Sample records for base stacking interactions

  1. Stacking interaction in metal complexes with compositions of DNA and heteroaromatic N-bases

    Institute of Scientific and Technical Information of China (English)


    The current development in the intramolecular aromatic-ring stacking i nteractions in the complexes with compositions of DNA and heteroaromatic N-bases has been reviewed to a great extent, especially the significant contributions i n several important systems about ternary mixed-ligand complexes, including nucl eotide-metal ion-po- lyaromatic amine, amino acid-metal ion-polyaromatic amine, nucleotide-metal ion-pyridine-like aromatic amine, nucleotide-metal ion-amino ac id, nucleotide-metal ion-nucleic acid base, nucleic acid base-metal ion, and the important factors affecting the intramolecular aromatic-ring stacking interacti ons in the complexes. Based on the study of stacking interaction in the complexe s, the mechanism of interaction between DNA molecules and complexes of heteroaro matic N-bases has been established, which is crucial for the design and synthesi s of the complexes acting as molecular devices of DNA.

  2. Stacking interactions in PUF-RNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Yiling Koh, Yvonne; Wang, Yeming; Qiu, Chen; Opperman, Laura; Gross, Leah; Tanaka Hall, Traci M; Wickens, Marvin [NIH; (UW)


    Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to 'target' versus 'off-target' interactions, and thus be an important consideration in the design of proteins with new specificities.

  3. Interactions of Nucleic Acid Bases with Temozolomide. Stacked, Perpendicular, and Coplanar Heterodimers. (United States)

    Kasende, Okuma Emile; Nziko, Vincent de Paul N; Scheiner, Steve


    Temozolomide (TMZ) was paired with each of the five nucleic acid bases, and the potential energy surface searched for all minima, in the context of dispersion-corrected density functional theory and MP2 methods. Three types of arrangements were observed, with competitive stabilities. Coplanar H-bonding structures, reminiscent of Watson-Crick base pairs were typically the lowest in energy, albeit by a small amount. Also very stable were perpendicular arrangements that included one or more H-bonds. The two monomers were stacked approximately parallel to one another in the third category, some of which contained weak and distorted H-bonds. Dispersion was found to be a dominating attractive force, largest for the stacked structures, and smallest for the coplanar dimers.

  4. Interactive visualization of multiresolution image stacks in 3D. (United States)

    Trotts, Issac; Mikula, Shawn; Jones, Edward G


    Conventional microscopy, electron microscopy, and imaging techniques such as MRI and PET commonly generate large stacks of images of the sectioned brain. In other domains, such as neurophysiology, variables such as space or time are also varied along a stack axis. Digital image sizes have been progressively increasing and in virtual microscopy, it is now common to work with individual image sizes that are several hundred megapixels and several gigabytes in size. The interactive visualization of these high-resolution, multiresolution images in 2D has been addressed previously [Sullivan, G., and Baker, R., 1994. Efficient quad-tree coding of images and video. IEEE Trans. Image Process. 3 (3), 327-331]. Here, we describe a method for interactive visualization of multiresolution image stacks in 3D. The method, characterized as quad-tree based multiresolution image stack interactive visualization using a texel projection based criterion, relies on accessing and projecting image tiles from multiresolution image stacks in such a way that, from the observer's perspective, image tiles all appear approximately the same size even though they are accessed from different tiers within the images comprising the stack. This method enables efficient navigation of high-resolution image stacks. We implement this method in a program called StackVis, which is a Windows-based, interactive 3D multiresolution image stack visualization system written in C++ and using OpenGL. It is freely available at

  5. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing (United States)

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V. Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J. W.; Patolsky, Fernando; Gazit, Ehud


    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs—CG, GC and GG—could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

  6. Evaluating interaction techniques for stack mode viewing. (United States)

    Atkins, M Stella; Fernquist, Jennifer; Kirkpatrick, Arthur E; Forster, Bruce B


    Three interaction techniques were evaluated for scrolling stack mode displays of volumetric data. Two used a scroll-wheel mouse: one used only the wheel, while another used a "click and drag" technique for fast scrolling, leaving the wheel for fine adjustments. The third technique used a Shuttle Xpress jog wheel. In a within-subjects design, nine radiologists searched stacked images for simulated hyper-intense regions on brain, knee, and thigh MR studies. Dependent measures were speed, accuracy, navigation path, and user preference. The radiologists considered the task realistic. They had high inter-subject variability in completion times, far larger than the differences between techniques. Most radiologists (eight out of nine) preferred familiar mouse-based techniques. Most participants scanned the data in two passes, first locating anomalies, then scanning for omissions. Participants spent a mean 10.4 s/trial exploring anomalies, with only mild variation between participants. Their rates of forward navigation searching for anomalies varied much more. Interaction technique significantly affected forward navigation rate (scroll wheel 5.4 slices/s, click and drag 9.4, and jog wheel 6.9). It is not clear what constrained the slowest navigators. The fastest navigator used a unique strategy of moving quickly just beyond an anomaly, then backing up. Eight naïve students performed a similar protocol. Their times and variability were similar to the radiologists, but more (three out of eight) students preferred the jog wheel. It may be worthwhile to introduce techniques such as the jog wheel to radiologists during training, and several techniques might be provided on workstations, allowing individuals to choose their preferred method.

  7. Glassy carbon based supercapacitor stacks

    Energy Technology Data Exchange (ETDEWEB)

    Baertsch, M.; Braun, A.; Koetz, R.; Haas, O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    Considerable effort is being made to develop electrochemical double layer capacitors (EDLC) that store relatively large quantities of electrical energy and possess at the same time a high power density. Our previous work has shown that glassy carbon is suitable as a material for capacitor electrodes concerning low resistance and high capacity requirements. We present the development of bipolar electrochemical glassy carbon capacitor stacks of up to 3 V. Bipolar stacks are an efficient way to meet the high voltage and high power density requirements for traction applications. Impedance and cyclic voltammogram measurements are reported here and show the frequency response of a 1, 2, and 3 V stack. (author) 3 figs., 1 ref..

  8. Flux interactions on stacked Josephson junctions

    DEFF Research Database (Denmark)

    Scott, Alwyn C.; A., Petraglia


    Perturbation methods are used to study the dynamics of locked fluxon modes on stacked Josephson junctions and single crystals of certain high-T-c, superconductors. Two limiting cases are considered: (i) The nonlinear diffusion regime in which fluxon dynamics are dominated by energy exchange betwe...

  9. Interaction of dopant atoms with stacking faults in silicon (United States)

    Ohno, Yutaka; Tokumoto, Yuki; Taneichi, Hiroto; Yonenaga, Ichiro; Togase, Kensuke; Nishitani, Sigeto R.


    The width of a stacking fault ribbon bound by a pair of partial dislocations in silicon crystals was unchanged when boron and gallium atoms of p-type dopant were agglomerated nearby the ribbon by annealing, even though the width increased when n-type dopant atoms were agglomerated as previously reported [Y. Ohno, Y. Tokumoto, I. Yonenaga, Thin Solid Films, accepted for publication]. The origin of the width-increase in n-type crystals was proposed as the reduction of the stacking fault energy, from 58±5 down to 46±5 mJ/m2, due to an electronic interaction between the ribbon and the n-type dopant atoms, and the interaction energy was estimated to be 0.15±0.05 eV. On the other hand, the interaction of p-type dopant atoms with stacking faults was not detected.

  10. Supramolecular self-assembly of a coumarine-based acylthiourea synthon directed by π-stacking interactions: Crystal structure and Hirshfeld surface analysis (United States)

    Saeed, Aamer; Ashraf, Saba; Flörke, Ulrich; Delgado Espinoza, Zuly Yuliana; Erben, Mauricio F.; Pérez, Hiram


    The structure of 1-(2-oxo-2H-chromene-3-carbonyl)-3-(2-methoxy-phenyl)thiourea (1) has been determined by single-crystal X-ray crystallography. This compound crystallizes in the monoclinic space group P21/c with a = 7.455 (2) Å, b = 12.744 (3) Å, c = 16.892 (4) Å, β = 90.203 (6)° and Z = 4. Both, the coumarin and the phenyl rings are nearly coplanar with the central 1-acylthiourea group, with the Cdbnd O and Cdbnd S bonds adopting an opposite orientation. Intramolecular N-H···O, C-H···O, and C-H···S hydrogen bonds are favored by the planar conformation. The molecules are packed through C-H···O, C-H···S and C-H···C hydrogen bonds, and two π···π interactions with offset arrangement. Inter-centroid distance of 3.490 (2) Å, slip angles of 18.5 and 20.9°, and vertical displacements of 1.10 and 1.24 Å are the stacking parameters corresponding to the stronger π···π interaction. Hirshfeld surface analysis was performed for visualizing, exploring and quantifying intermolecular interactions in the crystal lattice of compound 1, and compared with two closely related species. Shape index and Curvedness surfaces indicated π-stacking with different features in opposed sides of the molecule. Fingerprint plot showed C···C contacts with similar contributions to the crystal packing in comparison with those associated to hydrogen bonds. Enrichment ratios for H···H, O···H, S···H and C···C contacts revealed a high propensity to form in the crystal.

  11. Interactive histology of large-scale biomedical image stacks. (United States)

    Jeong, Won-Ki; Schneider, Jens; Turney, Stephen G; Faulkner-Jones, Beverly E; Meyer, Dominik; Westermann, Rüdiger; Reid, R Clay; Lichtman, Jeff; Pfister, Hanspeter


    Histology is the study of the structure of biological tissue using microscopy techniques. As digital imaging technology advances, high resolution microscopy of large tissue volumes is becoming feasible; however, new interactive tools are needed to explore and analyze the enormous datasets. In this paper we present a visualization framework that specifically targets interactive examination of arbitrarily large image stacks. Our framework is built upon two core techniques: display-aware processing and GPU-accelerated texture compression. With display-aware processing, only the currently visible image tiles are fetched and aligned on-the-fly, reducing memory bandwidth and minimizing the need for time-consuming global pre-processing. Our novel texture compression scheme for GPUs is tailored for quick browsing of image stacks. We evaluate the usability of our viewer for two histology applications: digital pathology and visualization of neural structure at nanoscale-resolution in serial electron micrographs.

  12. Strong Orbital Interaction in pi-pi Stacking System

    CERN Document Server

    Fu, Xiao-Xiao; Zhang, Rui-Qin


    A simple prototypical model of aromatic pi-pi stacking system -- benzene sandwich dimer is investigated by ab initio calculations based on second-order Moller-Plesset perturbation theory (MP2) and Minnesota hybrid functional M06-2X.

  13. EmuStack: An OpenStack-Based DTN Network Emulation Platform (Extended Version

    Directory of Open Access Journals (Sweden)

    Haifeng Li


    Full Text Available With the advancement of computing and network virtualization technology, the networking research community shows great interest in network emulation. Compared with network simulation, network emulation can provide more relevant and comprehensive details. In this paper, EmuStack, a large-scale real-time emulation platform for Delay Tolerant Network (DTN, is proposed. EmuStack aims at empowering network emulation to become as simple as network simulation. Based on OpenStack, distributed synchronous emulation modules are developed to enable EmuStack to implement synchronous and dynamic, precise, and real-time network emulation. Meanwhile, the lightweight approach of using Docker container technology and network namespaces allows EmuStack to support a (up to hundreds of nodes large-scale topology with only several physical nodes. In addition, EmuStack integrates the Linux Traffic Control (TC tools with OpenStack for managing and emulating the virtual link characteristics which include variable bandwidth, delay, loss, jitter, reordering, and duplication. Finally, experiences with our initial implementation suggest the ability to run and debug experimental network protocol in real time. EmuStack environment would bring qualitative change in network research works.

  14. Examination of tyrosine/adenine stacking interactions in protein complexes. (United States)

    Copeland, Kari L; Pellock, Samuel J; Cox, James R; Cafiero, Mauricio L; Tschumper, Gregory S


    The π-stacking interactions between tyrosine amino acid side chains and adenine-bearing ligands are examined. Crystalline protein structures from the protein data bank (PDB) exhibiting face-to-face tyrosine/adenine arrangements were used to construct 20 unique 4-methylphenol/N9-methyladenine (p-cresol/9MeA) model systems. Full geometry optimization of the 20 crystal structures with the M06-2X density functional theory method identified 11 unique low-energy conformations. CCSD(T) complete basis set (CBS) limit interaction energies were estimated for all of the structures to determine the magnitude of the interaction between the two ring systems. CCSD(T) computations with double-ζ basis sets (e.g., 6-31G*(0.25) and aug-cc-pVDZ) indicate that the MP2 method overbinds by as much as 3.07 kcal mol(-1) for the crystal structures and 3.90 kcal mol(-1) for the optimized structures. In the 20 crystal structures, the estimated CCSD(T) CBS limit interaction energy ranges from -4.00 to -6.83 kcal mol(-1), with an average interaction energy of -5.47 kcal mol(-1), values remarkably similar to the corresponding data for phenylalanine/adenine stacking interactions. Geometry optimization significantly increases the interaction energies of the p-cresol/9MeA model systems. The average estimated CCSD(T) CBS limit interaction energy of the 11 optimized structures is 3.23 kcal mol(-1) larger than that for the 20 crystal structures.

  15. Desalting of phosphopeptides by tandem polypyrrole-c18 reverse phase micropipette tip (TMTip{sub PPY-C18}) based on hybrid electrostatic, {Pi}-{Pi} stacking and hydrophobic interactions for mass spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Shi; Wang Xiaoli; Fu Jieying; Hu Xuejiao; Xiao Xiao; Huang Lulu; Zhou Youe [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China); Zhong Hongying, E-mail: [Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079 (China)


    Highlights: Black-Right-Pointing-Pointer A new micropipette tip TMTip{sub PPY-C18} was developed for desalting of phosphopeptides. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} is based on polypyrrole in tandem with C18 chromatographic material. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} combines electrostatic, {Pi}-{Pi} stacking and hydrophobic interactions. Black-Right-Pointing-Pointer TMTip{sub PPY-C18} can be used in both acidic and basic experimental conditions. - Abstract: Desalting and concentration of peptides using reverse phase (RP) C18 chromatographic material based on hydrophobic interaction is a routine approach used in mass spectrometry (MS)-based proteomics. However, MS detection of small hydrophilic peptides, in particular, phosphopeptides that bear multiple negative charges, is challenging due to the insufficient binding to C18 stationary phase. We described here the development of a new desalting method that takes the unique properties of polypyrrole (PPY). The presence of positively charged nitrogen atoms under acidic conditions and polyunsaturated bonds in polypyrrole provide a prospect for enhanced adsorption of phosphopeptides or hydrophilic peptides through extra electrostatic and {Pi}-{Pi} stacking interactions in addition to hydrophobic interactions. In tandem with reversed phase C18 chromatographic material, the new type of desalting method termed as TMTip{sub PPY-C18} can significantly improve the MS detection of phosphopeptides with multiple phosphate groups and other small hydrophilic peptides. It has been applied to not only tryptic digest of model proteins but also the analysis of complex lysates of zebrafish eggs. The number of detected phosphate groups on a peptide ranged from 1 to 6. Particularly, polypyrrole based method can also be used in basic condition. Thus it provides a useful means to handle peptides that may not be detectable in acidic condition. It can be envisioned that the TMTip{sub PPY-C18} should be able to

  16. Consolidity: Stack-based systems change pathway theory elaborated

    Directory of Open Access Journals (Sweden)

    Hassen Taher Dorrah


    Full Text Available This paper presents an elaborated analysis for investigating the stack-based layering processes during the systems change pathway. The system change pathway is defined as the path resulting from the combinations of all successive changes induced on the system when subjected to varying environments, activities, events, or any excessive internal or external influences and happenings “on and above” its normal stands, situations or set-points during its course of life. The analysis is essentially based on the important overall system paradigm of “Time driven-event driven-parameters change”. Based on this paradigm, it is considered that any affected activity, event or varying environment is intelligently self-recorded inside the system through an incremental consolidity-scaled change in system parameters of the stack-based layering types. Various joint stack-based mathematical and graphical approaches supported by representable case studies are suggested for the identification, extraction, and processing of various stack-based systems changes layering of different classifications and categorizations. Moreover, some selected real life illustrative applications are provided to demonstrate the (infinite stack-based identification and recognition of the change pathway process in the areas of geology, archeology, life sciences, ecology, environmental science, engineering, materials, medicine, biology, sociology, humanities, and other important fields. These case studies and selected applications revealed that there are general similarities of the stack-based layering structures and formations among all the various research fields. Such general similarities clearly demonstrate the global concept of the “fractals-general stacking behavior” of real life systems during their change pathways. Therefore, it is recommended that concentrated efforts should be expedited toward building generic modular stack-based systems or blocks for the mathematical

  17. Statistical mechanics of base stacking and pairing in DNA melting


    Ivanov, Vassili; Zeng, Yan; Zocchi, Giovanni


    We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at m...

  18. Statistical mechanics of base stacking and pairing in DNA melting. (United States)

    Ivanov, Vassili; Zeng, Yan; Zocchi, Giovanni


    We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at moderately low pH this transition is moved down to experimentally accessible temperatures. These measurements confirm that the Ising model approach is indeed a good description of base stacking. On the other hand, comparison with the experiments points to the limitations of the simple zipper model description of base pairing.

  19. Stacked Deck: An Effective, School-Based Program for the Prevention of Problem Gambling (United States)

    Williams, Robert J.; Wood, Robert T.; Currie, Shawn R.


    School-based prevention programs are an important component of problem gambling prevention, but empirically effective programs are lacking. Stacked Deck is a set of 5-6 interactive lessons that teach about the history of gambling; the true odds and "house edge"; gambling fallacies; signs, risk factors, and causes of problem gambling; and…

  20. Stacking Interactions between 9-Methyladenine and Heterocycles Commonly Found in Pharmaceuticals. (United States)

    An, Yi; Doney, Analise C; Andrade, Rodrigo B; Wheeler, Steven E


    Complexes of 9-methyladenine with 46 heterocycles commonly found in drugs were located using dispersion-corrected density functional theory, providing a representative set of 408 unique stacked dimers. The predicted binding enthalpies for each heterocycle span a broad range, highlighting the strong dependence of heterocycle stacking interactions on the relative orientation of the interacting rings. Overall, the presence of NH and carbonyl groups lead to the strongest stacking interactions with 9-methyadenine, and the strength of π-stacking interactions is sensitive to the distribution of heteroatoms within the ring as well as the specific tautomer considered. Although molecular dipole moments provide a sound predictor of the strengths and orientations of the 28 monocyclic heterocycles considered, dipole moments for the larger fused heterocycles show very little correlation with the predicted binding enthalpies.

  1. Experimental and theoretical insights in the alkene–arene intramolecular π-stacking interaction (United States)

    Corne, Valeria; Sarotti, Ariel M; Ramirez de Arellano, Carmen; Spanevello, Rolando A


    Summary Chiral acrylic esters derived from biomass were developed as models to have a better insight in the aryl–vinyl π-stacking interactions. Quantum chemical calculations, NMR studies and experimental evidences demonstrated the presence of equilibriums of at least four different conformations: π-stacked and face-to-edge, each of them in an s-cis/s-trans conformation. The results show that the stabilization produced by the π–π interaction makes the π-stacked conformation predominant in solution and this stabilization is slightly affected by the electron density of the aromatic counterpart. PMID:27559414

  2. The effect of pi-stacking, h-bonding, and electrostatic interactions on the ionization energies of nucleic acid bases: adenine-adenine, thymine-thymine and adenine-thymine dimers

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Ahmed, Musahid; Krylov, Anna I.


    A combined theoretical and experimental study of the ionized dimers of thymine and adenine, TT, AA, and AT, is presented. Adiabatic and vertical ionization energies(IEs) for monomers and dimers as well as thresholds for the appearance of the protonated species are reported and analyzed. Non-covalent interactions stronglyaffect the observed IEs. The magnitude and the nature of the effect is different for different isomers of the dimers. The computations reveal that for TT, the largestchanges in vertical IEs (0.4 eV) occur in asymmetric h-bonded and symmetric pi- stacked isomers, whereas in the lowest-energy symmetric h-bonded dimer the shiftin IEs is much smaller (0.1 eV). The origin of the shift and the character of the ionized states is different in asymmetric h-bonded and symmetric stacked isomers. Inthe former, the initial hole is localized on one of the fragments, and the shift is due to the electrostatic stabilization of the positive charge of the ionized fragment by thedipole moment of the neutral fragment. In the latter, the hole is delocalized, and the change in IE is proportional to the overlap of the fragments' MOs. The shifts in AAare much smaller due to a less effcient overlap and a smaller dipole moment. The ionization of the h-bonded dimers results in barrierless (or nearly barrierless) protontransfer, whereas the pi-stacked dimers relax to structures with the hole stabilized by the delocalization or electrostatic interactions.

  3. Density of oxidation-induced stacking faults in damaged silicon

    NARCIS (Netherlands)

    Kuper, F.G.; Hosson, J.Th.M. De; Verwey, J.F.


    A model for the relation between density and length of oxidation-induced stacking faults on damaged silicon surfaces is proposed, based on interactions of stacking faults with dislocations and neighboring stacking faults. The model agrees with experiments.

  4. Stacked and folded piezoelectrets for vibration-based energy harvesting (United States)

    Sessler, G. M.; Pondrom, P.; Zhang, X.


    Vibration-based energy harvesting with piezoelectrets can be significantly improved by using multiple layers of these materials. In particular, folding or stacking of piezoelectrets or a combination of these methods results in increased power output of the energy harvesters. The possibilities of these procedures are explored, together with the effect of seismic mass, resonance frequency, and terminating resistance. It is found that with seismic masses of about 20 g and using radiation-crosslinked polypropylene (IXPP) as a piezoelectret, power outputs of up to 80 µW can be achieved for an acceleration of 1 g. Expected dependencies of generated power on frequency, folding and stacking parameters, in particular number of layers, and on seismic mass, are confirmed.

  5. Influence of supramolecular structures in crystals on parallel stacking interactions between pyridine molecules. (United States)

    Janjić, Goran V; Ninković, Dragan B; Zarić, Snezana D


    Parallel stacking interactions between pyridines in crystal structures and the influence of hydrogen bonding and supramolecular structures in crystals on the geometries of interactions were studied by analyzing data from the Cambridge Structural Database (CSD). In the CSD 66 contacts of pyridines have a parallel orientation of molecules and most of these pyridines simultaneously form hydrogen bonds (44 contacts). The geometries of stacked pyridines observed in crystal structures were compared with the geometries obtained by calculations and explained by supramolecular structures in crystals. The results show that the mean perpendicular distance (R) between pyridine rings with (3.48 Å) and without hydrogen bonds (3.62 Å) is larger than that calculated, because of the influence of supramolecular structures in crystals. The pyridines with hydrogen bonds show a pronounced preference for offsets of 1.25-1.75 Å, close to the position of the calculated minimum (1.80 Å). However, stacking interactions of pyridines without hydrogen bonds do not adopt values at or close to that of the calculated offset. This is because stacking interactions of pyridines without hydrogen bonds are less strong, and they are more susceptible to the influence of supramolecular structures in crystals. These results show that hydrogen bonding and supramolecular structures have an important influence on the geometries of stacked pyridines in crystals.

  6. Interactions of point defects with stacking faults in oxygen-free phosphorus-containing copper

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunguo, E-mail: [Division of Materials Technology, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden); Korzhavyi, Pavel A., E-mail: [Division of Materials Technology, Department of Materials Science and Engineering, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden); Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, 620219 Ekaterinburg (Russian Federation)


    The interactions of stacking faults and point defects in oxygen-free phosphorus-containing copper are investigated using ab initio methods. Although monovacancies can act as traps for H impurities or OH groups, the calculations show that two vacancies only weakly bind with each other and this interaction terminates at the third nearest-neighbor distance. An interstitial P tends to form a Cu–P dumbbell-like cluster around the lattice site and can readily combine with a vacancy to become a substitutional impurity. It is also found that the intrinsic stacking-fault energy of copper strongly depends on the temperature as well as on the presences of point defects. The intrinsic stacking-fault energy varies between 20 and 77 mJ/m{sup 2} depending on the presence of point defects in the faulted region. These point defects are also found to affect the unstable stacking-fault energy, but they always increase the twinning tendency of copper. Among them, the substitutional P is found to have the strongest effects, decreasing the intrinsic stacking-fault energy and increasing the twinnability.

  7. Computational Study on the Stacking Interaction in Catechol Complexes (United States)

    Estévez, Laura; Otero, Nicolás; Mosquera, Ricardo A.


    The stability and electron density topology of catechol complexes (dimers and tetramer) were studied using the MPW1B95 functional. The QTAIM analysis shows that both dimers (face to face and C-H/π one) display a different electronic origin. The formation of the former is accompanied by a significant change in the values of atomic electron dipole and quadrupole components, flattening the most diffuse part of the electron density distribution toward the molecular plane. A small electron population transfer is observed between catechol monomers connected by C-H/π interactions, whose QTAIM characterization does not differ from that of a weak hydrogen bond. Cooperative effects in the tetramer on binding energies are small and negligible for bond properties and charge transfer. Nevertheless, they are significant on atomic electron populations.

  8. Characterization of π-stacking interactions between aromatic amino acids and quercetagetin (United States)

    Akher, Farideh Badichi; Ebrahimi, Ali; Mostafavi, Najmeh


    In the present study, the π-stacking interactions between quercetagetin (QUE), which is one of the most representative flavonol compounds with biological and chemical activities, and some aromatic amino acid (AA) residues has been investigated by the quantum mechanical calculations. The trend in the absolute value of stacking interaction energy |ΔE| with respect to AAs is HIS > PHE > TYR > TPR. The results show that the sum of donor-acceptor interaction energy between AAs and QUE (∑E2) and the sum of electron densities ρ calculated at BCPs and CCPs between the rings (∑ρBCPs and ∑ρCCP) can be useful descriptors for prediction of the ΔE values of the complexes. The Osbnd H bond dissociation enthalpy (BDE) slightly decreases by the π-stacking interaction, which confirms the positive effect of that interaction on the antioxidant activity of QUE. A reverse trend is observed for BDE when is compared with the |ΔE| values. A reliable relationship is also observed between the Muliken spin density (MSD) distributions of the radical species and the most convenient Osbnd H bond dissociations. In addition, reactivity is in good correlation with the antioxidant activity of the complexes.

  9. Pre-stack time migration based on stationary-phase stacking in the dip-angle domain (United States)

    Xu, Jincheng; Zhang, Hao; Zhang, Jianfeng; Li, Zhengwei; Liu, Wei


    The Kirchhoff-type migration approach often suffers from migration noise, aliasing artifacts due to operator error, or weak noise from a truncated aperture or pre-stacked data. These noises can be attenuated by using stationary-phase migration, which only stacks the reflection energy within the Fresnel zone rather than along the whole migration aperture, and therefore obtains a higher signal-to-noise ratio (SNR) for the migration results. This paper proposes a new implementation for the pre-stack time migration (PSTM) approach, which is based on stationary-phase stacking in the dip-angle domain. This implementation generates a pair of migrated dip-angle gathers in the image domain using PSTM. We can obtain the dip-angle field corresponding to the contribution of the Fresnel zones from the migrated dip-angle gathers, which allows us to remove noise outside the Fresnel zones and significantly improves the SNR of the image gathers. The proposed stationary-phase PSTM could effectively handle the problem of low SNR in migrated images, especially in the presence of steeply dipping structures. We test the method by applying stationary-phase PSTM to an overthrust model example and a three-dimensional field data set, and both examples demonstrate that the resulting images are of good quality with the method.

  10. -Stacking interactions between G-quartets and circulenes: A computational study

    Indian Academy of Sciences (India)

    A K Jissy; J H V Ramana; Ayan Datta


    Structures of planar and bowl-shaped circulenes as well as their stacks with G-quartet (G4) have been investigated through dispersion-corrected Density Functional Theory (DFT-D). The binding energies are substantial ∼10 kcal/mol with d ∼3.5 Å between the stacking rings. The calculations show that G4 binds much more effectively to planar circulenes as compared to bowl shaped molecules. The strength of binding between a G-quartet and a non-planar circulene molecule depends on the orientation of the circulene (concave or convex) with respect to G-quartet. An AIM analysis of the M05-2X wave-functions has also been performed to confirm the presence of weak intermolecular interactions between guanine quartets and circulenes. Apart from -stacking interactions, the concave bowl-shaped circulenes also interact with G4 through C-H $\\cdots$ interactions. The charge transport properties between the two moieties have also been analysed through effective transport integral. The calculations provide an understanding for the basis of molecular recognition by G4 for non-planar systems.

  11. Parsing of the free energy of aromatic-aromatic stacking interactions in solution

    Energy Technology Data Exchange (ETDEWEB)

    Kostjukov, Viktor V.; Khomytova, Nina M. [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine); Hernandez Santiago, Adrian A.; Tavera, Anna-Maria Cervantes; Alvarado, Julieta Salas [Faculty of Chemical Sciences, Autonomous University of Puebla, Puebla (Mexico); Evstigneev, Maxim P., E-mail: [Department of Physics, Sevastopol National Technical University, Sevastopol 99053, Crimea (Ukraine)


    Graphical abstract: Highlights: > A protocol for decomposition of the free energy of aromatic stacking is developed. > The factors stabilizing/destabilizing stacking of aromatic molecules are defined. > Hydrophobic contribution is found to be dominant. - Abstract: We report an analysis of the energetics of aromatic-aromatic stacking interactions for 39 non-covalent reactions of self- and hetero-association of 12 aromatic molecules with different structures and charge states. A protocol for computation of the contributions to the total energy from various energetic terms has been developed and the results are consistent with experiment in 92% of all the systems studied. It is found that the contributions from hydrogen bonds and entropic factors are always unfavorable, whereas contributions from van-der-Waals, electrostatic and/or hydrophobic effects may lead to stabilizing or destabilizing factors depending on the system studied. The analysis carried out in this work provides an answer to the questions 'What forces stabilize/destabilize the stacking of aromatic molecules in aqueous-salt solution and what are their relative importance?'

  12. Preparation, Crystal Structure and Enthalpy Change of Formation of the Reaction in Liquid Phase of a New Three-Dimensional Mixed-Ligand Holmium(Ⅲ) Coordination Polymer Based on Strong π-π Stacking Interactions

    Institute of Scientific and Technical Information of China (English)

    REN,Yi-Xia; CHEN,San-Ping; GAO,Sheng-Li


    A new three-dimensional coordination polymer, [Ho(5-nip)(phen)(NO3)(DMF)] (5-nip=5-nitroisophthalic acid and phen=1,10-phenanthroline), was prepared and characterized by single crystal X-ray diffraction, elemental analysis, IR spectrum and DTG-DSC techniques. The results show that the title complex crystallizes in space group P2/m with a= 1.0906(3) nm, b=1.2804 (3) nm, c= 1.6987(4) nm,β=91.400(5)°, Z=4, Dc= 1.931 Mg/m3, F(000)=1352. Each Ho(Ⅲ) ion is nine-coordinated by one chelating bidentate and two monodentate bridging carboxylate groups, one chelating bidentate NO3- anion, one DMF molecule and one 1,10-phenanthroline molecule. The complex is constructed with one-dimensional ribbons featuring dinuclear units and the one-dimensional ribbons are further assembled into two-dimensional networks by strong π-π stacking interactions with the distance of 0.327 nm,then the networks are arranged into three-dimensional structure according to ABAB fashion. The complex exhibits high stability up to 600 ℃. Its enthalpy change of formation of the reaction in liquid-phase in solvent DMF was measured using an RD496-Ⅲ type microcalorimeter with a value of (-11.016±0.184) kJ·mol-1.

  13. Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands. (United States)

    Sedova, Ada; Banavali, Nilesh K


    Structural variation in base stacking has been analyzed frequently in isolated double helical contexts for nucleic acids, but not as often in nonhelical geometries or in complex biomolecular environments. In this study, conformations of two neighboring bases near their stacked state in any environment are comprehensively characterized for single-strand dinucleotide (SSD) nucleic acid crystal structure conformations. An ensemble clustering method is used to identify a reduced set of representative stacking geometries based on pairwise distances between select atoms in consecutive bases, with multiple separable conformational clusters obtained for categories divided by nucleic acid type (DNA/RNA), SSD sequence, stacking face orientation, and the presence or absence of a protein environment. For both DNA and RNA, SSD conformations are observed that are either close to the A-form, or close to the B-form, or intermediate between the two forms, or further away from either form, illustrating the local structural heterogeneity near the stacked state. Among this large variety of distinct conformations, several common stacking patterns are observed between DNA and RNA, and between nucleic acids in isolation or in complex with proteins, suggesting that these might be stable stacking orientations. Noncanonical face/face orientations of the two bases are also observed for neighboring bases in the same strand, but their frequency is much lower, with multiple SSD sequences across categories showing no occurrences of such unusual stacked conformations. The resulting reduced set of stacking geometries is directly useful for stacking-energy comparisons between empirical force fields, prediction of plausible localized variations in single-strand structures near their canonical states, and identification of analogous stacking patterns in newly solved nucleic acid containing structures.

  14. Interlayer-interaction dependence of latent heat in the Heisenberg model on a stacked triangular lattice with competing interactions. (United States)

    Tamura, Ryo; Tanaka, Shu


    We study the phase transition behavior of a frustrated Heisenberg model on a stacked triangular lattice by Monte Carlo simulations. The model has three types of interactions: the ferromagnetic nearest-neighbor interaction J(1) and antiferromagnetic third nearest-neighbor interaction J(3) in each triangular layer and the ferromagnetic interlayer interaction J([perpendicular]). Frustration comes from the intralayer interactions J(1) and J(3). We focus on the case that the order parameter space is SO(3)×C(3). We find that the model exhibits a first-order phase transition with breaking of the SO(3) and C(3) symmetries at finite temperature. We also discover that the transition temperature increases but the latent heat decreases as J([perpendicular])/J(1) increases, which is opposite to the behavior observed in typical unfrustrated three-dimensional systems.

  15. ZPEG: a hybrid DPCM-DCT based approach for compression of Z-stack images. (United States)

    Khire, Sourabh; Cooper, Lee; Park, Yuna; Carter, Alexis; Jayant, Nikil; Saltz, Joel


    Modern imaging technology permits obtaining images at varying depths along the thickness, or the Z-axis of the sample being imaged. A stack of multiple such images is called a Z-stack image. The focus capability offered by Z-stack images is critical for many digital pathology applications. A single Z-stack image may result in several hundred gigabytes of data, and needs to be compressed for archival and distribution purposes. Currently, the existing methods for compression of Z-stack images such as JPEG and JPEG 2000 compress each focal plane independently, and do not take advantage of the Z-signal redundancy. It is possible to achieve additional compression efficiency over the existing methods, by exploiting the high Z-signal correlation during image compression. In this paper, we propose a novel algorithm for compression of Z-stack images, which we term as ZPEG. ZPEG extends the popular discrete-cosine transform (DCT) based image encoder to compress Z-stack images. This is achieved by decorrelating the neighboring layers of the Z-stack image using differential pulse-code modulation (DPCM). PSNR measurements, as well as subjective evaluations by experts indicate that ZPEG can encode Z-stack images at a higher quality as compared to JPEG, JPEG 2000 and JP3D at compression ratios below 50∶1.

  16. Self-energy and interaction energy of stacking fault in fcc metals calculated by embedded-atom method

    Institute of Scientific and Technical Information of China (English)

    何刚; 戎咏华; 徐祖耀


    The stacking fault energies of five fcc metals (Cu, Ag, Au, Ni and Al) with various quan-tivalences have been calculated by embedded-atom method (EAM). It indicated that the stacking fault energy is mainly determined by the metallic bond-energy and the lattice constant. Thus, monovalent fcc metals should have different stacking fault energies, contrary to Attree’s conclusion. The interaction energy between stacking faults one I 111 I layer apart in a fcc metal is found to be 1/40-1/250 of its self-energy, while it becomes zero when the two stacking faults are two layers apart. The twin energy is just half of the energy of intrinsic stacking fault energy without the consideration of lattice relaxation and the energy of a single intrinsic stacking fault is almost the same as that of extrinsic stacking fault, which are consistent with the results from the calculation of Lennard-Jones force between atoms, but differ from Attree’s result.

  17. Studies of the Intramolecular Aromatic-ring Stacking Interactions in the Ternary Platinum(Ⅱ) Complexes

    Institute of Scientific and Technical Information of China (English)

    SUN Hong-liang


    The stability constants of some ternary mixed-ligand complexes, Pt(Phen)(CA)+, where Phen=1,10-phenanthroline and CA- =carboxylate, were determined by means of potentiometric pH titration in aqueous solutions(I=0.1 mol/L, KNO3; 25 ℃), and the stability of them was compared with that of the corresponding binary complexes. It was revealed that the ternary complexes containing phenylalkane carboxylates ligands(PCA-) are much more stable than those formed with formate and acetate. The results indicate that there exist the intramolecular aromatic-ring interactions between the phenanthroline ring of Phen and the phenyl moiety of ligand PCA- in the ternary mixed-ligand Pt(Phen)(PCA)- complexes. The extent of the stacking interactions, which depends on the number of methylene groups between the phenyl moieties and the coordinated phenylalkane carboxylate groups, was calculated. The best-fitted stack was obtained for the complexes with 2-phenylacetate and 3-phenylpropionate as the ligands.

  18. Theoretical Studies on the Hydrogen-bonding and π-Stacking Interactions in the m-Nisoldipine Polymorphism Dimers%Theoretical Studies on the Hydrogen-bonding and π-Stacking Interactions in the m-Nisoldipine Polymorphism Dimers

    Institute of Scientific and Technical Information of China (English)

    Zhu, Min; Meng, Lingpeng; Zheng, Shijun; Wang, Jing; Zeng, Yanli


    The intermolecular interactions in the dimers of m-nisoldipine polymorphism were studied by B3LYP calculations and quantum theory of "atoms in molecules" (QTAIM) studies. Four geometries of dimers were obtained: dimer I (a:dimer, O…H--N), dimer II (b-dimer, O…H--N), dimer III (b-dimer, n-stacking-c), and dimer IV (b-dimer, n-stacking-p). The interaction energies of the four dimers are along the sequence of II〉I〉III〉IV. The intermolecular distance of the interactions follows the order: I (O…H--N)〈II (O…H--N), and III (n-stacking)〈 IV (n-stacking). Both the O…H--N hydrogen-bonding and n-stacking interactions belong to weak non-covalent interactions. The O…H--N hydrogen-bonding interactions with more electrostatic characters are stronger than the n-stacking interactions. The strength of the weak interactions decreases in the order: I〉II〉III〉IV, and the electrostatic character decreases along the sequence: I〉II〉III〉IV.

  19. Field effect in graphene-based van der Waals heterostructures: Stacking sequence matters. (United States)

    Stradi, Daniele; Papior, Nick; Hansen, Ole; Brandbyge, Mads


    Stacked van der Waals (vdW) heterostructures where semi-conducting two-dimensional (2D) materials are contacted by overlayed graphene electrodes enable atomically-thin, flexible electronics. We use first-principles quantum transport simulations of graphene- contacted MoS2 devices to show how the transistor effect critically depends on the stacking configuration relative to the gate electrode. We can trace this behavior to the stacking-dependent response of the contact region to the capacitive electric field induced by the gate. The contact resistance is a central parameter and our observation establishes an important design rule for ultra-thin devices based on 2D atomic crystals.

  20. Analysis and Experiment of MEMS Based Microdroplet Ejector by a Piezoelectric Stack Actuator in Microfluidic Application

    Directory of Open Access Journals (Sweden)

    K. Ganesan


    Full Text Available Micro Electro Mechanical Systems (MEMS are uncovered to an assortment of liquid environments in applications such as chemical and biological sensors and micro fluidic devices. Green interactions between liquids and micro scale structures can lead to volatile performance of MEMS in liquid environments. In this study, the design and fabrication of a multi-material high-performance micro pump is presented. The micro pumps are fabricated using MEMS fabrication techniques, comprised of silicon and Pyrex micromachining and bonding. Manufacturing steps such as three small bulk cylindrical piezoelectric material elements that are integrated with micro-fabricated Silicon-on-Insulator (SOI and glass micro machined substrates using eutectic bonding and anodic bonding processes were successfully realized and provide a robust and scalable production technique for the micro pump. Exceptional flow rates of 0.1 mL/min with 1 W power consumption based on piezoelectric stack actuation achieved by appropriate design optimization.

  1. Sequence-dependent elasticity and electrostatics of single-stranded DNA: signatures of base-stacking. (United States)

    McIntosh, Dustin B; Duggan, Gina; Gouil, Quentin; Saleh, Omar A


    Base-stacking is a key factor in the energetics that determines nucleic acid structure. We measure the tensile response of single-stranded DNA as a function of sequence and monovalent salt concentration to examine the effects of base-stacking on the mechanical and thermodynamic properties of single-stranded DNA. By comparing the elastic response of highly stacked poly(dA) and that of a polypyrimidine sequence with minimal stacking, we find that base-stacking in poly(dA) significantly enhances the polymer's rigidity. The unstacking transition of poly(dA) at high force reveals that the intrinsic electrostatic tension on the molecule varies significantly more weakly on salt concentration than mean-field predictions. Further, we provide a model-independent estimate of the free energy difference between stacked poly(dA) and unstacked polypyrimidine, finding it to be ∼-0.25 kBT/base and nearly constant over three orders of magnitude in salt concentration.

  2. Iris Matching Based On a Stack Like Structure Graph Approach

    Directory of Open Access Journals (Sweden)

    Roushdi Mohamed FAROUK


    Full Text Available In this paper, we present the elastic bunch graph matching as a new approach for iris recognition. The task is difficult because of iris variation in terms of position, size, and partial occlusion. We have used the circular Hough transform to determine the iris boundaries. Individual segmented irises are represented as labeled graphs. We have combined a representative set of individual model graphs into a stack like structure called an iris bunch graph (IBG. Finally, a bunch graph similarity function is proposed to compare a test graph with the IBG. Recognition results are given for galleries of irises from CASIA version and UBIRIS databases. The numerical results show that, the elastic bunch graph matching is an effective technique for iris matching. We also compare our results with previous results and find that, the elastic bunch graph matching is an effective matching performance.

  3. Pre-stack-texture-based reservoir characteristics and seismic facies analysis

    Institute of Scientific and Technical Information of China (English)

    Song Cheng-Yun; Liu Zhi-Ning; Cai Han-Peng; Qian Feng; Hu Guang-Min


    Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation. However, information is mislaid in the stacking process when traditional texture attributes are extracted from post-stack data, which is detrimental to complex reservoir description. In this study, pre-stack texture attributes are introduced, these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset, anisotropy, and heterogeneity in the medium. Due to its strong ability to represent stratigraphics, a pre-stack-data-based seismic facies analysis method is proposed using the self-organizing map algorithm. This method is tested on wide azimuth seismic data from China, and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verifi ed, in addition to the method’s ability to reveal anisotropy and heterogeneity characteristics. The pre-stack texture classification results effectively distinguish different seismic reflection patterns, thereby providing reliable evidence for use in seismic facies analysis.

