stacked structures and the impact sensitivities of explosives by means of three representatives including TATB with typical planar pi-stacked structures, 2,2-dinitroethylene-1,1-diamine (Fox-7) with wavelike pi-stacked structures, and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) without pi-stacked structure. The results showed that pi-stacked structures, particularly planar layers, can effectively buffer against external mechanical stimuli. That is, pi-stacked structures can partly convert the mechanical energy acting on them into their intermolecular interaction energy, to avoid the increase of the molecular vibration resulting in the explosive decomposition, the formation of hot spots, and the final detonation. This is another reason for the low mechanical sensitivity of pi-stacked explosives besides their stable conjugated molecular structures. PMID:18529058

  2. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.

    1986-01-01

    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  3. New nucleotide pairs for stable DNA triplexes stabilized by stacking interaction.

    Science.gov (United States)

    Mizuta, Masahiro; Banba, Jun-ichi; Kanamori, Takashi; Tawarada, Ryuya; Ohkubo, Akihiro; Sekine, Mitsuo; Seio, Kohji

    2008-07-30

    New nucleotide pairs applicable to formation of DNA triplexes were developed. We designed oligonucleotides incorporating 5-aryl deoxycytidine derivatives (dC5Ars) and cyclic deoxycytidine derivatives, dCPPP and dCPPI, having an expanded aromatic area, as the second strand. As pairing partners, two types of abasic residues (C3: propylene linker, phi: abasic base) were chosen. It was concluded that, when the 5-aryl-modified cytosine bases paired with the abasic sites in TFOs in a space-fitting manner, the stability of the resulting triplexes significantly increased. The recognition of C3 toward dC5Ars was selective because of the stacking interactions between their aromatic part and the nucleobases flanking the abasic site. These results indicate the potential utility of new nucleotide triplets for DNA triplex formation, which might expand the variety of structures and sequences and might be useful for biorelated fields such as DNA nanotechnologies. PMID:18611007

  4. Pyrene-modified PNAs: Stacking interactions and selective excimer emission in PNA2DNA triplexes

    Directory of Open Access Journals (Sweden)

    Alex Manicardi

    2014-07-01

    Full Text Available Pyrene derivatives can be incorporated into nucleic acid analogs in order to obtain switchable probes or supramolecular architectures. In this paper, peptide nucleic acids (PNAs containing 1 to 3 1-pyreneacetic acid units (PNA1–6 with a sequence with prevalence of pyrimidine bases, complementary to cystic fibrosis W1282X point mutation were synthesized. These compounds showed sequence-selective switch-on of pyrene excimer emission in the presence of target DNA, due to PNA2DNA triplex formation, with stability depending on the number and positioning of the pyrene units along the chain. An increase in triplex stability and a very high mismatch-selectivity, derived from combined stacking and base-pairing interactions, were found for PNA2, bearing two distant pyrene units.

  5. Transition-Based Dependency Parsing with Stack Long Short-Term Memory

    OpenAIRE

    Dyer, Chris; Ballesteros, Miguel, (O. Minim.); Ling, Wang; Matthews, Austin; Smith, Noah A.

    2015-01-01

    We propose a technique for learning representations of parser states in transition-based dependency parsers. Our primary innovation is a new control structure for sequence-to-sequence neural networks---the stack LSTM. Like the conventional stack data structures used in transition-based parsing, elements can be pushed to or popped from the top of the stack in constant time, but, in addition, an LSTM maintains a continuous space embedding of the stack contents. This lets us formulate an efficie...

  6. Interactions of point defects with stacking faults in oxygen-free phosphorus-containing copper

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunguo, E-mail: yunguo@kth.se [Division of Materials Technology, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden); Korzhavyi, Pavel A., E-mail: pavelk@kth.se [Division of Materials Technology, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden); Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, 620219 Ekaterinburg (Russian Federation)

    2015-07-15

    The interactions of stacking faults and point defects in oxygen-free phosphorus-containing copper are investigated using ab initio methods. Although monovacancies can act as traps for H impurities or OH groups, the calculations show that two vacancies only weakly bind with each other and this interaction terminates at the third nearest-neighbor distance. An interstitial P tends to form a Cu–P dumbbell-like cluster around the lattice site and can readily combine with a vacancy to become a substitutional impurity. It is also found that the intrinsic stacking-fault energy of copper strongly depends on the temperature as well as on the presences of point defects. The intrinsic stacking-fault energy varies between 20 and 77 mJ/m{sup 2} depending on the presence of point defects in the faulted region. These point defects are also found to affect the unstable stacking-fault energy, but they always increase the twinning tendency of copper. Among them, the substitutional P is found to have the strongest effects, decreasing the intrinsic stacking-fault energy and increasing the twinnability.

  7. Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature

    International Nuclear Information System (INIS)

    The interaction process between dislocations and large stacking-fault tetrahedra was observed in real time at high temperature during deformation experiments in situ in the transmission electron microscope. Dislocation interactions with tetrahedra resulted in them being annihilated and converted to another defect type. Dislocation bypass of the tetrahedra occurred by cross-slip. The latter interaction occurred slowly and halted the progress of the dislocation. Annihilation versus bypass by dislocation cross-slip was dictated by the location at which the slip plane intersected the tetrahedron – on the face or along the edges with the stair-rod dislocations. In general, the interactions, at best, were weakly temperature dependent

  8. Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Briceño, M.; Kacher, J. [Department of Materials Science and Engineering, University of Illinois, 1304 W. Green St., Urbana, IL 61801 (United States); Robertson, I.M., E-mail: ianr@illinois.edu [Department of Materials Science and Engineering, University of Illinois, 1304 W. Green St., Urbana, IL 61801 (United States)

    2013-02-15

    The interaction process between dislocations and large stacking-fault tetrahedra was observed in real time at high temperature during deformation experiments in situ in the transmission electron microscope. Dislocation interactions with tetrahedra resulted in them being annihilated and converted to another defect type. Dislocation bypass of the tetrahedra occurred by cross-slip. The latter interaction occurred slowly and halted the progress of the dislocation. Annihilation versus bypass by dislocation cross-slip was dictated by the location at which the slip plane intersected the tetrahedron – on the face or along the edges with the stair-rod dislocations. In general, the interactions, at best, were weakly temperature dependent.

  9. Dynamics of dislocation interactions with stacking-fault tetrahedra at high temperature

    Science.gov (United States)

    Briceño, M.; Kacher, J.; Robertson, I. M.

    2013-02-01

    The interaction process between dislocations and large stacking-fault tetrahedra was observed in real time at high temperature during deformation experiments in situ in the transmission electron microscope. Dislocation interactions with tetrahedra resulted in them being annihilated and converted to another defect type. Dislocation bypass of the tetrahedra occurred by cross-slip. The latter interaction occurred slowly and halted the progress of the dislocation. Annihilation versus bypass by dislocation cross-slip was dictated by the location at which the slip plane intersected the tetrahedron - on the face or along the edges with the stair-rod dislocations. In general, the interactions, at best, were weakly temperature dependent.

  10. Vibration-based energy harvesting with stacked piezoelectrets

    International Nuclear Information System (INIS)

    Vibration-based energy harvesters with multi-layer piezoelectrets (ferroelectrets) are presented. Using a simple setup with nine layers and a seismic mass of 8 g, it is possible to generate a power up to 1.3 µW at 140 Hz with an input acceleration of 1g. With better coupling between seismic mass and piezoelectret, and thus reduced damping, the power output of a single-layer system is increased to 5 µW at 700 Hz. Simulations indicate that for such improved setups with 10-layer stacks, utilizing seismic masses of 80 g, power levels of 0.1 to 1 mW can be expected below 100 Hz

  11. An application of the van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases.

    Science.gov (United States)

    Cooper, Valentino R; Thonhauser, T; Langreth, David C

    2008-05-28

    We apply the van der Waals density functional (vdW-DF) to study hydrogen bonding and stacking interactions between nucleobases. The excellent agreement of our results with high level quantum chemical calculations highlights the value of the vdW-DF for first-principles investigations of biologically important molecules. Our results suggest that, in the case of hydrogen-bonded nucleobase pairs, dispersion interactions reduce the cost of propeller twists while having a negligible effect on buckling. Furthermore, the efficient scaling of DFT methods allowed for the easy optimization of separation distance between nucleobase stacks, indicating enhancements in the interaction energy of up to 3 kcalmol over previous fixed distance calculations. We anticipate that these results are significant for extending the vdW-DF method to model larger vdW complexes and biological molecules. PMID:18513005

  12. -Stacking interactions between G-quartets and circulenes: A computational study

    Indian Academy of Sciences (India)

    A K Jissy; J H V Ramana; Ayan Datta

    2011-11-01

    Structures of planar and bowl-shaped circulenes as well as their stacks with G-quartet (G4) have been investigated through dispersion-corrected Density Functional Theory (DFT-D). The binding energies are substantial ∼10 kcal/mol with d ∼3.5 Å between the stacking rings. The calculations show that G4 binds much more effectively to planar circulenes as compared to bowl shaped molecules. The strength of binding between a G-quartet and a non-planar circulene molecule depends on the orientation of the circulene (concave or convex) with respect to G-quartet. An AIM analysis of the M05-2X wave-functions has also been performed to confirm the presence of weak intermolecular interactions between guanine quartets and circulenes. Apart from -stacking interactions, the concave bowl-shaped circulenes also interact with G4 through C-H $\\cdots$ interactions. The charge transport properties between the two moieties have also been analysed through effective transport integral. The calculations provide an understanding for the basis of molecular recognition by G4 for non-planar systems.

  13. Strontium titanate/silicon-based terahertz photonic crystal multilayer stack

    International Nuclear Information System (INIS)

    A one-dimensional photonic crystal working in the terahertz (THz) range was designed and implemented. To facilitate the design, the transmission properties of strontium titanate crystals were characterized by THz-time-domain spectroscopy. Relatively high refractive index (∝18.5) and transmission ratio (0.08) were observed between 0.2 to 1 THz. A stacked structure of (Si dSi/STO dSTO)N /Si dSi was then designed, with transmission spectra calculated by the transfer matrix method. The effects of the filling ratio (dSTO/(dSi+dSTO)), periodicity (dSi+dSTO) and the number of repeats N on the transmission of PC were investigated. The effect of introducing a defect layer was also studied. Based on these, Si/STO multilayers with STO defect thickness of 125 μm and 200 μm were measured. The shift of the defect mode was observed and compared with the calculations. (orig.)

  14. Folic acid-polydopamine nanofibers show enhanced ordered-stacking via π-π interactions.

    Science.gov (United States)

    Fan, Hailong; Yu, Xiang; Liu, Yang; Shi, Zujin; Liu, Huihui; Nie, Zongxiu; Wu, Decheng; Jin, Zhaoxia

    2015-06-21

    Recent research has indicated that polydopamine and synthetic eumelanins are optoelectronic biomaterials in which one-dimensional aggregates composed of ordered-stacking oligomers have been proposed as unique organic semiconductors. However, improving the ordered-stacking of oligomers in polydopamine nanostructures is a big challenge. Herein, we first demonstrate how folic acid molecules influence the morphology and nanostructure of polydopamine via tuning the π-π interactions of oligomers. MALDI-TOF mass spectrometry reveals that porphyrin-like tetramers are characteristic of folic acid-polydopamine (FA-PDA) nanofibers. X-ray diffraction combined with simulation studies indicate that these oligomers favour aggregation into graphite-like ordered nanostructures via strong π-π interactions. High-resolution TEM characterization of carbonized FA-PDA hybrids show that in FA-PDA nanofibers the size of the graphite-like domains is over 100 nm. The addition of folic acid in polydopamine enhances the ordered stacking of oligomers in its nanostructure. Our study steps forward to discover the mystery of the structure-property relationship of FA-PDA hybrids. It paves a way to optimize the properties of PDA through the design and selection of oligomer structures. PMID:25959650

  15. On the base-stacking in the 5'-terminal cap structure of mRNA: a fluorescence study.

    OpenAIRE

    Nishimura, Y.; Takahashi, S; Yamamoto, T.; Tsuboi, M; Hattori, M; Miura, K.; K. Yamaguchi; Ohtani, S.; Hata, T

    1980-01-01

    The fluorescence at 370 nm of the 7-methylguanosine residue (m7G) is found to be quenched when the base residue is involved in a stacking interaction with the adenosine residue in the cap structure m7G5' pppA of an eukaryotic mRNA. On the basis of the observed degree of quenching, the amounts of the stacked and unstacked forms in the cap structure have been determined at various temperatures and pH's. It has been found that at pH 6.2 effective enthalpy and entropy in the unstacked leads to st...

  16. The Molecular Dynamic Study of the Stacking Interaction in RNA Dinucleosides, the Dependence of Stacking Ability on RNA Sequence

    Czech Academy of Sciences Publication Activity Database

    Vokáčová, Zuzana

    Praha: MATFYZPRESS, 2007 - (Šafránková, J.; Pavlů, J.), s. 78-83 ISBN 978-80-7378-025-8. [Annual Conference of Doctoral Students - WDS 2007 /16./. Prague (CZ), 05.06.2007-08.06.2007] R&D Projects: GA ČR GA203/05/0388 Institutional research plan: CEZ:AV0Z40550506 Keywords : stack * RNA * sequence Subject RIV: CF - Physical ; Theoretical Chemistry

  17. Molecular dynamics study of the interactions between dislocation and imperfect stacking fault tetrahedron in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Saintoyant, Lucie [Institut National Polytechnique de Grenoble, ENSPG (France); Department of Nuclear Engineering, University of California Berkeley, MC 1730, Berkeley, CA 94720-1730 (United States); Lee, Hyon-Jee [Department of Nuclear Engineering, University of California Berkeley, MC 1730, Berkeley, CA 94720-1730 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of California Berkeley, MC 1730, Berkeley, CA 94720-1730 (United States)]. E-mail: bdwirth@nuc.berkeley.edu

    2007-04-15

    The microstructure of irradiated face centered cubic alloys with low stacking fault energy is distinguished by the formation of a high number density of nanometer size stacking fault tetrahedra (SFT). A recent transmission electron microscopy investigation of high-energy proton irradiated copper has shown that nearly 50% of the visible SFT population are not perfect SFTs, but rather consist of truncated SFT and/or groups of overlapping SFT. This paper presents the results of atomistic molecular dynamics simulations of the interaction between gliding dislocations, of either edge or screw character, and truncated SFT or overlapping SFT. The most common result of the edge dislocation interaction with a truncated SFT is defect shearing, ultimately leading to complete separation into two smaller defect clusters. Partial absorption of the truncated SFT is the most common result of the interaction with a screw dislocation, resulting in the formation of super-jog (or helical) segments as the defect is absorbed into the dislocation core. The resulting non-planar screw dislocation is self-pinned with reduced mobility and is re-emitted as a similar truncated SFT as the applied shear stress is increased. The re-emitted truncated SFT is often rotated and translated relative to the original position. These observations are consistent with the hypothesis that shearing (decreased defect cluster size) and dislocation dragging of the defect clusters by partial absorption into the dislocation core contributes to the formation of defect-free channels.

  18. Self-energy and interaction energy of stacking fault in fcc metals calculated by embedded-atom method

    Institute of Scientific and Technical Information of China (English)

    何刚; 戎咏华; 徐祖耀

    2000-01-01

    The stacking fault energies of five fcc metals (Cu, Ag, Au, Ni and Al) with various quan-tivalences have been calculated by embedded-atom method (EAM). It indicated that the stacking fault energy is mainly determined by the metallic bond-energy and the lattice constant. Thus, monovalent fcc metals should have different stacking fault energies, contrary to Attree’s conclusion. The interaction energy between stacking faults one I 111 I layer apart in a fcc metal is found to be 1/40-1/250 of its self-energy, while it becomes zero when the two stacking faults are two layers apart. The twin energy is just half of the energy of intrinsic stacking fault energy without the consideration of lattice relaxation and the energy of a single intrinsic stacking fault is almost the same as that of extrinsic stacking fault, which are consistent with the results from the calculation of Lennard-Jones force between atoms, but differ from Attree’s result.

  19. Calculation of the stacking fault and twin boundary energies of body-centered cubic sodium metal using interaction energy between close-packed atomic rows

    International Nuclear Information System (INIS)

    A new method of calculation of the stacking fault and twin boundary energies in bcc metal is presented. This method is based on the model in which bcc crystal is built up of a bundle of close-packed atomic rows. Applying pseudopotential method, interaction energy between the atomic rows has been calculated, and then the energy of the two types of stacking fault and the energy of twin boundary in bcc sodium has been calculated. This method is found to be free from the convergence problem and superior to that formerly presented by Rao. (auth.)

  20. Studies of the Intramolecular Aromatic-ring Stacking Interactions in the Ternary Platinum(Ⅱ) Complexes

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-liang

    2005-01-01

    The stability constants of some ternary mixed-ligand complexes, Pt(Phen)(CA)+, where Phen=1,10-phenanthroline and CA- =carboxylate, were determined by means of potentiometric pH titration in aqueous solutions(I=0.1 mol/L, KNO3; 25 ℃), and the stability of them was compared with that of the corresponding binary complexes. It was revealed that the ternary complexes containing phenylalkane carboxylates ligands(PCA-) are much more stable than those formed with formate and acetate. The results indicate that there exist the intramolecular aromatic-ring interactions between the phenanthroline ring of Phen and the phenyl moiety of ligand PCA- in the ternary mixed-ligand Pt(Phen)(PCA)- complexes. The extent of the stacking interactions, which depends on the number of methylene groups between the phenyl moieties and the coordinated phenylalkane carboxylate groups, was calculated. The best-fitted stack was obtained for the complexes with 2-phenylacetate and 3-phenylpropionate as the ligands.

  1. Dislocation-stacking fault tetrahedron interaction: what can we learn from atomic-scale modelling

    International Nuclear Information System (INIS)

    The high number density of stacking fault tetrahedra (SFTs) observed in irradiated fcc metals suggests that they should contribute to radiation-induced hardening and, therefore, taken into account when estimating mechanical properties changes of irradiated materials. The central issue is describing the individual interaction between a moving dislocation and an SFT, which is characterized by a very fine size scale, ∼100 nm. This scale is amenable to both in situ TEM experiments and large-scale atomic modelling. In this paper we present results of an atomistic simulation of dislocation-SFT interactions using molecular dynamics (MD). The results are compared with observations from in situ deformation experiments. It is demonstrated that in some cases the simulations and experimental observations are quite similar, suggesting a reasonable interpretation of experimental observations

  2. Theoretical Studies on the Hydrogen-bonding and π-Stacking Interactions in the m-Nisoldipine Polymorphism Dimers%Theoretical Studies on the Hydrogen-bonding and π-Stacking Interactions in the m-Nisoldipine Polymorphism Dimers

    Institute of Scientific and Technical Information of China (English)

    Zhu, Min; Meng, Lingpeng; Zheng, Shijun; Wang, Jing; Zeng, Yanli

    2012-01-01

    The intermolecular interactions in the dimers of m-nisoldipine polymorphism were studied by B3LYP calculations and quantum theory of "atoms in molecules" (QTAIM) studies. Four geometries of dimers were obtained: dimer I (a:dimer, O…H--N), dimer II (b-dimer, O…H--N), dimer III (b-dimer, n-stacking-c), and dimer IV (b-dimer, n-stacking-p). The interaction energies of the four dimers are along the sequence of II〉I〉III〉IV. The intermolecular distance of the interactions follows the order: I (O…H--N)〈II (O…H--N), and III (n-stacking)〈 IV (n-stacking). Both the O…H--N hydrogen-bonding and n-stacking interactions belong to weak non-covalent interactions. The O…H--N hydrogen-bonding interactions with more electrostatic characters are stronger than the n-stacking interactions. The strength of the weak interactions decreases in the order: I〉II〉III〉IV, and the electrostatic character decreases along the sequence: I〉II〉III〉IV.

  3. STAR3D: a stack-based RNA 3D structural alignment tool.

    Science.gov (United States)

    Ge, Ping; Zhang, Shaojie

    2015-11-16

    The various roles of versatile non-coding RNAs typically require the attainment of complex high-order structures. Therefore, comparing the 3D structures of RNA molecules can yield in-depth understanding of their functional conservation and evolutionary history. Recently, many powerful tools have been developed to align RNA 3D structures. Although some methods rely on both backbone conformations and base pairing interactions, none of them consider the entire hierarchical formation of the RNA secondary structure. One of the major issues is that directly applying the algorithms of matching 2D structures to the 3D coordinates is particularly time-consuming. In this article, we propose a novel RNA 3D structural alignment tool, STAR3D, to take into full account the 2D relations between stacks without the complicated comparison of secondary structures. First, the 3D conserved stacks in the inputs are identified and then combined into a tree-like consensus. Afterward, the loop regions are compared one-to-one in accordance with their relative positions in the consensus tree. The experimental results show that the prediction of STAR3D is more accurate for both non-homologous and homologous RNAs than other state-of-the-art tools with shorter running time. PMID:26184875

  4. Analysis and Experiment of MEMS Based Microdroplet Ejector by a Piezoelectric Stack Actuator in Microfluidic Application

    Directory of Open Access Journals (Sweden)

    K. Ganesan

    2013-12-01

    Full Text Available Micro Electro Mechanical Systems (MEMS are uncovered to an assortment of liquid environments in applications such as chemical and biological sensors and micro fluidic devices. Green interactions between liquids and micro scale structures can lead to volatile performance of MEMS in liquid environments. In this study, the design and fabrication of a multi-material high-performance micro pump is presented. The micro pumps are fabricated using MEMS fabrication techniques, comprised of silicon and Pyrex micromachining and bonding. Manufacturing steps such as three small bulk cylindrical piezoelectric material elements that are integrated with micro-fabricated Silicon-on-Insulator (SOI and glass micro machined substrates using eutectic bonding and anodic bonding processes were successfully realized and provide a robust and scalable production technique for the micro pump. Exceptional flow rates of 0.1 mL/min with 1 W power consumption based on piezoelectric stack actuation achieved by appropriate design optimization.

  5. Iris Matching Based On a Stack Like Structure Graph Approach

    Directory of Open Access Journals (Sweden)

    Roushdi Mohamed FAROUK

    2012-12-01

    Full Text Available In this paper, we present the elastic bunch graph matching as a new approach for iris recognition. The task is difficult because of iris variation in terms of position, size, and partial occlusion. We have used the circular Hough transform to determine the iris boundaries. Individual segmented irises are represented as labeled graphs. We have combined a representative set of individual model graphs into a stack like structure called an iris bunch graph (IBG. Finally, a bunch graph similarity function is proposed to compare a test graph with the IBG. Recognition results are given for galleries of irises from CASIA version and UBIRIS databases. The numerical results show that, the elastic bunch graph matching is an effective technique for iris matching. We also compare our results with previous results and find that, the elastic bunch graph matching is an effective matching performance.

  6. Comprehensive molecular dynamics simulations of the stacking fault tetrahedron interacting with a mixed dislocation at elevated temperature

    Science.gov (United States)

    Fan, Haidong; Wang, Qingyuan; Ouyang, Chaojun

    2015-10-01

    The defect-free channels were frequently observed in irradiated materials, i.e. copper, as a result of the stacking fault tetrahedron (SFT) interactions with dislocations. However, the underlying mechanisms for this process are still unclear to date. To address them, a comprehensive study on the interactions between SFTs and mixed dislocations was performed using molecular dynamics simulations. In particular, eight interaction geometries were considered, in terms of the dislocation Burgers vector directions, dislocation gliding directions and intersection positions on SFT. Various interaction outcomes were revealed after dislocation detachment. (1) SFT is fully absorbed through the transformation into Lomer dislocations, and subsequently moves out of free surfaces along the dislocation. (2) SFT is partially absorbed with the absorbed SFT base moving out of free surfaces along the dislocation. (3) SFT is not absorbed but sheared with ledges left on the SFT faces. (4) SFT is unaffected by the mixed dislocation. The current simulations, especially the full SFT absorption, provide important insights into the forming mechanisms of defect-free channels in irradiated materials.

  7. Pre-stack-texture-based reservoir characteristics and seismic facies analysis

    Science.gov (United States)

    Song, Cheng-Yun; Liu, Zhi-Ning; Cai, Han-Peng; Qian, Feng; Hu, Guang-Min

    2016-03-01

    Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation. However, information is mislaid in the stacking process when traditional texture attributes are extracted from post-stack data, which is detrimental to complex reservoir description. In this study, pre-stack texture attributes are introduced, these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset, anisotropy, and heterogeneity in the medium. Due to its strong ability to represent stratigraphics, a pre-stack-data-based seismic facies analysis method is proposed using the self-organizing map algorithm. This method is tested on wide azimuth seismic data from China, and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified, in addition to the method's ability to reveal anisotropy and heterogeneity characteristics. The pre-stack texture classification results effectively distinguish different seismic reflection patterns, thereby providing reliable evidence for use in seismic facies analysis.

  8. A stacked sequential learning method for investigator name recognition from web-based medical articles

    Science.gov (United States)

    Zhang, Xiaoli; Zou, Jie; Le, Daniel X.; Thoma, George

    2010-01-01

    "Investigator Names" is a newly required field in MEDLINE citations. It consists of personal names listed as members of corporate organizations in an article. Extracting investigator names automatically is necessary because of the increasing volume of articles reporting collaborative biomedical research in which a large number of investigators participate. In this paper, we present an SVM-based stacked sequential learning method in a novel application - recognizing named entities such as the first and last names of investigators from online medical journal articles. Stacked sequential learning is a meta-learning algorithm which can boost any base learner. It exploits contextual information by adding the predicted labels of the surrounding tokens as features. We apply this method to tag words in text paragraphs containing investigator names, and demonstrate that stacked sequential learning improves the performance of a nonsequential base learner such as an SVM classifier.

  9. Structure of Stacked Dimers of N-Methylated Watson–Crick Adenine–Thymine Base Pairs

    Directory of Open Access Journals (Sweden)

    Sándor Suhai

    2003-09-01

    Full Text Available Abstract: The structure of two isomeric stacked dimers of Watson-Crick 9-methyladenine-1-methylthymine pairs was fully optimized using an approximate density functional theory (DFT method augmented with an empirical dispersion interaction. The results of the calculations reveal that head-to-tail (AT-TA and head-to-head (AT-AT dimers possess a significantly different geometry. The structure of both complexes is stabilized by vertical CH…O and C-H…N hydrogen bonds with the participation of the hydrogen atoms of the methyl groups. The energy of hydrogen bonding and stacking interactions was additionally calculated using the MP2/6-31G*(0.25 method. Differences in the mutual arrangement of the base pairs in two isomeric dimers lead to significant changes of intra and interstrand stacking interaction energies.

  10. Note: Resonance magnetoelectric interactions in laminate of FeCuNbSiB and multilayer piezoelectric stack for magnetic sensor

    Science.gov (United States)

    Li, Jianqiang; Lu, Caijiang; Xu, Changbao; Zhong, Ming

    2015-09-01

    This paper develops a simple miniature magnetoelectric (ME) laminate FeCuNbSiB/PZT-stack made up of magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils and piezoelectric Pb(Zr, Ti)O3 (PZT) multilayer stack vibrator. Resonant ME interactions of FeCuNbSiB/PZT-stack with different layers of FeCuNbSiB foil (L) are investigated in detail. The experimental results show that the ME voltage coefficient reaches maximum value of 141.5 (V/cm Oe) for FeCuNbSiB/PZT-stack with L = 6. The AC-magnetic sensitivities can reach 524.29 mV/Oe and 1.8 mV/Oe under resonance 91.6 kHz and off-resonance 1 kHz, respectively. The FeCuNbSiB/PZT-stack can distinguish small dc-magnetic field of ˜9 nT. The results indicate that the proposed ME composites are very promising for the cheap room-temperature magnetic field sensing technology.

  11. Structure of Musashi1 in a complex with target RNA: the role of aromatic stacking interactions.

    Science.gov (United States)

    Ohyama, Takako; Nagata, Takashi; Tsuda, Kengo; Kobayashi, Naohiro; Imai, Takao; Okano, Hideyuki; Yamazaki, Toshio; Katahira, Masato

    2012-04-01

    Mammalian Musashi1 (Msi1) is an RNA-binding protein that regulates the translation of target mRNAs, and participates in the maintenance of cell 'stemness' and tumorigenesis. Msi1 reportedly binds to the 3'-untranslated region of mRNA of Numb, which encodes Notch inhibitor, and impedes initiation of its translation by competing with eIF4G for PABP binding, resulting in triggering of Notch signaling. Here, the mechanism by which Msi1 recognizes the target RNA sequence using its Ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2 has been revealed on identification of the minimal binding RNA for each RBD and determination of the three-dimensional structure of the RBD1:RNA complex. Unique interactions were found for the recognition of the target sequence by Msi1 RBD1: adenine is sandwiched by two phenylalanines and guanine is stacked on the tryptophan in the loop between β1 and α1. The minimal recognition sequences that we have defined for Msi1 RBD1 and RBD2 have actually been found in many Msi1 target mRNAs reported to date. The present study provides molecular clues for understanding the biology involving Musashi family proteins. PMID:22140116

  12. Analysis of a Lorentz force based vibration exciter using permanent magnets mounted on a piezoelectric stack

    Indian Academy of Sciences (India)

    Arghya Nandi; Sumanta Neogy; Sankha Bhaduri

    2011-02-01

    This work presents performance analysis of a Lorentz force based noncontact vibration exciter by mounting a couple of permanent magnets on a piezoelectric stack. A conductor is attached to the structure to be excited and is placed midway between unlike poles of a couple of permanent magnets. The permanent magnets are placed on a piezoelectric stack. This stack, because of its nano-positioning capabilities, can impart an accurate and adjustable harmonic vibratory motion to the couple of permanent magnets. The piezoelectric stack, because of its high stiffness remains uncoupled with the dynamics of the structure. Due to the relative motion between the magnets and the conductor, Lorentz force is generated within the conductor. This Lorentz force is responsible for vibration of the structure in a plane parallel to the pole faces of the magnets. This keeps the magnetic field almost independent of the vibration of the structure and the chance of the structure hitting the magnet during large vibration is totally eliminated. If the amplitude of displacement of the stack is kept constant, the non-contact excitation force in this exciter remains proportional to the excitation frequency. Though use of this exciter eliminates mass (apart from that of the conductor attached to the structure) and stiffness coupling, a known damping term gets added to that of the excited structure.

  13. A 10B-based neutron detector with stacked Multiwire Proportional Counters and macrostructured cathodes

    CERN Document Server

    Stefanescu, I; Birch, J; Defendi, I; Hall-Wilton, R; Hoglund, C; Hultman, L; Zee, M; Zeitelhack, K

    2013-01-01

    We present the results of the measurements of the detection efficiency for a 4.7 \\r{A} neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45{\\deg}, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficie...

  14. Engineering the semiconductor/oxide interaction for stacking twin suppression in single crystalline epitaxial silicon(111)/insulator/Si(111) heterostructures

    International Nuclear Information System (INIS)

    The integration of alternative semiconductor layers on the Si material platform via oxide heterostructures is of interest to increase the performance and/or functionality of future Si-based integrated circuits. The single crystalline quality of epitaxial (epi) semiconductor-insulator-Si heterostructures is however limited by too high defect densities, mainly due to a lack of knowledge about the fundamental physics of the heteroepitaxy mechanisms at work. To shed light on the physics of stacking twin formation as one of the major defect mechanisms in (111)-oriented fcc-related heterostructures on Si(111), we report a detailed experimental and theoretical study on the structure and defect properties of epi-Si(111)/Y2O3/Pr2O3/Si(111) heterostructures. Synchrotron radiation-grazing incidence x-ray diffraction (SR-GIXRD) proves that the engineered Y2O3/Pr2O3 buffer dielectric heterostructure on Si(111) allows control of the stacking sequence of the overgrowing single crystalline epi-Si(111) layers. The epitaxy relationship of the epi-Si(111)/insulator/Si(111) heterostructure is characterized by a type A/B/A stacking configuration. Theoretical ab initio calculations show that this stacking sequence control of the heterostructure is mainly achieved by electrostatic interaction effects across the ionic oxide/covalent Si interface (IF). Transmission electron microscopy (TEM) studies detect only a small population of misaligned type B epi-Si(111) stacking twins whose location is limited to the oxide/epi-Si IF region. Engineering the oxide/semiconductor IF physics by using tailored oxide systems opens thus a promising approach to grow heterostructures with well-controlled properties.

  15. Prediction of 222 Rn exhalation rates from phosphogypsum based stacks. Part II: preliminary numerical results

    International Nuclear Information System (INIS)

    The first part of this paper proposes a steady-state 2-D model for 222 Rn transport in phosphogypsum stacks. In this second part, the dimensionless model equations are solved numerically with the help of an existing finite-volume simulator that has been successfully used to solve heat and mass transfer problems in porous media. As a test case, a rectangular shaped stack is considered in order to verify the ability of the proposed parametric approach to account for concurrent effects on the 222 Rn exhalation into the local atmosphere. Air flow is supposed to be strictly buoyancy driven and the ground is assumed to be impermeable to 222 Rn and at a higher temperature under the stack base. Dimensionless controlling parameters are set to representative values and results are presented for Grashof number in the range 106 ≤Gr≤ 108, corresponding to very small to small temperature differences between incoming air and ground underneath the stack base. For the particular set of parameters and inasmuch as Gr increases, streamlines presented basically the same pattern while internal isotherms and iso concentration lines remained almost unchanged. Total average Sherwood number proved to be rather insensitive to Gr while total average Nusselt increased slightly with Gr. (author)

  16. Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks

    Science.gov (United States)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel

    2016-08-01

    Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.

  17. CSTACK: A Web-Based Stacking Analysis Tool for Deep/Wide Chandra Surveys

    Science.gov (United States)

    Miyaji, Takamitsu; Griffiths, R. E.; C-COSMOS Team

    2008-03-01

    Stacking analysis is a strong tool to probe the average X-ray properties of X-ray faint objects as a class, each of which are fainter than the detection limit as an individual source. This is especially the case for deep/wide surveys with Chandra, with its superb spatial resolution and the existence of survey data on the fields with extensive multiwavelength coverages. We present an easy-to use web-based tool (http://saturn.phys.cmu.edu/cstack), which enables users to perform a stacking analysis on a number of Chandra survey fields.Currently supported are C-COSMOS, Extended Chandra Deep Field South (proprietary access, password protected), Chandra Deep Fields South, and North (Guest access user=password=guest). For an input list of positions (e.g. galaxies selected from an optical catalog), the WWW tool returns stacked Chandra images in soft and hard bands and statistical analysis results including bootstrap histograms. We present running examples on the C-COSMOS data. The next version will also include the use of off-axis dependent aperture size, automatic exclusions of resolved sources, and histograms of stacks on random positions.

  18. SiliPET: Design of an ultra-high resolution small animal PET scanner based on stacks of semi-conductor detectors

    Science.gov (United States)

    Cesca, N.; Auricchio, N.; Di Domenico, G.; Zavattini, G.; Malaguti, R.; Andritschke, R.; Kanbach, G.; Schopper, F.

    2007-03-01

    We studied with Monte Carlo simulations, using the EGSnrc code, a new scanner for small animal positron emission tomography (PET), based on stacks of double-sided semiconductor detectors. Each stack is composed of planar detectors with dimension 70×60×1 mm 3 and orthogonal strips on both sides with 500 μm pitch to read the two interaction coordinates, the third being the detector number in the stack. Multiple interactions in a stack are discarded. In this way, we achieve a precise determination of the first interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results of scanners based on Si planar detectors are presented and the initial tomographic reconstructions demonstrate very good spatial resolution limited only by the positron range. This suggests that, this is a promising new approach for small animal PET imaging. We are testing some double-sided silicon detectors, equipped with 128 orthogonal p and n strips on opposite sides using VATAGP3 ASIC by IDEAS.

  19. SiliPET: Design of an ultra-high resolution small animal PET scanner based on stacks of semi-conductor detectors

    International Nuclear Information System (INIS)

    We studied with Monte Carlo simulations, using the EGSnrc code, a new scanner for small animal positron emission tomography (PET), based on stacks of double-sided semiconductor detectors. Each stack is composed of planar detectors with dimension 70x60x1 mm3 and orthogonal strips on both sides with 500 μm pitch to read the two interaction coordinates, the third being the detector number in the stack. Multiple interactions in a stack are discarded. In this way, we achieve a precise determination of the first interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results of scanners based on Si planar detectors are presented and the initial tomographic reconstructions demonstrate very good spatial resolution limited only by the positron range. This suggests that, this is a promising new approach for small animal PET imaging. We are testing some double-sided silicon detectors, equipped with 128 orthogonal p and n strips on opposite sides using VATAGP3 ASIC by IDEAS

  20. Vision-based interaction

    CERN Document Server

    Turk, Matthew

    2013-01-01

    In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such

  1. The Soil Stack: An Interactive Computer Program Describing Basic Soil Science and Soil Degradation.

    Science.gov (United States)

    Cattle, S. R.; And Others

    1995-01-01

    A computer program dealing with numerous aspects of soil degradation has a target audience of high school and university students (16-20 year olds), and is presented in a series of cards grouped together as stacks. Describes use of the software in Australia. (LZ)

  2. Center motions of nonoverlapping condensates coupled by long-range dipolar interaction in bilayer and multilayer stacks

    International Nuclear Information System (INIS)

    We investigate the effect of anisotropic and long-range dipole-dipole interaction (DDI) on the center motions of nonoverlapping Bose-Einstein condensates in bilayer and multilayer stacks. In the bilayer, it is shown analytically that while DDI plays no role in the in-phase modes of center motions of condensates, out-of-phase mode frequency (ωo) depends crucially on the strength of DDI (ad). At the small-ad limit, ωo2(ad)-ωo2(0)∝ad. In the multilayer stack, transverse modes associated with center motions of coupled condensates are found to be optical-phonon-like. At the long-wavelength limit, phonon velocity is proportional to √(a)d.

  3. Center motions of nonoverlapping condensates coupled by long-range dipolar interaction in bilayer and multilayer stacks

    Science.gov (United States)

    Huang, Chao-Chun; Wu, Wen-Chin

    2010-11-01

    We investigate the effect of anisotropic and long-range dipole-dipole interaction (DDI) on the center motions of nonoverlapping Bose-Einstein condensates in bilayer and multilayer stacks. In the bilayer, it is shown analytically that while DDI plays no role in the in-phase modes of center motions of condensates, out-of-phase mode frequency (ωo) depends crucially on the strength of DDI (ad). At the small-ad limit, ωo2(ad)-ωo2(0)∝ad. In the multilayer stack, transverse modes associated with center motions of coupled condensates are found to be optical-phonon-like. At the long-wavelength limit, phonon velocity is proportional to ad.

  4. Low stacking fault energy steels in the context of manganese-rich iron-based alloys

    International Nuclear Information System (INIS)

    The role of stacking fault energy on defining the work-hardening behavior of manganese-rich iron-based alloys was highlighted by the tensile deformation of four high-manganese steels designed using thermodynamic mechanism maps. The flow behavior and work-hardening rate diagrams, together with the activity of different deformation mechanisms (deformation-induced martensitic transformations and deformation twinning), were evaluated in conjunction with the microstructural investigations using electron backscattering diffraction.

  5. Security Analysis of Permission-Based Systems using Static Analysis: An Application to the Android Stack

    OpenAIRE

    Bartel, Alexandre

    2014-01-01

    In recent years, mobile devices, such as smart phones, have spread at an exponential rate. The most used system running on these devices, accounting for almost 80% of market share for smart phones world-wide, is the Android software stack. This system runs Android applications that users download from an application market. The system is called a permission-based system since it limits access to protected resources by checking that applications have the required permission(s). Users store an...

  6. The effect of stacking fault energy on interactions between an edge dislocation and a spherical void by molecular dynamics simulations

    International Nuclear Information System (INIS)

    Molecular dynamics simulations were conducted using a set of six interatomic potentials for FCC metals that differed only in stacking fault energy (SFE), to clarify the effect of SFE on interactions between a dissociated edge dislocation and a void. There are two different types of interaction mechanism: separate depinning of the individual partial dislocations and almost simultaneous depinning of the combined partial dislocations. The interaction mechanism depends on both the SFE and void size, and changes the absolute value of the critical resolved shear stress (CRSS) and its dependence on the SFE. In the separate depinning case, the CRSS is relatively low and is almost independent of the SFE, while in the simultaneous case, the CRSS is increases with SFE. The void size for which the change in interaction mechanism occurs increases with decreasing SFE

  7. The effect of stacking fault energy on interactions between an edge dislocation and a spherical void by molecular dynamics simulations

    Science.gov (United States)

    Asari, K.; Hetland, O. S.; Fujita, S.; Itakura, M.; Okita, T.

    2013-11-01

    Molecular dynamics simulations were conducted using a set of six interatomic potentials for FCC metals that differed only in stacking fault energy (SFE), to clarify the effect of SFE on interactions between a dissociated edge dislocation and a void. There are two different types of interaction mechanism: separate depinning of the individual partial dislocations and almost simultaneous depinning of the combined partial dislocations. The interaction mechanism depends on both the SFE and void size, and changes the absolute value of the critical resolved shear stress (CRSS) and its dependence on the SFE. In the separate depinning case, the CRSS is relatively low and is almost independent of the SFE, while in the simultaneous case, the CRSS is increases with SFE. The void size for which the change in interaction mechanism occurs increases with decreasing SFE.

  8. The effect of stacking fault energy on interactions between an edge dislocation and a spherical void by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Asari, K., E-mail: asari@race.u-tokyo.ac.jp [Department of Systems Innovation, School of Engineering, The University of Tokyo, Tokyo (Japan); Hetland, O.S.; Fujita, S. [Department of Systems Innovation, School of Engineering, The University of Tokyo, Tokyo (Japan); Itakura, M. [Japan Atomic Energy Agency, Kashiwa (Japan); Okita, T. [Research into Artifacts, Center for Engineering, The University of Tokyo, Kashiwa (Japan)

    2013-11-15

    Molecular dynamics simulations were conducted using a set of six interatomic potentials for FCC metals that differed only in stacking fault energy (SFE), to clarify the effect of SFE on interactions between a dissociated edge dislocation and a void. There are two different types of interaction mechanism: separate depinning of the individual partial dislocations and almost simultaneous depinning of the combined partial dislocations. The interaction mechanism depends on both the SFE and void size, and changes the absolute value of the critical resolved shear stress (CRSS) and its dependence on the SFE. In the separate depinning case, the CRSS is relatively low and is almost independent of the SFE, while in the simultaneous case, the CRSS is increases with SFE. The void size for which the change in interaction mechanism occurs increases with decreasing SFE.

  9. Development of an automatic subsea blowout preventer stack control system using PLC based SCADA.

    Science.gov (United States)

    Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen

    2012-01-01

    An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface. PMID:21889767

  10. Complete optical stack modeling for CMOS-based medical x-ray detectors

    Science.gov (United States)

    Zyazin, Alexander S.; Peters, Inge M.

    2015-03-01

    We have developed a simulation tool for modeling the performance of CMOS-based medical x-ray detectors, based on the Monte Carlo toolkit GEANT4. Following the Fujita-Lubberts-Swank approach recently reported by Star-Lack et al., we calculate modulation transfer function MTF(f), noise power spectrum NPS(f) and detective quantum efficiency DQE(f) curves. The complete optical stack is modeled, including scintillator, fiber optic plate (FOP), optical adhesive and CMOS image sensor. For critical parts of the stack, detailed models have been developed, taking into account their respective microstructure. This includes two different scintillator types: Gd2O2S:Tb (GOS) and CsI:Tl. The granular structure of the former is modeled using anisotropic Mie scattering. The columnar structure of the latter is introduced into calculations directly, using the parameterization capabilities of GEANT4. The underlying homogeneous CsI layer is also incorporated into the model as well as the optional reflective layer on top of the scintillator screen or the protective polymer top coat. The FOP is modeled as an array of hexagonal bundles of fibers. The simulated CMOS stack consists of layers of Si3N4 and SiO2 on top of a silicon pixel array. The model is validated against measurements of various test detector structures, using different x-ray spectra (RQA5 and RQA-M2), showing good match between calculated and measured MTF(f) and DQE(f) curves.

  11. Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction

    Science.gov (United States)

    Wang, Ti; Kafle, Tika R.; Kattel, Bhupal; Liu, Qingfeng; Wu, Judy; Chan, Wai-Lun

    2016-01-01

    The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides. In this work, metal-phthalocyanine molecules is used as a model system to demonstrate that two-dimensional crystals such as graphene can serve as a template for growing high quality, ultra-flat organic films with a face-on orientation. Furthermore, the molecule-substrate interaction is varied systematically from strong to weak interaction regime with the interaction strength characterized by ultrafast electron transfer measurements. We find that in order to achieve the optimum orientation and morphology, the molecule-substrate interaction needs to be strong enough to ensure a face-on stacking while it needs to be weak enough to avoid film roughening. PMID:27356623

  12. Growing Ultra-flat Organic Films on Graphene with a Face-on Stacking via Moderate Molecule-Substrate Interaction.

    Science.gov (United States)

    Wang, Ti; Kafle, Tika R; Kattel, Bhupal; Liu, Qingfeng; Wu, Judy; Chan, Wai-Lun

    2016-01-01

    The electronic properties of small molecule organic crystals depend heavily on the molecular orientation. For multi-layer organic photovoltaics, it is desirable for the molecules to have a face-on orientation in order to enhance the out-of-plane transport properties. However, it is challenging to grow well-ordered and smooth films with a face-on stacking on conventional substrates such as metals and oxides. In this work, metal-phthalocyanine molecules is used as a model system to demonstrate that two-dimensional crystals such as graphene can serve as a template for growing high quality, ultra-flat organic films with a face-on orientation. Furthermore, the molecule-substrate interaction is varied systematically from strong to weak interaction regime with the interaction strength characterized by ultrafast electron transfer measurements. We find that in order to achieve the optimum orientation and morphology, the molecule-substrate interaction needs to be strong enough to ensure a face-on stacking while it needs to be weak enough to avoid film roughening. PMID:27356623

  13. Low-fluence femtosecond-laser interaction with a Mo/Si multilayer stack

    Energy Technology Data Exchange (ETDEWEB)

    Hoeche, T. [3D-Micromac AG, Max-Planck-Strasse 22b, 09114, Chemnitz (Germany); Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstrasse 15, 04318, Leipzig (Germany); Ruthe, D. [Leibniz-Institut fuer Oberflaechenmodifizierung e.V., Permoserstrasse 15, 04318, Leipzig (Germany); Petsch, T. [3D-Micromac AG, Max-Planck-Strasse 22b, 09114, Chemnitz (Germany)

    2004-09-01

    Nanostructural damage caused by low-fluence, non-ablating femtosecond laser irradiation of Mo/Si multilayer stacks is studied by cross-sectional transmission electron microscopy. A laterally homogeneous modification of the multilayer structure is observed including a complete intermixing of silicon and molybdenum in the depth range between 0 and 20 nm. Below this amorphous layer, molybdenum layers become more and more stable until below 80 nm depth, the pristine microstructure of the non-processed multilayer is observed. (orig.)

  14. Temperature dependence of intra-stack defect spin-conduction-electron spin interaction in fluoranthene and perylene radical cation salts

    International Nuclear Information System (INIS)

    The electron spin resonance line-width anisotropy and intensity are analysed for the quasi-one-dimensional organic conductors (fluoranthene)2PF6 and (perylene)2PF6·2/3 tetrahydrofurane in the metallic phase above the Peierls transition temperature. Based on the bottleneck model of relaxation, the temperature dependence of the intra-stack exchange constant between conduction-electron spins and localized defect spins is derived and discussed

  15. Research on Micro-Flow Self-Sensing Actuators Based on Piezoelectric Ceramic Stack

    Institute of Scientific and Technical Information of China (English)

    Yan-Bo Wei; Li-Ping Shi; Xi-Wen Wei; Jie Huang

    2014-01-01

    The paper is concerned with the micro-flow self-sensing actuators, the work of which is based on the secondary piezoelectric effect. The piezoelectric ceramic stack can yield micro-displacement due to its first inverse piezoelectric effect. Therefore, we apply this micro-displacement to cell micro-flow injection. Moreover, due to the charge of the secondary direct piezoelectric effect, the piezoelectric ceramic stack is able to detect the force and displacement in the injection by itself. The experiments of first inverse piezoelectric effect and secondary direct piezoelectric effect are conducted. The experiment results show that, subjected to 0-60 V input, the piezoelectric ceramic stack can generate 13�45 μm displacement, and control accuracy can achieve 2 nm. It can completely meet the needs of cell micro-flow injection. Also, the experiments demonstrate that the micro-displacement due to the first inverse piezoelectric effect can be well self-sensed by the electric charge due to the secondary direct piezoelectric effect.

  16. High performance WR-1.5 corrugated horn based on stacked rings

    CERN Document Server

    Maffei, Bruno; de Rijk, Emile; Ansermet, Jean-Philippe; Pisano, Giampaolo; Legg, Stephen; Macor, Alessandro

    2014-01-01

    We present the development and characterisation of a high frequency (500-750 GHz) corrugated horn based on stacked rings. A previous horn design, based on a Winston profile, has been adapted for the purpose of this manufacturing process without noticeable RF degradation. A subset of experimental results obtained using a vector network analyser are presented and compared to the predicted performance. These first results demonstrate that this technology is suitable for most commercial applications and also astronomical receivers in need of horn arrays at high frequencies.

  17. Excitation migration along oligophenylenevinylene-based chiral stacks: delocalization effects on transport dynamics.

    Science.gov (United States)

    Beljonne, D; Hennebicq, E; Daniel, C; Herz, L M; Silva, C; Scholes, G D; Hoeben, F J M; Jonkheijm, P; Schenning, A P H J; Meskers, S C J; Phillips, R T; Friend, R H; Meijer, E W

    2005-06-01

    Atomistic models based on quantum-chemical calculations are combined with time-resolved spectroscopic investigations to explore the migration of electronic excitations along oligophenylenevinylene-based chiral stacks. It is found that the usual Pauli master equation (PME) approach relying on uncoherent transport between individual chromophores underestimates the excitation diffusion dynamics, monitored here by the time decay of the transient polarization anisotropy. A better agreement to experiment is achieved when accounting for excitation delocalization among acceptor molecules, as implemented in a modified version of the PME model. The same models are applied to study light harvesting and trapping in guest-host systems built from oligomers of different lengths. PMID:16852286

  18. Implementation of Embedded Ethernet Based on Hardware Protocol Stack in Substation Automation System

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; ZHAO Jianguo; LIU Bingxu

    2008-01-01

    Embedded Ethernet technology has been utilized increasingly widely as the communication mode in the substation automation system (SAS). This paper introduces the current applying situation about embedded Ethernet in SAS First. After analyzing the protocol levels used in SAS based on embedded Ethernet and the differences between the TCP and UDP, UDP/IP is selected as the communication protocol between the station-level and bay-level devices for its real-time characteristic. Then a new kind of implementation of the embedded Ethernet is presented based on hardware protocol stack. The designed scheme can be implemented easily, reduce cost significantly and shorten developing cycle.

  19. Q estimation using modified S transform based on pre-stack gathers and its applications on carbonate reservoir

    Science.gov (United States)

    Zandong Sun, Sam; Sun, Xuekai; Wang, Yonggang; Xie, Huiwen

    2015-10-01

    Pre-stack seismic data is acknowledged to be more favorable in estimating Q values since it carries much more valuable information in traveltime and amplitude than post-stack data. However, the spectrum of reflectors can be strongly altered by nearby reflector or side lobes of the wavelet, which thereby degrades the accuracy of Q estimation based on the pre-stack spectral ratio method. To solve this problem, we propose a method based on the modified S-transform (MST) for estimating Q values from pre-stack gathers, in which Q values can be obtained with regression analysis based on the relationship between spectral ratio slope and the square of offset. Through tests on a numerical model, we first prove advantages of this pre-stack spectral ratio method compared to the traditional post-stack method. Besides, it is also shown that application of MST would lead to a much more focused intercept, which is the kernel for the pre-stack method. Therefore, the accuracy of Q estimation using MST is further improved when compared with that of conventional S-transform (ST). Based on this Q estimation method, we apply relevant processing methods (e.g. inverse Q filtering and dynamic Q migration) in practice, in order to improve imaging resolution and gathering quality with better amplitude and phase relationships. Applications on a carbonate reservoir witness remarkable enhancements of the imaging result, in which features of faults and deep strata are more clearly revealed. Moreover, pre-stack common-reflection-point (CRP) gathers obtained by dynamic Q migration well compensate the amplitude loss and correct the phase. Its ultimate pre-stack elastic inversion result better characterizes the geologic rules of complex carbonate reservoir predominated by secondary-storage-space.

  20. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres.

    Science.gov (United States)

    Al-Amri, Amal M; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%. PMID:27339612

  1. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    Science.gov (United States)

    Al-Amri, Amal M.; Fu, Po-Han; Lai, Kun-Yu; Wang, Hsin-Ping; Li, Lain-Jong; He, Jr-Hau

    2016-01-01

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%. PMID:27339612

  2. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Al-Amri, Amal M.

    2016-06-24

    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  3. A Compact Nanosecond-Pulse Shaping System Based on Pulse Stacking in Fibres

    Institute of Scientific and Technical Information of China (English)

    SUI Zhan; LIN Hong-Huan; WANG Jian-Jun; ZHAO Hong-Ming; LI Ming-Zhong; QIAN Lie-Jia; ZHU He-Yuan; FAN Dian-Yuan

    2006-01-01

    @@ We demonstrate a compact pulse shaping system based on temporal stacking of pulses in fibres, by which synchronized pulses of ultrashort and nanosecond lasers can be obtained. The system may generate shape-controllable pulses with a fast rise time and high-resolution within a time window of ~2.2 ns by adjusting variable optical attenuators in the 32 fibre channels independently. With the help of optical amplifiers, the system delivers mJ-level pulses with a signal-to-noise ratio of~35 dB.

  4. Simultaneous observations of aerosol-cloud-albedo interactions with three stacked unmanned aerial vehicles.

    Science.gov (United States)

    Roberts, G C; Ramana, M V; Corrigan, C; Kim, D; Ramanathan, V

    2008-05-27

    Aerosol impacts on climate change are still poorly understood, in part, because the few observations and methods for detecting their effects are not well established. For the first time, the enhancement in cloud albedo is directly measured on a cloud-by-cloud basis and linked to increasing aerosol concentrations by using multiple autonomous unmanned aerial vehicles to simultaneously observe the cloud microphysics, vertical aerosol distribution, and associated solar radiative fluxes. In the presence of long-range transport of dust and anthropogenic pollution, the trade cumuli have higher droplet concentrations and are on average brighter. Our observations suggest a higher sensitivity of radiative forcing by trade cumuli to increases in cloud droplet concentrations than previously reported owing to a constrained droplet radius such that increases in droplet concentrations also increase cloud liquid water content. This aerosol-cloud forcing efficiency is as much as -60 W m(-2) per 100% percent cloud fraction for a doubling of droplet concentrations and associated increase of liquid water content. Finally, we develop a strategy for detecting aerosol-cloud interactions based on a nondimensional scaling analysis that relates the contribution of single clouds to albedo measurements and illustrates the significance of characterizing cloud morphology in resolving radiometric measurements. This study demonstrates that aerosol-cloud-albedo interactions can be directly observed by simultaneous observations below, in, and above the clouds. PMID:18499803

  5. Synthetic gauge field and pseudospin-orbit interaction in a stacked two-dimensional ring network lattice

    CERN Document Server

    Ochiai, Tetsuyuki

    2016-01-01

    Synthetic gauge field and pseudospin-orbit interaction are implemented in the stacked two-dimensional ring network model proposed by the present author. The model was introduced to simulate light propagation in the corresponding ring-resonator network, and is thus completely bosonic. Without these two items, the system exhibits Floquet-Weyl and Floquet-topological-insulator phases with topologically gapless and gapped band structures, respectively. The synthetic magnetic field implemented in the model results in a three-dimensional Hofstadter-butterfly-type spectrum in a photonic platform. The resulting gaps are characterization by the winding number of relevant S-matrices together with the Chern number of the bulk bands. The pseudospin-orbit interaction is defined as the mixing term between two pseudospin degrees of freedom in the rings, namely, the clockwise and counter-clockwise modes in the rings. It destroys the Floquet-topological-insulator phases, while the Floquet-Weyl phase with multiple Weyl points ...

  6. Analytical modeling and optimization of DEAP-based multilayer stack-transducers

    Science.gov (United States)

    Hoffstadt, Thorben; Maas, Jürgen

    2015-09-01

    Transducers based on dielectric electroactive polymers (DEAP) use electrostatic pressure to convert electrical into mechanical energy or vice versa. To scale up the actuation or the energy gain, multilayer transducers like DEAP stack transducers are appropriate. Within this contribution, a model of such a stack transducer is derived and experimentally validated. The model is based on a multi-domain approach to describe the mechanical dynamics and the electrical behavior of the DEAP. Since these two domains influence each other they are coupled afterwards by a novel approach using interchanging power flows. To parametrize this model, tensile and compression tests for different polymer materials were performed under static and transient considerations. The results of these experiments show that the parameters obtained from the tensile test sufficiently describe the compression mode and can therefore be used for the model. Based on this transducer model the overall energy and the different parts of the multi-domain are analytically determined for arbitrary operating points. These expressions for the energies are finally used to optimize well-defined coupling coefficients, by which a maximum part of the electrical input energy is converted to mechanical energy, especially mechanical work.

  7. Effects of stacking fault energy on the creep behaviors of Ni-base superalloy

    International Nuclear Information System (INIS)

    Highlights: • The decrease of SFE could promote the dislocation dissociation. • The creep mechanisms were significantly affected by the SFE of the alloys. • The creep properties of the alloys improved with the decrease of SFE by facilitating the microtwinning process. - Abstract: Cobalt in a 23 wt.% Co containing Ni-base superalloys was systematically substituted by Ni in order to study the effects of stacking fault energy (SFE) on the creep mechanisms. The deformation microstructures of the alloys during different creep stages at 725 °C and 630 MPa were investigated by transmission electron microscopy (TEM). The results showed that the creep life increased as the SFE decreased corresponding to the increase of Co content in the alloys. At primary creep stage, the dislocation was difficult to dissociate independent of SFE. In contrast, at secondary and tertiary creep stages the dislocations dissociated at γ/γ′ interface and the partial dislocation started to shear γ′ precipitates, leaving isolated faults (IFs) in high SFE alloy, while the dislocations dissociated in the matrix and the partials swept out the matrix and γ′ precipitates creating extended stacking faults (ESFs) or deformation microtwins which were involved in diffusion-mediated reordering in low SFE alloy. It is suggested that the deformation microtwinning process should be favorable with the decrease of SFE, which could enhance the creep resistance and improve the creep properties of the alloys

  8. Prediction of 222 Rn exhalation rates from phosphogypsum based stacks. Part I: parametric mathematical modeling

    International Nuclear Information System (INIS)

    Radon-222 is a radionuclide exhaled from phosphogypsum by-produced at phosphate fertilizer industries. Alternative large-scale application of this waste may indicate a material substitute for civil engineering provided that environmental issues concerning its disposal and management are overcome. The first part of this paper outlines a steady-state two-dimensional model for 222Rn transport through porous media, inside which emanation (source term) and decay (sink term) exist. Boussinesq approach is evoked for the laminar buoyancy-driven interstitial air flow, which is also modeled according to Darcy-Brinkman formulation. In order to account for simultaneous effects of entailed physical parameters, governing equations are cast into dimensionless form. Apart from usual controlling parameters like Reynolds, Prandtl, Schmidt, Grashof and Darcy numbers, three unconventional dimensionless groups are put forward. Having in mind 222Rn transport in phosphogypsum-bearing porous media, the physical meaning of those newly introduced parameters and representative values for the involved physical parameters are presented. A limiting diffusion-dominated scenario is addressed, for which an analytical solution is deduced for boundary conditions including an impermeable phosphogypsum stack base and a non-zero fixed concentration activity at the stack top. Accordingly, an expression for the average Sherwood number corresponding to the normalized 222Rn exhalation rate is presented

  9. Design-for-test and test optimization techniques for TSV-based 3D stacked ICs

    CERN Document Server

    Noia, Brandon

    2014-01-01

    This book describes innovative techniques to address the testing needs of 3D stacked integrated circuits (ICs) that utilize through-silicon-vias (TSVs) as vertical interconnects.  The authors identify the key challenges facing 3D IC testing and present results that have emerged from cutting-edge research in this domain.  Coverage includes topics ranging from die-level wrappers, self-test circuits, and TSV probing to test-architecture design, test scheduling, and optimization.  Readers will benefit from an in-depth look at test-technology solutions that are needed to make 3D ICs a reality and commercially viable.   • Provides a comprehensive guide to the challenges and solutions for the testing of TSV-based 3D stacked ICs; • Includes in-depth explanation of key test and design-for-test technologies, emerging standards, and test- architecture and test-schedule optimizations; • Encompasses all aspects of test as related to 3D ICs, including pre-bond and post-bond test as well as the test optimizatio...

  10. Parametric Characterization of Reformate-operated PBI-based High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    2016-01-01

    This paper presents an experimental characterization of a HT-PEMFC short stack performed by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate operated stack. Polarization...

  11. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  12. Weak interactions in barbituric acid derivatives. Unusually steady intermolecular organic “sandwich” complexes. π π Stacking versus hydrogen bonding interactions

    Science.gov (United States)

    Khrustalev, Victor N.; Krasnov, Konstantin A.; Timofeeva, Tatiana V.

    2008-04-01

    The 4-methoxy-6,6-dimethyl-5,6,7,8-tetrahydro[1,3]dioxolo[4,5- g]isoquinolin-6-ium ( 1) and 2-(1 H-indol-3-yl)-1-ethanaminium (tryptaminium) ( 2) salts of 1,3-dimethyl-2,4,6-trioxoperhydro-pyrimidine-5-spiro-6'-{4'-methoxy-7'-(1,3-dimethyl-2,4,6-trioxoper-hydropyrimidin-5-yl)-5',6',7',8'-tetrahydro[1,3]dioxolo[4,5- g]naphthalene} ( 3) have been prepared and their structures have been investigated by single-crystal X-ray diffraction analysis. It has been found on the basis of the crystal packing arrangement as well as physical and chemical properties that derivatives 1 and 2 form unusually steady intermolecular sandwich-like complexes both in the crystal and in solution, which are stabilized by weak C sbnd H… n(O dbnd C) hydrogen bonds and π-π stacking. The interplay between the intermolecular π-π stacking and strong N sbnd H…O hydrogen bond interactions and its influence on the "sandwich" structures of 1 and 2 are discussed.

  13. Conformational Preferences of π-π Stacking Between Ligand and Protein, Analysis Derived from Crystal Structure Data Geometric Preference of π-π Interaction.

    Science.gov (United States)

    Zhao, Yuan; Li, Jue; Gu, Hui; Wei, Dongqing; Xu, Yao-Chang; Fu, Wei; Yu, Zhengtian

    2015-09-01

    π-π Interaction is a direct attractive non-covalent interaction between aromatic moieties, playing an important role in DNA stabilization, drug intercalation, etc. Aromatic rings interact through several different conformations including face-to-face, T-shaped, and offset stacked conformation. Previous quantum calculations indicated that T-shaped and offset stacked conformations are preferred for their smaller electron repulsions. However, substitution group on aromatic ring could have a great impact on π-π interaction by changing electron repulsion force between two rings. To investigate π-π interaction between ligand and aromatic side chain of protein, Brookhaven Protein Data Bank was analyzed. We extracted isolated dimer pairs with the aim of excluding multiple π-π stacking effects and found that T-shaped conformation is prevalent among aromatic interaction between phenyl ring of ligand and protein, which corresponds with the phenomenon of Phe-Phe interactions in small peptide. Specifically, for the non-substitution model, both Phe-Phe and Phenyl-Phe exhibit a favored T-shaped conformation whose dihedral angle is around 50°-70° and centroid distance is between 5.0 and 5.6 Å. However, it could be changed by substituent effect. The hydroxyl group could contact in the case of Tyr-Tyr pairs, while they point away from phenyl plane in Phe-Tyr pairs. PMID:26370211

  14. Fuel cells multi-stack power architectures and experimental validation of 1 kW parallel twin stack PEFC generator based on high frequency magnetic coupling dedicated to on board power unit

    International Nuclear Information System (INIS)

    This paper presents a study of a polymer electrolyte fuel cell (PEFC) multi-stack generator and its power electronic interface dedicated to an on board vehicle power unit. A parallel electric architecture has been designed and tested. First, a dynamic model of the PEFC stack, valid for high frequencies and compatible with power converter interactions, has been developed. This model is used for simulations of the global fuel cell and power converter behaviors. Second, an inventory of generic multi-stack fuel cells architectures is presented in order to couple electrically the fuel cell stacks to an on board DC bus (in series, parallel, through magnetic coupling..). This state of the art is completed by an overview of several candidate power converter topologies for fuel cells. Then, among all the possible technical solutions, an original power converter architecture using a high frequency planar transformer is proposed, which allows parallel and series magnetic couplings of two fuel cell stacks. Then, the study focuses on a first step, which is the association of two PEFC stacks. Such a structure, having good efficiency, is well adapted for testing and operation of fuel cells in normal and degraded working modes, which correspond to real constraints on board a vehicle. Finally, experimental validations on a 2 x 500 W twin stack PEFC with power converter interface demonstrate the technological feasibility for the embarked multi-stack fuel cells generator. The 1 kW power level chosen for the experimentation is close to that of a small on board PEFC auxiliary power unit (APU)

  15. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez

    2001-02-01

    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  16. Thin Co/Ni-based bottom pinned spin-transfer torque magnetic random access memory stacks with high annealing tolerance

    Science.gov (United States)

    Tomczak, Y.; Swerts, J.; Mertens, S.; Lin, T.; Couet, S.; Liu, E.; Sankaran, K.; Pourtois, G.; Kim, W.; Souriau, L.; Van Elshocht, S.; Kar, G.; Furnemont, A.

    2016-01-01

    Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. A stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm2 after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks.

  17. DNA base-stacking assay utilizing catalytic hairpin assembly-induced gold nanoparticle aggregation for colorimetric protein sensing.

    Science.gov (United States)

    Chang, Chia-Chen; Chen, Chie-Pein; Chen, Chen-Yu; Lin, Chii-Wann

    2016-03-18

    A label-free and enzyme-free colorimetric sensing platform for the amplified detection of fibronectin was developed based on an ingenious combination of catalytic hairpin assembly and a base stacking hybridization-based gold nanoparticle aggregation strategy. The detection limit of 2.3 pM is at least one order of magnitude lower than that of established fibronectin biosensors. PMID:26906691

  18. A hybrid microbial fuel cell stack based on single and double chamber microbial fuel cells for self-sustaining pH control

    Science.gov (United States)

    Yang, Wei; Li, Jun; Ye, Dingding; Zhang, Liang; Zhu, Xun; Liao, Qiang

    2016-02-01

    Proton accumulation in the anode chamber is the major problem that affects the operational stability and electricity generation performance of double chamber microbial fuel cells (MFCs). In this study, a hybrid microbial fuel cell stack (DS-DS stack) based on single (SCMFCs) and double chamber MFCs (DCMFCs) is proposed for self-sustaining pH control in the MFC stack. It is found that the aerobic microbial oxidation of acetate by the biofilm that is attached to the air cathode of SCMFCs is responsible for the self-sustaining removal of accumulated H+ in the effluent of DCMFCs. Compared with the stack that solely consists of SCMFCs (SS-SS stack) or DCMFCs (DD-DD stack), the hybrid stack exhibits the highest electricity output performance and the most effective conversion of acetate into electricity at high power levels. Furthermore, the hybrid stack demonstrates the operation time of 15.7 ± 1.1 h when the operating voltage is above 0.8 V. This value is much higher than that of the DD-DD (8.5 ± 2.4 h) and SS-SS (8.1 ± 1.4 h) stacks, which suggests that the hybrid stack had a good operational stability.

  19. Stabilization variation of organic conductor surfaces induced by π-π stacking interactions

    Institute of Scientific and Technical Information of China (English)

    Dou Rui-Fen; Lin Feng; Liu Fu-Wei; Sun Yi; Yang Ji-Yong; Lin Bing-Fa; He Lin; Xiong Chang-Min; Nie Jia-Cai

    2012-01-01

    The structures and stabilization of three crystal surfaces of TCNQ-based charge transfer complexes(CTCs)including PrQ(TCNQ)2,MPM(TCNQ)2,and MEM(TCNQ)2,have been investigated by scanning tunneling microscopy(STM).The three bulk-truncated surfaces are all ac-surface,which are terminated with TCNQ molecular arrays.On the ac-surface of PrQ(TCNQ)2,the TCNQ molecules form a tetramer structure with a wavelike row behavior and a γ angle of about 18° between adjacent molecules.Moreover,the dimer structures are resolved on both ac-surfaces of MPM(TCNQ)2 and MEM(TCNQ)2.In addition,the tetramer structure is the most stable structure,while the dimer structures are unstable and easily subject to the STM tip disturbance,which results in changeable unit cells.The main reasous for the surface stabilization variation among the three ac-surfaces are provided by using the ‘π-atom model'.

  20. Hot Embossing of Zr-Based Bulk Metallic Glass Micropart Using Stacked Silicon Dies

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2015-01-01

    Full Text Available We demonstrated hot embossing of Zr65Cu17.5Ni10Al7.5 bulk metallic glass micropart using stacked silicon dies. Finite element simulation was carried out, suggesting that it could reduce the stress below 400 MPa in the silicon dies and enhance the durability of the brittle silicon dies when using varying load mode (100 N for 60 s and then 400 N for 60 s compared with using constant load mode (200 N for 120 s. A micropart with good appearance was fabricated under the varying load, and no silicon die failure was observed, in agreement with the simulation. The amorphous state of the micropart was confirmed by differential scanning calorimeter and X-ray diffraction, and the nanohardness and Young’s modulus were validated close to those of the as-cast BMG rods by nanoindentation tests. The results proved that it was feasible to adopt the varying load mode to fabricate three-dimensional Zr-based bulk metallic glass microparts by hot embossing process.

  1. Designing of Low Power CNTFET Based D Flip-Flop Using Forced Stack Technique

    Directory of Open Access Journals (Sweden)

    Vikas Sharma

    2015-04-01

    Full Text Available Low Power devices in small packages is the need of present and future electronic devices. Electronics Industry is making devices which can be planted in human bodies. CMOS Technology won‟t be able to deliver such devices because it shows short channel effects in Nano scale. So, to overcome the problems of CMOS technology we use CNTs (Carbon Nano Tubes. In electronic devices, power is consumed by various elements like flip-flop, latches, clock sources. So in order to reduce power of a system we used to reduce power consumed by flip-flops. In this paper we design an existing flip-flop “Low power clocked pass transistor flip-flop (LCPTFF” on CNTFET using Stanford CNTFET model for reference. We propose a design of CNTFET based Forced Stack Low Power Clocked Pass Transistor Flip-Flop (CN-FS-LCPTFF and observe 12% to 25% power reduction in various conditions like temperature change, CNTFET diameter change, and different voltage supply.

  2. Thermodynamic stability of Mg-based ternary long-period stacking ordered structures

    International Nuclear Information System (INIS)

    Mg alloys containing long-period stacking ordered (LPSO) structures exhibit remarkably high tensile yield strength and ductility. They have been found in a variety of ternary Mg systems of the general form Mg–XL–XS, where XL and XS are elements larger and smaller than Mg, respectively. In this work, we examine the thermodynamic stability of these LPSO precipitates with density functional theory, using a newly proposed structure model based on the inclusion of a Mg interstitial atom. We predict the stabilities for 14H and 18R LPSO structures for many Mg–XL–XL ternary systems: 85 systems consisting of XL = rare earths (RE) Sc, Y, La–Lu and XS = Zn, Al, Cu, Co, Ni. We predict thermodynamically stable LPSO phases in all systems where LPSO structures are observed. In addition, we predict several stable LPSO structures in new, as-yet-unobserved Mg–RE–XS systems. Many non-RE XL elements are also explored on the basis of size mismatch between Mg and XL, including Tl, Sb, Pb, Na, Te, Bi, Pa, Ca, Th, K, Sr—an additional 55 ternary systems. XL = Ca, Sr and Th are predicted to be most promising in terms of forming stable LPSO phases, particularly with XS = Zn. Lastly, several previously observed trends amongst known XL elements are examined. We find that favorable mixing energy between Mg and XL on the face-centered cubic lattice and the size mismatch together serve as excellent criteria determining XL LPSO formation

  3. An overview of the DII-HEP OpenStack based CMS data analysis

    Science.gov (United States)

    Osmani, L.; Tarkoma, S.; Eerola, P.; Komu, M.; Kortelainen, M. J.; Kraemer, O.; Lindén, T.; Toor, S.; White, J.

    2015-05-01

    An OpenStack based private cloud with the Cluster File System has been built and used with both CMS analysis and Monte Carlo simulation jobs in the Datacenter Indirection Infrastructure for Secure High Energy Physics (DII-HEP) project. On the cloud we run the ARC middleware that allows running CMS applications without changes on the job submission side. Our test results indicate that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability. To manage the virtual machines (VM) dynamically in an elastic fasion, we are testing the EMI authorization service (Argus) and the Execution Environment Service (Argus-EES). An OpenStackplugin has been developed for Argus-EES. The Host Identity Protocol (HIP) has been designed for mobile networks and it provides a secure method for IP multihoming. HIP separates the end-point identifier and locator role for IP address which increases the network availability for the applications. Our solution leverages HIP for traffic management. This presentation gives an update on the status of the work and our lessons learned in creating an OpenStackbased cloud for HEP.

  4. A stacking-fault based microscopic model for platelets in diamond

    Science.gov (United States)

    Antonelli, Alex; Nunes, Ricardo

    2005-03-01

    We propose a new microscopic model for the 001 planar defects in diamond commonly called platelets. This model is based on the formation of a metastable stacking fault, which can occur because of the ability of carbon to stabilize in different bonding configurations. In our model the core of the planar defect is basically a double layer of three-fold coordinated sp^2 carbon atoms embedded in the common sp^3 diamond structure. The properties of the model were determined using ab initio total energy calculations. All significant experimental signatures attributed to the platelets, namely, the lattice displacement along the [001] direction, the asymmetry between the [110] and the [11 0] directions, the infrared absorption peak B^' , and broad luminescence lines that indicate the introduction of levels in the band gap, are naturally accounted for in our model. The model is also very appealing from the point of view of kinetics, since naturally occurring shearing processes will lead to the formation of the metastable fault.Authors acknowledge financial support from the Brazilian agencies FAPESP, CNPq, FAEP-UNICAMP, FAPEMIG, and Instituto do Milênio em Nanociências-MCT

  5. High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Arico, A.S.; Di Blasi, A.; Brunaccini, G.; Sergi, F.; Dispenza, G.; Andaloro, L.; Ferraro, M.; Antonucci, V. [CNR-ITAE, Messina (Italy); Asher, P.; Buche, S.; Fongalland, D.; Hards, G.A.; Sharman, J.D.B. [Johnson Matthey Fuel Cells Ltd, Blounts Court, Sonning Common, Reading, Berks (United Kingdom); Bayer, A.; Heinz, G.; Zandona, N. [SolviCore GmbH and Co KG, Hanau (Germany); Zuber, R. [Umicore AG and Co KG, Dept. RD-EP, Hanau (Germany); Gebert, M.; Corasaniti, M.; Ghielmi, A. [Solvay Solexis, Bollate (Italy)

    2010-12-15

    Polymer electrolyte fuel cell stacks assembled with Johnson Matthey Fuel Cells and SolviCore MEAs based on the Aquivion trademark E79-03S short-side chain (SSC), chemically stabilised perfluorosulphonic acid membrane developed by Solvay Solexis were investigated at CNR-ITAE in the EU Sixth Framework 'Autobrane' project. Electrochemical experiments in fuel cell short stacks were performed under practical automotive operating conditions at pressures of 1-1.5 bar abs. over a wide temperature range, up to 130 C, with varying levels of humidity (down to 18% R. H.). The stacks using large area (360 cm{sup 2}) MEAs showed elevated performance in the temperature range from ambient to 100 C (cell power density in the range of 600-700 mWcm{sup -2}) with a moderate decrease above 100 C. The performances and electrical efficiencies achieved at 110 C (cell power density of about 400 mWcm{sup -2} at an average cell voltage of about 0.5-0.6 V) are promising for automotive applications. Duty-cycle and steady-state galvanostatic experiments showed excellent stack stability for operation at high temperature. A performance comparison of Aquivion trademark and Nafion trademark -based MEAs under practical operating conditions showed a significantly better capability for the Solvay Solexis membrane to sustain high temperature operation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Atomic force microscopy study of stacking modes of martensitic transformation in Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Stacking modes of thermally induced and stress-induced martensitic transformation in Fe-28Mn-6Si-5Cr shape memory alloys have been studied using atomic force microscopy (AFM). It has been found that thermally induced martensite plates appear with the self-accommodated stacking form, in which all the three possible variants with different left angle 112 right angle shear directions in a {111} plane are activated and formed in parallel but at separate places; i.e. each plate corresponds to one variant. In addition, a plastic deformation band is always induced in austenite between two different variants. On the other hand, stress-induced martensite plates appear with the mono-partial stacking form, i.e. only single variant is activated in a {111} plane in a grain. The difference between stacking modes of thermally induced and stress-induced martensites makes them play a different role in contributing to shape memory effect in Fe-Mn-Si based shape memory alloys. (orig.)

  7. Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian; WEI Dong

    2006-01-01

    The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8 -2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm.

  8. Omnidirectional mirror based on Bragg stacks with a periodic gain-loss modulation

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares-Martinez, Jesus; Ham-Rodriguez, Carlos Ivan [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83000 (Mexico); Moctezuma-Enriquez, Damian, E-mail: foxonicos@gmail.com [Centro de Investigacion en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua 31109 (Mexico); Manzanares-Martinez, Betsabe [Departamento de Fisica, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000 (Mexico)

    2014-01-15

    In this work we demonstrate that a Bragg Stack with a periodic gain-loss modulation can function as an Omnidirectional Mirror (OM) with complete reflection at any angle of incidence irrespective of the light polarization. The Bragg Stack is composed by the periodic variation of two layers with the same value of the real part of the refractive index (n{sub r}) and a periodic modulation in the imaginary part (n{sub i}). The origin of the band gaps is due to the interference of complex waves with propagating and evanescent fields in each layer. It is found that the band gaps are wider as the contrast n{sub i}/n{sub r} increases. We have found the ambient conditions to obtain an OM considering an auxiliary medium n{sup ′} external to the Bragg Stack.

  9. Omnidirectional mirror based on Bragg stacks with a periodic gain-loss modulation

    Directory of Open Access Journals (Sweden)

    Jesus Manzanares-Martinez

    2014-01-01

    Full Text Available In this work we demonstrate that a Bragg Stack with a periodic gain-loss modulation can function as an Omnidirectional Mirror (OM with complete reflection at any angle of incidence irrespective of the light polarization. The Bragg Stack is composed by the periodic variation of two layers with the same value of the real part of the refractive index (nr and a periodic modulation in the imaginary part (ni. The origin of the band gaps is due to the interference of complex waves with propagating and evanescent fields in each layer. It is found that the band gaps are wider as the contrast ni/nr increases. We have found the ambient conditions to obtain an OM considering an auxiliary medium n′ external to the Bragg Stack.

  10. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    Science.gov (United States)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  11. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts

    2011-11-01

    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  12. Program Optimization Based Pointer Analysis and Live Stack-Heap Analysis

    CERN Document Server

    El-Zawawy, Mohamed A

    2011-01-01

    In this paper, we present type systems for flow-sensitive pointer analysis, live stack-heap (variables) analysis, and program optimization. The type system for live stack-heap analysis is an enrichment of that for pointer analysis; the enrichment has the form of a second component being added to types of the latter system. Results of pointer analysis are proved useful via their use in the type system for live stack-heap analysis. The type system for program optimization is also an augmentation of that for live stack-heap analysis, but the augmentation takes the form of a transformation component being added to inference rules of the latter system. The form of program optimization being achieved is that of dead-code elimination. A form of program correction may result indirectly from eliminating faulty code (causing the program to abort) that is dead. Therefore program optimization can result in program correction. Our type systems have the advantage of being compositional and relatively-simply structured. The...

  13. Optical characterization of HfO{sub 2}-based high-k gate stacks

    Energy Technology Data Exchange (ETDEWEB)

    Weisheit, Martin; Huebner, Rene; Engelmann, Hans-Juergen; Zienert, Inka; Ohsiek, Susanne; Dittmar, Kornelia; Hecker, Michael; Trentzsch, Martin; Zschech, Ehrenfried [AMD Saxony LLC and Co. KG, Dresden (Germany)

    2008-07-01

    HfO{sub 2} is currently introduced as a high-k gate dielectric into large scale semiconductor production of logic devices. Along with HfO{sub 2}, a number of other new materials will have to be introduced into the gate stack, namely ultrathin work function layers and metal gates. This results in a complex gate stack that challenges traditional characterization techniques. In this presentation we demonstrate how a combination of complementary methods allows quantitative determination of relevant parameters. Important information can be derived from the optical properties of the stack - such as the bandgap of the HfO{sub 2} - which are measured by variable angle spectroscopic ellipsometry (VASE). However, due to the very thin individual layers of the stack, independent determination of thickness and refractive index is difficult. Therefore, TEM and X-ray reflectivity are needed as complementary methods for an accurate measure of the layer thicknesses. Using the Drude model, VASE is then employed to characterize the electrical conductivity of the TiN metal gate layers, which is compared to microscopic four-point probe measurements and discussed with respect to chemical composition as determined by XPS and Auger electron spectroscopy.

  14. Characterization of cotton gin total particulate matter emissions based on EPA stack sampling methodologies

    Science.gov (United States)

    A project to characterize cotton gin emissions in terms of stack sampling was conducted during the 2008 through 2011 ginning seasons. The impetus behind the project was the urgent need to collect additional cotton gin emissions data to address current regulatory issues. EPA AP-42 emission factors ar...

  15. Development of a thermopile infrared sensor using stacked double polycrystalline silicon layers based on the CMOS process

    International Nuclear Information System (INIS)

    A stacked double-layer (SDL) thermopile-based infrared sensor, which comprised of 96 thermocouples on a suspended membrane, has been designed and fabricated with a CMOS-compatible process. The thermoelectric properties were characterized, and responsivity (Rs) of 202.8 V W−1 and detectivity (D*) of 2.85*108 cm Hz1/2 W−1 for a SDL thermopile were derived. (paper)

  16. Policies for dynamic stack composition

    OpenAIRE

    Sora, Ioana; Michiels, Sam; Matthijs, Frank

    2001-01-01

    Currently, protocol stacks operate in various contexts and it is therefore not possible to know the required properties of a stack (both functional and non-functional) in advance. The stack has to be dynamically built up from components, based on the requirements and the momentary situation. The first step in building the stack is to determine the component types to be used and the stack architecture that has to define the way building blocks are connected. In this document we report on how t...

  17. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer

    Science.gov (United States)

    Zhong, Rong-Lin; Xu, Hong-Liang; Li, Zhi-Ru

    2016-08-01

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.

  18. Thin Co/Ni-based bottom pinned spin-transfer torque magnetic random access memory stacks with high annealing tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, Y., E-mail: Yoann.Tomczak@imec.be [IMEC Kapeldreef 75, B-3001 Leuven (Belgium); Department of Chemistry, KU Leuven (University of Leuven), Celestijnenlaan 200F, B-3001 Leuven (Belgium); Swerts, J.; Mertens, S.; Lin, T.; Couet, S.; Sankaran, K.; Pourtois, G.; Kim, W.; Souriau, L.; Van Elshocht, S.; Kar, G.; Furnemont, A. [IMEC Kapeldreef 75, B-3001 Leuven (Belgium); Liu, E. [Department of Chemistry, KU Leuven (University of Leuven), Celestijnenlaan 200F, B-3001 Leuven (Belgium)

    2016-01-25

    Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. A stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm{sup 2} after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks.

  19. Thin Co/Ni-based bottom pinned spin-transfer torque magnetic random access memory stacks with high annealing tolerance

    International Nuclear Information System (INIS)

    Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. A stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm2 after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks

  20. Understanding the role of base stacking in nucleic acids. MD and QM analysis of tandem GA base pairs in RNA duplexes

    Czech Academy of Sciences Publication Activity Database

    Morgado, C.A.; Svozil, D.; Turner, D.H.; Šponer, Jiří

    2012-01-01

    Roč. 14, č. 36 (2012), s. 12580-12591. ISSN 1463-9076 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional research plan: CEZ:AV0Z50040702 Keywords : GA base pairs * base stacking * RNA duplexes Subject RIV: BO - Biophysics Impact factor: 3.829, year: 2012

  1. The physical origin of dispersion in accumulation in InGaAs based metal oxide semiconductor gate stacks

    Science.gov (United States)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-05-01

    Dispersion in accumulation is a widely observed phenomenon in technologically important InGaAs gate stacks. Two principal different interface defects were proposed as the physical origin of this phenomenon—disorder induced gap states and border traps. While the gap states are located at the semiconductor side of the interface, the border traps are related to the dielectric side. The study of Al2O3, HfO2, and an intermediate composition of HfxAlyO deposited on InGaAs enabled us to find a correlation between the dispersion and the dielectric/InGaAs band offset. At the same time, no change in the dispersion was observed after applying an effective pre-deposition treatment which results in significant reduction of the interface states. Both observations prove that border traps are the physical origin of the dispersion in accumulation in InGaAs based metal-oxide-semiconductor gate stacks.

  2. Stacking of the mutagenic base analogue 5-bromouracil: energy landscapes of pyrimidine dimers in gas phase and water.

    Science.gov (United States)

    Holroyd, Leo F; van Mourik, Tanja

    2015-11-11

    The potential energy surfaces of stacked base pairs consisting of cytosine (C), thymine (T), uracil (U) and the mutagenic thymine analogue 5-bromouracil (BrU) have been searched to obtain all possible minima. Minima and transition states were optimised at the counterpoise-corrected M06-2X/6-31+G(d) level, both in the gas phase and in water, modelled by the polarizable continuum model. The stacked dimers studied are BrU/BrU, C/BrU, C/C, C/T, C/U, T/BrU and T/U. Both face-to-back and face-to-face structures were considered. Free energies were calculated at 298.15 K. Together with U/U, T/T and BrU/U results from previous work, these results complete the family consisting of every stacked dimer combination consisting of C, T, U and BrU. The results were used to assess the hypothesis suggested in the literature that BrU stacks stronger than T, which could stabilise the mispair formed by BrU and guanine. In the gas phase, structures of C/BrU, T/BrU and U/BrU with greater zero-point-corrected binding energies than C/T, T/T and U/T, respectively, were found, with differences in favour of BrU of 3.1 kcal mol(-1), 1.7 kcal mol(-1) and 0.5 kcal mol(-1), respectively. However, the structure of these dimers differed considerably from anything encountered in DNA. When only the dimers with the most "DNA-like" twist (±36°) were considered, C/BrU and T/BrU were still more strongly bound than C/T and T/T, by 0.5 kcal mol(-1) and 1.7 kcal mol(-1), respectively. However, when enthalpic and/or solvent contributions were taken into account, the stacking advantage of BrU was reversed in the gas phase and mostly nullified in water. Enhanced stacking therefore does not seem a plausible mechanism for the considerably greater ability of BrU-G mispairs over T-G mispairs to escape enzymatic repair. PMID:26507806

  3. Manifestation of π-π stacking interactions in luminescence properties and energy transfer in aromatically-derived Tb, Eu and Gd tris(pyrazolyl)borate complexes.