  4. Analyses of Large Coal-Based SOFCs for High Power Stack Block Development

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P; Koeppel, Brian J


    This report summarizes the numerical modeling and analytical efforts for SOFC stack development performed for the coal-based SOFC program. The stack modeling activities began in 2004, but this report focuses on the most relevant results obtained since August 2008. This includes the latter half of Phase-I and all of Phase-II activities under technical guidance of VPS and FCE. The models developed to predict the thermal-flow-electrochemical behaviors and thermal-mechanical responses of generic planar stacks and towers are described. The effects of cell geometry, fuel gas composition, on-cell reforming, operating conditions, cell performance, seal leak, voltage degradation, boundary conditions, and stack height are studied. The modeling activities to evaluate and achieve technical targets for large stack blocks are described, and results from the latest thermal-fluid-electrochemical and structural models are summarized. Modeling results for stack modifications such as scale-up and component thickness reduction to realize cost reduction are presented. Supporting modeling activities in the areas of cell fabrication and loss of contact are also described.

  5. A stacked sequential learning method for investigator name recognition from web-based medical articles (United States)

    Zhang, Xiaoli; Zou, Jie; Le, Daniel X.; Thoma, George


    "Investigator Names" is a newly required field in MEDLINE citations. It consists of personal names listed as members of corporate organizations in an article. Extracting investigator names automatically is necessary because of the increasing volume of articles reporting collaborative biomedical research in which a large number of investigators participate. In this paper, we present an SVM-based stacked sequential learning method in a novel application - recognizing named entities such as the first and last names of investigators from online medical journal articles. Stacked sequential learning is a meta-learning algorithm which can boost any base learner. It exploits contextual information by adding the predicted labels of the surrounding tokens as features. We apply this method to tag words in text paragraphs containing investigator names, and demonstrate that stacked sequential learning improves the performance of a nonsequential base learner such as an SVM classifier.

  6. Stacked and H-Bonded Cytosine Dimers. Analysis of the Intermolecular Interaction Energies by Parallel Quantum Chemistry and Polarizable Molecular Mechanics. (United States)

    Gresh, Nohad; Sponer, Judit E; Devereux, Mike; Gkionis, Konstantinos; de Courcy, Benoit; Piquemal, Jean-Philip; Sponer, Jiri


    Until now, atomistic simulations of DNA and RNA and their complexes have been executed using well calibrated but conceptually simple pair-additive empirical potentials (force fields). Although such simulations provided many valuable results, it is well established that simple force fields also introduce errors into the description, underlying the need for development of alternative anisotropic, polarizable molecular mechanics (APMM) potentials. One of the most abundant forces in all kinds of nucleic acids topologies is base stacking. Intra- and interstrand stacking is assumed to be the most essential factor affecting local conformational variations of B-DNA. However, stacking also contributes to formation of all kinds of noncanonical nucleic acids structures, such as quadruplexes or folded RNAs. The present study focuses on 14 stacked cytosine (Cyt) dimers and the doubly H-bonded dimer. We evaluate the extent to which an APMM procedure, SIBFA, could account quantitatively for the results of high-level quantum chemistry (QC) on the total interaction energies, and the individual energy contributions and their nonisotropic behaviors. Good agreements are found at both uncorrelated HF and correlated DFT and CCSD(T) levels. Resorting in SIBFA to distributed QC multipoles and to an explicit representation of the lone pairs is essential to respectively account for the anisotropies of the Coulomb and of the exchange-repulsion QC contributions.

  7. Analysis of a Lorentz force based vibration exciter using permanent magnets mounted on a piezoelectric stack

    Indian Academy of Sciences (India)

    Arghya Nandi; Sumanta Neogy; Sankha Bhaduri


    This work presents performance analysis of a Lorentz force based noncontact vibration exciter by mounting a couple of permanent magnets on a piezoelectric stack. A conductor is attached to the structure to be excited and is placed midway between unlike poles of a couple of permanent magnets. The permanent magnets are placed on a piezoelectric stack. This stack, because of its nano-positioning capabilities, can impart an accurate and adjustable harmonic vibratory motion to the couple of permanent magnets. The piezoelectric stack, because of its high stiffness remains uncoupled with the dynamics of the structure. Due to the relative motion between the magnets and the conductor, Lorentz force is generated within the conductor. This Lorentz force is responsible for vibration of the structure in a plane parallel to the pole faces of the magnets. This keeps the magnetic field almost independent of the vibration of the structure and the chance of the structure hitting the magnet during large vibration is totally eliminated. If the amplitude of displacement of the stack is kept constant, the non-contact excitation force in this exciter remains proportional to the excitation frequency. Though use of this exciter eliminates mass (apart from that of the conductor attached to the structure) and stiffness coupling, a known damping term gets added to that of the excited structure.

  8. Exploration of CH···π mediated stacking interactions in saccharide: aromatic residue complexes through conformational sampling. (United States)

    Kumari, Manju; Sunoj, Raghavan B; Balaji, Petety V


    Saccharides interact with aromatic residues mostly through CH···π mediated stacking interactions. The energetics of such interactions depends upon the mutual position-orientations (POs) of the two moieties. The POs found in the crystal structures are only a subset of the various possible ways of interaction. Hence, potential energy surfaces of saccharide-aromatic residue complexes have been explored by mixed Monte Carlo multiple minimum/low mode sampling. The saccharides considered in this study are α/β-D-glucose, β-D-galactose, α-D-mannose, and α/β-L-fucose. p-Hydroxytoluene, toluene, and 3-methylindole were used as analogs of tyrosine, phenylalanine, and tryptophan, respectively. The saccharides interact from either above or below the π-cloud of an aromatic ring but not along the edges. The POs preferred by different saccharides, both in the preferred chair and skew-boat forms, for interacting with different aromatic amino acid residue analogs have been identified. Aromatic residues can interact with the same -CH group in many POs but not so with the -OH groups. Changes in the configurations of pyranose ring carbon atoms cause remarkable changes in stacking preferences. β-D-Galactose and β-L-fructose interact only through their b- and a-faces, respectively. Saccharides use a wide variety of apolar patches for stacking against aromatic residues and these have been analyzed in detail. As many as four -CH groups can simultaneously participate in CH···π interactions, especially with 3-methylindole owing to its larger surface area.

  9. A 10B-based neutron detector with stacked Multiwire Proportional Counters and macrostructured cathodes

    CERN Document Server

    Stefanescu, I; Birch, J; Defendi, I; Hall-Wilton, R; Hoglund, C; Hultman, L; Zee, M; Zeitelhack, K


    We present the results of the measurements of the detection efficiency for a 4.7 \\r{A} neutron beam incident upon a detector incorporating a stack of up to five MultiWire Proportional Counters (MWPC) with Boron-coated cathodes. The cathodes were made of Aluminum and had a surface exhibiting millimeter-deep V-shaped grooves of 45{\\deg}, upon which the thin Boron film was deposited by DC magnetron sputtering. The incident neutrons interacting with the converter layer deposited on the sidewalls of the grooves have a higher capture probability, owing to the larger effective absorption film thickness. This leads to a higher overall detection efficiency for the grooved cathode when compared to a cathode with a flat surface. Both the experimental results and the predictions of the GEANT4 model suggests that a 5-counter detector stack with coated grooved cathodes has the same efficiency as a 7-counter stack with flat cathodes. The reduction in the number of counters in the stack without altering the detection efficie...

  10. Can the hybrid meta GGA and DFT-D methods describe the stacking interactions in conjugated polymers? (United States)

    Dkhissi, Ahmed; Ducéré, Jean Marie; Blossey, Ralf; Pouchan, Claude


    Newly developed hybrid meta density functionals and density functionals augmented by a classical London dispersion term have been systematically applied for the description of stacking energy and intermolecular distance of thiophene dimer and substituted thiophene dimer. The performance of the various approaches is compared with the benchmark ab-initio calculations done with CCSD(T) (Tsuzuki et al., JACS 2002, 124, 12200). Our results indicate that, contrary to the previous DFT methods which are not reliable, the new generation of DFT performs better the stacking interactions. These functionals, and especially those with an empirical correction, are suitable for general application in conducting polymers and, in particular, the modeling of solid state in which the overlap of Pi-Pi interactions between the conjugated chains is important.

  11. Generalized Mulliken-Hush analysis of electronic coupling interactions in compressed pi-stacked porphyrin-bridge-quinone systems. (United States)

    Zheng, Jieru; Kang, Youn K; Therien, Michael J; Beratan, David N


    Donor-acceptor interactions were investigated in a series of unusually rigid, cofacially compressed pi-stacked porphyrin-bridge-quinone systems. The two-state generalized Mulliken-Hush (GMH) approach was used to compute the coupling matrix elements. The theoretical coupling values evaluated with the GMH method were obtained from configuration interaction calculations using the INDO/S method. The results of this analysis are consistent with the comparatively soft distance dependences observed for both the charge separation and charge recombination reactions. Theoretical studies of model structures indicate that the phenyl units dominate the mediation of the donor-acceptor coupling and that the relatively weak exponential decay of rate with distance arises from the compression of this pi-electron stack.

  12. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres


    Amal M. Al-Amri; Po-Han Fu; Kun-Yu Lai; Hsin-Ping Wang; Lain-Jong Li; Jr-Hau He


    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The ex...

  13. Operational logs analysis at ALMA observatory based on ELK stack (United States)

    Gil, Juan P.; Reveco, Johnny; Shen, Tzu-Chiang


    During operations, the ALMA observatory generates a huge amount of logs which contain not only valuable information related to specific failures but also for long term performance analysis. We implemented a big data solution based on Elasticsearch, Logstash and Kibana. They are configured as decoupled system which causes zero impact on the existent operations. It is able to keep more than six months of operation logs online. In this paper, we'll describe this infrastructure, applications built on top of it, and the problems that we faced during its implementation.

  14. Prognostics of Proton Exchange Membrane Fuel Cells stack using an ensemble of constraints based connectionist networks (United States)

    Javed, Kamran; Gouriveau, Rafael; Zerhouni, Noureddine; Hissel, Daniel


    Proton Exchange Membrane Fuel Cell (PEMFC) is considered the most versatile among available fuel cell technologies, which qualify for diverse applications. However, the large-scale industrial deployment of PEMFCs is limited due to their short life span and high exploitation costs. Therefore, ensuring fuel cell service for a long duration is of vital importance, which has led to Prognostics and Health Management of fuel cells. More precisely, prognostics of PEMFC is major area of focus nowadays, which aims at identifying degradation of PEMFC stack at early stages and estimating its Remaining Useful Life (RUL) for life cycle management. This paper presents a data-driven approach for prognostics of PEMFC stack using an ensemble of constraint based Summation Wavelet- Extreme Learning Machine (SW-ELM) models. This development aim at improving the robustness and applicability of prognostics of PEMFC for an online application, with limited learning data. The proposed approach is applied to real data from two different PEMFC stacks and compared with ensembles of well known connectionist algorithms. The results comparison on long-term prognostics of both PEMFC stacks validates our proposition.

  15. B3LYP, BLYP and PBE DFT band structures of the nucleotide base stacks (United States)

    Szekeres, Zs; Bogár, F.; Ladik, J.

    DFT crystal orbital (band structure) calculations have been performed for the nucleotide base stacks of cytosine, thymine, adenine, and guanine arranged in DNA B geometry. The band structures obtained with PBE, BLYP, and B3LYP functionals are presented and compared to other related experimental and theoretical results. The influence of the quality of the basis set on the fundamental gap values was also investigated using Clementi's double ζ, 6-31G and 6-31G* basis sets.

  16. Hydrogen bonds vs. $\\pi$-stacking interactions in the p-aminophenol...p-cresol dimer: an experimental and theoretical study

    CERN Document Server

    Capello, Carolina; Broquier, Michel; Dedonder-Lardeux, Claude; Jouvet, Christophe; Pino, Gustavo


    The gas phase structure and excited state lifetime of the p-aminophenol...p-cresol heterodimer have been investigated by REMPI and LIF spectroscopy with nanosecond laser pulses and pump-probe experiments with picosecond laser pulses as a model system to study the competition between p-p and H-bonding interactions in aromatic dimers. The excitation is a broad and unstructured band. The excitedstate of the heterodimer is long lived (2.5 +/- 0.5) ns with a very broad fluorescence spectrum red-shifted by 4000 cm^{-1} with respect to the excitation spectrum. Calculations at the MP2/RI-CC2 and DFT-oB97X-D levels indicate that hydrogen-bonded (HB) and p-stacked isomers are almost isoenergetic in the ground state while in the excited state only the p-stacked isomer exists. This suggests that the HB isomer cannot be excited due to negligible Franck-Condon factors and therefore the excitation spectrum is associated with the p-stacked isomer that reaches vibrationally excited states in the S1 state upon vertical excitat...

  17. Acupuncture injection for field amplified sample stacking and glass microchip-based capillary gel electrophoresis. (United States)

    Ha, Ji Won; Hahn, Jong Hoon


    Acupuncture sample injection is a simple method to deliver well-defined nanoliter-scale sample plugs in PDMS microfluidic channels. This acupuncture injection method in microchip CE has several advantages, including minimization of sample consumption, the capability of serial injections of different sample solutions into the same microchannel, and the capability of injecting sample plugs into any desired position of a microchannel. Herein, we demonstrate that the simple and cost-effective acupuncture sample injection method can be used for PDMS microchip-based field amplified sample stacking in the most simplified straight channel by applying a single potential. We achieved the increase in electropherogram signals for the case of sample stacking. Furthermore, we present that microchip CGE of ΦX174 DNA-HaeⅢ digest can be performed with the acupuncture injection method on a glass microchip while minimizing sample loss and voltage control hardware.

  18. Development of an automatic subsea blowout preventer stack control system using PLC based SCADA. (United States)

    Cai, Baoping; Liu, Yonghong; Liu, Zengkai; Wang, Fei; Tian, Xiaojie; Zhang, Yanzhen


    An extremely reliable remote control system for subsea blowout preventer stack is developed based on the off-the-shelf triple modular redundancy system. To meet a high reliability requirement, various redundancy techniques such as controller redundancy, bus redundancy and network redundancy are used to design the system hardware architecture. The control logic, human-machine interface graphical design and redundant databases are developed by using the off-the-shelf software. A series of experiments were performed in laboratory to test the subsea blowout preventer stack control system. The results showed that the tested subsea blowout preventer functions could be executed successfully. For the faults of programmable logic controllers, discrete input groups and analog input groups, the control system could give correct alarms in the human-machine interface.

  19. Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chun-Hua; Zhu, Xin-Jian; Cao, Guang-Yi; Sui, Sheng; Hu, Ming-Ruo [Fuel Cell Research Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)


    This paper reports a Hammerstein modeling study of a proton exchange membrane fuel cell (PEMFC) stack using least squares support vector machines (LS-SVM). PEMFC is a complex nonlinear, multi-input and multi-output (MIMO) system that is hard to model by traditional methodologies. Due to the generalization performance of LS-SVM being independent of the dimensionality of the input data and the particularly simple structure of the Hammerstein model, a MIMO SVM-ARX (linear autoregression model with exogenous input) Hammerstein model is used to represent the PEMFC stack in this paper. The linear model parameters and the static nonlinearity can be obtained simultaneously by solving a set of linear equations followed by the singular value decomposition (SVD). The simulation tests demonstrate the obtained SVM-ARX Hammerstein model can efficiently approximate the dynamic behavior of a PEMFC stack. Furthermore, based on the proposed SVM-ARX Hammerstein model, valid control strategy studies such as predictive control, robust control can be developed. (author)

  20. Research on Micro-Flow Self-Sensing Actuators Based on Piezoelectric Ceramic Stack

    Institute of Scientific and Technical Information of China (English)

    Yan-Bo Wei; Li-Ping Shi; Xi-Wen Wei; Jie Huang


    The paper is concerned with the micro-flow self-sensing actuators, the work of which is based on the secondary piezoelectric effect. The piezoelectric ceramic stack can yield micro-displacement due to its first inverse piezoelectric effect. Therefore, we apply this micro-displacement to cell micro-flow injection. Moreover, due to the charge of the secondary direct piezoelectric effect, the piezoelectric ceramic stack is able to detect the force and displacement in the injection by itself. The experiments of first inverse piezoelectric effect and secondary direct piezoelectric effect are conducted. The experiment results show that, subjected to 0-60 V input, the piezoelectric ceramic stack can generate 13�45 μm displacement, and control accuracy can achieve 2 nm. It can completely meet the needs of cell micro-flow injection. Also, the experiments demonstrate that the micro-displacement due to the first inverse piezoelectric effect can be well self-sensed by the electric charge due to the secondary direct piezoelectric effect.

  1. Implementation of Embedded Ethernet Based on Hardware Protocol Stack in Substation Automation System

    Institute of Scientific and Technical Information of China (English)

    MA Qiang; ZHAO Jianguo; LIU Bingxu


    Embedded Ethernet technology has been utilized increasingly widely as the communication mode in the substation automation system (SAS). This paper introduces the current applying situation about embedded Ethernet in SAS First. After analyzing the protocol levels used in SAS based on embedded Ethernet and the differences between the TCP and UDP, UDP/IP is selected as the communication protocol between the station-level and bay-level devices for its real-time characteristic. Then a new kind of implementation of the embedded Ethernet is presented based on hardware protocol stack. The designed scheme can be implemented easily, reduce cost significantly and shorten developing cycle.

  2. High performance WR-1.5 corrugated horn based on stacked rings

    CERN Document Server

    Maffei, Bruno; de Rijk, Emile; Ansermet, Jean-Philippe; Pisano, Giampaolo; Legg, Stephen; Macor, Alessandro


    We present the development and characterisation of a high frequency (500-750 GHz) corrugated horn based on stacked rings. A previous horn design, based on a Winston profile, has been adapted for the purpose of this manufacturing process without noticeable RF degradation. A subset of experimental results obtained using a vector network analyser are presented and compared to the predicted performance. These first results demonstrate that this technology is suitable for most commercial applications and also astronomical receivers in need of horn arrays at high frequencies.

  3. Synthetic gauge field and pseudospin-orbit interaction in a stacked two-dimensional ring network lattice

    CERN Document Server

    Ochiai, Tetsuyuki


    Synthetic gauge field and pseudospin-orbit interaction are implemented in the stacked two-dimensional ring network model proposed by the present author. The model was introduced to simulate light propagation in the corresponding ring-resonator network, and is thus completely bosonic. Without these two items, the system exhibits Floquet-Weyl and Floquet-topological-insulator phases with topologically gapless and gapped band structures, respectively. The synthetic magnetic field implemented in the model results in a three-dimensional Hofstadter-butterfly-type spectrum in a photonic platform. The resulting gaps are characterization by the winding number of relevant S-matrices together with the Chern number of the bulk bands. The pseudospin-orbit interaction is defined as the mixing term between two pseudospin degrees of freedom in the rings, namely, the clockwise and counter-clockwise modes in the rings. It destroys the Floquet-topological-insulator phases, while the Floquet-Weyl phase with multiple Weyl points ...

  4. Vision-based interaction

    CERN Document Server

    Turk, Matthew


    In its early years, the field of computer vision was largely motivated by researchers seeking computational models of biological vision and solutions to practical problems in manufacturing, defense, and medicine. For the past two decades or so, there has been an increasing interest in computer vision as an input modality in the context of human-computer interaction. Such vision-based interaction can endow interactive systems with visual capabilities similar to those important to human-human interaction, in order to perceive non-verbal cues and incorporate this information in applications such

  5. Efficiency Enhancement of InGaN-Based Solar Cells via Stacking Layers of Light-Harvesting Nanospheres

    KAUST Repository

    Al-Amri, Amal M.


    An effective light-harvesting scheme for InGaN-based multiple quantum well solar cells is demonstrated using stacking layers of polystyrene nanospheres. Light-harvesting efficiencies on the solar cells covered with varied stacks of nanospheres are evaluated through numerical and experimental methods. The numerical simulation reveals that nanospheres with 3 stacking layers exhibit the most improved optical absorption and haze ratio as compared to those obtained by monolayer nanospheres. The experimental demonstration, agreeing with the theoretical analyses, shows that the application of 3-layer nanospheres improves the conversion efficiency of the solar cell by ~31%.

  6. A method to estimate emission rates from industrial stacks based on neural networks. (United States)

    Olcese, Luis E; Toselli, Beatriz M


    This paper presents a technique based on artificial neural networks (ANN) to estimate pollutant rates of emission from industrial stacks, on the basis of pollutant concentrations measured on the ground. The ANN is trained on data generated by the ISCST3 model, widely accepted for evaluation of dispersion of primary pollutants as a part of an environmental impact study. Simulations using theoretical values and comparison with field data are done, obtaining good results in both cases at predicting emission rates. The application of this technique would allow the local environment authority to control emissions from industrial plants without need of performing direct measurements inside the plant.

  7. A Compact Nanosecond-Pulse Shaping System Based on Pulse Stacking in Fibres

    Institute of Scientific and Technical Information of China (English)

    SUI Zhan; LIN Hong-Huan; WANG Jian-Jun; ZHAO Hong-Ming; LI Ming-Zhong; QIAN Lie-Jia; ZHU He-Yuan; FAN Dian-Yuan


    @@ We demonstrate a compact pulse shaping system based on temporal stacking of pulses in fibres, by which synchronized pulses of ultrashort and nanosecond lasers can be obtained. The system may generate shape-controllable pulses with a fast rise time and high-resolution within a time window of ~2.2 ns by adjusting variable optical attenuators in the 32 fibre channels independently. With the help of optical amplifiers, the system delivers mJ-level pulses with a signal-to-noise ratio of~35 dB.

  8. Layer-component-based communication stack framework for wireless residential control systems

    DEFF Research Database (Denmark)

    Torbensen, R.; Hjorth, Theis S.


    of nodes such as bridges, controllers, sensor/actuators – as well as secure communication between them. A special messaging system facilitates inter-component communication, and a Virtual Port Service protocol enables resource addressing. The end-devices in the heterogeneous network are made accessible...... shown how the framework facilitates fast prototyping and makes developing secure wireless control systems less complex.......This paper describes methods to lower the entry barrier for creating products that interoperate in the emerging heterogeneous residential control network domain. For designing reconfigurable, layer-component-based communication stacks, a flexible framework is proposed that supports several types...

  9. Layer-component-based communication stack framework for wireless residential control systems

    DEFF Research Database (Denmark)

    Torbensen, Rune Sonnich; Hjorth, Theis


    of nodes such as bridges, controllers, sensor/actuators - as well as secure communication between them. A special messaging system facilitates inter-component communication, and a Virtual Port Service protocol enables resource addressing. The end-devices in the heterogeneous network are made accessible...... shown how the framework facilitates fast prototyping and makes developing secure wireless control systems less complex. © 2010 IEEE.......This paper describes methods to lower the entry barrier for creating products that interoperate in the emerging heterogeneous residential control network domain. For designing reconfigurable, layer-component-based communication stacks, a flexible framework is proposed that supports several types...

  10. Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods.

    Directory of Open Access Journals (Sweden)

    Michaela Wimmerová

    Full Text Available Carbohydrate-receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate's apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate-protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL lectin complexes with α-L-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were -8.5, -7.1 and -4.1 kcal x mol(-1, respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values -8.8, -7.9 kcal x mol(-1, excluding the alanine mutant where the interaction energy was -0.9 kcal x mol(-1. Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-L-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction.

  11. Dynamic fuel cell stack model for real-time simulation based on system identification (United States)

    Meiler, M.; Schmid, O.; Schudy, M.; Hofer, E. P.

    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R&D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests.

  12. Dynamic fuel cell stack model for real-time simulation based on system identification

    Energy Technology Data Exchange (ETDEWEB)

    Meiler, M.; Schmid, O.; Schudy, M. [Department of MEA and Stack Technology, DaimlerChrysler AG, Neue Str. 95, D-73230 Kirchheim/Teck (Germany); Hofer, E.P. [Department of Measurement, Control and Microtechnology, University of Ulm, Albert-Einstein-Allee 41, D-89081 Ulm (Germany)


    The authors have been developing an empirical mathematical model to predict the dynamic behaviour of a polymer electrolyte membrane fuel cell (PEMFC) stack. Today there is a great number of models, describing steady-state behaviour of fuel cells by estimating the equilibrium voltage for a certain set of operating parameters, but models capable of predicting the transient process between two steady-state points are rare. However, in automotive applications round about 80% of operating situations are dynamic. To improve the reliability of fuel cell systems by model-based control for real-time simulation dynamic fuel cell stack model is needed. Physical motivated models, described by differential equations, usually are complex and need a lot of computing time. To meet the real-time capability the focus is set on empirical models. Fuel cells are highly nonlinear systems, so often used auto-regressive (AR), output-error (OE) or Box-Jenkins (BJ) models do not accomplish satisfying accuracy. Best results are achieved by splitting the behaviour into a nonlinear static and a linear dynamic subsystem, a so-called Uryson-Model. For system identification and model validation load steps with different amplitudes are applied to the fuel cell stack at various operation points and the voltage response is recorded. The presented model is implemented in MATLAB environment and has a computing time of less than 1 ms per step on a standard desktop computer with a 2.8 MHz CPU and 504 MB RAM. Lab tests are carried out at DaimlerChrysler R and D Centre with DaimlerChrysler PEMFC hardware and a good agreement is found between model simulations and lab tests. (author)

  13. Calibration of a radioactive ink-based stack phantom and its applications in nuclear medicine. (United States)

    El-Ali, H; Ljungberg, M; Strand, S-E; Palmer, J; Malmgren, L; Nilsson, J


    This paper describes a stack phantom useful for imaging complex activity distributions. It is based on images printed with radioactive ink using a commercial ink-jet printer. The application for the phantom is in the evaluation of planar and SPECT scintillation camera images and for validation of Monte Carlo simulated images. The accuracy in generating the activity distributions on paper sheets is especially important. Here we describe the calibration procedure for the ink-jet printer. The goal of the printer calibration is to find the relationship between the digital image count (voxel grey level) and its corresponding activity on the paper sheets (radioactivity). The relationship between the voxel grey level and the radioactivity on the paper sheets (measured by scanning technique and well counter) was found to be logarithmic, and a 3rd degree polynomial was found to fit the relationship. The distribution of radioactivity in the ink cartridge was investigated by pinhole SPECT. The distribution of (99m)Tc solution was found to be homogeneous in the ink solution. Experimental studies were done directly on Monte Carlo simulated heart images from the NCAT phantom. The result showed that the simulated images are similar to the images measured using the ink-jet technique. This stack phantom could be a promising solution with an advantage that the exact geometry generated in Monte Carlo could be imitated in the phantom. The phantom is a very flexible device and clearly much more versatile than conventional phantoms which have a fixed geometry and spatial limitation.

  14. Prediction of {sup 222} Rn exhalation rates from phosphogypsum based stacks. Part I: parametric mathematical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rabi, Jose A. [Pontificia Univ. Catolica de Minas Gerais, Pocos de Caldas, MG (Brazil). Faculdade de Engenharia Civil]. E-mail:; Mohamad, Abdulmajeed A. [The University of Calgary, Alberta (Canada). Faculty of Engineering. Dept. of Mechanical and Manufacturing Engineering]. E-mail:


    Radon-222 is a radionuclide exhaled from phosphogypsum by-produced at phosphate fertilizer industries. Alternative large-scale application of this waste may indicate a material substitute for civil engineering provided that environmental issues concerning its disposal and management are overcome. The first part of this paper outlines a steady-state two-dimensional model for {sup 222}Rn transport through porous media, inside which emanation (source term) and decay (sink term) exist. Boussinesq approach is evoked for the laminar buoyancy-driven interstitial air flow, which is also modeled according to Darcy-Brinkman formulation. In order to account for simultaneous effects of entailed physical parameters, governing equations are cast into dimensionless form. Apart from usual controlling parameters like Reynolds, Prandtl, Schmidt, Grashof and Darcy numbers, three unconventional dimensionless groups are put forward. Having in mind {sup 222}Rn transport in phosphogypsum-bearing porous media, the physical meaning of those newly introduced parameters and representative values for the involved physical parameters are presented. A limiting diffusion-dominated scenario is addressed, for which an analytical solution is deduced for boundary conditions including an impermeable phosphogypsum stack base and a non-zero fixed concentration activity at the stack top. Accordingly, an expression for the average Sherwood number corresponding to the normalized {sup 222}Rn exhalation rate is presented.

  15. Adaptive Stacked Generalization for Multiclass Motor Imagery-Based Brain Computer Interfaces. (United States)

    Nicolas-Alonso, Luis F; Corralejo, Rebeca; Gomez-Pilar, Javier; Álvarez, Daniel; Hornero, Roberto


    Practical motor imagery-based brain computer interface (MI-BCI) applications are limited by the difficult to decode brain signals in a reliable way. In this paper, we propose a processing framework to address non-stationarity, as well as handle spectral, temporal, and spatial characteristics associated with execution of motor tasks. Stacked generalization is used to exploit the power of classifier ensembles for combining information coming from multiple sources and reducing the existing uncertainty in EEG signals. The outputs of several regularized linear discriminant analysis (RLDA) models are combined to account for temporal, spatial, and spectral information. The resultant algorithm is called stacked RLDA (SRLDA). Additionally, an adaptive processing stage is introduced before classification to reduce the harmful effect of intersession non-stationarity. The benefits of the proposed method are evaluated on the BCI Competition IV dataset 2a. We demonstrate its effectiveness in binary and multiclass settings with four different motor imagery tasks: left-hand, right-hand, both feet, and tongue movements. The results show that adaptive SRLDA outperforms the winner of the competition and other approaches tested on this multiclass dataset.

  16. Theoretical study on effects of curvature of graphene in conjunction with simultaneous anion- and - stacking interactions

    Directory of Open Access Journals (Sweden)

    Pouya Karimi


    Full Text Available A graphene sheet (C102H30 has been rolled up by computational quantum chemistry methods to construct single-walled carbon nanotube fragments (SWCNTFs. The anion-π interactions of F- anion together with π-π stacking interactions of benzene on inner face and outer face of the central rings of SWCNTFs have been concurrently investigated. Structural parameters and energy data of the ternary benzene-SWCNTF-F- complexes were considered. Also, effects of charge transfer and aromaticity were estimated to determine how curvature of graphene influences on simultaneous anion-π and π-π stacking interactions.  Results indicate that curvature of graphene leads to structural changes in SWCNTFs which effects on simultaneous interactions of F- anion and benzene with SWCNTFs. Also, results show that although p-p stacking is a weak interaction, but it can impact on order of binding energies in complexes involved both p-p stacking and anion-p interactions

  17. Contemporary sample stacking in CE: a sophisticated tool based on simple principles. (United States)

    Malá, Zdena; Krivánková, Ludmila; Gebauer, Petr; Bocek, Petr


    Sample stacking is a general term for methods in CE which are used for on-line concentration of diluted analytes. During the stacking process, analytes present at low concentrations in a long injected sample zone are concentrated into a short zone (stack). The stacked analytes are then separated and individual zones are detected. Thus stacking provides better separation efficiency and detection sensitivity. Many papers have been published on stacking till now, various procedures have been described, and, many names have been proposed for stacking procedures utilizing the same principles. This contribution brings an easy and unified view on stacking, describes the basic principles utilized, makes a list of recognized operational principles and brings an overview of principal current procedures. Further, it surveys selected recent practical applications ordered according to their operational principles and includes the terms, nicknames, and acronyms used for these actual stacking procedures. This contribution may help both newcomers and experts in the field of CE to orient themselves in the already quite complex topic of sample stacking.

  18. Synthetic gauge field and pseudospin-orbit interaction in a stacked two-dimensional ring-network lattice (United States)

    Ochiai, Tetsuyuki


    We study the effects of a synthetic gauge field and pseudospin-orbit interaction in a stacked two-dimensional ring-network model. The model was introduced to simulate light propagation in the corresponding ring-resonator lattice, and is thus completely bosonic. Without these two items, the model exhibits Floquet-Weyl and Floquet-topological-insulator phases with topologically gapless and gapped band structures, respectively. The synthetic magnetic field implemented in the model results in a three-dimensional Hofstadter-butterfly-type spectrum in a photonic platform. The resulting gaps are characterized by the winding number of relevant S-matrices together with the Chern number of the bulk bands. The pseudospin-orbit interaction is defined as the mixing term between two pseudospin degrees of freedom in the rings, namely, the clockwise and counter-clockwise modes. It destroys the Floquet-topological-insulator phases, while the Floquet-Weyl phase with multiple Weyl points can be preserved by breaking the space-inversion symmetry. Implementing both the synthetic gauge field and pseudospin-orbit interaction requires a certain nonreciprocity.

  19. Effect of stacking faults on the magnetocrystalline anisotropy of hcp Co-based nanowires (United States)

    Kha, Tuan Mai; Schoenstein, Frédéric; Zighem, Fatih; Nowak, Sophie; Leridon, Brigitte; Jouini, Noureddine; Mercone, Silvana


    Replacing materials based on rare-earth elements in current permanent magnets is a real scientific, economic and environmental challenge. Ferromagnetic 3d transition metals seem an apt direction to go in this field, due to their high residual magnetization and thermal stability. In order to improve their coercive behavior, nanostructured magnets based on the assembly of high-aspect-ratio nanoparticles (i.e. cobalt based nanorods and nanowires) have recently been proposed. In these, the nanoparticle morphology itself drives the magnetization reversal mechanism. This purely geometrical effect seems to obscure the effects of structural defects, although it is clear that high magnetocrystalline energy is required to maintain a stable orientation of the magnetic moment inside the nanoparticles. We present here an experimental study whose aim is to distinguish the role of the stacking faults from the effects of shape and morphology on the magnetization reversal mechanism in cobalt-based nanowires. Coercive field results have been obtained on Co80Ni20 nanowires synthesized by a polyol process. Through accurate control of shape and morphology, it was possible to discard the effects of shape and thus to highlight the influence of crystal defects on the magnetism of Co80Ni20 nanowires. A micromagnetic study, consistent with the experimental analyses, is also presented. The results discussed in this work clearly show that even if the morphological characteristics are conducive to a high coercive field, the presence of numerous stacking faults has the opposite effect and leads to materials with a significantly lower coercive field than expected, which is not suitable for permanent magnet applications.

  20. Switchable adhesion for wafer-handling based on dielectric elastomer stack transducers (United States)

    Grotepaß, T.; Butz, J.; Förster-Zügel, F.; Schlaak, H. F.


    Vacuum grippers are often used for the handling of wafers and small devices. In order to evacuate the gripper, a gas flow is created that can harm the micro structures on the wafer. A promising alternative to vacuum grippers could be adhesive grippers with switchable adhesion. There have been some publications of gecko-inspired adhesive devices. Most of these former works consist of a structured surface which adheres to the object manipulated and an actuator for switching the adhesion. Until now different actuator principles have been investigated, like smart memory alloys and pneumatics. In this work for the first time dielectric elastomer stack transducers (DEST) are combined with a structured surface. DESTs are a promising new transducer technology with many applications in different industry sectors like medical devices, human-machine-interaction and soft robotics. Stacked dielectric elastomer transducers show thickness contraction originating from the electromechanical pressure of two compliant electrodes compressing an elastomeric dielectric when a voltage is applied. Since DESTs and the adhesive surfaces previously described are made of elastomers, it is self-evident to combine both systems in one device. The DESTs are fabricated by a spin coating process. If the flat surface of the spinning carrier is substituted for example by a perforated one, the structured elastomer surface and the DEST can be fabricated in one process. By electrical actuation the DEST contracts and laterally expands which causes the gecko-like cilia to adhere on the object to manipulate. This work describes the assembly and the experimental results of such a device using switchable adhesion. It is intended to be used for the handling of glass wafers.

  1. Mastering OpenStack

    CERN Document Server

    Khedher, Omar


    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  2. A novel polytype - the stacking fault based γ-MoO3 nanobelts. (United States)

    Sławiński, Wojciech A; Fjellvåg, Øystein S; Ruud, Amund; Fjellvåg, Helmer


    γ-MoO3 nanobelts prepared by hydrothermal synthesis were studied by synchrotron radiation powder diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. Their nm dimensions, in particular in two crystallographic directions, have a profound influence on electrochemical properties during cycling as the cathode material in lithium-ion batteries (LIBs). The diffraction analysis shows clearly that the crystal structure for the γ-MoO3 nanobelts differs significantly from that of bulk α-MoO3. The observed powder diffraction pattern, with asymmetric peaks, extremely broad peaks, as well as additional or absent diffraction peaks, is fully described by means of a model based on stacking disorder of MoO3 slabs.

  3. Bandwidth and Gain Enhancement of Patch Antenna with Stacked Parasitic Strips Based on LTCC Technology

    Directory of Open Access Journals (Sweden)

    Li Li


    Full Text Available A compact patch antenna with stacked parasitic strips (SPSs based on low temperature cofired ceramic (LTCC technology is presented. By adding three pairs of SPSs above the traditional patch antenna, multiple resonant modes are excited to broaden the bandwidth. At the same time, the SPSs act as directors to guide the antenna radiation toward broadside direction to enhance the gain. The measured results show that the prototype antenna achieves an impedance bandwidth of 16% for S11<-10 dB (32.1–37.9 GHz and a maximum gain of about 8 dBi at 35 GHz. Furthermore, the radiation patterns and gain are relatively stable within the operating bandwidth. The total volume of the antenna is only 8 × 8 × 1.1 mm3.

  4. Algebraic Stacks

    Indian Academy of Sciences (India)

    Tomás L Gómez


    This is an expository article on the theory of algebraic stacks. After introducing the general theory, we concentrate in the example of the moduli stack of vector bundles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory.

  5. Diffusion Monte Carlo applied to weak interactions - hydrogen bonding and aromatic stacking in (bio-)molecular model systems (United States)

    Fuchs, M.; Ireta, J.; Scheffler, M.; Filippi, C.


    Dispersion (Van der Waals) forces are important in many molecular phenomena such as self-assembly of molecular crystals or peptide folding. Calculating this nonlocal correlation effect requires accurate electronic structure methods. Usual density-functional theory with generalized gradient functionals (GGA-DFT) fails unless empirical corrections are added that still need extensive validation. Quantum chemical methods like MP2 and coupled cluster are more accurate, yet limited to rather small systems by their unfavorable computational scaling. Diffusion Monte Carlo (DMC) can provide accurate molecular total energies and remains feasible also for larger systems. Here we apply the fixed-node DMC method to (bio-)molecular model systems where dispersion forces are significant: (dimethyl-) formamide and benzene dimers, and adenine-thymine DNA base pairs. Our DMC binding energies agree well with data from coupled cluster (CCSD(T)), in particular for stacked geometries where GGA-DFT fails qualitatively and MP2 predicts too strong binding.

  6. Multitiered 2D pi-stacked conjugated polymers based on pseudo-geminal disubstituted [2.2]paracyclophane. (United States)

    Jagtap, Subodh P; Collard, David M


    Interchain interactions between pi-systems have a strong effect on the electronic structure of conjugated organic materials. This influence has previously been explored by the spectroscopic and electrochemical characterization of molecules in which pairs of conjugated oligomers are held in a stacked fashion by attachment to a rigid scaffold. We have prepared a new polymer which uses a pseudo-geminal disubstituted [2.2]paracyclophane scaffold to hold 1,4-bis(phenylethynyl)-2,5-dialkoxybenzene (PE(3)) chromophores in a pi-stacked fashion over their entire length and in an extended multitier arrangement. Solutions of this new polymer display a Stokes shift of 171 nm, compared to just ca. 30 nm for previous models in which only the terminal phenyl rings of the PE(3) chromophore are held in a stacked arrangement. This suggests that interchain interactions of pi-systems over their entire length in a multitier assembly provides for relaxation of the excited state to a stable "phane" electronic state which is responsible for emission. This stabilization is not available in the stacked dimer or other regioisomers of the polymer which possess lesser degrees of overlap. Thus, the architecture of the soluble polymer mimics that of segments of conjugated polymers in semiconducting thin films and will provide a platform for the exploration of the nature of charge carriers and excitons in these important materials.

  7. Parametric Characterization of Reformate-operated PBI-based High Temperature PEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart


    This paper presents an experimental characterization of a HT-PEMFC short stack performed by means of impedance spectroscopy. Selected operating parameters; temperature, stoichiometry and reactant compositions were varied to investigate their effects on a reformate operated stack. Polarization...

  8. Quantum wells based on Si/SiO{sub x} stacks for nanostructured absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Berghoff, B.; Suckow, S.; Roelver, R.; Spangenberg, B.; Kurz, H. [Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen (Germany); Sologubenko, A.; Mayer, J. [Central Facility for Electron Microscopy, RWTH Aachen University, Ahornstr. 55, 52074 Aachen (Germany); Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Research Centre Juelich, 52426 Juelich (Germany)


    We report on electrical transport and quantum confinement in thermally annealed Si/SiO{sub x} multiple quantum well (QW) stacks. Results are correlated with the morphology of the stacks. High temperature annealing of Si/SiO{sub x} stacks leads to precipitation of excess Si from the SiO{sub x} layers, which enhances the degree of crystallization and increases the grain sizes in the Si QWs compared to the conventional Si/SiO{sub 2} system. Moreover, the excess Si forms highly conductive pathways between adjacent Si QWs that are separated by ultrathin silicon oxide barriers. This results in an increase of conductivity by up to 10 orders of magnitude compared to the tunneling dominated transport in Si/SiO{sub 2} stacks. The stacks exhibit a distinct quantum confinement as confirmed by photoluminescence measurements. (author)

  9. Alternating 2,6-/3,5-substituted pyridine-acetylene macrocycles: π-stacking self-assemblies enhanced by intermolecular dipole-dipole interaction. (United States)

    Abe, Hajime; Ohtani, Kohei; Suzuki, Daiki; Chida, Yusuke; Shimada, Yuta; Matsumoto, Shinya; Inouye, Masahiko


    Macrocyclic compounds consisting of three 2,6-pyridylene and three 3,5-pyridylene units linked by acetylene bonds were synthesized by a Sonogashira reaction. The X-ray structures showed π-stacked pairs of two macrocycles, in which a 2,6-pyridylene unit of the one molecule overlaps a 3,5-pyridylene of the other molecule because of dipole-dipole interaction. Atomic force microscope (AFM) measurements revealed fibril structures indicating the stacking of the rigid planar macrocycles. Hydrogen-bonding ability of the macrocyclic inside was demonstrated by the addition of octyl β-D-glucopyranoside.

  10. Effects of structure and number of heteroatom on the π-π stacking inte-ractions of benzene with N-substituted coronenes: A theoretical study

    Directory of Open Access Journals (Sweden)

    Pouya Karimi


    Full Text Available Stability of the π-π stacking interactions in the Ben||N-substituted-coronene complexes was stu-died using the computational quantum chemistry methods (where Ben is benzene and || denotes π-π stacking interaction, and N-substituted-coronene is coronene molecule which substituted with different number of N atoms. The results reveal simultaneous effects of structure and number of Heteroatom on the π-π stacking interactions with N-substituted-coronenes. Changing the number of Heteroatom N in N-substituted-coronenes and substitution of 8N-coronene with electron-withdrawing or electron-donating X groups alter the electron charge density at rings of this molecule and leads to different binding energies in the Ben||X-8N-substituted-coronene com-plexes. Results indicate that electron-withdrawing groups lead to higher π–π stacking binding energies compared to electron-donating ones in the Ben||X-8N-substituted-coronene complexes.