    Science.gov (United States)

    Mikhalyova, Elena A; Yakovenko, Anastasiya V; Zeller, Matthias; Kiskin, Mikhail A; Kolomzarov, Yuriy V; Eremenko, Igor L; Addison, Anthony W; Pavlishchuk, Vitaly V

    2015-04-01

    The three new complexes Tp(Py)Ln(CH3CO2)2(H2O) (Ln = Eu (1), Gd(2), or Tb (3)) were prepared and characterized crystallographically. In the crystal lattices of these complexes, separate molecules are connected in infinite chains by π-stacking interactions. Complexes 1 and 3 display intense photoluminescence and triboluminescence (red and green respectively), while compound 3 exhibits electroluminescence commencing at 9 V in an ITO/PVK/3/Al device (ITO = indium-tin oxide, PVK = poly(N-vinylcarbazole)). A series of Eu/Tb-doped Gd compounds was prepared by cocrystallization from mixtures of 1 and 2 or 2 and 3, respectively. It was shown that π-stacking interactions are involved in increasing the efficiency of energy transfer from the gadolinium complex to emitting [Tp(Py)Eu](2+) or [Tp(Py)Tb](2+) centers, and this energy transfer occurs through hundreds of molecules, resembling the process of energy harvesting in chloroplast stacks. PMID:25797500

  4. Stacking with No Planarity?

    Science.gov (United States)

    Gunaydin, Hakan; Bartberger, Michael D

    2016-04-14

    This viewpoint describes the results obtained from matched molecular pair analyses and quantum mechanics calculations that show unsaturated rings found in drug-like molecules may be replaced with their saturated counterparts without losing potency even if they are engaged in stacking interactions with the side chains of aromatic residues. PMID:27096037

  5. Contemporary sample stacking in CE: A sophisticated tool based on simple principles

    Czech Academy of Sciences Publication Activity Database

    Malá, Zdeňka; Křivánková, Ludmila; Gebauer, Petr; Boček, Petr

    2007-01-01

    Roč. 28, 1-2 (2007), s. 243-253. ISSN 0173-0835 R&D Projects: GA ČR GA203/05/2106; GA AV ČR IAA4031401; GA AV ČR IAA400310609 Institutional research plan: CEZ:AV0Z40310501 Keywords : biological samples * ITP * stacking Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.609, year: 2007

  6. Compact Shorted Stacked-Patch Antenna Integrated with Chip-Package Based on LTCC Technology

    Directory of Open Access Journals (Sweden)

    Yongjiu Li

    2014-01-01

    Full Text Available A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (about λ/25 at 2.45 GHz due to the shorted pin. The package is mounted on a 44 × 44 mm2 ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth (S11< -10 dB is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.

  7. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system

    Science.gov (United States)

    Toor, S.; Osmani, L.; Eerola, P.; Kraemer, O.; Lindén, T.; Tarkoma, S.; White, J.

    2014-06-01

    The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.

  8. Feature-based fusion of TomoSAR point clouds from multi-view TerraSAR-X data stacks

    OpenAIRE

    Wang, Yuanyuan; Zhu, Xiao Xiang

    2013-01-01

    This article presents a technique of fusing point clouds from multiple view angles generated using synthetic aperture radar (SAR) tomography. Using TerraSAR-X high resolution spotlight data stacks, one such point has a population of about 2×107 points, with a density of around 10^6 points / km2. Such large point population leads to a high computational cost while doing the fusion in 3D space. Therefore, we introduce a feature-based unsupervised technique for point clouds fusion by detectin...

  9. Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars

    Science.gov (United States)

    Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens

    2016-03-01

    The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.

  10. A scalable infrastructure for CMS data analysis based on OpenStack Cloud and Gluster file system

    International Nuclear Information System (INIS)

    The challenge of providing a resilient and scalable computational and data management solution for massive scale research environments requires continuous exploration of new technologies and techniques. In this project the aim has been to design a scalable and resilient infrastructure for CERN HEP data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with the Gluster File System. We integrate the state-of-the-art Cloud technologies with the traditional Grid middleware infrastructure. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources without compromising on performance and high availability.

  11. Interactive example-based hatching

    NARCIS (Netherlands)

    Gerl, Moritz; Isenberg, Tobias

    2013-01-01

    We present an approach for interactively generating pen-and-ink hatching renderings based on hand-drawn examples. We aim to overcome the regular and synthetic appearance of the results of existing methods by incorporating human virtuosity and illustration skills in the computer generation of such im

  12. Self-assembly of Bis[2-(2-hydroxyphenyl)-pyridine]Copper(Ⅱ) Induced by C-H…π and π…π Stacking Interaction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Introduction The control of molecular assembly in the solid state is an important theme of modern chemistry.It is in this regard that there is an activity in the area of supramolecular structures at present.The self-assembly of molecules can form well-defined supramolecular structures under the influence of drive forces such as hydrogen bonds[1-3],metal-ligand coordination bonds[4-6] and π…π stacking interactions[7-10].Word et al.have described the co-ordination chemistry of polydentate chelating ligands which contain mixed pyridine-phenol donor sets[11].Some unusual structures of transition metal pyridine-phenol complexes have been established in which non-covalent interactions such as hydrogen bonding and π…π stacking appear to play a dominant part.These observations suggest that it might be possible to construct supramolecular structures with a metal pyridine-phenol system.To explore this idea we have begun to investigate the self-assembly properties of metal pyridine-phenol complexes.Herein we present the self-assembly properties of Cu(pp)2[pp=2-(2-hydroxyphenol)-pyridine] under different conditions.

  13. Stacked Denoise Autoencoder Based Feature Extraction and Classification for Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Chen Xing

    2016-01-01

    Full Text Available Deep learning methods have been successfully applied to learn feature representations for high-dimensional data, where the learned features are able to reveal the nonlinear properties exhibited in the data. In this paper, deep learning method is exploited for feature extraction of hyperspectral data, and the extracted features can provide good discriminability for classification task. Training a deep network for feature extraction and classification includes unsupervised pretraining and supervised fine-tuning. We utilized stacked denoise autoencoder (SDAE method to pretrain the network, which is robust to noise. In the top layer of the network, logistic regression (LR approach is utilized to perform supervised fine-tuning and classification. Since sparsity of features might improve the separation capability, we utilized rectified linear unit (ReLU as activation function in SDAE to extract high level and sparse features. Experimental results using Hyperion, AVIRIS, and ROSIS hyperspectral data demonstrated that the SDAE pretraining in conjunction with the LR fine-tuning and classification (SDAE_LR can achieve higher accuracies than the popular support vector machine (SVM classifier.

  14. Limited-memory BFGS based least-squares pre-stack Kirchhoff depth migration

    Science.gov (United States)

    Wu, Shaojiang; Wang, Yibo; Zheng, Yikang; Chang, Xu

    2015-08-01

    Least-squares migration (LSM) is a linearized inversion technique for subsurface reflectivity estimation. Compared to conventional migration algorithms, it can improve spatial resolution significantly with a few iterative calculations. There are three key steps in LSM, (1) calculate data residuals between observed data and demigrated data using the inverted reflectivity model; (2) migrate data residuals to form reflectivity gradient and (3) update reflectivity model using optimization methods. In order to obtain an accurate and high-resolution inversion result, the good estimation of inverse Hessian matrix plays a crucial role. However, due to the large size of Hessian matrix, the inverse matrix calculation is always a tough task. The limited-memory BFGS (L-BFGS) method can evaluate the Hessian matrix indirectly using a limited amount of computer memory which only maintains a history of the past m gradients (often m < 10). We combine the L-BFGS method with least-squares pre-stack Kirchhoff depth migration. Then, we validate the introduced approach by the 2-D Marmousi synthetic data set and a 2-D marine data set. The results show that the introduced method can effectively obtain reflectivity model and has a faster convergence rate with two comparison gradient methods. It might be significant for general complex subsurface imaging.

  15. Scaleable multi-format QCW pump stacks based on 200W laser diode bars and mini bars at 808nm and 940nm

    Science.gov (United States)

    Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan

    2011-03-01

    Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.

  16. A series of Cd(II) complexes with π-π stacking and hydrogen bonding interactions: Structural diversities by varying the ligands

    International Nuclear Information System (INIS)

    Seven new Cd(II) complexes consisting of different phenanthroline derivatives and organic acid ligands, formulated as [Cd(PIP)2(dnba)2] (1), [Cd(PIP)(ox)].H2O (2), [Cd(PIP)(1,4-bdc)(H2O)].4H2O (3), [Cd(3-PIP)2(H2O)2].4H2O (4), [Cd2(3-PIP)4(4,4'-bpdc)(H2O)2].5H2O (5), [Cd(3-PIP)(nip)(H2O)].H2O (6), [Cd2(TIP)4(4,4'-bpdc)(H2O)2].3H2O (7) (PIP=2-phenylimidazo[4,5-f]1,10-phenanthroline, 3-PIP=2-(3-pyridyl)imidazo[4,5-f]1,10-phenanthroline, TIP=2-(2-thienyl)imidazo[4,5-f]1,10-phenanthroline, Hdnba=3,5-dinitrobenzoic acid, H2ox=oxalic acid, 1,4-H2bdc=benzene-1,4-dicarboxylic acid, 4,4'-H2bpdc=biphenyl-4,4'-dicarboxylic acid, H2nip=5-nitroisophthalic acid) have been synthesized under hydrothermal conditions. Complexes 1 and 4 possess mononuclear structures; complexes 5 and 7 are isostructural and have dinuclear structures; complexes 2 and 3 feature 1D chain structures; complex 6 contains 1D double chain, which are further extended to a 3D supramolecular structure by π-π stacking and hydrogen bonding interactions. The N-donor ligands with extended π-system and organic acid ligands play a crucial role in the formation of the final supramolecular frameworks. Moreover, thermal properties and fluorescence of 1-7 are also investigated. -- Graphical abstract: Seven new supramolecular architectures have been successfully isolated under hydrothermal conditions by reactions of different phen derivatives and Cd(II) salts together with organic carboxylate anions auxiliary ligands. Display Omitted Research highlights: → Complexes 1-7 are 0D or 1D polymeric structure, the π-π stacking and H-bonding interactions extend the complexes into 3D supramolecular network. To our knowledge, systematic study on π-π stacking and H-bonding interactions in cadmium(II) complexes are still limited. → The structural differences among the title complexes indicate the importance of N-donor chelating ligands for the creation of molecular architectures. → The thermal and fluorescence properties

  17. A PMT-like high gain avalanche photodiode based on GaN/AlN periodical stacked structure

    CERN Document Server

    Zheng, Ji-yuan; Yang, Di; Yu, Jia-dong; Meng, Xiao; E, Yan-xiong; Wu, Chao; Hao, Zhi-biao; Sun, Chang-zheng; Xiong, Bing; Luo, Yi; Han, Yan-jian; Wang, Jian; Li, Hong-tao; Brault, Julien; Matta, Samuel; Khalfioui, Mohamed Al; Yan, Jian-chang; Wei, Tong-bo; Zhang, Yun; Wang, Jun-xi

    2016-01-01

    Avalanche photodiode (APD) has been intensively investigated as a promising candidate to replace photomultiplier tubes (PMT) for weak light detection. However, in conventional APDs, a large portion of carrier energy drawn from the electric field is thermalized, and the multiplication efficiencies of electron and hole are low and close. In order to achieve high gain, the device should work under breakdown bias, where carrier multiplication proceeds bi-directionally to form a positive feedback multiplication circle. However, breakdown is hard to control, in practice, APDs should work under Geiger mode as a compromise between sustainable detection and high gain. The complexity of system seriously restricts the application. Here, we demonstrate an avalanche photodiode holding high gain without breakdown, which means no quenching circuit is needed for sustainable detection. The device is based on a GaN/AlN periodically-stacked-structure (PSS), wherein electron holds much higher efficiency than hole to draw energy ...

  18. A comparative study of AlN and Al2O3 based gate stacks grown by atomic layer deposition on InGaAs

    Science.gov (United States)

    Krylov, Igor; Pokroy, Boaz; Ritter, Dan; Eizenberg, Moshe

    2016-02-01

    Thermal activated atomic layer deposited (t) (ALD) and plasma enhanced (p) ALD (PEALD) AlN films were investigated for gate applications of InGaAs based metal-insulator-semiconductor devices and compared to the well-known Al2O3 based system. The roles of post-metallization annealing (PMA) and the pre-deposition treatment (PDT) by either trimethylaluminium (TMA) or NH3 were studied. In contrast to the case of Al2O3, in the case of AlN, the annealing temperature reduced interface states density. In addition, improvement of the AlN film stoichiometry and a related border traps density reduction were observed following PMA. The lowest interface states density (among the investigated gate stacks) was found for PEALD AlN/InGaAs stacks after TMA PDT. At the same time, higher values of the dispersion in accumulation were observed for AlN/InGaAs gate stacks compared to those with Al2O3 dielectric. No indium out-diffusion and the related leakage current degradation due to annealing were observed at the AlN/InGaAs stack. In light of these findings, we conclude that AlN is a promising material for InGaAs based gate stack applications.

  19. Improved ⅢI-nitrides based light-emitting diodes anti-electrostatic discharge capacity with an AlGaN/GaN stack insert layer

    Institute of Scientific and Technical Information of China (English)

    Li Zhicong; Wang Guohong; Li Jinmin; Li Panpan; Wang Bing; Li Hongjian; Liang Meng; Yao Ran; Li Jing; Deng Yuanming; Yi Xiaoyan

    2011-01-01

    Through insertion of an AlGaN/GaN stack between the u-GaN and n-GaN of GaN-based light-emitting diodes (LEDs),the strain in the epilayer was increased,the dislocation density was reduced.GaN-based LEDs with different Al compositions were compared.6.8% A1 composition in the stacks showed the highest electrostatic discharge (ESD) endurance ability at the human body mode up to 6000 V and the pass yield exceeded 95%.

  20. Are our homes ready for services? A domotic infrastructure based on the Web service stack

    NARCIS (Netherlands)

    Aiello, Marco; Dustdar, Schahram

    2008-01-01

    The increase in computational power and the networking abilities of home appliances are revolutionizing the way we interact with our homes. This trend is growing stronger and opening a number of technological challenges. From the point of view of distributed systems, there is a need to design archit

  1. A model-based approach for current voltage analyses to quantify degradation and fuel distribution in solid oxide fuel cell stacks

    Science.gov (United States)

    Linder, Markus; Hocker, Thomas; Meier, Christoph; Holzer, Lorenz; Friedrich, K. Andreas; Iwanschitz, Boris; Mai, Andreas; Schuler, J. Andreas

    2015-08-01

    Reliable quantification and thorough interpretation of the degradation of solid oxide fuel cell (SOFC) stacks under real conditions is critical for the improvement of its long-term stability. The degradation behavior is often analyzed based on the evolution of current-voltage (V,I) curves. However, these overall resistances often contain unavoidable fluctuations in the fuel gas amount and composition and hence are difficult to interpret. Studying the evolution of internal repeat unit (RU) resistances is a more appropriate measure to assess stack degradation. RU-resistances follow from EIS-data through subtraction of the gas concentration impedance from the overall steady-state resistance. In this work a model-based approach where a local equilibrium model is used for spatial discretization of a SOFC stack RU running on hydrocarbon mixtures such as natural gas. Since under stack operation, fuel leakages, uneven fuel distribution and varying natural gas composition can influence the performance, they are taken into account by the model. The model extracts the time-dependent internal resistance from (V,I)-data and local species concentration without any fitting parameters. RU resistances can be compared with the sum of the resistances of different components that allows one to make links between laboratory degradation experiments and the behavior of SOFC stacks during operation.

  2. Analysis and Experiment of MEMS Based Microdroplet Ejector by a Piezoelectric Stack Actuator in Microfluidic Application

    OpenAIRE

    K. Ganesan; Palanisamy, V.

    2013-01-01

    Micro Electro Mechanical Systems (MEMS) are uncovered to an assortment of liquid environments in applications such as chemical and biological sensors and micro fluidic devices. Green interactions between liquids and micro scale structures can lead to volatile performance of MEMS in liquid environments. In this study, the design and fabrication of a multi-material high-performance micro pump is presented. The micro pumps are fabricated using MEMS fabrication techniques, comprised of silicon an...

  3. Single-molecule dissection of stacking forces in DNA.

    Science.gov (United States)

    Kilchherr, Fabian; Wachauf, Christian; Pelz, Benjamin; Rief, Matthias; Zacharias, Martin; Dietz, Hendrik

    2016-09-01

    We directly measured at the single-molecule level the forces and lifetimes of DNA base-pair stacking interactions for all stack sequence combinations. Our experimental approach combined dual-beam optical tweezers with DNA origami components to allow positioning of blunt-end DNA helices so that the weak stacking force could be isolated. Base-pair stack arrays that lacked a covalent backbone connection spontaneously dissociated at average rates ranging from 0.02 to 500 per second, depending on the sequence combination and stack array size. Forces in the range from 2 to 8 piconewtons that act along the helical direction only mildly accelerated the stochastic unstacking process. The free-energy increments per stack that we estimate from the measured forward and backward kinetic rates ranged from -0.8 to -3.4 kilocalories per mole, depending on the sequence combination. Our data contributes to understanding the mechanics of DNA processing in biology, and it is helpful for designing the kinetics of DNA-based nanoscale devices according to user specifications. PMID:27609897

  4. Using a method based on Potts Model to segment a micro-CT image stack of trabecular bones of femoral region

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Pedro H.A. de; Cabral, Manuela O.M., E-mail: andrade.pha@gmail.com [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Engenharia Nuclear; Vieira, Jose W.; Correia, Filipe L. de B., E-mail: jose.wilson59@uol.com.br [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Lima, Fernando R. De A., E-mail: falima@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (brazil)

    2015-07-01

    Exposure Computational Models are composed basically of an anthropomorphic phantom, a Monte Carlo (MC) code, and an algorithm simulator of the radioactive source. Tomographic phantoms are developed from medical images and must be pre-processed and segmented before being coupled to a MC code (which simulates the interaction of radiation with matter). This work presents a methodology used for treatment of micro-CT images stack of a femur, obtained from a 30 year old female skeleton provided by the Imaging Laboratory for Anthropology of the University of Bristol, UK. These images contain resolution of 60 micrometers and from these a block containing only 160 x 60 x 160 pixels of trabecular tissues and bone marrow was cut and saved as ⁎.sgi file (header + ⁎.raw file). The Grupo de Dosimetria Numerica (Recife-PE, Brazil) developed a software named Digital Image Processing (DIP), in which a method for segmentation based on a physical model for particle interaction known as Potts Model (or q-Ising) was implemented. This model analyzes the statistical dependence between sites in a network. In Potts Model, when the values of spin variables at neighboring sites are identical, it is assigned an 'energy of interaction' between them. Otherwise, it is said that the sites do not interact. Making an analogy between network sites and the pixels of a digital image and, moreover, between the spins variables and the intensity of the gray scale, it was possible to apply this model to obtain texture descriptors and segment the image. (author)

  5. Using a method based on Potts Model to segment a micro-CT image stack of trabecular bones of femoral region

    International Nuclear Information System (INIS)

    Exposure Computational Models are composed basically of an anthropomorphic phantom, a Monte Carlo (MC) code, and an algorithm simulator of the radioactive source. Tomographic phantoms are developed from medical images and must be pre-processed and segmented before being coupled to a MC code (which simulates the interaction of radiation with matter). This work presents a methodology used for treatment of micro-CT images stack of a femur, obtained from a 30 year old female skeleton provided by the Imaging Laboratory for Anthropology of the University of Bristol, UK. These images contain resolution of 60 micrometers and from these a block containing only 160 x 60 x 160 pixels of trabecular tissues and bone marrow was cut and saved as ⁎.sgi file (header + ⁎.raw file). The Grupo de Dosimetria Numerica (Recife-PE, Brazil) developed a software named Digital Image Processing (DIP), in which a method for segmentation based on a physical model for particle interaction known as Potts Model (or q-Ising) was implemented. This model analyzes the statistical dependence between sites in a network. In Potts Model, when the values of spin variables at neighboring sites are identical, it is assigned an 'energy of interaction' between them. Otherwise, it is said that the sites do not interact. Making an analogy between network sites and the pixels of a digital image and, moreover, between the spins variables and the intensity of the gray scale, it was possible to apply this model to obtain texture descriptors and segment the image. (author)

  6. Model based examination on influence of stack series connection and pipe diameters on efficiency of vanadium redox flow batteries under consideration of shunt currents

    Science.gov (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.

    2015-05-01

    Model based design and optimization of large scale vanadium redox flow batteries can help to decrease system costs and to increase system efficiency. System complexity, e.g. the combination of hydraulic and electric circuits requires a multi-physic modeling approach to cover all dependencies between subsystems. A Matlab/Simulink model is introduced, which covers a variable number of stacks and their hydraulic circuit, as well as the impact of shunt currents. Using analytic approaches that are afterward crosschecked with the developed model, a six-stack, 54 kW/216 kWh system is designed. With the simulation results it is demonstrated how combining stacks to strings and varying pipe diameters affects system efficiency. As cell voltage is comparatively low, connecting stacks in series to strings seems reasonable to facilitate grid connection. It is shown that this significantly lowers system efficiency. Hydraulic circuit design is varied to lower efficiency drop. In total, four different electric designs are equipped with 21 hydraulic design variations to quantify dependencies between electric and hydraulic subsystems. Furthermore, it is examined whether additional shunt current losses through stack series connection can be compensated by more efficient energy conversion systems.

  7. Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

    OpenAIRE

    Christopher Kugler; Tilo Müller

    2015-01-01

    Despite the fact that protection mechanisms like StackGuard, ASLR and NX are widespread, the development on new defense strategies against stack-based buffer overflows has not yet come to an end. In this article, we present a novel compiler-level protection called SCADS: Separated Control and Data Stacks that protects return addresses and saved frame pointers on a separate stack, called the control stack. In common computer programs, a single user mode stack is used to store control informati...

  8. A Monolithically Integrated InP-Based HBT and p-i-n Photodiode Using New Stack-Shared Layer Scheme

    OpenAIRE

    Kim, Moonjung; Cha, Jung-Ho; Shin, Seong-Ho; Jeon, Soo-Kun; Kim, Jaeho; Kwon, Young-Se

    2003-01-01

    New stack-shared layer scheme has been developed to integrate monolithically InP-based heterojunction bipolar transistor (HBT)and p-i-n photodiode.In this layer scheme,a p + -and intrinsic InGaAs layers for a photodiode were stacked on n + -InP emitter layer, which is shared as both emitter contact layer for an HBT and n-type contact layer for a photodiode.The fabricated HBTs demonstrated excellent high-speed characteristics of f T =108 GHz and f max =300 GHz.The photodiode,formed with an und...

  9. Evolution and interaction of twins, dislocations and stacking faults in rolled α-brass during nanostructuring at sub-zero temperature

    Directory of Open Access Journals (Sweden)

    Barna Roy

    2014-06-01

    Full Text Available The effect of cryorolling (CR strain at 153 K on the evolution of structural defects and their interaction in α−brass (Cu–30 wt.% Zn during nanostructuring has been evaluated. Even though the lattice strain increases up to 2.1 × 10−3 at CR strain of 0.6 initially, but it remains constant upon further rolling. Whereas, the twin density (β increases to a maximum value of 5.9 × 10−3 at a CR strain of 0.7 and reduces to 1.1 × 10−5 at 0.95. Accumulation of stacking faults (SFs and lattice disorder at the twin boundaries causes dynamic recrystallization, promotes grain refinement and decreases the twin density by forming subgrains. Detailed investigations on the formation and interaction of defects have been done through resistivity, positron lifetime and Doppler broadening measurements in order to understand the micro-mechanism of nanostructuring at sub-zero temperatures.

  10. pi-Stacks Based on Self-Assembled Perylene Bisimides : Structural, Optical, and Electronic Properties

    OpenAIRE

    Chen, Zhijian

    2006-01-01

    As a traditional industrial pigment, perylene bisimide (PBI) dyes have found wide-spread applications. In addition, PBI dyes have been considered as versatile and promising functional materials for organic-based electronic and optic devices, such as transistors and solar cells. For these novel demands, the control of self-organization of this type of dye and the investigation of the relationship between the supramolecular structure and the relevant optical and electronic properties is of grea...

  11. Results-Based Interaction Design

    Science.gov (United States)

    Weiss, Meredith

    2008-01-01

    Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…

  12. Stacked base-pair structures of adenine nucleosides stabilized by the formation of hydrogen-bonding network involving the two sugar groups

    International Nuclear Information System (INIS)

    Highlights: ► A combination of laser desorption and supersonic jet-cooling is used to produce base pairs of adenine nucleosides. ► Stacked base-pair structure of N6,N6-dimethyladnosine is identified by IR vibrational spectroscopy. ► Anharmonic vibrational calculation is employed to analyze the vibrational mode coupling in the stacked base pair. - Abstract: We have employed a laser desorption technique combined with supersonic-jet cooling for producing base pairs of adenine nucleosides, adenosine (Ado) and N6,N6-dimethyladenosine (DMAdo) under low-temperature conditions. The resulting base pairs are then ionized through resonant two-photon ionization (R2PI) and analyzed by time-of-flight mass spectrometry. It is found that dimers of these adenine nucleosides are stable, especially in the case of DMAdo, with respect to those of the corresponding bases, i.e., adenine and N6,N6-dimethyladenine. Structural analysis of the DMAdo dimer is performed based on the IR–UV double resonance measurements and theoretical calculations. The result demonstrates that the dimer possesses a stacked structure being stabilized by the formation of hydrogen-bonding network involving the two sugar groups. The occurrence of the frequency shift and broadening is explained satisfactorily based on the anharmonic coupling of the OH stretching modes with specific bending modes and low-frequency modes of base and sugar moieties

  13. Nano-scale displacement sensing based on Van der Waals interaction

    OpenAIRE

    Hu, Lin; Zhao, Jin; Yang, Jinlong

    2014-01-01

    We propose the nano-scale displacement sensor with high resolution for weak-force systems could be realized based on vertical stacked two-dimensional (2D) atomic corrugated layer materials bound through Van der Waals (VdW) interaction. Using first-principles calculations, we found the electronic structure of bi-layer blue phosphorus (BLBP) varies appreciably to both the lateral and vertical interlayer displacement. The variation of electronic structure due to the lateral displacement is attri...

  14. Finding diversity for building one-day ahead Hydrological Ensemble Prediction System based on artificial neural network stacks

    Science.gov (United States)

    Brochero, Darwin; Anctil, Francois; Gagné, Christian; López, Karol

    2013-04-01

    In this study, we addressed the application of Artificial Neural Networks (ANN) in the context of Hydrological Ensemble Prediction Systems (HEPS). Such systems have become popular in the past years as a tool to include the forecast uncertainty in the decision making process. HEPS considers fundamentally the uncertainty cascade model [4] for uncertainty representation. Analogously, the machine learning community has proposed models of multiple classifier systems that take into account the variability in datasets, input space, model structures, and parametric configuration [3]. This approach is based primarily on the well-known "no free lunch theorem" [1]. Consequently, we propose a framework based on two separate but complementary topics: data stratification and input variable selection (IVS). Thus, we promote an ANN prediction stack in which each predictor is trained based on input spaces defined by the IVS application on different stratified sub-samples. All this, added to the inherent variability of classical ANN optimization, leads us to our ultimate goal: diversity in the prediction, defined as the complementarity of the individual predictors. The stratification application on the 12 basins used in this study, which originate from the second and third workshop of the MOPEX project [2], shows that the informativeness of the data is far more important than the quantity used for ANN training. Additionally, the input space variability leads to ANN stacks that outperform an ANN stack model trained with 100% of the available information but with a random selection of dataset used in the early stopping method (scenario R100P). The results show that from a deterministic view, the main advantage focuses on the efficient selection of the training information, which is an equally important concept for the calibration of conceptual hydrological models. On the other hand, the diversity achieved is reflected in a substantial improvement in the scores that define the

  15. Stacking structures and electrode performances of rare earth-Mg-Ni-based alloys for advanced nickel-metal hydride battery

    International Nuclear Information System (INIS)

    Rare earth-Mg-Ni-based alloys with stacking structures consisting of AB5 unit (CaCu5-type structure) and A2B4 unit (Laves structure) have received attention as negative electrode materials for advanced nickel-metal hydride (Ni-MH) battery. These alloy materials are very attractive because of high hydrogen storage capacity, low cobalt content and moderate plateau pressure, but have some difficulty to control the phase abundance and electrode performances. In this paper, relationship among composition, phase abundance, and electrochemical properties was investigated. Structural analysis was done using synchrotron X-ray diffraction patterns. In alloys such as La0.8Mg0.2Ni3.4-x-yCo0.3(MnAl)x (0 ≤ x ≤ 0.4), phase abundance was drastically changed with increasing amount of Mn and Al. In the range of 0.1 5Co19-type (5:19H) or rhombohedral 1:4R phases were dominant. The Rietveld analysis suggested that Mg occupies La sites in A2B4 unit, and Al has tendency to occupy Ni sites between A2B4 unit and AB5 unit or between AB5 units in these types of phases. The developed alloys showed higher discharge capacity by 20% than the conventional one at a 0.2 C discharge rate

  16. Structural Studies on Porphyrin-PNA Conjugates in Parallel PNA:PNA Duplexes: Effect of Stacking Interactions on Helicity.

    Science.gov (United States)

    Accetta, Alessandro; Petrovic, Ana G; Marchelli, Rosangela; Berova, Nina; Corradini, Roberto

    2015-12-01

    Parallel PNA:PNA duplexes were synthesized and conjugated with meso-tris(pyridyl)phenylporphyrin carboxylic acid at the N-terminus. The introduction of one porphyrin unit was shown to affect slightly the stability of the PNA:PNA parallel duplex, whereas the presence of two porphyrin units at the same end resulted in a dramatic increase of the melting temperature, accompanied by hysteresis between melting and cooling curves. The circular dichroism (CD) profile of the Soret band and fluorescence quenching strongly support the occurrence of a face-to-face interaction between the two porphyrin units. Introduction of a L-lysine residue at the C-terminal of one strand of the parallel duplex induced a left-handed helical structure in the PNA:PNA duplex if the latter contains only one or no porphyrin moiety. The left-handed helicity was revealed by nucleobase CD profile at 240-280 nm and by the induced-CD observed in the presence of the DiSC2 (5) cyanine dye at ~500-550 nm. Surprisingly, the presence of two porphyrin units led to the disappearance of the nucleobase CD signal and the absence of CD exciton coupling within the Soret band region. In addition, a dramatic decrease of induced CD of DiSC2 (5) was observed. These results are in agreement with a model where the porphyrin-porphyrin interactions cause partial loss of chirality of the PNA:PNA parallel duplex, forcing it to adopt a ladder-like conformation. PMID:26412743

  17. A low-temperature fabricated gate-stack structure for Ge-based MOSFET with ferromagnetic epitaxial Heusler-alloy/Ge electrodes

    Science.gov (United States)

    Fujita, Yuichi; Yamada, Michihiro; Nagatomi, Yuta; Yamamoto, Keisuke; Yamada, Shinya; Sawano, Kentarou; Kanashima, Takeshi; Nakashima, Hiroshi; Hamaya, Kohei

    2016-06-01

    A possible low-temperature fabrication process of a gate-stack for Ge-based spin metal–oxide–semiconductor field-effect transistor (MOSFET) is investigated. First, since we use epitaxial ferromagnetic Heusler alloys on top of the phosphorous doped Ge epilayer as spin injector and detector, we need a dry etching process to form Heusler-alloy/n+-Ge Schottky-tunnel contacts. Next, to remove the Ge epilayers damaged by the dry etching process, the fabricated structures are dipped in a 0.03% diluted H2O2 solution. Finally, Al/SiO2/GeO2/Ge gate-stack structures are fabricated at 300 °C as a top gate-stack structure. As a result, the currents in the Ge-MOSFET fabricated here can be modulated by applying gate voltages even by using the low-temperature formed gate-stack structures. This low-temperature fabrication process can be utilized for operating Ge spin MOSFETs with a top gate electrode.

  18. Variance-based interaction index measuring heteroscedasticity

    Science.gov (United States)

    Ito, Keiichi; Couckuyt, Ivo; Poles, Silvia; Dhaene, Tom

    2016-06-01

    This work is motivated by the need to deal with models with high-dimensional input spaces of real variables. One way to tackle high-dimensional problems is to identify interaction or non-interaction among input parameters. We propose a new variance-based sensitivity interaction index that can detect and quantify interactions among the input variables of mathematical functions and computer simulations. The computation is very similar to first-order sensitivity indices by Sobol'. The proposed interaction index can quantify the relative importance of input variables in interaction. Furthermore, detection of non-interaction for screening can be done with as low as 4 n + 2 function evaluations, where n is the number of input variables. Using the interaction indices based on heteroscedasticity, the original function may be decomposed into a set of lower dimensional functions which may then be analyzed separately.

  19. Charge–discharge performance of carbon fiber-based electrodes in single cell and short stack for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Highlights: • Carbon-fiber based electrodes are investigated in a zero-gap flow field cell configuration. • Charge–discharge curves are carried out in single cell and short stack for VRB application. • Three electrode half-cell data are corroborated both in single cell and short stack for VRB. - Abstract: Electrode materials, having a different graphitic character, are investigated by using a zero-gap flow field cell configuration for vanadium redox flow battery applications (VRFBs). Carbon felt (CF) and carbon paper (CP) are used as electrodes for the membrane–electrode assemblies (MEAs) realization. The samples are electrochemically characterized both as-received and after chemical treatment by using a 5 cm2 single cell. A Nafion 117 membrane is used as polymer electrolyte separators. A MEAs scale-up from 5 to 25 cm2 is carried out in order to assembly a 3-cells short stack in series connected. Charge–discharge cycles are carried out both in a small area single cell and in a 3-cells short stack for all samples. CF treated and untreated samples show SOC values of 45% vs. 22% at 60 mA cm−2, respectively. After the chemical treatment, the worst performance of the CF sample is attributed to the mass transport issues due to the beginning of corrosion phenomena. On the contrary, CP treated electrode shows a better energy efficiency values than raw sample (72% vs. 67% at 60 mA cm−2) without any morphology change on the electrode surface. A proper stack assembly and flow field scale-up record similar performance to the small single cell configuration

  20. A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode

    International Nuclear Information System (INIS)

    In this paper, a novel and convenient electrochemical sensor based on stacked graphene nanofibers (SGNF) and gold nanoparticles (AuNPs) composite modified glassy carbon electrode (GCE) was developed for the determination of bisphenol A (BPA). The AuNPs/SGNF modified electrode showed an efficient electrocatalytic role for the oxidation of BPA, and the oxidation overpotentials of BPA were decreased significantly and the peak current increased greatly compared with bare GCE and other modified electrode. The transfer electron number (n) and the charge transfer coefficient (α) were calculated with the result as n = 4, α = 0.52 for BPA, which indicated the electrochemical oxidation of BPA on AuNPs/SGNF modified electrode was a four-electron and four-proton process. The effective surface areas of AuNPs/SGNF/GCE increased for about 1.7-fold larger than that of the bare GCE. In addition, the kinetic parameters of the modified electrode were calculated and the apparent heterogeneous electron transfer rate constant (ks) was 0.51 s−1. Linear sweep voltammetry was applied as a sensitive analytical method for the determination of BPA and a good linear relationship between the peak current and BPA concentration was obtained in the range from 0.08 to 250 μM with a detection limit of 3.5 × 10−8 M. The modified electrode exhibited a high sensitivity, long-term stability and remarkable reproducible analytical performance and was successfully applied for the determination of BPA in baby bottles with satisfying results

  1. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial...

  2. Intracomplex π-π stacking interaction between adjacent phenanthroline molecules in complexes with rare-earth nitrates: Crystal and molecular structures of bis(1,10-Phenanthroline)trinitratoytterbium and bis(1,10-Phenanthroline)trinitratolanthanum

    International Nuclear Information System (INIS)

    Crystals of the compounds Yb(NO3)3(Phen)2 and La(NO3)3(Phen)2 (Phen = 1,10-phenanthroline) are investigated using X-ray diffraction. It is established that there exist two different crystalline modifications: the main modification (phase 1) is characteristic of all members of the isostructural series, and the second modification (phase 2) is observed only for the Eu, Er, and Yb elements. It is assumed that the stability and universality of main phase 1 are associated with the occurrence of the nonbonded π-π stacking interactions between the adjacent phenanthroline ligands in the complexes. The indication of the interactions is a distortion of the planar shape of the Phen molecule (the folding of the metallocycle along the N-N line with a folding angle of 11o-13o and its 'boomerang' distortion). The assumption regarding the π-π stacking interaction is very consistent with the shape of the ellipsoids of atomic thermal vibrations, as well as with the data obtained from thermography and IR spectroscopy. An analysis of the structures of a number of rare-earth compounds has demonstrated that the intracomplex π-π stacking interactions directly contribute to the formation of supramolecular associates in the crystals, such as molecular dimers, supramolecules, chain and layered ensembles, and framework systems.

  3. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching

    Science.gov (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan

    2016-01-01

    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  4. Stacking with stochastic cooling

    International Nuclear Information System (INIS)

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes

  5. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.;

    1994-01-01

    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... used in interactive optimization....

  6. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A

    2008-01-01

    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  7. Gate stack technology for nanoscale devices

    Directory of Open Access Journals (Sweden)

    Byoung Hun Lee

    2006-06-01

    Full Text Available Scaling of the gate stack has been a key to enhancing the performance of complementary metal-oxide-semiconductor (CMOS field-effect transistors (FETs of past technology generations. Because the rate of gate stack scaling has diminished in recent years, the motivation for alternative gate stacks or novel device structures has increased considerably. Intense research during the last decade has led to the development of high dielectric constant (k gate stacks that match the performance of conventional SiO2-based gate dielectrics. However, many challenges remain before alternative gate stacks can be introduced into mainstream technology. We review the current status of and challenges in gate stack research for planar CMOS devices and alternative device technologies to provide insights for future research.

  8. Spatial interactions in agent-based modeling

    CERN Document Server

    Ausloos, Marcel; Merlone, Ugo

    2014-01-01

    Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution o...

  9. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas

    2006-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  10. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James

    2014-01-01

    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  11. Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creep

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, G. B. [The Ohio State Univ., Columbus, OH (United States); Shi, R. [The Ohio State Univ., Columbus, OH (United States); Genc, A. [FEI Company, Hillsboro, OR (United States); Vorontsov, V. A. [Univ. of Cambridge (United Kingdom); Kovarik, L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rae, C. M. F. [Univ. of Cambridge (United Kingdom); Mills, M. J. [The Ohio State Univ., Columbus, OH (United States)

    2015-01-01

    Using state-of-the-art energy dispersive spectroscopy, it has been established for the first time that there exists significant compositional variation (enrichment of Co and Cr and deficiency of Ni and Al) associated with superlattice intrinsic stacking faults created in the ordered γ' precipitates following intermediate temperature deformation of two commercial superalloys. The results indicate that long range diffusion of these elements is intimately involved in the precipitate shearing process and is therefore closely linked to the time-dependent deformation of the alloys.

  12. Circular Hough Transform and Local Circularity Measure for Weight Estimation of a Graph-Cut based Wood Stack Measurement

    DEFF Research Database (Denmark)

    Galsgaard, Bo; Lundtoft, Dennis Holm; Nikolov, Ivan Adriyanov;

    2015-01-01

    difficult task. Graph-cut has shown to be good enough for such a segmentation. However, it is hard to find proper graph weights. This is exactly the contribution of this paper to propose a method for setting the weights of the graph. To do so, we use Circular Hough Transform (CHT) for obtaining information...... about the foreand background regions of a stack image, and then use this together with a Local Circularity Measure (LCM) to modify the weights of the graph to segment the wood logs from the rest of the image. We further improve the segmentation by separating overlapping logs. These segmented wood logs...

  13. The LSST Software Stack

    Science.gov (United States)

    Jenness, Timothy; LSST Data Management Team

    2016-01-01

    The Large Synoptic Survey Telescope (LSST) is an 8-m optical ground-based telescope being constructed on Cerro Pachon in Chile. LSST will survey half the sky every few nights in six optical bands. The data will be transferred to the data center in North America and within 60 seconds it will be reduced using difference imaging and an alert list be generated for the community. Additionally, annual data releases will be constructed from all the data during the 10-year mission, producing catalogs and deep co-added images with unprecedented time resolution for such a large region of sky. In the paper we present the current status of the LSST stack including the data processing components, Qserv database and data visualization software, describe how to obtain it, and provide a summary of the development road map.

  14. Instant BlueStacks

    CERN Document Server

    Judge, Gary

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  15. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    International Nuclear Information System (INIS)

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al2O3 or HfO2 dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO2 based capacitors compared to Al2O3 based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density

  16. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, Igor, E-mail: krylov@tx.technion.ac.il [The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000 (Israel); Ritter, Dan [The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000 (Israel); Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000 (Israel); Eizenberg, Moshe [The Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 32000 (Israel); Department of Materials Science and Engineering, Technion – Israel Institute of Technology, Haifa 32000 (Israel)

    2015-09-07

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al{sub 2}O{sub 3} or HfO{sub 2} dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO{sub 2} based capacitors compared to Al{sub 2}O{sub 3} based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  17. Evidence-Based Interactive Management of Change

    Directory of Open Access Journals (Sweden)

    Albert Fleischmann

    2011-06-01

    Full Text Available Evidence-based interactive management of change means hands-on experience of modified work processes, given evidence of change. For this kind of pro-active organizational development support we use an organisational process memory and a communication-based representation technique for role-specific and task-oriented process execution. Both are effective means for organizations becoming agile through interactively modelling the business at the process level and re-constructing or re-arranging process representations according to various needs. The tool allows experiencing role-specific workflows, as the communication-based refinement of work models allows for executable process specifications. When presenting the interactive processes to individuals involved in the business processes, changes can be explored interactively in a context-sensitive way before re-implementing business processes and information systems. The tool is based on a service-oriented architecture and a flexible representation scheme comprising the exchange of message between actors, business objects and actors (roles. The interactive execution of workflows does not only enable the individual reorganization of work but also changes at the level of the entire organization due to the represented interactions.

  18. Using residual stacking to mitigate site-specific errors in order to improve the quality of GNSS-based coordinate time series of CORS

    Science.gov (United States)

    Knöpfler, Andreas; Mayer, Michael; Heck, Bernhard

    2014-05-01

    Within the last decades, positioning using GNSS (Global Navigation Satellite Systems; e.g., GPS) has become a standard tool in many (geo-) sciences. The positioning methods Precise Point Positioning and differential point positioning based on carrier phase observations have been developed for a broad variety of applications with different demands for example on accuracy. In high precision applications, a lot of effort was invested to mitigate different error sources: the products for satellite orbits and satellite clocks were improved; the misbehaviour of satellite and receiver antennas compared to an ideal antenna is modelled by calibration values on absolute level, the modelling of the ionosphere and the troposphere is updated year by year. Therefore, within processing of data of CORS (continuously operating reference sites), equipped with geodetic hardware using a sophisticated strategy, the latest products and models nowadays enable positioning accuracies at low mm level. Despite the considerable improvements that have been achieved within GNSS data processing, a generally valid multipath model is still lacking. Therefore, site specific multipath still represents a major error source in precise GNSS positioning. Furthermore, the calibration information of receiving GNSS antennas, which is for instance derived by a robot or chamber calibration, is valid strictly speaking only for the location of the calibration. The calibrated antenna can show a slightly different behaviour at the CORS due to near field multipath effects. One very promising strategy to mitigate multipath effects as well as imperfectly calibrated receiver antennas is to stack observation residuals of several days, thereby, multipath-loaded observation residuals are analysed for example with respect to signal direction, to find and reduce systematic constituents. This presentation will give a short overview about existing stacking approaches. In addition, first results of the stacking approach

  19. An interactive segmentation method based on superpixel

    DEFF Research Database (Denmark)

    Yang, Shu; Zhu, Yaping; Wu, Xiaoyu

    2015-01-01

    This paper proposes an interactive image-segmentation method which is based on superpixel. To achieve fast segmentation, the method is used to establish a Graphcut model using superpixels as nodes, and a new energy function is proposed. Experimental results demonstrate that the authors' method has...... excellent performance in terms of segmentation accuracy and computation efficiency compared with other segmentation algorithm based on pixels....

  20. Pre-stack reverse-time migration based on the time–space domain adaptive high-order finite-difference method in acoustic VTI medium

    International Nuclear Information System (INIS)

    With the increment of seismic exploration precision requirement, it is significant to develop the anisotropic migration methods. Pre-stack reverse-time migration (RTM) is performed based on acoustic vertical transversely isotropic (VTI) wave equations, and the accuracy and efficiency of RTM strongly depend on the algorithms used for wave equation numerical solution. Finite-difference (FD) methods have been widely used in numerical solution of wave equations. The conventional FD method derives spatial FD coefficients from the space domain dispersion relation, and it is difficult to satisfy the time–space domain dispersion relation of the wave equation exactly. In this paper, we adopt a time–space domain FD method to solve acoustic VTI wave equations. Dispersion analysis and numerical modelling results demonstrate that the time–space domain FD method has greater accuracy than the conventional FD method under the same discretizations. The time–space domain high-order FD method is also applied in the wavefield extrapolation of acoustic VTI pre-stack RTM. The model tests demonstrate that the acoustic VTI pre-stack RTM based on the time–space domain FD method can obtain better images than that based on the conventional FD method, and the processing results show that the imaging quality of the acoustic VTI RTM is clearer and more correct than that of acoustic isotropic RTM. Meanwhile, in the process of wavefield forward and backward extrapolation, we employ adaptive variable-length spatial operators to compute spatial derivatives to improve the computational efficiency effectively almost without reducing the imaging accuracy. (paper)

  1. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  2. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail: Fritz.Caspers@cern.ch; Moehl, Dieter

    2004-10-11

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  3. MCFC燃料电池的非线性建模及基于FGA的模糊控制%Nonlinear modeling of molten carbonate fuel cell stack and FGA-based fuzzy control

    Institute of Scientific and Technical Information of China (English)

    戚志东; 朱新坚; 曹广益

    2006-01-01

    To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network's ability of identifying complex nonlinear systems, a neural network identification model of MCFC stack is developed based on the sampled input-output data. Also, a novel online fuzzy control procedure for the temperature of MCFC stack is developed based on the fuzzy genetic algorithm (FGA). Parameters and rules of the fuzzy controller are optimized. With the neural network identification model, simulation of MCFC stack control is carried out. Validity of the model and the superior performance of the fuzzy controller are demonstrated.

  4. Evolutionary algorithm based configuration interaction approach

    CERN Document Server

    Chakraborty, Rahul

    2016-01-01

    A stochastic configuration interaction method based on evolutionary algorithm is designed as an affordable approximation to full configuration interaction (FCI). The algorithm comprises of initiation, propagation and termination steps, where the propagation step is performed with cloning, mutation and cross-over, taking inspiration from genetic algorithm. We have tested its accuracy in 1D Hubbard problem and a molecular system (symmetric bond breaking of water molecule). We have tested two different fitness functions based on energy of the determinants and the CI coefficients of determinants. We find that the absolute value of CI coefficients is a more suitable fitness function when combined with a fixed selection scheme.

  5. Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets.

    Science.gov (United States)

    Xu, Yifan; Zhang, Ye; Guo, Ziyang; Ren, Jing; Wang, Yonggang; Peng, Huisheng

    2015-12-14

    The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next-generation electronics. Herein, fiber-shaped Zn-air batteries, are realized for the first time by designing aligned, cross-stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g(-1) . They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices. PMID:26514937

  6. A Somatosensory Interaction System based on Kinect

    Directory of Open Access Journals (Sweden)

    Liang Xiu Bo

    2016-01-01

    Full Text Available The somatosensory interaction technique is one form of the perceptual user interface which is used in video game and virtual reality more and more widly. In this paper, a somatosensory interaction system based on Kinect is presented. Firstly, the user performances his action in front of a kinect, the sensing data from kinect is preprocessed and the main features of the action are extracted. Secondly, the performaced action is recognized by the matching algorithm based on Dynamic Time Warping Hidden Markov Model. Finally, the recognized motion is employed to interact with the virtual human and virtual environment. A series of experiments have been done to test the availablity of our system. Results show that the recognition rate is high enough to be used in virtual reality applications.

  7. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm

    2004-01-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  8. 基于定向定量堆放的马铃薯收获机设计%Design of Potato Harvester Based on Oriented and Quantitative Stacking

    Institute of Scientific and Technical Information of China (English)

    潘志国; 尚书旗; 杨然兵; 于镇伟; 马庆驰

    2015-01-01

    在研究小型马铃薯收获机的基础上,设计了一款能根据收集薯块质量往特定方向堆放的马铃薯收获机,主要由挖掘装置、输送装置及定向定量堆放装置等组成。在马铃薯收获机的后部设计一个四分区临时集薯器,能根据所收获马铃薯的质量来打开集薯器,将收集的马铃薯向中间或者一侧堆放,从而实现了马铃薯的连续挖掘及收集薯块的定向定量间隔堆放,可在较大程度上降低人工捡拾的工作量,同时避免拖拉机碾压伤薯。%Based on the study of small potato harvester, a potato harvester, which could pile up potatoes to the specific direction according to the weight of collected potatoes, was designed.The potato harvester consists of excavating mecha-nism, potato transport, oriented and quantitative stacking device, etc..An oriented and quantitative stacking device, which included a set of four partitions temporary potato collector and a control device of oriented and quantitative stac-king, was designed behind the potato harvester.When the weight of the harvested potatoes reached a certain value, the switch of the temporary potato collector was opened to pile up harvested potatoes to the middle or side.In this way the potato harvester could realize continuous potato digging and interval stacking, which could reduce the labor intensity of artificial pick-up, and avoid the tractor to crush the harvested potatoes.

  9. Annotated Stack Trees

    OpenAIRE

    Hague, Matthew; Penelle, Vincent

    2015-01-01

    Annotated pushdown automata provide an automaton model of higher-order recursion schemes, which may in turn be used to model higher-order programs for the purposes of verification. We study Ground Annotated Stack Tree Rewrite Systems -- a tree rewrite system where each node is labelled by the configuration of an annotated pushdown automaton. This allows the modelling of fork and join constructs in higher-order programs and is a generalisation of higher-order stack trees recently introduced by...

  10. Decoding Stacked Denoising Autoencoders

    OpenAIRE

    Sonoda, Sho; Murata, Noboru

    2016-01-01

    Data representation in a stacked denoising autoencoder is investigated. Decoding is a simple technique for translating a stacked denoising autoencoder into a composition of denoising autoencoders in the ground space. In the infinitesimal limit, a composition of denoising autoencoders is reduced to a continuous denoising autoencoder, which is rich in analytic properties and geometric interpretation. For example, the continuous denoising autoencoder solves the backward heat equation and transpo...

  11. Interactive analysis of geodata based intelligence

    Science.gov (United States)

    Wagner, Boris; Eck, Ralf; Unmüessig, Gabriel; Peinsipp-Byma, Elisabeth

    2016-05-01

    When a spatiotemporal events happens, multi-source intelligence data is gathered to understand the problem, and strategies for solving the problem are investigated. The difficulties arising from handling spatial and temporal intelligence data represent the main problem. The map might be the bridge to visualize the data and to get the most understand model for all stakeholders. For the analysis of geodata based intelligence data, a software was developed as a working environment that combines geodata with optimized ergonomics. The interaction with the common operational picture (COP) is so essentially facilitated. The composition of the COP is based on geodata services, which are normalized by international standards of the Open Geospatial Consortium (OGC). The basic geodata are combined with intelligence data from images (IMINT) and humans (HUMINT), stored in a NATO Coalition Shared Data Server (CSD). These intelligence data can be combined with further information sources, i.e., live sensors. As a result a COP is generated and an interaction suitable for the specific workspace is added. This allows the users to work interactively with the COP, i.e., searching with an on board CSD client for suitable intelligence data and integrate them into the COP. Furthermore, users can enrich the scenario with findings out of the data of interactive live sensors and add data from other sources. This allows intelligence services to contribute effectively to the process by what military and disaster management are organized.

  12. Interactive Knowledge Acquisition in Case Based Reasoning

    OpenAIRE

    Cordier, Amélie; Fuchs, Béatrice; Lieber, Jean; Mille, Alain

    2007-01-01

    International audience In Case Based Reasoning (CBR), knowledge acquisition plays an important role as it allows to progressively improve the system's competencies. One of the approaches of knowledge acquisition consists in performing it while the system is used to solve a problem. An advantage of this strategy is that it is not to constraining for the expert: the system exploits its interactions to acquire pieces of knowledge it needs to solve the current problem and takes the opportunity...

  13. NMR study of stacking interactions and conformational adjustment in the dinucleotide-carcinogen adduct 2'-deoxycytidylyl-(3 → 5)-2'deoxy-8-(N-flouren-2-ylacetamido)guanosine

    International Nuclear Information System (INIS)

    The conformation and dynamics of the dinucleotide d-CpG modified at the C(8) position of the guanine ring by the carcinogen 2-(acetylamino)fluorene has been investigated by high-field 1H NMR spectroscopy. A two-state analysis of chemical shift data has enabled estimation of the extent of intramolecular stacking in aqueous solution as a function of temperature. The stacking, which is mostly fluorene-cytosine, is virtually complete in the low-temperature range. The 500-MHz 1H NMR spectrum consists of two subspectra near ambient temperatures due to a 14.3 +/- 0.3 kcal/mol barrier to internal rotation about the amide bond in the stacked form. Problems of self-association and chemical exchange were identified and overcome to enable analysis of the sugar-phosphate backbone conformation utilizing coupling constants. For the exocyclic C(4')-C(5') bond of the deoxyguanosine moiety, there is a high gauche+ conformer population, which is uncommon for a purine nucleotide with a syn orientation about the glycosyl bond. The gauche- conformation, which is normally present in syn purine nucleotides in solution, was not detected. The exocyclic C(5')-O(5') torsion of the deoxyguanosine moiety remains near the classical energy minimum in the major stacked conformations. The sugar ring of the deoxycytidine moiety is predominantly in the C2'-endo conformation, while the deoxyguanosine ring is a mixture of conformations, one of which appears to be unusually puckered. The results support intercalation models of modified DNA and suggest a looped-out structure, with the modified guanine being the first base in the loop. Such structures could explain the relatively rapid rate of repair and the frame-shift mutations of this type of adduct

  14. Physics based analytical model for surface potential and subthreshold current of cylindrical Schottky Barrier gate all around MOSFET with high-k gate stack

    Science.gov (United States)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-02-01

    A physics-based analytical model for Schottky Barrier (SB) Cylindrical Gate All Around (CGAA) MOSFET with high-k dielectric is presented with Evanescent Mode Analysis (EMA). The electrostatic potential is obtained using the Superposition method. An exact expression for threshold voltage and subthreshold slope is also obtained. The proposed model also includes the effect of Barrier height lowering at metal semiconductor interface along with the effect of high-k (HfO2) gate stack. Diffusion current and tunneling currents are combined to evaluate the total subthreshold current. The analytical results so obtained are compared with simulated data and they are in good agreement. The proposed model of SB-CGAA device with high-k dielectric is very useful for the design and optimization for high current and improved performance.

  15. Optimization on photoelectric detection based on stacked La0.9Sr0.1MnO3-δ/LaAlO3-δ multijunctions

    International Nuclear Information System (INIS)

    Three multijunctions consisting of La0.9Sr0.1MnO3-δ and LaAlO3-δ on Si substrate have been fabricated under different oxygen pressures by laser molecular beam epitaxy. They exhibit nonlinear and rectifying current-voltage characteristics and evident photocurrent response to He-Ne laser illumination. Experimental results indicate that the periodically stacked multijunction grown under lower oxygen pressure shows a better rectification behavior and a higher photocurrent. The photovoltaic responsivities of the multijunctions are enhanced greatly at reverse bias and are much higher than that of a similarly grown single p-n junction. Based on the band structure of the multilayers, a possible mechanism of the photovoltaic process was proposed. A high photovoltage responsivity of 168.6 mV/mW has been achieved at - 6 V bias; this demonstrates the potential of the present multijunction configuration for photodetectors operating at room temperature.

  16. Towards highly efficient red thermally activated delayed fluorescence materials by the control of intra-molecular π-π stacking interactions.

    Science.gov (United States)

    Zhang, Yunge; Zhang, Dongdong; Cai, Minghan; Li, Yilang; Zhang, Deqiang; Qiu, Yong; Duan, Lian

    2016-03-01

    Thermally activated delayed fluorescence (TADF) materials have attracted much attention as they can achieve 100% theoretical internal quantum efficiency without using expensive noble metals. However, efficient red TADF emitters are hard to realize according to the energy gap law. Here, three donor-acceptor-donor type TADF emitters with the same acceptor of o-phthalodinitrile (PN) but different donors (9, 9-dimethyl-9, 10-dihydroacridine (DMAC), phenoxazine (PXZ), and phenothiazine (PTZ) for DMAC-PN, PXZ-PN, and PTZ-PN, respectively) have been synthesized, and it is observed that the performance of the emitters can be improved by reducing the intra-molecular π-π stacking. DMAC-PN with reduced intra-molecular π-π stacking shows a photoluminescence quantum yield (PLQY) of 20.2% in degassed toluene solution, much higher than those of PXZ-PN, and PTZ-PN (0.8%, 0.2%, respectively). An organic light-emitting diode (OLED) employing DMAC-PN doped into 4,4'-bis(9H-carbazol-9-yl)biphenyl (CBP) as the emitting layer exhibits a maximum external quantum efficiency (EQE) of 10.2% with the emission peak at 564 nm. Moreover, when DMAC-PN is doped into a polar host, bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO), the OLED shows a large redshift of the emission maximum to 594 nm, while maintaining a peak EQE as high as 7.2%, indicating that efficient red TADF OLEDs can be fabricated by doping orange TADF emitters into hosts with proper polarity. PMID:26821694

  17. Design and performance of a passive dosimeter consisting of a stack of photostimulable phosphor (PSP) imaging plates (IP) based on BaF(Br, I):Eu2+

    International Nuclear Information System (INIS)

    This manuscript presents an original concept of passive, lightweight, and compact dosimeter based on a stack of BaFBr:Eu2+ photostimulable phosphor plates (Image Plate) alternating with high-Z metal screens. It describes the manufacture and the method to calibrate the dosimeter. This method consists in using a Co60 standard source and Monte Carlo N-Particle codes (MCNPX/MCNP5) to apply them to a large area of radiation energies, such as quasi mono-energetic radiation (Gamma rays decay of radioactive isotope, X-ray fluorescence), or continuous radiation spectra (Bremsstrahlung radiation, synchrotron light source). The measurement recurrence in the stack of couples 'metallic foil / IP' ensures consistency measurements, determines the threshold depth of electronic equilibrium (depending on the radiation energy) and allows us to infer the absolute dose in air (Kerma). The depth-dose curve in the stack and transmission measurements provide an estimate of the effective energy of incident radiations, report the presence of parasite scattered radiations and allow us to discriminate the nature of ionizing particles. The 2D features of the device are used to characterize the ballistic fate of charged particles in material thickness, which is of great interest with narrow particles beams. This dosimeter has remarkable advantages over other passive dosimeters, including a dynamic range larger than 107 of linear photon dose detection from less than 0.5 μGy and up to several Gy for radiation energies between a few tens of keV and more than 10 MeV (20 MeV with Bremsstrahlung X-ray spectra). This concept originality consists in almost immediately getting the measurement results after an exposure and a single pass reading of the dosimeter. It can respond positively to most of the usual needs in radiation metrology: personal or environmental dosimetry (radiation protection); Controls / characterization / mapping around materials and emitting ionizing radiation devices

  18. Exploring online evolution of network stacks

    OpenAIRE

    Imai, Pierre

    2013-01-01

    Network stacks today follow a one-size-fits-all philosophy. They are mostly kept unmodified due to often prohibitive costs of engineering, deploying and administrating customisation of the networking software, with the Internet stack architecture still largely being based on designs and assumptions made for the ARPANET 40 years ago. We venture that heterogeneous and rapidly changing networks of the future require, in order to be successful, run-time self-adaptation mechanisms at different tim...

  19. Cosmic ray test of INO RPC stack

    International Nuclear Information System (INIS)

    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m ×1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  20. First-principles study of generalized stacking fault energy in Ni-based alloys%镍基合金广义层错能的第一性原理研究

    Institute of Scientific and Technical Information of China (English)

    温玉锋; 孙坚; 黄健; 邢辉

    2011-01-01

    The generalized stacking fault energies of Ni and Ni-based alloys with alloying elements of Cr, Co, Nb, Mo, W, Ru and Re were calculated using first-principles based on the projector augmented wave method and the generalized gradient approximation. The calculated results show that the stacking fault and unstable stacking fault energies are affected by the atomic radii and valence differences (A/? And AV) between alloying elements and Ni, and the alloying elements affect the stacking fault energies of Ni-based alloys more obviously. The capabilities of dislocation cross-slip and climb depend on the difference between the unstable stacking fault energy and the stacking fault energy of Ni-based alloys. Among the alloying elements, Re, W and Mo are the most effective for solid-solution strengthening in Ni-based alloys.%采用投影缀加波赝势和广义梯度近似方法计算纯镍以及含主要合金元素Cr、Co、Nb、Mo、W、Ru、Re的镍基固溶体合金的广义层错能.计算结果表明:合金元素与镍的原子半径差值△R及价电子数差值△V同时影响镍基固溶体合金的层错能和不稳定层错能,且合金元素对合金层错能的影响更为显著;镍基合金中位错交滑移和攀移能力主要与合金不稳定层错能和层错能的差值有关,其中Re、W和Mo是镍基合金最有效的固溶强化合金元素.

  1. Manila – OpenStack File Sharing Service

    OpenAIRE

    Patrascoiu, Mihai; Leon, Jose Castro

    2015-01-01

    Abstract  The report presents a short overview on what OpenStack is, how and why is it used at CERN and also goes into detail about the OpenStack Manila component, a service that enables file based storage and file sharing within OpenStack virtual machines.  OpenStack Manila is a relatively new OpenStack component, having started in 2012 and in 2014 it has reached the latest cycle of development, where it could still be found at the time of the report. The fundamental object...

  2. On Stack Reconstruction Problem

    Directory of Open Access Journals (Sweden)

    V. D. Аkeliev

    2014-06-01

    Full Text Available The paper describes analytical investigations that study relation of fuel combustion regimes with concentration values of sulphur anhydride in flue gases and acid dew point. Coefficients of convective heat transfer at internal and external surfaces of stacks have been determined in the paper. The paper reveals the possibility to reconstruct stacks while using gas discharging channel made of composite material on the basis of glass-reinforced plastic which permits to reduce thermo-stressed actions on reinforced concrete and increase volume of released gases due to practically two-fold reduction of gas-dynamic pressure losses along the pipe length.

  3. TARN rf stacking system

    International Nuclear Information System (INIS)

    Repetitive rf stacking system for the TARN was developed. The developed system consists of ferrite loaded rf cavity, rf power amplifier, ferrite bias power supply and low level rf electronics. Ferrite material and rf signal source were studied to obtain a high-duty and precise moving rf bucket. Phase lock technic worked at a low intensity beam was also studied. Repetition rate of 50 Hz and final stacking number of 50 were attained at the injection beam energy of 7 MeV/u. (author)

  4. A Dynamic Elimination-Combining Stack Algorithm

    CERN Document Server

    Bar-Nissan, Gal; Suissa, Adi

    2011-01-01

    Two key synchronization paradigms for the construction of scalable concurrent data-structures are software combining and elimination. Elimination-based concurrent data-structures allow operations with reverse semantics (such as push and pop stack operations) to "collide" and exchange values without having to access a central location. Software combining, on the other hand, is effective when colliding operations have identical semantics: when a pair of threads performing operations with identical semantics collide, the task of performing the combined set of operations is delegated to one of the threads and the other thread waits for its operation(s) to be performed. Applying this mechanism iteratively can reduce memory contention and increase throughput. The most highly scalable prior concurrent stack algorithm is the elimination-backoff stack. The elimination-backoff stack provides high parallelism for symmetric workloads in which the numbers of push and pop operations are roughly equal, but its performance d...

  5. Interactive early warning technique based on SVDD

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    After reviewing current researches on early warning,it is found that"bad" data of some systems is not easy to obtain,which makes methods proposed by these researches unsuitable for monitored systems.An interactive early warning technique based on SVDD(support vector data description)is proposed to adopt"good" data as samples to overcome the difficulty in obtaining the"bad"data.The process consists of two parts:(1)A hypersphere is fitted on"good"data using SVDD.If the data object are outside the hypersphere,it would be taken as"suspicious";(2)A group of experts would decide whether the suspicious data is"bad"or"good",early warning messages would be issued according to the decisions.And the detailed process of implementation is proposed.At last,an experiment based on data of a macroeconomic system is conducted to verify the proposed technique.

  6. Learning SaltStack

    CERN Document Server

    Myers, Colton

    2015-01-01

    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  7. Deformations of algebroid stacks

    DEFF Research Database (Denmark)

    Bressler, Paul; Gorokhovsky, Alexander; Nest, Ryszard; Tsygan, Boris

    2011-01-01

    In this paper we consider deformations of an algebroid stack on an étale groupoid. We construct a differential graded Lie algebra (DGLA) which controls this deformation theory. In the case when the algebroid is a twisted form of functions we show that this DGLA is quasiisomorphic to the twist of ...

  8. po_stack_movie

    DEFF Research Database (Denmark)

    2009-01-01

    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  9. Wolfram technology stack

    CERN Multimedia

    2013-01-01

    Stephen Wolfram gives a personal account of his vision for the "Wolfram technology stack" and how it developed, starting with his work in particle physics. The talk was presented at the 2013 ROOT Users' Meeting and followed a talk, earlier in the day, on "Mathematica with ROOT".

  10. Opacity of nitrogen dioxide stack plumes

    International Nuclear Information System (INIS)

    Removal of the NO2 from process off-gases would enable the Purex Plant to comply with the opacity standards for air pollution control. However, a relationship between stack opacity and NO2 content of the stack gases is needed in order to implement a cost effective NO2 control method. A test was conducted in which nitrogen dioxide (NO2) was injected into a 1.3 meter diameter, 150 foot tall stack. Certified visual opacity measurements over a range of 0 to 50 percent were recorded along with the corresponding concentrations of NO2 in the stack effluent. The visual opacity readings were found to be highly imprecise and from 2 to 3 times higher than opacities calculated on the basis of the light absorption parameters used for smoke opacity meters. Agreement was found between the test readings and visual opacity readings reported on 2.13 and 3.28 meter diameter stack when visual opacity was plotted as a function of NO2 concentration and effective stack diameter. The difference between calculated and visual opacity is attributed to a color contrast effect which increases the visual noticeability of the NO2 plume. Calculations based on color contrast show that visual opacity measurements are affected by sunlight conditions and the response of the human eye to color changes. This indicates that a variability in the NO2 emission limit will exist as long as visual opacity measurements are used as the basis for controlling stack discharges. Based on the analysis of the test data it is recommended that concentration limits rather than visual opacity measurements be used as a criteria for setting stack emissons. Concentration limits corresponding to a visual opacity limit can be determined by the appropriate opacity/ppM meter relationship and a formula which is given

  11. End-capped Thiophene Modulated Molecular Packing in 2,8-Dibenzothiophene-based Materials:from Face-to-face to Edge-to-face Stacking

    Institute of Scientific and Technical Information of China (English)

    李业新; 陈志

    2012-01-01

    Two new organic crystals of 2,8-bisthienyldibenzothiophene(BTDT) and 2,8-bis-dithienyldibenzothiophene(BDTDT) compounds were successfully obtained.The change of end-capped group from thiophene to dithiophene causes big differences in molecular packing and carrier-transport property.The adjacent molecules of compound BTDT adopt face-to-face π stacking and exhibit two-dimensional interchain interactions.On the contrary,BDTDT molecules are arranged in an edge-to-face motif and show mainly one-dimensional interacting character.The packing mode exerts dramatic effect on the carrier-transport property.The crystal of BTDT belongs to the orthorhombic system,space group P21212 with a = 20.1427(11),b = 4.6016(3),c = 8.6340(5) ,V = 800.27(8) 3,Z = 2,Dc = 1.446 g/cm3,F(000) = 360,S = 1.019,the final R = 0.0491 and wR = 0.0960 for 1605 reflections with I 2σ(I).The crystal of BDTDT belongs to the orthorhombic system,space group P212121 with a = 7.2636(15),b = 25.359(5),c = 25.359 ?,V = 4670.9(14) ?3,Z = 8,Dc = 1.458 g/cm3,F(000) = 2112,S = 0.880,the final R = 0.0597 and wR = 0.1318 for 8047 reflections with I 2σ(I).

  12. Tuning of Supramolecular Architectures of l-Valine-Containing Dicyanoplatinum(II) 2,2'-Bipyridine Complexes by Metal-Metal, π-π Stacking, and Hydrogen-Bonding Interactions.

    Science.gov (United States)

    Fu, Heidi Li-Ki; Po, Charlotte; He, Hexiang; Leung, Sammual Yu-Lut; Wong, Kam Sing; Yam, Vivian Wing-Wah

    2016-08-01

    A series of newly synthesized dicyanoplatinum(II) 2,2'-bipyridine complexes exhibits self-assembly properties in solution after the incorporation of the l-valine amino units appended with various hydrophobic motifs. These l-valine-derived substituents were found to have critical control over the aggregation behaviors of the complexes in the solution state. On one hand, one of the complexes was found to exhibit interesting circularly polarized luminescence (CPL) signals at low temperature due to the formation of chiral spherical aggregates in the temperature-dependent studies. On the other hand, systematic transformation from less uniform aggregates to well-defined fibrous and rod-like structures via Pt⋅⋅⋅Pt and π-π stacking interactions has also been observed in the mixed-solvent studies. These changes were monitored by UV/Vis absorption, emission, circular dichroism (CD), and CPL spectroscopies, and morphologies were studied by electron microscopy. PMID:27412571

  13. Learning through Interaction: Improving Practice with Design-Based Research

    Science.gov (United States)

    Voigt, Christian; Swatman, Paula M. C.

    2006-01-01

    This article presents the first stage of a design-based research project to introduce case-based learning using existing interactive technologies in a major Australian university. The paper initially outlines the relationship between case-based learning, student interaction and the study of interactions--and includes a review of research into…

  14. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro

    2015-01-01

    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  15. Energy Expenditure of Sport Stacking

    Science.gov (United States)

    Murray, Steven R.; Udermann, Brian E.; Reineke, David M.; Battista, Rebecca A.

    2009-01-01

    Sport stacking is an activity taught in many physical education programs. The activity, although very popular, has been studied minimally, and the energy expenditure for sport stacking is unknown. Therefore, the purposes of this study were to determine the energy expenditure of sport stacking in elementary school children and to compare that value…

  16. Fungal melanins differ in planar stacking distances.

    Directory of Open Access Journals (Sweden)

    Arturo Casadevall

    Full Text Available Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  17. Analytic stacks and hyperbolicity

    OpenAIRE

    Borghesi, Simone; Tomassini, Giuseppe

    2012-01-01

    The classical Brody's theorem asserts the equivalence between two notions of hyperbolicity for compact complex spaces, one named after Kobayashi and one expressed in terms of lack of non constant holomorphic entire functions (compactness is only used to prove the harder implication). We extend this theorem to Deligne-Mumford analytic stacks, by first providing definitions of what we think of Kobayashi and Brody hyperbolicity for such objects and then proving the equivalence of these concepts ...

  18. Self-Adjusting Stack Machines

    CERN Document Server

    Hammer, Matthew A; Chen, Yan; Acar, Umut A

    2011-01-01

    Self-adjusting computation offers a language-based approach to writing programs that automatically respond to dynamically changing data. Recent work made significant progress in developing sound semantics and associated implementations of self-adjusting computation for high-level, functional languages. These techniques, however, do not address issues that arise for low-level languages, i.e., stack-based imperative languages that lack strong type systems and automatic memory management. In this paper, we describe techniques for self-adjusting computation which are suitable for low-level languages. Necessarily, we take a different approach than previous work: instead of starting with a high-level language with additional primitives to support self-adjusting computation, we start with a low-level intermediate language, whose semantics is given by a stack-based abstract machine. We prove that this semantics is sound: it always updates computations in a way that is consistent with full reevaluation. We give a comp...

  19. Nature and Magnitude of Aromatic Base Stacking in DNA and RNA: Quantum Chemistry, Molecular Mechanics, and Experiment

    Czech Academy of Sciences Publication Activity Database

    Šponer, Jiří; Šponer, Judit E.; Mládek, Arnošt; Jurečka, P.; Banáš, P.; Otyepka, M.

    2013-01-01

    Roč. 99, č. 12 (2013), s. 978-988. ISSN 0006-3525 R&D Projects: GA ČR(CZ) GAP208/12/1878; GA ČR(CZ) GAP208/11/1822; GA ČR(CZ) GBP305/12/G034; GA MŠk(CZ) ED1.1.00/02.0068 Grant ostatní: GA ČR(CZ) GPP301/11/P558 Institutional support: RVO:68081707 Keywords : NUCLEIC-ACID BASES * DENSITY-FUNCTIONAL THEORY * POTENTIAL-ENERGY SURFACE Subject RIV: BO - Biophysics Impact factor: 2.288, year: 2013

  20. Toric Stacks II: Intrinsic Characterization of Toric Stacks

    CERN Document Server

    Geraschenko, Anton

    2011-01-01

    The purpose of this paper and its prequel (Toric Stacks I) is to introduce and develop a theory of toric stacks which encompasses and extends the notions of toric stacks defined in [Laf02, BCS05, FMN09, Iwa09, Sat09, Tyo10], as well as classical toric varieties. While the focus of the prequel is on how to work with toric stacks, the focus of this paper is how to show a stack is toric. For toric varieties, a classical result says that any normal variety with an action of a dense open torus arises from a fan. In [FMN09, Theorem 7.24], it is shown that a smooth separated DM stack with an action of a dense open stacky torus arises from a stacky fan. In the same spirit, the main result of this paper is that any Artin stack with an action of a dense open torus arises from a stacky fan under reasonable hypotheses.

  1. Machine Learning Based on Attribute Interactions

    OpenAIRE

    Jakulin, Aleks

    2005-01-01

    Two attributes $A$ and $B$ are said to interact when it helps to observe the attribute values of both attributes together. This is an example of a $2$-way interaction. In general, a group of attributes ${\\cal X}$ is involved in a $k$-way interaction when we cannot reconstruct their relationship merely with $\\ell$-way interactions, $\\ell < k$. These two definitions formalize the notion of an interaction in a nutshell. An additional notion is the one of context. We interpret context as just...

  2. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells

    Science.gov (United States)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak

    2016-08-01

    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  3. Three-Dimensional Flexible Complementary Metal-Oxide-Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks.

    Science.gov (United States)

    Zhao, Yudan; Li, Qunqing; Xiao, Xiaoyang; Li, Guanhong; Jin, Yuanhao; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2016-02-23

    We have proposed and fabricated stable and repeatable, flexible, single-walled carbon nanotube (SWCNT) thin film transistor (TFT) complementary metal-oxide-semiconductor (CMOS) integrated circuits based on a three-dimensional (3D) structure. Two layers of SWCNT-TFT devices were stacked, where one layer served as n-type devices and the other one served as p-type devices. On the basis of this method, it is able to save at least half of the area required to construct an inverter and make large-scale and high-density integrated CMOS circuits easier to design and manufacture. The 3D flexible CMOS inverter gain can be as high as 40, and the total noise margin is more than 95%. Moreover, the input and output voltage of the inverter are exactly matched for cascading. 3D flexible CMOS NOR, NAND logic gates, and 15-stage ring oscillators were fabricated on PI substrates with high performance as well. Stable electrical properties of these circuits can be obtained with bending radii as small as 3.16 mm, which shows that such a 3D structure is a reliable architecture and suitable for carbon nanotube electrical applications in complex flexible and wearable electronic devices. PMID:26768020

  4. When is Stacking Confusing?: The Impact of Confusion on Stacking in Deep HI Galaxy Surveys

    CERN Document Server

    Jones, Michael G; Giovanelli, Riccardo; Papastergis, Emmanouil

    2015-01-01

    We present an analytic model to predict the HI mass contributed by confused sources to a stacked spectrum in a generic HI survey. Based on the ALFALFA correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest SKA-precursor HI surveys. Stacking with LADUMA and DINGO UDEEP data will only be mildly impacted by confusion if their target synthesised beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES' 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST will be the most impeded by confusion, with HI surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the reds...

  5. Interacting with Stroke-Based Rendering on a Wall Display

    NARCIS (Netherlands)

    Grubert, Jens; Hanckock, Mark; Carpendale, Sheelagh; Tse, Edward; Isenberg, Tobias

    2007-01-01

    We introduce two new interaction techniques for creating and interacting with non-photorealistic images using stroke-based rendering. We provide bimanual control of a large interactive canvas through both remote pointing and direct touch. Remote pointing allows people to sit and interact at a distan

  6. A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads

    Science.gov (United States)

    Wang, Xianfeng; Shi, Zhifei; Wang, Jianjun; Xiang, Hongjun

    2016-05-01

    In this paper, a flex-compressive piezoelectric energy harvesting cell (F-C PEHC) is proposed. This cell has a large load capacity and adjustable force transmission coefficient assembled from replaceable individual components. A statically indeterminate mechanical model for the cell is established and the theoretical force transmission coefficient is derived based on structural mechanics. An inverse correlation between the force transmission coefficient and the relative stiffness of Element 1’s limbs is found. An experimental study is also conducted to verify the theoretical results. Both weakened and enhanced modes are achieved for this experiment. The maximum power output approaches 4.5 mW at 120 kΩ resistive load under a 4 Hz harmonic excitation with 600 N amplitude for the weakened mode, whereas the maximum power output approaches 17.8 mW at 120 kΩ under corresponding load for the enhanced mode. The experimental measurements of output voltages are compared with the theoretical ones in both weakened and enhanced modes. The experimental measurements of open-circuit voltages are slightly smaller for harmonic excitations with amplitudes that vary from 400 N to 800 N and the errors are within 14%. During the experiment, the maximum load approaches 2.8 kN which is quite large but not the ultimate bearing capacity of the present device. The mechanical model and theoretical transmission coefficient can be used in other flex-compressive mode energy transducers.

  7. A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks.

    Science.gov (United States)

    Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L

    2015-02-01

    A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. PMID:25515433

  8. Multi-component pre-stack time-imaging and migration-based velocity analysis in transversely isotropic media; Imagerie sismique multicomposante et analyse de vitesse de migration en milieu transverse isotrope

    Energy Technology Data Exchange (ETDEWEB)

    Gerea, C.V.

    2001-06-01

    Complementary to the recording of compressional (P-) waves, the observation of P-S converted waves has recently been receiving specific attention. This is mainly due to their tremendous potential as a tool for fracture and lithology characterization, imaging sediments in gas saturated rocks, and imaging shallow sediments with higher resolution than conventional P-P data. In a conventional marine seismic survey, we cannot record P-to-S converted-wave energy since the fluids cannot support shear-wave strain. Thus, to capture the converted-wave energy, we need to record it at the water-bottom casing an ocean-bottom cable (OBC). The S-waves recorded at the seabed are mainly converted from P to S (i.e., PS-waves or C-waves) at the subsurface reflectors. The most accurate way to image seismic data is pre-stack depth migration. In this thesis, I develop a numerically efficient 2.5-D true-amplitude elastic Kirchhoff pre-stack migration algorithm designed to handle OBC data gathered along a single line. All the kinematic and dynamic elastic Green's functions required in the computation of true-amplitude weight term of Kirchhoff summation, are based on the non-hyperbolic explicit approximations of P- and SV-wave travel-times in layered transversely isotropic (VTI) media. Hence, this elastic imaging algorithm is very well-suited for migration-based velocity analysis techniques, for which fast, robust and iterative pre-stack migration is desired. In this thesis, I approach also the topic of anisotropic velocity model building for elastic pre-stack time-imaging. and propose an original methodology for joint PP-PS migration-based velocity analysis (MVA) in layered VTI anisotropic media. Tests on elastic synthetic and real OBC seismic data ascertain the validity of the pre-stack migration algorithm and velocity analysis methodology. (author)

  9. laser interaction and plasma based accelerator

    International Nuclear Information System (INIS)

    Plasma is an attractive medium for particle acceleration because of the high electric field can be sustained by Plasma. Our objective in this thesis concentrate mainly to study the physics of particle acceleration by different methods like microwave radiation propagates in the waveguides and also like beating two intense lasers in plasma based accelerators. So, it has been of great interest to consider the following subjects:1-The dynamics of an electron in the fields associated with transverse magnetic (TM) wave propagating inside rectangular waveguide is studied analytically. We have solved exactly the relativistic momentum and energy equations of a single electron which injected initially along the propagation of microwave. Expressions for the acceleration gradient and deflection angle are obtained.2-The dynamics of an electron in the fields associated with TE-electromagnetic wave propagating inside a circular waveguide is analytically studied. The motion of this electron along the axis of the waveguide is investigated in the existence of a helical magnet (in which the field is perpendicular to the axis of waveguide and rotating as a function of position along the magnet).3-The study of the beat wave plasma accelerator due to the interaction of two linearly polarized Bessel laser beams is investigated. The electron acceleration which driven by the generated longitudinal plasma waves with phase velocities near the speed of the light is studied. The wave equation descried the fields of this beat wave is obtained.

  10. Physico-chemical interactions between radioactive effluents from a nuclear power station stack and plumes from a cooling tower: effects on ground deposition of radioactivity

    International Nuclear Information System (INIS)

    A broad outline of numerical modelling of the interaction between radioactive effluents and plumes from cooling towers will be given and some of the more important aspects dealt with in some detail. The discussion will include the influence of wind direction, the heights reached by the cooling tower plumes, their visible lengths, which in turn depend on prevailing atmospheric conditions (humidity and wind speed), and the influence of natural rain and artificial precipitation (due to vapour droplets from the cooling towers) on the rate of radioactive deposition (fallout and washout). The probable effects of this interaction on the annual radioactive deposition factors will be brought out with the help of results obtained by numerical modelling (the KUMULUS model) for certain atmospheric conditions. The results obtained will be compared with those presented by other authors

  11. Mining Tree Based Frequent Pattern from Human Interaction in Meeting

    Directory of Open Access Journals (Sweden)

    Puja R. Kose*1

    2014-01-01

    Full Text Available In modern life, interactions between human beings are frequently occurring in meetings, where topics are discussed and new decisions are made. To understand and interpret how people interact in a meeting discussion study of semantic knowledge is important. It becomes possible to extract frequent patterns of human interaction based on the captured content of face-to-face meetings by using mining method. Human interactions are categorized as proposing an idea, giving comments, expressing a positive opinion, acknowledgement; indicate the intention of user towards a topic or role in a discussion.Tree is used for representing a human interaction flow in a discussion session. Tree-based interaction mining algorithms are studied to analyze the structures of the trees and to extract interaction flow patterns. It can successfully extract several interesting patterns which is useful for the interpretation of human behavior in meeting discussions, such as determining frequent interactions, typical interaction flows, and relationships between different types of interactions.

  12. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    OpenAIRE

    Peng Liu; Lei Yang; Daming Shi; Xianglong Tang

    2015-01-01

    A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction net...

  13. Die-stacking architecture

    CERN Document Server

    Xie, Yuan

    2015-01-01

    The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, promise attractive solutions to reduce the delay of interconnects in future microprocessors. 3D memory stacking enables much higher memory bandwidth for future chip-multiprocessor design, mitigating the ""memory wall"" problem. In addition, heterogenous integration enabled by 3D technology can also result in innovative designs for future microprocessors. This book first provides a brief introduction to this emerging technology, and then presents a variety of approaches to design

  14. Technology stacks and frameworks for full-stack application development

    OpenAIRE

    Ušaj, Erik

    2016-01-01

    This work aims providing a comprehensive overview and analysis of current JavaScript (JS) technology stacks and frameworks for full-stack application development: from web clients, mobile and desktop applications to server applications and cloud-connected services. Analysis shall focus on MEAN technology stack and frameworks such as Meteor which also tries to leverage mobile app development using Apache Cordova framework. We will include an overview of available JS build tools for desktop app...

  15. Stacked Extreme Learning Machines.

    Science.gov (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai

    2015-09-01

    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed. PMID:25361517

  16. Exciplexes and conical intersections lead to fluorescence quenching in π-stacked dimers of 2-aminopurine with natural purine nucleobases†

    Science.gov (United States)

    Liang, JingXin; Nguyen, Quynh L.; Matsika, Spiridoula

    2016-01-01

    Fluorescent analogues of the natural DNA bases are useful in the study of nucleic acids’ structure and dynamics. 2-Aminopurine (2AP) is a widely used analogue with environmentally sensitive fluorescence behavior. The quantum yield of 2AP has been found to be significantly decreased when engaged in π-stacking interactions with the native bases. We present a theoretical study on fluorescence quenching mechanisms in dimers of 2AP π-stacked with adenine or guanine as in natural DNA. Relaxation pathways on the potential energy surfaces of the first excited states have been computed and reveal the importance of exciplexes and conical intersections in the fluorescence quenching process. PMID:23625036

  17. Reality-based brain-computer interaction

    OpenAIRE

    Sjölie, Daniel

    2011-01-01

    Recent developments within human-computer interaction (HCI) and cognitive neuroscience have come together to motivate and enable a framework for HCI with a solid basis in brain function and human reality. Human cognition is increasingly considered to be critically related to the development of human capabilities in the everyday environment (reality). At the same time, increasingly powerful computers continuously make the development of complex applications with realistic interaction easier. A...

  18. Interaction and Dynamics of add-atoms with 2-Dimensional Structures : (PAC studies of mono- and low- number of stacking layers)

    CERN Multimedia

    The interaction and dynamics of add-atoms with graphene, graphene-derivate structures and, later, MoSi$_2$, two-dimensional – single and few – atomic layers will be studied with the Perturbed Angular Correlation – PAC – technique. Graphene is also envisaged as new platform for growing semiconductor nanostructures devices, such as quantum dots and as a particularly powerful catalyst. Understanding nucleation of nanostructures and clusters on graphene and related phases in wet conditions as they are used in chemical methods in research and industry require complementary studies. These systems shall therefore be studied systematically using radioactive probe atomsattaching via a transfer media (e.g., water in catalysis process) or being deposited with soft-landing techniques under vacuum and UHV conditions, as is proportionated by the ASPIC setup at ISOLDE. The hyperfine fields obtained under different environments are expected to reveal basic information on the rich atomistic and physical mechanisms ass...

  19. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    Science.gov (United States)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-12-01

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product teth and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in "null-aggregates" which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  20. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    International Nuclear Information System (INIS)

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product teth and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems

  1. Image Hashing algorithm based on stacked autoencoder%基于栈式自动编码的图像哈希算法

    Institute of Scientific and Technical Information of China (English)

    张春雨; 韩立新; 徐守晶

    2016-01-01

    随着网络图像的快速发展,在大型图像检索系统中哈希算法成为近似最近邻查询算法的研究重点。本文提出一种基于深度模型的哈希算法—深度哈希。通过深度卷积神经网络提取的图像高维全局特征,用栈式自动编码器对特征进行无监督学习得到二进制哈希编码,利用图像标签语义相似性对栈式自动编码器的参数进行微调,最后用汉明距离来计算图像的相似性。本文提出的深度哈希在图像检索中取得了较好的结果。%With the rapid development of network in the large image ,image hashing algorithm has attracted interests as an approach of approximate nearest neighbor algorithm in the image retrieval system .In this paper ,we proposed the deep hash which based on deep learning models .The high dimensional global are extracted by deep convolutional neural network ,then using stack autoencoder to get the parameters of the models by unsupervised learning to get the binary hash code .Finally using the hamming distance to compute the similarity of the images .The deephash proves the better results in image retrieval .

  2. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hestand, Nicholas J.; Spano, Frank C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  3. Ball Bearing Stacking Automation System

    Directory of Open Access Journals (Sweden)

    Shafeequerrahman S . Ahmed

    2013-01-01

    Full Text Available This document is an effort to introduce the concept of automation in small scale industries and or small workshops that are involved in the manufacturing of small objects such as nuts, bolts and ball bearing in this case. This an electromechanical system which includes certain mechanical parts that involves one base stand on which one vertical metallic frame is mounted and hinged to this vertical stand is an in humanized effort seems inadequate in this era making necessary the use of Electronics, Computer in the manufacturing processes leading to the concept of Automated Manufacturing System (AMS.The ball bearing stack automation is an effort in this regard. In our project we go for stack automation for any object for example a ball bearing, be that is still a manual system there. It will be microcontroller based project control system equipped with microcontroller 89C51 from any manufacturer like Atmel or Philips. This could have been easily implemented if a PLC could be used for manufacturing the staking unit but I adopted the microcontroller based system so that some more modification in the system can be effected at will as to use the same hardware .Although a very small object i.e. ball bearig or small nut and fixture will be tried to be stacked, the system with more precision and more power handling capacity could be built for various requirements of the industry. For increasing more control capacity, we can use another module of this series. When the bearing is ready, it will be sent for packing. This is sensed by an inductive sensor. The output will be proceeds by PLC and microcontroller card which will be driving the assembly in order to put it into pads or flaps. This project will also count the total number of bearings to be packed and will display it on a LCD for real time reference and a provision is made using a higher level language using hyper terminal of the computer

  4. Stacking in the Fermilab doubler

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.