  11. Effect of stacking interactions on the thermodynamics and kinetics of lumiflavin: a study with improved density functionals and density functional tight-binding protocol. (United States)

    Bresnahan, Caitlin G; Reinhardt, Clorice R; Bartholow, Thomas G; Rumpel, John P; North, Michael; Bhattacharyya, Sudeep


    The π-π stacking interaction between lumiflavin and a number of π-electron-rich molecules has been studied by density functional theory using several new-generation density functionals. Six known lumiflavin-aromatic adducts were used and the models were evaluated by comparing the geometry and energetics with experimental results. The study found that dispersion-corrected and hybrid functionals with larger (>50%) Hartree-Fock exchanges produced superior results in modeling thermodynamic characteristics of these complexes. The functional producing the best energetics for these model systems was used to study the stacking interactions of lumiflavin with biologically relevant aromatic groups. Additionally, the reduction of flavin-in the presence of both a hydride donor and a nondonor π-electronic system was also studied. Weak interactions were observed in the stacked lumiflavin complexes of benzene, phenol, and indole, mimicking phenyl alanine, tryptophan, and tyrosine side chains, respectively, of an enzyme. The stacked complex of naphthalene and flavin showed little change in flavin's redox potential indicating insignificant effect on the thermodynamics of the hydride transfer reaction. In contrast, the hydride transfer reaction with the hydride donor N-methyl nicotinamide tells a different story, as the transition state was found to be strongly impacted by the stacking interactions. A comparison of performance between the density functional theory (DFT) and the computationally less expensive dispersion-corrected self-consistent density functional tight-binding (SCC-DFTB-D) theory revealed that the latter produces consistent energetics for this hydride transfer reaction and additional DFT-computed perturbative corrections could significantly improve these results.

  12. Stabilization variation of organic conductor surfaces induced by π-π stacking interactions

    Institute of Scientific and Technical Information of China (English)

    Dou Rui-Fen; Lin Feng; Liu Fu-Wei; Sun Yi; Yang Ji-Yong; Lin Bing-Fa; He Lin; Xiong Chang-Min; Nie Jia-Cai


    The structures and stabilization of three crystal surfaces of TCNQ-based charge transfer complexes(CTCs)including PrQ(TCNQ)2,MPM(TCNQ)2,and MEM(TCNQ)2,have been investigated by scanning tunneling microscopy(STM).The three bulk-truncated surfaces are all ac-surface,which are terminated with TCNQ molecular arrays.On the ac-surface of PrQ(TCNQ)2,the TCNQ molecules form a tetramer structure with a wavelike row behavior and a γ angle of about 18° between adjacent molecules.Moreover,the dimer structures are resolved on both ac-surfaces of MPM(TCNQ)2 and MEM(TCNQ)2.In addition,the tetramer structure is the most stable structure,while the dimer structures are unstable and easily subject to the STM tip disturbance,which results in changeable unit cells.The main reasous for the surface stabilization variation among the three ac-surfaces are provided by using the ‘π-atom model'.

  13. Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder. (United States)

    Kang, Miao; Ji, Kefeng; Leng, Xiangguang; Xing, Xiangwei; Zou, Huanxin


    Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR) imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE). The detailed procedure presented in this paper can be summarized as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP) features are extracted. These features can describe the global and local aspects of the image with less redundancy and more complementarity, providing richer information for feature fusion. Secondly, an effective feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE. Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally, the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.

  14. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases (United States)

    Peng, Qiuming; Guo, Jianxin; Fu, Hui; Cai, Xuecheng; Wang, Yanan; Liu, Baozhong; Xu, Zhigang


    Long-period stacking ordered (LPSO) phases play an essential role in the development of magnesium alloys because they have a direct effect on mechanical and corrosion properties of the alloys. The LPSO structures are mostly divided to 18R and 14H. However, to date there are no consistent opinions about their degradation properties although both of them can improve mechanical properties. Herein we have successfully obtained two LPSO phases separately in the same Mg-Dy-Zn system and comparatively investigated the effect of different LPSO phases on degradation behavior in 0.9 wt.% NaCl solution. Our results demonstrate that a fine metastable 14H-LPSO phase in grain interior is more effective to improve corrosion resistance due to the presence of a homogeneous oxidation film and rapid film remediation ability. The outstanding corrosion resistant Mg-Dy-Zn based alloys with a metastable 14H-LPSO phase, coupled with low toxicity of alloying elements, are highly desirable in the design of novel Mg-based biomaterials, opening up a new avenue in the area of bio-Mg.

  15. Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Miao Kang


    Full Text Available Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE. The detailed procedure presented in this paper can be summarized as follows: firstly, 23 baseline features and Three-Patch Local Binary Pattern (TPLBP features are extracted. These features can describe the global and local aspects of the image with less redundancy and more complementarity, providing richer information for feature fusion. Secondly, an effective feature fusion network is designed. Baseline and TPLBP features are cascaded and fed into a SAE. Then, with an unsupervised learning algorithm, the SAE is pre-trained by greedy layer-wise training method. Capable of feature expression, SAE makes the fused features more distinguishable. Finally, the model is fine-tuned by a softmax classifier and applied to the classification of targets. 10-class SAR targets based on Moving and Stationary Target Acquisition and Recognition (MSTAR dataset got a classification accuracy up to 95.43%, which verifies the effectiveness of the presented algorithm.

  16. Thin Co/Ni-based bottom pinned spin-transfer torque magnetic random access memory stacks with high annealing tolerance (United States)

    Tomczak, Y.; Swerts, J.; Mertens, S.; Lin, T.; Couet, S.; Liu, E.; Sankaran, K.; Pourtois, G.; Kim, W.; Souriau, L.; Van Elshocht, S.; Kar, G.; Furnemont, A.


    Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. A stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm2 after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks.

  17. A hybrid microbial fuel cell stack based on single and double chamber microbial fuel cells for self-sustaining pH control (United States)

    Yang, Wei; Li, Jun; Ye, Dingding; Zhang, Liang; Zhu, Xun; Liao, Qiang


    Proton accumulation in the anode chamber is the major problem that affects the operational stability and electricity generation performance of double chamber microbial fuel cells (MFCs). In this study, a hybrid microbial fuel cell stack (DS-DS stack) based on single (SCMFCs) and double chamber MFCs (DCMFCs) is proposed for self-sustaining pH control in the MFC stack. It is found that the aerobic microbial oxidation of acetate by the biofilm that is attached to the air cathode of SCMFCs is responsible for the self-sustaining removal of accumulated H+ in the effluent of DCMFCs. Compared with the stack that solely consists of SCMFCs (SS-SS stack) or DCMFCs (DD-DD stack), the hybrid stack exhibits the highest electricity output performance and the most effective conversion of acetate into electricity at high power levels. Furthermore, the hybrid stack demonstrates the operation time of 15.7 ± 1.1 h when the operating voltage is above 0.8 V. This value is much higher than that of the DD-DD (8.5 ± 2.4 h) and SS-SS (8.1 ± 1.4 h) stacks, which suggests that the hybrid stack had a good operational stability.

  18. Tuning Coupling Behavior of Stacked Heterostructures Based on MoS2, WS2, and WSe2 (United States)

    Wang, Fang; Wang, Junyong; Guo, Shuang; Zhang, Jinzhong; Hu, Zhigao; Chu, Junhao


    The interlayer interaction of vertically stacked heterojunctions is very sensitive to the interlayer spacing, which will affect the coupling between the monolayers and allow band structure modulation. Here, with the aid of density functional theory (DFT) calculations, an interesting phenomenon is found that MoS2-WS2, MoS2-WSe2, and WS2-WSe2 heterostructures turn into direct-gap semiconductors from indirect-gap semiconductors with increasing the interlayer space. Moreover, the electronic structure changing process with interlayer spacing of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 is different from each other. With the help of variable-temperature spectral experiment, different electronic transition properties of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 have been demonstrated. The transition transformation from indirect to direct can be only observed in the MoS2-WS2 heterostructure, as the valence band maximum (VBM) at the Γ point in the MoS2-WSe2 and WS2-WSe2 heterostructure is less sensitive to the interlayer spacing than those from the MoS2-WS2 heterostructure. The present work highlights the significance of the temperature tuning in interlayer coupling and advance the research of MoS2-WS2, MoS2-WSe2, and WS2-WSe2 based device applications.

  19. Designing of Low Power CNTFET Based D Flip-Flop Using Forced Stack Technique

    Directory of Open Access Journals (Sweden)

    Vikas Sharma


    Full Text Available Low Power devices in small packages is the need of present and future electronic devices. Electronics Industry is making devices which can be planted in human bodies. CMOS Technology won‟t be able to deliver such devices because it shows short channel effects in Nano scale. So, to overcome the problems of CMOS technology we use CNTs (Carbon Nano Tubes. In electronic devices, power is consumed by various elements like flip-flop, latches, clock sources. So in order to reduce power of a system we used to reduce power consumed by flip-flops. In this paper we design an existing flip-flop “Low power clocked pass transistor flip-flop (LCPTFF” on CNTFET using Stanford CNTFET model for reference. We propose a design of CNTFET based Forced Stack Low Power Clocked Pass Transistor Flip-Flop (CN-FS-LCPTFF and observe 12% to 25% power reduction in various conditions like temperature change, CNTFET diameter change, and different voltage supply.

  20. Grain Boundary Engineering of a Low Stacking Fault Energy Ni-based Superalloy (United States)

    McCarley, Joshua; Helmink, Randolph; Goetz, Robert; Tin, Sammy


    The effects of thermo-mechanical processing parameters on the resulting microstructure of an experimental Nickel-based superalloy containing 24 wt pct Co were investigated. Hot compression tests were performed at temperatures ranging from 1293 K to 1373 K (1020 to 1100 °C) and strain rates ranging from 0.0005 to 0.1/s. The mechanically deformed samples were also subject to annealing treatments at sub-solvus 1388 K (1115 °C) and super-solvus 1413 K (1140 °C) temperatures. This investigation sought to quantify and subsequently understand the behavior and evolution of both the grain boundary structure and length fraction of Σ3 twin boundaries in the low stacking fault energy superalloy. Over the range of deformation parameters investigated, the corresponding deformation mechanism map revealed that dynamic recrystallization or dynamic recovery was dominant. These conditions largely promoted post-deformation grain refinement and the formation of annealing twins following annealing. Samples deformed at strain rates of 0.0005 and 0.001/s at 1333 K and 1373 K (1060 °C and 1100 °C) exhibited extensive grain boundary sliding/rotation associated with superplastic flow. Upon annealing, deformation conditions that resulted predominately in superplastic flow were found to provide negligible enhancement of twin boundaries and produced little to no post-deformation grain refinement.

  1. Grain Boundary Engineering of a Low Stacking Fault Energy Ni-based Superalloy (United States)

    McCarley, Joshua; Helmink, Randolph; Goetz, Robert; Tin, Sammy


    The effects of thermo-mechanical processing parameters on the resulting microstructure of an experimental Nickel-based superalloy containing 24 wt pct Co were investigated. Hot compression tests were performed at temperatures ranging from 1293 K to 1373 K (1020 to 1100 °C) and strain rates ranging from 0.0005 to 0.1/s. The mechanically deformed samples were also subject to annealing treatments at sub-solvus 1388 K (1115 °C) and super-solvus 1413 K (1140 °C) temperatures. This investigation sought to quantify and subsequently understand the behavior and evolution of both the grain boundary structure and length fraction of Σ3 twin boundaries in the low stacking fault energy superalloy. Over the range of deformation parameters investigated, the corresponding deformation mechanism map revealed that dynamic recrystallization or dynamic recovery was dominant. These conditions largely promoted post-deformation grain refinement and the formation of annealing twins following annealing. Samples deformed at strain rates of 0.0005 and 0.001/s at 1333 K and 1373 K (1060 °C and 1100 °C) exhibited extensive grain boundary sliding/rotation associated with superplastic flow. Upon annealing, deformation conditions that resulted predominately in superplastic flow were found to provide negligible enhancement of twin boundaries and produced little to no post-deformation grain refinement.

  2. Loop Entropy Assists Tertiary Order: Loopy Stabilization of Stacking Motifs

    Directory of Open Access Journals (Sweden)

    Daniel P. Aalberts


    Full Text Available The free energy of an RNA fold is a combination of favorable base pairing and stacking interactions competing with entropic costs of forming loops. Here we show how loop entropy, surprisingly, can promote tertiary order. A general formula for the free energy of forming multibranch and other RNA loops is derived with a polymer-physics based theory. We also derive a formula for the free energy of coaxial stacking in the context of a loop. Simulations support the analytic formulas. The effects of stacking of unpaired bases are also studied with simulations.

  3. Stacked antiaromatic porphyrins (United States)

    Nozawa, Ryo; Tanaka, Hiroko; Cha, Won-Young; Hong, Yongseok; Hisaki, Ichiro; Shimizu, Soji; Shin, Ji-Young; Kowalczyk, Tim; Irle, Stephan; Kim, Dongho; Shinokubo, Hiroshi


    Aromaticity is a key concept in organic chemistry. Even though this concept has already been theoretically extrapolated to three dimensions, it usually still remains restricted to planar molecules in organic chemistry textbooks. Stacking of antiaromatic π-systems has been proposed to induce three-dimensional aromaticity as a result of strong frontier orbital interactions. However, experimental evidence to support this prediction still remains elusive so far. Here we report that close stacking of antiaromatic porphyrins diminishes their inherent antiaromaticity in the solid state as well as in solution. The antiaromatic stacking furthermore allows a delocalization of the π-electrons, which enhances the two-photon absorption cross-section values of the antiaromatic porphyrins. This feature enables the dynamic switching of the non-linear optical properties by controlling the arrangement of antiaromatic π-systems on the basis of intermolecular orbital interactions.

  4. Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian; WEI Dong


    The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8 -2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm.

  5. Omnidirectional mirror based on Bragg stacks with a periodic gain-loss modulation

    Directory of Open Access Journals (Sweden)

    Jesus Manzanares-Martinez


    Full Text Available In this work we demonstrate that a Bragg Stack with a periodic gain-loss modulation can function as an Omnidirectional Mirror (OM with complete reflection at any angle of incidence irrespective of the light polarization. The Bragg Stack is composed by the periodic variation of two layers with the same value of the real part of the refractive index (nr and a periodic modulation in the imaginary part (ni. The origin of the band gaps is due to the interference of complex waves with propagating and evanescent fields in each layer. It is found that the band gaps are wider as the contrast ni/nr increases. We have found the ambient conditions to obtain an OM considering an auxiliary medium n′ external to the Bragg Stack.

  6. Omnidirectional mirror based on Bragg stacks with a periodic gain-loss modulation

    Energy Technology Data Exchange (ETDEWEB)

    Manzanares-Martinez, Jesus; Ham-Rodriguez, Carlos Ivan [Departamento de Investigacion en Fisica, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83000 (Mexico); Moctezuma-Enriquez, Damian, E-mail: [Centro de Investigacion en Materiales Avanzados (CIMAV), Miguel de Cervantes 120, Chihuahua 31109 (Mexico); Manzanares-Martinez, Betsabe [Departamento de Fisica, Universidad de Sonora, Blvd. Luis Encinas y Rosales, Hermosillo, Sonora 83000 (Mexico)


    In this work we demonstrate that a Bragg Stack with a periodic gain-loss modulation can function as an Omnidirectional Mirror (OM) with complete reflection at any angle of incidence irrespective of the light polarization. The Bragg Stack is composed by the periodic variation of two layers with the same value of the real part of the refractive index (n{sub r}) and a periodic modulation in the imaginary part (n{sub i}). The origin of the band gaps is due to the interference of complex waves with propagating and evanescent fields in each layer. It is found that the band gaps are wider as the contrast n{sub i}/n{sub r} increases. We have found the ambient conditions to obtain an OM considering an auxiliary medium n{sup ′} external to the Bragg Stack.

  7. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron (United States)

    Giardina, M.; Tomarchio, E.; Greco, D.


    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  8. Program Optimization Based Pointer Analysis and Live Stack-Heap Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed A El-Zawawy


    Full Text Available In this paper, we present type systems for flow-sensitive pointer analysis, live stack-heap (variables analysis, and program optimization. The type system for live stack-heap analysis is an enrichment of that for pointer analysis; the enrichment has the form of a second component being added to types of the latter system. Results of pointer analysis are proved useful via their use in the type system for live stack-heap analysis. The type system for program optimization is also an augmentation of that for live stack-heap analysis, but the augmentation takes the form of a transformation component being added to inference rules of the latter system. The form of program optimization being achieved is that of dead-code elimination. A form of program correction may result indirectly from eliminating faulty code (causing the program to abort that is dead. Therefore program optimization can result in program correction. Our type systems have the advantage of being compositional and relatively-simply structured. The novelty of our work comes from the fact that our type system for program optimization associates the optimized version of a program with a justification (in the form of a type derivation for the optimization. This justification is pretty much appreciated in many research areas like certified code (proof-carrying code which is the motivation of this work.

  9. Program Optimization Based Pointer Analysis and Live Stack-Heap Analysis

    CERN Document Server

    El-Zawawy, Mohamed A


    In this paper, we present type systems for flow-sensitive pointer analysis, live stack-heap (variables) analysis, and program optimization. The type system for live stack-heap analysis is an enrichment of that for pointer analysis; the enrichment has the form of a second component being added to types of the latter system. Results of pointer analysis are proved useful via their use in the type system for live stack-heap analysis. The type system for program optimization is also an augmentation of that for live stack-heap analysis, but the augmentation takes the form of a transformation component being added to inference rules of the latter system. The form of program optimization being achieved is that of dead-code elimination. A form of program correction may result indirectly from eliminating faulty code (causing the program to abort) that is dead. Therefore program optimization can result in program correction. Our type systems have the advantage of being compositional and relatively-simply structured. The...

  10. Thin Co/Ni-based bottom pinned spin-transfer torque magnetic random access memory stacks with high annealing tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Tomczak, Y., E-mail: [IMEC Kapeldreef 75, B-3001 Leuven (Belgium); Department of Chemistry, KU Leuven (University of Leuven), Celestijnenlaan 200F, B-3001 Leuven (Belgium); Swerts, J.; Mertens, S.; Lin, T.; Couet, S.; Sankaran, K.; Pourtois, G.; Kim, W.; Souriau, L.; Van Elshocht, S.; Kar, G.; Furnemont, A. [IMEC Kapeldreef 75, B-3001 Leuven (Belgium); Liu, E. [Department of Chemistry, KU Leuven (University of Leuven), Celestijnenlaan 200F, B-3001 Leuven (Belgium)


    Spin-transfer torque magnetic random access memory (STT-MRAM) is considered as a replacement for next generation embedded and stand-alone memory applications. One of the main challenges in the STT-MRAM stack development is the compatibility of the stack with CMOS process flows in which thermal budgets up to 400 °C are applied. In this letter, we report on a perpendicularly magnetized MgO-based tunnel junction (p-MTJ) on a thin Co/Ni perpendicular synthetic antiferromagnetic layer with high annealing tolerance. Tunnel magneto resistance (TMR) loss after annealing occurs when the reference layer loses its perpendicular magnetic anisotropy due to reduction of the CoFeB/MgO interfacial anisotropy. A stable Co/Ni based p-MTJ stack with TMR values of 130% at resistance-area products of 9 Ω μm{sup 2} after 400 °C anneal is achieved via moment control of the Co/Ta/CoFeB reference layer. Thinning of the CoFeB polarizing layer down to 0.8 nm is the key enabler to achieve 400 °C compatibility with limited TMR loss. Thinning the Co below 0.6 nm leads to a loss of the antiferromagnetic interlayer exchange coupling strength through Ru. Insight into the thickness and moment engineering of the reference layer is displayed to obtain the best magnetic properties and high thermal stability for thin Co/Ni SAF-based STT-MRAM stacks.

  11. Reliable gate stack and substrate parameter extraction based on C-V measurements for 14 nm node FDSOI technology (United States)

    Mohamad, B.; Leroux, C.; Rideau, D.; Haond, M.; Reimbold, G.; Ghibaudo, G.


    Effective work function and equivalent oxide thickness are fundamental parameters for technology optimization. In this work, a comprehensive study is done on a large set of FDSOI devices. The extraction of the gate stack parameters is carried out by fitting experimental CV characteristics to quantum simulation, based on self-consistent solution of one dimensional Poisson and Schrodinger equations. A reliable methodology for gate stack parameters is proposed and validated. This study identifies the process modules that impact directly the effective work function from those that only affect the device threshold voltage, due to the device architecture. Moreover, the relative impacts of various process modules on channel thickness and gate oxide thickness are evidenced.

  12. Three-dimensional conductive networks based on stacked SiO2@graphene frameworks for enhanced gas sensing. (United States)

    Huang, Da; Yang, Zhi; Li, Xiaolin; Zhang, Liling; Hu, Jing; Su, Yanjie; Hu, Nantao; Yin, Guilin; He, Dannong; Zhang, Yafei


    Graphene is an ideal candidate for gas sensing due to its excellent conductivity and large specific surface areas. However, it usually suffers from sheet stacking, which seriously debilitates its sensing performance. Herein, we demonstrate a three-dimensional conductive network based on stacked SiO2@graphene core-shell hybrid frameworks for enhanced gas sensing. SiO2 spheres are uniformly encapsulated by graphene oxide (GO) through an electrostatic self-assembly approach to form SiO2@GO core-shell hybrid frameworks, which are reduced through thermal annealing to establish three-dimensional (3D) conductive sensing networks. The SiO2 supported 3D conductive graphene frameworks reveal superior sensing performance to bare reduced graphene oxide (RGO) films, which can be attributed to their less agglomeration and larger surface area. The response value of the 3D framework based sensor for 50 ppm NH3 and 50 ppm NO2 increased 8 times and 5 times, respectively. Additionally, the sensing performance degradation caused by the stacking of the sensing materials is significantly suppressed because the graphene layers are separated by the SiO2 spheres. The sensing performance decays by 92% for the bare RGO films when the concentration of the sensing material increases 8 times, while there is only a decay of 25% for that of the SiO2@graphene core-shell hybrid frameworks. This work provides an insight into 3D frameworks of hybrid materials for effectively improving gas sensing performance.

  13. Diffractive stacks of metamaterial lattices with a complex unit cell: Self-consistent long-range bianisotropic interactions in experiment and theory (United States)

    Kwadrin, Andrej; Koenderink, A. Femius


    Metasurfaces and metamaterials promise arbitrary rerouting of light using two-dimensional (2D) planar arrangements of electric and magnetic scatterers, respectively, 3D stacks built out of such 2D planes. An important problem is how to self-consistently model the response of these systems in a manner that retains dipole intuition yet does full justice to the self-consistent multiple scattering via near-field and far-field retarded interactions. We set up such a general model for metamaterial lattices of complex 2D unit cells of poly-atomic basis as well as allowing for stacking in a third dimension. In particular, each scatterer is quantified by a magnetoelectric polarizability tensor and Ewald lattice summation deals with all near-field and long-range retarded electric, magnetic, and magnetoelectric couplings self-consistently. We show in theory and experiment that grating diffraction orders of dilute split ring lattices with complex unit cells show a background-free signature of magnetic dipole response. For denser lattices experiment and theory show that complex unit cells can reduce the apparent effect of bianisotropy, i.e., the strong oblique-incidence handed response that was reported for simple split ring lattices. Finally, the method is applied to calculate transmission of finite stacks of lattices. Thereby our simple methodology allows us to trace the emergence of effective material constants when building a 3D metamaterial layer by layer, as well as facilitating the design of metasurfaces.

  14. Comparative study on sample stacking by moving reaction boundary formed with weak acid and weak or strong base in capillary electrophoresis: II. Experiments. (United States)

    Zhang, Wei; Fan, Liuyin; Shao, Jing; Li, Si; Li, Shan; Cao, Chengxi


    To demonstrate the theoretic method on the stacking of zwitterion with moving reaction boundary (MRB) in the accompanying paper, the relevant experiments were performed. The experimental results quantitatively show that (1) MRB velocity, including the comparisons between MRB and zwitterionic velocities, possesses key importance to the design of MRB stacking; (2) a much long front alkaline plug without sample should be injected before the sample injection for a complete stacking of zwitterion if sample buffer is prepared with strong base, conversely no such plug is needed if using a weak base as the sample buffer with proper concentration and pH value; (3) the presence of salt in MRB system holds dramatic effect on the MRB stacking if sample solution is a strong base, but has no effect if a weak alkali is used as sample solution; (4) all of the experiments of this paper, including the previous work, quantitatively manifest the theory and predictions shown in the accompanying paper. In addition, the so-called derivative MRB-induced re-stacking and transient FASI-induced re-stacking were also observed during the experiments, and the relevant mechanisms were briefly demonstrated with the results. The theory and its calculation procedures developed in the accompanying paper can be well used for the predictions to the MRB stacking of zwitterion in CE.

  15. Asymmetric Epoxidation of Terminal Olefins with Binaphthyl Strapped Porphyrin Catalysts: π-π Stacking Interaction and Steric Effects on the Enantioselectivities

    Institute of Scientific and Technical Information of China (English)

    REN,Qizhi; WANG,Aiqing; LIU,Shuangyan; DING,XIaojian


    Two binaphthyl strapped porphyrins with similar chiral auxiliaries 1b and 2b were used as efficient catalysts for asymmetric epoxidation of both styrene derivatives and non-aromatic olefin substrates. Theoretical calculation of styrene approach to both catalysts has been performed. The subtle difference of the chiral cavities between two por-phyrins has been analyzed by 1H NMR. The π-π stacking interaction between aromatic substrates and catalysts might be one factor for the dramatic different enantioselectivities. Besides, the steric effect of the binaphthyl handle of lb and 2b also causes the high ee values for non-aromatic olefin epoxidations.

  16. Fast concurrent array-based stacks, queues and deques using fetch-and-increment-bounded, fetch-and-decrement-bounded and store-on-twin synchronization primitives (United States)

    Chen, Dong; Gara, Alana; Heidelberger, Philip; Kumar, Sameer; Ohmacht, Martin; Steinmacher-Burow, Burkhard; Wisniewski, Robert


    Implementation primitives for concurrent array-based stacks, queues, double-ended queues (deques) and wrapped deques are provided. In one aspect, each element of the stack, queue, deque or wrapped deque data structure has its own ticket lock, allowing multiple threads to concurrently use multiple elements of the data structure and thus achieving high performance. In another aspect, new synchronization primitives FetchAndIncrementBounded (Counter, Bound) and FetchAndDecrementBounded (Counter, Bound) are implemented. These primitives can be implemented in hardware and thus promise a very fast throughput for queues, stacks and double-ended queues.

  17. Compact Shorted Stacked-Patch Antenna Integrated with Chip-Package Based on LTCC Technology

    Directory of Open Access Journals (Sweden)

    Yongjiu Li


    Full Text Available A low profile chip-package stacked-patch antenna is proposed by using low temperature cofired ceramic (LTCC technology. The proposed antenna employs a stacked-patch to achieve two operating frequency bands and enhance the bandwidth. The height of the antenna is decreased to 4.09 mm (about λ/25 at 2.45 GHz due to the shorted pin. The package is mounted on a 44 × 44 mm2 ground plane to miniaturize the volume of the system. The design parameters of the antenna and the effect of the antenna on chip-package cavity are carefully analyzed. The designed antenna operates at a center frequency of 2.45 GHz and its impedance bandwidth (S11< -10 dB is 200 MHz, resulting from two neighboring resonant frequencies at 2.41 and 2.51 GHz, respectively. The average gain across the frequency band is about 5.28 dBi.

  18. Evaluation of single and stack membraneless enzymatic fuel cells based on ethanol in simulated body fluids. (United States)

    Galindo-de-la-Rosa, J; Arjona, N; Moreno-Zuria, A; Ortiz-Ortega, E; Guerra-Balcázar, M; Ledesma-García, J; Arriaga, L G


    The purpose of this work is to evaluate single and double-cell membraneless microfluidic fuel cells (MMFCs) that operate in the presence of simulated body fluids SBF, human serum and blood enriched with ethanol as fuels. The study was performed using the alcohol dehydrogenase enzyme immobilised by covalent binding through an array composed of carbon Toray paper as support and a layer of poly(methylene blue)/tetrabutylammonium bromide/Nafion and glutaraldehyde (3D bioanode electrode). The single MMFC was tested in a hybrid microfluidic fuel cell using Pt/C as the cathode. A cell voltage of 1.035V and power density of 3.154mWcm(-2) were observed, which is the highest performance reported to date. The stability and durability were tested through chronoamperometry and polarisation/performance curves obtained at different days, which demonstrated a slow decrease in the power density on day 10 (14%) and day 20 (26%). Additionally, the cell was tested for ethanol oxidation in simulated body fluid (SBF) with ionic composition similar to human blood plasma. Those tests resulted in 0.93V of cell voltage and a power density close to 1.237mWcm(-2). The double cell MMFC (Stack) was tested using serum and human blood enriched with ethanol. The stack operated with blood in a serial connection showed an excellent cell performance (0.716mWcm(-2)), demonstrating the feasibility of employing human blood as energy source.

  19. Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes (United States)

    Pinar, F. Javier; Cañizares, Pablo; Rodrigo, Manuel A.; Úbeda, Diego; Lobato, Justo


    In this work, the feasibility of a 150 cm2 high-temperature proton exchange membrane fuel cell (HT-PEMFC) stack operated with modified proton exchange membranes is demonstrated. The short fuel cell stack was manufactured using a total of three 50 cm2 membrane electrode assemblies (MEAs). The PEM technology is based on a polybenzimidazole (PBI) membrane. The obtained results were compared with those obtained using a HT-PEMFC stack with unmodified membranes. The membranes were cast from a PBI polymer synthesized in the laboratory, and the modified membranes contained 2 wt.% micro-sized TiO2 as a filler. Long-term tests were performed in both constant and dynamic loading modes. The fuel cell stack with 2 wt.% TiO2 composite PBI membranes exhibited an irreversible voltage loss of less than 2% after 1100 h of operation. In addition, the acid loss was reduced from 2% for the fuel cell stack with unmodified membranes to 0.6% for the fuel cell stack with modified membranes. The results demonstrate that introducing filler into the membranes enhances the durability and stability of this type of fuel cell technology. Moreover, the fuel cell stack system also exhibits very rapid and stable power and voltage output responses under dynamic load regimes.

  20. Multi-kW high-brightness fiber coupled diode laser based on two dimensional stacked tailored diode bars (United States)

    Bayer, Andreas; Unger, Andreas; Köhler, Bernd; Küster, Matthias; Dürsch, Sascha; Kissel, Heiko; Irwin, David A.; Bodem, Christian; Plappert, Nora; Kersten, Maik; Biesenbach, Jens


    The demand for high brightness fiber coupled diode laser devices in the multi kW power region is mainly driven by industrial applications for materials processing, like brazing, cladding and metal welding, which require a beam quality better than 30 mm x mrad and power levels above 3kW. Reliability, modularity, and cost effectiveness are key factors for success in the market. We have developed a scalable and modular diode laser architecture that fulfills these requirements through use of a simple beam shaping concept based on two dimensional stacking of tailored diode bars mounted on specially designed, tap water cooled heat sinks. The base element of the concept is a tailored diode laser bar with an epitaxial and lateral structure designed such that the desired beam quality in slow-axis direction can be realized without using sophisticated beam shaping optics. The optical design concept is based on fast-axis collimator (FAC) and slow-axis collimator (SAC) lenses followed by only one additional focusing optic for efficient coupling into a 400 μm fiber with a numerical aperture (NA) of 0.12. To fulfill the requirements of scalability and modularity, four tailored bars are populated on a reduced size, tap water cooled heat sink. The diodes on these building blocks are collimated simply via FAC and SAC. The building blocks can be stacked vertically resulting in a two-dimensional diode stack, which enables a compact design of the laser source with minimum beam path length. For a single wavelength, up to eight of these building blocks, implying a total of 32 tailored bars, can be stacked into a submodule, polarization multiplexed, and coupled into a 400 μm, 0.12NA fiber. Scalability into the multi kW region is realized by wavelength combining of replaceable submodules in the spectral range from 900 - 1100 nm. We present results of a laser source based on this architecture with an output power of more than 4 kW and a beam quality of 25 mm x mrad.

  1. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys. (United States)

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K


    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  2. Self-assembly of Bis[2-(2-hydroxyphenyl)-pyridine]Copper(Ⅱ) Induced by C-H…π and π…π Stacking Interaction

    Institute of Scientific and Technical Information of China (English)


    @@ Introduction The control of molecular assembly in the solid state is an important theme of modern chemistry.It is in this regard that there is an activity in the area of supramolecular structures at present.The self-assembly of molecules can form well-defined supramolecular structures under the influence of drive forces such as hydrogen bonds[1-3],metal-ligand coordination bonds[4-6] and π…π stacking interactions[7-10].Word et al.have described the co-ordination chemistry of polydentate chelating ligands which contain mixed pyridine-phenol donor sets[11].Some unusual structures of transition metal pyridine-phenol complexes have been established in which non-covalent interactions such as hydrogen bonding and π…π stacking appear to play a dominant part.These observations suggest that it might be possible to construct supramolecular structures with a metal pyridine-phenol system.To explore this idea we have begun to investigate the self-assembly properties of metal pyridine-phenol complexes.Herein we present the self-assembly properties of Cu(pp)2[pp=2-(2-hydroxyphenol)-pyridine] under different conditions.

  3. Effect of base stacking on the acid-base properties of the adenine cation radical [A*+] in solution: ESR and DFT studies. (United States)

    Adhikary, Amitava; Kumar, Anil; Khanduri, Deepti; Sevilla, Michael D


    In this study, the acid-base properties of the adenine cation radical are investigated by means of experiment and theory. Adenine cation radical (A*(+)) is produced by one-electron oxidation of dAdo and of the stacked DNA-oligomer (dA)6 by Cl2*(-) in aqueous glass (7.5 M LiCl in H2O and in D2O) and investigated by ESR spectroscopy. Theoretical calculations and deuterium substitution at C8-H and N6-H in dAdo aid in our assignments of structure. We find the pKa value of A*(+) in this system to be ca. 8 at 150 K in seeming contradiction to the accepted value of or = 160 K, complete deprotonation of A*(+) occurs in dAdo in these glassy systems even at pH ca. 3. A*(+) found in (dA)6 at 150 K also deprotonates on thermal annealing. The stability of A*(+) at 150 K in these systems is attributed to charge delocalization between stacked bases. Theoretical calculations at various levels (DFT B3LYP/6-31G*, MPWB95, and HF-MP2) predict binding energies for the adenine stacked dimer cation radical of 12 to 16 kcal/mol. Further DFT B3LYP/6-31G* calculations predict that, in aqueous solution, monomeric A*(+) should deprotonate spontaneously (a predicted pKa of ca. -0.3 for A*(+)). However, the charge resonance stabilized dimer AA*(+) is predicted to result in a significant barrier to deprotonation and a calculated pKa of ca. 7 for the AA*(+) dimer which is 7 pH units higher than the monomer. These theoretical and experimental results suggest that A*(+) isolated in solution and A*(+) in adenine stacks have highly differing acid-base properties resulting from the stabilization induced by hole delocalization within adenine stacks.

  4. Very Weak Signals (VWS detected by stacking method according to different astronomical periodicities (HiCum

    Directory of Open Access Journals (Sweden)

    M. van Ruymbeke


    Full Text Available A stacking method to detect very weak signals is introduced in this paper. This method is to stack observed data in different well known periodicities according to the astronomical clock since majority geophysical observations are time based. We validated this method by applying it in four different cases. Interactions behind the observed parameters become obviously after it is stacked in two diurnal and semidiurnal tidal periodical waves. Amplitude and phase variations will be also measurable when a sliding windows stacking is used. This could be an important reference to find precursors before some earthquakes and volcanic events, corresponding to attenuations of medium patterns.

  5. Guinier-Preston Zone, Quasicrystal and Long-period Stacking Ordered Structure in Mg-based Alloys, A Review

    Institute of Scientific and Technical Information of China (English)

    Yongbo XU; Daokui XU; Xiaohong SHAO; En-hou HAN


    Both the solid solution and precipitation are mainly strengthening mechanism for the magnesium-based alloys.A great number of alloying elements can be dissolved into the Mg matrix to form the solutes and precipitates.Moreover,the type of precipitates varies with different alloying elements and heat treatments,which makes it quite difficult to understand the formation mechanism of the precipitates in Mg-based alloys in depth.Thus,it is very hard to give a systematical regularity in precipitation process for the Mg-based alloys.This review is mainly focused on the formation and microstructural evolution of the precipitates,as a hot topic for the past few years,including Guinier-Preston Zones,quasicrystals and long-period stacking ordered phases formed in a number of Mg-TM-RE alloy systems,where TM =AI,Zn,Zr and RE =Y,Gd,Hd,Ce and La.

  6. Application and development of ZigBee based on Z-stack protocol stack ZCL and conform to HA specification%基于Z-stack协议栈ZCL库且符合HA规范的ZigBee应用开发

    Institute of Scientific and Technical Information of China (English)



    The protocol standards of ZigBee products in native market are all in the status quo of disunity and the ZigBee products with single standard are in demanded. For this reason, the basic procedures and notes of Z-stack-based ZigBee developing applications conform to HA specification was concluded after studying and analyzing the codes and standards made by ZigBee Alliance. In combination with the structure features and the function library of Z-stack, the ZigBee application and development flow based on Z-stack to realize HA specification are summed up, and relevant matters needing attention as well.%  鉴于国内ZigBee产品协议标准不统一的现状和市场对符合统一标准的ZigBee产品的需求,为了实现基于Z-stack协议栈且符合HA规范的应用开发,通过对ZigBee联盟制定的相关规范和标准文件的学习和解读,结合Z-stack协议栈的结构特点及其提供的函数库,总结归纳了基于该协议栈来实现HA规范的ZigBee应用开发的基本流程和相关注意事项。

  7. Van Der Waals heterogeneous layer-layer carbon nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on graphene and graphane sheets. (United States)

    Yuan, Kun; Zhao, Rui-Sheng; Zheng, Jia-Jia; Zheng, Hong; Nagase, Shigeru; Zhao, Sheng-Dun; Liu, Yan-Zhi; Zhao, Xiang


    Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc.

  8. A PMT-like high gain avalanche photodiode based on GaN/AlN periodical stacked structure

    CERN Document Server

    Zheng, Ji-yuan; Yang, Di; Yu, Jia-dong; Meng, Xiao; E, Yan-xiong; Wu, Chao; Hao, Zhi-biao; Sun, Chang-zheng; Xiong, Bing; Luo, Yi; Han, Yan-jian; Wang, Jian; Li, Hong-tao; Brault, Julien; Matta, Samuel; Khalfioui, Mohamed Al; Yan, Jian-chang; Wei, Tong-bo; Zhang, Yun; Wang, Jun-xi


    Avalanche photodiode (APD) has been intensively investigated as a promising candidate to replace photomultiplier tubes (PMT) for weak light detection. However, in conventional APDs, a large portion of carrier energy drawn from the electric field is thermalized, and the multiplication efficiencies of electron and hole are low and close. In order to achieve high gain, the device should work under breakdown bias, where carrier multiplication proceeds bi-directionally to form a positive feedback multiplication circle. However, breakdown is hard to control, in practice, APDs should work under Geiger mode as a compromise between sustainable detection and high gain. The complexity of system seriously restricts the application. Here, we demonstrate an avalanche photodiode holding high gain without breakdown, which means no quenching circuit is needed for sustainable detection. The device is based on a GaN/AlN periodically-stacked-structure (PSS), wherein electron holds much higher efficiency than hole to draw energy ...

  9. Finding diversity for building one-day ahead Hydrological Ensemble Prediction System based on artificial neural network stacks (United States)

    Brochero, Darwin; Anctil, Francois; Gagné, Christian; López, Karol


    In this study, we addressed the application of Artificial Neural Networks (ANN) in the context of Hydrological Ensemble Prediction Systems (HEPS). Such systems have become popular in the past years as a tool to include the forecast uncertainty in the decision making process. HEPS considers fundamentally the uncertainty cascade model [4] for uncertainty representation. Analogously, the machine learning community has proposed models of multiple classifier systems that take into account the variability in datasets, input space, model structures, and parametric configuration [3]. This approach is based primarily on the well-known "no free lunch theorem" [1]. Consequently, we propose a framework based on two separate but complementary topics: data stratification and input variable selection (IVS). Thus, we promote an ANN prediction stack in which each predictor is trained based on input spaces defined by the IVS application on different stratified sub-samples. All this, added to the inherent variability of classical ANN optimization, leads us to our ultimate goal: diversity in the prediction, defined as the complementarity of the individual predictors. The stratification application on the 12 basins used in this study, which originate from the second and third workshop of the MOPEX project [2], shows that the informativeness of the data is far more important than the quantity used for ANN training. Additionally, the input space variability leads to ANN stacks that outperform an ANN stack model trained with 100% of the available information but with a random selection of dataset used in the early stopping method (scenario R100P). The results show that from a deterministic view, the main advantage focuses on the efficient selection of the training information, which is an equally important concept for the calibration of conceptual hydrological models. On the other hand, the diversity achieved is reflected in a substantial improvement in the scores that define the

  10. Improved ⅢI-nitrides based light-emitting diodes anti-electrostatic discharge capacity with an AlGaN/GaN stack insert layer

    Institute of Scientific and Technical Information of China (English)

    Li Zhicong; Wang Guohong; Li Jinmin; Li Panpan; Wang Bing; Li Hongjian; Liang Meng; Yao Ran; Li Jing; Deng Yuanming; Yi Xiaoyan


    Through insertion of an AlGaN/GaN stack between the u-GaN and n-GaN of GaN-based light-emitting diodes (LEDs),the strain in the epilayer was increased,the dislocation density was reduced.GaN-based LEDs with different Al compositions were compared.6.8% A1 composition in the stacks showed the highest electrostatic discharge (ESD) endurance ability at the human body mode up to 6000 V and the pass yield exceeded 95%.

  11. Electrochemical cell stack assembly (United States)

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.


    Multiple stacks of tubular electrochemical cells having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films arranged in parallel on stamped conductive interconnect sheets or ferrules. The stack allows one or more electrochemical cell to malfunction without disabling the entire stack. Stack efficiency is enhanced through simplified gas manifolding, gas recycling, reduced operating temperature and improved heat distribution.