    1976-07-14

    The feasibility of stacking beam in a storage ring by the phase displacement technique, i.e. by the accumulation of momentum strips, is determined by a complicated interplay of many factors. Some of these factors are discussed, especially as they relate to stacking beam in the Fermilab doubler ring, but no attempt is made to present a consistent solution. An arbitrary division is made into five subject categories connected with the stacking process: (1) momentum dilution, that is, the dilution of the longitudinal phase space area; (2) rebunching the stack for acceleration; (3) the physical aperture used to create a stack of given current; (4) beam loss during stacking in a superconducting environment; and (5) field errors due to random errors in the placement and support of the superconducting coils, including the amplification of the field errors for orbits displaced from the magnet center. The basic theory is given and applied using doubler parameters.

  5. Nano-scale displacement sensing based on van der Waals interactions

    Science.gov (United States)

    Hu, Lin; Zhao, Jin; Yang, Jinlong

    2015-05-01

    We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical displacement. For lateral displacement, the change of dz is induced by atomic layer corrugation. Despite the different stacking configurations of BLBP, we find that the change of the indirect band gap is proportional to dz-2. Furthermore, this dz-2 dependence is found to be applicable to other graphene-like corrugated bi-layer materials such as MoS2. BLBP represents a large family of bi-layer 2D atomic corrugated materials for which the electronic structure is sensitive to the interlayer vertical and lateral displacement, and thus could be used for a nano-scale displacement sensor. This can be done by monitoring the tunable electronic structure using absorption spectroscopy. Because this type of sensor is established on atomic layers coupled through vdW interactions, it provides unique applications in the measurements of nano-scale displacement induced by tiny external forces.We propose that a nano-scale displacement sensor with high resolution in weak-force systems can be realized based on vertically stacked two-dimensional (2D) atomic corrugated layer materials bound through van der Waals (vdW) interactions. Using first-principles calculations, we found that the electronic structures of bi-layer blue phosphorus (BLBP) vary appreciably with lateral and vertical interlayer displacements. The variation of the electronic structure is attributed to the change of the interlayer distance dz for both the lateral and vertical

  6. Beam stacking experiments at TARN

    International Nuclear Information System (INIS)

    After the first success of beam injection in TARN, August of 1979, beam experiments have been performed in succession to show the overall stacking number of around -- 300 turns, 15 RF stackings and 20 multi-turns. These results are in the close agreements with the theoretical calculations and we are now convinced that the stacking method used at TARN is quite useful for the accelerators of protons and heavy ions. (author)

  7. An Interactive Tool for Creating Multi-Agent Systems and Interactive Agent-based Games

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Utilizing principles from parallel and distributed processing combined with inspiration from modular robotics, we developed the modular interactive tiles. As an educational tool, the modular interactive tiles facilitate the learning of multi-agent systems and interactive agent-based games. The...

  8. Fresnel aperture pre-stack depth migration

    OpenAIRE

    2005-01-01

    In this thesis, I present the results of a new approach to pre-stack Kirchoff depth migration using the Kirchoff algorithm and the Fresnel aperture features in order to improve the signal-to-noise ratio of the seismic data in depth imaging. Another advantage of this method is that it requires no additionnal measurments compared to the traditionnal PSDM. Indeed, the Fresnel apertures are picked interactively, in a way that is similar to velocity picking, and thereafter used during the migratio...

  9. Duality for commutative group stacks

    OpenAIRE

    Brochard, Sylvain

    2014-01-01

    We study in this article the dual of a (strictly) commutative group stack $G$ and give some applications. Using the Picard functor and the Picard stack of $G$, we first give some sufficient conditions for $G$ to be dualizable. Then, for an algebraic stack $X$ with suitable assumptions, we define an Albanese morphism $a_X : X\\to A^1(X)$ where $A^1(X)$ is a torsor under the dual commutative group stack $A^0(X)$ of $Pic_{X/S}$. We prove that $a_X$ satisfies a natural universal property. We give ...

  10. Group Interaction Method Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wu Qun

    2013-06-01

    Full Text Available This paper presents a group interaction method based on Wireless Sensor Network which supplies new attempts and ideas for human-computer interaction. Firstly, analyze group interaction framework that is different from the monomer interaction, then integrate data language of group interaction based on user’s purpose so that the Wireless Sensor Network technology and methods are applied to the system of group interaction. Finally, group interaction toys based on Wireless Sensor Network are developed. Each of toy monomers is compactly filled with sensors, wireless communication devices, LED lights. The Wireless Sensor Network which is composed of many monomers makes interface function come true in virtual. The users not only act on the physical object but also act directly on the "data" when they use the device. Currently the functions including light transmission and light color blending have been accomplished and developing.

  11. Designing Software-Based Interactive Installations

    DEFF Research Database (Denmark)

    Andreasen, Troels; Juul, Niels Christian; Rosendahl, Mads

    2014-01-01

    installations and support the description of the approach with a single case- a bumper car competition. Why. To some extent, standard techniques for software development can be adapted for interactive installations. However, there is a need to emphasize the unique aspects of installations, bringing tangible...

  12. Adaptive Game Level Creation through Rank-based Interactive Evolution

    DEFF Research Database (Denmark)

    Liapis, Antonios; Martínez, Héctor Pérez; Togelius, Julian;

    2013-01-01

    This paper introduces Rank-based Interactive Evolution (RIE) which is an alternative to interactive evolution driven by computational models of user preferences to generate personalized content. In RIE, the computational models are adapted to the preferences of users which, in turn, are used...... artificial agents. Results suggest that RIE is both faster and more robust than standard interactive evolution and outperforms other state-of-the-art interactive evolution approaches....

  13. A Measure of Segregation Based on Social Interactions

    OpenAIRE

    Echenique, Federico; Fryer, Roland

    2007-01-01

    We develop an index of segregation based on two premises: (1) a measure of segregation should disaggregate to the level of individuals, and (2) an individual is more segregated the more segregated are the agents with whom she interacts. We present an index that satisfies (1) and (2) and that is based on agents' social interactions: the extent to which blacks interact with blacks, whites with whites, etc. We use the index to measure school and residential segregation. Using detailed data on fr...

  14. Mind Machine Interaction Based Robot for Disables

    OpenAIRE

    Priya Bag*; Rakesh Patel

    2014-01-01

    This paper elucidates the research and implementation of brain-actuated disability robot. The idea of controlling robot not by manual control, but by mere “thinking” (i.e., the brain activity of human) has fascinated humankind since ever. The robot is controlled through human Brain signal. BCI is a natural way to augment human capabilities by providing a new interaction link with the outside world and is particularly relevant as an aid for paralyzed humans, although it also op...

  15. Role of surface-reaction layer in HBr/fluorocarbon-based plasma with nitrogen addition formed by high-aspect-ratio etching of polycrystalline silicon and SiO2 stacks

    Science.gov (United States)

    Iwase, Taku; Matsui, Miyako; Yokogawa, Kenetsu; Arase, Takao; Mori, Masahito

    2016-06-01

    The etching of polycrystalline silicon (poly-Si)/SiO2 stacks by using VHF plasma was studied for three-dimensional NAND fabrication. One critical goal is achieving both a vertical profile and high throughput for multiple-stack etching. While the conventional process consists of multiple steps for each stacked layer, in this study, HBr/fluorocarbon-based gas chemistry was investigated to achieve a single-step etching process to reduce process time. By analyzing the dependence on wafer temperature, we improved both the etching profile and rate at a low temperature. The etching mechanism is examined considering the composition of the surface reaction layer. X-ray photoelectron spectroscopy (XPS) analysis revealed that the adsorption of N–H and Br was enhanced at a low temperature, resulting in a reduced carbon-based-polymer thickness and enhanced Si etching. Finally, a vertical profile was obtained as a result of the formation of a thin and reactive surface-reaction layer at a low wafer temperature.

  16. Spherical Torus Center Stack Design

    Energy Technology Data Exchange (ETDEWEB)

    C. Neumeyer; P. Heitzenroeder; C. Kessel; M. Ono; M. Peng; J. Schmidt; R. Woolley; I. Zatz

    2002-01-18

    The low aspect ratio spherical torus (ST) configuration requires that the center stack design be optimized within a limited available space, using materials within their established allowables. This paper presents center stack design methods developed by the National Spherical Torus Experiment (NSTX) Project Team during the initial design of NSTX, and more recently for studies of a possible next-step ST (NSST) device.

  17. Repetition-based Interactive Facade Modeling

    KAUST Repository

    AlHalawani, Sawsan

    2012-07-01

    Modeling and reconstruction of urban environments has gained researchers attention throughout the past few years. It spreads in a variety of directions across multiple disciplines such as image processing, computer graphics and computer vision as well as in architecture, geoscience and remote sensing. Having a virtual world of our real cities is very attractive in various directions such as entertainment, engineering, governments among many others. In this thesis, we address the problem of processing a single fa cade image to acquire useful information that can be utilized to manipulate the fa cade and generate variations of fa cade images which can be later used for buildings\\' texturing. Typical fa cade structures exhibit a rectilinear distribution where in windows and other elements are organized in a grid of horizontal and vertical repetitions of similar patterns. In the firt part of this thesis, we propose an efficient algorithm that exploits information obtained from a single image to identify the distribution grid of the dominant elements i.e. windows. This detection method is initially assisted with the user marking the dominant window followed by an automatic process for identifying its repeated instances which are used to define the structure grid. Given the distribution grid, we allow the user to interactively manipulate the fa cade by adding, deleting, resizing or repositioning the windows in order to generate new fa cade structures. Having the utility for the interactive fa cade is very valuable to create fa cade variations and generate new textures for building models. Ultimately, there is a wide range of interesting possibilities of interactions to be explored.

  18. Physically-based interactive Schlieren flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Mccormick, Patrick S [Los Alamos National Laboratory; Brownlee, Carson S [Los Alamos National Laboratory; Pegoraro, Vincent [UNIV OF UTAH; Shankar, Siddharth [UNIV OF UTAH; Hansen, Charles D [UNIV OF UTAH

    2009-01-01

    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph and schlieren imaging for centuries which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraphs and schlieren images of time-varying scalar fields derived from computational fluid dynamics (CFD) data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Results comparing this method to previous schlieren approximations are presented.

  19. Stacking for machine learning redshifts applied to SDSS galaxies

    Science.gov (United States)

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-08-01

    We present an analysis of a general machine learning technique called `stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We show how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organizing maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9 per cent and 21 per cent on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4 per cent and 2.5 per cent for the explored metrics and comes at almost no additional computational cost.

  20. Stacking for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Zitlau, Roman; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-01-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When appl...

  1. Stacking for machine learning redshifts applied to SDSS galaxies

    Science.gov (United States)

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella

    2016-08-01

    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4% and 2.5% for the explored metrics and comes at almost no additional computational cost.

  2. Evolution of risk assessment strategies for food and feed uses of stacked GM events.

    Science.gov (United States)

    Kramer, Catherine; Brune, Phil; McDonald, Justin; Nesbitt, Monique; Sauve, Alaina; Storck-Weyhermueller, Sabine

    2016-09-01

    Data requirements are not harmonized globally for the regulation of food and feed derived from stacked genetically modified (GM) events, produced by combining individual GM events through conventional breeding. The data required by some regulatory agencies have increased despite the absence of substantiated adverse effects to animals or humans from the consumption of GM crops. Data from studies conducted over a 15-year period for several stacked GM event maize (Zea mays L.) products (Bt11 ×  GA21, Bt11 ×  MIR604, MIR604 ×  GA21, Bt11 ×  MIR604 ×  GA21, Bt11 ×  MIR162 ×  GA21 and Bt11 ×  MIR604 ×  MIR162 ×  GA21), together with their component single events, are presented. These data provide evidence that no substantial changes in composition, protein expression or insert stability have occurred after combining the single events through conventional breeding. An alternative food and feed risk assessment strategy for stacked GM events is suggested based on a problem formulation approach that utilizes (i) the outcome of the single event risk assessments, and (ii) the potential for interactions in the stack, based on an understanding of the mode of action of the transgenes and their products. PMID:26914314

  3. Linear identification and model adjustment of a PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, C.; Puleston, P.F.; More, J.J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Husar, A. [Institut de Robotica i Informatica Industrial (CSIC-UPC), c/ Llorens i Artigas 4-6, 08028 Barcelona (Spain); Mayosky, M.A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Comision de Investigaciones Cientificas (CIC), Provincia de Buenos Aires (Argentina)

    2008-07-15

    In the context of fuel cell stack control a mayor challenge is modeling the interdependence of various complex subsystem dynamics. In many cases, the states interaction is usually modeled through several look-up tables, decision blocks and piecewise continuous functions. Many internal variables are inaccessible for measurement and cannot be used in control algorithms. To make significant contributions in this area, it is necessary to develop reliable models for control and design purposes. In this paper, a linear model based on experimental identification of a 7-cell stack was developed. The procedure followed to obtain a linear model of the system consisted in performing spectroscopy tests of four different single-input single-output subsystems. The considered inputs for the tests were the stack current and the cathode oxygen flow rate, while the measured outputs were the stack voltage and the cathode total pressure. The resulting model can be used either for model-based control design or for on-line analysis and errors detection. (author)

  4. Interactive Sonification of Grid-based Games

    OpenAIRE

    Nickerson, Louise Valgerður; Hermann, Thomas

    2008-01-01

    This paper presents novel designs for the sonification (auditory representation) of data from grid-based games such as Connect Four, Sudoku and others, motivated by the search for effective auditory representations that are useful for visually-impaired users as well as to support overviews in case that the visual sense is already otherwise allocated. Grid-based games are ideal to develop sonification strategies since they offer the advantage of providing an excellent test environment to evalu...

  5. Seismic qualification of ventilation stack

    International Nuclear Information System (INIS)

    This paper describes the method to be used to qualify the 105 K ventilation stack at the U.S. Department of Energy's Hanford Site, near Richland, Washington, under seismic and wind loadings. The stack stands at 175 ft (53.34 m), with a diameter tapering from 22 ft (6.71 m) at the foundation to 12.83 ft (3.91 m) at the top. Although the stack is classified as Safety Class 3 (low hazard), it is treated as a Safety Class 1 (high hazard) component, as failure could damage a Safety Class 1 facility (the irradiated fuel storage basin). The evaluation used U.S. Department of Energy criteria specified in UCRL 15910 (1990). The seismic responses of the stack under earthquake loading were obtained from modal analyses with response spectrum input that used the ANSYS (1989) finite-element computer code. The moments and shear forces from the results of seismic analysis were used to qualify the reinforcement capacity of the stack structure by the ultimate-strength method. The wind forces acting on the stack in both along-wind and crosswind directions were also calculated. Presented are evaluations of the soil bearing pressure, the moment, and the shear capacity of the stack foundation

  6. Seismic qualification of ventilation stack

    International Nuclear Information System (INIS)

    This paper describes the method to be used to qualify the 105 K ventilation stack at the US Department of Energy's Hanford Site, near Richland, Washington, under seismic and wind loadings. The stack stands at 175 ft (53.34 m), with a diameter tapering from 22 ft (6.71 m) at the foundation to 12.83 ft (3.91 m) at the top. Although the stack is classified as Safety Class 3 (low hazard), it is treated as a Safety Class 1 (high hazard) component, as failure could damage a Safety Class 1 facility (the irradiated fuel storage basin). The evaluation used US Department of Energy criteria specified in UCRL 15910 (1990). The seismic responses of the stack under earthquake loading were obtained from modal analyses with response spectrum input that used the ANSYS (1989) finite-element computer code. The moments and shear forces from the results of seismic analysis were used to qualify the reinforcement capacity of the stack structure by the ultimate-strength method. The wind forces acting on the stack in both along-wind and are evaluations of the soil bearing pressure, the moment, and the shear capacity of the stack foundation

  7. Environmental assessment of phosphogypsum stacks

    International Nuclear Information System (INIS)

    Phosphogypsum is one of the most important by-products of phosphate fertilizer industry. It is kept in large stacks to the west of Homs city. Storing Phosphogypsum as open stacks exposed to various environmental effects, wind and rain, may cause pollution of the surrounding ecosystem (soil, plant, water and air). This study was carried out in order to assess the environmental impact of Phosphogypsum stacks on the surrounding ecosystem. The obtained results show that Phosphogypsum stacks did not increase the concentration of radionuclides, i.e. Radon-222 and Radium-226, the external exposed dose of gamma rays, as well as the concentration of heavy metals in the components of the ecosystem, soil, plant, water and air, as their concentrations did not exceed the permissible limits. However, the concentration of fluorine in the upper layer of soil, located to the east of the Phosphogypsum stacks, increased sufficiently, especially in the dry period of the year. Also, the concentration of fluoride in plants growing up near-by the Phosphogypsum stacks was too high, exceeded the permissible levels. This was reflected in poising plants and animals, feeding on the plants. Consequently, increasing the concentration of fluoride in soil and plants is the main impact of Phosphogypsum stacks on the surrounding ecosystem. Minimising this effect could be achieved by establishing a 50 meter wide protection zone surrounding the Phosphogypsum stacks, which has to be planted with non palatable trees, such as pine and cypress, forming wind barriers. Increasing the concentrations of heavy metals and fluoride in infiltrated water around the stacks was high; hence cautions must be taken to prevent its usage in any application or disposal in adjacent rivers and leaks.(author)

  8. Solid Oxide Cell and Stack Testing, Safety and Quality Assurance (SOCTESQA)

    DEFF Research Database (Denmark)

    Auer, C.; Lang, M.; Couturier, K.; Ravn Nielsen, Eva; J. McPhail, S.; Tsotridis, G.; Fu, Q.; H. Chan, S.

    2015-01-01

    In the EU-funded project “SOCTESQA” partners from Europe and Singapore are working together to develop uniform and industry wide test procedures and protocols for solid oxide cells and stacks SOC cell/stack assembly. New application fields which are based on the operation of the SOC cell/stack as...

  9. Unified parity-conserving interactions based on SU4

    International Nuclear Information System (INIS)

    A unified parity-conserving theory of strong and electromagnetic interactions is proposed based on SU(4). The correct electric charge quantization is obtained and an equal number of quarks of charge -1/3 and of leptons of charge +1 is predicted. When weak interactions are introduced, two alternative choices for the gauge group are possible: SU(5) or SO(9). (author)

  10. A Usability Study of Interactive Web-Based Modules

    Science.gov (United States)

    Girard, Tulay; Pinar, Musa

    2011-01-01

    This research advances the understanding of the usability of marketing case study modules in the area of interactive web-based technologies through the assignment of seven interactive case modules in a Principles of Marketing course. The case modules were provided for marketing students by the publisher, McGraw Hill Irwin, of the "Marketing"…

  11. Internet-based Interactive Construction Management Learning System.

    Science.gov (United States)

    Sawhney, Anil; Mund, Andre; Koczenasz, Jeremy

    2001-01-01

    Describes a way to incorporate practical content into the construction engineering and management curricula: the Internet-based Interactive Construction Management Learning System, which uses interactive and adaptive learning environments to train students in the areas of construction methods, equipment and processes using multimedia, databases,…

  12. An EELS sub-nanometer investigation of the dielectric gate stack for the realization of InGaAs based MOSFET devices

    Energy Technology Data Exchange (ETDEWEB)

    Longo, P; Paterson, G W; Craven, A J [Department of Physics and Astronomy, University of Glasgow G12 8QQ (United Kingdom); Holland, M C; Thayne, I G, E-mail: p.longo@physics.gla.ac.u [Department of Electronics and Electrical Engineering, University of Glasgow, G12 8LT (United Kingdom)

    2010-07-01

    In this paper, a subnanometer investigation of the Ga{sub 2}O{sub 3}/GdGaO dielectric gate stack deposited onto InGaAs is presented. Results regarding the influence of the growth conditions on the interface region from a chemical and morphological point of view are presented. The chemical information reported in this paper has been obtained using electron energy loss spectroscopy (EELS) that was carried out in a scanning transmission electron microscope ((S)TEM) showing both spatial and depth resolution.

  13. Maximum supercurrent in two Josephson-junction stacks: Theory and experiment

    DEFF Research Database (Denmark)

    Carapella, G; Costabile, G; Sakai, S; Pedersen, Niels Falsig

    1998-01-01

    The interaction between two long Josephson junctions in a stack is investigated experimentally in the absence of applied magnetic field. Mutual interaction is observed when both junctions or only one junction in the stack is in the zero voltage state. To account for the observed phenomena we...

  14. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    complicated and less imprecise. Time-predictable computer architectures provide solutions to this problem. As accesses to the data in caches are one source of timing unpredictability, devising methods for improving the timepredictability of caches are important. Stack data, with statically analyzable...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...... keeping the timepredictability of the design intact. Moreover, we provide a solution for reducing the cost of context switching in a system using the stack cache. In design of these caches, we use custom hardware and compiler support for delivering time-predictable stack data accesses. Furthermore, for...

  15. Helium-3 Microscopic Optical Model Potential Based on Skyrme Interaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The helium-3 microscopic optical potential is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The reaction cross

  16. EyeScreen: A Vision-Based Gesture Interaction System

    Institute of Scientific and Technical Information of China (English)

    LI Shan-qing; XU Yi-hua; JIA Yun-de

    2007-01-01

    EyeScreen is a vision-based interaction system which provides a natural gesture interface for human-computer interaction (HCI) by tracking human fingers and recognizing gestures. Multi-view video images are captured by two cameras facing a computer screen, which can be used to detect clicking actions of a fingertip and improve the recognition rate. The system enables users to directly interact with rendered objects on the screen. Robustness of the system has been verified by extensive experiments with different user scenarios. EyeScreen can be used in many applications such as intelligent interaction and digital entertainment.

  17. Expectation-Based Loss Aversion and Strategic Interaction

    OpenAIRE

    Simon Dato; Andreas Grunewald; Daniel Müller

    2015-01-01

    This paper provides a comprehensive analysis regarding strategic interaction under expectation-based loss-aversion. First, we develop a coherent framework for the analysis by extending the equilibrium concepts of Koszegi and Rabin (2006, 2007) to strategic interaction and demonstrate how to derive equilibria. Second, we delineate how expectation-based loss-averse players differ in their strategic behavior from their counterparts with standard expected-utility preferences. Third, we analyze eq...

  18. Active substrate integrated terahertz waveguide using periodic graphene stack

    OpenAIRE

    Yanfei Dong; Peiguo Liu; Dingwang Yu; Bo Yi; Gaosheng Li

    2015-01-01

    The transmission properties of a substrate integrated waveguide (SIW) based on periodic graphene stacks have been theoretically investigated in the terahertz (THz) region. The effects of the dielectric-graphene-dielectric structure of the stack on the propagation properties are shown to be significant and different from the conventional active SIW based on active components. By varying the graphene chemical potential, the cut-off frequency of the proposed waveguide can be dynamically tuned fr...

  19. Angular resolution of stacked resistive plate chambers

    CERN Document Server

    Samuel, Deepak; Murgod, Lakshmi P

    2016-01-01

    We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.

  20. Effect of the stoichiometry of niobium oxide on the resistive switching of Nb{sub 2}O{sub 5} based metal–insulator–metal stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hanzig, F., E-mail: florian.hanzig@ww.tu-freiberg.de [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Mähne, H. [NaMLab gGmbH, 01187 Dresden (Germany); Veselý, J. [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Faculty of Mathematics and Physics, Charles University Prague, 121 16 Prague (Czech Republic); Wylezich, H.; Slesazeck, S. [NaMLab gGmbH, 01187 Dresden (Germany); Leuteritz, A. [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Zschornak, M. [Institute of Experimental Physics, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Motylenko, M.; Klemm, V. [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany); Mikolajick, T. [NaMLab gGmbH, 01187 Dresden (Germany); Nanoelectronic Materials, TU Dresden, 01187 Dresden (Germany); Rafaja, D. [Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg (Germany)

    2015-07-15

    Highlights: • In Pt/Nb{sub 2}O{sub 5}/Al, oxygen from Nb{sub 2}O{sub 5} diffused towards Al and formed aluminum oxide. • Diffusion-induced under-stoichiometry of Nb{sub 2}O{sub 5} facilitated bipolar resistive switching. • In Pt/Nb{sub 2}O{sub 5}/Pt, no oxygen diffusion was observed; Nb{sub 2}O{sub 5} remained stoichiometric. - Abstract: The oxygen concentration profiles, which develop at the interfaces between niobium pentoxide and the Al or Pt electrode in a metal–insulator–metal stack, were investigated by means of the X-ray and electron energy loss spectroscopies in a scanning transmission electron microscope with high resolution. The contact between Al and Nb{sub 2}O{sub 5} was found to facilitate diffusion of oxygen from Nb{sub 2}O{sub 5} to the Al electrode and to support the formation of a thin aluminum oxide layer at the Nb{sub 2}O{sub 5}/Al interface. In contrast, almost no diffusion of oxygen from Nb{sub 2}O{sub 5} was observed at the Nb{sub 2}O{sub 5}/Pt interface. Different extent of the oxygen diffusion correlates with the observed differences in the resistive switching of the Pt/Nb{sub 2}O{sub 5}/Al and Pt/Nb{sub 2}O{sub 5}/Pt stacks.

  1. Effect of the stoichiometry of niobium oxide on the resistive switching of Nb2O5 based metal–insulator–metal stacks

    International Nuclear Information System (INIS)

    Highlights: • In Pt/Nb2O5/Al, oxygen from Nb2O5 diffused towards Al and formed aluminum oxide. • Diffusion-induced under-stoichiometry of Nb2O5 facilitated bipolar resistive switching. • In Pt/Nb2O5/Pt, no oxygen diffusion was observed; Nb2O5 remained stoichiometric. - Abstract: The oxygen concentration profiles, which develop at the interfaces between niobium pentoxide and the Al or Pt electrode in a metal–insulator–metal stack, were investigated by means of the X-ray and electron energy loss spectroscopies in a scanning transmission electron microscope with high resolution. The contact between Al and Nb2O5 was found to facilitate diffusion of oxygen from Nb2O5 to the Al electrode and to support the formation of a thin aluminum oxide layer at the Nb2O5/Al interface. In contrast, almost no diffusion of oxygen from Nb2O5 was observed at the Nb2O5/Pt interface. Different extent of the oxygen diffusion correlates with the observed differences in the resistive switching of the Pt/Nb2O5/Al and Pt/Nb2O5/Pt stacks

  2. Barrier RF stacking at Fermilab

    International Nuclear Information System (INIS)

    A key issue to upgrade the luminosity of the Tevatron Run2 program and to meet the neutrino requirement of the NuMI experiment at Fermilab is to increase the proton intensity on the target. This paper introduces a new scheme to double the number of protons FR-om the Main Injector (MI) to the pbar production target (Run2) and to the pion production target (NuMI). It is based on the fact that the MI momentum acceptance is about a factor of four larger than the momentum spread of the Booster beam. Two RF barriers--one fixed, another moving--are employed to confine the proton beam. The Booster beams are injected off-momentum into the MI and are continuously reflected and compressed by the two barriers. Calculations and simulations show that this scheme could work provided that the Booster beam momentum spread can be kept under control. Compared with slip stacking, a main advantage of this new method is small beam loading effect thanks to the low peak beam current. The RF barriers can be generated by an inductive device, which uses nanocrystal magnet alloy (Finemet) cores and fast high voltage MOSFET switches. This device has been designed and fabricated by a Fermilab-KEK-Caltech team. The first bench test was successful. Beam experiments are being planned

  3. A compact accelerating structure for stacked isochronous cyclotrons

    Science.gov (United States)

    Meitzler, C. R.; Byeon, J.; McIntyre, P. M.; Rogers, Bob; Sattarov, A.

    2003-03-01

    An accelerator-driven thorium cycle power reactor is being developed, based on a flux-coupled stack of isochronous cyclotrons. (IC) The stack consists of seven independent accelerators (total beam power 15 MW at 1 GeV), stacked on a spacing ˜ 20 cm. The close spacing poses unique problems for the design of the accelerating cavities. We have invented a 4-bar RF dipole structure for the purpose. We have built a cold model and are studying its operating characteristics. The structure will be described. We present measurements of the resonant frequency, parasitic capacitances, and electric and magnetic field distributions in the structure.

  4. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel

    1993-01-01

    metals, and thereby explain the pronounced differences in energetics in these two classes of metals. The model is discussed in the framework of the effective-medium theory where it is possible to find a functional form for the pair potential and relate the contribution associated with the fourth moment......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...

  5. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems

    Science.gov (United States)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing

    2011-01-01

    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  6. Lateral excitonic switching in vertically stacked quantum dots

    Science.gov (United States)

    Jarzynka, Jarosław R.; McDonald, Peter G.; Shumway, John; Galbraith, Ian

    2016-06-01

    We show that the application of a vertical electric field to the Coulomb interacting system in stacked quantum dots leads to a 90° in-plane switching of charge probability distribution in contrast to a single dot, where no such switching exists. Results are obtained using path integral quantum Monte Carlo with realistic dot geometry, alloy composition, and piezo-electric potential profiles. The origin of the switching lies in the strain interactions between the stacked dots hence the need for more than one layer of dots. The lateral polarization and electric field dependence of the radiative lifetimes of the excitonic switch are also discussed.

  7. Text-Filled Stacked Area Graphs

    DEFF Research Database (Denmark)

    Kraus, Martin

    2011-01-01

    Text can add a significant amount of detail and value to an information visualization. In particular, it can integrate more of the data that a visualization is based on, and it can also integrate information that is personally relevant to readers of a visualization. This may influence readers...... to consider a visualization a detailed enrichment of their personal experience instead of an abstract representation of anonymous numbers. However, the integration of textual detail into a visualization is often very challenging. This work discusses one particular approach to this problem, namely text......-filled stacked area graphs; i.e., graphs that feature stacked areas that are filled with small-typed text. Since these graphs allow for computing the text layout automatically, it is possible to include large amounts of textual detail with very little effort. We discuss the most important challenges and some...

  8. High power collimated diode laser stack

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan-yuan; FANG Gao-zhan; MA Xiao-yu; LIU Su-ping; FENG Xiao-ming

    2006-01-01

    A high power collimated diode laser stack is carried out based on fast-axis collimation and stack packaging techniques.The module includes ten typical continuous wave (cw) bars and the total output power can be up to 368W at 48.6A.Using a cylindrical lens as the collimation elements,we can make the fast-axis divergence and the slow-axis divergence are 0.926 40 and 8.2060 respectively.The light emitting area is limited in a square area of 18.3 mm×11 mm.The module has the advantage of high power density and offers a wide potential applications in pumping and material processing.

  9. Theoretical analysis of noncanonical base pairing interactions in RNA molecules

    Indian Academy of Sciences (India)

    Dhananjay Bhattacharyya; Siv Chand Koripella; Abhijit Mitra; Vijay Babu Rajendran; Bhabdyuti Sinha

    2007-08-01

    Noncanonical base pairs in RNA have strong structural and functional implications but are currently not considered for secondary structure predictions. We present results of comparative ab initio studies of stabilities and interaction energies for the three standard and 24 selected unusual RNA base pairs reported in the literature. Hydrogen added models of isolated base pairs, with heavy atoms frozen in their ‘away from equilibrium’ geometries, built from coordinates extracted from NDB, were geometry optimized using HF/6-31G** basis set, both before and after unfreezing the heavy atoms. Interaction energies, including BSSE and deformation energy corrections, were calculated, compared with respective single point MP2 energies, and correlated with occurrence frequencies and with types and geometries of hydrogen bonding interactions. Systems having two or more N-H…O/N hydrogen bonds had reasonable interaction energies which correlated well with respective occurrence frequencies and highlighted the possibility of some of them playing important roles in improved secondary structure prediction methods. Several of the remaining base pairs with one N-H…O/N and/or one C-H…O/N interactions respectively, had poor interaction energies and negligible occurrences. High geometry variations on optimization of some of these were suggestive of their conformational switch like characteristics.

  10. Interactive Coherence-Based Façade Modeling

    KAUST Repository

    Musialski, Przemyslaw

    2012-05-01

    We propose a novel interactive framework for modeling building facades from images. Our method is based on the notion of coherence-based editing which allows exploiting partial symmetries across the facade at any level of detail. The proposed workflow mixes manual interaction with automatic splitting and grouping operations based on unsupervised cluster analysis. In contrast to previous work, our approach leads to detailed 3d geometric models with up to several thousand regions per facade. We compare our modeling scheme to others and evaluate our approach in a user study with an experienced user and several novice users.

  11. An Interactive Tool for Creating Multi-Agent Systems and Interactive Agent-based Games

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi

    2011-01-01

    Utilizing principles from parallel and distributed processing combined with inspiration from modular robotics, we developed the modular interactive tiles. As an educational tool, the modular interactive tiles facilitate the learning of multi-agent systems and interactive agent-based games. The...... modular and physical property of the tiles provides students with hands-on experience in exploring the theoretical aspects underlying multi-agent systems which often appear as challenging to students. By changing the representation of the cognitive challenging aspects of multi-agent systems education to a...

  12. Separated Control and Data Stacks to Mitigate Buffer Overflow Exploits

    Directory of Open Access Journals (Sweden)

    Christopher Kugler

    2015-10-01

    Full Text Available Despite the fact that protection mechanisms like StackGuard, ASLR and NX are widespread, the development on new defense strategies against stack-based buffer overflows has not yet come to an end. In this article, we present a novel compiler-level protection called SCADS: Separated Control and Data Stacks that protects return addresses and saved frame pointers on a separate stack, called the control stack. In common computer programs, a single user mode stack is used to store control information next to data buffers. By separating control information from the data stack, we can protect sensitive pointers of a program’s control flow from being overwritten by buffer overflows. To substantiate the practicability of our approach, we provide SCADS as an open source patch for the LLVM compiler infrastructure. Focusing on Linux and FreeBSD running on the AMD64 architecture, we show compatibility, security and performance results. As we make control flow information simply unreachable for buffer overflows, many exploits are stopped at an early stage of progression with only negligible performance overhead.

  13. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y. S.; Choi, Jung-Pyung; Xu, Wei; Stephens, Elizabeth V.; Koeppel, Brian J.; Stevenson, Jeffry W.; Lara-Curzio, Edgar

    2014-04-01

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  14. RNA-RNA interaction prediction based on multiple sequence alignments

    CERN Document Server

    Li, Andrew X; Qin, Jing; Reidys, Christian M

    2010-01-01

    Recently, $O(N^6)$ time and $O(N^4)$ space dynamic programming algorithms have become available that compute the partition function of RNA-RNA interaction complexes for pairs of RNA sequences. These algorithms and the biological requirement of more reliable interactions motivate to utilize the additional information contained in multiple sequence alignments and to generalize the above framework to the partition function and base pairing probabilities for multiple sequence alignments.

  15. Tablet-Based Interaction for Immersive 3D Data Exploration

    OpenAIRE

    Lopez, David; Oehlberg, Lora; Doger, Candemir; Isenberg, Tobias

    2014-01-01

    Our overall vision is to enable researchers to explore 3D datasets with as much immersion as possible, arising both from visuals as well as from interaction . We therefore explore ways to combine an immersive large view of the 3D data with means to intuitively control this view with touch input on a separate mobile monoscopic tablet. This combination has the potential to increase people's acceptance of stereoscopic environments for 3D data visualization since--through touch-based interaction-...

  16. 基于MPC860开发板的RTP/RTCP协议的实现%The Implementation of RTP/RTCP Protocol Stack Based on MPC860 ADS Board

    Institute of Scientific and Technical Information of China (English)

    陈自力; 崔滔

    2001-01-01

    In this paper, an implementation of the IETF RFC1889 RTP/RTCP protocol stack which is widely used in VoIP field is introduced.Of the VolP technologies, RTP/RTCP protocol is used to transfer real time voice services. It can transmit both audio and video streams. Its technical advantages make it become the core technology to transmit multi-media applications. Based on Motorola PowerPC MPC860ADS (application develop system) board and the real time multi-task operating system VxWorks,the RTP/RTCP protocol stack using object-oriented design method is implemented. The lower layer UDP/IP functions adopt the TCP/IP protocol stack integrated in VxWorks OS.%本文介绍了在IP电话技术中,用来对实时话音进行传输的RTP/RTCP通信协议的一种实现方法.RTP可以传输音频或视频流,其技术特点使之成为传输多媒体应用的核心技术.本系统以IETF RFC1889建议的RTP/RTCP标准为基础,采用面向对象的系统设计方法,开发出RTP/RTCP协议软件.其底层的UDP层、IP层等功能由VxWorks操作系统所带的TCP/IP协议栈实现,硬件平台为基于Motorola PowerPC芯片MPC860的应用开发板.

  17. Field-induced stacking transition of biofunctionalized trilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Masato Nakano, C. [Flintridge Preparatory School, La Canada, California 91011 (United States); Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  18. ACID-BASE INTERACTIONS BETWEEN POLYMERS AND FILLERS

    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; CHEN Fute; HUANG Yuanfu; ZHOU Qingli

    1987-01-01

    Inverse gas chromatography(IGC) and Fourier-transform infrared (FT-IR) techniques were applied to determining the relative acid-base strength of polymers and coupling agents. The acid-base characteristics of fillers such as CaCO3 could be altered by treatment with different coupling agents. It was shown that some mechanical properties of filled polymers were obviously associated with acid-base interactions between polymers and fillers.

  19. Movement-based interaction in camera spaces: a conceptual framework

    DEFF Research Database (Denmark)

    Eriksson, Eva; Hansen, Thomas Riisgaard; Lykke-Olesen, Andreas

    2007-01-01

    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movementbased projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  20. Multiple Segmentation of Image Stacks

    DEFF Research Database (Denmark)

    Smets, Jonathan; Jaeger, Manfred

    2014-01-01

    We propose a method for the simultaneous construction of multiple image segmentations by combining a recently proposed “convolution of mixtures of Gaussians” model with a multi-layer hidden Markov random field structure. The resulting method constructs for a single image several, alternative...... segmentations that capture different structural elements of the image. We also apply the method to collections of images with identical pixel dimensions, which we call image stacks. Here it turns out that the method is able to both identify groups of similar images in the stack, and to provide segmentations...

  1. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin

    2015-01-01

    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  2. Pressurized electrolysis stack with thermal expansion capability

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Richard Scott

    2015-07-14

    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  3. User Driven Image Stacking for ODI Data and Beyond via a Highly Customizable Web Interface

    Science.gov (United States)

    Hayashi, S.; Gopu, A.; Young, M. D.; Kotulla, R.

    2015-09-01

    While some astronomical archives have begun serving standard calibrated data products, the process of producing stacked images remains a challenge left to the end-user. The benefits of astronomical image stacking are well established, and dither patterns are recommended for almost all observing targets. Some archives automatically produce stacks of limited scientific usefulness without any fine-grained user or operator configurability. In this paper, we present PPA Stack, a web based stacking framework within the ODI - Portal, Pipeline, and Archive system. PPA Stack offers a web user interface with built-in heuristics (based on pointing, filter, and other metadata information) to pre-sort images into a set of likely stacks while still allowing the user or operator complete control over the images and parameters for each of the stacks they wish to produce. The user interface, designed using AngularJS, provides multiple views of the input dataset and parameters, all of which are synchronized in real time. A backend consisting of a Python application optimized for ODI data, wrapped around the SWarp software, handles the execution of stacking workflow jobs on Indiana University's Big Red II supercomputer, and the subsequent ingestion of the combined images back into the PPA archive. PPA Stack is designed to enable seamless integration of other stacking applications in the future, so users can select the most appropriate option for their science.

  4. Stack gas desulfurization using adsorbent materials based on copper oxide; Desulfuracion de gases de combustion usando materiales adsorbentes basados en oxido de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, Roberto; Rodas Grapain, Arturo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2008-07-01

    One of main fossil fuels used to date in Mexico for power generation is the fuel oil, with a total participation of 32%. The Mexican fuel oil is constituted in average by 84% in weight of carbon, 11% hydrogen, 0.4% nitrogen, 0.2% oxygen, 4% sulfur and the remaining is assumed to be metals such as vanadium, nickel, calcium, magnesium among others. The purpose of the present paper is to show a new route of preparation of materials impregnated through the application of ultrasonic energy and to evaluate its performance in the stack gas desulfurization. [Spanish] Uno de los principales combustibles fosiles empleados actualmente en Mexico para la generacion de energia electrica es el combustoleo, con una participacion total del 32%. El combustoleo mexicano esta constituido en promedio por 84% en peso de carbono, 11% de hidrogeno, 0.4% de nitrogeno, 0.2% de oxigeno, 4% de azufre y el resto se asume a metales como vanadio, niquel, calcio, magnesio entre otros. El proposito del presente trabajo es mostrar una nueva ruta de preparacion de materiales impregnados a traves de la aplicacion de energia ultrasonica y evaluar su desempeno en la desulfuracion de gases de combustion.

  5. Multibeam collimator uses prism stack

    Science.gov (United States)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  6. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  7. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  8. Sedimentary Dynamic Analysis of Sequence Structure and Stacking Pattern of Base - Level Cycle%基准面旋回结构与叠加样式的沉积动力学分析

    Institute of Scientific and Technical Information of China (English)

    郑荣才; 彭军; 尹世民

    2000-01-01

    以地层过程-响应沉积动力学为理论基础,以中期基准面旋回为周期,以短期基准面旋回为成因地层单元,较为详细地讨论了层序结构、层序叠加样式与可容纳空间/ 沉积物补给通量比值(A/S比值)变化、基准面升降幅度及沉积动力学条件的相互关系,描述了不同结构和叠加样式的短期基准面旋回在中期基准面旋回中的分布规律,最终提出以中期基准面旋回为单元的标准层序模式。有意义的是,上述理论分析结果与四川、鄂尔多斯和辽河等盆地中的中、新生代陆相地层高分辨率层序地层分析结果完全一致,说明高分辨率层序地层学理论及其技术方法非常适合于中国广泛分布的中、新生代陆相含油气盆地的层序地层学研究。%The sedimentary dynamic analysis of sequence structure and stacking pattern of base- level cycle is one of themost important contents to integrate and apply the theory and technology of high - resolution sequence stratigra-phy. In this paper, the author takes the stratigraphic and sedimentary process - response dynamic principles as atheoretical basis, middle term base- level cycle as a period and short term base - level cycle as a genetic strati-graphic unit to discuss the relationship between the sequence structure , the sequence stacking pattern, the ratiovariation of accommodation space to sedimentary alimentation(A/S), the rise or fall range of base- level and thesedimentary dynamic condition. It shows that the short term base - level cycles with different sequence structureand stacking pattern distribute regularly in the middle term base - level cycle, and suggests the standard section ar-chitecture of the middle term base - level cycle. It is very significance that the sedimentary dynamic analysis on thesequence structure and stacking pattern of short or middle term base - level cycle in terms of theory mentionedabove is completely consistent

  9. Microstructural characterization of high-manganese austenitic steels with different stacking fault energies

    International Nuclear Information System (INIS)

    Microstructures of tensile-deformed high-manganese austenitic steels exhibiting twinning-induced plasticity were analyzed by electron backscatter diffraction pattern observation and X-ray diffraction measurement to examine the influence of differences in their stacking fault energies on twinning activity during deformation. The steel specimen with the low stacking fault energy of 15 mJ/m2 had a microstructure with a high population of mechanical twins than the steel specimen with the high stacking fault energy (25 mJ/m2). The and fibers developed along the tensile axis, and mechanical twinning occurred preferentially in the fiber. The Schmid factors for slip and twinning deformations can explain the origin of higher twinning activity in the fiber. However, the high stacking fault energy suppresses the twinning activity even in the fiber. A line profile analysis based on the X-ray diffraction data revealed the relationship between the characteristics of the deformed microstructures and the stacking fault energies of the steel specimens. Although the variation in dislocation density with the tensile deformation is not affected by the stacking fault energies, the effect of the stacking fault energies on the crystallite size refinement becomes significant with a decrease in the stacking fault energies. Moreover, the stacking fault probability, which was estimated from a peak-shift analysis of the 111 and 200 diffractions, was high for the specimen with low stacking fault energy. Regardless of the difference in the stacking fault energies of the steel specimens, the refined crystallite size has a certain correlation with the stacking fault probability, indicating that whether the deformation-induced crystallite-size refinement occurs depends directly on the stacking fault probability rather than on the stacking fault energies in the present steel specimens. - Highlights: → We studied effects of stacking fault energies on deformed microstructures of steels.

  10. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin; Urko, Willam

    2008-01-29

    A modular multi-stack fuel-cell assembly in which the fuel-cell stacks are situated within a containment structure and in which a gas distributor is provided in the structure and distributes received fuel and oxidant gases to the stacks and receives exhausted fuel and oxidant gas from the stacks so as to realize a desired gas flow distribution and gas pressure differential through the stacks. The gas distributor is centrally and symmetrically arranged relative to the stacks so that it itself promotes realization of the desired gas flow distribution and pressure differential.

  11. Computer-Based Interaction Analysis with DEGREE Revisited

    Science.gov (United States)

    Barros, B.; Verdejo, M. F.

    2016-01-01

    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  12. Design of Experience and Flow in Movement-based Interaction

    NARCIS (Netherlands)

    Nijholt, Anton; Dijk, van Betsy; Reidsma, Dennis; Egges, A.; Kamphuis, A.; Overmars, M.

    2008-01-01

    Movement-based and exertion interfaces assume that their users move. Users have to perform exercises, they have to dance, they have to golf or football, or they want to train particular bodily skills. Many examples of those interfaces exist, sometimes asking for subtle interaction between user and i

  13. Observations on Experience and Flow in Movement-Based Interaction

    NARCIS (Netherlands)

    Nijholt, Anton; Pasch, Marco; Dijk, van Betsy; Reidsma, Dennis; Heylen, Dirk; England, David

    2011-01-01

    Movement-based interfaces assume that their users move. Users have to perform exercises, they have to dance, they have to golf or football, or they want to train particular bodily skills. Many examples of those interfaces exist, sometimes asking for subtle interaction between user and interface and

  14. Sensing Landscape History with an Interactive Location Based Service

    NARCIS (Netherlands)

    Lammeren, van R.J.A.; Roncken, P.A.; Goossen, C.M.

    2009-01-01

    This paper introduces the STEAD approach for interpreting data acquired by a "human sensor", who uses an informal interactive location-based service (iLBS) to sense cultural-historic facts and anecdotes of, and in the landscape. This user-generated data is collected outdoors and in situ. The approac

  15. AUTHENTICITY IN TASK-BASED INTERACTION: A CONVERSATION ANALYSIS PERSPECTIVE

    OpenAIRE

    HANAN WAER

    2009-01-01

    In recent years, there has been an increasing interest in task-based learning. Authenticity has been characterized as a main aspect in defining a task (Long 1985; Skehan 1996; Ellis 2003). However, far too little attention has been paid to investigating authenticity in task-based interaction (TBI). To the best knowledge of the researcher, no research has been done using conversation analysis (CA) to investigate authenticity in TBI. Therefore, the present paper focuses on the issue of authent...

  16. Conceptual misfits in email-based current awareness interaction

    OpenAIRE

    Attfield, Simon; Blandford, Ann

    2010-01-01

    Purpose - This research aims to identify some requirements for supporting user interactions with electronic current-awareness alert systems based on data from a professional work environment. Design/methodology/approach - Qualitative data was gathered using contextual inquiry observations with twenty-one workers at the London office of an international law firm. The analysis uses CASSM (‘Concept-based Analysis of Surface and Structural Misfits’), a usability evaluation method structured ...

  17. An Interactive Multimedia Based Instruction in Experimental Modelling

    DEFF Research Database (Denmark)

    Knudsen, Morten; Nielsen, J.N.; Østergaard, J.;

    1997-01-01

    A CD-ROM based interactive multimedia instruction in experimental modelling for Danish Engineering School teachers is described. The content is based on a new sensitivity approach for direct estimation of physical parameters in linear and nonlinear dynamic systems. The presentation is inspired of...... Solomans=s inventory of learning styles. To enhance active learning and motivation by real life problems, the simulation tool Matlab is integrated in the authoring program Medi8or....

  18. Protein-protein interaction based on pairwise similarity

    Directory of Open Access Journals (Sweden)

    Zaki Nazar

    2009-05-01

    Full Text Available Abstract Background Protein-protein interaction (PPI is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines. Results To assess the ability of the proposed method to recognize the difference between "interacted" and "non-interacted" proteins pairs, we applied it on different datasets from the available yeast saccharomyces cerevisiae protein interaction. The proposed method achieved reasonable improvement over the existing state-of-the-art methods for PPI prediction. Conclusion Pairwise similarity score provides a relevant measure of similarity between protein sequences. This similarity incorporates biological knowledge about proteins and it is extremely powerful when combined with support vector machine to predict PPI.

  19. Detection of Gene Interactions Based on Syntactic Relations

    Directory of Open Access Journals (Sweden)

    Mi-Young Kim

    2008-01-01

    Full Text Available Interactions between proteins and genes are considered essential in the description of biomolecular phenomena, and networks of interactions are applied in a system's biology approach. Recently, many studies have sought to extract information from biomolecular text using natural language processing technology. Previous studies have asserted that linguistic information is useful for improving the detection of gene interactions. In particular, syntactic relations among linguistic information are good for detecting gene interactions. However, previous systems give a reasonably good precision but poor recall. To improve recall without sacrificing precision, this paper proposes a three-phase method for detecting gene interactions based on syntactic relations. In the first phase, we retrieve syntactic encapsulation categories for each candidate agent and target. In the second phase, we construct a verb list that indicates the nature of the interaction between pairs of genes. In the last phase, we determine direction rules to detect which of two genes is the agent or target. Even without biomolecular knowledge, our method performs reasonably well using a small training dataset. While the first phase contributes to improve recall, the second and third phases contribute to improve precision. In the experimental results using ICML 05 Workshop on Learning Language in Logic (LLL05 data, our proposed method gave an F-measure of 67.2% for the test data, significantly outperforming previous methods. We also describe the contribution of each phase to the performance.

  20. Design and characterisations of double-channel GaAs pHEMT Schottky diodes based on vertically stacked MMICs for a receiver protection limiter

    Science.gov (United States)

    Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.

    2016-07-01

    A microwave receiver protection limiter circuit has been designed, fabricated and tested using vertically stacked GaAs MMIC technology. The limiter circuit with a dimension of 2.5 × 1.3 mm2 is formed by using double-channel AlGaAs/InGaAs pseudomorphic HEMT (pHEMT) Schottky diodes integrated with a low-loss V-shaped coplanar waveguide multilayer structure. The electrical parameter characteristics of the pHEMT Schottky diodes are presented including the C–V profile showing the presence of a double channel in the device layer structure. This unique feature can also be seen from the double-peak responses of the electron density as a function of the device layer width, which represent the high electron concentration at two different 2-DEG layers of the structure. An equivalent circuit model of pHEMT Schottky diodes is demonstrated showing good agreement with the measurement results. At zero-bias condition, the devices show high performance in diode detector applications with voltage sensitivities of more than 89 mV μW‑1 at 10 GHz and at least 5.4 mV μW‑1 at 35 GHz. The measurement results of the limiter circuit demonstrated the blocking of input power signals greater than 20 dBm input power at 3 GHz. To the best of our knowledge this is the first demonstration of the use of pHEMT Schottky diodes in microwave power limiter applications.

  1. Interaction profile-based protein classification of death domain

    Directory of Open Access Journals (Sweden)

    Pio Frederic

    2004-06-01

    Full Text Available Abstract Background The increasing number of protein sequences and 3D structure obtained from genomic initiatives is leading many of us to focus on proteomics, and to dedicate our experimental and computational efforts on the creation and analysis of information derived from 3D structure. In particular, the high-throughput generation of protein-protein interaction data from a few organisms makes such an approach very important towards understanding the molecular recognition that make-up the entire protein-protein interaction network. Since the generation of sequences, and experimental protein-protein interactions increases faster than the 3D structure determination of protein complexes, there is tremendous interest in developing in silico methods that generate such structure for prediction and classification purposes. In this study we focused on classifying protein family members based on their protein-protein interaction distinctiveness. Structure-based classification of protein-protein interfaces has been described initially by Ponstingl et al. 1 and more recently by Valdar et al. 2 and Mintseris et al. 3, from complex structures that have been solved experimentally. However, little has been done on protein classification based on the prediction of protein-protein complexes obtained from homology modeling and docking simulation. Results We have developed an in silico classification system entitled HODOCO (Homology modeling, Docking and Classification Oracle, in which protein Residue Potential Interaction Profiles (RPIPS are used to summarize protein-protein interaction characteristics. This system applied to a dataset of 64 proteins of the death domain superfamily was used to classify each member into its proper subfamily. Two classification methods were attempted, heuristic and support vector machine learning. Both methods were tested with a 5-fold cross-validation. The heuristic approach yielded a 61% average accuracy, while the machine

  2. Traffic and Driving Simulator Based on Architecture of Interactive Motion

    Directory of Open Access Journals (Sweden)

    Alexander Paz

    2015-01-01

    Full Text Available This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i motion-based driving simulation, (ii pedestrian simulation, (iii motorcycling and bicycling simulation, and (iv traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.

  3. Traffic and Driving Simulator Based on Architecture of Interactive Motion

    Science.gov (United States)

    Paz, Alexander; Veeramisti, Naveen; Khaddar, Romesh; de la Fuente-Mella, Hanns; Modorcea, Luiza

    2015-01-01

    This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i) motion-based driving simulation, (ii) pedestrian simulation, (iii) motorcycling and bicycling simulation, and (iv) traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination. PMID:26491711

  4. Standoff Stack Emissions Monitoring Using Short Range Lidar

    Science.gov (United States)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin

    2016-06-01

    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  5. Correlated lateral phase separations in stacks of lipid membranes

    International Nuclear Information System (INIS)

    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction

  6. Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods

    CERN Document Server

    Shin, H; Yoo, Y H

    2003-01-01

    Strain fields in truncated and un-truncated InAs quantum dots with the same height and base length have been compared numerically when the dots are vertically stacked in a GaAs matrix at various stacking periods. The compressive hydrostatic strain in truncated dots decreases slightly as compared with the un-truncated dots without regard to the stacking period studied. However, the reduction in tensile biaxial strain, compressive radial strain and tensile axial strain was salient in the truncated dot and the reduction increased with decreasing stacking period. From such changes in strain, changes in the band gap and related properties are anticipated.

  7. Development and durability of SOFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Beeaff, D.; Dinesen, A.R.; Mikkelsen, Lars; Nielsen, Karsten A.; Solvang, M.; Hendriksen, Peter V.

    2004-12-01

    The present project is a part of the Danish SOFC programme, which has the overall aim of establishing a Danish production of SOFC - cells, stacks and systems for economical and environmentally friendly power production. The aim of the present project was to develop and demonstrate (on a small scale, few cells, few thousand hours) a durable, thermally cyclable stack with high performance at 750 deg. C. Good progress towards this target has been made and demonstrated at the level of stack-elements (one cell between two interconnects) or small stacks (3 5 cells). Three different stacks or stack-elements have been operated for periods exceeding 3000 hr. The work has covered development of stack-components (seals, interconnects, coatings, contact layers), establishment of procedures for stack assembly and initiation, and detailed electrical characterisation with the aims of identifying performance limiting factors as well as long term durability. Further, post test investigations have been carried out to identify possible degradation mechanisms. (BA)

  8. 3-D Numerical Simulations of Twisted Stacked Tape Cables

    OpenAIRE

    Krüger, Philipp A. C.; Zermeño, Victor M. R.; Takayasu, Makoto; Grilli, Francesco

    2014-01-01

    Different magnet applications require compact high current cables. Among the proposed solutions, the Twisted Stacked Tape Cable (TSTC) is easy to manufacture and has very high tape length usage efficiency. In this kind of cables the tapes are closely packed, so that their electromagnetic interaction is very strong and determines the overall performance of the cable. Numerical models are necessary tools to precisely evaluate this interaction and to predict the cable's behavior, e.g. in terms o...

  9. Federation of OpenStack clouds

    OpenAIRE

    Tartarini, Luca; Denis, Marek

    2014-01-01

    Project Specification Rackspace and CERN are implementing federated identity of OpenStack clouds within the OpenStack cloud project. The project is to enhance the client tools in OpenStack to support Thefederated identity functionalities, work with the open source community to incorporate these changes into the product and adapt the documentation and testing. The student will learn about the internals of OpenStack, federated identity techniques such as SAML and working with open sour...

  10. Tunable Geometric Fano Resonances in a Metal/Insulator Stack

    CERN Document Server

    Grotewohl, Herbert

    2014-01-01

    A metal-insulator-metal-insulator stack is shown to have a Fano resonance in the angular domain. The metal/insulator stack consists of two interacting subsystems, a metallic waveguide mode and a surface plasmon mode, coupled by a finite layer metal film. The two modes in close spatial proximity interfere destructively resulting in level repulsion of two metal/insulator stack modes. By adding a coupling prism to momentum match the input EM field, the reflected field exhibits a geometric Fano resonance. Changes to the waveguide insulator permittivity and thickness are shown to tune the geometric Fano resonance. The geometric Fano resonance is also tuned by variations of the exterior insulator permittivity. At a given frequency, the geometric Fano resonance can be tuned to desired lineshape. In addition, this tunability allows for a geometric Fano resonance for any frequency in the visible range.

  11. Web-based Interactive Landform Simulation Model - Grand Canyon

    Science.gov (United States)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  12. 49 CFR 178.606 - Stacking test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stacking test. 178.606 Section 178.606... Testing of Non-bulk Packagings and Packages § 178.606 Stacking test. (a) General. All packaging design types other than bags must be subjected to a stacking test. (b) Number of test samples. Three...

  13. Towards accurate porosity descriptors based on guest-host interactions.

    Science.gov (United States)

    Paik, Dooam; Haranczyk, Maciej; Kim, Jihan

    2016-05-01

    For nanoporous materials at the characterization level, geometry-based approaches have become the methods of choice to provide information, often encoded in numerical descriptors, about the pores and the channels of a porous material. Examples of most common descriptors of the latter are pore limiting diameters, accessible surface area and accessible volume. The geometry-based methods exploit hard-sphere approximation for atoms, which (1) reduces costly computations of the interatomic interactions between the probe guest molecule and the porous material framework atoms, (2) effectively exploit applied mathematics methods such as Voronoi decomposition to represent and characterize porosity. In this work, we revisit and quantify the shortcoming of the geometry-based approaches. To do so, we have developed a series of algorithms to calculate pore descriptors such as void fraction, accessible surface area, pore limiting diameters (largest included sphere, and largest free sphere) based on a classical force field model of interactions between the guest and the framework atoms. Our resulting energy-based methods are tested on diverse sets of metal-organic frameworks and zeolite structures and comparisons against results obtained from geometric-based method indicate deviations in the cases for structures with small pore sizes. The method provides both high accuracy and performance making it suitable when screening a large database of materials. PMID:27054971

  14. Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations

    Science.gov (United States)

    Drucker, Nick; Jones, Phillip N.

    2012-01-01

    Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.

  15. Interactive Learning Based Realizability and 1-Backtracking Games

    OpenAIRE

    Federico Aschieri

    2011-01-01

    We prove that interactive learning based classical realizability (introduced by Aschieri and Berardi for first order arithmetic) is sound with respect to Coquand game semantics. In particular, any realizer of an implication-and-negation-free arithmetical formula embodies a winning recursive strategy for the 1-Backtracking version of Tarski games. We also give examples of realizer and winning strategy extraction for some classical proofs. We also sketch some ongoing work about how to extend ou...

  16. Multiple input support in a model-based interaction framework

    OpenAIRE

    Chatty, Stéphane; Lemort, Alexandre; Valès, Stéphane

    2007-01-01

    Developing for tabletops puts special requirements on interface programming frameworks: managing parallel input, device discovery, device equivalence, and describing combined interactions. We analyse these issues and describe the solutions that were used in IntuiKit, a model- based framework aimed at making the design and development of post-WIMP user interfaces more accessible. Some solutions are simple consequences of the support of multi- modality, while others are more specific to multipl...

  17. Competence–Based Support of Interaction between Business Network Members

    OpenAIRE

    Smirnov, Alexander; Kashevnik, Alexey; Shilov, Nikolay

    2008-01-01

    In a complicated business network finding a supplier can be a very time consuming task. The technology of competence management is aimed to support such kind of tasks. The paper presents an approach to support interaction between business network members based on such technologies as competence management and knowledge management. The conceptual models of the context-driven competence management system and production network member competence profile are described. The usage of th...

  18. Quadrupole Beam-Based Alignment in the RHIC Interaction Regions

    International Nuclear Information System (INIS)

    Continued beam-based alignment (BBA) efforts have provided significant benefit to both heavy ion and polarized proton operations at RHIC. Recent studies demonstrated previously unknown systematic beam position monitor (BPM) offset errors and produced accurate measurements of individual BPM offsets in the experiment interaction regions. Here we describe the algorithm used to collect and analyze data during the 2010 and early 2011 RHIC runs and the results of these measurements.

  19. INTERACTIVE IMAGE SEGMENTATION BASED ON HARMONIC FUNCTIONS & RECONSTRUCTIONS

    OpenAIRE

    Alisha Abraham

    2013-01-01

    This paper gives idea GRF functions instead of a graph-based algorithm for interactive imagesegmentation. Specifically, given a 3 X 3 local window, the colour of each pixel in it will be linearlyreconstructed with those of the remaining eight pixels. The optimal weights will be transferred to linearlyreconstruct its class label. This treatment is largely motivated from the manifold learning algorithm of locallylinear embedding. But beyond LLE where only one data point is reconstructed in each...

  20. Evaluating heuristics for tabletop user segmentation based on simultaneous interaction

    OpenAIRE

    García Sanjuan, Fernando; Jaén Martínez, Francisco Javier; Catalá Bolós, Alejandro

    2013-01-01

    Differentiating between users that interact on a tabletop could be beneficial for collaborative tasks to support territoriality-oriented features such as a more efficient space management or a better presentation of the contents. In this paper, we design a novel algorithm for the user differentiation or segmentation based on the simultaneous manipulation of the controls. This is a potential differentiating factor that has remained unexplored so far, and in combination with other factors may b...

  1. Defect Interaction in Iron and Iron-based Alloys

    Science.gov (United States)

    Xu, Haixuan; Stocks, G. Malcolm; Stoller, Roger

    2014-03-01

    Magnetism has a profound influence on the defect properties in iron and iron-based alloys. For instance, it has been shown from first principles calculations that the helium interstitial occupies the tetrahedral site instead of octahedral site in contrast to all previous work that neglected the magnetic effects. In this study, we explore the effects of magnetism on the defect interaction, primarily interstitial-type defects, in bcc iron and Fe-Cr systems. The magnetic moment change during the interaction of two 1/2 interstitial loops in bcc iron was calculated using the ab initio locally self-consistent multiple-scattering (LSMS) method and a significant fluctuation was observed. Adding Cr significantly modifies the magnetic structure of the defects and defect interactions. In addition, the effects of magnetism on the defect energetics are evaluated. This study provides useful insights on whether magnetism can be used as a effective means to manipulate the defect evolution in iron-based structural alloys. This material is based upon work supported as part of the Center for Defect Physics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  2. [Interaction of Ag+ ions with ribonucleotides of canonical bases].

    Science.gov (United States)

    Sorokin, V A; Valeev, V A; Gladchenko, G O; Sysa, I V; Degtiar, M V; Volchok, I V; Blagoĭ, Iu P

    1999-01-01

    The interaction of Ag+ ions with ribonucleotides of canonical bases in aqueous solution was studied by differential UV spectroscopy. Atoms coordinating silver ions (N7, O6 of guanosine 5'-monophosphate, N3, O2 of cytidine 5'-monophosphate, N7, N1, N3 of adenosine 5'-monophosphate and N3 of uridine 5'-monophosphate) and the binding constants characterizing the formation of appropriate complexes were determined. The differences in the relative affinity of Ag+ ions for the atoms of nucleotide bases correlate with the potential on them. PMID:10418671

  3. The role of loop stacking in the dynamics of DNA hairpin formation

    CERN Document Server

    Mosayebi, Majid; Ouldridge, Thomas E; Louis, Ard A; Doye, Jonathan P K

    2014-01-01

    We study the dynamics of DNA hairpin formation using oxDNA, a nucleotide-level coarse-grained model of DNA. In particular, we explore the effects of the loop stacking interactions and non-native base pairing on the hairpin closing times. We find a non-monotonic variation of the hairpin closing time with temperature, in agreement with the experimental work of Wallace et al. [Proc. Nat. Acad. Sci. USA 2001, 98, 5584-5589]. The hairpin closing process involves the formation of an initial nucleus of one or two bonds between the stems followed by a rapid zippering of the stem. At high temperatures, typically above the hairpin melting temperature, an effective negative activation enthalpy is observed because the nucleus has a lower enthalpy than the open state. By contrast, at low temperatures, the activation enthalpy becomes positive mainly due to the increasing energetic cost of bending a loop that becomes increasingly highly stacked as the temperature decreases. We show that stacking must be very strong to induc...

  4. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    OpenAIRE

    Jingming Liang; Zefeng Wu

    2015-01-01

    A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC) stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT) model has been figured out by applying the computational fluid dynamics (CFD) software, based on which, the...

  5. Dynamic obstacles avoidance based on image-based dynamic window approach for human-vehicle interaction

    OpenAIRE

    Kang, Yue; Alves De Lima, Danilo; Corrêa Victorino, Alessandro

    2015-01-01

    — This paper presents an approach for the development of Advanced Driving Assistance System (ADAS) based on the human-vehicle interaction using Image-based Dynamic Window Approach (IDWA). The IDWA is associated to a method for dynamic obstacles avoidance in order to prevent human driving errors, in the context of intelligent robotic vehicles. The human-vehicle interaction is presented by the correction of the Human Driving Behavior (HDB) controller for driving defaults of human drivers, with ...

  6. Nonlinear Predictive Control for PEMFC Stack Operation Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.

  7. Plants with stacked genetically modified events: to assess or not to assess?

    DEFF Research Database (Denmark)

    Kok, Esther J.; Pedersen, Jan W.; Onori, Roberta;

    2014-01-01

    of these differences relates to the so-called ‘stacked GM events’, that is, GMOs, plants so far, where new traits are combined by conventional crossing of different GM plants. This paper advocates rethinking the current food/feed safety assessment of stacked GM events in Europe based on an analysis of different...... aspects that currently form the rationale for the safety assessment of stacked GM events....

  8. The Design of Tools for Sketching Sensor-Based Interaction

    DEFF Research Database (Denmark)

    Brynskov, Martin; Lunding, Rasmus; Vestergaard, Lasse Steenbock

    2012-01-01

    In this paper we motivate, present, and give an initial evaluation of DUL Radio, a small wireless toolkit for sketching sensor-based interaction. In the motivation, we discuss the purpose of this specific platform, which aims to balance ease-of-use (learning, setup, initialization), size, speed, ...... users include designers, students, artists etc. with minimal programming and hardware skills, but this paper adresses the issues with designing the tools, which includes technical details......., flexibility and cost, aimed at wearable and ultra-mobile prototyping where fast reaction is needed (e.g. in controlling sound), and we discuss the general issues facing this category of embodied interaction design tools. We then present the platform in more detail, both regarding hard- ware and software....... In the brief evaluation, we present our initial experiences with the platform both in design projects and in teaching. We conclude that DUL Radio does seem to be a relatively easy-to-use tool for sketching sensor-based interaction compared to other solutions, but that there are many ways to improve it. Target...

  9. The "Wedding-Ring": An agent-based marriage model based on social interaction

    Directory of Open Access Journals (Sweden)

    Alexia Prskawetz

    2007-08-01

    Full Text Available In this paper we develop an agent-based marriage model based on social interaction. We build an population of interacting agents whose chances of marrying depend on the availability of partners, and whose willingness to marry depends on the share of relevant others in their social network who are already married. We then let the typical aggregate age pattern of marriage emerge from the bottom-up. The results of our simulation show that micro-level hypotheses founded on existing theory and evidence on social interaction can reproduce age-at-marriage patterns with both realistic shape and realistic micro-level dynamics.

  10. Aromatic stacking between nucleobase and enzyme promotes phosphate ester hydrolysis in dUTPase

    OpenAIRE

    Pecsi, Ildiko; Leveles, Ibolya; Harmat, Veronika; Vertessy, Beata G.; Toth, Judit

    2010-01-01

    Aromatic interactions are well-known players in molecular recognition but their catalytic role in biological systems is less documented. Here, we report that a conserved aromatic stacking interaction between dUTPase and its nucleotide substrate largely contributes to the stabilization of the associative type transition state of the nucleotide hydrolysis reaction. The effect of the aromatic stacking on catalysis is peculiar in that uracil, the aromatic moiety influenced by the aromatic interac...

  11. Gesture Interaction Browser-Based 3D Molecular Viewer.

    Science.gov (United States)

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela

    2016-01-01

    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education. PMID:27350455

  12. ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.

    Science.gov (United States)

    Lumb, Alan M.; Kittle, John L.

    1985-01-01

    ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.

  13. Maturing of SOFC cell and stack production technology and preparation for demonstration of SOFC stacks. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    2006-07-01

    The TOFC/Riso pilot plant production facility for the manufacture of anode-supported cells has been further up-scaled with an automated continuous spraying process and an extra sintering capacity resulting in production capacity exceeding 15,000 standard cells (12x12 cm2) in 2006 with a success rate of about 85% in the cell production. All processing steps such as tape-casting, spraying, screen-printing and atmospheric air sintering in the cell production have been selected on condition that up-scaling and cost effective, flexible, industrial mass production are feasible. The standard cell size is currently being increased to 18x18 cm2, and 150 cells of this size have been produced in 2006 for our further stack development. To improve quality and lower production cost, a new screen printing line is under establishment. TOFC's stack design is an ultra compact multilayer assembly of cells (including contact layers), metallic interconnects, spacer frames and glass seals. The compactness ensures minimized material consumption and low cost. Standard stacks with cross flow configuration contains 75 cells (12x12cm2) delivering about 1.2 kW at optimal operation conditions with pre-reformed NG as fuel. Stable performance has been demonstrated for 500-1000 hours. Significantly improved materials, especially concerning the metallic interconnect and the coatings have been introduced during the last year. Small stacks (5-10 cells) exhibit no detectable stack degradation using our latest cells and stack materials during test periods of 500-1000 hours. Larger stacks (50-75 cells) suffer from mal-distribution of gas and air inside the stacks, gas leakage, gas cross-over, pressure drop, and a certain loss of internal electrical contact during operation cycles. Measures have been taken to find solutions during the following development work. The stack production facilities have been improved and up-scaled. In 2006, 5 standard stacks have been assembled and burned in based on

  14. Report on the Verification of the Performance of MON 87708 and MON 89788 Event-specific PCR-based Methods Applied to DNA Extracted from GM Stack MON 87708 x MON 89788 Soybean

    OpenAIRE

    JACCHIA SARA; SACCO Maria-Grazia; Mazzara, Marco; KREYSA JOACHIM

    2014-01-01

    An application was submitted by Monsanto Company to request the authorisation of genetically modified stack (GM stack) MON 87708 × MON 89788 soybean (tolerant to dicamba and to glyphosate) and all sub-combinations of the individual events as present in the segregating progeny, for food and feed uses, and import and processing, in accordance with articles 5 and 17 of Regulation (EC) N° 1829/2003 GM Food and GM Feed. The unique identifier assigned to GM stack MON 87708 × MON 89788 soybean is MO...

  15. Interactive Learning Based Realizability and 1-Backtracking Games

    Directory of Open Access Journals (Sweden)

    Federico Aschieri

    2011-01-01

    Full Text Available We prove that interactive learning based classical realizability (introduced by Aschieri and Berardi for first order arithmetic is sound with respect to Coquand game semantics. In particular, any realizer of an implication-and-negation-free arithmetical formula embodies a winning recursive strategy for the 1-Backtracking version of Tarski games. We also give examples of realizer and winning strategy extraction for some classical proofs. We also sketch some ongoing work about how to extend our notion of realizability in order to obtain completeness with respect to Coquand semantics, when it is restricted to 1-Backtracking games.

  16. Interactive Learning Based Realizability and 1-Backtracking Games

    CERN Document Server

    Aschieri, Federico

    2011-01-01

    We prove that interactive learning based classical realizability (introduced by Aschieri and Berardi for first order arithmetic) is sound with respect to Coquand game semantics. In particular, any realizer of an implication-and-negation-free arithmetical formula embodies a winning recursive strategy for the 1-Backtracking version of Tarski games. We also give examples of realizer and winning strategy extraction for some classical proofs. We also sketch some ongoing work about how to extend our notion of realizability in order to obtain completeness with respect to Coquand semantics, when it is restricted to 1-Backtracking games.

  17. POKEHEAD: An Open Source Interactive Headphone Based HCI Platform

    DEFF Research Database (Denmark)

    Højlund, Marie; Trento, Stefano; Goudarzi, Visda;

    2012-01-01

    desire to take advantage of the ubiquitous nature of headphone users in a social and private setting along with networked mobile devices such as smart phones and/or portable media player devices. Our goals were to design an intuitive autonomous, versatile, and practical interface context using a simple......This paper introduces a novel interactive, human-computer interface and remote social communication system based on an augmented, hi-fidelity audio headphone platform. Specifically, this system- named Pokehead, currently utilizes the DUL embedded open-source accelerometer platform to gather 3-axis...

  18. Tunable Stable Levitation Based on Casimir Interaction between Nanostructures

    Science.gov (United States)

    Liu, Xianglei; Zhang, Zhuomin M.

    2016-03-01

    Quantum levitation enabled by repulsive Casimir force has been desirable due to the potential exciting applications in passive-suspension devices and frictionless bearings. In this paper, dynamically tunable stable levitation is theoretically demonstrated based on the configuration of dissimilar gratings separated by an intervening fluid using exact scattering theory. The levitation position is insensitive to temperature variations and can be actively tuned by adjusting the lateral displacement between the two gratings. This work investigates the possibility of applying quantum Casimir interactions into macroscopic mechanical devices working in a noncontact and low-friction environment for controlling the position or transducing lateral movement into vertical displacement at the nanoscale.

  19. Sensing Landscape History with an Interactive Location Based Service

    OpenAIRE

    Paul Roncken; Martin Goossen; Ron van Lammeren

    2009-01-01

    This paper introduces the STEAD approach for interpreting data acquired by a “human sensor”, who uses an informal interactive location-based service (iLBS) to sense cultural-historic facts and anecdotes of, and in the landscape. This user-generated data is collected outdoors and in situ. The approach consists of four related facets (who, what, where, when). Three of the four facets are discussed and illustrated by user generated data collected during a Dutch survey in 2008. These data represe...

  20. A prototype system based on visual interactive SDM called VGC

    Science.gov (United States)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang

    2009-10-01

    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  1. Design and EPC Implementation Scheme of Protocol Stacks in LTE-based Converged Satellite-terrestrial Networks%LTE星地融合网络协议栈设计及EPC实现方案

    Institute of Scientific and Technical Information of China (English)

    徐展琦; 孙婷婷; 肖永伟; 郭彦涛; 马涛

    2014-01-01

    The communication networks based on long term evolution ( LTE ) in fourth generation of mobile communication systems have the advantages such as high-speed wireless data transmission up to 100Mbps, optimized network architecture, flexible usage in spectrum and good quality of service ( QoS) guarantee. The satellite communication systems can cover large areas including marine,space and suburban fields.Therefore,the converged satellite-terrestrial broadband networks could combine the advantages of both networks together,and provide the services to the customers with wider fields and higher rate.On the basis of the terrestrial LTE network architecture and its protocols stack,the functionality of network elements and relevant protocols stack scheme for LTE-based satellite and terrestrial broadband networks are proposed.We also present the three implementation schemes of the evolved packet core (EPC) network in a terrestrial gateway,and compare the characteristics of three ones. These efforts could offer useful reference for LTE-based satellite and terrestrial broadband networks construction,further study on function assignment of each network elements,optimization of network protocols stack,and optimal EPC implementation schemes with different requirements.%4G LTE网络具有高达100 Mbps的无线传输、优化的网络架构、灵活的频谱利用和优良的服务质量( QoS)保证等优点,卫星通信系统可覆盖海域、空域及偏远地域等广大区域。基于LTE的星地融合宽带网络兼有两者的优点,可在广阔地域为用户提供更高速率的业务。在参考地面LTE网络架构及其协议栈的基础上,提出一种基于LTE网络的星地融合宽带网络的网元功能和相应协议栈设计方案,给出地面网关中演进分组核心网EPC的3种实现方案,并比较3种方案的特征。可为构建基于LTE网络的星地融合宽带网络、进一步研究网元功能分配及其协议栈优化和优选

  2. Stacking-Dependent Interlayer Coupling in Trilayer MoS₂ with Broken Inversion Symmetry.

    Science.gov (United States)

    Yan, Jiaxu; Xia, Juan; Wang, Xingli; Liu, Lei; Kuo, Jer-Lai; Tay, Beng Kang; Chen, Shoushun; Zhou, Wu; Liu, Zheng; Shen, Ze Xiang

    2015-12-01

    The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer) exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin-orbit coupling (SOC) and interlayer coupling in different structural symmetries. Such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS2 blocks. PMID:26565932

  3. Stack E6 and Its Implementation within Linux Kernel

    OpenAIRE

    Kyril Dmitry Guliaiev; Dmitry Anatoly Zaitsev

    2011-01-01

    The first implementation of new E6 stack of networking protocols within the kernel of an operating system is presented. Stack E6 was developed to increase the efficiency of a network entirely built on the base of Ethernet technology. It uses a uniform hierarchical E6 address on all the levels and annuls TCP, UDP and IP protocols. The experimental implementation adds a new system call to the kernel of Linux and a new type of Ethernet E6 frame. All the application interface standards are saved ...

  4. Implementing cloud storage with OpenStack Swift

    CERN Document Server

    Rajana, Kris; Varma, Sreedhar

    2014-01-01

    This tutorial-based book has a step-by-step approach for each topic, ensuring it is thoroughly covered and easy to follow. If you are an IT administrator who wants to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Whether your job is to build, manage, or use OpenStack Swift, this book is an ideal way to move your career ahead. Only basic Linux and server technology skills are expected, to take advantage of this book.

  5. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    Science.gov (United States)

    Lan, Yann-Wen; Chang, Wen-Hao; Li, Yuan-Yao; Chang, Yuan-Chih; Chang, Chia-Seng; Chen, Chii-Dong

    2014-09-01

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  6. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    International Nuclear Information System (INIS)

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  7. Practical memory checkers for stacks, queues and deques

    OpenAIRE

    Fischlin, Marc

    2005-01-01

    A memory checker for a data structure provides a method to check that the output of the data structure operations is consistent with the input even if the data is stored on some insecure medium. In [8] we present a general solution for all data structures that are based on insert(i,v) and delete(j) commands. In particular this includes stacks, queues, deques (double-ended queues) and lists. Here, we describe more time and space efficient solutions for stacks, queues and deques. Each algorithm...

  8. Stacking fault induced tunnel barrier in platelet graphite nanofiber

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Yann-Wen, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw; Chang, Yuan-Chih; Chang, Chia-Seng; Chen, Chii-Dong, E-mail: chiidong@phys.sinica.edu.tw, E-mail: ywlan@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Chang, Wen-Hao [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 62102, Taiwan (China); Li, Yuan-Yao [Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chia-Yi 62102, Taiwan (China)

    2014-09-08

    A correlation study using image inspection and electrical characterization of platelet graphite nanofiber devices is conducted. Close transmission electron microscopy and diffraction pattern inspection reveal layers with inflection angles appearing in otherwise perfectly stacked graphene platelets, separating nanofibers into two domains. Electrical measurement gives a stability diagram consisting of alternating small-large Coulomb blockade diamonds, suggesting that there are two charging islands coupled together through a tunnel junction. Based on these two findings, we propose that a stacking fault can behave as a tunnel barrier for conducting electrons and is responsible for the observed double-island single electron transistor characteristics.

  9. Optimization Algorithms Testing and Convergence by Using a Stacked Histogram

    Directory of Open Access Journals (Sweden)

    ZAPLATILEK, K.

    2011-02-01

    Full Text Available The article describes an original method of optimization algorithms testing and convergence. The method is based on so-called stacked histogram. Stacked histogram is a histogram with its features marked by a chosen colour scheme. Thus, the histogram maintains the information on the input digital sequence. This approach enables an easy identification of the hidden defects in the random process statistical distribution. The stacked histogram is used for the testing of the convergent quality of various optimization techniques. Its width, position and colour scheme provides enough information on the chosen algorithm optimization trajectory. Both the classic iteration techniques and the stochastic optimization algorithm with the adaptation were used as examples.

  10. INTERACTING MULTIPLE MODEL ALGORITHM BASED ON JOINT LIKELIHOOD ESTIMATION

    Institute of Scientific and Technical Information of China (English)

    Sun Jie; Jiang Chaoshu; Chen Zhuming; Zhang Wei

    2011-01-01

    A novel approach is proposed for the estimation of likelihood on Interacting Multiple-Model (IMM) filter.In this approach,the actual innovation,based on a mismatched model,can be formulated as sum of the theoretical innovation based on a matched model and the distance between matched and mismatched models,whose probability distributions are known.The joint likelihood of innovation sequence can be estimated by convolution of the two known probability density functions.The likelihood of tracking models can be calculated by conditional probability formula.Compared with the conventional likelihood estimation method,the proposed method improves the estimation accuracy of likelihood and robustness of IMM,especially when maneuver occurs.

  11. Interactive Webmap-Based Science Planning for BepiColombo

    Science.gov (United States)

    McAuliffe, J.; Martinez, S.; Ortiz de Landaluce, I.; de la Fuente, S.

    2015-10-01

    For BepiColombo, ESA's Mission to Mercury, we will build a web-based, map-based interface to the Science Planning System. This interface will allow the mission's science teams to visually define targets for observations and interactively specify what operations will make up the given observation. This will be a radical departure from previous ESA mission planning methods. Such an interface will rely heavily on GIS technologies. This interface will provide footprint coverage of all existing archived data for Mercury, including a set of built-in basemaps. This will allow the science teams to analyse their planned observations and operational constraints with relevant contextual information from their own instrument, other BepiColombo instruments or from previous missions. The interface will allow users to import and export data in commonly used GIS formats, such that it can be visualised together with the latest planning information (e.g. import custom basemaps) or analysed in other GIS software. The interface will work with an object-oriented concept of an observation that will be a key characteristic of the overall BepiColombo scienceplanning concept. Observation templates or classes will be tracked right through the planning-executionprocessing- archiving cycle to the final archived science products. By using an interface that synthesises all relevant available information, the science teams will have a better understanding of the operational environment; it will enhance their ability to plan efficiently minimising or removing manual planning. Interactive 3D visualisation of the planned, scheduled and executed observations, simulation of the viewing conditions and interactive modification of the observation parameters are also being considered.

  12. Versatile Supramolecular Gene Vector Based on Host-Guest Interaction.

    Science.gov (United States)

    Liu, Jia; Hennink, Wim E; van Steenbergen, Mies J; Zhuo, Renxi; Jiang, Xulin

    2016-04-20

    It is a great challenge to arrange multiple functional components into one gene vector system to overcome the extra- and intracellular obstacles for gene therapy. In this study, we developed a supramolecular approach for constructing a versatile gene delivery system composed of adamantyl-terminated functional polymers and a β-cyclodextrin based polymer. Adamantyl-functionalized low molecular weight PEIs (PEI-Ad) and PEG (Ad-PEG) as well as poly(β-cyclodextrin) (PCD) were synthesized by one-step chemical reactions. The supramolecular inclusion complex formed from PCD to assemble LMW PEI-Ad4 via host-guest interactions can condense plasmid DNA to form nanopolyplexes by electrostatic interactions. The supramolecular polyplexes can be further PEGylated with Ad-PEG to form inclusion complexes, which showed increased salt and serum stability. In vitro experiments revealed that these supramolecular assembly polyplexes had good cytocompatibility and showed high transfection activity close to that of the commercial ExGen 500 at high dose of DNA. Also, the supramolecular vector system exhibited about 60% silencing efficiency as a siRNA vector. Thus, a versatile effective supramolecular gene vector based on host-guest complexes was fabricated with good cytocompatbility and transfection activity. PMID:27019340

  13. Hamiltonian multiplex interaction based on excitons effect in semiconductor QCs

    Directory of Open Access Journals (Sweden)

    Arezu Jahanshir

    2014-11-01

    Full Text Available The subject of modern technology has been the focus of extensive theoretical investigations in semiconducting nanostructures which we know as quantum dots (QCs. The possibility of monitoring and controlling the properties of QCs attracted considerable attention to these objects, as an important basic system in future technology. So, the quantum-mechanical effects play a significant role in the description of the formation mechanism QCs, determination of mass spectrum, binding energy and other characteristics. Based on QFT and by using oscillator representation method (ORM and operator product expansion technique developed in QFT, we study the properties of electron-hole QDs, determine mass spectrum and peruse spin-spin interactions in exciton system and its multiple pair systems. This method has applications to calculate the binding energy of exciton system in ground and excited states with semi-nuclear structure in semiconductor QCs or cold atomic few-body systems and develop the general calculation’s theory of few-body systems based on the Coulomb interaction between particles by forming excitonic pairs in semiconductor QCs. We investigate the binding energy of exciton bound states. It is shown that fermion particles have a very small mass, and after bonding together by dynamically force, constituent particles become massive, which is analogous to what happens in QCD.

  14. Annex I.C. United States experience of stack dismantling: Stack dismantling at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Since its establishment in the late 1940s, the Idaho National Engineering and Environmental Laboratory (INEEL) has built and operated 52 nuclear reactors. Since most of these were built to support reactor safety research for various types of electrical power generating nuclear systems, most were operated for only relatively short periods of time before being shut down and decommissioned. Many of these reactor facilities contained their own exhaust systems including a dedicated exhaust stack. The size and complexity of these stacks ranged from relatively short and simple to tall and complex. In general, heights ranged from slightly less than 30 m to greater than 60 m. Construction ranged from simple, small diameter metal piping supported on a concrete base with anchoring cables, to massive brick lined concrete structures of more than 10 m diameter. Contamination within these stacks consisted primarily of mixed fission products (137Cs, 60Co and 90Sr). Very low levels of 235U existed in some of the stacks. The following sections describe the decontamination and decommissioning (D and D) efforts associated with two types of stack located at the INEEL

  15. Assessment of the 296-S-21 Stack Sampling Probe Location

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.

    2006-09-08

    actual stack suggests that the other test results on the scale model are conservative relative to the actual stack. (3) Uniform Concentration of Tracer Gases--A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This was first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fans provides worst-case results. The acceptance criteria are that (1) the COV of the measured tracer gas concentration is ?20% across the center two-thirds of the sampling plane and (2) at no point in the sampling plane does the concentration vary from the mean by >30%. The results on the scale model at the point simulating the sampling probe ranged from 0.3 to 6 %COV, and the maximum single point deviation from the mean was -10%. (4) Uniform Concentration of Tracer Particles--Uniformity in contaminant concentration at the sampling probe was further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-?m aerodynamic diameter were used. The acceptance criterion is that the COV of particle concentration is ?20% across the center two-thirds of the sampling plane. The scale model results ranged form 2 to 9%. Based on these tests, the location of the air sampling probe on the 296-S-21 stack meets the requirements of the ANSI/HPS N13.1-1999 standard.