  12. Are our homes ready for services? A domotic infrastructure based on the Web service stack

    NARCIS (Netherlands)

    Aiello, Marco; Dustdar, Schahram


    The increase in computational power and the networking abilities of home appliances are revolutionizing the way we interact with our homes. This trend is growing stronger and opening a number of technological challenges. From the point of view of distributed systems, there is a need to design archit

  13. Using a method based on Potts Model to segment a micro-CT image stack of trabecular bones of femoral region

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Pedro H.A. de; Cabral, Manuela O.M., E-mail: [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Departamento de Engenharia Nuclear; Vieira, Jose W.; Correia, Filipe L. de B., E-mail: [Instituto Federal de Educacao, Ciencia e Tecnologia de Pernambuco (IFPE), Recife, PE (Brazil); Lima, Fernando R. De A., E-mail: [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (brazil)


    Exposure Computational Models are composed basically of an anthropomorphic phantom, a Monte Carlo (MC) code, and an algorithm simulator of the radioactive source. Tomographic phantoms are developed from medical images and must be pre-processed and segmented before being coupled to a MC code (which simulates the interaction of radiation with matter). This work presents a methodology used for treatment of micro-CT images stack of a femur, obtained from a 30 year old female skeleton provided by the Imaging Laboratory for Anthropology of the University of Bristol, UK. These images contain resolution of 60 micrometers and from these a block containing only 160 x 60 x 160 pixels of trabecular tissues and bone marrow was cut and saved as ⁎.sgi file (header + ⁎.raw file). The Grupo de Dosimetria Numerica (Recife-PE, Brazil) developed a software named Digital Image Processing (DIP), in which a method for segmentation based on a physical model for particle interaction known as Potts Model (or q-Ising) was implemented. This model analyzes the statistical dependence between sites in a network. In Potts Model, when the values of spin variables at neighboring sites are identical, it is assigned an 'energy of interaction' between them. Otherwise, it is said that the sites do not interact. Making an analogy between network sites and the pixels of a digital image and, moreover, between the spins variables and the intensity of the gray scale, it was possible to apply this model to obtain texture descriptors and segment the image. (author)

  14. Effect of pore architecture and stacking direction on mechanical properties of solid freeform fabrication-based scaffold for bone tissue engineering. (United States)

    Lee, Jung-Seob; Cha, Hwang Do; Shim, Jin-Hyung; Jung, Jin Woo; Kim, Jong Young; Cho, Dong-Woo


    Fabrication of a three-dimensional (3D) scaffold with increased mechanical strength may be an essential requirement for more advanced bone tissue engineering scaffolds. Various material- and chemical-based approaches have been explored to enhance the mechanical properties of engineered bone tissue scaffolds. In this study, the effects of pore architecture and stacking direction on the mechanical and cell proliferation properties of a scaffold were investigated. The 3D scaffold was prepared using solid freeform fabrication technology with a multihead deposition system. Various types of scaffolds with different pore architectures (lattice, stagger, and triangle types) and stacking directions (horizontal and vertical directions) were fabricated with a blend of polycaprolactone and poly lactic-co-glycolic acid. In compression tests, the triangle-type scaffold was the strongest among the experimental groups. Stacking direction affected the mechanical properties of scaffolds. An in vitro cell counting kit-8 assay showed no significant differences in optical density depending on the different pore architectures and stacking directions. In conclusion, mechanical properties of scaffolds can be enhanced by controlling pore architecture and stacking direction.

  15. Model based examination on influence of stack series connection and pipe diameters on efficiency of vanadium redox flow batteries under consideration of shunt currents (United States)

    König, S.; Suriyah, M. R.; Leibfried, T.


    Model based design and optimization of large scale vanadium redox flow batteries can help to decrease system costs and to increase system efficiency. System complexity, e.g. the combination of hydraulic and electric circuits requires a multi-physic modeling approach to cover all dependencies between subsystems. A Matlab/Simulink model is introduced, which covers a variable number of stacks and their hydraulic circuit, as well as the impact of shunt currents. Using analytic approaches that are afterward crosschecked with the developed model, a six-stack, 54 kW/216 kWh system is designed. With the simulation results it is demonstrated how combining stacks to strings and varying pipe diameters affects system efficiency. As cell voltage is comparatively low, connecting stacks in series to strings seems reasonable to facilitate grid connection. It is shown that this significantly lowers system efficiency. Hydraulic circuit design is varied to lower efficiency drop. In total, four different electric designs are equipped with 21 hydraulic design variations to quantify dependencies between electric and hydraulic subsystems. Furthermore, it is examined whether additional shunt current losses through stack series connection can be compensated by more efficient energy conversion systems.

  16. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking. (United States)

    Durney, Brandon C; Bachert, Beth A; Sloane, Hillary S; Lukomski, Slawomir; Landers, James P; Holland, Lisa A


    Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10°C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC-DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC]=2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix

  17. Cyberpsychology: a human-interaction perspective based on cognitive modeling. (United States)

    Emond, Bruno; West, Robert L


    This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.

  18. On the origin of the mobility reduction in n- and p-metal-oxide-semiconductor field effect transistors with hafnium-based/metal gate stacks (United States)

    Toniutti, P.; Palestri, P.; Esseni, D.; Driussi, F.; De Michielis, M.; Selmi, L.


    We examine the mobility reduction measured in hafnium-based dielectrics in n- and p-MOSFETs by means of extensive comparison between accurate multi-subband Monte Carlo simulations and experimental data for reasonably mature process technologies. We have considered scattering with remote (soft-optical) phonons and remote Coulomb interaction with single layers and dipole charges. A careful examination of model assumptions and limitations leads us to the conclusion that soft optical phonon scattering cannot quantitatively explain by itself the experimental mobility reduction reported by several groups for neither the electron nor the hole inversion layers. Experimental data can be reproduced only assuming consistently large concentrations of Coulomb scattering centers in the gate stack. However, the corresponding charge or dipole density would result in a large threshold voltage shift not observed in the experiments. We thus conclude that the main mechanisms responsible for the mobility reduction in MOSFETs featuring Hafnium-based high-κ dielectric have not been completely identified yet. Additional physical mechanisms that could reconcile simulations with experimental results are suggested and critically discussed.

  19. Evolution and interaction of twins, dislocations and stacking faults in rolled α-brass during nanostructuring at sub-zero temperature

    Directory of Open Access Journals (Sweden)

    Barna Roy


    Full Text Available The effect of cryorolling (CR strain at 153 K on the evolution of structural defects and their interaction in α−brass (Cu–30 wt.% Zn during nanostructuring has been evaluated. Even though the lattice strain increases up to 2.1 × 10−3 at CR strain of 0.6 initially, but it remains constant upon further rolling. Whereas, the twin density (β increases to a maximum value of 5.9 × 10−3 at a CR strain of 0.7 and reduces to 1.1 × 10−5 at 0.95. Accumulation of stacking faults (SFs and lattice disorder at the twin boundaries causes dynamic recrystallization, promotes grain refinement and decreases the twin density by forming subgrains. Detailed investigations on the formation and interaction of defects have been done through resistivity, positron lifetime and Doppler broadening measurements in order to understand the micro-mechanism of nanostructuring at sub-zero temperatures.

  20. 1.5 to 1.6 μm pulsed laser diode bars based on epitaxially stacked AlGaInAs/InP heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gorlachuk, P V; Ryaboshtan, Yu L; Ladugin, M A; Padalitsa, A A; Marmalyuk, A A; Kurnosov, V D; Kurnosov, K V; Zhuravleva, O V; Romantsevich, V I; Chernov, R V; Ivanov, A V; Simakov, V A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)


    This paper describes 1.55-μm pulsed laser diode bars based on epitaxially stacked double AlGaInAs/InP heterostructures. The output power of such bars is 1.8 times that of singleheterostructure laser diode bars. We present the key characteristics of the laser sources. (lasers)

  1. Transient Variable Caching in Java’s Stack-Based Intermediate Representation

    Directory of Open Access Journals (Sweden)

    Paul Týma


    Full Text Available Java’s stack‐based intermediate representation (IR is typically coerced to execute on register‐based architectures. Unoptimized compiled code dutifully replicates transient variable usage designated by the programmer and common optimization practices tend to introduce further usage (i.e., CSE, Loop‐invariant Code Motion, etc.. On register based machines, often transient variables are cached within registers (when available saving the expense of actually accessing memory. Unfortunately, in stack‐based environments because of the need to push and pop the transient values, further performance improvement is possible. This paper presents Transient Variable Caching (TVC, a technique for eliminating transient variable overhead whenever possible. This optimization would find a likely home in optimizers attached to the back of popular Java compilers. Side effects of the algorithm include significant instruction reordering and introduction of many stack‐manipulation operations. This combination has proven to greatly impede the ability to decompile stack‐based IR code sequences. The code that results from the transform is faster, smaller, and greatly impedes decompilation.

  2. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults (United States)

    Zhang, Jinghuai; Xu, Chi; Jing, Yongbin; Lv, Shuhui; Liu, Shujuan; Fang, Daqing; Zhuang, Jinpeng; Zhang, Milin; Wu, Ruizhi


    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg-8Er-1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), tensile yield strength (TYS: 207 MPa) and elongation (21%) of the alloy with SFs were superior to those of most reported degradable Mg-based alloys. This new alloy showed acceptable biotoxicity and degradation rate (0.34 mm/year), and the latter could be further slowed down through optimizing the microstructure. Most amazing of all, the uniquely uniform in vitro/vivo corrosion behavior was obtained due to the formation of SFs. Accordingly we proposed an original corrosion mechanism for the novel Mg alloy with SFs. The present study opens a new horizon for developing new Mg-based biomaterials with highly desirable performances.

  3. A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures. (United States)

    Wofford, Joseph M; Nakhaie, Siamak; Krause, Thilo; Liu, Xianjie; Ramsteiner, Manfred; Hanke, Michael; Riechert, Henning; J Lopes, J Marcelo


    Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate. This involves first saturating a Ni film on MgO(111) with C, growing h-BN on the exposed metal surface, and precipitating the C back to the h-BN/Ni interface to form graphene. The resulting laterally continuous heterostructure is composed of a top layer of few-layer thick h-BN on an intermediate few-layer thick graphene, lying on top of Ni/MgO(111). Examinations by synchrotron-based grazing incidence diffraction, X-ray photoemission spectroscopy, and UV-Raman spectroscopy reveal that while the h-BN is relaxed, the lattice constant of graphene is significantly reduced, likely due to nitrogen doping. These results illustrate a different pathway for the production of h-BN/graphene heterostructures, and open a new perspective for the large-area preparation of heterosystems combining graphene and other 2D or 3D materials.

  4. The influence of temperature on stacking fault energy in Fe-based alloys

    Institute of Scientific and Technical Information of China (English)

    WAN; Jianfen


    By using the pseudo minimum translational distance between convex objects, this paper presents two algorithms for robot path planning. First, an analytically tractable potential field is defined in the robot configuration space, and the concept of virtual obstacles is introduced and incorporated in the path planner to handle the local minima of the potential function. Second, based on the Lipschitz continuity and differentiability of the pseudo minimum translational distance, the flexible-trajectory approach is implemented. Simulation examples are given to show the effectiveness and efficiency of the path planners for both mobile robots and manipulators.

  5. Low-temperature-dependent property in an avalanche photodiode based on GaN/AlN periodically-stacked structure (United States)

    Zheng, Jiyuan; Wang, Lai; Yang, Di; Yu, Jiadong; Meng, Xiao; Hao, Zhibiao; Sun, Changzheng; Xiong, Bing; Luo, Yi; Han, Yanjun; Wang, Jian; Li, Hongtao; Li, Mo; Li, Qian


    In ultra-high sensitive APDs, a vibrate of temperature might bring a fatal decline of the multiplication performance. Conventional method to realize a temperature-stable APD focuses on the optimization of device structure, which has limited effects. While in this paper, a solution by reducing the carrier scattering rate based on an GaN/AlN periodically-stacked structure (PSS) APD is brought out to improve temperature stability essentially. Transport property is systematically investigated. Compared with conventional GaN homojunction (HJ) APDs, electron suffers much less phonon scatterings before it achieves ionization threshold energy and more electrons occupy high energy states in PSS APD. The temperature dependence of ionization coefficient and energy distribution is greatly reduced. As a result, temperature stability on gain is significantly improved when the ionization happens with high efficiency. The change of gain for GaN (10 nm)/AlN (10 nm) PSS APD from 300 K to 310 K is about 20% lower than that for HJ APD. Additionally, thicker period length is found favorable to ionization coefficient ratio but a bit harmful to temperature stability, while increasing the proportion of AlN at each period in a specific range is found favorable to both ionization coefficient ratio and temperature stability. PMID:27775088

  6. 基于OpenStack资源监控系统%Resource Monitoring System Based on OpenStack

    Institute of Scientific and Technical Information of China (English)

    梁宇; 杨海波; 李鸿彬; 兰国亮


    资源监控是提高云平台可靠性的重要手段。本文结合OpenStack云平台的特点,设计并实现了一个全面、智能、高效的资源监控系统,完成了资源监控系统整体架构的设计以及各模块的功能划分,并给出了实例监控方式、数据存储模型等具体的实现方法。最后,通过测试结果说明资源监控系统的有效性。%Resource monitoring is an important way to improve the reliability of cloud platforms. In this paper, we design and implement a comprehensive, intelligent, efficient resource monitoring system based on the OpenStack cloud platform features and complete the overall architecture design and function of each module division of this system, and then we give the case of monitoring methods, data storage model and other specific implementations. Finally, the test results show the effectiveness of resource monitoring system.

  7. Development of a laser-speckle-based measurement principle for the evaluation of mechanical deformation of stacked metal sheets (United States)

    Halder, Clemens; Thurner, Thomas; Mair, Mathias


    Stacks of metal plates are widely used in electrical motors, transformers and generators to reduce for eddy current loss in their magnetic circuit. To model the mechanical behavior of such special material structures a profound knowledge of the underlying physical processes is needed. This paper describes a highly specialized optical sensor system utilizing the laser-speckle-effect for non-contacting strain and displacement measurements of stacked metal plates. In order to gain insights into the mechanical changes of stacked metal structures during defined mechanical load, a certain kind of spatially resolving digital laser speckle photography has been used to measure displacements between individual layers of the stacked metal sheets at high resolution. The developed speckle template matching algorithm takes into account for the very special surface structure and the given loading behavior. The sensor system is capable of acquiring displacement fields with a resolution in the order of a single micron at video rate and beyond, enabling the real time observation of load experiments on stacked metal plate structures.

  8. Circular Hough Transform and Local Circularity Measure for Weight Estimation of a Graph-Cut based Wood Stack Measurement

    DEFF Research Database (Denmark)

    Galsgaard, Bo; Lundtoft, Dennis Holm; Nikolov, Ivan Adriyanov;


    One of the time consuming tasks in the timber industry is the manually measurement of features of wood stacks. Such features include, but are not limited to, the number of the logs in a stack, their diameters distribution, and their volumes. Computer vision techniques have recently been used...... for solving this real-world industrial application. Such techniques are facing many challenges as the task is usually performed in outdoor, uncontrolled, environments. Furthermore, the logs can vary in texture and they can be occluded by different obstacles. These all make the segmentation of the wood logs...... about the foreand background regions of a stack image, and then use this together with a Local Circularity Measure (LCM) to modify the weights of the graph to segment the wood logs from the rest of the image. We further improve the segmentation by separating overlapping logs. These segmented wood logs...

  9. A cross-stacked plasmonic nanowire network for high-contrast femtosecond optical switching (United States)

    Lin, Yuanhai; Zhang, Xinping; Fang, Xiaohui; Liang, Shuyan


    We report an ultrafast optical switching device constructed by stacking two layers of gold nanowires into a perpendicularly crossed network, which works at a speed faster than 280 fs with an on/off modulation depth of about 22.4%. The two stacks play different roles in enhancing consistently the optical switching performance due to their different dependence on the polarization of optical electric fields. The cross-plasmon resonance based on the interaction between the perpendicularly stacked gold nanowires and its Fano-coupling with Rayleigh anomaly is the dominant mechanism for such a high-contrast optical switching device.

  10. Asymmetric Flexible Supercapacitor Stack

    Directory of Open Access Journals (Sweden)

    Leela Mohana Reddy A


    Full Text Available AbstractElectrical double layer supercapacitor is very significant in the field of electrical energy storage which can be the solution for the current revolution in the electronic devices like mobile phones, camera flashes which needs flexible and miniaturized energy storage device with all non-aqueous components. The multiwalled carbon nanotubes (MWNTs have been synthesized by catalytic chemical vapor deposition technique over hydrogen decrepitated Mischmetal (Mm based AB3alloy hydride. The polymer dispersed MWNTs have been obtained by insitu polymerization and the metal oxide/MWNTs were synthesized by sol-gel method. Morphological characterizations of polymer dispersed MWNTs have been carried out using scanning electron microscopy (SEM, transmission electron microscopy (TEM and HRTEM. An assymetric double supercapacitor stack has been fabricated using polymer/MWNTs and metal oxide/MWNTs coated over flexible carbon fabric as electrodes and nafion®membrane as a solid electrolyte. Electrochemical performance of the supercapacitor stack has been investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy.

  11. Gate stack technology for nanoscale devices

    Directory of Open Access Journals (Sweden)

    Byoung Hun Lee


    Full Text Available Scaling of the gate stack has been a key to enhancing the performance of complementary metal-oxide-semiconductor (CMOS field-effect transistors (FETs of past technology generations. Because the rate of gate stack scaling has diminished in recent years, the motivation for alternative gate stacks or novel device structures has increased considerably. Intense research during the last decade has led to the development of high dielectric constant (k gate stacks that match the performance of conventional SiO2-based gate dielectrics. However, many challenges remain before alternative gate stacks can be introduced into mainstream technology. We review the current status of and challenges in gate stack research for planar CMOS devices and alternative device technologies to provide insights for future research.

  12. Ultra-dark graphene stack metamaterials (United States)

    Chugh, Sunny; Man, Mengren; Chen, Zhihong; Webb, Kevin J.


    We present a fabrication method to achieve a graphene stack metamaterial, a periodic array of unit cells composed of graphene and a thin insulating spacer, that allows accumulation of the strong absorption from individual graphene sheets and low reflectivity from the stack. The complex sheet conductivity of graphene from experimental data models the measured power transmitted as a function of wavelength and number of periods in the stack. Simulated results based on the extracted graphene complex sheet conductivity for thicker stacks suggest that the graphene stack reflectivity and the per-unit-length absorption can be controlled to exceed the performance of competing light absorbers. Furthermore, the electrical properties of graphene coupled with the stack absorption characteristics provide for applications in optoelectronic devices.

  13. Results-Based Interaction Design (United States)

    Weiss, Meredith


    Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…

  14. Deploying OpenStack

    CERN Document Server

    Pepple, Ken


    OpenStack was created with the audacious goal of being the ubiquitous software choice for building public and private cloud infrastructures. In just over a year, it's become the most talked-about project in open source. This concise book introduces OpenStack's general design and primary software components in detail, and shows you how to start using it to build cloud infrastructures. If you're a developer, technologist, or system administrator familiar with cloud offerings such as Rackspace Cloud or Amazon Web Services, Deploying OpenStack shows you how to obtain and deploy OpenStack softwar

  15. Learning OpenStack networking (Neutron)

    CERN Document Server

    Denton, James


    If you are an OpenStack-based cloud operator with experience in OpenStack Compute and nova-network but are new to Neutron networking, then this book is for you. Some networking experience is recommended, and a physical network infrastructure is required to provide connectivity to instances and other network resources configured in the book.

  16. Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characteristics (United States)

    Dale, N. V.; Mann, M. D.; Salehfar, H.

    The performance of a 6 kW proton exchange membrane (PEM) electrolyzer was modeled using a semiempirical equation. Total cell voltage was represented as a sum of the Nernst voltage, activation overpotential and ohmic overpotential. A temperature and pressure dependent Nernst potential, derived from thermodynamic principles, was used to model the 20 cell PEM electrolyzer stack. The importance of including the temperature dependence of various model components is clearly demonstrated. The reversible potential without the pressure effect decreases with increasing temperature in a linear fashion. The exchange current densities at both the electrodes and the membrane conductivity were the coefficients of the semiempirical equation. An experimental system designed around a 6 kW PEM electrolyzer was used to obtain the current-voltage characteristics at different stack temperatures. A nonlinear curve fitting method was employed to determine the equation coefficients from the experimental current-voltage characteristics. The modeling results showed an increase in the anode and cathode exchange current densities with increasing electrolyzer stack temperature. The membrane conductivity was also increased with increasing temperature and was modeled as a function of temperature. The electrolyzer energy efficiencies at different temperatures were evaluated using temperature dependent higher heating value voltages instead of a fixed value of 1.48 V.

  17. Instant BlueStacks

    CERN Document Server

    Judge, Gary


    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A fast-paced, example-based approach guide for learning BlueStacks.This book is for anyone with a Mac or PC who wants to run Android apps on their computer. Whether you want to play games that are freely available for Android but not your computer, or you want to try apps before you install them on a physical device or use it as a development tool, this book will show you how. No previous experience is needed as this is written in plain English

  18. Performance comparison of portable direct methanol fuel cell mini-stacks based on a low-cost fluorine-free polymer electrolyte and Nafion membrane

    Energy Technology Data Exchange (ETDEWEB)

    Baglio, V., E-mail: baglio@itae.cnr.i [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Stassi, A.; Modica, E.; Antonucci, V.; Arico, A.S. [CNR-ITAE, Via Salita S. Lucia sopra Contesse 5, 98126 Messina (Italy); Caracino, P.; Ballabio, O.; Colombo, M.; Kopnin, E. [Pirelli Labs, Viale Sarca, 222, 20126 Milano (Italy)


    A low-cost fluorine-free proton conducting polymer electrolyte was investigated for application in direct methanol fuel cell (DMFC) mini-stacks. The membrane consisted of a sulfonated polystyrene grafted onto a polyethylene backbone. DMFC operating conditions specifically addressing portable applications, i.e. passive mode, air breathing, high methanol concentration, room temperature, were selected. The device consisted of a passive DMFC monopolar three-cell stack. Two designs for flow-fields/current collectors based on open-flow or grid-like geometry were investigated. An optimization of the mini-stack structure was necessary to improve utilization of the fluorine-free membrane. Titanium-grid current collectors with proper mechanical stiffness allowed a significant increase of the performance by reducing contact resistance even in the case of significant swelling. A single cell maximum power density of about 18 mW cm{sup -2} was achieved with the fluorine-free membrane at room temperature under passive mode. As a comparison, the performance obtained with Nafion 117 membrane and Ti grids was 31 mW cm{sup -2}. Despite the lower performance, the fluorine-free membrane showed good characteristics for application in portable DMFCs especially with regard to the perspectives of significant cost reduction.

  19. 一种基于栈分配的软件水印算法%Software Watermarking Algorithm Based on Stack Allocation

    Institute of Scientific and Technical Information of China (English)

    张海超; 陈丹


    文章通过对堆栈平衡原理的分析,并在借鉴多媒体扩频水印思想的基础上,提出了基于栈分配的软件水印方案.该方案通过对栈大小的修改来嵌入水印信息,嵌入后又采用了栈访问混淆技术使得软件水印信息与程序代码产生紧密的依赖关系.分析表明,水印信息与程序代码之间的这种紧密依赖关系使得该方案能够有效抵抗多种攻击如添加攻击、去除攻击、变形攻击等,具有很高的鲁棒和隐蔽性.%Software watermarking algorithm based on stack allocation is proposed in this paper by analyzing the stack balance principle and draw on the ideas of multi-media spreaD-spectrum watermark. This scheme embeds watermark information by modifying the size of the stack, and then applies the stack access confusion technology to make software watermark information and the program code produce a close dependency. An analysis shows that the tight dependency between the watermark information and the program code makes the algorithm ef-fectively resist various attacks such as additive attack, subtractive attack, and distortive attack etc. Meanwhile the algorithm has a higher ro-bustness and invisibility.

  20. OpenStack essentials

    CERN Document Server

    Radez, Dan


    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  1. Stacking with stochastic cooling

    Energy Technology Data Exchange (ETDEWEB)

    Caspers, Fritz E-mail:; Moehl, Dieter


    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 10{sup 5} the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some

  2. Stacking for machine learning redshifts applied to SDSS galaxies


    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella


    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised...

  3. Density-fitted open-shell symmetry-adapted perturbation theory and application to π-stacking in benzene dimer cation and ionized DNA base pair steps (United States)

    Gonthier, Jérôme F.; Sherrill, C. David


    Symmetry-Adapted Perturbation Theory (SAPT) is one of the most popular approaches to energy component analysis of non-covalent interactions between closed-shell systems, yielding both accurate interaction energies and meaningful interaction energy components. In recent years, the full open-shell equations for SAPT up to second-order in the intermolecular interaction and zeroth-order in the intramolecular correlation (SAPT0) were published [P. S. Zuchowski et al., J. Chem. Phys. 129, 084101 (2008); M. Hapka et al., ibid. 137, 164104 (2012)]. Here, we utilize density-fitted electron repulsion integrals to produce an efficient computational implementation. This approach is used to examine the effect of ionization on π-π interactions. For the benzene dimer radical cation, comparison against reference values indicates a good performance for open-shell SAPT0, except in cases with substantial charge transfer. For π stacking between hydrogen-bonded pairs of nucleobases, dispersion interactions still dominate binding, in spite of the creation of a positive charge.

  4. Co-based alloys design based on first-principles calculations: Influence of transition metal and rare-earth alloying element on stacking fault energy (United States)

    Achmad, Tria Laksana; Fu, Wenxiang; Chen, Hao; Zhang, Chi; Yang, Zhi-Gang


    The main idea of alloy design is to reduce costs and time required by the traditional (trial and error) method, then finding a new way to develop the efficiency of the alloy design is necessary. In this study, we proposed a new approach to the design of Co-based alloys. It is based on the concept that lowering the ratio of stable and unstable stacking fault energy (SFE) could bring a significant increase in the tendency of partial dislocation accumulation and FCC to HCP phase transformation then enhance mechanical properties. Through the advance development of the computing techniques, first-principles density-functional-theory (DFT) calculations are capable of providing highly accurate structural modeling at the atomic scale without any experimental data. The first-principles calculated results show that the addition of some transition metal (Cr, Mo, W, Re, Os, Ir) and rare-earth (Sc, Y, La, Sm) alloying elements would decrease both stable and unstable SFE of pure Co. The dominant deformation mechanism of binary Co-4.5 at.% X (X = alloying element) is extended partial dislocation. Our study reveals Re, W, Mo and La as the most promising alloying additions for the Co-based alloys design with superior performances. Furthermore, the underlying mechanisms for the SFE reduction can be explained regarding the electronic structure.

  5. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh


    and automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial......Fuel cell systems running on pure hydrogen can efficiently produce electricity and heat for various applications, stationary and mobile. Storage volume can be problematic for stationary fuel cell systems with high run-time demands, but it is especially a challenge when dealing with mobile...

  6. New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults


    Jinghuai Zhang; Chi Xu; Yongbin Jing; Shuhui Lv; Shujuan Liu; Daqing Fang; Jinpeng Zhuang; Milin Zhang; Ruizhi Wu


    Designing the new microstructure is an effective way to accelerate the biomedical application of magnesium (Mg) alloys. In this study, a novel Mg–8Er–1Zn alloy with profuse nano-spaced basal plane stacking faults (SFs) was prepared by combined processes of direct-chill semi-continuous casting, heat-treatment and hot-extrusion. The formation of SFs made the alloy possess outstanding comprehensive performance as the biodegradable implant material. The ultimate tensile strength (UTS: 318 MPa), t...

  7. Flexible, Stretchable, and Rechargeable Fiber-Shaped Zinc-Air Battery Based on Cross-Stacked Carbon Nanotube Sheets. (United States)

    Xu, Yifan; Zhang, Ye; Guo, Ziyang; Ren, Jing; Wang, Yonggang; Peng, Huisheng


    The fabrication of flexible, stretchable and rechargeable devices with a high energy density is critical for next-generation electronics. Herein, fiber-shaped Zn-air batteries, are realized for the first time by designing aligned, cross-stacked and porous carbon nanotube sheets simultaneously that behave as a gas diffusion layer, a catalyst layer, and a current collector. The combined remarkable electronic and mechanical properties of the aligned carbon nanotube sheets endow good electrochemical properties. They display excellent discharge and charge performances at a high current density of 2 A g(-1) . They are also flexible and stretchable, which is particularly promising to power portable and wearable electronic devices.

  8. Using residual stacking to mitigate site-specific errors in order to improve the quality of GNSS-based coordinate time series of CORS (United States)

    Knöpfler, Andreas; Mayer, Michael; Heck, Bernhard


    Within the last decades, positioning using GNSS (Global Navigation Satellite Systems; e.g., GPS) has become a standard tool in many (geo-) sciences. The positioning methods Precise Point Positioning and differential point positioning based on carrier phase observations have been developed for a broad variety of applications with different demands for example on accuracy. In high precision applications, a lot of effort was invested to mitigate different error sources: the products for satellite orbits and satellite clocks were improved; the misbehaviour of satellite and receiver antennas compared to an ideal antenna is modelled by calibration values on absolute level, the modelling of the ionosphere and the troposphere is updated year by year. Therefore, within processing of data of CORS (continuously operating reference sites), equipped with geodetic hardware using a sophisticated strategy, the latest products and models nowadays enable positioning accuracies at low mm level. Despite the considerable improvements that have been achieved within GNSS data processing, a generally valid multipath model is still lacking. Therefore, site specific multipath still represents a major error source in precise GNSS positioning. Furthermore, the calibration information of receiving GNSS antennas, which is for instance derived by a robot or chamber calibration, is valid strictly speaking only for the location of the calibration. The calibrated antenna can show a slightly different behaviour at the CORS due to near field multipath effects. One very promising strategy to mitigate multipath effects as well as imperfectly calibrated receiver antennas is to stack observation residuals of several days, thereby, multipath-loaded observation residuals are analysed for example with respect to signal direction, to find and reduce systematic constituents. This presentation will give a short overview about existing stacking approaches. In addition, first results of the stacking approach

  9. Time-predictable Stack Caching

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar

    complicated and less imprecise. Time-predictable computer architectures provide solutions to this problem. As accesses to the data in caches are one source of timing unpredictability, devising methods for improving the timepredictability of caches are important. Stack data, with statically analyzable......Embedded systems are computing systems for controlling and interacting with physical environments. Embedded systems with special timing constraints where the system needs to meet deadlines are referred to as real-time systems. In hard real-time systems, missing a deadline causes the system to fail...... addresses, provides an opportunity to predict and tighten the WCET of accesses to data in caches. In this thesis, we introduce the time-predictable stack cache design and implementation within a time-predictable processor. We introduce several optimizations to our design for tightening the WCET while...

  10. Stacking with Stochastic Cooling

    CERN Document Server

    Caspers, Friedhelm


    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles seen by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly protected from the Schottky noise of the stack. Vice versa the stack has to be efficiently shielded against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105, the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters)....

  11. Design and Implementation of High Availability Based on OpenStack Sahara Cluster%基于OpenStack Sahara集群的高可用性的设计与实现

    Institute of Scientific and Technical Information of China (English)

    唐攀; 朱志祥; 梁小江; 蔡晓龙


    针对目前大数据处理环境成本高,存在点单故障等问题,使用OpenStack Sahara可以将云计算与大数据结合起来.设计出一种基于OpenStack Sahara集群的高可用性方案,验证结果显示,该方案解决了单点故障问题,实现了自动故障切换,保证了集群的高可用性,从而提高了Sahara集群的性能.

  12. MCFC燃料电池的非线性建模及基于FGA的模糊控制%Nonlinear modeling of molten carbonate fuel cell stack and FGA-based fuzzy control

    Institute of Scientific and Technical Information of China (English)

    戚志东; 朱新坚; 曹广益


    To improve the performance of fuel cells, the operating temperature of molten carbonate fuel cell (MCFC) stack should be controlled within a specified range. In this paper, with the RBF neural network's ability of identifying complex nonlinear systems, a neural network identification model of MCFC stack is developed based on the sampled input-output data. Also, a novel online fuzzy control procedure for the temperature of MCFC stack is developed based on the fuzzy genetic algorithm (FGA). Parameters and rules of the fuzzy controller are optimized. With the neural network identification model, simulation of MCFC stack control is carried out. Validity of the model and the superior performance of the fuzzy controller are demonstrated.

  13. Cognitive neurorehabilitation based on interactive video technology


    Martinez Moreno, Jose Maria; Solana Sánchez, Javier; R. Sánchez; González Palmero, S.; Sánchez González, Patricia; Gómez Pérez, C.; Morell Vilaseca, Marc; Cáceres Taladriz, César; Roig Rovira, Teresa; Tormos Muñoz, Josep M.; Gómez Aguilera, Enrique J.


    Cognitive impairment is the main cause of disability in developed societies. New interactive technologies help therapists in neurorehabilitation in order to increase patients’ autonomy and quality of life. This work proposes Interactive Video (IV) as a technology to develop cognitive rehabilitation tasks based on Activities of Daily Living (ADL). ADL cognitive task has been developed and integrated with eye-tracking technology for task interaction and patients’ performance monitoring....

  14. Interactive Reliability-Based Optimal Design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle; Siemaszko, A.


    Interactive design/optimization of large, complex structural systems is considered. The objective function is assumed to model the expected costs. The constraints are reliability-based and/or related to deterministic code requirements. Solution of this optimization problem is divided in four main...... be used in interactive optimization....

  15. Influence of stacking faults on the properties of GaN-based UV light-emitting diodes grown on non-polar substrates

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Q.; Adivarahan, V.; Shatalov, M.; Gaevski, M.E.; Kuokstis, E.; Yang, J.W.; Maruska, H.P.; Gong, Z.; Asif Khan, M. [Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina (United States); Liu, R.; Bell, A.; Ponce, F.A. [Department of Physics and Astronomy, Arizona State University, Tempe, Arizona (United States)


    We report on the reduction of defect densities in non-polar a-plane GaN films over r-plane sapphire achieved by epitaxial laterally overgrowth (ELOG) approach. A mask pattern was used to produce ELOG GaN with wing region width of about 30 {mu}m. Based on transmission electron microscopy (TEM) results, the window regions have stacking faults density of {proportional_to}10{sup 6}cm {sup -1} and threading dislocation density of {proportional_to}10 {sup 10} cm {sup -2}. Both ELOG Ga-face and N-face wing regions have stacking fault density of {proportional_to}10 {sup 5} cm {sup -1}, and dislocation density less than 10 {sup 8} cm {sup -2}. Cathodoluminescence studies reveal the difference in defect densities between N-faced and Ga-faced wings. GaN-based UV light-emitting diode formed on Ga-faced wing shows stronger quantum well emission and weaker parasitic emission than that formed on N-faced wing. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Spatial interactions in agent-based modeling

    CERN Document Server

    Ausloos, Marcel; Merlone, Ugo


    Agent Based Modeling (ABM) has become a widespread approach to model complex interactions. In this chapter after briefly summarizing some features of ABM the different approaches in modeling spatial interactions are discussed. It is stressed that agents can interact either indirectly through a shared environment and/or directly with each other. In such an approach, higher-order variables such as commodity prices, population dynamics or even institutions, are not exogenously specified but instead are seen as the results of interactions. It is highlighted in the chapter that the understanding of patterns emerging from such spatial interaction between agents is a key problem as much as their description through analytical or simulation means. The chapter reviews different approaches for modeling agents' behavior, taking into account either explicit spatial (lattice based) structures or networks. Some emphasis is placed on recent ABM as applied to the description of the dynamics of the geographical distribution o...

  17. Immersion in Movement-Based Interaction (United States)

    Pasch, Marco; Bianchi-Berthouze, Nadia; van Dijk, Betsy; Nijholt, Anton

    The phenomenon of immersing oneself into virtual environments has been established widely. Yet to date (to our best knowledge) the physical dimension has been neglected in studies investigating immersion in Human-Computer Interaction (HCI). In movement-based interaction the user controls the interface via body movements, e.g. direct manipulation of screen objects via gestures or using a handheld controller as a virtual tennis racket. It has been shown that physical activity affects arousal and that movement-based controllers can facilitate engagement in the context of video games. This paper aims at identifying movement features that influence immersion. We first give a brief survey on immersion and movement-based interfaces. Then, we report results from an interview study that investigates how users experience their body movements when interacting with movement-based interfaces. Based on the interviews, we identify four movement-specific features. We recommend them as candidates for further investigation.

  18. The electronic structure of the four nucleotide bases in DNA, of their stacks, and of their homopolynucleotides in the absence and presence of water (United States)

    Ladik, János; Bende, Attila; Bogár, Ferenc


    Using the ab initio Hartree-Fock crystal orbital method in its linear combination of atomic orbital form, the energy band structure of the four homo-DNA-base stacks and those of poly(adenilic acid), polythymidine, and polycytidine were calculated both in the absence and presence of their surrounding water molecules. For these computations Clementi's double ζ basis set was applied. To facilitate the interpretation of the results, the calculations were supplemented by the calculations of the six narrow bands above the conduction band of poly(guanilic acid) with water. Further, the sugar-phosphate chain as well as the water structures around poly(adenilic acid) and polythymidine, respectively, were computed. Three important features have emerged from these calculations. (1) The nonbase-type or water-type bands in the fundamental gap are all close to the corresponding conduction bands. (2) The very broad conduction band (1.70eV) of the guanine stack is split off to seven narrow bands in the case of poly(guanilic acid) (both without and with water) showing that in the energy range of the originally guanine-stack-type conduction band, states belonging to the sugar, to PO4-, to Na+, and to water mix with the guanine-type states. (3) It is apparent that at the homopolynucleotides with water in three cases the valence bands are very similar (polycytidine, because it has a very narrow valence band, does not fall into this category). We have supplemented these calculations by the computation of correlation effects on the band structures of the base stacks by solving the inverse Dyson equation in its diagonal approximation taken for the self-energy the MP2 many body perturbation theory expression. In all cases the too large fundamental gap decreased by 2-3eV. In most cases the widths of the valence and conduction bands, respectively, decreased (but not in all cases). This unusual behavior is most probably due to the rather large complexity of the systems. From all this

  19. Movement-based Interaction in Camera Spaces

    DEFF Research Database (Denmark)

    Eriksson, Eva; Riisgaard Hansen, Thomas; Lykke-Olesen, Andreas


    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movement-based projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space......, relations, and feedback. We see these as central for describing and analysing movement-based systems using camera tracking and we show how these three concepts can be used to analyse other camera tracking applications....

  20. Design and implementation of WMGCP stack based on DSP%基于DSP的WMGCP协议栈的设计与实现

    Institute of Scientific and Technical Information of China (English)

    郭翠娟; 苗长云; 武志刚


    基于DSP技术设计实现了一种运行于局域网VoIP电话通信系统的WMGCP协议栈.采用分层结构和会话状态机设计,完成基本呼叫、群呼、全呼和扩音呼叫功能,实现WMGCP消息的构建、存储和解析,利用μC/OS-Ⅱ嵌入式实时操作系统创建WMGCP任务.实验表明该协议栈运行稳定,节省了系统资源和成本.%A DSP-based WMGCP stack running on LAN IP telephony system is implemented in this paper. The WMGCP stack adopts layered structure and session state machine, and accomplishes some functions such as individual calling, group calling, full calling, amplifying calling, storage and parse for WMGCP messages. The WMGCP task is created with u.C/OS-II embedded operating system, which shows the good stability and low cost in practice.

  1. High Volumetric Energy Density Asymmetric Supercapacitors Based on Well-Balanced Graphene and Graphene-MnO2 Electrodes with Densely Stacked Architectures. (United States)

    Sheng, Lizhi; Jiang, Lili; Wei, Tong; Fan, Zhuangjun


    The well-matched electrochemical parameters of positive and negative electrodes, such as specific capacitance, rate performance, and cycling stability, are important for obtaining high-performance asymmetric supercapacitors. Herein, a facile and cost-effective strategy is demonstrated for the fabrication of 3D densely stacked graphene (DSG) and graphene-MnO2 (G-MnO2 ) architectures as the electrode materials for asymmetric supercapacitors (ASCs) by using MnO2 -intercalated graphite oxide (GO-MnO2 ) as the precursor. DSG has a stacked graphene structure with continuous ion transport network in-between the sheets, resulting in a high volumetric capacitance of 366 F cm(-3) , almost 2.5 times than that of reduced graphene oxide, as well as long cycle life (93% capacitance retention after 10 000 cycles). More importantly, almost similar electrochemical properties, such as specific capacitance, rate performance, and cycling stability, are obtained for DSG as the negative electrode and G-MnO2 as the positive electrode. As a result, the assembled ASC delivers both ultrahigh gravimetric and volumetric energy densities of 62.4 Wh kg(-1) and 54.4 Wh L(-1) (based on total volume of two electrodes) in 1 m Na2 SO4 aqueous electrolyte, respectively, much higher than most of previously reported ASCs in aqueous electrolytes.

  2. Evidence-Based Interactive Management of Change

    Directory of Open Access Journals (Sweden)

    Albert Fleischmann


    Full Text Available Evidence-based interactive management of change means hands-on experience of modified work processes, given evidence of change. For this kind of pro-active organizational development support we use an organisational process memory and a communication-based representation technique for role-specific and task-oriented process execution. Both are effective means for organizations becoming agile through interactively modelling the business at the process level and re-constructing or re-arranging process representations according to various needs. The tool allows experiencing role-specific workflows, as the communication-based refinement of work models allows for executable process specifications. When presenting the interactive processes to individuals involved in the business processes, changes can be explored interactively in a context-sensitive way before re-implementing business processes and information systems. The tool is based on a service-oriented architecture and a flexible representation scheme comprising the exchange of message between actors, business objects and actors (roles. The interactive execution of workflows does not only enable the individual reorganization of work but also changes at the level of the entire organization due to the represented interactions.

  3. An interactive segmentation method based on superpixel

    DEFF Research Database (Denmark)

    Yang, Shu; Zhu, Yaping; Wu, Xiaoyu


    This paper proposes an interactive image-segmentation method which is based on superpixel. To achieve fast segmentation, the method is used to establish a Graphcut model using superpixels as nodes, and a new energy function is proposed. Experimental results demonstrate that the authors' method has...... excellent performance in terms of segmentation accuracy and computation efficiency compared with other segmentation algorithm based on pixels....

  4. Activity-Based Collaboration for Interactive Spaces

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Esbensen, Morten; Tabard, Aurélien


    Activity-based computing (ABC) is a conceptual and technological framework for designing interactive systems that offers a better mapping between the activities people conduct and the digital entities they use. In ABC, rather than interacting directly with lower-level technical entities like files......, folder, documents, etc., users are able to interact with ‘activities’ which encapsulate files and other low-level resources. In ABC an ‘activity’ can be shared between collaborating users and can be accessed on different devices. As such, ABC is a framework that suits the requirements of designing...... interactive spaces. This chapter provides an overview of ABC with a special focus on its support for collaboration (‘Activity Sharing’) and multiple devices (‘Activity Roaming’). These ABC concepts are illustrated as implemented in two different interactive spaces technologies; ReticularSpaces [1] and the e...

  5. An Optical Biosensor based on Immobilization of Laccase and MBTH in Stacked Films for the Detection of Catechol.

    Directory of Open Access Journals (Sweden)

    Hamidah Sidek


    Full Text Available The fabrication of an optical biosensor by using stacked films where 3-methyl-2-benzothiazolinone hydrazone (MBTH was immobilized in a hybrid nafion/sol-gelsilicate film and laccase in a chitosan film for the detection of phenolic compounds wasdescribed. Quinone and/or phenoxy radical product from the enzymatic oxidation ofphenolic compounds was allowed to couple with MBTH to form a colored azo-dye productfor spectrophometric detection. The biosensor demonstrated a linear response to catecholconcentration range of 0.5-8.0 mM with detection limit of 0.33 mM and response time of10 min. The reproducibility of the fabricated biosensor was good with RSD value of 5.3 %(n = 8 and stable for at least 2 months. The use of the hybrid materials of nafion/sol-gelsilicate to immobilize laccase has altered the selectivity of the enzyme to various phenoliccompounds such as catechol, guaicol, o-cresol and m-cresol when compared to the non-immobilized enzyme. When immobilized in this hybrid film, the biosensor response onlyto catechol and not other phenolic compounds investigated. Immobilization in this hybridmaterial has enable the biosensor to be more selective to catechol compared with the non-immobilized enzyme. This shows that by a careful selection of different immobilizationmatrices, the selectivity of an enzyme can be modified to yield a biosensor with goodselectivity towards certain targeted analytes.

  6. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach. (United States)

    Yurenko, Yevgen P; Novotný, Jan; Sklenář, Vladimir; Marek, Radek


    The study aimed to cast light on the structure and internal energetics of guanine- and xanthine-based model DNA quadruplexes and the physico-chemical nature of the non-covalent interactions involved. Several independent approaches were used for this purpose: DFT-D3 calculations, Quantum Theory of Atoms in Molecules, Natural Bond Orbital Analysis, Energy Decomposition Analysis, Compliance Constant Theory, and Non-Covalent Interaction Analysis. The results point to an excellent degree of structural and energetic compatibility between the two types of model quadruplexes. This fact stems from both the structural features (close values of van der Waals volumes, pore radii, geometrical parameters of the H-bonds) and the energetic characteristics (comparable values of the energies of formation). It was established that hydrogen bonding makes the greatest (∼50%) contribution to the internal stability of the DNA quadruplexes, whereas the aromatic base stacking and ion coordination terms are commensurable and account for the rest. Energy decomposition analysis performed for guanine (Gua) and xanthine (Xan) quartets B4 and higher-order structures consisting of two or three stacked quartets indicates that whereas Gua structures benefit from a high degree of H-bond cooperativity, Xan models are characterized by a more favorable and cooperative π-π stacking. The results of electron density topological analysis show that Na(+)/K(+) ion coordination deeply affects the network of non-covalent interactions in Gua models due to the change in the twist angle between the stacked tetrads. For Xan models, ion coordination makes tetrads in stacks more planar without changing the twist angle. Therefore, the presence of the ion seems to be essential for the formation of planar stacks in Xan-based DNA quadruplexes. Detailed study of the nature of ion-base coordination suggests that this interaction has a partially covalent character and cannot be considered as purely electrostatic

  7. Stack filter classifiers

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory


    Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack Filters in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack Filters remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a step towards Stack Filter Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.

  8. Cosmic ray test of INO RPC stack

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, M. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Datar, V.M. [Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kalmani, S.D.; Lahamge, S.M.; Mondal, N.K.; Nagaraj, P.; Pal, S.; Reddy, L.V.; Redij, A.; Samuel, D.; Saraf, M.N. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Satyanarayana, B., E-mail: [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Shinde, R.R.; Verma, P. [Department of High Energy Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India)


    The India-based Neutrino Observatory (INO) collaboration is planning to build a 50 kt magnetised iron calorimeter (ICAL) detector using glass Resistive Plate Chambers (RPCs) as active detector elements. A stack of 12 such glass RPCs of 1 m Multiplication-Sign 1 m in area is tracking cosmic ray muons for over three years. In this paper, we will review the constructional aspects of the stack and discuss the performance of the RPCs using this cosmic ray data.

  9. Towards highly efficient red thermally activated delayed fluorescence materials by the control of intra-molecular π-π stacking interactions (United States)

    Zhang, Yunge; Zhang, Dongdong; Cai, Minghan; Li, Yilang; Zhang, Deqiang; Qiu, Yong; Duan, Lian


    Thermally activated delayed fluorescence (TADF) materials have attracted much attention as they can achieve 100% theoretical internal quantum efficiency without using expensive noble metals. However, efficient red TADF emitters are hard to realize according to the energy gap law. Here, three donor-acceptor-donor type TADF emitters with the same acceptor of o-phthalodinitrile (PN) but different donors (9, 9-dimethyl-9, 10-dihydroacridine (DMAC), phenoxazine (PXZ), and phenothiazine (PTZ) for DMAC-PN, PXZ-PN, and PTZ-PN, respectively) have been synthesized, and it is observed that the performance of the emitters can be improved by reducing the intra-molecular π-π stacking. DMAC-PN with reduced intra-molecular π-π stacking shows a photoluminescence quantum yield (PLQY) of 20.2% in degassed toluene solution, much higher than those of PXZ-PN, and PTZ-PN (0.8%, 0.2%, respectively). An organic light-emitting diode (OLED) employing DMAC-PN doped into 4,4‧-bis(9H-carbazol-9-yl)biphenyl (CBP) as the emitting layer exhibits a maximum external quantum efficiency (EQE) of 10.2% with the emission peak at 564 nm. Moreover, when DMAC-PN is doped into a polar host, bis[2-(diphenylphosphino)phenyl] ether oxide (DPEPO), the OLED shows a large redshift of the emission maximum to 594 nm, while maintaining a peak EQE as high as 7.2%, indicating that efficient red TADF OLEDs can be fabricated by doping orange TADF emitters into hosts with proper polarity.

  10. Importance of π-stacking interactions in the hydrogen atom transfer reactions from activated phenols to short-lived N-oxyl radicals. (United States)

    Mazzonna, Marco; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela


    A kinetic study of the hydrogen atom transfer from activated phenols (2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols, 2,2,5,7,8-pentamethylchroman-6-ol, caffeic acid, and (+)-cathechin) to a series of N-oxyl radical (4-substituted phthalimide-N-oxyl radicals (4-X-PINO), 6-substituted benzotriazole-N-oxyl radicals (6-Y-BTNO), 3-quinazolin-4-one-N-oxyl radical (QONO), and 3-benzotriazin-4-one-N-oxyl radical (BONO)), was carried out by laser flash photolysis in CH3CN. A significant effect of the N-oxyl radical structure on the hydrogen transfer rate constants (kH) was observed with kH values that monotonically increase with increasing NO-H bond dissociation energy (BDENO-H) of the N-hydroxylamines. The analysis of the kinetic data coupled to the results of theoretical calculations indicates that these reactions proceed by a hydrogen atom transfer (HAT) mechanism where the N-oxyl radical and the phenolic aromatic rings adopt a π-stacked arrangement. Theoretical calculations also showed pronounced structural effects of the N-oxyl radicals on the charge transfer occurring in the π-stacked conformation. Comparison of the kH values measured in this study with those previously reported for hydrogen atom transfer to the cumylperoxyl radical indicates that 6-CH3-BTNO is the best N-oxyl radical to be used as a model for evaluating the radical scavenging ability of phenolic antioxidants.

  11. Evolutionary algorithm based configuration interaction approach

    CERN Document Server

    Chakraborty, Rahul


    A stochastic configuration interaction method based on evolutionary algorithm is designed as an affordable approximation to full configuration interaction (FCI). The algorithm comprises of initiation, propagation and termination steps, where the propagation step is performed with cloning, mutation and cross-over, taking inspiration from genetic algorithm. We have tested its accuracy in 1D Hubbard problem and a molecular system (symmetric bond breaking of water molecule). We have tested two different fitness functions based on energy of the determinants and the CI coefficients of determinants. We find that the absolute value of CI coefficients is a more suitable fitness function when combined with a fixed selection scheme.

  12. Contemporary sample stacking in analytical electrophoresis. (United States)

    Šlampová, Andrea; Malá, Zdena; Pantůčková, Pavla; Gebauer, Petr; Boček, Petr


    Sample stacking is a term denoting a multifarious class of methods and their names that are used daily in CE for online concentration of diluted samples to enhance separation efficiency and sensitivity of analyses. The essence of these methods is that analytes present at low concentrations in a large injected sample zone are concentrated into a short and sharp zone (stack) in the separation capillary. Then the stacked analytes are separated and detected. Regardless of the diversity of the stacking electromigration methods, one can distinguish four main principles that form the bases of nearly all of them: (i) Kohlrausch adjustment of concentrations, (ii) pH step, (iii) micellar methods, and (iv) transient ITP. This contribution is a continuation of our previous reviews on the topic and brings an overview of papers published during 2010-2012 and relevant to the mentioned principles (except the last one which is covered by another review in this issue).

  13. Design of smart car scheduling system based on TI Z-STACK%基于TI Z-STACK的智能小车调度系统设计

    Institute of Scientific and Technical Information of China (English)



    Founded on infrared sensor, ultrasonic sensor, MCS-51 and CC2430 single-chip microcomputers, a smart car scheduling system based on Tl Z-STACK protocol was designed to realize professional training for Internet of Things (IOT) application technology. The formation process of a wireless network and the software implementation are analyzed.%针对高职院校物联网应用技术专业实训问题,基于MCS-51及CC2430单片机、红外及超声波传感器,设计了一套基于TI Z-STACK协议栈的智能小车调度系统.分析了无线网的组建流程及软件实现方法.

  14. Stacked Sequential Learning (United States)


    a constant factor of K + 2. (To see this, note sequential stacking requires training K+2 classifiers: the classifiers f1, . . . , fK used in cross...on the non- sequential learners (ME and VP) but improves per- formance of the sequential learners (CRFs and VPH - MMs) less consistently. This pattern

  15. po_stack_movie

    DEFF Research Database (Denmark)


    po_stack® er et reolsystem, hvis enkle elementer giver stor flexibilitet, variation og skulpturel virkning. Elementerne stables og forskydes frit, så reolens rum kan vendes til begge sider, være åbne eller lukkede og farvekombineres ubegrænset. Reolen kan let ombygges, udvides eller opdeles, når ...

  16. Learning SaltStack

    CERN Document Server

    Myers, Colton


    If you are a system administrator who manages multiple servers, then you know how difficult it is to keep your infrastructure in line. If you've been searching for an easier way, this book is for you. No prior experience with SaltStack is required.

  17. 一种基于OpenStack的云存储方案%A Cloud Storage Solution Based on OpenStack

    Institute of Scientific and Technical Information of China (English)

    徐芳辰; 沈苏彬


    云存储作为新兴存储模式,已经被广泛应用于大规模数据的存储中.NoSQL数据库系统面向特定应用,具有可伸缩性和适应动态需求的灵活性,已经逐步在特定的应用领域取代了关系数据库.CouchDB作为文档型数据库,具有高可用性、灵活性等特点,适用于各种部署场景.然而CouchDB结构简单,较难扩展,可伸缩性较差.通过研究,实现了Couch-DB在OpenStack云平台上的部署方法,利用OpenStack虚拟化技术,设计了保证存储资源、计算资源和网络资源的动态分配与管理的云存储方案,以解决CouchDB的可伸缩问题;实现了基于OpenStack的CouchDB实验原型以验证云存储方案的有效性.实验结果表明,该方案能有效满足海量数据的存储需求,提高了存储的可缩放性.%The cloud storage as an emerging storage model,has been widely used in large-scale data storage. NoSQL database is oriented for the specific application with horizontal scalability and flexibility to adapt to the dynamic demand,which gradually replaces the rela-tional database in some specific application domains. CouchDB as a document database,with high availability and flexibility,can be ap-plied for various deployment scenarios. However the CouchDB has the disadvantages of simple structure,poor scalability and extensibili-ty. In this paper,the CouchDB deploys in OpenStack cloud platform. The improved application scheme of cloud storage is proposed,using the OpenStack virtualization technology,guaranteeing the storage,computing and network resources to be allocation and management dy-namically,which solves the problem of scalability. The CouchDB storage prototype based on OpenStack is implemented. The experimental results show that the prototype can effectively meet the storage demand of mass data,improving storage scalability.

  18. Investigation of the Interfaces in Ni-FUSI/Hf-Based/Si and Ni-FUSI/SiO2/Si Stacks by Physical and Electrical Characterization Techniques (United States)

    Tan, S. Y.


    The combination of full Ni silicidation (Ni-FUSI) gate electrodes and hafnium-based high- k gate dielectrics is one of the most promising replacements for poly-Si/SiO2/Si gate stacks for the future complementary metal-oxide-semiconductor (CMOS) sub-45-nm technology node. The key challenges to successfully adopting the Ni-FUSI/high- k dielectric/Si gate stack for advanced CMOS technology are mostly due to the interfacial properties. The origins of the electrical and physical characteristics of the Ni-FUSI/dielectric oxide interface and dielectric oxide/bulk interface were studied in detail. We found that Ni-FUSI undergoes a phase transformation during silicide formation, which depends more on annealing temperature than on the underlying gate dielectric material. The correlations of Ni-Si phase transformations with their electrical and physical changes were established by sheet resistance measurements, x-ray diffraction (XRD), atomic force microscopy (AFM), and x-ray photoelectron spectroscopy (XPS) analyses. The leakage current density-voltage ( J- V) and capacitance-voltage ( C- V) measurement techniques were employed to study the dielectric oxide/Si interface. The effects of the postdeposition annealing (PDA) treatment on the interface charges of dielectric oxides were studied. We found that the PDA can effectively reduce the trapping density and leakage current and eliminate hysteresis in the C- V curves. In addition, the changes in chemical bonding features at HfO2/Si and HfSiO/Si interfaces due to PDA treatment were evaluated by XPS measurements. XPS analysis provides a better interpretation of the electrical outcomes. As a result, HfSiO films exhibited superior performance in terms of thermal stability and electrical characteristics.

  19. Reactions of the phthalimide N-oxyl radical (PINO) with activated phenols: the contribution of π-stacking interactions to hydrogen atom transfer rates. (United States)

    D'Alfonso, Claudio; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela


    The kinetics of reactions of the phthalimide N-oxyl radical (PINO) with a series of activated phenols (2,2,5,7,8-pentamethylchroman-6-ol (PMC), 2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols) were investigated by laser flash photolysis in CH(3)CN and PhCl in order to establish if the reactions with PINO can provide a useful tool for evaluating the radical scavenging ability of phenolic antioxidants. On the basis of the small values of deuterium kinetic isotope effects, the relatively high and negative ρ values in the Hammett correlations and the results of theoretical calculations, we suggest that these reactions proceed by a hydrogen atom transfer (HAT) mechanism having a significant degree of charge transfer resulting from a π-stacked conformation between PINO and the aromatic ring of the phenols. Kinetic solvent effects were analyzed in detail for the hydrogen transfer from 2,4,6-trimethylphenol to PINO and the data obtained are in accordance with the Snelgrove-Ingold equation for HAT. Experimental rate constants for the reactions of PINO with activated phenols are in accordance with those predicted by applying the Marcus cross relation.

  20. Tuning of Supramolecular Architectures of l-Valine-Containing Dicyanoplatinum(II) 2,2'-Bipyridine Complexes by Metal-Metal, π-π Stacking, and Hydrogen-Bonding Interactions. (United States)

    Fu, Heidi Li-Ki; Po, Charlotte; He, Hexiang; Leung, Sammual Yu-Lut; Wong, Kam Sing; Yam, Vivian Wing-Wah


    A series of newly synthesized dicyanoplatinum(II) 2,2'-bipyridine complexes exhibits self-assembly properties in solution after the incorporation of the l-valine amino units appended with various hydrophobic motifs. These l-valine-derived substituents were found to have critical control over the aggregation behaviors of the complexes in the solution state. On one hand, one of the complexes was found to exhibit interesting circularly polarized luminescence (CPL) signals at low temperature due to the formation of chiral spherical aggregates in the temperature-dependent studies. On the other hand, systematic transformation from less uniform aggregates to well-defined fibrous and rod-like structures via Pt⋅⋅⋅Pt and π-π stacking interactions has also been observed in the mixed-solvent studies. These changes were monitored by UV/Vis absorption, emission, circular dichroism (CD), and CPL spectroscopies, and morphologies were studied by electron microscopy.

  1. Hydrogen bonding and stacking pi-pi interactions in solid 6-thioguanine and 6-mercaptopurine (antileukemia and antineoplastic drugs) studied by NMR-NQR double resonance spectroscopy and density functional theory. (United States)

    Latosińska, J N; Seliger, J; Zagar, V; Burchardt, D V


    A chemotherapeutic drug 6-thioguanine (2-amino-1,7-dihydro-6H-purine-6-thione, 6-TG) has been studied experimentally in the solid state by NMR-NQR double resonance and theoretically by the density functional theory. Fourteen resonance frequencies on (14)N have been detected and assigned to particular nitrogen sites in the 6-TG molecule. A valid assignment of NQR frequencies for 6-mercaptopurine (6-MP) has been proposed. The effects of molecular aggregations, related to intermolecular hydrogen bonding and stacking pi-pi interactions on the NQR parameters have been analyzed within the DFT and AIM (atoms in molecules) formalism for 6-TG and 6-mercaptopurine (6-MP). The so-called global reactivity descriptors have been calculated to compare the properties of molecules of 6-TG and 6-MP, to check the effect of -NH(2) group as well as to identify the differences in crystal packing.

  2. Simple model of stacking-fault energies

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Jacobsen, Lærke Wedel


    -density calculations of stacking-fault energies, and gives a simple way of understanding the calculated energy contributions from the different atomic layers in the stacking-fault region. The two parameters in the model describe the relative energy contributions of the s and d electrons in the noble and transition......A simple model for the energetics of stacking faults in fcc metals is constructed. The model contains third-nearest-neighbor pairwise interactions and a term involving the fourth moment of the electronic density of states. The model is in excellent agreement with recently published local...... metals, and thereby explain the pronounced differences in energetics in these two classes of metals. The model is discussed in the framework of the effective-medium theory where it is possible to find a functional form for the pair potential and relate the contribution associated with the fourth moment...

  3. OpenStack cloud security

    CERN Document Server

    Locati, Fabio Alessandro


    If you are an OpenStack administrator or developer, or wish to build solutions to protect your OpenStack environment, then this book is for you. Experience of Linux administration and familiarity with different OpenStack components is assumed.

  4. Fuel Cell Stacks (United States)


    AD-A009 587 FUEL CELL STACKS Bernard S. Baker Energy Research Corporation Prepared for: Army Mobility Equipment Research and Development Center April... Mobility Equipment Research and Development Center Unclassified For- Belvoir, Virginia 22060 [15. DE.CLASSIFICATION/L.TWNOGRADING SCREOUJLE 16...the majority of effort has been directed at translating technoilogy for small comn- ponent manufacture on a laboratory scale into large size components

  5. Interactive analysis of geodata based intelligence (United States)

    Wagner, Boris; Eck, Ralf; Unmüessig, Gabriel; Peinsipp-Byma, Elisabeth


    When a spatiotemporal events happens, multi-source intelligence data is gathered to understand the problem, and strategies for solving the problem are investigated. The difficulties arising from handling spatial and temporal intelligence data represent the main problem. The map might be the bridge to visualize the data and to get the most understand model for all stakeholders. For the analysis of geodata based intelligence data, a software was developed as a working environment that combines geodata with optimized ergonomics. The interaction with the common operational picture (COP) is so essentially facilitated. The composition of the COP is based on geodata services, which are normalized by international standards of the Open Geospatial Consortium (OGC). The basic geodata are combined with intelligence data from images (IMINT) and humans (HUMINT), stored in a NATO Coalition Shared Data Server (CSD). These intelligence data can be combined with further information sources, i.e., live sensors. As a result a COP is generated and an interaction suitable for the specific workspace is added. This allows the users to work interactively with the COP, i.e., searching with an on board CSD client for suitable intelligence data and integrate them into the COP. Furthermore, users can enrich the scenario with findings out of the data of interactive live sensors and add data from other sources. This allows intelligence services to contribute effectively to the process by what military and disaster management are organized.

  6. Fungal melanins differ in planar stacking distances. (United States)

    Casadevall, Arturo; Nakouzi, Antonio; Crippa, Pier R; Eisner, Melvin


    Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  7. The crucial role of chelate-chelate stacking interactions in the crystal structure of a square planar copper(II) complex (United States)

    Jana, Subrata; Khan, Samim; Bauzá, Antonio; Frontera, Antonio; Chattopadhyay, Shouvik


    A square planar copper(II) complex has been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction study. The X-ray structure of the complex is used to analyze the crucial role of the π-interactions in the solid state. The complex also shows significant hydrogen-bonding interactions. Moreover, we have evaluated energetically both interactions by means of high level DFT calculations (BP86-D3/def2-TZVP) and characterized them using the Bader's theory of "atoms-in-molecules".

  8. Electron attachment to solvated dGpdG: effects of stacking on base-centered and phosphate-centered valence-bound radical anions. (United States)

    Gu, Jiande; Liang, Guoming; Xie, Yaoming; Schaefer, Henry F


    To explore the nature of electron attachment to guanine-centered DNA single strands in the presence of a polarizable medium, a theoretical investigation of the DNA oligomer dinucleoside phosphate deoxyguanylyl-3',5'-deoxyguanosine (dGpdG) was performed by using density functional theory. Four different electron-distribution patterns for the radical anions of dGpdG in aqueous solution have been located as local minima on the potential energy surface. The excess electron is found to reside on the proton of the phosphate group (dGp(H-)dG), or on the phosphate group (dGp(.-)dG), or on the nucleobase at the 5' position (dG(.-)pdG), or on the nucleobase at the 3' position (dGpdG(.-)), respectively. These four radical anions are all expected to be electronically viable species under the influence of the polarizable medium. The predicted energetics of the radical anions follows the order dGp(.-)dG>dG(.-)pdG>dGpdG(.-)>dGp(H-)dG. The base-base stacking pattern in DNA single strands seems unaffected by electron attachment. On the contrary, intrastrand H-bonding is greatly influenced by electron attachment, especially in the formation of base-centered radical anions. The intrastrand H-bonding patterns revealed in this study also suggest that intrastrand proton transfer might be possible between successive guanines due to electron attachment to DNA single strands.

  9. Stabilization of RNA stacking by pseudouridine. (United States)

    Davis, D R


    The effect of the modified nucleoside pseudouridine (psi) on RNA structure was compared with uridine. The extent of base stacking in model RNA oligonucleotides was measured by 1H NMR, UV, and CD spectroscopy. The UV and CD results indicate that the model single-stranded oligoribonucleotides AAUA and AA psi A form stacked structures in solution and the CD results for AA psi A are consistent with a general A-form helical conformation. The AA psi A oligomer exhibits a greater degree of UV hypochromicity over the temperature range 5-55 degrees C, consistent with a better stacked, more A-form structure compared with AAUA. The extent of stacking for each nucleotide residue was inferred from the percent 3'-endo sugar conformation as indicated by the H1'-H2' NMR scalar coupling. This indirect indication of stacking was confirmed by sequential NOE experiments. NMR measurements as a function of temperature indicate that pseudouridine forms a more stable base stacking arrangement than uridine, an effect that is propagated throughout the helix to stabilize stacking of neighboring purine nucleosides. The N1-H imino proton in AA psi A exchanges slowly with solvent, suggesting a role for the extra imino proton in stabilizing the conformation of pseudouridine. These results show that the conformational stabilization is an intrinsic property of pseudouridine occurring at the nucleotide level. The characteristics of pseudouridine in these models are consistent with earlier studies on intact rRNA, indicating that pseudouridine probably performs the same stabilizing function in most structural contexts. PMID:8559660

  10. When is Stacking Confusing?: The Impact of Confusion on Stacking in Deep HI Galaxy Surveys

    CERN Document Server

    Jones, Michael G; Giovanelli, Riccardo; Papastergis, Emmanouil


    We present an analytic model to predict the HI mass contributed by confused sources to a stacked spectrum in a generic HI survey. Based on the ALFALFA correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest SKA-precursor HI surveys. Stacking with LADUMA and DINGO UDEEP data will only be mildly impacted by confusion if their target synthesised beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES' 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST will be the most impeded by confusion, with HI surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the reds...

  11. New max-flow algorithm in network based on stack%基于栈的网络最大流算法

    Institute of Scientific and Technical Information of China (English)



    Facing the question of max-flow in network,based on cut set define and max-flow rain-cut theorem,with adjacency matrix to deposit network data,using the data structure of stack to organise network data,traversing all cut sets,the minimum ca-pacity in all cut sets is max-flow in network.The other branches,besides the branches of the minimum cut set,are calculated by solving the node flow balance equation in network.The algorithm pioneers a new way to solve the question of max-flow in net-work,and breaks the localization of cut set define and max-flow rain-cut theorem that have only theory value,do not solve practie max-flow in network.The key branches in network that decide max-flow in network are made easily by the way of the minimum cut set.The direct technology support for enlarging max-flow in network is provided by the algorithm.Algorithm testing shows:The new max-flow algorithm in network based on stack is completely feasible and available.%针对网络最大流问题,在割集定义和最大流-最小割定理基础上,以邻接矩阵为网络数据存储结构,利用栈作为数据组织形式,遍历网络中所有割集,最小容量的割集即为网络最大流.流量网络其余分支流量由网络结点流量平衡条件来求解.该算法具有:开辟了一种求解流量网络最大流的新的方法,克服了割集和最大流-最小割定理仅仅具有理论价值、没有实用价值的局限性;根据最小容量的割集可以方便确定决定网络最大流的关键分支,为扩展网络流量提供直接技术支持.算法测试表明:基于栈的网络最大流算法是完全可行和有效的.

  12. Comparison of Bending Creep Behavior of Bamboo-based Composites Manufactured by Two Types of Stacking Sequences


    Xinxin Ma; Ge Wang; Zehui Jiang; Yu Xian; Haidong Li


    The study of viscoelastic and mechano-sorptive creep on bamboo laminated veneer lumber (BLVL) and bamboo/poplar plywood (BPP) is described in this paper. Bending creep tests parallel to the grain were carried out on two bamboo-based composites for a length of 90 days. The specimens measured 500 mm × 20 mm × 12 mm. Based on the experimental data, the creep curves of two boards were evaluated. The results are summarized as follows: (1) the anti-creep property of BLVL was better than that of BPP...

  13. Covariant Evolutionary Event Analysis for Base Interaction Prediction Using a Relational Database Management System for RNA. (United States)

    Xu, Weijia; Ozer, Stuart; Gutell, Robin R


    With an increasingly large amount of sequences properly aligned, comparative sequence analysis can accurately identify not only common structures formed by standard base pairing but also new types of structural elements and constraints. However, traditional methods are too computationally expensive to perform well on large scale alignment and less effective with the sequences from diversified phylogenetic classifications. We propose a new approach that utilizes coevolutional rates among pairs of nucleotide positions using phylogenetic and evolutionary relationships of the organisms of aligned sequences. With a novel data schema to manage relevant information within a relational database, our method, implemented with a Microsoft SQL Server 2005, showed 90% sensitivity in identifying base pair interactions among 16S ribosomal RNA sequences from Bacteria, at a scale 40 times bigger and 50% better sensitivity than a previous study. The results also indicated covariation signals for a few sets of cross-strand base stacking pairs in secondary structure helices, and other subtle constraints in the RNA structure.

  14. ECCE Toolkit: Prototyping Sensor-Based Interaction (United States)

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma


    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit. PMID:28241502

  15. ECCE Toolkit: Prototyping Sensor-Based Interaction. (United States)

    Bellucci, Andrea; Aedo, Ignacio; Díaz, Paloma


    Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators). Prototyping physical interaction is hindered by the challenges of: (1) programming interactions among physical sensors/actuators and digital interfaces; (2) implementing functionality for different platforms in different programming languages; and (3) building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems), a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  16. ECCE Toolkit: Prototyping Sensor-Based Interaction

    Directory of Open Access Journals (Sweden)

    Andrea Bellucci


    Full Text Available Building and exploring physical user interfaces requires high technical skills and hours of specialized work. The behavior of multiple devices with heterogeneous input/output channels and connectivity has to be programmed in a context where not only the software interface matters, but also the hardware components are critical (e.g., sensors and actuators. Prototyping physical interaction is hindered by the challenges of: (1 programming interactions among physical sensors/actuators and digital interfaces; (2 implementing functionality for different platforms in different programming languages; and (3 building custom electronic-incorporated objects. We present ECCE (Entities, Components, Couplings and Ecosystems, a toolkit for non-programmers that copes with these issues by abstracting from low-level implementations, thus lowering the complexity of prototyping small-scale, sensor-based physical interfaces to support the design process. A user evaluation provides insights and use cases of the kind of applications that can be developed with the toolkit.

  17. Stack Caching Using Split Data Caches

    DEFF Research Database (Denmark)

    Nielsen, Carsten; Schoeberl, Martin


    In most embedded and general purpose architectures, stack data and non-stack data is cached together, meaning that writing to or loading from the stack may expel non-stack data from the data cache. Manipulation of the stack has a different memory access pattern than that of non-stack data, showin...

  18. Thermoacoustics with idealized heat exchangers and no stack. (United States)

    Wakeland, Ray Scott; Keolian, Robert M


    A model is developed for thermoacoustic devices that have neither stack nor regenerator. These "no-stack" devices have heat exchangers placed close together in an acoustic standing wave of sufficient amplitude to allow individual parcels of gas to enter both exchangers. The assumption of perfect heat transfer in the exchangers facilitates the construction of a simple model similar to the "moving parcel picture" that is used as a first approach to stack-based engines and refrigerators. The model no-stack cycle is shown to have potentially greater inviscid efficiency than a comparable stack model. However, losses from flow through the heat exchangers and on the walls of the enclosure are greater than those in a stack-based device due to the increased acoustic pressure amplitude. Estimates of these losses in refrigerators are used to compare the possible efficiencies of real refrigerators made with or without a stack. The model predicts that no-stack refrigerators can exceed stack-based refrigerators in efficiency, but only for particular enclosure geometries.

  19. Die-stacking architecture

    CERN Document Server

    Xie, Yuan


    The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, promise attractive solutions to reduce the delay of interconnects in future microprocessors. 3D memory stacking enables much higher memory bandwidth for future chip-multiprocessor design, mitigating the ""memory wall"" problem. In addition, heterogenous integration enabled by 3D technology can also result in innovative designs for future microprocessors. This book first provides a brief introduction to this emerging technology, and then presents a variety of approaches to design

  20. Bus Load Forecasting Model Based on Stacked Generalization%基于层叠泛化策略的母线负荷预测模型

    Institute of Scientific and Technical Information of China (English)

    黄帅栋; 卫志农; 丁恰; 沈茂亚; 孙国强; 孙永辉


    A novel method for bus load forecasting was proposed based on stacked generalization.The proposed approach includes two learning level spaces.The first one is for the original bus load data space,after the cross-validation training and testing on a set of SVMs,a new space,composing of the output of the SVMs and the corresponding original data,is obtained and named as “level 1 space”.Then,in the “level 2 space”,the original output series and corresponding output weights are taken as the observations and states of Kalman filter,respectively.Finally,simulation results demonstrate that higher generalization accuracy can be obtained by using the proposed hybrid method,thus the forecasting accuracy can be improved greatly.%基于层叠泛化策略SG (stacked generalization)提出一种新的母线负荷预测方法.该方法包含两级学习层,第1层针对原始母线负荷样本空间,对一组支持向量机SVM (support vector machine)进行交互验证式训练,训练完成后得到新的特征空间,该特征空间由这些支持向量机的输出和对应的真实值组成;第2层对输出进行线性组合,将新特征空间中的输出序列作为观测,对应的输出权值作为状态,使用卡尔曼滤波对权值进行递推估计.实例仿真证明,采用所提方法模型的泛化能力得到改善,从而提高母线负荷的预测精度.

  1. Precision cosmography with stacked voids

    CERN Document Server

    Lavaux, Guilhem


    We present a purely geometrical method for probing the expansion history of the Universe from the observation of the shape of stacked voids in spectroscopic re dshift surveys. Our method is an Alcock-Pasczinsky test based on the average sphericity of voids posited on the local isotropy of the Universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, we assess the capability of this approach to constrain dark energy parameters in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectrosc...

  2. Structural color-tunable mesoporous bragg stack layers based on graft copolymer self-assembly for high-efficiency solid-state dye-sensitized solar cells (United States)

    Lee, Chang Soo; Park, Jung Tae; Kim, Jong Hak


    We present a facile fabrication route for structural color-tunable mesoporous Bragg stack (BS) layers based on the self-assembly of a cost-effective graft copolymer. The mesoporous BS layers are prepared through the alternating deposition of organized mesoporous-TiO2 (OM-TiO2) and -SiO2 (OM-SiO2) films on the non-conducting side of the counter electrode in dye-sensitized solar cells (DSSCs). The OM layers with controlled porosity, pore size, and refractive index are templated with amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM. The morphology and properties of the structural color-tunable mesoporous BS-functionalized electrodes are characterized using energy filtered transmission electron microscopy (EF-TEM), field emission-scanning electron microscopy (FE-SEM), spectroscopic ellipsometry, and reflectance spectroscopy. The solid-state DSSCs (ssDSSCs) based on a structural color-tunable mesoporous BS counter electrode with a single-component solid electrolyte show an energy conversion efficiency (η) of 7.1%, which is much greater than that of conventional nanocrystalline TiO2-based cells and one of the highest values for N719 dye-based ssDSSCs. The enhancement of η is due to the enhancement of current density (Jsc), attributed to the improved light harvesting properties without considerable decrease in fill factor (FF) or open-circuit voltage (Voc), as confirmed by incident photon-to-electron conversion efficiency (IPCE) and electrochemical impedance spectroscopy (EIS).

  3. A paper-based electrostatic kinetic energy harvester with stacked multiple electret films made of electrospun polymer nanofibers (United States)

    Lu, Y.; Amroun, D.; Leprince-Wang, Y.; Basset, P.


    This paper reports the first flexible electrostatic kinetic energy harvester (e-KEH) with electret nanofibrous films obtained by electrospinning and paper-based electrodes. The nanofibrous electret outperforms plenary thin film Parylene in the storage stability of charge: the surface potential is stabilized within 1 day, without any obvious minishing during the following 9 days. The output power of the device is improved by implementing multiple electret layers, where the optimal number of electret layer is 3. With a finger tapping activation, this first prototype with the optimal configuration gives a maximum peak power of 45.6 μW with the optimal load of 16 MΩ. Working with a full-wave diode rectifier and a storage capacitor of 10nF, the voltage reaches 8.5 V with 450 strokes.

  4. Multi-component pre-stack time-imaging and migration-based velocity analysis in transversely isotropic media; Imagerie sismique multicomposante et analyse de vitesse de migration en milieu transverse isotrope

    Energy Technology Data Exchange (ETDEWEB)

    Gerea, C.V.


    Complementary to the recording of compressional (P-) waves, the observation of P-S converted waves has recently been receiving specific attention. This is mainly due to their tremendous potential as a tool for fracture and lithology characterization, imaging sediments in gas saturated rocks, and imaging shallow sediments with higher resolution than conventional P-P data. In a conventional marine seismic survey, we cannot record P-to-S converted-wave energy since the fluids cannot support shear-wave strain. Thus, to capture the converted-wave energy, we need to record it at the water-bottom casing an ocean-bottom cable (OBC). The S-waves recorded at the seabed are mainly converted from P to S (i.e., PS-waves or C-waves) at the subsurface reflectors. The most accurate way to image seismic data is pre-stack depth migration. In this thesis, I develop a numerically efficient 2.5-D true-amplitude elastic Kirchhoff pre-stack migration algorithm designed to handle OBC data gathered along a single line. All the kinematic and dynamic elastic Green's functions required in the computation of true-amplitude weight term of Kirchhoff summation, are based on the non-hyperbolic explicit approximations of P- and SV-wave travel-times in layered transversely isotropic (VTI) media. Hence, this elastic imaging algorithm is very well-suited for migration-based velocity analysis techniques, for which fast, robust and iterative pre-stack migration is desired. In this thesis, I approach also the topic of anisotropic velocity model building for elastic pre-stack time-imaging. and propose an original methodology for joint PP-PS migration-based velocity analysis (MVA) in layered VTI anisotropic media. Tests on elastic synthetic and real OBC seismic data ascertain the validity of the pre-stack migration algorithm and velocity analysis methodology. (author)

  5. Stacked Extreme Learning Machines. (United States)

    Zhou, Hongming; Huang, Guang-Bin; Lin, Zhiping; Wang, Han; Soh, Yeng Chai


    Extreme learning machine (ELM) has recently attracted many researchers' interest due to its very fast learning speed, good generalization ability, and ease of implementation. It provides a unified solution that can be used directly to solve regression, binary, and multiclass classification problems. In this paper, we propose a stacked ELMs (S-ELMs) that is specially designed for solving large and complex data problems. The S-ELMs divides a single large ELM network into multiple stacked small ELMs which are serially connected. The S-ELMs can approximate a very large ELM network with small memory requirement. To further improve the testing accuracy on big data problems, the ELM autoencoder can be implemented during each iteration of the S-ELMs algorithm. The simulation results show that the S-ELMs even with random hidden nodes can achieve similar testing accuracy to support vector machine (SVM) while having low memory requirements. With the help of ELM autoencoder, the S-ELMs can achieve much better testing accuracy than SVM and slightly better accuracy than deep belief network (DBN) with much faster training speed.

  6. Application of an adaptive acquisition regularization parameter based on an improved GCV criterion in pre-stack AVO inversion (United States)

    Huang, Guangtan; Chen, Xiaohong; Li, Jingye; Luo, Cong; Wang, Benfeng


    In exploration geophysics, AVO inversion is undoubtedly the most common inverse problem which is ill-posed and must be regularized. Once regularization is used, the selection of the regularization parameter will become an important problem to solve. In practice, the proper regularization parameter value is usually data dependent and determined empirically. For one work area, inversion engineers often give a fixed parameter. In such a case, the results of AVO inversion will be accompanied by strong artificial subjective factors. Besides, it is difficult to guarantee that the fixed parameter could be applied to each trace of the seismic data. In this paper, we first emphasize the importance of the regularization parameter selection for the inverse problems. Then, based on a traditional GCV function, we propose an adaptive acquisition regularization parameter method which can be used in regularization for arbitrary norm conditions, and derive the theoretical formula of the adaptive computation of the regularization parameter. Applying this method to the AVO inversion of synthetic data and field data, we have found that the improved GCV method has better accuracy and robustness than the traditional method.

  7. A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads (United States)

    Wang, Xianfeng; Shi, Zhifei; Wang, Jianjun; Xiang, Hongjun


    In this paper, a flex-compressive piezoelectric energy harvesting cell (F-C PEHC) is proposed. This cell has a large load capacity and adjustable force transmission coefficient assembled from replaceable individual components. A statically indeterminate mechanical model for the cell is established and the theoretical force transmission coefficient is derived based on structural mechanics. An inverse correlation between the force transmission coefficient and the relative stiffness of Element 1’s limbs is found. An experimental study is also conducted to verify the theoretical results. Both weakened and enhanced modes are achieved for this experiment. The maximum power output approaches 4.5 mW at 120 kΩ resistive load under a 4 Hz harmonic excitation with 600 N amplitude for the weakened mode, whereas the maximum power output approaches 17.8 mW at 120 kΩ under corresponding load for the enhanced mode. The experimental measurements of output voltages are compared with the theoretical ones in both weakened and enhanced modes. The experimental measurements of open-circuit voltages are slightly smaller for harmonic excitations with amplitudes that vary from 400 N to 800 N and the errors are within 14%. During the experiment, the maximum load approaches 2.8 kN which is quite large but not the ultimate bearing capacity of the present device. The mechanical model and theoretical transmission coefficient can be used in other flex-compressive mode energy transducers.

  8. Interactive early warning technique based on SVDD

    Institute of Scientific and Technical Information of China (English)


    After reviewing current researches on early warning,it is found that"bad" data of some systems is not easy to obtain,which makes methods proposed by these researches unsuitable for monitored systems.An interactive early warning technique based on SVDD(support vector data description)is proposed to adopt"good" data as samples to overcome the difficulty in obtaining the"bad"data.The process consists of two parts:(1)A hypersphere is fitted on"good"data using SVDD.If the data object are outside the hypersphere,it would be taken as"suspicious";(2)A group of experts would decide whether the suspicious data is"bad"or"good",early warning messages would be issued according to the decisions.And the detailed process of implementation is proposed.At last,an experiment based on data of a macroeconomic system is conducted to verify the proposed technique.

  9. Ball Bearing Stacking Automation System

    Directory of Open Access Journals (Sweden)

    Shafeequerrahman S . Ahmed


    Full Text Available This document is an effort to introduce the concept of automation in small scale industries and or small workshops that are involved in the manufacturing of small objects such as nuts, bolts and ball bearing in this case. This an electromechanical system which includes certain mechanical parts that involves one base stand on which one vertical metallic frame is mounted and hinged to this vertical stand is an in humanized effort seems inadequate in this era making necessary the use of Electronics, Computer in the manufacturing processes leading to the concept of Automated Manufacturing System (AMS.The ball bearing stack automation is an effort in this regard. In our project we go for stack automation for any object for example a ball bearing, be that is still a manual system there. It will be microcontroller based project control system equipped with microcontroller 89C51 from any manufacturer like Atmel or Philips. This could have been easily implemented if a PLC could be used for manufacturing the staking unit but I adopted the microcontroller based system so that some more modification in the system can be effected at will as to use the same hardware .Although a very small object i.e. ball bearig or small nut and fixture will be tried to be stacked, the system with more precision and more power handling capacity could be built for various requirements of the industry. For increasing more control capacity, we can use another module of this series. When the bearing is ready, it will be sent for packing. This is sensed by an inductive sensor. The output will be proceeds by PLC and microcontroller card which will be driving the assembly in order to put it into pads or flaps. This project will also count the total number of bearings to be packed and will display it on a LCD for real time reference and a provision is made using a higher level language using hyper terminal of the computer

  10. On-site detection of stacked genetically modified soybean based on event-specific TM-LAMP and a DNAzyme-lateral flow biosensor. (United States)

    Cheng, Nan; Shang, Ying; Xu, Yuancong; Zhang, Li; Luo, Yunbo; Huang, Kunlun; Xu, Wentao


    Stacked genetically modified organisms (GMO) are becoming popular for their enhanced production efficiency and improved functional properties, and on-site detection of stacked GMO is an urgent challenge to be solved. In this study, we developed a cascade system combining event-specific tag-labeled multiplex LAMP with a DNAzyme-lateral flow biosensor for reliable detection of stacked events (DP305423× GTS 40-3-2). Three primer sets, both event-specific and soybean species-specific, were newly designed for the tag-labeled multiplex LAMP system. A trident-like lateral flow biosensor displayed amplified products simultaneously without cross contamination, and DNAzyme enhancement improved the sensitivity effectively. After optimization, the limit of detection was approximately 0.1% (w/w) for stacked GM soybean, which is sensitive enough to detect genetically modified content up to a threshold value established by several countries for regulatory compliance. The entire detection process could be shortened to 120min without any large-scale instrumentation. This method may be useful for the in-field detection of DP305423× GTS 40-3-2 soybean on a single kernel basis and on-site screening tests of stacked GM soybean lines and individual parent GM soybean lines in highly processed foods.

  11. Absorption spectra of AA-stacked graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F [Department of Physics, National Cheng Kung University, Taiwan (China); Shyu, F L, E-mail:, E-mail: [Department of Physics, ROC Military Academy, 830 Kaohsiung, Taiwan (China)


    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  12. Metallorganic chemical vapor deposition and atomic layer deposition approaches for the growth of hafnium-based thin films from dialkylamide precursors for advanced CMOS gate stack applications (United States)

    Consiglio, Steven P.