  16. Flexural characteristics of a stack leg

    International Nuclear Information System (INIS)

    A 30 MV tandem Van de Graaff accelerator is at present under construction at Daresbury Laboratory. The insulating stack of the machine is of modular construction, each module being 860 mm in length. Each live section stack module contains 8 insulating legs mounted between bulkhead rings. The design, fabrication (from glass discs bonded to stainless steel discs using an epoxy film adhesive) and testing of the stack legs is described. (U.K.)

  17. Hydrogen Embrittlement And Stacking-Fault Energies

    Science.gov (United States)

    Parr, R. A.; Johnson, M. H.; Davis, J. H.; Oh, T. K.

    1988-01-01

    Embrittlement in Ni/Cu alloys appears related to stacking-fault porbabilities. Report describes attempt to show a correlation between stacking-fault energy of different Ni/Cu alloys and susceptibility to hydrogen embrittlement. Correlation could lead to more fundamental understanding and method of predicting susceptibility of given Ni/Cu alloy form stacking-fault energies calculated from X-ray diffraction measurements.

  18. The untyped stack calculus and Bohm's theorem

    OpenAIRE

    Alberto Carraro

    2013-01-01

    The stack calculus is a functional language in which is in a Curry-Howard correspondence with classical logic. It enjoys confluence but, as well as Parigot's lambda-mu, does not admit the Bohm Theorem, typical of the lambda-calculus. We present a simple extension of stack calculus which is for the stack calculus what Saurin's Lambda-mu is for lambda-mu.

  19. Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors.

    Science.gov (United States)

    Mielke, S L; Ryan, R E; Hilgeman, T; Lesyna, L; Madonna, R G; Van Nostrand, W C

    1997-11-01

    A simple technique based on a Fizeau interferometer to measure the absolute phase shift on reflection for a Fabry-Perot interferometer dielectric stack mirror is described. Excellent agreement between the measured and predicted phase shift on reflection was found. Also described are the salient features of low-order Fabry-Perot interferometers and the demonstration of a near ideal low-order (1-10) Fabry-Perot interferometer through minimizing the phase dispersion on reflection of the dielectric stack. This near ideal performance of a low-order Fabry-Perot interferometer should enable several applications such as compact spectral imagers for solid and gas detection. The large free spectral range of such systems combined with an active control system will also allow simple interactive tuning of wavelength agile laser sources such as CO(2) lasers, external cavity diode lasers, and optical parametric oscillators. PMID:18264347

  20. Demagnetizing effects in stacked rectangular prisms

    DEFF Research Database (Denmark)

    Christensen, Dennis; Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden;

    2011-01-01

    configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack, the...... spacing between the prisms and the packing density of the stack. The results show that the resulting internal field is far from being equal to the applied field and that the various stack configurations investigated affect the resulting internal field significantly and non-linearly. The results have a...

  1. Progress in SLIP stacking and barrier bucket

    International Nuclear Information System (INIS)

    The slip stacking for pbar production has been operational in the Main Injector(MI) since December 2004 and has increased the beam intensity on the pbar target by more than 60%. We plan to use slip stacking for the NuMI neutrino experiment to effectively increasing the beam intensity to NuMI target by about a factor two in a MI cycle. In parallel with slip stacking, we plan to study fast momentum stacking using barrier buckets. One barrier rf system has been installed and tested, and a second system is being installed during the current shutdown. (author)

  2. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin

    2013-01-01

    precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures....

  3. Deploying FreeNEST Project Platform to an OpenStack based cloud platform : A pragmatic study into an emerging technology

    OpenAIRE

    Turunen, Ilkka

    2011-01-01

    The focus of this thesis was to explore and document cloud computing and what it can do to an organization with existing virtualization solutions. It uses the FreeNEST Project Platform as a refer-ence point and as an example of an information system based on existing virtualization technology. The work was done with the SkyNEST project at JAMK University of Applied sciences, as a part of Tivit Oy’s Finnish Strategic Centres for Science, Technology and Innovation research program called the Cl...

  4. The Use of a Web-Based Classroom Interaction System in Introductory Physics Classes

    Science.gov (United States)

    Corpuz, Edgar D.; Corpuz, Ma. Aileen A.; Rosalez, Rolando

    2010-10-01

    A web-based interaction system was used in algebra-based and calculus-based physics classes to enhance students' classroom interaction. The interactive teaching approach primarily incorporated elements of Mazur's Peer Instruction and Interactive Lecture Demonstration. In our implementation, students used personal digital assistants (PDAs) to interact with their instructor during lecture and classroom demonstration. In this paper, we document the perceptions and attitudes of algebra-based and calculus-based physics students towards the interactive teaching approach and likewise present data on how this approach affected students' performance on the Force Concept Inventory (FCI).

  5. Stacks of SPS Dipole Magnets

    CERN Multimedia

    1974-01-01

    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  6. Graphics processing unit-based alignment of protein interaction networks.

    Science.gov (United States)

    Xie, Jiang; Zhou, Zhonghua; Ma, Jin; Xiang, Chaojuan; Nie, Qing; Zhang, Wu

    2015-08-01

    Network alignment is an important bridge to understanding human protein-protein interactions (PPIs) and functions through model organisms. However, the underlying subgraph isomorphism problem complicates and increases the time required to align protein interaction networks (PINs). Parallel computing technology is an effective solution to the challenge of aligning large-scale networks via sequential computing. In this study, the typical Hungarian-Greedy Algorithm (HGA) is used as an example for PIN alignment. The authors propose a HGA with 2-nearest neighbours (HGA-2N) and implement its graphics processing unit (GPU) acceleration. Numerical experiments demonstrate that HGA-2N can find alignments that are close to those found by HGA while dramatically reducing computing time. The GPU implementation of HGA-2N optimises the parallel pattern, computing mode and storage mode and it improves the computing time ratio between the CPU and GPU compared with HGA when large-scale networks are considered. By using HGA-2N in GPUs, conserved PPIs can be observed, and potential PPIs can be predicted. Among the predictions based on 25 common Gene Ontology terms, 42.8% can be found in the Human Protein Reference Database. Furthermore, a new method of reconstructing phylogenetic trees is introduced, which shows the same relationships among five herpes viruses that are obtained using other methods. PMID:26243827

  7. Ultrasonic power measurement system based on acousto-optic interaction

    Science.gov (United States)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  8. Methodology for planning log stacking using geotechnology and operations research

    Directory of Open Access Journals (Sweden)

    Mariana Peres de Lima

    2011-09-01

    Full Text Available In view of the need to improve the planning of timber harvest and transportation, with both activities being the most influential in determining the final cost of timber delivered to the mill yard, this work aims to develop a new methodological proposal using operations research and geotechnology tools in order to determine optimal locations for log stacking and also the amount of timber to be allocated to each selected stack. Analysis was performed using two software applications, geographic information system (GIS and operations research (OR. GIS spatial analyses were based on layers of the study site, which is a property owned by Votorantim Celulose e Papel, located in the municipality of São José dos Campos, in order to obtain three variables: degree of difficulty in operating forestry equipment, degree of difficulty in log stacking, and distance between log stacks and existing roadways. To obtain these variables, layers containing information on terrain inclination and existing roadways were combined in another analysis named weighted overlay. Results were then filtered and inserted into an operations research environment for maximization of the timber volume in each selected stack. With results obtained from the geographic information system, 80 potential sites were selected for log stacking. By using operations research, 59 of these sites were ruled out, a 73% reduction in the number of potential sites, with only 21 sites remaining as potentially optimal for log storage. For each of these 21 sites, an optimal amount of timber was determined to be allocated to each one of them.

  9. A Comparison of Interaction in AV-based and Internet-based Distance Courses

    Directory of Open Access Journals (Sweden)

    Melodee Landis

    2001-04-01

    Full Text Available At the center of the debate over the viability of distance education is whether the newer electronic technologies can offer enough interaction to maintain quality learner outcomes and critical mass. Two of the most commonly used forms of distance education are 1 two-way, fully interactive audio-video classrooms and 2 on-line instruction through the Internet or Worldwide Web. This study used qualitative methods to compare and contrast the interaction that occurred in distance learning courses offered via each medium. The research process confirmed findings that there were fundamental differences in the interaction that occurred in the two environments. On-line interaction is so profoundly different than interaction in the traditional and AV-based class room that it appears instructors and students will need a substantial period of adjustment to feel comfortable with it and to fully appreciate its value. It appears that, as distance teaching and learning moves to a “mixed media” approach to teaching and learning, how interaction is handled with each of the media may be important to the success of a distance program.

  10. Mixed Reality-based Interactive Technology for Aircraft Cabin Assembly

    Institute of Scientific and Technical Information of China (English)

    LI Shiqi; PENG Tao; WANG Junfeng; XU Chi

    2009-01-01

    Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of aircraft design, the different stages of the lifecycle of aircraft must be thought about, which include the trial manufacture, assembly, maintenance, recycling and destruction of the product. Recently, thanks to the development of the virtual reality and augmented reality, some low-cost and fast solutions are found for the product assembly. This paper presents a mixed reality-based interactive technology for the aircraft cabin assembly, which can enhance the efficiency of the assemblage in a virtual environment in terms of vision, information and operation. In the mixed reality-based assembly environment, the physical scene can be obtained by a camera and then generated by a computer. The virtual parts, the features of visual assembly, the navigation information, the physical parts and the physical assembly environment will be mixed and presented in the same assembly scene. The mixed or the augmented information will provide some assembling information as a detailed assembly instruction in the mixed reality-based assembly environment. Constraint proxy and its match rules help to reconstruct and visualize the restriction relationship among different parts, and to avoid the complex calculation of constraint's match. Finally, a desktop prototype system of virtual assembly has been built to assist the assembly verification and training with the virtual hand.

  11. Microscopic positive-energy potential based on Gogny interaction

    CERN Document Server

    Blanchon, G; Arellano, H F; Mau, N Vinh

    2014-01-01

    We present nucleon elastic scattering calculation based on Green's function formalism in the Random-Phase Approximation. For the first time, the Gogny effective interaction is used consistently throughout the whole calculation to account for the complex, non-local and energy-dependent optical potential. Effects of intermediate single-particle resonances are included and found to play a crucial role in the account for measured reaction cross section. Double counting of the particle-hole second-order contribution is carefully addressed. The resulting integro-differential Schr\\"odinger equation for the scattering process is solved without localization procedures. The method is applied to neutron and proton elastic scattering from $^{40}$Ca. A successful account for differential and integral cross sections, including analyzing powers, is obtained for incident energies up to 30 MeV. Discrepancies at higher energies are related to much too high volume integral of the real potential for large partial waves. Moreover...

  12. Interactive brain shift compensation using GPU based programming

    Science.gov (United States)

    van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf

    2009-02-01

    Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.

  13. Vision Based Game Development Using Human Computer Interaction

    CERN Document Server

    Sumathi, S; Maheswari, M Uma

    2010-01-01

    A Human Computer Interface (HCI) System for playing games is designed here for more natural communication with the machines. The system presented here is a vision-based system for detection of long voluntary eye blinks and interpretation of blink patterns for communication between man and machine. This system replaces the mouse with the human face as a new way to interact with the computer. Facial features (nose tip and eyes) are detected and tracked in realtime to use their actions as mouse events. The coordinates and movement of the nose tip in the live video feed are translated to become the coordinates and movement of the mouse pointer on the application. The left or right eye blinks fire left or right mouse click events. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second.

  14. Chemical interaction matrix between reagents in a Purex based process

    International Nuclear Information System (INIS)

    The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague, France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (authors)

  15. Synthetic image generation of factory stack and cooling tower plumes

    Science.gov (United States)

    Kuo, Shiao D.; Schott, John R.

    1997-07-01

    A new model for generating synthetic images of plumes has been developed using a radiometrically based ray-tracing algorithm. Existing plume models that describe the characteristics of the plume (constituents, concentration, particulate sizing, and temperature) are used to generate AutoCAD models for input into the code. The effects of scattered light using Mie theory and radiative transfer, as well as thermal self-emission/absorption from within the plume, are modeled for different regions of the plume. The ray-tracing accounts for direct sunlight, scattered skylight, reflected sunlight from the background, and thermal self-emission from both the atmosphere and background. Synthetic generated images of a cooling tower plume, composed of water droplets, and a factor stack plume, composed of methyl chloride, are produced for visible, MWIR, and LWIR bands. Images of the plume from different view angles are also produced. Observations are made on the interaction between the plume and its background and possible effects for remote sensing. Images are made of the methyl chloride plume in which the concentration and temperature are varied to determine the sensitivity of the radiance reaching the sensor.

  16. Dry-etching properties of TiN for metal/high-k gate stack using BCl3-based inductively coupled plasma

    International Nuclear Information System (INIS)

    The etch rate of TiN film and the selectivities of TiN/SiO2 and TiN/HfO2 were systematically investigated in Cl2/BCl3/Ar plasmas as functions of Cl2 flow rate, radio-frequency (rf) power, and direct-current (dc) bias voltage under different substrate temperatures of 10 and 80 degree sign C. The etch rate of TiN films increased with increasing Cl2 flow rate, rf power, and dc-bias voltage at a fixed substrate temperature. In addition, the etch rate of TiN films at 80 degree sign C were higher than that at 10 degree sign C when other plasma parameters were fixed. However, the selectivities of TiN/SiO2 and TiN/HfO2 showed different tendencies compared with etch-rate behavior as a function of rf power and dc bias voltage. The relative-volume densities of Ar (750.0 nm), Cl (725.2 nm), and Cl+ (386.6 nm) were monitored with an optical-emission spectroscopy. When rf power increased, the relative-volume densities of all studied particles were increased. X-ray photoelectron spectroscopy was carried out to detect nonvolatile etch by-products from the surface, and nonvolatile peaks (TiClx bonds) in Ti 2p and Cl 2p were observed due to their high melting points. Based on the experimental results, we can conclude that the TiN etch is dependent on the substrate temperature when other plasma parameters are fixed. This can be explained by the enhanced chemical pathway with the assistance of ion bombardment.

  17. Real-time retrieval for case-based reasoning in interactive multiagent-based simulations

    CERN Document Server

    De Loor, Pierre; Pierre, Chevaillier; 10.1016/j.eswa.2010.10.048

    2011-01-01

    The aim of this paper is to present the principles and results about case-based reasoning adapted to real- time interactive simulations, more precisely concerning retrieval mechanisms. The article begins by introducing the constraints involved in interactive multiagent-based simulations. The second section pre- sents a framework stemming from case-based reasoning by autonomous agents. Each agent uses a case base of local situations and, from this base, it can choose an action in order to interact with other auton- omous agents or users' avatars. We illustrate this framework with an example dedicated to the study of dynamic situations in football. We then go on to address the difficulties of conducting such simulations in real-time and propose a model for case and for case base. Using generic agents and adequate case base structure associated with a dedicated recall algorithm, we improve retrieval performance under time pressure compared to classic CBR techniques. We present some results relating to the perfor...

  18. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    . Different types of co-casting were tried and the results are very promising. The results indicate that upon proper development production price can be significantly lowered and better control on thickness and microstructure may be obtained. Lamination as a technique to produce half cells has been developed within this project and results showed that the technique gives good control over the various layers. The enhanced control on thickness made it possible to develop cells with even thinner anode support and thereby decreasing the material consumption and still maintain small cell curvature and low electrolyte leak-rate. New cathodes based on LSCF were screen printed onto standard half-cells and tested in a stack. The ASR of the cells was lowered compared to standard 2G production cells and also the degradation was improved. A 10 cell stack was assembled and is still operated - more than 3000 hr has now been reached. An improvement in ASR was also obtained for half-cells produced without MEK and DBP in the paste thereby combining a more environmentally production with improved performance. (LN)

  19. Project W-420 stack monitoring system upgrades

    International Nuclear Information System (INIS)

    This project will execute the design, procurement, construction, startup, and turnover activities for upgrades to the stack monitoring system on selected Tank Waste Remediation System (TWRS) ventilation systems. In this plan, the technical, schedule, and cost baselines are identified, and the roles and responsibilities of project participants are defined for managing the Stack Monitoring System Upgrades, Project W-420

  20. Demagnetizing effects in stacked rectangular prisms

    International Nuclear Information System (INIS)

    A numerical, magnetostatic model of the internal magnetic field of a rectangular prism is extended to the case of a stack of rectangular prisms. The model enables the calculation of the spatially resolved, three-dimensional internal field in such a stack given any magnetic state function, stack configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack, the spacing between the prisms and the packing density of the stack. The results show that the resulting internal field is far from being equal to the applied field and that the various stack configurations investigated affect the resulting internal field significantly and non-linearly. The results have a direct impact on the design of, e.g., active magnetic regenerators made of stacked rectangular prisms in terms of optimizing the internal field.

  1. Excitation transfer in stacked quantum dot chains

    International Nuclear Information System (INIS)

    Stacked InAs quantum dot chains (QDCs) on InGaAs/GaAs cross-hatch pattern (CHP) templates yield a rich emission spectrum with an unusual carrier transfer characteristic compared to conventional quantum dot (QD) stacks. The photoluminescent spectra of the controlled, single QDC layer comprise multiple peaks from the orthogonal QDCs, the free-standing QDs, the CHP, the wetting layers and the GaAs substrate. When the QDC layers are stacked, employing a 10 nm GaAs spacer between adjacent QDC layers, the PL spectra are dominated by the top-most stack, indicating that the QDC layers are nominally uncoupled. Under high excitation power densities when the high-energy peaks of the top stack are saturated, however, low-energy PL peaks from the bottom stacks emerge as a result of carrier transfers across the GaAs spacers. These unique PL signatures contrast with the state-filling effects in conventional, coupled QD stacks and serve as a means to quickly assess the presence of electronic coupling in stacks of dissimilar-sized nanostructures. (paper)

  2. Do Stack Traces Help Developers Fix Bugs?

    NARCIS (Netherlands)

    Schröter, A.; Bettenburg, N.; Premraj, R.

    2010-01-01

    A widely shared belief in the software engineering community is that stack traces are much sought after by developers to support them in debugging. But limited empirical evidence is available to confirm the value of stack traces to developers. In this paper, we seek to provide such evidence by condu

  3. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe;

    1998-01-01

    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...

  4. 49 CFR 178.815 - Stacking test.

    Science.gov (United States)

    2010-10-01

    ... qualification of all IBC design types intended to be stacked. (b) Special preparation for the stacking test. (1) All IBCs except flexible IBC design types must be loaded to their maximum permissible gross mass. (2) The flexible IBC must be filled to not less than 95 percent of its capacity and to its maximum...

  5. Modular fuel-cell stack assembly

    Science.gov (United States)

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  6. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)

    1996-12-31

    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  7. Enhancing food engineering education with interactive web-based simulations

    Directory of Open Access Journals (Sweden)

    Alexandros Koulouris

    2015-04-01

    Full Text Available In the traditional deductive approach in teaching any engineering topic, teachers would first expose students to the derivation of the equations that govern the behavior of a physical system and then demonstrate the use of equations through a limited number of textbook examples. This methodology, however, is rarely adequate to unmask the cause-effect and quantitative relationships between the system variables that the equations embody. Web-based simulation, which is the integration of simulation and internet technologies, has the potential to enhance the learning experience by offering an interactive and easily accessible platform for quick and effortless experimentation with physical phenomena.This paper presents the design and development of a web-based platform for teaching basic food engineering phenomena to food technology students. The platform contains a variety of modules (“virtual experiments” covering the topics of mass and energy balances, fluid mechanics and heat transfer. In this paper, the design and development of three modules for mass balances and heat transfer is presented. Each webpage representing an educational module has the following features: visualization of the studied phenomenon through graphs, charts or videos, computation through a mathematical model and experimentation.  The student is allowed to edit key parameters of the phenomenon and observe the effect of these changes on the outputs. Experimentation can be done in a free or guided fashion with a set of prefabricated examples that students can run and self-test their knowledge by answering multiple-choice questions.

  8. Electronic Interactions of Michler's Ketone with DNA Bases in Synthetic Hairpins.

    Science.gov (United States)

    Jalilov, Almaz S; Young, Ryan M; Eaton, Samuel W; Wasielewski, Michael R; Lewis, Frederick D

    2015-01-01

    The mechanism and dynamics of photoinduced electron transfer in two families of DNA hairpins possessing Michler's ketone linkers have been investigated by means of steady state and time-resolved transient absorption and emission spectroscopies. The excited state behavior of the diol linker employed in hairpin synthesis is similar to that of Michler's ketone in methanol solution. Hairpins possessing only a Michler's ketone linker undergo fast singlet state charge separation and charge recombination with an adjacent purine base, attributed to well-stacked ground state conformations, and intersystem crossing to the triplet state, attributed to poorly stacked ground state conformations. The failure of the triplet to undergo electron transfer reactions on the 7 ns time scale of our measurements is attributed to the low triplet energy and reduction potential of the twisted triplet state. Hairpins possessing both a Michler's ketone linker and a perylenediimide base surrogate separated by four base pairs undergo photoinduced hole transport from the diimide to Michler's ketone upon excitation of the diimide. The efficiency of hole transport is dependent upon the sequence of the intervening purine bases. PMID:25296568

  9. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang

    2015-01-01

    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  10. Remarkable effect of stacking on the electronic and optical properties of few layer black phosphorus

    OpenAIRE

    Cakir, Deniz; Sevik, Cem; Peeters, Francois M.

    2016-01-01

    The effect of the number of stacking layers and the type of stacking on the electronic and optical properties of bilayer and trilayer black phosphorus are investigated by using first principles calcula- tions within the framework of density functional theory. We find that inclusion of many body effects (i.e., electron-electron and electron-hole interactions) modifies strongly both the electronic and opti- cal properties of black phosphorus. While trilayer black phosphorus with a particular st...

  11. The key role of dislocation dissociation in the plastic behaviour of single crystal nickel-based superalloy with low stacking fault energy: Three-dimensional discrete dislocation dynamics modelling

    Science.gov (United States)

    Huang, Minsheng; Li, Zhenhuan

    2013-12-01

    To model the deformation of single crystal nickel based superalloys (SCNBS) with low stacking fault energy (SFE), three-dimensional discrete dislocation dynamics (3D-DDD) is extended by incorporating dislocation dissociation mechanism. The present 3D-DDD simulations show that, consistent with the existing TEM observation, the leading partial can enter the matrix channel efficiently while the trailing partial can hardly glide into it when the dislocation dissociation is taken into account. To determine whether the dislocation dissociation can occur or not, a critical percolation stress (CPS) based criterion is suggested. According to this CPS criterion, for SCNBS there exists a critical matrix channel width. When the channel width is lower than this critical value, the dislocation tends to dissociate into an extended configuration and vice versa. To clarify the influence of dislocation dissociation on CPS, the classical Orowan formula is improved by incorporating the SFE. Moreover, the present 3D-DDD simulations also show that the yielding stress of SCNBSs with low SFE may be overestimated up to 30% if the dislocation dissociation is ignored. With dislocation dissociation being considered, the size effect due to the width of γ matrix channel and the length of γ‧ precipitates on the stress-strain responses of SCNBS can be enhanced remarkably. In addition, due to the strong constraint effect by the two-phase microstructure in SCNBS, the configuration of formed junctions is quite different from that in single phase crystals such as Cu. The present results not only provide clear understanding of the two-phase microstructure levelled microplastic mechanisms in SCNBSs with low SFE, but also help to develop new continuum-levelled constitutive laws for SCNBSs.

  12. An object-oriented feature-based design system face-based detection of feature interactions

    International Nuclear Information System (INIS)

    This paper presents an object-oriented, feature-based design system which supports the integration of design and manufacture by ensuring that part descriptions fully account for any feature interactions. Manufacturing information is extracted from the feature descriptions in the form of volumes and Tool Access Directions, TADs. When features interact, both volumes and TADs are updated. This methodology has been demonstrated by developing a prototype system in which ACIS attributes are used to record feature information within the data structure of the solid model. The system implemented in the C++ programming language and embedded in a menu-driven X-windows user interface to the ACIS 3D Toolkit. (author)

  13. Magnetic interactions in martensitic Ni-Mn based Heusler systems

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda

    2010-04-22

    In this work, magnetic, magnetocaloric and structural properties are investigated in Ni-Mn-based martensitic Heusler alloys with the aim to tailor these properties as well as to understand in detail the magnetic interactions in the various crystallographic states of these alloys. We choose Ni{sub 50}Mn{sub 34}In{sub 16} as a prototype which undergoes a martensitic transformation and exhibits field-induced strain and the inverse magnetocaloric effect. Using the structural phase diagram of martensitic Ni-Mn-based Heusler alloys, we substitute gallium and tin for indium to carry these effects systematically closer to room temperature by shifting the martensitic transformation. A magneto-calorimeter is designed and built to measure adiabatically the magnetocaloric effect in these alloys. The temperature dependence of strain under an external magnetic field is studied in Ni{sub 50}Mn{sub 50-x}Z{sub x} (Z: Ga, Sn, In and Sb) and Ni{sub 50}Mn{sub 34}In{sub 16-x}Z{sub x} (Z: Ga and Sn). An argument based on the effect of the applied magnetic field on martensite nucleation is adopted to extract information on the direction of the magnetization easy axis in the martensitic unit cell in Heusler alloys. Parallel to these studies, the structure in the presence of an external field is also studied by powder neutron diffraction. It is demonstrated that martensite nucleation is influenced by cooling the sample under a magnetic field such that the austenite phase is arrested within the martensitic state. The magnetic interactions in Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 40}Sb{sub 10} are characterized by using neutron polarization analysis. Below the martensitic transformation temperature, M{sub s}, an antiferromagnetically correlated state is found. Ferromagnetic resonance experiments are carried out on Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 34}In{sub 16} to gain more detailed information on the nature of the magnetic interactions. The experimental

  14. Study on the Strategies of Distance Learning Support Services Based on Effective Interaction

    Institute of Scientific and Technical Information of China (English)

    王文琳; 靳桂阳

    2014-01-01

    The paper firstly analyzes the problems of distance learning interaction in order to clarify the significance of implement-ing effective interaction. Then it puts forward the learning support services strategies based on effective interaction, which means to design strategies from the perspective of effective interaction to improve the effect of distance learning.

  15. Photon-Electron Interactions in Graphene-Based Heterojunctions

    Science.gov (United States)

    Liu, Fangze

    Graphene, a single layer of carbon atoms arranged in honeycomb lattice, has been one of the most attractive materials for fundamental and applied research in the past decade. Its unique electronic, optical, thermal, chemical and mechanical properties have lead to the discovery of new physics and many promising applications. In particular, research on photon-electron interaction in graphene-based heterojunctions has revealed a new route to design photoactive devices. In this thesis, I present our work on the synthesis of graphene by chemical vapor deposition (CVD) and the study of graphene-based optoelectronic devices. In addition to the conventional synthesis of graphene on copper (Cu) foils, we also present the CVD synthesis of graphene on a new substrate: palladium (Pd). Especially, we performed detailed study of the nucleation, evolution and morphology of graphene growth on Pd substrate. It helps us to understand the growth reaction mechanism and achieve controllable synthesis of graphene from single layer to multiple layers with different morphologies. We then studied the broadband and ultrasensitive photocurrent and photovoltage response of graphene/silicon (Si) Schottky diodes. For the same architecture, we identified a new photoconductive mode with ultra high photoconductive gain, namely "quantum carrier reinvestment (QCR)". A gain exceeding 107 A/W was demonstrated. The underlying physics of photon-electron interactions in these junctions were studied by a combination of optical characterization tools including Raman spectroscopy, UV-Vis spectroscopy and scanning optical microscopy. The results obtained have been discussed in the framework of the unique electronic band structure, density states, and mobility of graphene, along with the manner in witch photoexcited carrier behave under various externally tuned parameters. We also systematically studied the optimization of performance of graphene/Si and thin transparent graphite/Si junction solar cells and

  16. Channeling analysis of stacking defects in epitaxial Si layers

    International Nuclear Information System (INIS)

    The channeling effect technique has been applied to investigate dechanneling by stacking defects in heteroepitaxially grown silicon. Ion backscattering was performed on 0.9 μm Si layers grown on sapphire as a function of beam energy (1.1-2.5 MeV He+), projectile ion (He+, D+) and crystal direction ((100), (111), (112), (113)). Transmission electron microscopy analysis revealed the presence of a high density of stacking faults and twin lamellae. A model based on the new interior surfaces presented by such stacking defects is used to calculate the dechanneling cross section, and the disorder profiles are obtained from the experimental dechanneled fractions in terms of displaced rows per unit volume. Direct backscattering of channeled particles from the defects is neglected since the dechanneling cross section per row is about one order of magnitude larger than that per displaced atom. The resulting defect depth distributions are independent of beam energy and projectile ion, and give improved quantitative agreement with previous studies. The application of channeling to stacking-defect measurements requires a minimum density of approximately 1015 displaced rows/cm2. (Auth.)

  17. Emergency Dispatch Optimization Model of Coupling Situation Based on Cloud Fuzzy Cycle Stack%云模糊循环堆栈应急调度耦合态势优化模型

    Institute of Scientific and Technical Information of China (English)

    刘艳艳

    2015-01-01

    In the earthquake disaster emergency rescue force and resource emergency intelligent scheduling, it needs to con⁃struct a scheduling network, optimization design of coupling situation of emergency dispatch network is necessary, it is es⁃sential to improve the vitality and efficiency of scheduling network. A emergency Scheduling optimization model of cycle coupling situation is proposed based on fuzzy cloud stack, the basic point of intersection construction principles and control⁃lable evacuation evacuation based on network, the construction of a network model is obtained, network configuration cov⁃ers emergency evacuation planning and policy formulation, and disaster relief material release and the rational allocation of resources is taken, and post disaster reconstruction etc.. A working area, equipment area, headquarters, regional, place the correct division and set are constructed. The energy of nodes emergency dispatch network fuzzy stack control design cycle, the rescue force allocation is obtained, and the stability of emergency dispatch system is enhanced. The simulation results show that, the model can effectively improve the throughput performance of the response time of emergency rescue, and emergency rescue is improved, the performance of resource scheduling is improved.%在特大地震灾害等突发事件救援力量和资源应急智能调度中,需要构建调度网络,应急调度网络的耦合态势的优化设计,对提高调度网络的活力和效率至关重要。提出一种基于云模糊循环堆栈的应急调度耦合态势优化模型,基于基本交汇点疏散特征与可控疏散网络的构建原则,构建网络模型,网络配置中涵盖了紧急疏散的规划和政策制定、路径选择、救灾物资发放和资源的合理配置、以及灾后重建等。设立工作区、装备区、指挥部等,进行正确的区域、场所的划分和设定。对突发事件应急调度网络的能量节点进行

  18. ON MODELING CONTROLLER-SWITCH INTERACTION IN OPENFLOW BASED SDNS

    Directory of Open Access Journals (Sweden)

    Ameen Chilwan1

    2014-12-01

    Full Text Available With an increase in number of software defined network (SDN deployments, and OpenFlow consolidating as the protocol of choice for controller-switch interactions, a need to analytically model the system for performance analysis is increasing. An attempt has previously been made in [1] to model the system considering both a controller and a switch as an M/M/1 queue. The method, although useful, lacks accuracy for higher probabilities of new flows entering the network. The approach is also deficient of details on how it can be extended to more than one node in the data plane . These two short-comings are addressed in this paper where the controller and switch are modeled collectively as Jackson’s network, with essential tuning to suit OpenFlow-based SDN. The consequent analysis shows the resilience of the model even for higher number of new flow entries. An example is also used to illustrate the case of multiple nodes in the data plane

  19. Sensing Landscape History with an Interactive Location Based Service

    Science.gov (United States)

    van Lammeren, Ron; Goossen, Martin; Roncken, Paul

    2009-01-01

    This paper introduces the STEAD approach for interpreting data acquired by a “human sensor”, who uses an informal interactive location-based service (iLBS) to sense cultural-historic facts and anecdotes of, and in the landscape. This user-generated data is collected outdoors and in situ. The approach consists of four related facets (who, what, where, when). Three of the four facets are discussed and illustrated by user generated data collected during a Dutch survey in 2008. These data represent the personal cultural-historic knowledge and anecdotes of 150 people using a customized iLBS for experiencing the cultural history of a landscape. The “who” facet shows three dominant mentality groups (cosmopolitans, modern materialists and post modern hedonists) that generated user content. The “what” facet focuses on three subject types of pictures and four picture framing classes. Pictures of the place type showed to be dominant and foreground framing class was slightly favourite. The “where” facet is explored via density, distribution, and distance of the pictures made. The illustrations of the facets indirectly show the role of the “human sensor” with respect to the domain of interest. The STEAD approach needs further development of the when-facet and of the relations between the four facets. Finally the results of the approach may support data archives of iLBS applications. PMID:22399994

  20. Magnetostatic interactions in artificial ferrimagnet based magnetic tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Tiusan, C.; Dimopoulos, T.; Buda, L.; Da Costa, V.; Ounadjela, K.; Hehn, M.; van den Berg, H.

    2001-06-01

    Magnetostatic interactions between the soft and the hard magnetic electrodes in magnetic tunnel junctions (MTJs) using artificial ferrimagnets (AFis) are analyzed. We attribute these interactions to the dispersion fields associated to magnetic inhomogeneities arising from domain walls due to local anisotropic ordering. These magnetostatic interactions can be controlled by adjusting the net magnetic moment of the AFi to optimize the magnetotransport response of the MTJ devices.{copyright} 2001 American Institute of Physics.

  1. Interactive Packaging Solutions Based on RFIDTechnology and Controlled Delamination Material

    OpenAIRE

    Gao, Jie; Pang, Zhibo; Chen, Qiang; Zheng, Li-Rong

    2010-01-01

    Interactive packaging is an emerging research area in recent years. It brings people convenient and smart lives, reduces consumption of traditional packaging materials and direct or indirect labor costs as well. Being integrated in interactive packaging, Radio Frequency Identification (RFID) technology becomes one of the most proactive development enablers. In this paper, an interactive and intelligent packaging solution integrating passive RFID system and Controlled Delamination Material (CD...

  2. Intelligent and Interactive Package Based on RFID and WSN

    OpenAIRE

    Gao, Jie

    2011-01-01

       An intelligent and interactive package can interact with people smartly, safely and friendly. It involves many technologies such as electronics, optics, biologic, magnetics and electro-mechanics. By combined with Radio Frequency Identification (RFID) and Wireless Sensor Network (WSN), intelligent and interactive packaging technology has been an emerging and global research topic over the years.    In this thesis, a new technology, named Controlled Delamination Material (CDM), is introduced...

  3. Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction

    OpenAIRE

    Bogdan Raducanu; Sergio Escalera; Xavier Baró; Petia Radeva; Jordi Vitrià

    2012-01-01

    Social interactions are a very important component in people’s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times’ Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose ...

  4. Active substrate integrated terahertz waveguide using periodic graphene stack

    Science.gov (United States)

    Dong, Yanfei; Liu, Peiguo; Yu, Dingwang; Yi, Bo; Li, Gaosheng

    2015-11-01

    The transmission properties of a substrate integrated waveguide (SIW) based on periodic graphene stacks have been theoretically investigated in the terahertz (THz) region. The effects of the dielectric-graphene-dielectric structure of the stack on the propagation properties are shown to be significant and different from the conventional active SIW based on active components. By varying the graphene chemical potential, the cut-off frequency of the proposed waveguide can be dynamically tuned from 3 to 3.7 THz. Moreover, the tunable waveguide displays low leakage loss and single-mode propagation with -120 dB stop-band attenuation. These primary results are very promising for THz integration devices and SIW-based systems.

  5. Active substrate integrated terahertz waveguide using periodic graphene stack

    Directory of Open Access Journals (Sweden)

    Yanfei Dong

    2015-11-01

    Full Text Available The transmission properties of a substrate integrated waveguide (SIW based on periodic graphene stacks have been theoretically investigated in the terahertz (THz region. The effects of the dielectric-graphene-dielectric structure of the stack on the propagation properties are shown to be significant and different from the conventional active SIW based on active components. By varying the graphene chemical potential, the cut-off frequency of the proposed waveguide can be dynamically tuned from 3 to 3.7 THz. Moreover, the tunable waveguide displays low leakage loss and single-mode propagation with −120 dB stop-band attenuation. These primary results are very promising for THz integration devices and SIW-based systems.

  6. Dynamical Stability of Slip-stacking Particles

    CERN Document Server

    Eldred, Jeffrey

    2014-01-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97\\% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  7. Do Stack Traces Help Developers Fix Bugs?

    OpenAIRE

    Schröter, A; Bettenburg, N.; Premraj, R

    2010-01-01

    A widely shared belief in the software engineering community is that stack traces are much sought after by developers to support them in debugging. But limited empirical evidence is available to confirm the value of stack traces to developers. In this paper, we seek to provide such evidence by conducting an empirical study on the usage of stack traces by developers from the ECLIPSE project. Our results provide strong evidence to this effect and also throws light on some of the patterns in bug...

  8. Capping stack: An industry in the making

    Institute of Scientific and Technical Information of China (English)

    Jack Chen; Li Xunke; Xie Wenhui; Kang Yongtian

    2013-01-01

    This paper gives an overview of recent development of the marine well containment system (MWCS)after BP Macondo subsea well blowout occurred on April 20,2010 in the Gulf of Mexico.Capping stack,a hardware utilized to contain blowout well at or near the wellhead is the center piece of MWCS.Accessibility to the dedicated capping stacks is gradually becoming a pre-requirement to obtain the permit for offshore drilling/workover,and the industry for manufacturing,maintenance,transportation and operation of the capping stack is in the making.

  9. Eye-based head gestures for interaction in the car

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan

    2013-01-01

    that can be used as an alternative input in the multimodal interaction context. Two approaches are described for using this method for interaction with objects inside or outside the car. Some application examples are described where the discrete or continuous head movements in combination with the driver......’s visual attention can be used for controlling the objects inside the car....

  10. Formalizing argument-based agent interaction in electronic institutions

    OpenAIRE

    Chesñevar, Carlos Iván

    2001-01-01

    During the last decade the notion of agent has gained acceptance within the AI community, mainly due to its adequacy to formalize complex environments. Agents can be thought as active software objects, which may be autonomous and able to perceive, reason, act, and interact with other agents. When agents interact with each other, a multi-agent system (MAS) arises.

  11. GPS-Prot: a web-based visualization platform for integrating host-pathogen interaction data

    OpenAIRE

    Rao Kanury; Shapiro Alex; Kumar Dhiraj; Pache Lars; Jäger Stefanie; Mahon Cathal; Bennett Melanie J; Fahey Marie E; Chanda Sumit K; Craik Charles S; Frankel Alan D; Krogan Nevan J

    2011-01-01

    Abstract Background The increasing availability of HIV-host interaction datasets, including both physical and genetic interactions, has created a need for software tools to integrate and visualize the data. Because these host-pathogen interactions are extensive and interactions between human proteins are found within many different databases, it is difficult to generate integrated HIV-human interaction networks. Results We have developed a web-based platform, termed GPS-Prot http://www.gpspro...

  12. Study on Distance Learning Support Services Strategy Based on Effective Interaction

    Institute of Scientific and Technical Information of China (English)

    王文琳; 靳桂阳

    2014-01-01

    Achieving effective interaction can the students get good learning results, and enhance the quality of distance learning. The paper firstly analyzes the research on distance learning support services and the problems of distance learning interaction in or-der to clarify the significance of implementing effective interaction. Then it puts forward the learning support services strategies based on effective interaction, which means to promote distance learning interaction and enhance the students' self-learning abili-ty.

  13. Illuminating Spatial and Temporal Organization of Protein Interaction Networks by Mass Spectrometry-Based Proteomics

    OpenAIRE

    Yang, Jiwen; Wagner, Sebastian A; Beli, Petra

    2015-01-01

    Protein–protein interactions are at the core of all cellular functions and dynamic alterations in protein interactions regulate cellular signaling. In the last decade, mass spectrometry (MS)-based proteomics has delivered unprecedented insights into human protein interaction networks. Affinity purification-MS (AP-MS) has been extensively employed for focused and high-throughput studies of steady state protein–protein interactions. Future challenges remain in mapping transient protein interact...

  14. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li

    2014-07-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  15. Preprint Touch-less Interactive Augmented Reality Game on Vision Based Wearable Device

    OpenAIRE

    Lv, Zhihan; Halawani, Alaa; Feng, Shengzhong; Rehman, Shafiq Ur; Li, Haibo

    2015-01-01

    This is the preprint version of our paper on Personal and Ubiquitous Computing. There is an increasing interest in creating pervasive games based on emerging interaction technologies. In order to develop touch-less, interactive and augmented reality games on vision-based wearable device, a touch-less motion interaction technology is designed and evaluated in this work. Users interact with the augmented reality games with dynamic hands/feet gestures in front of the camera, which triggers the i...

  16. Expectation-driven interaction: a model based on Luhmann's contingency approach

    CERN Document Server

    Barber, M J; Buchinger, E; Cessac, B; Streit, L; Blanchard, Ph.

    2006-01-01

    We introduce an agent-based model of interaction, drawing on the contingency approach from Luhmann's theory of social systems. The agent interactions are defined by the exchange of distinct messages. Message selection is based on the history of the interaction and developed within the confines of the problem of double contingency. We examine interaction strategies in the light of the message-exchange description using analytical and computational methods.

  17. Pulsed transfer etching of PS-PDMS block copolymers self-assembled in 193 nm lithography stacks.

    Science.gov (United States)

    Girardot, Cécile; Böhme, Sophie; Archambault, Sophie; Salaün, Mathieu; Latu-Romain, Eddy; Cunge, Gilles; Joubert, Olivier; Zelsmann, Marc

    2014-09-24

    This work presents the graphoepitaxy of high-χ block copolymers (BCP) in standard industry-like lithography stacks and their transfer into the silicon substrate The process includes conventional 193 nm photolithography, directed self-assembly of polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and pulsed plasma etching to transfer the obtained features into the substrate. PS-b-PDMS has a high Flory-Huggins interaction parameter (high-χ) and is capable of achieving sub-10 nm feature sizes. The photolithography stack is fabricated on 300 mm diameter silicon wafers and is composed of three layers: spin-on-carbon (SoC), silicon-containing anti-reflective coating (SiARC) and 193 nm photolithography resist. Sixty-nanometer-deep trenches are first patterned by plasma etching in the SiARC/SoC stack using the resist mask. The PS-b-PDMS is then spread on the substrate surface. Directed self-assembly (DSA) of the BCP is induced by a solvent vapor annealing process and PDMS cylinders parallel to the substrate surface are obtained. The surface chemistry based on SoC permits an efficient etching process into the underlying silicon substrate. The etching process is performed under dedicated pulsed plasma etching conditions. Fifteen nanometer half-pitch dense line/space features are obtained with a height up to 90 nm. PMID:25111901

  18. Turing Impossibility Properties for Stack Machine Programming

    NARCIS (Netherlands)

    J.A. Bergstra; C.A. Middelburg

    2012-01-01

    The strong, intermediate, and weak Turing impossibility properties are introduced. Some facts concerning Turing impossibility for stack machine programming are trivially adapted from previous work. Several intriguing questions are raised about the Turing impossibility properties concerning different

  19. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    time was cut down significantly and it was demonstrated parallel acquisition of 16 repeating units (cells) and the total stack impedance could be made fully automated. The performance and degradation of a 13-cell cross-flow stack was monitored for more than 2500 hours at steady operating conditions...... using the sequential impedance measurement setup. Impedance measurements was used to examine the long-term behavior and monitor the evolution of the series and polarization resistances for four out of the 13 repeating units during the first 1400 hours of operation. The losses for the four selected...... repeating units are reported and discussed. The performance and degradation of a 14-cell co-flow stack was monitored for more than 667 hours at steady operating conditions using the sequential impedance measurement setup. The stack was tested galvanostatically (at constant current) with 50% steam in the...