    To continue the rapid progress of the semiconductor industry as described by Moore's Law, the feasibility of new material systems for front end of the line (FEOL) process technologies needs to be investigated, since the currently employed polysilicon/SiO2-based transistor system is reaching its fundamental scaling limits. Revolutionary breakthroughs in complementary-metal-oxide-semiconductor (CMOS) technology were recently announced by Intel Corporation and International Business Machines Corporation (IBM), with both organizations revealing significant progress in the implementation of hafnium-based high-k dielectrics along with metal gates. This announcement was heralded by Gordon Moore as "...the biggest change in transistor technology since the introduction of polysilicon gate MOS transistors in the late 1960s." Accordingly, the study described herein focuses on the growth of Hf-based dielectrics and Hf-based metal gates using chemical vapor-based deposition methods, specifically metallorganic chemical vapor deposition (MOCVD) and atomic layer deposition (ALD). A family of Hf source complexes that has received much attention recently due to their desirable properties for implementation in wafer scale manufacturing is the Hf dialkylamide precursors. These precursors are room temperature liquids and possess sufficient volatility and desirable decomposition characteristics for both MOCVD and ALD processing. Another benefit of using these sources is the existence of chemically compatible Si dialkylamide sources as co-precursors for use in Hf silicate growth. The first part of this study investigates properties of MOCVD-deposited HfO2 and HfSixOy using dimethylamido Hf and Si precursor sources using a customized MOCVD reactor. The second part of this study involves a study of wet and dry surface pre-treatments for ALD growth of HfO2 using tetrakis(ethylmethylamido)hafnium in a wafer scale manufacturing environment. The third part of this study is an investigation of

  13. 基于OpenStack的网络安全实验平台%OpenStack-based experimental platform for network security

    Institute of Scientific and Technical Information of China (English)

    廉龙颖; 王希斌; 刘文强; 陈荣丽


    为了解决网络安全实验受到硬件条件和虚拟化技术限制的问题,设计实现了基于OpenStack的网络安全实验平台。该平台采用抽象分层模式,通过整合实验项目设计虚拟网络拓扑结构,并在OpenStack中使用SDN网络虚拟化技术搭建。通过教学实践表明,该平台具有真实性、可编程性、隔离性和扩展性等特点,为用户提供了一个良好的网络安全实验教学环境,具有一定的研究和应用价值。%In order to solve the problem of limitation of hardware conditions and virtualization technology for network secur⁃ity experiment OpenStack⁃based experimental platform for network security is designed and implemented. The platform adopts the abstract hierarchical pattern through integrating experimental project to design virtual network topology and uses SDN net⁃work virtualization technology to build the experimental platform in OpenStack.Teaching practice indicates that the platform pos⁃sesses the features of authenticity programmability isolation and expandability it can provide a good network security experiment teaching environment for users and possess certain research and application value.

  14. Image Hashing algorithm based on stacked autoencoder%基于栈式自动编码的图像哈希算法

    Institute of Scientific and Technical Information of China (English)

    张春雨; 韩立新; 徐守晶


    随着网络图像的快速发展,在大型图像检索系统中哈希算法成为近似最近邻查询算法的研究重点。本文提出一种基于深度模型的哈希算法—深度哈希。通过深度卷积神经网络提取的图像高维全局特征,用栈式自动编码器对特征进行无监督学习得到二进制哈希编码,利用图像标签语义相似性对栈式自动编码器的参数进行微调,最后用汉明距离来计算图像的相似性。本文提出的深度哈希在图像检索中取得了较好的结果。%With the rapid development of network in the large image ,image hashing algorithm has attracted interests as an approach of approximate nearest neighbor algorithm in the image retrieval system .In this paper ,we proposed the deep hash which based on deep learning models .The high dimensional global are extracted by deep convolutional neural network ,then using stack autoencoder to get the parameters of the models by unsupervised learning to get the binary hash code .Finally using the hamming distance to compute the similarity of the images .The deephash proves the better results in image retrieval .

  15. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hestand, Nicholas J.; Spano, Frank C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)


    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  16. Assessing Elementary Algebra with STACK (United States)

    Sangwin, Christopher J.


    This paper concerns computer aided assessment (CAA) of mathematics in which a computer algebra system (CAS) is used to help assess students' responses to elementary algebra questions. Using a methodology of documentary analysis, we examine what is taught in elementary algebra. The STACK CAA system,, which uses the CAS…

  17. Stacking disorder in ice I. (United States)

    Malkin, Tamsin L; Murray, Benjamin J; Salzmann, Christoph G; Molinero, Valeria; Pickering, Steven J; Whale, Thomas F


    Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work on ice with stacking disorder including ice that was called cubic ice in the past. We also present new experimental data which shows that ice which crystallises after heterogeneous nucleation in water droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of around -15 °C. This supports the results from molecular simulations, that the structure of ice that crystallises initially from supercooled water is always stacking-disordered and that this metastable ice can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via other routes. The emerging picture of ice I is that of a very complex material which frequently contains stacking disorder and this stacking disorder can vary in complexity depending on the route of formation and thermal history.

  18. Toward the self-assembly of metal-organic nanotubes using metal-metal and π-stacking interactions: bis(pyridylethynyl) silver(I) metallo-macrocycles and coordination polymers. (United States)

    Kilpin, Kelly J; Gower, Martin L; Telfer, Shane G; Jameson, Geoffrey B; Crowley, James D


    Shape-persistent macrocycles and planar organometallic complexes are beginning to show considerable promise as building blocks for the self-assembly of a variety of supramolecular materials including nanofibers, nanowires, and liquid crystals. Here we report the synthesis and characterization of a family of planar di- and tri-silver(I) containing metallo-macrocycles designed to self-assemble into novel metal-organic nanotubes through a combination of π-stacking and metal-metal interactions. The silver(I) complexes have been fully characterized by elemental analysis, high resolution electrospray ionization mass spectrometry (HR-ESI-MS), IR, (1)H and (13)C NMR spectroscopy, and the solution data are consistent with the formation of the metallo-macrocycles. Four of the complexes have been structurally characterized using X-ray crystallography. However, only the di-silver(I) complex formed with 1,3-bis(pyridin-3-ylethynyl)benzene is found to maintain its macrocyclic structure in the solid state. The di-silver(I) shape-persistent macrocycle assembles into a nanoporous chicken-wire like structure, and ClO(4)(-) anions and disordered H(2)O molecules fill the pores. The silver(I) complexes of 2,6-bis(pyridin-3-ylethynyl)pyridine and 1,4-di(3-pyridyl)buta-1,3-diyne ring-open and crystallize as non-porous coordination polymers.

  19. Water flow in carbon-based nanoporous membranes impacted by interactions between hydrated ions and aromatic rings (United States)

    Liu, Jian; Shi, Guosheng; Fang, Haiping


    Carbon-based nanoporous membranes, such as carbon nanotubes (CNTs), graphene/graphene oxide and graphyne, have shown great potential in water desalination and purification, gas and ion separation, biosensors, and lithium-based batteries, etc. A deep understanding of the interaction between hydrated ions in an aqueous solution and the graphitic surface in systems composed of water, ions and a graphitic surface is essential for applications with carbon-based nanoporous membrane platforms. In this review, we describe the recent progress of the interaction between hydrated ions and aromatic ring structures on the carbon-based surface and its applications in the water flow in a carbon nanotube. We expect that these works can be extended to the understanding of water flow in other nanoporous membranes, such as nanoporous graphene, graphyne and stacked sheets of graphene oxide.

  20. Interacting with Stroke-Based Rendering on a Wall Display

    NARCIS (Netherlands)

    Grubert, Jens; Hanckock, Mark; Carpendale, Sheelagh; Tse, Edward; Isenberg, Tobias


    We introduce two new interaction techniques for creating and interacting with non-photorealistic images using stroke-based rendering. We provide bimanual control of a large interactive canvas through both remote pointing and direct touch. Remote pointing allows people to sit and interact at a distan

  1. Multistage Force Amplification of Piezoelectric Stacks (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)


    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  2. Stacking for machine learning redshifts applied to SDSS galaxies

    CERN Document Server

    Zitlau, Roman; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella


    We present an analysis of a general machine learning technique called 'stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We shown how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organising maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9% and 21% on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When appl...

  3. Stacking for machine learning redshifts applied to SDSS galaxies (United States)

    Zitlau, Roman; Hoyle, Ben; Paech, Kerstin; Weller, Jochen; Rau, Markus Michael; Seitz, Stella


    We present an analysis of a general machine learning technique called `stacking' for the estimation of photometric redshifts. Stacking techniques can feed the photometric redshift estimate, as output by a base algorithm, back into the same algorithm as an additional input feature in a subsequent learning round. We show how all tested base algorithms benefit from at least one additional stacking round (or layer). To demonstrate the benefit of stacking, we apply the method to both unsupervised machine learning techniques based on self-organizing maps (SOMs), and supervised machine learning methods based on decision trees. We explore a range of stacking architectures, such as the number of layers and the number of base learners per layer. Finally we explore the effectiveness of stacking even when using a successful algorithm such as AdaBoost. We observe a significant improvement of between 1.9 per cent and 21 per cent on all computed metrics when stacking is applied to weak learners (such as SOMs and decision trees). When applied to strong learning algorithms (such as AdaBoost) the ratio of improvement shrinks, but still remains positive and is between 0.4 per cent and 2.5 per cent for the explored metrics and comes at almost no additional computational cost.

  4. When is stacking confusing? The impact of confusion on stacking in deep H I galaxy surveys (United States)

    Jones, Michael G.; Haynes, Martha P.; Giovanelli, Riccardo; Papastergis, Emmanouil


    We present an analytic model to predict the H I mass contributed by confused sources to a stacked spectrum in a generic H I survey. Based on the ALFALFA (Arecibo Legacy Fast ALFA) correlation function, this model is in agreement with the estimates of confusion present in stacked Parkes telescope data, and was used to predict how confusion will limit stacking in the deepest Square Kilometre Array precursor H I surveys. Stacking with LADUMA (Looking At the Distant Universe with MeerKAT) and DINGO UDEEP (Deep Investigation of Neutral Gas Origins - Ultra Deep) data will only be mildly impacted by confusion if their target synthesized beam size of 10 arcsec can be achieved. Any beam size significantly above this will result in stacks that contain a mass in confused sources that is comparable to (or greater than) that which is detectable via stacking, at all redshifts. CHILES (COSMOS H I Large Extragalactic Survey) 5 arcsec resolution is more than adequate to prevent confusion influencing stacking of its data, throughout its bandpass range. FAST (Five hundred metre Aperture Spherical Telescope) will be the most impeded by confusion, with H I surveys likely becoming heavily confused much beyond z = 0.1. The largest uncertainties in our model are the redshift evolution of the H I density of the Universe and the H I correlation function. However, we argue that the two idealized cases we adopt should bracket the true evolution, and the qualitative conclusions are unchanged regardless of the model choice. The profile shape of the signal due to confusion (in the absence of any detection) was also modelled, revealing that it can take the form of a double Gaussian with a narrow and wide component.

  5. Linear identification and model adjustment of a PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Kunusch, C.; Puleston, P.F.; More, J.J. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Consejo de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Husar, A. [Institut de Robotica i Informatica Industrial (CSIC-UPC), c/ Llorens i Artigas 4-6, 08028 Barcelona (Spain); Mayosky, M.A. [LEICI, Departamento de Electrotecnia, Universidad Nacional de La Plata, calle 1 esq. 47 s/n, 1900 La Plata (Argentina); Comision de Investigaciones Cientificas (CIC), Provincia de Buenos Aires (Argentina)


    In the context of fuel cell stack control a mayor challenge is modeling the interdependence of various complex subsystem dynamics. In many cases, the states interaction is usually modeled through several look-up tables, decision blocks and piecewise continuous functions. Many internal variables are inaccessible for measurement and cannot be used in control algorithms. To make significant contributions in this area, it is necessary to develop reliable models for control and design purposes. In this paper, a linear model based on experimental identification of a 7-cell stack was developed. The procedure followed to obtain a linear model of the system consisted in performing spectroscopy tests of four different single-input single-output subsystems. The considered inputs for the tests were the stack current and the cathode oxygen flow rate, while the measured outputs were the stack voltage and the cathode total pressure. The resulting model can be used either for model-based control design or for on-line analysis and errors detection. (author)

  6. Phase dynamics of two parallel stacks of coupled Josephson junctions (United States)

    Shukrinov, Yu M.; Rahmonov, I. R.; Plecenik, A.; Seidel, P.; Ilʼichev, E.; Nawrocki, W.


    Two parallel stacks of coupled Josephson junctions (JJs) are investigated to clarify the physics of transitions between the rotating and oscillating states and their effect on the IV-characteristics of the system. The detailed study of phase dynamics and bias dependence of the superconducting and diffusion currents allows one to explain all features of simulated IV-characteristics and demonstrate the correspondence in their behavior. The coupling between JJ in the stacks leads to the branching of IV-characteristics and a decrease in the hysteretic region. The crucial role of the diffusion current in the formation of the IV-characteristic of the parallel stacks of coupled JJs is demonstrated. We discuss the effect of symmetry in a number of junctions in the stacks and show a decrease of the branching in the symmetrical stacks. The observed effects might be useful for development of superconducting electronic devices based on intrinsic JJs.

  7. Routes to a commercially viable PEM fuel cell stack

    Energy Technology Data Exchange (ETDEWEB)

    Newton, J.; Foster, S.E.; Hodgson, D.; Marrett, A.


    This report describes the results of a project to design and build a 10 kW{sub e} proton exchange membrane fuel cell (PEMFC) stack, including membrane electrode assemblies (MEAs), bipolar plates and stack hardware. The aim was to prove the design concept and to demonstrate functionality by operating the stack at >1 kW{sub e}/L and 500 W/kg for 200 hours operation. The project was extended to include the assembly and testing of two additional 1 kW{sub e} PEMFC stacks based on coated metal components. Low equivalent weight perfluorinated ionomer ion exchange membranes were prepared and were found to give a superior electrochemical performance to commercial materials. A technique to etch various stainless steel grades and control processes was successfully developed and optimised. Coatings for stainless steel and titanium were successfully developed and met the required performance criteria. All PEMFC stack components were selected and designed to enable subsequent commercial manufacture.

  8. Development of internal reforming carbonate fuel cell stack technology

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.


    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  9. Phase dynamics modeling of parallel stacks of Josephson junctions (United States)

    Rahmonov, I. R.; Shukrinov, Yu. M.


    The phase dynamics of two parallel connected stacks of intrinsic Josephson junctions (JJs) in high temperature superconductors is numerically investigated. The calculations are based on the system of nonlinear differential equations obtained within the CCJJ + DC model, which allows one to determine the general current-voltage characteristic of the system, as well as each individual stack. The processes with increasing and decreasing base currents are studied. The features in the behavior of the current in each stack of the system due to the switching between the states with rotating and oscillating phases are analyzed.

  10. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation. (United States)

    Park, Seki; Kim, Hyun; Kim, Min Su; Han, Gang Hee; Kim, Jeongyong


    Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties.

  11. Designing Software-Based Interactive Installations

    DEFF Research Database (Denmark)

    Andreasen, Troels; Juul, Niels Christian; Rosendahl, Mads


    What. This chapter focuses on software engineering principles with specific emphasis on interactive installations providing embodied, tangible, and immersive experiences for the user. Such installations may deliver light, image, sound, and movement through actuators and may provide interaction...... installations and support the description of the approach with a single case- a bumper car competition. Why. To some extent, standard techniques for software development can be adapted for interactive installations. However, there is a need to emphasize the unique aspects of installations, bringing tangible...... architecture as well as esthetic experience, artistic expression, and leisure aspects into focus. The approach presented here has this intended purpose. Where. Building on experience from conventional software development and with inspiration from interaction design and creative programming, this chapter...

  12. Deposition temperature dependence of material and Si surface passivation properties of O{sub 3}-based atomic layer deposited Al{sub 2}O{sub 3}-based films and stacks

    Energy Technology Data Exchange (ETDEWEB)

    Bordihn, Stefan, E-mail: [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands and Hanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen (Germany); Mertens, Verena; Müller, Jörg W. [Hanwha Q CELLS GmbH, Sonnenallee 17-21, 06766 Bitterfeld-Wolfen (Germany); Kessels, W. M. M., E-mail: [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)


    The material composition and the Si surface passivation of aluminum oxide (Al{sub 2}O{sub 3}) films prepared by atomic layer deposition using Al(CH{sub 3}){sub 3} and O{sub 3} as precursors were investigated for deposition temperatures (T{sub Dep}) between 200 °C and 500 °C. The growth per cycle decreased with increasing deposition temperature due to a lower Al deposition rate. In contrast the material composition was hardly affected except for the hydrogen concentration, which decreased from [H] = 3 at. % at 200 °C to [H] < 0.5 at. % at 400 °C and 500 °C. The surface passivation performance was investigated after annealing at 300 °C–450 °C and also after firing steps in the typical temperature range of 800 °C–925 °C. A similar high level of the surface passivation performance, i.e., surface recombination velocity values <10 cm/s, was obtained after annealing and firing. Investigations of Al{sub 2}O{sub 3}/SiN{sub x} stacks complemented the work and revealed similar levels of surface passivation as single-layer Al{sub 2}O{sub 3} films, both for the chemical and field-effect passivation. The fixed charge density in the Al{sub 2}O{sub 3}/SiN{sub x} stacks, reflecting the field-effect passivation, was reduced by one order of magnitude from 3·10{sup 12} cm{sup −2} to 3·10{sup 11} cm{sup −2} when T{sub Dep} was increased from 300 °C to 500 °C. The level of the chemical passivation changed as well, but the total level of the surface passivation was hardly affected by the value of T{sub Dep}. When firing films prepared at of low T{sub Dep}, blistering of the films occurred and this strongly reduced the surface passivation. These results presented in this work demonstrate that a high level of surface passivation can be achieved for Al{sub 2}O{sub 3}-based films and stacks over a wide range of conditions when the combination of deposition temperature and annealing or firing temperature is carefully chosen.

  13. Angular resolution of stacked resistive plate chambers

    CERN Document Server

    Samuel, Deepak; Murgod, Lakshmi P


    We present here detailed derivations of mathematical expressions for the angular resolution of a set of stacked resistive plate chambers (RPCs). The expressions are validated against experimental results using data collected from the prototype detectors (without magnet) of the upcoming India-based Neutrino Observatory (INO). In principle, these expressions can be used for any other detector with an architecture similar to that of RPCs.

  14. Full Piezoelectric Multilayer-Stacked Hybrid Actuation/Transduction Systems (United States)

    Su, Ji; Jiang, Xiaoning; Zu, Tian-Bing


    The Stacked HYBATS (Hybrid Actuation/Transduction system) demonstrates significantly enhanced electromechanical performance by using the cooperative contributions of the electromechanical responses of multilayer, stacked negative strain components and positive strain components. Both experimental and theoretical studies indicate that, for Stacked HYBATS, the displacement is over three times that of a same-sized conventional flextensional actuator/transducer. The coupled resonance mode between positive strain and negative strain components of Stacked HYBATS is much stronger than the resonance of a single element actuation only when the effective lengths of the two kinds of elements match each other. Compared with the previously invented hybrid actuation system (HYBAS), the multilayer Stacked HYBATS can be designed to provide high mechanical load capability, low voltage driving, and a highly effective piezoelectric constant. The negative strain component will contract, and the positive strain component will expand in the length directions when an electric field is applied on the device. The interaction between the two elements makes an enhanced motion along the Z direction for Stacked-HYBATS. In order to dominate the dynamic length of Stacked-HYBATS by the negative strain component, the area of the cross-section for the negative strain component will be much larger than the total cross-section areas of the two positive strain components. The transverse strain is negative and longitudinal strain positive in inorganic materials, such as ceramics/single crystals. Different piezoelectric multilayer stack configurations can make a piezoelectric ceramic/single-crystal multilayer stack exhibit negative strain or positive strain at a certain direction without increasing the applied voltage. The difference of this innovation from the HYBAS is that all the elements can be made from one-of-a-kind materials. Stacked HYBATS can provide an extremely effective piezoelectric

  15. Stack optimization of oxide-based RRAM for fast write speed (<1 μs) at low operating current (<10 μA) (United States)

    Chen, C. Y.; Goux, L.; Fantini, A.; Degraeve, R.; Redolfi, A.; Groeseneken, G.; Jurczak, M.


    In this paper we engineer a TiN ⧹ Al2O3 ⧹ (Hf,Al)O2 ⧹ Ta2O5 ⧹ Hf Oxide Resistive Random Access Memory (OxRRAM) device for fast switching at low operation current without sacrificing the retention and endurance properties. The integrated 40 nm × 40 nm cell switches at 10 μA using write pulses shorter than 100 ns (resp. 1 μs) for Reset (resp. Set) and with amplitude speed by more than 1 decade compared to state-of-the-art OxRRAM stacks at same current level.

  16. High power collimated diode laser stack

    Institute of Scientific and Technical Information of China (English)

    LIU Yuan-yuan; FANG Gao-zhan; MA Xiao-yu; LIU Su-ping; FENG Xiao-ming


    A high power collimated diode laser stack is carried out based on fast-axis collimation and stack packaging techniques.The module includes ten typical continuous wave (cw) bars and the total output power can be up to 368W at 48.6A.Using a cylindrical lens as the collimation elements,we can make the fast-axis divergence and the slow-axis divergence are 0.926 40 and 8.2060 respectively.The light emitting area is limited in a square area of 18.3 mm×11 mm.The module has the advantage of high power density and offers a wide potential applications in pumping and material processing.

  17. Text-Filled Stacked Area Graphs

    DEFF Research Database (Denmark)

    Kraus, Martin


    Text can add a significant amount of detail and value to an information visualization. In particular, it can integrate more of the data that a visualization is based on, and it can also integrate information that is personally relevant to readers of a visualization. This may influence readers...... to consider a visualization a detailed enrichment of their personal experience instead of an abstract representation of anonymous numbers. However, the integration of textual detail into a visualization is often very challenging. This work discusses one particular approach to this problem, namely text......-filled stacked area graphs; i.e., graphs that feature stacked areas that are filled with small-typed text. Since these graphs allow for computing the text layout automatically, it is possible to include large amounts of textual detail with very little effort. We discuss the most important challenges and some...

  18. File Hide Method Based on Drive Stack Unit%基于驱动堆栈单元的文件隐藏方法

    Institute of Scientific and Technical Information of China (English)

    何耀彬; 李祥和; 孙岩


    为能在操作系统的驱动级实现新的文件隐藏点,对传统的文件系统过滤驱动原理和驱动数据堆栈单元结构进行分析.通过修改驱动堆栈单元的结构和完成例程,配合修改I/O请求包的传递方法,实现2种驱动级文件隐藏的方法.使用该2种方法的文件可以在系统中实现深度隐藏,使得操作系统无法查询,也不能通过正常途径访问.%In order to get new file hidden points in drive-level of system, the principle of File System Filter Driver(FSFD) and the structure of driver stack location are analyzed. Through making some changes in driver stack location's structure and CompletionRoutine, besides modifying the I/O Requst Packet(IRP) delivery method, two methods to hide files are implemented. Hidden files using these methods achieve depth hide. They can not be queried by system or be accessed through normal channels.

  19. Six-band terahertz metamaterial absorber based on the combination of multiple-order responses of metallic patches in a dual-layer stacked resonance structure (United States)

    Wang, Ben-Xin; Wang, Gui-Zhen; Sang, Tian; Wang, Ling-Ling


    This paper reports on a numerical study of the six-band metamaterial absorber composed of two alternating stack of metallic-dielectric layers on top of a continuous metallic plane. Six obvious resonance peaks with high absorption performance (average larger than 99.37%) are realized. The first, third, fifth, and the second, fourth, sixth resonance absorption bands are attributed to the multiple-order responses (i.e., the 1-, 3- and 5-order responses) of the bottom- and top-layer of the structure, respectively, and thus the absorption mechanism of six-band absorber is due to the combination of two sets of the multiple-order resonances of these two layers. Besides, the size changes of the metallic layers have the ability to tune the frequencies of the six-band absorber. Employing the results, we also present a six-band polarization tunable absorber through varying the sizes of the structure in two orthogonal polarization directions. Moreover, nine-band terahertz absorber can be achieved by using a three-layer stacked structure. Simulation results indicate that the absorber possesses nine distinct resonance bands, and average absorptivities of them are larger than 94.03%. The six-band or nine-band absorbers obtained here have potential applications in many optoelectronic and engineering technology areas. PMID:28120897

  20. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Y. S.; Choi, Jung-Pyung; Xu, Wei; Stephens, Elizabeth V.; Koeppel, Brian J.; Stevenson, Jeffry W.; Lara-Curzio, Edgar


    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  1. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  2. Feature-Weighted Linear Stacking

    CERN Document Server

    Sill, Joseph; Mackey, Lester; Lin, David


    Ensemble methods, such as stacking, are designed to boost predictive accuracy by blending the predictions of multiple machine learning models. Recent work has shown that the use of meta-features, additional inputs describing each example in a dataset, can boost the performance of ensemble methods, but the greatest reported gains have come from nonlinear procedures requiring significant tuning and training time. Here, we present a linear technique, Feature-Weighted Linear Stacking (FWLS), that incorporates meta-features for improved accuracy while retaining the well-known virtues of linear regression regarding speed, stability, and interpretability. FWLS combines model predictions linearly using coefficients that are themselves linear functions of meta-features. This technique was a key facet of the solution of the second place team in the recently concluded Netflix Prize competition. Significant increases in accuracy over standard linear stacking is demonstrated on the Netflix Prize collaborative filtering da...

  3. Genetic interaction mapping with microfluidic-based single cell sequencing (United States)

    Haliburton, John R.; Shao, Wenjun; Deutschbauer, Adam; Arkin, Adam; Abate, Adam R.


    Genetic interaction mapping is useful for understanding the molecular basis of cellular decision making, but elucidating interactions genome-wide is challenging due to the massive number of gene combinations that must be tested. Here, we demonstrate a simple approach to thoroughly map genetic interactions in bacteria using microfluidic-based single cell sequencing. Using single cell PCR in droplets, we link distinct genetic information into single DNA sequences that can be decoded by next generation sequencing. Our approach is scalable and theoretically enables the pooling of entire interaction libraries to interrogate multiple pairwise genetic interactions in a single culture. The speed, ease, and low-cost of our approach makes genetic interaction mapping viable for routine characterization, allowing the interaction network to be used as a universal read out for a variety of biology experiments, and for the elucidation of interaction networks in non-model organisms. PMID:28170417

  4. Reliability analysis and initial requirements for FC systems and stacks (United States)

    Åström, K.; Fontell, E.; Virtanen, S.

    In the year 2000 Wärtsilä Corporation started an R&D program to develop SOFC systems for CHP applications. The program aims to bring to the market highly efficient, clean and cost competitive fuel cell systems with rated power output in the range of 50-250 kW for distributed generation and marine applications. In the program Wärtsilä focuses on system integration and development. System reliability and availability are key issues determining the competitiveness of the SOFC technology. In Wärtsilä, methods have been implemented for analysing the system in respect to reliability and safety as well as for defining reliability requirements for system components. A fault tree representation is used as the basis for reliability prediction analysis. A dynamic simulation technique has been developed to allow for non-static properties in the fault tree logic modelling. Special emphasis has been placed on reliability analysis of the fuel cell stacks in the system. A method for assessing reliability and critical failure predictability requirements for fuel cell stacks in a system consisting of several stacks has been developed. The method is based on a qualitative model of the stack configuration where each stack can be in a functional, partially failed or critically failed state, each of the states having different failure rates and effects on the system behaviour. The main purpose of the method is to understand the effect of stack reliability, critical failure predictability and operating strategy on the system reliability and availability. An example configuration, consisting of 5 × 5 stacks (series of 5 sets of 5 parallel stacks) is analysed in respect to stack reliability requirements as a function of predictability of critical failures and Weibull shape factor of failure rate distributions.

  5. Field-induced stacking transition of biofunctionalized trilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Masato Nakano, C. [Flintridge Preparatory School, La Canada, California 91011 (United States); Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)


    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  6. Magnetically suspended stacks for inertial energy storage flywheel (United States)

    Anand, Davinder K.; Kirk, James A.; Iwaskiw, Peter


    A magnetically suspended flywheel stack based on a 'pancake' magnetic bearing stack is proposed for a 500 watt-hour energy storage system. Backup ball bearings in the system configuration both prevent damage to the system whenever there is a loss of magnetic suspension due to excessive outside disturbances, and insure that the fywheel stays within the linear control range. Design tools to investigate the performance of the control system and the magnetic circuits are also discussed.

  7. Repetition-based Interactive Facade Modeling

    KAUST Repository

    AlHalawani, Sawsan


    Modeling and reconstruction of urban environments has gained researchers attention throughout the past few years. It spreads in a variety of directions across multiple disciplines such as image processing, computer graphics and computer vision as well as in architecture, geoscience and remote sensing. Having a virtual world of our real cities is very attractive in various directions such as entertainment, engineering, governments among many others. In this thesis, we address the problem of processing a single fa cade image to acquire useful information that can be utilized to manipulate the fa cade and generate variations of fa cade images which can be later used for buildings\\' texturing. Typical fa cade structures exhibit a rectilinear distribution where in windows and other elements are organized in a grid of horizontal and vertical repetitions of similar patterns. In the firt part of this thesis, we propose an efficient algorithm that exploits information obtained from a single image to identify the distribution grid of the dominant elements i.e. windows. This detection method is initially assisted with the user marking the dominant window followed by an automatic process for identifying its repeated instances which are used to define the structure grid. Given the distribution grid, we allow the user to interactively manipulate the fa cade by adding, deleting, resizing or repositioning the windows in order to generate new fa cade structures. Having the utility for the interactive fa cade is very valuable to create fa cade variations and generate new textures for building models. Ultimately, there is a wide range of interesting possibilities of interactions to be explored.

  8. Simulating Small-Scale Object Stacking Using Stack Stability

    DEFF Research Database (Denmark)

    Kronborg Thomsen, Kasper; Kraus, Martin


    This paper presents an extension system to a closed-source, real-time physics engine for improving structured stacking behavior with small-scale objects such as wooden toy bricks. The proposed system was implemented and evaluated. The tests showed that the system is able to simulate several common...

  9. Physically-based interactive Schlieren flow visualization

    Energy Technology Data Exchange (ETDEWEB)

    Mccormick, Patrick S [Los Alamos National Laboratory; Brownlee, Carson S [Los Alamos National Laboratory; Pegoraro, Vincent [UNIV OF UTAH; Shankar, Siddharth [UNIV OF UTAH; Hansen, Charles D [UNIV OF UTAH


    Understanding fluid flow is a difficult problem and of increasing importance as computational fluid dynamics produces an abundance of simulation data. Experimental flow analysis has employed techniques such as shadowgraph and schlieren imaging for centuries which allow empirical observation of inhomogeneous flows. Shadowgraphs provide an intuitive way of looking at small changes in flow dynamics through caustic effects while schlieren cutoffs introduce an intensity gradation for observing large scale directional changes in the flow. The combination of these shading effects provides an informative global analysis of overall fluid flow. Computational solutions for these methods have proven too complex until recently due to the fundamental physical interaction of light refracting through the flow field. In this paper, we introduce a novel method to simulate the refraction of light to generate synthetic shadowgraphs and schlieren images of time-varying scalar fields derived from computational fluid dynamics (CFD) data. Our method computes physically accurate schlieren and shadowgraph images at interactive rates by utilizing a combination of GPGPU programming, acceleration methods, and data-dependent probabilistic schlieren cutoffs. Results comparing this method to previous schlieren approximations are presented.

  10. Telling interactive stories: A practice-based investigation into new media interactive storytelling


    Atkinson, Sarah


    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Telling Interactive Stories is a practice-based thesis, which theoretically and practically probes the field of digital fictional interactive storytelling. The submission takes the form of the interactive cinema installation Crossed Lines together with a written element of the thesis which interrogates historical, contextual, theoretical, technical and critical aspects of the field of inte...

  11. Tolerance Stack Analysis in Francis Turbine Design

    Directory of Open Access Journals (Sweden)

    Indra Djodikusumo


    Full Text Available The tolerance stacking problem arises in the context of assemblies from interchangeable parts because of the inability to produce or to join parts exactly according to nominal dimensions. Either the relevant part’s dimension varies around some nominal values from part to part or the act of assembly that leads to variation. For example, as runner of Francis turbine is joined with turbine shaft via mechanical lock, there is not only variation in the diameter of runner and the concentricity between the runner hole and turbine shaft, but also the variation in concentricity between the outer parts of runner to runner hole. Thus, there is the possibility that the assembly of such interacting parts won’t function or won’t come together as planned. Research in this area has been conducted and 2 mini hydro Francis turbines (800 kW and 910 kW have been designed and manufactured for San Sarino and Sawi Dago 2 in Central Sulawesi. Experiences in analyzing the tolerance stacks have been documented. In this paper it will be demonstrated how the requirements of assembling performance are derived to be the designed tolerances of each interacting component, such a way that the assembling would be functioning and come together as planned.

  12. Pressurized electrolysis stack with thermal expansion capability (United States)

    Bourgeois, Richard Scott


    The present techniques provide systems and methods for mounting an electrolyzer stack in an outer shell so as to allow for differential thermal expansion of the electrolyzer stack and shell. Generally, an electrolyzer stack may be formed from a material with a high coefficient of thermal expansion, while the shell may be formed from a material having a lower coefficient of thermal expansion. The differences between the coefficients of thermal expansion may lead to damage to the electrolyzer stack as the shell may restrain the thermal expansion of the electrolyzer stack. To allow for the differences in thermal expansion, the electrolyzer stack may be mounted within the shell leaving a space between the electrolyzer stack and shell. The space between the electrolyzer stack and the shell may be filled with a non-conductive fluid to further equalize pressure inside and outside of the electrolyzer stack.

  13. Stack Room Management Innovation Model Based on Library Space%基于图书馆空间的书库管理创新模式

    Institute of Scientific and Technical Information of China (English)



    社会在不断发展,图书馆的管理工作也需要进行更多的改善以顺应发展的需求,因此,要注重加强图书馆的空间及书库管理工作,使图书馆的职能得到更好的发挥。%With the continuous development of society, the management of library also needs more improvements to comply with the development needs, therefore, it is necessary to strengthen the management of the space and stack room management, so that the functions of the library can be better played.


    Institute of Scientific and Technical Information of China (English)


    Based on the object-oriented data structure of Vor onoi diagram, the algorithm of the trimmed offset generating and the optimal too l path planning of the pocket machining for multiply connected polygonal domains are studied. The intersection state transition rule is improved in this algorit hm. The intersection is between the trimmed offsets and Voronoi polygon. On this basis, the trimmed offset generating and the optimal tool path planning are mad e with three stacks(I-stack, C-stack and P-stack)in different monotonous pouc hes of Voronoi diagram. At the same time, a merging method of Voronoi diagram an d offsets generating for multiply connected polygonal domains is also presented. The above algorithms have been implemented in NC machining successfully, and th e efficiency is fully verified.

  15. Realizing of Embedded Web Server Based onLight Weight Protocal Stack LwlP and μC/OS-Ⅱ%基于μC/OS-Ⅱ和LwIP的嵌入式Web服务器实现

    Institute of Scientific and Technical Information of China (English)

    杨俊; 吕建平; 徐峰柳


    A 32bit-microcontroller LPC1768 based on the core of ARM Cortex-M3 was adopted in this server. Its embedded Ethernet controller was used to construct a web server with μC/OS-Ⅱ as the operating system( OS ). On the basis of μC/OS-Ⅱ , a LwIP protocal stack was transplanted successfully and HTTP( Hyper Text Ttransfer Protocal) service was realized. The process of hardware designing and software developing was introduced in the paper. Adding to it, the paper included transplanting of μC/OS- Ⅱ , the general structure and transplanting of LwIP protocal stack, the handling proceeding of LwlP protocal stack packet, as well as programming of application layer.%采用以ARM Codex-M3为内核的32位微控制器LPC1768,利用其内置以太网控制器搭建web服务器.web服务器以μC/OS-Ⅱ为操作系统,并在其基础上,成功移植了LwIP协议栈,通过该协议栈,实现了HTTP(超文本传输协议)服务.文中介绍了该系统的硬件设计和软件开发过程,涉及μC/OS-Ⅱ的移植、LwIP协议栈的总体架构和移植、LwIP协议栈数据包处理流程、以及网络应用层程序的编写.

  16. Multibeam collimator uses prism stack (United States)

    Minott, P. O.


    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  17. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)

    YANG Ye-hua; WANG Xue-kui; YAO Ming-jing; FAN Yu-peng; GAO Da-yu


    @@ To date,more and more transgenic varieties of upland cotton (Gossypium hirsuturn L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct transgenic lines in a cultivar and possibly makes a significant contribution to cultivar improvement.

  18. Adding large EM stack support

    KAUST Repository

    Holst, Glendon


    Serial section electron microscopy (SSEM) image stacks generated using high throughput microscopy techniques are an integral tool for investigating brain connectivity and cell morphology. FIB or 3View scanning electron microscopes easily generate gigabytes of data. In order to produce analyzable 3D dataset from the imaged volumes, efficient and reliable image segmentation is crucial. Classical manual approaches to segmentation are time consuming and labour intensive. Semiautomatic seeded watershed segmentation algorithms, such as those implemented by ilastik image processing software, are a very powerful alternative, substantially speeding up segmentation times. We have used ilastik effectively for small EM stacks – on a laptop, no less; however, ilastik was unable to carve the large EM stacks we needed to segment because its memory requirements grew too large – even for the biggest workstations we had available. For this reason, we refactored the carving module of ilastik to scale it up to large EM stacks on large workstations, and tested its efficiency. We modified the carving module, building on existing blockwise processing functionality to process data in manageable chunks that can fit within RAM (main memory). We review this refactoring work, highlighting the software architecture, design choices, modifications, and issues encountered.

  19. Multilayer Piezoelectric Stack Actuator Characterization (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph


    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  20. Transgene Stacking in Cotton Improvement

    Institute of Scientific and Technical Information of China (English)


    To date,more and more transgenic varieties of upland cotton(Gossypium hirsutum L.) generated with transgenes,which derived from varies of alien species,are playing important role in agricultural production.Stacking of multi-transgenes has a potential for combining all the merits of distinct

  1. Influence of perylenediimide–pyrene supramolecular interactions on the stability of DNA-based hybrids: Importance of electrostatic complementarity

    Directory of Open Access Journals (Sweden)

    Christian B. Winiger


    Full Text Available Aromatic π–π stacking interactions are ubiquitous in nature, medicinal chemistry and materials sciences. They play a crucial role in the stacking of nucleobases, thus stabilising the DNA double helix. The following paper describes a series of chimeric DNA–polycyclic aromatic hydrocarbon (PAH hybrids. The PAH building blocks are electron-rich pyrene and electron-poor perylenediimide (PDI, and were incorporated into complementary DNA strands. The hybrids contain different numbers of pyrene–PDI interactions that were found to directly influence duplex stability. As the pyrene–PDI ratio approaches 1:1, the stability of the duplexes increases with an average value of 7.5 °C per pyrene–PDI supramolecular interaction indicating the importance of electrostatic complementarity for aromatic π–π stacking interactions.

  2. Adaptive Game Level Creation through Rank-based Interactive Evolution

    DEFF Research Database (Denmark)

    Liapis, Antonios; Martínez, Héctor Pérez; Togelius, Julian


    This paper introduces Rank-based Interactive Evolution (RIE) which is an alternative to interactive evolution driven by computational models of user preferences to generate personalized content. In RIE, the computational models are adapted to the preferences of users which, in turn, are used...

  3. A Usability Study of Interactive Web-Based Modules (United States)

    Girard, Tulay; Pinar, Musa


    This research advances the understanding of the usability of marketing case study modules in the area of interactive web-based technologies through the assignment of seven interactive case modules in a Principles of Marketing course. The case modules were provided for marketing students by the publisher, McGraw Hill Irwin, of the…

  4. On Interactive Teaching Model of Translation Course Based on Wechat (United States)

    Lin, Wang


    Constructivism is a theory related to knowledge and learning, focusing on learners' subjective initiative, based on which the interactive approach has been proved to play a crucial role in language learning. Accordingly, the interactive approach can also be applied to translation teaching since translation itself is a bilingual transformational…

  5. Identity-based Encryption with Non-Interactive Opening

    Institute of Scientific and Technical Information of China (English)

    FAN Jia; TANG Xiao-hu; KANG Li; LU Xian-hui


    An identity-based encryption (IBE) was studied with non-interactively opening property that the plain text of a ciphertext can be revealed without affecting the security of the encryption system.Two kinds of non-interactive opening properties for IBE schemes were defined along with a concrete scheme in each case.

  6. An agent-based architecture for multimodal interaction

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.; Wijngaards, W.C.A.


    In this paper, an executable generic process model is proposed for combined verbal and non-verbal communication processes and their interaction. The agent-based architecture can be used to create multimodal interaction. The generic process model has been designed, implemented and used to simulate di

  7. Influence of electric fields on absorption spectra of AAB-stacked trilayer graphene (United States)

    Chiu, Chih-Wei; Chen, Rong-Bin


    The tight-binding model and gradient approximation are, respectively, used to calculate the band structures and the absorption spectra of AAB-stacked trilayer graphene (AAB-TLG). AAB stacking, the lowest symmetric geometric structure in trilayer systems, induces the most atomic interactions, and thus, complicates the energy dispersions and the joint density of states. AAB stacking enriches the optical absorption spectra [A(ω)], which dictate the characteristics of the electronic structure. A(ω) are changed by the static electric field, such as the intensity, frequency, and number of absorption structures. These results contrast sharply with those for TLG in other stacking configurations.

  8. Modelling the impact of creep on the probability of failure of a solid oxidefuel cell stack

    DEFF Research Database (Denmark)

    Greco, Fabio; Frandsen, Henrik Lund; Nakajo, Arata;


    of an SOFC stack. A finite element analysis on a single repeating unit of the stack was performed, in which the influence of the mechanical interactions,the temperature-dependent mechanical properties and creep of the SOFC materials are considered. Moreover, stresses from the thermo-mechanical simulation...

  9. Helium-3 Microscopic Optical Model Potential Based on Skyrme Interaction

    Institute of Scientific and Technical Information of China (English)


    <正>The helium-3 microscopic optical potential is obtained by Green function method through nuclear matter approximation and local density approximation based on the effective Skyrme interaction. The reaction cross

  10. EyeScreen: A Vision-Based Gesture Interaction System

    Institute of Scientific and Technical Information of China (English)

    LI Shan-qing; XU Yi-hua; JIA Yun-de


    EyeScreen is a vision-based interaction system which provides a natural gesture interface for human-computer interaction (HCI) by tracking human fingers and recognizing gestures. Multi-view video images are captured by two cameras facing a computer screen, which can be used to detect clicking actions of a fingertip and improve the recognition rate. The system enables users to directly interact with rendered objects on the screen. Robustness of the system has been verified by extensive experiments with different user scenarios. EyeScreen can be used in many applications such as intelligent interaction and digital entertainment.

  11. Study on port stack-scheduling based on improved NSGA-Ⅱ%基于改进NSGA-Ⅱ算法的港口堆位分配问题研究

    Institute of Scientific and Technical Information of China (English)

    宋昕; 黄磊


    The problem of stack-scheduling in bulk port is a typical combinatorial optimization problem. In this paper, on the basis of the issue analysis and modeling, the NSGA-II algorithm is used to solve it. In accordance with the huge searching space, restrictions and influencing factors of bulk port, this paper initiates the multi-objective optimization method based on improved NSGA-II. The paper applies the proposed algorithm to the optimization of stack-scheduling by using Java and Jess.%散杂货港口堆位分配问题是一个典型的组合优化问题.在对此问题分析和建模的基础上,采用NSGA-Ⅱ算法进行求解.针对问题搜索空间大、约束条件复杂等特点,对传统NSGA-Ⅱ算法进行了改进,以提高算法的处理效率、收敛性和多样性.应用Java编程语言,融合JESS推理机,进行了改进NSGA-Ⅱ算法的仿真研究.

  12. Standoff Stack Emissions Monitoring Using Short Range Lidar (United States)

    Gravel, Jean-Francois Y.; Babin, Francois; Allard, Martin


    There are well documented methods for stack emissions monitoring. These are all based on stack sampling through sampling ports in well defined conditions. Once sampled, the molecules are quantified in instruments that often use optical techniques. Unfortunately sampling ports are not found on all stacks/ducts or the use of the sampling ports cannot be planned efficiently because of operational constraints or the emissions monitoring equipment cannot be driven to a remote stack/duct. Emissions monitoring using many of the same optical techniques, but at a standoff distance, through the atmosphere, using short range high spatial resolution lidar techniques was thus attempted. Standoff absorption and Raman will be discussed and results from a field campaign will be presented along with short descriptions of the apparatus. In the first phase of these tests, the molecules that were targeted were NO and O2. Spatially resolved optical measurements allow for standoff identification and quantification of molecules, much like the standardized methods, except for the fact that it is not done in the stack, but in the plume formed by the emissions from the stack. The pros and cons will also be discussed, and in particular the problem of mass emission estimates that require the knowledge of the flow rate and the distribution of molecular concentration in the plane of measurement.

  13. Comparison of strain fields in truncated and un-truncated quantum dots in stacked InAs/GaAs nanostructures with varying stacking periods

    CERN Document Server

    Shin, H; Yoo, Y H


    Strain fields in truncated and un-truncated InAs quantum dots with the same height and base length have been compared numerically when the dots are vertically stacked in a GaAs matrix at various stacking periods. The compressive hydrostatic strain in truncated dots decreases slightly as compared with the un-truncated dots without regard to the stacking period studied. However, the reduction in tensile biaxial strain, compressive radial strain and tensile axial strain was salient in the truncated dot and the reduction increased with decreasing stacking period. From such changes in strain, changes in the band gap and related properties are anticipated.

  14. Automated centreline extraction of neuronal dendrite from optical microscopy image stacks (United States)

    Xiao, Liang; Zhang, Fanbiao


    In this work we present a novel vision-based pipeline for automated skeleton detection and centreline extraction of neuronal dendrite from optical microscopy image stacks. The proposed pipeline is an integrated solution that merges image stacks pre-processing, the seed points detection, ridge traversal procedure, minimum spanning tree optimization and tree trimming into to a unified framework to deal with the challenge problem. In image stacks preprocessing, we first apply a curvelet transform based shrinkage and cycle spinning technique to remove the noise. This is followed by the adaptive threshold method to compute the result of neuronal object segmentation, and the 3D distance transformation is performed to get the distance map. According to the eigenvalues and eigenvectors of the Hessian matrix, the skeleton seed points are detected. Staring from the seed points, the initial centrelines are obtained using ridge traversal procedure. After that, we use minimum spanning tree to organize the geometrical structure of the skeleton points, and then we use graph trimming post-processing to compute the final centreline. Experimental results on different datasets demonstrate that our approach has high reliability, good robustness and requires less user interaction.

  15. Interactive Internet Based Pendulum for Learning Mechatronics (United States)

    Sethson, Magnus R.


    This paper describes an Internet based remote experimental setup of a double lined pendulum mechanism for students experiments at the M. Sc. Level. Some of the first year experience using this web-based setup in classes is referred. In most of the courses given at the division of mechanical engineering systems at Linkoeping Institute of Technology we provide experimental setups to enhance the teaching Of M.Sc. students. Many of these experimental setups involve mechatronical systems. Disciplines like fluid power, electronics, and mechanics and also software technologies are used in each experiment. As our campus has recently been split into two different cities some new concepts for distance learning have been studied. The one described here tries to implement remotely controlled mechatronic setups for teaching basic programming of real-time operating systems and analysis of the dynamics of mechanical systems. The students control the regulators for the pendulum through a web interface and get measurement results and a movie back through their email. The present setup uses a double linked pendulum that is controlled by a DC-motor and monitored through both camera and angular position sensors. All software needed is hosted on a double-processor PC running the RedHat 7.1. distribution complemented with real-time scheduling using DIAPM-RTAI 1.7. The Internet site is presented to the students using PHP, Apache and MySQL. All of the used software originates from the open source domain. The experience from integrating these technologies and security issues is discussed together with the web-camera interface. One of the important experiences from this project so far is the need for a good visual feedback. This is both in terms of video speed but also in resolution. It has been noticed that when the students makes misstates and wants to search the failure they want clear, large images with high resolution to support their personal believes in the cause of the failure. Even

  16. Stack gas desulfurization using adsorbent materials based on copper oxide; Desulfuracion de gases de combustion usando materiales adsorbentes basados en oxido de cobre

    Energy Technology Data Exchange (ETDEWEB)

    Flores Velazquez, Roberto; Rodas Grapain, Arturo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)


    One of main fossil fuels used to date in Mexico for power generation is the fuel oil, with a total participation of 32%. The Mexican fuel oil is constituted in average by 84% in weight of carbon, 11% hydrogen, 0.4% nitrogen, 0.2% oxygen, 4% sulfur and the remaining is assumed to be metals such as vanadium, nickel, calcium, magnesium among others. The purpose of the present paper is to show a new route of preparation of materials impregnated through the application of ultrasonic energy and to evaluate its performance in the stack gas desulfurization. [Spanish] Uno de los principales combustibles fosiles empleados actualmente en Mexico para la generacion de energia electrica es el combustoleo, con una participacion total del 32%. El combustoleo mexicano esta constituido en promedio por 84% en peso de carbono, 11% de hidrogeno, 0.4% de nitrogeno, 0.2% de oxigeno, 4% de azufre y el resto se asume a metales como vanadio, niquel, calcio, magnesio entre otros. El proposito del presente trabajo es mostrar una nueva ruta de preparacion de materiales impregnados a traves de la aplicacion de energia ultrasonica y evaluar su desempeno en la desulfuracion de gases de combustion.

  17. Individual versus Interactive Task-Based Performance through Voice-Based Computer-Mediated Communication (United States)

    Granena, Gisela


    Interaction is a necessary condition for second language (L2) learning (Long, 1980, 1996). Research in computer-mediated communication has shown that interaction opportunities make learners pay attention to form in a variety of ways that promote L2 learning. This research has mostly investigated text-based rather than voice-based interaction. The…

  18. Stacking transition in bilayer graphene caused by thermally activated rotation (United States)

    Zhu, Mengjian; Ghazaryan, Davit; Son, Seok-Kyun; Woods, Colin R.; Misra, Abhishek; He, Lin; Taniguchi, Takashi; Watanabe, Kenji; Novoselov, Kostya S.; Cao, Yang; Mishchenko, Artem


    Crystallographic alignment between two-dimensional crystals in van der Waals heterostructures brought a number of profound physical phenomena, including observation of Hofstadter butterfly and topological currents, and promising novel applications, such as resonant tunnelling transistors. Here, by probing the electronic density of states in graphene using graphene-hexagonal boron nitride-graphene tunnelling transistors, we demonstrate a structural transition of bilayer graphene from incommensurate twisted stacking state into a commensurate AB stacking due to a macroscopic graphene self-rotation. This structural transition is accompanied by a topological transition in the reciprocal space and by pseudospin texturing. The stacking transition is driven by van der Waals interaction energy of the two graphene layers and is thermally activated by unpinning the microscopic chemical adsorbents which are then removed by the self-cleaning of graphene.

  19. Categorical properties of topological and differentiable stacks

    NARCIS (Netherlands)

    Carchedi, D.J.


    The focus of this PhD research is on the theory of topological and differentiable stacks. There are two main themes of this research. The first, is the creation of the theory of compactly generated stacks, which solve many categorical shortcomings of the theory of classical topological stacks. In pa

  20. Gallium based low-interaction anions (United States)

    King, Wayne A.; Kubas, Gregory J.


    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  1. An Interactive Tool for Creating Multi-Agent Systems and Interactive Agent-based Games

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop; Pagliarini, Luigi


    Utilizing principles from parallel and distributed processing combined with inspiration from modular robotics, we developed the modular interactive tiles. As an educational tool, the modular interactive tiles facilitate the learning of multi-agent systems and interactive agent-based games....... The modular and physical property of the tiles provides students with hands-on experience in exploring the theoretical aspects underlying multi-agent systems which often appear as challenging to students. By changing the representation of the cognitive challenging aspects of multi-agent systems education...

  2. Theoretical analysis of noncanonical base pairing interactions in RNA molecules

    Indian Academy of Sciences (India)

    Dhananjay Bhattacharyya; Siv Chand Koripella; Abhijit Mitra; Vijay Babu Rajendran; Bhabdyuti Sinha


    Noncanonical base pairs in RNA have strong structural and functional implications but are currently not considered for secondary structure predictions. We present results of comparative ab initio studies of stabilities and interaction energies for the three standard and 24 selected unusual RNA base pairs reported in the literature. Hydrogen added models of isolated base pairs, with heavy atoms frozen in their ‘away from equilibrium’ geometries, built from coordinates extracted from NDB, were geometry optimized using HF/6-31G** basis set, both before and after unfreezing the heavy atoms. Interaction energies, including BSSE and deformation energy corrections, were calculated, compared with respective single point MP2 energies, and correlated with occurrence frequencies and with types and geometries of hydrogen bonding interactions. Systems having two or more N-H…O/N hydrogen bonds had reasonable interaction energies which correlated well with respective occurrence frequencies and highlighted the possibility of some of them playing important roles in improved secondary structure prediction methods. Several of the remaining base pairs with one N-H…O/N and/or one C-H…O/N interactions respectively, had poor interaction energies and negligible occurrences. High geometry variations on optimization of some of these were suggestive of their conformational switch like characteristics.

  3. Interactive Coherence-Based Façade Modeling

    KAUST Repository

    Musialski, Przemyslaw


    We propose a novel interactive framework for modeling building facades from images. Our method is based on the notion of coherence-based editing which allows exploiting partial symmetries across the facade at any level of detail. The proposed workflow mixes manual interaction with automatic splitting and grouping operations based on unsupervised cluster analysis. In contrast to previous work, our approach leads to detailed 3d geometric models with up to several thousand regions per facade. We compare our modeling scheme to others and evaluate our approach in a user study with an experienced user and several novice users.

  4. Synthesis and comprehensive structural studies of a novel amide based carboxylic acid derivative: Non-covalent interactions (United States)

    Chahkandi, Mohammad; Bhatti, Moazzam H.; Yunus, Uzma; Shaheen, Shahida; Nadeem, Muhammad; Tahir, Muhammad Nawaz


    The presented work studies the geometric and electronic structures of the crystalline network of a novel amide based carboxylic acid derivative, N-[(4-chlorophenyl)]-4-oxo-4-[oxy] butane amide, C10H10NO3Cl (1), constructed via hydrogen bonds (HBs) and stacking non-covalent interactions. Compound 1 was synthesized and characterized by FTIR, 1H, and 13C NMR, and UV-Vis spectra, X-ray structural, DTA-TG, and EI-MS, analyses. DFT calculations about molecular and related network of 1 were performed at hybrid B3LYP/6-311+G (d, p) level of theory to support the experimental data. The neutral monomeric structures join together via inter-molecular conventional O/Nsbnd H⋯O and non-conventional Csbnd H⋯O HBs and Osbnd H···π and Csbnd O···π stacking interactions to create 2-D architecture of the network. The results of dispersion corrected density functional theory (DFT-D) calculations within the binding energy of the constructive non-covalent interactions demonstrate that HBs, especially conventional Osbnd H⋯O and Nsbnd H⋯O, govern the network formation. The calculated electronic spectrum show six major bands in the range of 180-270 nm which confirm the experimental one within an intense band around 250 nm. These charge transfer bands result from shift of lone pair electron density of phenyl to chlorine or hydroxyl or phenyl functional groups that possess π → π* and π → n characters.

  5. Interacting with Visual Poems through AR-Based Digital Artwork (United States)

    Lin, Hao-Chiang Koong; Hsieh, Min-Chai; Liu, Eric Zhi-Feng; Chuang, Tsung-Yen


    In this study, an AR-based digital artwork called "Mind Log" was designed and evaluated. The augmented reality technique was employed to create digital artwork that would present interactive poems. A digital poem was generated via the interplay between a video film and a text-based poem. This artwork was created following a rigorous design flow,…

  6. Movement-based interaction in camera spaces: a conceptual framework

    DEFF Research Database (Denmark)

    Eriksson, Eva; Hansen, Thomas Riisgaard; Lykke-Olesen, Andreas


    In this paper we present three concepts that address movement-based interaction using camera tracking. Based on our work with several movementbased projects we present four selected applications, and use these applications to leverage our discussion, and to describe our three main concepts space,...

  7. Design and characterisations of double-channel GaAs pHEMT Schottky diodes based on vertically stacked MMICs for a receiver protection limiter (United States)

    Haris, Norshakila; Kyabaggu, Peter B. K.; Rezazadeh, Ali A.


    A microwave receiver protection limiter circuit has been designed, fabricated and tested using vertically stacked GaAs MMIC technology. The limiter circuit with a dimension of 2.5 × 1.3 mm2 is formed by using double-channel AlGaAs/InGaAs pseudomorphic HEMT (pHEMT) Schottky diodes integrated with a low-loss V-shaped coplanar waveguide multilayer structure. The electrical parameter characteristics of the pHEMT Schottky diodes are presented including the C-V profile showing the presence of a double channel in the device layer structure. This unique feature can also be seen from the double-peak responses of the electron density as a function of the device layer width, which represent the high electron concentration at two different 2-DEG layers of the structure. An equivalent circuit model of pHEMT Schottky diodes is demonstrated showing good agreement with the measurement results. At zero-bias condition, the devices show high performance in diode detector applications with voltage sensitivities of more than 89 mV μW-1 at 10 GHz and at least 5.4 mV μW-1 at 35 GHz. The measurement results of the limiter circuit demonstrated the blocking of input power signals greater than 20 dBm input power at 3 GHz. To the best of our knowledge this is the first demonstration of the use of pHEMT Schottky diodes in microwave power limiter applications.

  8. Polytypism in LaOBi S2 -type compounds based on different three-dimensional stacking sequences of two-dimensional Bi S2 layers (United States)

    Liu, Qihang; Zhang, Xiuwen; Zunger, Alex


    LaOBi S2 -type materials have drawn much attention recently because of various interesting physical properties, such as low-temperature superconductivity, hidden spin polarization, and electrically tunable Dirac cones. However, it was generally assumed that each LaOBi S2 -type compound has a unique and specific crystallographic structure (with a space group P 4 /nmm) separated from other phases. Using first-principles total energy and stability calculations we confirm that the previous assignment of the P 4 /nmm structure to LaOBi S2 is incorrect. Furthermore, we find that the unstable structure is replaced by a family of energetically closely spaced modifications (polytypes) differing by the layer sequences and orientations. We find that the local Bi-S distortion leads to three polytypes of LaOBi S2 with different stacking patterns of the distorted Bi S2 layers. The energy difference between the polytypes of LaOBi S2 is merely ˜1 meV/u.c., indicating the possible coexistence of all polytypes in the real sample and that the particular distribution of polytypes may be growth induced. The in-plane distortion can be suppressed by pressure, leading to a phase transition from polytypes to the high-symmetry P 4 /nmm structure with a pressure larger than 2.5 GPa. In addition, different choices of the intermediate atoms (replacing La) or active atoms (Bi S2 ) could also manifest different ground-state structures. One can thus tune the distortion and the ground state by pressure or by substituting covalence atoms in the LaOBi S2 family.

  9. Stacking the odds for Golgi cisternal maturation. (United States)

    Mani, Somya; Thattai, Mukund


    What is the minimal set of cell-biological ingredients needed to generate a Golgi apparatus? The compositions of eukaryotic organelles arise through a process of molecular exchange via vesicle traffic. Here we statistically sample tens of thousands of homeostatic vesicle traffic networks generated by realistic molecular rules governing vesicle budding and fusion. Remarkably, the plurality of these networks contain chains of compartments that undergo creation, compositional maturation, and dissipation, coupled by molecular recycling along retrograde vesicles. This motif precisely matches the cisternal maturation model of the Golgi, which was developed to explain many observed aspects of the eukaryotic secretory pathway. In our analysis cisternal maturation is a robust consequence of vesicle traffic homeostasis, independent of the underlying details of molecular interactions or spatial stacking. This architecture may have been exapted rather than selected for its role in the secretion of large cargo.

  10. Trait stacking via targeted genome editing. (United States)

    Ainley, William M; Sastry-Dent, Lakshmi; Welter, Mary E; Murray, Michael G; Zeitler, Bryan; Amora, Rainier; Corbin, David R; Miles, Rebecca R; Arnold, Nicole L; Strange, Tonya L; Simpson, Matthew A; Cao, Zehui; Carroll, Carley; Pawelczak, Katherine S; Blue, Ryan; West, Kim; Rowland, Lynn M; Perkins, Douglas; Samuel, Pon; Dewes, Cristie M; Shen, Liu; Sriram, Shreedharan; Evans, Steven L; Rebar, Edward J; Zhang, Lei; Gregory, Phillip D; Urnov, Fyodor D; Webb, Steven R; Petolino, Joseph F


    Modern agriculture demands crops carrying multiple traits. The current paradigm of randomly integrating and sorting independently segregating transgenes creates severe downstream breeding challenges. A versatile, generally applicable solution is hereby provided: the combination of high-efficiency targeted genome editing driven by engineered zinc finger nucleases (ZFNs) with modular 'trait landing pads' (TLPs) that allow 'mix-and-match', on-demand transgene integration and trait stacking in crop plants. We illustrate the utility of nuclease-driven TLP technology by applying it to the stacking of herbicide resistance traits. We first integrated into the maize genome an herbicide resistance gene, pat, flanked with a TLP (ZFN target sites and sequences homologous to incoming DNA) using WHISKERS™-mediated transformation of embryogenic suspension cultures. We established a method for targeted transgene integration based on microparticle bombardment of immature embryos and used it to deliver a second trait precisely into the TLP via cotransformation with a donor DNA containing a second herbicide resistance gene, aad1, flanked by sequences homologous to the integrated TLP along with a corresponding ZFN expression construct. Remarkably, up to 5% of the embryo-derived transgenic events integrated the aad1 transgene precisely at the TLP, that is, directly adjacent to the pat transgene. Importantly and consistent with the juxtaposition achieved via nuclease-driven TLP technology, both herbicide resistance traits cosegregated in subsequent generations, thereby demonstrating linkage of the two independently transformed transgenes. Because ZFN-mediated targeted transgene integration is becoming applicable across an increasing number of crop species, this work exemplifies a simple, facile and rapid approach to trait stacking.

  11. Interactive Multimedia Synchronization Model Based on Petri Nets

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiqiang; PENG Xiaogang; JI Zhen


    The multimedia synchronization is used to coordinate the timing of each multimedia object in the multimedia system.After studying different multimedia synchronization systems that have been published, an Interactive Synchronization multimedia based on Petri Nets model (ISPN) is proposed in this paper. The system is capable of describing the dynamic timing actions of multimedia objects vividly as well as controlling them interactively to maintain the system level synchronization balance.

  12. RNA-RNA interaction prediction based on multiple sequence alignments

    CERN Document Server

    Li, Andrew X; Qin, Jing; Reidys, Christian M


    Recently, $O(N^6)$ time and $O(N^4)$ space dynamic programming algorithms have become available that compute the partition function of RNA-RNA interaction complexes for pairs of RNA sequences. These algorithms and the biological requirement of more reliable interactions motivate to utilize the additional information contained in multiple sequence alignments and to generalize the above framework to the partition function and base pairing probabilities for multiple sequence alignments.

  13. The role of loop stacking in the dynamics of DNA hairpin formation

    CERN Document Server

    Mosayebi, Majid; Ouldridge, Thomas E; Louis, Ard A; Doye, Jonathan P K


    We study the dynamics of DNA hairpin formation using oxDNA, a nucleotide-level coarse-grained model of DNA. In particular, we explore the effects of the loop stacking interactions and non-native base pairing on the hairpin closing times. We find a non-monotonic variation of the hairpin closing time with temperature, in agreement with the experimental work of Wallace et al. [Proc. Nat. Acad. Sci. USA 2001, 98, 5584-5589]. The hairpin closing process involves the formation of an initial nucleus of one or two bonds between the stems followed by a rapid zippering of the stem. At high temperatures, typically above the hairpin melting temperature, an effective negative activation enthalpy is observed because the nucleus has a lower enthalpy than the open state. By contrast, at low temperatures, the activation enthalpy becomes positive mainly due to the increasing energetic cost of bending a loop that becomes increasingly highly stacked as the temperature decreases. We show that stacking must be very strong to induc...

  14. Solid Oxide Fuel Cell Stack Diagnostics

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Barfod, Rasmus Gottrup

    . An operating stack is subject to compositional gradients in the gaseous reactant streams, and temperature gradients across each cell and across the stack, which complicates detailed analysis. Several experimental stacks from Topsoe Fuel Cell A/S were characterized using Electrochemical Impedance Spectroscopy...... and discussed in the following. Parallel acquisition using electrochemical impedance spectroscopy can be used to detect possible minor differences in the supply of gas to the individual cells, which is important when going to high fuel utilizations. The fuel flow distribution was determined and provides...... carried out on an experimental 14-cell SOFC stack at varying frequencies and fuel utilizations. The results illustrated that THD can be used to detect increasing non-linearities in the current-voltage characteristics of the stack when the stack suffers from fuel starvation by monitoring the stack sum...


    Institute of Scientific and Technical Information of China (English)

    WANG Qingguo; CHEN Fute; HUANG Yuanfu; ZHOU Qingli


    Inverse gas chromatography(IGC) and Fourier-transform infrared (FT-IR) techniques were applied to determining the relative acid-base strength of polymers and coupling agents. The acid-base characteristics of fillers such as CaCO3 could be altered by treatment with different coupling agents. It was shown that some mechanical properties of filled polymers were obviously associated with acid-base interactions between polymers and fillers.

  16. Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene (United States)

    Yin, Long-Jing; Wang, Wen-Xiao; Zhang, Yu; Ou, Yang-Yang; Zhang, Hao-Ting; Shen, Cai-Yun; He, Lin


    Trilayer graphene (TLG) exhibits rich, alternative electronic properties and extraordinary quantum Hall phenomena owing to enhanced electronic interactions and tunable chirality of its quasiparticles. Here, we report direct observation of chirality transition of quasiparticles at stacking solitons of TLG via spatial-resolved Landau level spectroscopy. The one-dimensional stacking solitons with width of the order of 10 nm separate adjacent Bernal-stacked TLG and rhombohedral-stacked TLG. By using high-field tunneling spectra from scanning tunneling microscopy, we measured Landau quantization in both the Bernal-stacked TLG and the rhombohedral-stacked TLG and, importantly, we observed evolution of quasiparticles between the chiral degree l =1 and 2 and l =3 across the stacking domain-wall solitons. Our experiment indicates that such a chirality transition occurs smoothly, accompanying the transition of the stacking orders of TLG, around the domain-wall solitons. This result demonstrates the important relationship between the crystallographic stacking order and the chirality of quasiparticles in graphene systems.

  17. Parametric Sensitivity Tests- European PEM Fuel Cell Stack Test Procedures

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Kær, Søren Knudsen


    As fuel cells are increasingly commercialized for various applications, harmonized and industry-relevant test procedures are necessary to benchmark tests and to ensure comparability of stack performance results from different parties. This paper reports the results of parametric sensitivity tests...... performed based on test procedures proposed by a European project, Stack-Test. The sensitivity of a Nafion-based low temperature PEMFC stack’s performance to parametric changes was the main objective of the tests. Four crucial parameters for fuel cell operation were chosen; relative humidity, temperature...

  18. Nonlinear Predictive Control for PEMFC Stack Operation Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian


    Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.

  19. Experimental analysis of dynamic characteristics on the PEM fuel cell stack by using Taguchi approach with neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wei-Lung [Department of Vehicle Engineering, Army Academy, No. 113, Sec.4, Chun-San E. Rd., Chun-Li 320 (China); Wu, Sheng-Ju; Shiah, Sheau-Wen [Department of Power Vehicle and Systems Engineering, Chung Cheng Institute of Technology, National Defense University, No. 190, Sanyuan 1st St., Tashi, Taoyuan 335 (China)


    This study determines the optimum operating parameters for a proton exchange membrane fuel cell (PEMFC) stack to obtain small variation and maximum electric power output using a robust parameter design (RPD). The operating parameters examined experimentally are operating temperatures, operating pressures, anode/cathode humidification temperatures, and reactant flow rates. First, the dynamic Taguchi method is used to obtain the maximum and stable power density against the different current densities, which are regarded as the systemic inputs considered a signal factor. The relationship between control factors and responses in the PEMFC stack is determined using a neural network. The discrete parameter levels in the dynamic Taguchi method can be divided into desired levels to acquire real optimum operating parameters. Based on these investigations, the PEMFC stack is operated at the current densities of 0.4-0.8 A/cm{sup 2}. Since the voltage shift is quite small (roughly 0.73-0.83 V for each single cell), the efficiency would be higher. In the range of operation, the operating pressure, the cathode humidification temperature and the interactions between operating temperature and operating pressure significantly impact PEMFC stack performance. As the operating pressure increasing, the increments of the electric power decrease, and power stability is enhanced because the variation in responses is reduced. (author)

  20. Fluxons in long and annular intrinsic Josephson junction stacks (United States)

    Clauss, T.; Oehmichen, V.; Mößle, M.; Müller, A.; Weber, A.; Koelle, D.; Kleiner, R.


    A promising approach towards a THz oscillator based on intrinsic Josephson junctions in high-temperature superconductors is based on the collective motion of Josephson fluxons, which are predicted to form various configurations ranging from a triangular to a quadratic lattice. Not only for this reason, but certainly also for the sake of basic physics, several experimental and theoretical investigations have been done on the subject of collective fluxon dynamics in stacked intrinsic Josephson junctions. In this paper we will present some experimental results on the fluxon dynamics of long intrinsic Josephson junction stacks made of Bi2Sr2CaCu2O8. The stacks were formed either in an open or in an annular geometry, and clear resonant fluxon modes were observed. Experiments discussed include measurements of current-voltage characteristics in external magnetic fields and in external microwave fields.

  1. SODB:a novel method for software plagiarism detection based on stack operation dynamic birthmark%基于栈行为动态胎记的软件抄袭检测方法

    Institute of Scientific and Technical Information of China (English)

    范铭; 刘均; 郑庆华; 田振洲; 庄尔悦; 刘烃


    Software plagiarism detection is one of the key techniques for the protection of software intellectual property. In this paper,a new kind of dynamic birthmark SODB (stack operation dynamic birthmark)was proposed,which utili-zes the characteristics of push and pop operation of call stack during program execution,to uniquely identify the pro-gram.Plagiarism detection was realized by evaluating the similarity of their SODBs among different programs providing the same inputs.In the experiments,35 versions of 14 different softwares taken from the Source Forge were selected, based on which 87 samples were generated totally by processing with different compilers and optimization levels and se-mantic-preserving code obfuscation techniques.The quality of our SODB was evaluated with these 87 experimental ob-jects,and the results show that our method can accurately recognize plagiarism between copies and distinguish between independently implemented programs with only about 6.7%misjudgement rate and 7%false negative rate at the absence of software source code.%软件抄袭检测是软件知识产权保护的关键技术之一。提出了一种新的软件胎记---栈行为动态胎记(stack operation dynamic birthmark,SODB),根据软件在执行过程中函数调用栈的入栈和出栈行为,生成栈深度变化序列标识软件;通过计算不同软件在相同输入条件下栈行为动态胎记的相似性,评估软件功能和执行过程的相似度,判断软件是否存在抄袭。实验中对14种35个版本的开源软件,利用不同编译器、编译条件和混淆工具进行处理,共生成了87个实验样本。试验结果表明本方法可以在缺少源代码情况下,准确识别出存在抄袭的软件,误判率和漏判率仅为6.7%和7%。

  2. Dynamic Thermal Model and Temperature Control of Proton Exchange Membrane Fuel Cell Stack

    Institute of Scientific and Technical Information of China (English)

    邵庆龙; 卫东; 曹广益; 朱新坚


    A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.

  3. Influence of stacking fault energy on friction of nanotwinned metals (United States)

    Zhang, J. J.; Wang, Z. F.; Sun, T.; Yan, Y. D.


    The unique dislocation-twin boundary (TB) interactions that govern the extraordinary mechanical properties of nanotwinned (NT) metals have the strong intrinsic effect of material energy and the extrinsic effect of feature size. In this work, we perform molecular dynamics (MD) simulations to elucidate fundamental deformation mechanisms of two NT face-centered cubic (FCC) metals (Cu and Pd) under probe-based friction, with an emphasis on evaluating the influence of both material’s intrinsic energy barrier and extrinsic grain size on the microscopic deformation behavior and correlated macroscopic frictional results of the materials. Simulation results reveal that individual deformation modes of dislocation mechanisms, dislocation-TB interactions, TB-associated mechanisms, deformation twinning and grain boundary (GB) accommodation work in parallel in the plastic deformation of the materials, and their competition is strongly influenced by both the intrinsic energy barriers for the nucleation of stacking faults and twin faults, and the extrinsic grain size. Consequently, both the frictional response and worn surface morphology present strong anisotropic characteristics. It is also found that the deformation behavior of NT Pd under a localized multi-axis stress state is significantly different from that which occurs under a uniaxial stress state. These findings will advance the rational design and synthesis of nanostructured materials with advanced frictional properties.

  4. Maximum supercurrent in two Josephson-junction stacks: Theory and experiment

    DEFF Research Database (Denmark)

    Carapella, G; Costabile, G; Sakai, S


    The interaction between two long Josephson junctions in a stack is investigated experimentally in the absence of applied magnetic field. Mutual interaction is observed when both junctions or only one junction in the stack is in the zero voltage state. To account for the observed phenomena we prop...... propose a model that takes into account the nonuniform self-fields generated by the bias currents....

  5. Vibration mode analysis of the proton exchange membrane fuel cell stack (United States)

    Liu, B.; Liu, L. F.; Wei, M. Y.; Wu, C. W.


    Proton exchange membrane fuel cell (PEMFC) stacks usually undergo vibration during packing, transportation, and serving time, in particular for those used in the automobiles or portable equipment. To study the stack vibration response, based on finite element method (FEM), a mode analysis is carried out in the present paper. Using this method, we can distinguish the local vibration from the stack global modes, predict the vibration responses, such as deformed shape and direction, and discuss the effects of the clamping configuration and the clamping force magnitude on vibration modes. It is found that when the total clamping force remains the same, increasing the bolt number can strengthen the stack resistance to vibration in the clamping direction, but cannot obviously strengthen stack resistance to vibration in the translations perpendicular to clamping direction and the three axis rotations. Increasing the total clamping force can increase both of the stack global mode and the bolt local mode frequencies, but will decrease the gasket local mode frequency.

  6. Online approach to feature interaction problems in middleware based system

    Institute of Scientific and Technical Information of China (English)

    HUANG Gang; LIU XuanZhe; MEI Hong


    As a popular infrastructure for distributed systems running on the Internet, middle-ware has to support much more diverse and complex interactions for coping with the drastically increasing demand on information technology and the extremely open and dynamic nature of the Internet. These supporting mechanisms facilitate the development, deployment, and integration of distributed systems, as well as increase the occasions for distributed systems to interact in an undesired way. The undesired interactions may cause serious problems, such as quality violation, function loss, and even system crash. In this paper, the problem is studied from the perspective of the feature interaction problem (FIP) in telecom, and an online ap-proach to the detection and solution on runtime systems is proposed. Based on a classification of middleware enabled interactions, the existence of FIP in middle-ware based systems is illustrated by four real cases and a conceptual comparison between middleware based systems and telecom systems. After that, runtime soft-ware architecture is employed to facilitate the online detection and solution of FIP. The approach is demonstrated on J2EE (Java 2 Platform Enterprise Edition) and applied to detect and resolve all of the four real cases.

  7. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Flannery


    Full Text Available Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i conventional carbohydrate or glycan microarrays; (ii whole mucin microarrays; and (iii microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments.

  8. Mechanically stacked concentrator tandem solar cells (United States)

    Andreev, V. M.; Rumyantsev, V. D.; Karlina, L. B.; Kazantsev, A. B.; Khvostikov, V. P.; Shvarts, M. Z.; Sorokina, S. V.


    Four-terminal mechanically stacked solar cells were developed for advanced space arrays with line-focus reflective concentrators. The top cells are based on AlGaAs/GaAs multilayer heterostructures prepared by low temperature liquid phase epitaxy. The bottom cells are based on heteroepitaxial InP/InGaAs liquid phase epitaxy or on homo-junction GaSb, Zn-diffused structures. The sum of the highest reached efficiencies of the top and bottom cells is 29.4 percent. The best four-terminal tandems have an efficiency of 27 to 28 percent. Solar cells were irradiated with 1 MeV electrons and their performances were determined as a function of fluence up to 10(exp 16) cm(exp-2). It was shown that the radiation resistance of developed tandem cells is similar to the most radiative stable AlGaAs/GaAs cells with a thin p-GaAs photoactive layer.

  9. Assessing protein-protein interactions based on the semantic similarity of interacting proteins. (United States)

    Cui, Guangyu; Kim, Byungmin; Alguwaizani, Saud; Han, Kyungsook


    The Gene Ontology (GO) has been used in estimating the semantic similarity of proteins since it has the largest and reliable vocabulary of gene products and characteristics. We developed a new method which can assess Protein-Protein Interactions (PPI) using the branching factor and information content of the common ancestor of interacting proteins in the GO hierarchy. We performed a comparative evaluation of the measure with other GO-based similarity measures and evaluation results showed that our method outperformed others in most GO domains.

  10. Base flow and exhaust plume interaction. Part 1: Experimental study

    NARCIS (Netherlands)

    Schoones, M.M.J.; Bannink, W.J.


    An experimental study of the flow field along an axi-symmetric body with a single operating exhaust nozzle has been performed in the scope of an investigation on base flow-jet plume interactions. The structure of under-expanded jets in a co-flowing supersonic free stream was described using analytic

  11. Interactions between acid- and base-functionalized surfaces

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.


    In this paper we present an AFM force study on interactions between chemically modified surfaces. Surfaces with terminal groups of either NH2 or COOH were obtained by chemisorption of a silane-based compound (3-amino-propyltriethoxysilane) on silica or a thiol compound (11-mercapto undecanoic acid)

  12. Computer-Based Interaction Analysis with DEGREE Revisited (United States)

    Barros, B.; Verdejo, M. F.


    We review our research with "DEGREE" and analyse how our work has impacted the collaborative learning community since 2000. Our research is framed within the context of computer-based interaction analysis and the development of computer-supported collaborative learning (CSCL) tools. We identify some aspects of our work which have been…

  13. Observations on Experience and Flow in Movement-Based Interaction

    NARCIS (Netherlands)

    Nijholt, Anton; Pasch, Marco; Dijk, van Betsy; Reidsma, Dennis; Heylen, Dirk; England, David


    Movement-based interfaces assume that their users move. Users have to perform exercises, they have to dance, they have to golf or football, or they want to train particular bodily skills. Many examples of those interfaces exist, sometimes asking for subtle interaction between user and interface and

  14. An Interactive Multimedia Based Instruction in Experimental Modelling

    DEFF Research Database (Denmark)

    Knudsen, Morten; Nielsen, J.N.; Østergaard, J.


    A CD-ROM based interactive multimedia instruction in experimental modelling for Danish Engineering School teachers is described. The content is based on a new sensitivity approach for direct estimation of physical parameters in linear and nonlinear dynamic systems. The presentation is inspired...... of Solomans=s inventory of learning styles. To enhance active learning and motivation by real life problems, the simulation tool Matlab is integrated in the authoring program Medi8or....

  15. Optimization Algorithms Testing and Convergence by Using a Stacked Histogram

    Directory of Open Access Journals (Sweden)



    Full Text Available The article describes an original method of optimization algorithms testing and convergence. The method is based on so-called stacked histogram. Stacked histogram is a histogram with its features marked by a chosen colour scheme. Thus, the histogram maintains the information on the input digital sequence. This approach enables an easy identification of the hidden defects in the random process statistical distribution. The stacked histogram is used for the testing of the convergent quality of various optimization techniques. Its width, position and colour scheme provides enough information on the chosen algorithm optimization trajectory. Both the classic iteration techniques and the stochastic optimization algorithm with the adaptation were used as examples.

  16. Study of organic solar cells with stacked bulk heterojunction structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-fang; XU Zheng; ZHAO Su-ling; ZHANG Fu-jun; LI Yan; WU Chun-yu; CHEN Yue-ning


    Organic solar cells with stacked bulk heterojunction(BHJ) are investigated based on conjugated polymer. By using the solution spin-coating method, Poly[2-methoxy, 5-(2'-ethyl-hexyloxy) -1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles (50 nm) are mixed as the optical sense layer. Ag is used as inter-layer to connect the upper BILl cell and the lower cell. The structures are ITO/PEDOT:PSS/MEH-PPV/Ag/MEH-PPV:ZnO/Al. The open circuit voltage (Voc) of a stacked cell is about 3.7 times of that of an individual organic solar cell (ITO/PEDOT:PSS/MEH-PPV/A1). The short circuit current (Jsc) of a stacked cell is increased by about 1.6 times of that of individual one.

  17. Demagnetizing effects in stacked rectangular prisms

    DEFF Research Database (Denmark)

    Christensen, Dennis; Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden;


    A numerical, magnetostatic model of the internal magnetic field of a rectangular prism is extended to the case of a stack of rectangular prisms. The model enables the calculation of the spatially resolved, three-dimensional internal field in such a stack given any magnetic state function, stack...... configuration, temperature distribution and applied magnetic field. In this paper the model is applied to the case of a stack of parallel, ferromagnetic rectangular prisms and the resulting internal field is found as a function of the orientation of the applied field, the number of prisms in the stack...... a direct impact on the design of, e.g., active magnetic regenerators made of stacked rectangular prisms in terms of optimizing the internal field....

  18. Implementing cloud storage with OpenStack Swift

    CERN Document Server

    Rajana, Kris; Varma, Sreedhar


    This tutorial-based book has a step-by-step approach for each topic, ensuring it is thoroughly covered and easy to follow. If you are an IT administrator who wants to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Whether your job is to build, manage, or use OpenStack Swift, this book is an ideal way to move your career ahead. Only basic Linux and server technology skills are expected, to take advantage of this book.

  19. Research and Implementation of DHCP Mechanism Based on IPv4/IPv6 Dual-stack Enterprise Gateway%基于IPv4/IPv6双栈的企业网关中DHCP机制研究

    Institute of Scientific and Technical Information of China (English)

    刘泽伟; 董喜明; 毛永红


    首先对企业网关系统结构的设计进行了简单的介绍,然后分别对IPv4,IPv6环境下DHCP协议的地址状态迁移与C/S交互过程进行了研究,最后结合两者的异同点,设计开发了一种适用于双栈网关的DHCP协议软件模块,经过实验与工程应用验证了该模块具有良好的稳定性和兼容性,拥有较大的实用价值.%In this paper, a brief introduction to the design of the system architecture of the enterprise gateway is given, then the migrations of address-status of DHCP protocol and the interaction between client and server of DHCP protocol in the different environments of IPv4 and IPv6 are respectively studied. Then combined with the similarities and differences between them, a kind of software module about the DHCP protocol is designed and developed that applies to IPv4/IPv6 dual-stack environment. Experiments and engineering applications verified this kind of module has good stability and compatibility, and it has great practical value.

  20. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. (United States)

    Yu, K Y; Bufford, D; Sun, C; Liu, Y; Wang, H; Kirk, M A; Li, M; Zhang, X


    Stacking-fault tetrahedra are detrimental defects in neutron- or proton-irradiated structural metals with face-centered cubic structures. Their removal is very challenging and typically requires annealing at very high temperatures, incorporation of interstitials or interaction with mobile dislocations. Here we present an alternative solution to remove stacking-fault tetrahedra discovered during room temperature, in situ Kr ion irradiation of epitaxial nanotwinned Ag with an average twin spacing of ~8 nm. A large number of stacking-fault tetrahedra were removed during their interactions with abundant coherent twin boundaries. Consequently the density of stacking-fault tetrahedra in irradiated nanotwinned Ag was much lower than that in its bulk counterpart. Two fundamental interaction mechanisms were identified, and compared with predictions by molecular dynamics simulations. In situ studies also revealed a new phenomenon: radiation-induced frequent migration of coherent and incoherent twin boundaries. Potential migration mechanisms are discussed.

  1. Protein-protein interaction based on pairwise similarity

    Directory of Open Access Journals (Sweden)

    Zaki Nazar


    Full Text Available Abstract Background Protein-protein interaction (PPI is essential to most biological processes. Abnormal interactions may have implications in a number of neurological syndromes. Given that the association and dissociation of protein molecules is crucial, computational tools capable of effectively identifying PPI are desirable. In this paper, we propose a simple yet effective method to detect PPI based on pairwise similarity and using only the primary structure of the protein. The PPI based on Pairwise Similarity (PPI-PS method consists of a representation of each protein sequence by a vector of pairwise similarities against large subsequences of amino acids created by a shifting window which passes over concatenated protein training sequences. Each coordinate of this vector is typically the E-value of the Smith-Waterman score. These vectors are then used to compute the kernel matrix which will be exploited in conjunction with support vector machines. Results To assess the ability of the proposed method to recognize the difference between "interacted" and "non-interacted" proteins pairs, we applied it on different datasets from the available yeast saccharomyces cerevisiae protein interaction. The proposed method achieved reasonable improvement over the existing state-of-the-art methods for PPI prediction. Conclusion Pairwise similarity score provides a relevant measure of similarity between protein sequences. This similarity incorporates biological knowledge about proteins and it is extremely powerful when combined with support vector machine to predict PPI.

  2. 基于RBF神经网络辨识的直接甲醇燃料电池电堆非成性建模与自适应模糊控制%Nonlinear modeling based on RBF neural networks identification and adaptive fuzzy control of DMFC stack

    Institute of Scientific and Technical Information of China (English)

    苗青; 曹广益; 朱新坚


    The temperature models of anode and cathode of direct methanol fuel cell (DMFC) stack were established by using radial basis function (RBF) neural networks identification technique to deal with the modeling and control problem of DMFC stack. An adaptive fuzzy neural networks temperature controller was designed based on the identification models established, and parameters of the controller were regulated by novel back propagation (BP) algorithm. Simulation results show that the RBF neural networks identification modeling method is correct, effective and the models established have good accuracy. Moreover, performance of the adaptive fuzzy neural networks temperature controller designed is superior.

  3. Assessment of the 296-S-21 Stack Sampling Probe Location

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, John A.


    actual stack suggests that the other test results on the scale model are conservative relative to the actual stack. (3) Uniform Concentration of Tracer Gases--A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This was first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fans provides worst-case results. The acceptance criteria are that (1) the COV of the measured tracer gas concentration is ?20% across the center two-thirds of the sampling plane and (2) at no point in the sampling plane does the concentration vary from the mean by >30%. The results on the scale model at the point simulating the sampling probe ranged from 0.3 to 6 %COV, and the maximum single point deviation from the mean was -10%. (4) Uniform Concentration of Tracer Particles--Uniformity in contaminant concentration at the sampling probe was further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-?m aerodynamic diameter were used. The acceptance criterion is that the COV of particle concentration is ?20% across the center two-thirds of the sampling plane. The scale model results ranged form 2 to 9%. Based on these tests, the location of the air sampling probe on the 296-S-21 stack meets the requirements of the ANSI/HPS N13.1-1999 standard.