  20. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H

    2016-01-01

    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  1. Characterization of Piezoelectric Stacks for Space Applications

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  2. The competitive facility location based on the spatial interaction model

    Directory of Open Access Journals (Sweden)

    naeme zarrinpoor

    2012-03-01

    Full Text Available In this paper, a nonlinear model for locating service facilities is introduced in a competitive ‎ region. In the proposed model the factors of travel time, quality of service facilities and price ‎ are considered that are the most important effective factors in attracting and maintaining the ‎ customers in the competitive environments. For identifying the customers’ probabilistic ‎ behavior in selecting the competitor’s and entering firm’s facilities, the spatial interaction ‎ model and Logit function are used. Since the decision making for locating is not only based on ‎ the sale quantity and market demand captured and ignoring other important organizational ‎ goals such as minimizing the cost may provide problems in long term for firms, therefore in ‎ addition to the capturing demand, the fixed cost of locating is considered in the model that ‎ will provide better results in the real world problems. Due to the computational complexity, a ‎ genetic algorithm is developed for solving the model. The numerical results verify the ‎ performance of the proposed model and effectiveness of ‏ ‏ ‎ the genetic algorithm in solving it ‏ ‏ and show that the study of costumers’ ‎ ‏ ‏ probabilistic demand considering the factors of price, ‎ travel time and quality of service facilities has the major role in the increasing of sale and profit ‎ of the entering firm so that, in spite of selecting the most appropriate locations by the ‎ competitor, the ‏ ‏ sale and profit quantities of entering firm are more than the competitor’s, in the ‎ equal situation of price, quality and number of facilities. ‎

  3. Interactive computer-based training program for radiological workers

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory is redesigning its existing Computer-Based Training (CBT) programs for radiological workers. The redesign represents a major effort that is aimed at producing a single highly interactive and flexible CBT program. The new CBT program is designed to address a variety of radiological workers, including researchers, x-ray operators, and individuals working in tritium, uranium, plutonium, and accelerator facilities. The program addresses the diversity of backgrounds found at a national laboratory. The CBT program includes photographs, line drawings and illustrations, sound, video, and simulations, and it allows for easy insertion and replacement of text, graphics, sound, and video. The new design supports timely updates and customization for use at other University of California sites. The CBT program is divided into ten basic modules. Introduction and Lessons Learned, History and Uses, Fundamentals, Background Radiation, Biological Effects of Radiation, Characteristics of Radionuclides, Radiological Controls, Monitoring, Emergency Response, Responsibilities. Some of the main modules features as many as seven or eight submodules. For example, the module on Characteristics of Radionuclides features submodules on common radionuclides, tritium uranium, plutonium, x-ray machines, E-beam devices, radiographic devices, and accelerators. Required submodules are tailored to an individual's type of work and facility, and they are determined by the answers to an onscreen questionnaire given at the outset of training. Individuals can challenge most individual modules, but certain submodules will be mandatory based on the initial survey. For example, individuals working in the uranium facility will be required to complete the submodule on 'History and Uses of Uranium'. However, all other submodules under the main module, 'History and Uses', will be available if selected for preview. For each module, an opportunity is provided for further

  4. Interactive, Computer-Based Training Program for Radiological Workers

    International Nuclear Information System (INIS)

    Lawrence Livermore National Laboratory (LLNL) is redesigning its Computer-Based Training (CBT) program for radiological workers. The redesign represents a major effort to produce a single, highly interactive and flexible CBT program that will meet the training needs of a wide range of radiological workers--from researchers and x-ray operators to individuals working in tritium, uranium, plutonium, and accelerator facilities. The new CBT program addresses the broad diversity of backgrounds found at a national laboratory. When a training audience is homogeneous in terms of education level and type of work performed, it is difficult to duplicate the effectiveness of a flexible, technically competent instructor who can tailor a course to the express needs and concerns of a course's participants. Unfortunately, such homogeneity is rare. At LLNL, they have a diverse workforce engaged in a wide range of radiological activities, from the fairly common to the quite exotic. As a result, the Laboratory must offer a wide variety of radiological worker courses. These include a general contamination-control course in addition to radioactive-material-handling courses for both low-level laboratory (i.e., bench-top) activities as well as high-level work in tritium, uranium, and plutonium facilities. They also offer training courses for employees who work with radiation-generating devices--x-ray, accelerator, and E-beam operators, for instance. However, even with the number and variety of courses the Laboratory offers, they are constrained by the diversity of backgrounds (i.e., knowledge and experience) of those to be trained. Moreover, time constraints often preclude in-depth coverage of site- and/or task-specific details. In response to this situation, several years ago LLNL began moving toward computer-based training for radiological workers. Today, that CBT effort includes a general radiological safety course developed by the Department of Energy's Hanford facility and a

  5. Stacking fault energy in some single crystals

    Institute of Scientific and Technical Information of China (English)

    Aditya M.Vora

    2012-01-01

    The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory.The structural characterizations of these crystals are made by XRD.Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry,which possesses the stacking fault in the single crystal.

  6. Stack Characterization System Development and Testing

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory, as well as the rest of the U.S. Department of Energy community, has numerous off-gas stacks that need to be decommissioned, demolished, and packaged for disposal. Disposal requires a waste disposition determination phase. Process knowledge typically makes a worst-case scenario decision that may place lower-level waste into a more expensive higher-level waste disposal category. Truly useful radiological and chemical sampling can be problematic on old stacks due to their inherent height and access hazards, and many of these stacks have begun to deteriorate structurally. A remote stack characterization system (SCS) that can manage sample and data collection removes people from the hazards and provides an opportunity for access to difficult to reach internal stack areas. The SCS is a remotely operated articulated radiological data recovery system designed to deploy down into off-gas stacks from the top via crane. The battery-powered SCS is designed to stabilize itself against the stack walls and move various data recovery systems into areas of interest on the inner stack walls. Stabilization is provided by a tripod structure; sensors are mounted in a rotatable bipod underneath the tripod. Sensors include a beta/gamma/alpha detector, a removable contaminant multi-sample automated sampler, and a multi-core remote core drill. Multiple cameras provide remote task viewing, support for sampling, and video documentation of the process. A delay in funding has delayed project delivery somewhat. Therefore, this paper describes the technology and shows fabrication and testing progress to the extent that data is available.

  7. Pendaphonics: A Tangible Pendulum-based Sonic Interaction Experience

    DEFF Research Database (Denmark)

    Overholt, Daniel; Hansen, Anne-Marie S.; Burleson, Winslow;

    2009-01-01

    , presents a strategy for the design and evaluation of a low-cost, flexible, distributed system for public interaction and performance in a large scale tangible system. Pendaphonics has been installed in a public new media arts space, where over 200 people experienced the initial opening of the environment......, and is now active within five different research university interaction laboratories. This paper presents the development process and findings from observations and evaluation of Pendaphonics’ users and the social interaction patterns among performers and members of the public. In particular, the...

  8. ``Stacked reservoirs`` in the Zechstein 2 carbonate (Ca2): inversion tectonics in the pre-Zechstein subdivision-saline base of the Lower Saxony basin (Germany); ``Stacked Reservoirs`` im Zechstein 2 Karbonat (Ca2): Inversionstektonik im prae-Zechstein-salinaren Sockel des Niedersaechsischen Beckens (NW-Deutschland)

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbauch, K.; Brauckmann, F.; Schaefer, H.G.; Utermoehlen, S. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)

    1998-12-31

    This article looks at areas in the Lower Saxony basis of North-West Germany where the carbonate of the 2nd Zechstein subdivision cycle (Ca2) was tectonically removed from its stratigraphic compound and is found in several stacks elsewhere. Modern 3D seismology and deep drillings were evaluated and tectonic models were developed which could be compared with examples from other saline provinces. This revealed new aspects of exploration for sour natural gas in the Zechstein subdivision (orig.). [Deutsch] Der Artikel behandelt Bereiche innerhalb des Niedersaechsischen Beckens von Nordwestdeutschland, wo das Karbonat des 2. Zechstein-Zyklus (Ca2) tektonisch aus seinem stratigraphischen Verband geloest wurde und an anderer Stelle mehrfach uebereinander gestapelt anzutreffen ist. Hierzu wurden moderne 3D Seismik sowie Tiefbohrungen ausgewertet und tektonische Modelle entwickelt, die mit Beispielen aus anderen Salinarprovinzen verglichen wurden. Hinsichtlich der Exploration auf Sauergas im Zechstein ergeben sich daraus neue Aspekte und Moeglichkeiten. (orig.)

  9. Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Endert, Alexander; North, Chris

    2012-10-14

    With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focus on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.

  10. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    Directory of Open Access Journals (Sweden)

    Yujie Zhu

    2015-08-01

    Full Text Available Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices.

  11. Support for Dynamic Service Composition with Role-Based Interaction Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper aims to present a role-based interaction model for dynamic service composition in Grid environments. Assigning roles to a service means to associate with it capabilities that describes all the operations the service intends to perform. When all of the services can be recognized by their roles, the appropriate services can be selected. Based on the interaction policy, a role-based interaction model not only facilitates access control, but also offers flexible interaction mechanism for adapting service-oriented applications. This interaction model adopts programmable reactive tuple space to facilitate context-dependent coordination.

  12. Mobile gaze-based screen interaction in 3D environments

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan

    2011-01-01

    Head-mounted eye trackers can be used for mobile interaction as well as gaze estimation purposes. This paper presents a method that enables the user to interact with any planar digital display in a 3D environment using a head-mounted eye tracker. An effective method for identifying the screens in...... the field of view of the user is also presented which can be applied in a general scenario in which multiple users can interact with multiple screens. A particular application of using this technique is implemented in a home environment with two big screens and a mobile phone. In this application a...... user was able to interact with these screens using a wireless head-mounted eye tracker....

  13. A “4-cell” modular passive DMFC (direct methanol fuel cell) stack for portable applications

    International Nuclear Information System (INIS)

    A “4-cell” modular passive DMFC (direct methanol fuel cell) stack, which can be freely combined and applied to various electronic devices, is designed, fabricated and tested. Two PCB (printed circuit board) based accessories are designed and fabricated for electrically connecting and mechanically assembling the “4-cell” modules. The maximum power density of the “4-cell” module is 27 mW cm−2 at 5 M methanol concentration. The steady-state performances of the modular stacks with different numbers of modules are tested. The extra power loss of the multiple module stacks due to inter-module electrical connections is predicted by mathematical fitting method. The fitting results indicate that the efficiencies of the multiple module stacks are all above 90% up to 10 modules. The dynamic performances of the modular stacks are also investigated for portable applications. The results show that the modular stacks exhibit good responsiveness and reproducibility at high loading current (>100 mA). Finally, the modular stacks are successfully applied to drive the experimental fan and charge the mobile phone. - Highlights: • A “4-cell” modular passive DMFC (direct methanol fuel cell) stack is designed, fabricated and tested. • This modular DMFC stack can assemble more single cells with high efficiency. • The modular stack exhibit good responsiveness and reproducibility for portable application

  14. A Framework for music-based interactive sonification

    OpenAIRE

    Correia Da Silva Diniz, Nuno; Deweppe, Alexander; Demey, Michiel; Leman, Marc

    2010-01-01

    In this paper, a framework for interactive sonification is introduced. It is argued that electroacoustic composition techniques can provide a methodology for structuring and presenting multivariable data through sound. Furthermore, an embodied music cognition driven interface is applied to provide an interactive exploration of the generated output. The motivation and theoretical foundation for this work are presented as well as the framework’s implementation and an exploratory use case.

  15. Web user interaction : a declarative approach based on XForms

    OpenAIRE

    Honkala, Mikko

    2007-01-01

    This thesis studies next-generation web user interaction definition languages, as well as browser software architectures. The motivation comes from new end-user requirements for web applications: demand for higher interaction, adaptation for mobile and multimodal usage, and rich multimedia content. At the same time, there is a requirement for non-programmers to be able to author, customize, and maintain web user interfaces. Current user interface tools do not support well these new kinds ...

  16. Finding interaction partners using cognition-based decision strategies

    OpenAIRE

    Dutta, Partha S.; Moreau, Luc; Jennings, N. R.

    2003-01-01

    In this paper, we develop decision making heuristics for rational agents using artefacts of cognition such as observation, learning and memory. Specifically, we extend previous research in this area by incorporating essential aspects of multi-agent interactions such as building behavioural models via observation, selectively choosing interaction partners and forming cooperating groups by identifying mutual capabilities. In particular, we demonstrate that cognitive capabilities enable agents t...

  17. Creep-plasticity interaction model based on internal time concept

    International Nuclear Information System (INIS)

    The present paper describes the general framework for creep-plasticity interaction model by introducing a new intrinsic time measure derived from the fundamental integral stress-strain relation itself. By combining creep model of Norton type, the present interaction model is almost identical with the recent unified model of ONERA. Also, the obtained numerical example is shown to improve the stress-strain response compared to the previous internal time theory. (author)

  18. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs

    OpenAIRE

    Swayamdipta, Swabha; Ballesteros, Miguel; Dyer, Chris; Smith, Noah A.

    2016-01-01

    We present a transition-based parser that jointly produces syntactic and semantic dependencies. It learns a representation of the entire algorithm state, using stack long short-term memories. Our greedy inference algorithm has linear time, including feature extraction. On the CoNLL 2008--9 English shared tasks, we obtain the best published parsing performance among models that jointly learn syntax and semantics.

  19. Real-time Dynamic MRI Reconstruction using Stacked Denoising Autoencoder

    OpenAIRE

    Majumdar, Angshul

    2015-01-01

    In this work we address the problem of real-time dynamic MRI reconstruction. There are a handful of studies on this topic; these techniques are either based on compressed sensing or employ Kalman Filtering. These techniques cannot achieve the reconstruction speed necessary for real-time reconstruction. In this work, we propose a new approach to MRI reconstruction. We learn a non-linear mapping from the unstructured aliased images to the corresponding clean images using a stacked denoising aut...

  20. Model-based control strategies in the dynamic interaction of air supply and fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Grujicic, M.; Chittajallu, K.M.; Law, E.H. [Clemson University, SC (United States). Dept. of Mechanical Engineering; Pukrushpan, J.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering

    2004-12-01

    Model-based control strategies are utilized to analyse and optimize the transient behaviour of a polymer electrolyte membrane (PEM) fuel cell system consisting of air and fuel supply subsystems, a perfect air/fuel humidifier and a fuel cell stack at constant fuel cell temperature. The model is used to analyse the control of the fuel cell system with respect to maintaining a necessary level of oxygen partial pressure in the cathode during abrupt changes in the current demanded by the user. Maintaining the oxygen partial pressure in the cathode is necessary to prevent short circuit and membrane damage. The results obtained indicate that the oxygen level in the cathode can be successfully maintained through feedforward control of the air compressor motor voltage. However, the net power provided by the fuel cell system is compromised during the transients following abrupt changes in the stack current, suggesting a need for power management via the use of a secondary power source such as a battery. (author)

  1. Quantum theory for the nanoscale propagation of light through stacked thin film layers

    Science.gov (United States)

    Forbes, Kayn A.; Williams, Mathew D.; Andrews, David L.

    2016-04-01

    Stacked multi-layer films have a range of well-known applications as optical elements. The various types of theory commonly used to describe optical propagation through such structures rarely take account of the quantum nature of light, though phenomena such as Anderson localization can be proven to occur under suitable conditions. In recent and ongoing work based on quantum electrodynamics, it has been shown possible to rigorously reformulate, in photonic terms, the fundamental mechanisms that are involved in reflection and optical transmission through stacked nanolayers. Accounting for sum-over-pathway features in the quantum mechanical description, this theory treats the sequential interactions of photons with material boundaries in terms of individual scattering events. The study entertains an arbitrary number of reflections in systems comprising two or three internally reflective surfaces. Analytical results are secured, without recourse to FTDT (finite-difference time-domain) software or any other finite-element approximations. Quantum interference effects can be readily identified. The new results, which cast the optical characteristics of such structures in terms of simple, constituent-determined properties, are illustrated by model calculations.

  2. Acid-base interactions in microbial adhesion to hexadecane and chloroform

    NARCIS (Netherlands)

    Bos, R; Busscher, HJ; Geertsema-Doornbusch, GI; Van Der Mei, HC; Mittal, KL

    2000-01-01

    Acid-base interactions play an important role in adhesion, including microbial adhesion to surfaces. Qualitatively acid-base interactions in microbial adhesion can be demonstrated by comparing adhesion to hexadecane (a negatively charged interface in aqueous solutions, unable to exert acid-base inte

  3. The in Silico Insight into Carbon Nanotube and Nucleic Acid Bases Interaction

    Science.gov (United States)

    Karimi, Ali Asghar; Ghalandari, Behafarid; Tabatabaie, Seyed Saleh; Farhadi, Mohammad

    2016-01-01

    Background To explore practical applications of carbon nanotubes (CNTs) in biomedical fields the properties of their interaction with biomolecules must be revealed. Recent years, the interaction of CNTs with biomolecules is a subject of research interest for practical applications so that previous research explored that CNTs have complementary structure properties with single strand DNA (ssDNA). Objectives Hence, the quantum mechanics (QM) method based on ab initio was used for this purpose. Therefore values of binding energy, charge distribution, electronic energy and other physical properties of interaction were studied for interaction of nucleic acid bases and SCNT. Materials and Methods In this study, the interaction between nucleic acid bases and a (4, 4) single-walled carbon nanotube (SCNT) were investigated through calculations within quantum mechanics (QM) method at theoretical level of Hartree-Fock (HF) method using 6-31G basis set. Hence, the physical properties such as electronic energy, total dipole moment, charge distributions and binding energy of nucleic acid bases interaction with SCNT were investigated based on HF method. Results It has been found that the guanine base adsorption is bound stronger to the outer surface of nanotube in comparison to the other bases, consistent with the recent theoretical studies. In the other words, the results explored that guanine interaction with SCNT has optimum level of electronic energy so that their interaction is stable. Also, the calculations illustrated that SCNT interact to nucleic acid bases by noncovalent interaction because of charge distribution an electrostatic area is created in place of interaction. Conclusions Consequently, small diameter SCNT interaction with nucleic acid bases is noncovalent. Also, the results revealed that small diameter SCNT interaction especially SCNT (4, 4) with nucleic acid bases can be useful in practical application area of biomedical fields such detection and drug delivery.

  4. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Moeller-Holst, S.; Webb, D.M.; Zawodzinski, C.; Gottesfeld, S. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1998-08-01

    The objective is to develop and demonstrate a 4 kW, hydrogen-fueled polymer electrolyte fuel cell (PEFC) stack, based on non-machined stainless steel hardware and on membrane/electrode assemblies (MEAs) of low catalyst loadings. The stack is designed to operate at ambient pressure on the air-side and can accommodate operation at higher fuel pressures, if so required. This is to be accomplished by working jointly with a fuel cell stack manufacturer, based on a CRADA. The performance goals are 57% energy conversion efficiency hydrogen-to-electricity (DC) at a power density of 0.9 kW/liter for a stack operating at ambient inlet pressures. The cost goal is $600/kW, based on present materials costs.

  5. Stacked subwavelength gratings for imaging polarimetry

    Science.gov (United States)

    Deguzman, Panfilo Castro

    The stacking of subwavelength gratings (SWG) in an integrated structure is presented for an application in imaging polarimetry. Imaging polarimetry extends the capability of conventional imaging by providing polarization information about a scene, in addition to variations in intensity. In this dissertation, a novel approach is introduced to develop a real-time imaging polarimeter. Subwavelength gratings are implemented as linear and circular polarization filters that are directly mounted onto the focal plane array of an infrared (IR) camera. Wire grid polarizers are used as linear polarization filters. The stacked structure, consisting of a wire grid polarizer and a form birefringent quarter-wave plate (QWP), implements the circular polarization filter and is the focus of this dissertation. Initial investigations of the development of the individual SWG components and their integration are presented. Rigorous Coupled Wave Analysis (RCWA) was used to design the SWG structures. A broadband form birefringent quarter-wave plate for the 3.5 to 5 μm wavelength range was designed as a grating structure patterned directly into the substrate. Two fabrication methods for the wire grid polarizer were investigated. A 0.5 μm period polarizer was patterned by interference lithography. A 1 μm period polarizer was patterned by contact printing. The stacking of the subwavelength grating structures was analyzed using the Jones Matrix calculus and a new RCWA method (developed by fellow graduate student Jianhua Jiang). Stacked SWG's were fabricated as large area (1.3 cm x 1.3 cm) filters and as a 256 x 256 array of small aperture (15 μm x 15 μm) pixels. Two stack designs were investigated, referred to as Stack I and Stack II. Stack I consisted of the 0.5 μm period polarizer and the form birefringent QWP. Stack II consisted of the I μm grid period polarizer and the form birefringent QWP. Simulation and measured results are presented to compare the cases of samples with and

  6. Highly Accurate CCSD(T) and DFT–SAPT Stabilization Energies of H-Bonded and Stacked Structures of the Uracil Dimer

    Energy Technology Data Exchange (ETDEWEB)

    Pitonak, Michal; Riley, Kevin E.; Neogrady, Pavel; Hobza, Pavel

    2008-06-23

    The CCSD(T) interaction energies for the H-bonded and stacked structures of the uracil dimer are determined at the aug-cc-pVDZ and aug-cc-pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug-cc-pVDZ and aug-cc-pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug-cc-pVTZ and aug-cc-pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H-bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin-component-scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion-augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry-adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.

  7. Progress on the NSTX Center Stack Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    L. Dudek, J. Chrzanowski, P. Heitzenroeder, D. Mangra, C. Neumeyer, M. Smith, R. Strykowsky, P. Titus, T. Willard

    2010-09-22

    The National Spherical Torus Experiment (NSTX) will be upgraded to provide increased toroidal field, plasma current and pulse length. This involves the replacement of the so-called center stack, including the inner legs of the Toroidal Field (TF) coil, the Ohmic Heating (OH) coil, and the inner Poloidal Field (PF) coils. In addition the increased performance of the upgrade requires qualification of remaining existing components for higher loads. Initial conceptual design efforts were based on worst-case combinations of possible currents that the power supplies could deliver. This proved to be an onerous requirement and caused many of the outer coils support structures to require costly heavy reinforcement. This has led to the planned implementation of a Digital Coil Protection System (DCPS) to reduce design-basis loads to levels that are more realistic and manageable. As a minimum, all components must be qualified for the increase in normal operating loads with headroom. Design features and analysis efforts needed to meet the upgrade loading are discussed. Mission and features of the DCPS are presented.

  8. Progress on NSTX center stack upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, L., E-mail: ldudek@pppl.gov [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States); Chrzanowski, J.; Heitzenroeder, P.; Mangra, D.; Neumeyer, C.; Smith, M.; Strykowsky, R.; Titus, P.; Willard, T. [Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ 08543 (United States)

    2012-09-15

    The national spherical torus experiment (NSTX) will be upgraded to provide increased toroidal field, plasma current and pulse length. This involves the replacement of the so-called center stack, including the inner legs of the toroidal field (TF) coil, the Ohmic heating (OH) coil, and the inner poloidal field (PF) coils. In addition the increased performance of the upgrade requires qualification of remaining existing components for higher loads. Initial conceptual design efforts were based on worst-case combinations of possible currents that the power supplies could deliver. This proved to be an onerous requirement and caused many of the outer coils support structures to require costly heavy reinforcement. This has led to the planned implementation of a digital coil protection system (DCPS) to reduce design-basis loads to levels that are more realistic and manageable. As a minimum, all components must be qualified for the increase in normal operating loads with headroom. Design features and analysis efforts needed to meet the upgrade loading are discussed. Mission and features of the DCPS are presented.

  9. Analysis of spectrum characteristics of optical scintillation in stack gas flow

    Institute of Scientific and Technical Information of China (English)

    Liu Wen-Qing; Liu He-Lai; Zeng Zong-Yong; Jiang Yu

    2006-01-01

    Based on the analysis of spectrum characteristics of intensity fluctuations while light beams pass through stack gas flow in an industrial setting, this paper puts emphasis upon discussing the spectrum of optical intensity fluctuations by the variety of particle concentration in stack gas flow. This paper also gives the primary theoretical explanation of the measurement results in the stack of coal-fired utility boilers. Meanwhile, the cross-correlation formula is given as the theoretical basis of velocity measurement by using particle concentration scintillation.

  10. Energy level alignment in Au/pentacene/PTCDA trilayer stacks

    Science.gov (United States)

    Sehati, P.; Braun, S.; Fahlman, M.

    2013-09-01

    Ultraviolet photoelectron spectroscopy is used to investigate the energy level alignment and molecular orientation at the interfaces in Au/pentacene/PTCDA trilayer stacks. We deduced a standing orientation for pentacene grown on Au while we conclude a flat lying geometry for PTCDA grown onto pentacene. We propose that the rough surface of polycrystalline Au induces the standing geometry in pentacene. It is further shown that in situ deposition of PTCDA on pentacene can influence the orientation of the surface pentacene layer, flipping part of the surface pentacene molecules into a flat lying geometry, maximizing the orbital interaction across the pentacene-PTCDA heterojunction.

  11. Symmetry and resonant modes in platonic grating stacks

    CERN Document Server

    Haslinger, Stewart G; Movchan, Natasha V; McPhedran, Ross C

    2013-01-01

    We study the flexural wave modes existing in finite stacks of gratings containing rigid, zero-radius pins. We group the modes into even and odd classes, and derive dispersion equations for each. We study the recently discovered EDIT (elasto-dynamically inhibited transmission) phenomenon, and relate it to the occurrence of trapped waves of even and odd symmetries being simultaneously resonant. We show how the EDIT interaction may be steered over a wide range of frequencies and angles, using a strategy in which the single-grating reflectance is kept high, so enabling the quality factors of the even and odd resonances to be kept large.

  12. Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction

    Directory of Open Access Journals (Sweden)

    Bogdan Raducanu

    2012-02-01

    Full Text Available Social interactions are a very important component in people’s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times’ Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links’ weights are a measure of the “influence” a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.

  13. Situated dialog in speech-based human-computer interaction

    CERN Document Server

    Raux, Antoine; Lane, Ian; Misu, Teruhisa

    2016-01-01

    This book provides a survey of the state-of-the-art in the practical implementation of Spoken Dialog Systems for applications in everyday settings. It includes contributions on key topics in situated dialog interaction from a number of leading researchers and offers a broad spectrum of perspectives on research and development in the area. In particular, it presents applications in robotics, knowledge access and communication and covers the following topics: dialog for interacting with robots; language understanding and generation; dialog architectures and modeling; core technologies; and the analysis of human discourse and interaction. The contributions are adapted and expanded contributions from the 2014 International Workshop on Spoken Dialog Systems (IWSDS 2014), where researchers and developers from industry and academia alike met to discuss and compare their implementation experiences, analyses and empirical findings.

  14. Interactive Multimedia-Based E-Learning: A Study of Effectiveness

    Science.gov (United States)

    Zhang, Dongsong

    2005-01-01

    The author conducted two experiments to assess effectiveness of interactive e-learning. Students in a fully interactive multimedia-based e-learning environment achieved better performance and higher levels of satisfaction than those in a traditional classroom and those in a less interactive e-learning environment.

  15. Magnet-based Around Device Interaction for Playful Music Composition and Gaming

    NARCIS (Netherlands)

    A. El Ali; H. Ketabdar

    2013-01-01

    Around Device Interaction (ADI) has expanded the interaction space on mobile devices to allow 3D gesture interaction around the device. In this paper, the authors look specifically at magnet-based ADI and its applied use in a playful, music-related context. Using three musical applications developed

  16. MODIFYING A 60-YEAR-OLD STACK-SAMPLING SYSTEM TO MEET ANSI N13.1-1999 EQUIVALENCY

    International Nuclear Information System (INIS)

    The 291-T-1 stack was constructed in 1944 to support ongoing missions associated with the Hanford Project. Recent changes in the plant mission required a revision to the existing license of the stack that was operating as a minor emission unit. The Environmental Protection Agency (EPA) and the Washington Department of Health (WDOH) deemed this revision to be a significant modification, thereby requiring the stack to operate to the ANSI N13.1-1999 sampling and monitoring requirements. Because the stack is similar to other stacks on the Hanford site, allowance was made by EPA to demonstrate equivalency to the ANSI standard via calculations in lieu of actual testing. Calculations were allowed for determining the deposition, nozzle transmission and aspiration ratios, but measurements were required for the stack flow coefficient of variation (COV). The equivalency determination was to be based on the requirements of Table 6 of the ANSI N13.1-1999 Standard

  17. A Qualitative Examination of Two Year-Olds Interaction with Tablet Based Interactive Technology

    Science.gov (United States)

    Geist, Eugene A.

    2012-01-01

    The purpose of this study was to observe children naturally interacting with these touch screen devices. Little direct instruction was given to the children on the use of the devices however an adult did assist when needed. The device was introduced to the children as would be any other educational material such as play-dough, new items in the…

  18. Sequence-controlled polymerization guided by aryl-fluoroaryl π-stacking

    KAUST Repository

    Mugemana, Clement

    2014-01-01

    The ability to control monomer sequences is essential in macromolecular chemistry. Better sequence control leads to better control over macromolecular folding and self-assembly, which, in turn, would enable control over bulk properties (such as thermal behavior, conductivity and rigidity), as well as mimicking the properties of globular proteins. Here, we present a three-part synopsis of recent advances in research on sequence-controlled polymerization guided by aryl-perfluoroaryl π-π stacking of monomer pairs. We also show that for monomers that are capable of strong associative interactions, the classical reactivity ratio analysis based on Fineman-Ross/terminal reactivity models may lead to an imprecise determination of the monomer alternation mode. © 2014 American Chemical Society.

  19. Report on the Verification of the Performance of 1507, 59122, MON 810 and NK603 Event-specific PCR-based Methods applied to DNA extracted from Stack Maize 1507 x 59122 x MON 810 x NK603

    OpenAIRE

    JACCHIA SARA; SACCO Maria-Grazia; Mazzara, Marco; KREYSA JOACHIM

    2013-01-01

    An application was submitted by Pioneer Overseas Corporation to request the authorization of the genetically modified maize stack 1507 x 59122 x MON 810 x NK603, resistant against certain lepidopteran pests, protected against corn rootworm larvae, and glufosinate-ammonium and glyphosate tolerant, and all sub-combinations of the individual events as present in the segregating progeny, for food and feed uses, and import and processing, in accordance with articles 5 and 17 of Regulation (EC) N° ...

  20. Principles for Instructional Stack Development in HyperCard.

    Science.gov (United States)

    McEneaney, John E.

    The purpose of this paper is to provide information about obtaining and using HyperCard stacks that introduce users to principles of stack development. The HyperCard stacks described are available for downloading free of charge from a server at Indiana University South Bend. Specific directions are given for stack use, with advice for beginners. A…

  1. Classifier Subset Selection for the Stacked Generalization Method Applied to Emotion Recognition in Speech

    Directory of Open Access Journals (Sweden)

    Aitor Álvarez

    2015-12-01

    Full Text Available In this paper, a new supervised classification paradigm, called classifier subset selection for stacked generalization (CSS stacking, is presented to deal with speech emotion recognition. The new approach consists of an improvement of a bi-level multi-classifier system known as stacking generalization by means of an integration of an estimation of distribution algorithm (EDA in the first layer to select the optimal subset from the standard base classifiers. The good performance of the proposed new paradigm was demonstrated over different configurations and datasets. First, several CSS stacking classifiers were constructed on the RekEmozio dataset, using some specific standard base classifiers and a total of 123 spectral, quality and prosodic features computed using in-house feature extraction algorithms. These initial CSS stacking classifiers were compared to other multi-classifier systems and the employed standard classifiers built on the same set of speech features. Then, new CSS stacking classifiers were built on RekEmozio using a different set of both acoustic parameters (extended version of the Geneva Minimalistic Acoustic Parameter Set (eGeMAPS and standard classifiers and employing the best meta-classifier of the initial experiments. The performance of these two CSS stacking classifiers was evaluated and compared. Finally, the new paradigm was tested on the well-known Berlin Emotional Speech database. We compared the performance of single, standard stacking and CSS stacking systems using the same parametrization of the second phase. All of the classifications were performed at the categorical level, including the six primary emotions plus the neutral one.

  2. Stacking dependent electronic structures of transition metal dichalcogenides heterobilayer

    Science.gov (United States)

    Lee, Yea-Lee; Park, Cheol-Hwan; Ihm, Jisoon

    The systematic study of the electronic structures and optical properties of the transition metal dichalcogenides (TMD) heterobilayers can significantly improve the designing of new electronic and optoelectronic devices. Here, we theoretically study the electronic structures and optical properties of TMD heterobilayers using the first-principles methods. The band structures of TMD heterobilayer are shown to be determined by the band alignments of the each layer, the weak interlayer interactions, and angle dependent stacking patterns. The photoluminescence spectra are investigated using the calculated band structures, and the optical absorption spectra are examined by the GW approximations including the electron-hole interaction through the solution of the Bethe-Salpeter equation. It is expected that the weak interlayer interaction gives rise to the substantial interlayer optical transition which will be corresponding to the interlayer exciton.

  3. Performance Evaluation of Private Clouds Eucalyptus versus CloudStack

    Directory of Open Access Journals (Sweden)

    Mumtaz M.Ali AL-Mukhtar

    2014-06-01

    Full Text Available the number of open source cloud management platforms is increasing day-by-day. The features of these software vary significantly and this creates a difficulty for the cloud consumers to choose the software based on their business and scientific requirements. This paper evaluates Eucalyptus and CloudStack, the two most popular open source platforms used to build private Infrastructure as a service (IaaS clouds. The performance of virtual machines (VMs initiated and managed by Eucalyptus and CloudStack are evaluated in terms of CPU utilization, memory bandwidth, disk I/O access speed, and network performance using suitable benchmarks. Different VM management operations such as add, delete and live migration are also assessed to determine which cloud solution is more suitable than other to be adopted as a private cloud solution. As a further performance testing, a simple web application has been implemented on the both clouds to evaluate their suitability in web application hosting.

  4. High specific power, direct methanol fuel cell stack

    Science.gov (United States)

    Ramsey, John C.; Wilson, Mahlon S.

    2007-05-08

    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  5. Rain Sensor with Stacked Light Waveguide Having Tilted Air Gap

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2014-01-01

    Full Text Available Vehicle sensor to detect rain drop on and above waveguide utilizing light deflection and scattering was realized, keeping wide sensing coverage and sensitivity to detect mist accumulation. Proposed sensor structure under stacked light wave guide consisted of light blocking fixture surrounding photodetector and adjacent light source. Tilted air gap between stacked light waveguide and light blocking fixture played major role to increase sensitivity and to enhance linearity. This sensor structure eliminated complex collimating optics, while keeping wide sensing coverage using simple geometry. Detection algorithm based on time-to-intensity transformation process was used to convert raining intensity into countable raining process. Experimental result inside simulated rain chamber showed distinct different response between light rain and normal rain. Application as automobile rain sensor is expected.

  6. Calculated stacking-fault energies of elemental metals

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1993-01-01

    in the three transition series vary with atomic number essentially as the calculated structural energy differences between the face-centered-cubic and the hexagonal-close-packed phases. In addition we find that the simple relationships between the different types of fault energies predicted by models......We have performed ab initio calculations of twin, intrinsic, and extrinsic face-centered-cubic stacking faults for all the 3d, 4d, and 5d transition metals by means of a Green's-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic......-sphere approximations. The results are in excellent agreement with recent layer Korringa-Kohn-Rostoker Green's-function calculations where stacking-fault energies for Ni, Cu, Rh, Pd, Ag, Ir, and Au were found by means of the the so-called force theorem. We find that the self-consistent fault energies for all the metals...

  7. Web-Based Interactive Visualization in an Information Retrieval Course.

    Science.gov (United States)

    Brusilovsky, Peter

    Interactive visualization is a powerful educational tool. It has been used to enhance the teaching of various subjects from computer science to chemistry to engineering. In computer science education, this powerful tool is used almost exclusively in programming and data structure courses. This paper suggests that visualization could be very…

  8. Component Based System Framework for Dynamic B2B Interaction

    NARCIS (Netherlands)

    Hu jinmin, H.J.; Grefen, P.W.P.J.

    2002-01-01

    Business-to-business (B2B) collaboration is becoming a pivotal way to bring today's enterprises to success in the dynamically changing, e-business environment. Though many business-to-business protocols are developed to support B2B interaction, none are generally accepted. A B2B system should suppor

  9. Map-based mobile services design, interaction and usability

    CERN Document Server

    Meng, Liqui; Winter, Stephan; Popovich, Vasily

    2008-01-01

    Reports the research and technical achievements on the following theme blocks: Design of mobile map services and its constraints; Typology and usability of mobile map services; Visualization solutions on small displays for time-critical tasks; Mobile map users; Interaction and adaptation in mobile environments; and more.

  10. Interaction force microscopy based on quartz tuning fork force sensor

    Science.gov (United States)

    Qin, Yexian

    The ability to sense small changes in the interaction force between a scanning probe microscope (SPM) tip and a substrate requires cantilevers with a sharp mechanical resonance. A typical commercially available cantilever in air is characterized by a resonance with a Q factor of 100 ˜ 300. The low Q factor can be attributed to imperfections in the cantilever itself as well as damping effects of the surrounding air. To substantially increase the Q factor, novel concepts are required. For this reason, we have performed a systematic study of quartz tuning fork resonators for possible use with SPMs. We find that tuning fork resonators operating in air are characterized by Q factors in the order of 104, thereby greatly improving the SPM's ability to measure small shifts in the interaction force. By carefully attaching commercially available SPM tips to the tuning fork, it is possible to obtain SPM images using non-contact imaging techniques and analyze the tip-sample interactions. The assembly of uniform molecular monolayers on atomically flat substrates for molecular electronics applications has received widespread attention during the past ten years. Scanning probe techniques are often used to assess substrate topography, molecular ordering and electronic properties, yet little is known about the fundamental tip-molecule interaction. To address this issue we have built an Interaction Force Microscope using a quartz tuning fork to probe tip-molecular monolayer interactions using scanning probe microscopy. The high quality factor and stable resonant frequency of a quartz tuning fork allows accurate measurement of small shifts in the resonant frequency as the tip interacts with the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezomechanical properties of a tuning fork have been calibrated using a fiber optical interferometer. In prior work [1], we have studied molecular layers formed from either 4-Trifluoro

  11. Illuminating spatial and temporal organization of protein interaction networks by mass spectrometry-based proteomics

    OpenAIRE

    Jiwen eYang; Sebastian Alexander Wagner; Petra eBeli

    2015-01-01

    Protein-protein interactions are at the core of all cellular functions and dynamic alterations in protein interactions regulate cellular signaling. In the last decade, mass spectrometry-based proteomics has delivered unprecedented insights into human protein interaction networks. Affinity purification-mass spectrometry has been extensively employed for focused and high-throughput studies of steady state protein-protein interactions. Future challenges remain in mapping transient protein intera...

  12. Numerical and experimental studies of stack shunt current for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Highlights: • A coupled three-dimensional model of VRB cell stack is developed. • Shunt current of the stack is studied with the model and experiment. • Increased electrolyte resistance in channel and manifold lowers the shunt current. • Shunt current loss increases with stack cell number nonlinearly. - Abstract: The stack shunt current of VRB (vanadium redox flow battery) was investigated with experiments and 3D (three-dimensional) simulations. In the proposed model, cell voltages and electrolyte conductivities were calculated based on electrochemical reaction distributions and SOC (state of charge) values, respectively, while coulombic loss was estimated according to shunt current and vanadium ionic crossover through membrane. Shunt current distributions and coulombic efficiency are analyzed in terms of electrolyte conductivities and stack cell numbers. The distributions of cell voltages and shunt currents calculated with proposed model are validated with single cell and short stack tests. The model can be used to optimize VRB stack manifold and channel designs to improve VRB system efficiency

  13. Development of internal manifold heat exchanger (IMHEX reg-sign) molten carbonate fuel cell stacks

    International Nuclear Information System (INIS)

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX reg-sign concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft2) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft2 stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft2) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs

  14. Technical description of Stack 296-B-5

    International Nuclear Information System (INIS)

    Of particular concern to facilities on the Hanford site is Title 40, Code of Federal Regulations, Chapter 40, Part 61, Subpart H, ''National emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities.'' Assessments of facility stacks and potential radionuclide emissions determined whether these stacks would be subject to the sampling and monitoring requirements of 40 CFR 61, Subpart H. Stack 296-B-5 exhausts 221-BB building which houses tanks containing B Plant steam condensate and B Plant process condensate from the operation of the low-level waste concentrator. The assessment of potential radionuclide emissions from the 296-B-5 stack resulted in an effective dose equivalent to the maximally exposed individual of less than 0.1 millirem per year. Therefore, the stack is not subject to the sampling and monitoring requirements of 40 CFR 61, Subpart H. However, the sampling and monitoring system must be in compliance with the Environmental Compliance Manual, WHC-CM-7-5. Currently, 296-B-5 is sampled continuously with a record sampler and continuous air monitor (CAM)

  15. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  16. A secure mobile phone-based interactive logon in Windows

    OpenAIRE

    Bodriagov, Oleksandr

    2010-01-01

    Password-based logon schemes have many security weaknesses. Smart card and biometric based authentication solutions are available as a replacement for standard password-based schemes for security sensitive environments. However, the cost of deployment and maintenance of these systems is quite high. On the other hand, mobile network operators have a huge base of deployed smart cards that can be reused to provide authentication in other areas significantly reducing costs. This master s thesis ...

  17. Interaction Protocols in Multi-Agent Systems based on Agent Petri Nets Model

    Directory of Open Access Journals (Sweden)

    Kamel Barkaoui

    2013-08-01

    Full Text Available This paper deals with the modeling of interaction between agents in Multi Agents System (MAS based on Agent Petri Nets (APN. Our models are created based on communicating agents. Indeed, an agent initiating a conversation with other can specify the interaction protocol wishes to follow. The combination of APN and FIPA Protocols schemes leads to a set of deployment formal rules for points where model interaction can be successfully implemented. We introduce some models FIPA standard protocols.

  18. Preprint Extending Touch-less Interaction on Vision Based Wearable Device

    OpenAIRE

    Lv, Zhihan; Feng, Liangbing; Feng, Shengzhong; Li, Haibo

    2015-01-01

    This is the preprint version of our paper on IEEE Virtual Reality Conference 2015. A touch-less interaction technology on vision based wearable device is designed and evaluated. Users interact with the application with dynamic hands/feet gestures in front of the camera. Several proof-of-concept prototypes with eleven dynamic gestures are developed based on the touch-less interaction. At last, a comparing user study evaluation is proposed to demonstrate the usability of the touch-less approach...

  19. HEMORHEOLOGICAL IMPLICATIONS OF PERFLUOROCARBON BASED OXYGEN CARRIER INTERACTION WITH COLLOID PLASMA EXPANDERS AND BLOOD

    OpenAIRE

    Vásquez, Diana M.; Ortiz, Daniel; Alvarez, Oscar A.; Briceño, Juan C.; Cabrales, Pedro

    2013-01-01

    Perfluorocarbon (PFC) emulsion based oxygen carriers lack colloid osmotic pressure (COP) and must be administered with colloid-based plasma expanders (PEs). Although PFC emulsions have been widely studied, there is limited information about PFC emulsion interaction with PEs and blood. Their interaction forms aggregates due to electrostatic and rheological phenomena, and change blood rheology and blood flow. This study analyzes the effects of the interaction between PFC emulsions with blood in...

  20. Studies on the π-π stacking features of imidazole units present in a series of 5-amino-1-alkylimidazole-4-carboxamides

    Science.gov (United States)

    Ray, Sibdas; Das, Aniruddha

    2015-06-01

    Reaction of 2-ethoxymethyleneamino-2-cyanoacetamide with primary alkyl amines in acetonitrile solvent affords 1-substituted-5-aminoimidazole-4-carboxamides. Single crystal X-ray diffraction studies of these imidazole compounds show that there are both anti-parallel and syn-parallel π-π stackings between two imidazole units in parallel-displaced (PD) conformations and the distance between two π-π stacked imidazole units depends mainly on the anti/ syn-parallel nature and to some extent on the alkyl group attached to N-1 of imidazole; molecules with anti-parallel PD-stacking arrangements of the imidazole units have got vertical π-π stacking distance short enough to impart stabilization whereas the imidazole unit having syn-parallel stacking arrangement have got much larger π-π stacking distances. DFT studies on a pair of anti-parallel imidazole units of such an AICA lead to curves for 'π-π stacking stabilization energy vs. π-π stacking distance' which have got similarity with the 'Morse potential energy diagram for a diatomic molecule' and this affords to find out a minimum π-π stacking distance corresponding to the maximum stacking stabilization energy between the pair of imidazole units. On the other hand, a DFT calculation based curve for 'π-π stacking stabilization energy vs. π-π stacking distance' of a pair of syn-parallel imidazole units is shown to have an exponential nature.