  4. Stacking technology for a space constrained microsystem

    DEFF Research Database (Denmark)

    Heschel, Matthias; Kuhmann, Jochen Friedrich; Bouwstra, Siebe;


    In this paper we present a stacking technology for an integrated packaging of an intelligent transducer which is formed by a micromachined silicon transducer and an integrated circuit chip. Transducer and circuitry are stacked on top of each other with an intermediate chip in between. The bonding...... of the transducer and the intermediate chip is done by flip chip solder bump bonding. The bonding between the above two-layer stack and the circuit chip is done by conductive adhesive bonding combined with gold studs. We demonstrate the stacking technologies on passive test chips rather than real devices and report...... on technological details...

  5. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspourseyedi, Sahar; Brandner, Florian; Schoeberl, Martin


    precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures....

  6. Traffic and Driving Simulator Based on Architecture of Interactive Motion

    Directory of Open Access Journals (Sweden)

    Alexander Paz


    Full Text Available This study proposes an architecture for an interactive motion-based traffic simulation environment. In order to enhance modeling realism involving actual human beings, the proposed architecture integrates multiple types of simulation, including: (i motion-based driving simulation, (ii pedestrian simulation, (iii motorcycling and bicycling simulation, and (iv traffic flow simulation. The architecture has been designed to enable the simulation of the entire network; as a result, the actual driver, pedestrian, and bike rider can navigate anywhere in the system. In addition, the background traffic interacts with the actual human beings. This is accomplished by using a hybrid mesomicroscopic traffic flow simulation modeling approach. The mesoscopic traffic flow simulation model loads the results of a user equilibrium traffic assignment solution and propagates the corresponding traffic through the entire system. The microscopic traffic flow simulation model provides background traffic around the vicinities where actual human beings are navigating the system. The two traffic flow simulation models interact continuously to update system conditions based on the interactions between actual humans and the fully simulated entities. Implementation efforts are currently in progress and some preliminary tests of individual components have been conducted. The implementation of the proposed architecture faces significant challenges ranging from multiplatform and multilanguage integration to multievent communication and coordination.

  7. WAVE: Interactive Wave-based Sound Propagation for Virtual Environments. (United States)

    Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh


    We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.

  8. The Memory Stack: New Technologies Harness Talking for Writing. (United States)

    Gannon, Maureen T.

    In this paper, an elementary school teacher describes her experiences with the Memory Stack--a HyperCard based tool that can accommodate a voice recording, a graphic image, and a written text on the same card--which she designed to help her second and third grade students integrate their oral language fluency into the process of learning how to…

  9. Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors. (United States)

    Mielke, S L; Ryan, R E; Hilgeman, T; Lesyna, L; Madonna, R G; Van Nostrand, W C


    A simple technique based on a Fizeau interferometer to measure the absolute phase shift on reflection for a Fabry-Perot interferometer dielectric stack mirror is described. Excellent agreement between the measured and predicted phase shift on reflection was found. Also described are the salient features of low-order Fabry-Perot interferometers and the demonstration of a near ideal low-order (1-10) Fabry-Perot interferometer through minimizing the phase dispersion on reflection of the dielectric stack. This near ideal performance of a low-order Fabry-Perot interferometer should enable several applications such as compact spectral imagers for solid and gas detection. The large free spectral range of such systems combined with an active control system will also allow simple interactive tuning of wavelength agile laser sources such as CO(2) lasers, external cavity diode lasers, and optical parametric oscillators.

  10. Termination dependence of surface stacking at 4H-SiC(0001)-1×1 : Density functional theory calculations (United States)

    Hara, Hideyuki; Morikawa, Yoshitada; Sano, Yasuhisa; Yamauchi, Kazuto


    We study the effect of adsorbates on the relative stability of hexagonal and cubic stacking sequences at the topmost SiC bilayers of 4H-SiC(0001)-1×1 surfaces using first-principles calculations. We investigate F-terminated, OH-terminated, H-terminated, and clean surfaces, and in all cases, the cubic structure is more stable than the hexagonal structure. The energy difference between the two structures, however, significantly depends on adsorbates and is largest on the clean surface while it is smallest on the H-terminated surface. Stabilization of the cubic structure at F-terminated and OH-terminated surfaces is in contradiction to a simple argument based on the electrostatic interaction and we attribute it to orbital hybridization between occupied states of adsorbates and unoccupied states of the substrate surface. The present results suggest a possible means of controlling step bunching and the SiC stacking sequence by surface adsorbates.

  11. Stacks of SPS Dipole Magnets

    CERN Multimedia


    Stacks of SPS Dipole Magnets ready for installation in the tunnel. The SPS uses a separated function lattice with dipoles for bending and quadrupoles for focusing. The 6.2 m long normal conducting dipoles are of H-type with coils that are bent-up at the ends. There are two types, B1 (total of 360) and B2 (384). Both are for a maximum field of 1.8 Tesla and have the same outer dimensions (450x800 mm2 vxh) but with different gaps (B1: 39x129 mm2, B2: 52x92 mm2) tailored to the beam size. The yoke, made of 1.5 mm thick laminations, consists of an upper and a lower half joined together in the median plane once the coils have been inserted.

  12. Image Stacking Method Application for Low Earth Orbit Faint Objects (United States)

    Tagawa, M.; Matsumoto, H.; Yanagisawa, T.; Kurosaki, H.; Oda, H.; Kitazawa, Y.; Hanada, T.


    Space situational awareness is one of the most important actions for safe and sustainable space development and its utilization. Tracking and maintaining debris catalog are the basis of the actions. Current minimum size of objects in the catalog that routinely tracked and updated is approximately 10 cm in the Low Earth Orbit region. This paper proposes collaborative observation of space-based sensors and ground facilities to improve tracking capability in low Earth orbit. This observation geometry based on role-sharing idea. A space-based sensor has advantage in sensitivity and observation opportunity however, it has disadvantages in periodic observation which is essential for catalog maintenance. On the other hand, a ground facility is inferior to space-based sensors in sensitivity however; observation network composed of facilities has an advantage in periodic observation. Whole observation geometry is defined as follows; 1) space-based sensors conduct initial orbit estimation for a target 2) ground facility network tracks the target based on estimated orbit 3) the network observes the target periodically and updates its orbit information. The second phase of whole geometry is based on image stacking method developed by the Japan aerospace exploration agency and this method is verified for objects in geostationary orbit. This method enables to detect object smaller than a nominal size limitation by stacking faint light spot along archived time-series frames. The principle of this method is prediction and searching target's motion on the images. It is almost impossible to apply the method to objects in Low Earth Orbit without proper orbit information because Low Earth Orbit objects have varied orbital characteristics. This paper discusses whether or not initial orbit estimation results given by space-based sensors have enough accuracy to apply image stacking method to Low Earth Orbit objects. Ground-based observation procedure is assumed as being composed of

  13. Web-based Interactive Landform Simulation Model - Grand Canyon (United States)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.


    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  14. Deep-Learning-Based Drug-Target Interaction Prediction. (United States)

    Wen, Ming; Zhang, Zhimin; Niu, Shaoyu; Sha, Haozhi; Yang, Ruihan; Yun, Yonghuan; Lu, Hongmei


    Identifying interactions between known drugs and targets is a major challenge in drug repositioning. In silico prediction of drug-target interaction (DTI) can speed up the expensive and time-consuming experimental work by providing the most potent DTIs. In silico prediction of DTI can also provide insights about the potential drug-drug interaction and promote the exploration of drug side effects. Traditionally, the performance of DTI prediction depends heavily on the descriptors used to represent the drugs and the target proteins. In this paper, to accurately predict new DTIs between approved drugs and targets without separating the targets into different classes, we developed a deep-learning-based algorithmic framework named DeepDTIs. It first abstracts representations from raw input descriptors using unsupervised pretraining and then applies known label pairs of interaction to build a classification model. Compared with other methods, it is found that DeepDTIs reaches or outperforms other state-of-the-art methods. The DeepDTIs can be further used to predict whether a new drug targets to some existing targets or whether a new target interacts with some existing drugs.

  15. 基才ZigBee协议栈的无线传感器网络的设计%Design of wireless sensor networks based on ZigBee stack

    Institute of Scientific and Technical Information of China (English)

    徐振峰; 尹晶晶; 陈小林; 周全


    首先介绍了无线传感器网络的基本拓扑结构与传感器节点的结构,详细说明了基于ZigBee协议栈的无线传感网络的建立过程,包括协调器启动及建立网络、传感器节点启动及加入网络、传感器节点与协调器之间建立绑定以及传感器节点向协调器发送数据的过程。设计了基于ZigBee协议栈的无线传感网络系统。以采集温度信息为例,协调器能够接收到传感器节点发来的数据,并能通过RS232串口,将收到的数据发送给PC机进行显示。实验显示在距离80m远处,系统仍能保持良好的通信质量。%First, the basic topological structures of wireless sensor network and the structure of sensor node are introduced. The starting-up process of wireless sensor network based on ZigBee stack is explained in details, including startup and establishing network of coordinator, startup and joining network of sensor node, binding between sensor nodes and coordinator, and the process of terminal nodes sending data to coordinator. The wireless sensor network is designed based on ZigBee stack. Taking sampling temperature information as a example, the coordinator can collect the information from sensor nodes, and send them to PC by using RS232. The temperature information can be displayed in PC. The experiment shows that good communication quality of this system can be obtained, although at the distance of 80 meters.

  16. 基于Xilinx Spartan-3E和LwIP协议的以太网通讯%Ethernet Communication Based on Xilinx Spartan-3E and LwIP Protocol Stack

    Institute of Scientific and Technical Information of China (English)

    张艳芳; 沈莉


    Faced with a growing number of FPGA network communication,we propose a network application platform based on programmable chip(SOPC)using a target device of Xilinx Spartan-3E development board,based on Xilinx MicroBlaze microprocessor soft-core,built together with the related peripheral IP core.FPGA and Ethernet communications through transplant open source TCP/IP protocol stack LwIP.Proposed a LwIP efficient operating mode does not require operating system.The paper describes the design of the system's hardware and software platform,and the experimental validation of the designed system.%面对越来越多的FPGA网络通讯方式,提出了一种以Xilinx Spartan-3E开发板为目标器件,基于Xilinx MicroBlaze微处理器软核,与相关外设IP核一起构建基于片上可编程系统的网络应用平台,通过移植开源TCP/IP协议栈LwIP,提出了一种不需要操作系统的LwIP协议栈的高效工作模式,实现FPGA与以太网的通讯.设计给出了系统的软硬件平台设计,以及对整体设计的实验验证.

  17. An Integrated Approach for Creating Service-Based Interactive Applications (United States)

    Feldmann, Marius; Janeiro, Jordan; Nestler, Tobias; Hübsch, Gerald; Jugel, Uwe; Preussner, André; Schill, Alexander

    While the implementation of business logic and business processes based on service-oriented architectures is well-understood and covered by existing development approaches, integrated concepts that empower users to exploit the Internet of Services to create complex interactive applications are missing. In this paper, we present an integrated approach that fills this gap. Our approach builds upon service annotations that add meta-information related to user interface generation, service dependencies, and service composition to existing service descriptions. Services can be composed visually to complex interactive applications based on these annotations without the need to write any code. The application code is generated completely from the service composition description. Our approach is able to support heterogeneous target environments ranging from client/server architectures to mobile platforms.

  18. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)


    . Different types of co-casting were tried and the results are very promising. The results indicate that upon proper development production price can be significantly lowered and better control on thickness and microstructure may be obtained. Lamination as a technique to produce half cells has been developed within this project and results showed that the technique gives good control over the various layers. The enhanced control on thickness made it possible to develop cells with even thinner anode support and thereby decreasing the material consumption and still maintain small cell curvature and low electrolyte leak-rate. New cathodes based on LSCF were screen printed onto standard half-cells and tested in a stack. The ASR of the cells was lowered compared to standard 2G production cells and also the degradation was improved. A 10 cell stack was assembled and is still operated - more than 3000 hr has now been reached. An improvement in ASR was also obtained for half-cells produced without MEK and DBP in the paste thereby combining a more environmentally production with improved performance. (LN)

  19. A Moving Human Tracking Approach Based on Semantic Interaction

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ning; FANG Bao-hong; SUN Fu-liang


    In order to deal with partical occlusion, a semantic interaction based moving human tracking approach is put forward. Firstly human is modeled as moving blobs which are described as blob descriptions. Then moving blobs are updated and verified by projecting these descriptions. The approach exploits improved fast gauss transform and chooses source and target samples to reduce compute cost. Multi-moving human can be tracked simply and part occlusion can be done well.

  20. Elementary Quantum Gates Based on Intrinsic Interaction Hamiltonian

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing; YU Chang-Shui; SONG He-Shan


    A kind of new operators, the generalized pseudo-spin operators are introduced and a universal intrinsic Hamiltonian of two-qubit interaction is studied in terms of the generalized pseudo-spin operators. A fundamental quantum gate U(θ) is constructed based on the universal Hamiltonian and shown that the roles of the new quantum gate U(θ) is equivalent, functionally, to the joint operation of Hadamard and C-Not gates.

  1. Spreadsheet‐based interactive modules for control education



    In the last few years, spreadsheets have become a popular computational tool and a powerful platform for performing engineering calculations. The simplicity of spreadsheet programming in addition to their plotting capabilities, and other provided utilities, make them a powerful didactic tool. This paper describes the development of interactive tools based on Excel spreadsheets for basic control education. The motivation for developing these tools was to give students special learning modules ...

  2. 40 CFR 61.44 - Stack sampling. (United States)


    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.44 Section 61.44 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... Firing § 61.44 Stack sampling. (a) Sources subject to § 61.42(b) shall be continuously sampled,...

  3. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard


    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... of vector fields....

  4. Improved physical stability of amorphous state through acid base interactions. (United States)

    Telang, Chitra; Mujumdar, Siddharthya; Mathew, Michael


    To investigate role of specific interactions in aiding formation and stabilization of amorphous state in ternary and binary dispersions of a weakly acidic drug. Indomethacin (IMC), meglumine (MU), and polyvinyl pyrollidone (PVP) were the model drug, base, and polymer, respectively. Dispersions were prepared using solvent evaporation. Physical mixtures were cryogenically coground. XRPD, PLM, DSC, TGA, and FTIR were used for characterization. MU has a high crystallization tendency and is characterized by a low T(g) (17 degrees C). IMC crystallization was inhibited in ternary dispersion with MU compared to IMC/PVP alone. An amorphous state formed readily even in coground mixtures. Spectroscopic data are indicative of an IMC-MU amorphous salt and supports solid-state proton transfer. IMC-MU salt displays a low T(g) approximately 50 degrees C, but is more physically stable than IMC, which in molecular mixtures with MU, resisted crystallization even when present in stoichiometric excess of base. This is likely due to a disrupted local structure of amorphous IMC due to specific interactions. IMC showed improved physical stability on incorporating MU in polymer, in spite of low T(g) of the base indicating that chemical interactions play a dominant role in physical stabilization. Salt formation could be induced thermally and mechanically.

  5. Delegateable signatures based on non-interactive witness indistinguishable and non-interactive witness hiding proofs

    Institute of Scientific and Technical Information of China (English)

    TANG ChunMing; PEI DingYi; WANG XiaoFeng; LIU ZhuoJun


    A delegateable signature scheme (DSS) which was first introduced by Barak is mainly based on the non-interactive zero-knowledge proof (NIZK) for preventing the signing verifier from telling which witness (i.e., restricted subset) is being used. However, the scheme is not significantly efficient due to the difficulty of constructing NIZK. We first show that a non-Interactive witness indistinguishable (NIWI) proof sys-tern and a non-interactive witness hiding (NIWH) proof system are easier and more efficient proof models than NIZK in some cases. Furthermore, the witnesses em-ployed in these two protocols (NIWI and NIWT) cannot also be distinguished by the verifiers. Combined with the Σ-protocol, we then construct NlWl and NIWH proofs for any NP statement under the existence of one-way functions and show that each proof is different from those under the existence of trapdoor permutations. Finally, based on our NIWI and NIWH proofs, we construct delegateable signature schemes under the existence of one-way functions, which are more efficient than Barak's scheme under the existence of trapdoor permutations.

  6. Role of exchange interaction in nitrogen vacancy center based magnetometry (United States)

    Ho, Cong Son; Tan, Seng Ghee; Jalil, Mansoor B. A.; Chen, Zilong; Krivitsky, Leonid A.


    We propose a multilayer device comprising a thin-film-based ferromagnetic heterostructure (FMH) deposited on a diamond layer doped with nitrogen vacancy centers (NVC's). We find that when the NVC's are in close proximity (1-2 nm) to the FMH, the exchange energy is comparable to, and may even surpass, the magnetostatic interaction energy. This calls forth the need to consider and utilize both effects in magnetometry based on NVC's in diamond. As the distance between the FMH and NVC is decreased to the subnanometer scale, the exponential increase in the exchange energy suggests spintronic applications of NVC's beyond magnetometry, such as detection of spin Hall effect or spin currents.

  7. Status of MCFC stack technology at IHI

    Energy Technology Data Exchange (ETDEWEB)

    Hosaka, M.; Morita, T.; Matsuyama, T.; Otsubo, M. [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan)


    The molten carbonate fuel cell (MCFC) is a promising option for highly efficient power generation possible to enlarge. IHI has been studying parallel flow MCFC stacks with internal manifolds that have a large electrode area of 1m{sup 2}. IHI will make two 250 kW stacks for MW plant, and has begun to make cell components for the plant. To improve the stability of stack, soft corrugated plate used in the separator has been developed, and a way of gathering current from stacks has been studied. The DC output potential of the plant being very high, the design of electric insulation will be very important. A 20 kW short stack test was conducted in 1995 FY to certificate some of the improvements and components of the MW plant. These activities are presented below.

  8. A Time-predictable Stack Cache

    DEFF Research Database (Denmark)

    Abbaspour, Sahar; Brandner, Florian; Schoeberl, Martin


    Real-time systems need time-predictable architectures to support static worst-case execution time (WCET) analysis. One architectural feature, the data cache, is hard to analyze when different data areas (e.g., heap allocated and stack allocated data) share the same cache. This sharing leads to less...... precise results of the cache analysis part of the WCET analysis. Splitting the data cache for different data areas enables composable data cache analysis. The WCET analysis tool can analyze the accesses to these different data areas independently. In this paper we present the design and implementation...... of a cache for stack allocated data. Our port of the LLVM C++ compiler supports the management of the stack cache. The combination of stack cache instructions and the hardware implementation of the stack cache is a further step towards timepredictable architectures....

  9. 基于OpenStack的虚拟网络管理系统设计%Virtual Network Management System Design Based on OpenStack

    Institute of Scientific and Technical Information of China (English)

    赵少卡; 李立耀; 黄舒啸


    基于开源云平台OpenStack中的组件Quantum开发设计虚拟网络管理系统,通过可视化界面与QuantumAPI进行交互,从而更加便捷地实现对租户网络的管理。系统采用MVC思想,利用PHP语言和Smarty框架,重点设计并实现了认证模块、虚拟网络管理模块和代理管理模块,尤其是增加了管理员对物理节点中L3代理和DHCP代理的操作,为今后实现更高可靠性的多主机(Multi-host)部署方案做了充足的工程准备。%The virtual network management system is designed and developed on the strength of Quantum---a component of the open source cloud platform Openstack and by interacting with Quantum API through visual interface, the tenant network management is realized in a more convenient way. With MVC ideas, PHP language and Smarty framework, the system primarily designs and implements the authentication module, the visual network management module, and the agent management module. Particularly, the operation by the administrator on the L3 and DHCP agents on physical nodes is increased, making full preparation for the realization of a more reliable Multi-host deployment pan in the future.

  10. Stacking fault probability and stacking fault energy in CoNi alloys

    Institute of Scientific and Technical Information of China (English)

    周伟敏; 江伯鸿; 刘岩; 漆王睿


    The stacking fault probability of CoNi alloys with different contents of Ni was measured by X-ray diffraction methods. The results show that the stacking fault decreases with increasing Ni content and with increasing temperature. The thermodynamical calculation has found an equation that can express the stacking fault energy γ of CoNi at temperature T. The phase equilibrium temperature depends on the composition of the certain alloy. The relationship between stacking fault energy γ and stacking fault probability Psf is determined.

  11. Electronic coupling between photo-excited stacked bases in DNA and RNA strands with emphasis on the bright states initially populated

    DEFF Research Database (Denmark)

    Nielsen (Baggesen), Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted


    . In this review paper, we focus on the bright states initially populated and discuss their nature based on information obtained from systematic absorption and circular dichroism experiments on single strands of different lengths. Our results from the last five years are compared with those from other groups......In biology the interplay between multiple light-absorbers gives rise to complex quantum effects such as superposition states that are of extreme importance for life, both for harvesting solar energy and likely protecting nucleic acids from radiation damage. Still the characteristics of these states...

  12. Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application

    Directory of Open Access Journals (Sweden)

    Jingming Liang


    Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.

  13. Quantification of Aromaticity Based on Interaction Coordinates: A New Proposal. (United States)

    Pandey, Sarvesh Kumar; Manogaran, Dhivya; Manogaran, Sadasivam; Schaefer, Henry F


    Attempts to establish degrees of aromaticity in molecules are legion. In the present study, we begin with a fictitious fragment arising from only those atoms contributing to the aromatic ring and having a force field projected from the original system. For example, in benzene, we adopt a fictitious C6 fragment with a force field projected from the full benzene force field. When one bond or angle is stretched and kept fixed, followed by a partial optimization for all other internal coordinates, structures change from their respective equilibria. These changes are the responses of all other internal coordinates for constraining the bond or angle by unit displacements and relaxing the forces on all other internal coordinates. The "interaction coordinate" derived from the redundant internal coordinate compliance constants measures how a bond (its electron density) responds for constrained optimization when another bond or angle is stretched by a specified unit (its electron density is perturbed by a finite amount). The sum of interaction coordinates (responses) of all bonded neighbors for all internal coordinates of the fictitious fragment is a measure of the strength of the σ and π electron interactions leading to aromatic stability. This sum, based on interaction coordinates, appears to be successful as an aromaticity index for a range of chemical systems. Since the concept involves analyzing a fragment rather than the whole molecule, this idea is more general and is likely to lead to new insights.

  14. Probing Temperature Inside Planar SOFC Short Stack, Modules, and Stack Series (United States)

    Yu, Rong; Guan, Wanbing; Zhou, Xiao-Dong


    Probing temperature inside a solid oxide fuel cell (SOFC) stack lies at the heart of the development of high-performance and stable SOFC systems. In this article, we report our recent work on the direct measurements of the temperature in three types of SOFC systems: a 5-cell short stack, a 30-cell stack module, and a stack series consisting of two 30-cell stack modules. The dependence of temperature on the gas flow rate and current density was studied under a current sweep or steady-state operation. During the current sweep, the temperature inside the 5-cell stack decreased with increasing current, while it increased significantly at the bottom and top of the 30-cell stack. During a steady-state operation, the temperature of the 5-cell stack was stable while it was increased in the 30-cell stack. In the stack series, the maximum temperature gradient reached 190°C when the gas was not preheated. If the gas was preheated and the temperature gradient was reduced to 23°C in the stack series with the presence of a preheating gas and segmented temperature control, this resulted in a low degradation rate.

  15. 基于硬件协议栈的以太网远程数据传输系统%Remote Ethernet Data Transmission System Based on Hardware Protocol Stack

    Institute of Scientific and Technical Information of China (English)

    张群; 赵亮; 梁若冰


    本文介绍了一款单片网络接口芯片W5100,该芯片内部集成了TCP/IP硬件协议栈,支持多种网络协议.给出了基于STM32处理器的硬件电路连接图和软件程序设计.目前,该系统已成功应用在多个建筑能耗监测项目中,运行结果表明该系统通信稳定可靠,能够满足项目对远程数据传输的需求.%The monolithic network interface chip W5100 is introduced in the paper. The chip integrates TCP / IP hardware protocol stack to support a variety of network protocols. The hardware circuit connection diagram and software program design are given based on the STM32 processor. At present, the system has been successfully applied in many building energy consumption monitoring projects. Results show that the system is reliable and stability, and it can meet the needs of the project on remote data transmission.

  16. Structural and Spectral Studies on the Ni(Ⅱ) Complexes of 1,5-Diazacyclooctane (DACO) Bearing Heterocyclic Pendants: Formation of a Two-dimensional Network Via Hydrogen Bonds and π-π Stacking Interactions

    Institute of Scientific and Technical Information of China (English)

    DU,Miao(杜淼); DU,Miao; XU,Qiang(徐强); XU,Qiang; GUO,Ya-Mei (郭亚梅); GUO,Ya-Mei; WENG,Lin-Hong(翁林红); WENG,Lin-Hong; BU,Xian-He (卜显和); BU,Xian-He


    A penta-coordinated Ni(II) complex with a 1,5-diazacyclooctane (DACO) ligand functionazed by two imidazole donor pendants, [NiiL1Cl] (ClO4)'HH2O (1) (where L1 = 1,5-bis (imidazol-4-ylmethyl)-1,S-diazacyclooctane) has been synthesized and characterized by X-ray diffraction, infrared spectra, elemental analyses, conductance, thermal analyses and UV-Vis techniques. Complex 1 crystallizes in triclinic crystal system, P-1 space group with a = 0.74782(7), b = 1.15082(10), c = 1.237s1(11) nm, a=82.090(2), β=73.011(2), γ=83.462(2)°, V= 1.00603(16) nn3, Mr = 486.00, Z=2,Dc=1.604 g/cm3, final R=0.0435, and wR=0.1244. The structures of 1 and its related complexes show that in all the three mononuclear complexes, each Ni(Ⅱ) center is penta-coordinated with a near regular square pyranid (RSP) to distorted square-pyramidal (DSP) coordination environment due to the boat/chair configuration of DACO ring in these complexes, and the degree of distortion increases with the augment of the size of the heterocyclic pendants. In addition, the most striking feature of complex 1 resides in the formation of a two-dimensional network structure through hydrogen bonds and stabilized by π-π stacking. The solution behaviors of the Ni(ⅡI) complexes are also discussed in detail.

  17. An interactive tutorial-based training technique for vertebral morphometry. (United States)

    Gardner, J C; von Ingersleben, G; Heyano, S L; Chesnut, C H


    The purpose of this work was to develop a computer-based procedure for training technologists in vertebral morphometry. The utility of the resulting interactive, tutorial based training method was evaluated in this study. The training program was composed of four steps: (1) review of an online tutorial, (2) review of analyzed spine images, (3) practice in fiducial point placement and (4) testing. During testing, vertebral heights were measured from digital, lateral spine images containing osteoporotic fractures. Inter-observer measurement precision was compared between research technicians, and between technologists and radiologist. The technologists participating in this study had no prior experience in vertebral morphometry. Following completion of the online training program, good inter-observer measurement precision was seen between technologists, showing mean coefficients of variation of 2.33% for anterior, 2.87% for central and 2.65% for posterior vertebral heights. Comparisons between the technicians and radiologist ranged from 2.19% to 3.18%. Slightly better precision values were seen with height measurements compared with height ratios, and with unfractured compared with fractured vertebral bodies. The findings of this study indicate that self-directed, tutorial-based training for spine image analyses is effective, resulting in good inter-observer measurement precision. The interactive tutorial-based approach provides standardized training methods and assures consistency of instructional technique over time.

  18. Memory Stacking in Hierarchical Networks. (United States)

    Westö, Johan; May, Patrick J C; Tiitinen, Hannu


    Robust representations of sounds with a complex spectrotemporal structure are thought to emerge in hierarchically organized auditory cortex, but the computational advantage of this hierarchy remains unknown. Here, we used computational models to study how such hierarchical structures affect temporal binding in neural networks. We equipped individual units in different types of feedforward networks with local memory mechanisms storing recent inputs and observed how this affected the ability of the networks to process stimuli context dependently. Our findings illustrate that these local memories stack up in hierarchical structures and hence allow network units to exhibit selectivity to spectral sequences longer than the time spans of the local memories. We also illustrate that short-term synaptic plasticity is a potential local memory mechanism within the auditory cortex, and we show that it can bring robustness to context dependence against variation in the temporal rate of stimuli, while introducing nonlinearities to response profiles that are not well captured by standard linear spectrotemporal receptive field models. The results therefore indicate that short-term synaptic plasticity might provide hierarchically structured auditory cortex with computational capabilities important for robust representations of spectrotemporal patterns.

  19. The Design of Tools for Sketching Sensor-Based Interaction

    DEFF Research Database (Denmark)

    Brynskov, Martin; Lunding, Rasmus; Vestergaard, Lasse Steenbock


    , flexibility and cost, aimed at wearable and ultra-mobile prototyping where fast reaction is needed (e.g. in controlling sound), and we discuss the general issues facing this category of embodied interaction design tools. We then present the platform in more detail, both regarding hard- ware and software....... In the brief evaluation, we present our initial experiences with the platform both in design projects and in teaching. We conclude that DUL Radio does seem to be a relatively easy-to-use tool for sketching sensor-based interaction compared to other solutions, but that there are many ways to improve it. Target...... users include designers, students, artists etc. with minimal programming and hardware skills, but this paper adresses the issues with designing the tools, which includes technical details....

  20. Interactive cell segmentation based on phase contrast optics. (United States)

    Su, Hang; Su, Zhou; Zheng, Shibao; Yang, Hua; Wei, Sha


    Cell segmentation in phase contrast microscopy images lays a crucial foundation for numerous subsequent computer-aided cell image analysis, but it encounters many unsolved challenges due to image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose an interactive cell segmentation scheme over phase retardation features. After partitioning the images into phase homogeneous atoms, human annotations are propagated to unlabeled atoms over an affinity graph that is learned based on discrimination analysis. Then, an active query strategy is proposed for which the most informative unlabeled atom is selected for annotation, which is also propagated to the other unlabeled atoms. Cell segmentation converges to quality results after several rounds of interactions involving both the user's intentions and characteristics of image features. Experimental results demonstrate that cells with different optical properties are well segmented via the proposed approach.

  1. Gesture Interaction Browser-Based 3D Molecular Viewer. (United States)

    Virag, Ioan; Stoicu-Tivadar, Lăcrămioara; Crişan-Vida, Mihaela


    The paper presents an open source system that allows the user to interact with a 3D molecular viewer using associated hand gestures for rotating, scaling and panning the rendered model. The novelty of this approach is that the entire application is browser-based and doesn't require installation of third party plug-ins or additional software components in order to visualize the supported chemical file formats. This kind of solution is suitable for instruction of users in less IT oriented environments, like medicine or chemistry. For rendering various molecular geometries our team used GLmol (a molecular viewer written in JavaScript). The interaction with the 3D models is made with Leap Motion controller that allows real-time tracking of the user's hand gestures. The first results confirmed that the resulting application leads to a better way of understanding various types of translational bioinformatics related problems in both biomedical research and education.

  2. Novel fuel cell stack with coupled metal hydride containers (United States)

    Liu, Zhixiang; Li, Yan; Bu, Qingyuan; Guzy, Christopher J.; Li, Qi; Chen, Weirong; Wang, Cheng


    Air-cooled, self-humidifying hydrogen fuel cells are often used for backup and portable power sources, with a metal hydride used as the hydrogen storage material. To provide a stable hydrogen flow to the fuel cell stack, heat must be provided to the metal hydride. Conventionally, the heat released from the exothermic reaction of hydrogen and oxygen in the fuel cell stack to the exhaust air is used to heat a separate metal hydride container. In this case, the heat is only partially used instead of being more closely coupled because of the heat transfer resistances in the system. To achieve better heat integration, a novel scheme is proposed whereby hydrogen storage and single fuel cells are more closely coupled. Based on this idea, metal hydride containers in the form of cooling plates were assembled between each pair of cells in the stack so that the heat could be directly transferred to a metal hydride container of much larger surface-to-volume ratio than conventional separate containers. A heat coupled fuel cell portable power source with 10 cells and 11 metal hydride containers was constructed and the experimental results show that this scheme is beneficial for the heat management of fuel cell stack.

  3. Butterflies I: morphisms of 2-group stacks

    CERN Document Server

    Aldrovandi, Ettore


    Weak morphisms of non-abelian complexes of length 2, or crossed modules, are morphisms of the associated 2-group stacks, or gr-stacks. We present a full description of the weak morphisms in terms of diagrams we call butterflies. We give a complete description of the resulting bicategory of crossed modules, which we show is fibered and biequivalent to the 2-stack of 2-group stacks. As a consequence we obtain a complete characterization of the non-abelian derived category of complexes of length 2. Deligne's analogous theorem in the case of Picard stacks and abelian sheaves becomes an immediate corollary. Commutativity laws on 2-group stacks are also analyzed in terms of butterflies, yielding new characterizations of braided, symmetric, and Picard 2-group stacks. Furthermore, the description of a weak morphism in terms of the corresponding butterfly diagram allows us to obtain a long exact sequence in non-abelian cohomology, removing a preexisting fibration condition on the coefficients short exact sequence.

  4. On flow maldistribution in PEMFC stacks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Xi' an Jiaotong Univ., Xi' an (China). State Key Laboratory of Multiphase Flow in Power Engineering; Lund Univ., Lund (Sweden). Dept. of Energy Sciences, Heat Transfer Div.; Yan, J. [Xi' an Jiaotong Univ., Xi' an (China). State Key Laboratory of Multiphase Flow in Power Engineering; Yuan, J.; Sunden, B. [Lund Univ., Lund (Sweden). Dept. of Energy Sciences, Heat Transfer Div.


    Fuel cell devices have technical and environmental advantages over thermal power systems. The advantages include high performance characteristics, reliability, durability and low emissions. In order to increase the voltage in a single PEMFC for practical operations, many single cells are serially connected to fabricate a fuel cell stack. This study focused on the flow maldistribution at stack level. The flow maldistribution in unit cells may significantly influence the fuel cell stack performance, including the uniformity of current density and the voltage. Of the few studies on flow maldistribution in PEMFC stacks, the results are unsystematic, scattered, and even contradictory. As such, it is necessary to review and summarize previous studies to gain insight into methods to reduce the flow maldistribution in PEMFC stacks. This paper therefore reviewed existing literature concerning flow maldistributions in PEMFC stacks and discussed the effects of the arrangement of flow configurations, design parameters and operating conditions on the flow maldistribution. Some suggestions were outlined to reduce the flow maldistribution in PEMFC stacks. 34 refs., 1 tab., 13 figs.

  5. Two stage bioethanol refining with multi litre stacked microbial fuel cell and microbial electrolysis cell. (United States)

    Sugnaux, Marc; Happe, Manuel; Cachelin, Christian Pierre; Gloriod, Olivier; Huguenin, Gérald; Blatter, Maxime; Fischer, Fabian


    Ethanol, electricity, hydrogen and methane were produced in a two stage bioethanol refinery setup based on a 10L microbial fuel cell (MFC) and a 33L microbial electrolysis cell (MEC). The MFC was a triple stack for ethanol and electricity co-generation. The stack configuration produced more ethanol with faster glucose consumption the higher the stack potential. Under electrolytic conditions ethanol productivity outperformed standard conditions and reached 96.3% of the theoretically best case. At lower external loads currents and working potentials oscillated in a self-synchronized manner over all three MFC units in the stack. In the second refining stage, fermentation waste was converted into methane, using the scale up MEC stack. The bioelectric methanisation reached 91% efficiency at room temperature with an applied voltage of 1.5V using nickel cathodes. The two stage bioethanol refining process employing bioelectrochemical reactors produces more energy vectors than is possible with today's ethanol distilleries.

  6. Exact and heuristic solutions to the Double TSP with Multiple Stacks

    DEFF Research Database (Denmark)

    Petersen, Hanne Løhmann; Archetti, Claudia; Madsen, Oli B.G.;

    The double travelling salesman problem with multiple stacks (DTSPMS) is a pickup and delivery problem where pickups and deliveries are separated, such that all pickup operations are performed before the first delivery takes place. All operations are carried out by one vehicle and no reloading...... is allowed. The vehicle provides several separated (horizontal) stacks/rows for the transportation of the orders, such that each stack is accessed using a LIFO principle, independently of the other stacks. In a real-life setting the dimensions of the problem is 33 orders each consisting of one euro......-pallet, which can be loaded in 3 stacks in a standard 40 foot container. Different exact and heuristic solution approaches to the DTSPMS have been implemented and tested. The exact approaches are based on different mathematical formulations of the problem which are solved using branch-and-cut. One formulation...

  7. Elucidating Interactions between DMSO and Chelate-Based Ionic Liquids. (United States)

    Chen, Hang; Wang, Xinyu; Yao, Jia; Chen, Kexian; Guo, Yan; Zhang, Pengfei; Li, Haoran


    The C-D bond stretching vibrations of deuterated dimethyl sulfoxide ([D6 ]DMSO) and the C2 -H bond stretching vibrations of 1,1,1,5,5,5-hexafluoropentane-2,4-dione (hfac) ligand in anion are chosen as probes to elucidate the solvent-solute interaction between chelate-based ionic liquids (ILs) and DMSO by vibrational spectroscopic studies. The indirect effect from the interaction of the adjacent S=O functional group of DMSO with the cation [C10 mim](+) and anion [Mn(hfac)3 ](-) of the ILs leads to the blue-shift of the C-D stretching vibrations of DMSO. The C2 -H bond stretching vibrations in hfac ligand is closely related to the ionic hydrogen bond strength between the cation and anion of chelate-based ILs. EPR studies reveal that the crystal field of the central metal is kept when the chelate-based ILs are in different microstructure environment in the solution.

  8. Regional and global benthic δ18O stacks for the last glacial cycle (United States)

    Lisiecki, Lorraine E.; Stern, Joseph V.


    Although detailed age models exist for some marine sediment records of the last glacial cycle (0-150 ka), age models for many cores rely on the stratigraphic correlation of benthic δ18O, which measures ice volume and deep ocean temperature change. The large amount of data available for the last glacial cycle offers the opportunity to improve upon previous benthic δ18O compilations, such as the "LR04" global stack. Not only are the age constraints for the LR04 stack now outdated but a single global alignment target neglects regional differences of several thousand years in the timing of benthic δ18O change during glacial terminations. Here we present regional stacks that characterize mean benthic δ18O change for 8 ocean regions and a volume-weighted global stack of data from 263 cores. Age models for these stacks are based on radiocarbon data from 0 to 40 ka, correlation to a layer-counted Greenland ice core from 40 to 56 ka, and correlation to radiometrically dated speleothems from 56 to 150 ka. The regional δ18O stacks offer better stratigraphic alignment targets than the LR04 global stack and, furthermore, suggest that the LR04 stack is biased 1-2 kyr too young throughout the Pleistocene. Finally, we compare global and regional benthic δ18O responses with sea level estimates for the last glacial cycle.

  9. Dynamical Stability of Slip-stacking Particles

    CERN Document Server

    Eldred, Jeffrey


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97\\% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  10. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  11. Capping stack: An industry in the making

    Institute of Scientific and Technical Information of China (English)

    Jack Chen; Li Xunke; Xie Wenhui; Kang Yongtian


    This paper gives an overview of recent development of the marine well containment system (MWCS)after BP Macondo subsea well blowout occurred on April 20,2010 in the Gulf of Mexico.Capping stack,a hardware utilized to contain blowout well at or near the wellhead is the center piece of MWCS.Accessibility to the dedicated capping stacks is gradually becoming a pre-requirement to obtain the permit for offshore drilling/workover,and the industry for manufacturing,maintenance,transportation and operation of the capping stack is in the making.

  12. Vector Fields and Flows on Differentiable Stacks

    DEFF Research Database (Denmark)

    A. Hepworth, Richard


    This paper introduces the notions of vector field and flow on a general differentiable stack. Our main theorem states that the flow of a vector field on a compact proper differentiable stack exists and is unique up to a uniquely determined 2-cell. This extends the usual result on the existence...... and uniqueness of flows on a manifold as well as the author's existing results for orbifolds. It sets the scene for a discussion of Morse Theory on a general proper stack and also paves the way for the categorification of other key aspects of differential geometry such as the tangent bundle and the Lie algebra...

  13. Dynamical Stability of Slip-stacking Particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Zwaska, Robert [Fermilab


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  14. Research on Goods and the Ship Interaction Based on ADAMS

    Directory of Open Access Journals (Sweden)

    Song Fangzhen


    Full Text Available The equivalent method of the relative movement goods on board is discussed in details. This method is to establish dynamic model based on moving trajectory of gravity-center for goods and to take rigid body geometric model with the trajectory as constraints in ADAMS. The difference of simulation methods for the different goods in carrier rolling is compared. The interact of relative moving objects with bulk carrier is discussed by using the ADAMS model. It is verified that the ballast water can maintain the ship’s stability by means of the ADAMS model.

  15. A prototype system based on visual interactive SDM called VGC (United States)

    Jia, Zelu; Liu, Yaolin; Liu, Yanfang


    In many application domains, data is collected and referenced by its geo-spatial location. Spatial data mining, or the discovery of interesting patterns in such databases, is an important capability in the development of database systems. Spatial data mining recently emerges from a number of real applications, such as real-estate marketing, urban planning, weather forecasting, medical image analysis, road traffic accident analysis, etc. It demands for efficient solutions for many new, expensive, and complicated problems. For spatial data mining of large data sets to be effective, it is also important to include humans in the data exploration process and combine their flexibility, creativity, and general knowledge with the enormous storage capacity and computational power of today's computers. Visual spatial data mining applies human visual perception to the exploration of large data sets. Presenting data in an interactive, graphical form often fosters new insights, encouraging the information and validation of new hypotheses to the end of better problem-solving and gaining deeper domain knowledge. In this paper a visual interactive spatial data mining prototype system (visual geo-classify) based on VC++6.0 and MapObject2.0 are designed and developed, the basic algorithms of the spatial data mining is used decision tree and Bayesian networks, and data classify are used training and learning and the integration of the two to realize. The result indicates it's a practical and extensible visual interactive spatial data mining tool.

  16. Large file storage solution for OpenStack-based cloud storage system%基于OpenStack的云存储系统的大文件存储方案

    Institute of Scientific and Technical Information of China (English)

    邵珠兴; 陈彩


    To solve deficiencies in gigabyte large file storage of the obj ect storage service Swift of open source cloud platform OpenStack,a storage solution of gigabyte large file based on file segmenting,segments merging,concurrent processing was presented.Firstly,the Swift structure and its characteristics were analyzed,based on this,the hierarchical architecture of cloud storage system was constructed.Then,the storage strategy of gigabyte large file was established,and the key data structure and the core process of upload download were designed,and this solution was implemented with Java multi-threading.Finally,the cloud storage experiment environment was deployed,and the feasibility of the solution was proved through the experiment.The experimental results show that this solution breaks through the Swift restrictions on file size and improves the file upload and download speed.%为解决开源云平台OpenStack的对象存储服务Swift在存储GB级大文件方面的不足,提出基于文件分割、片段合并、并行处理的GB级大文件的存储方案。分析Swift体系结构及其特点,在此基础上构建云存储系统的层次架构;制定GB级大文件的存储策略,设计关键数据结构和上传下载的核心流程,使用Java多线程实现该方案。部署云存储实验环境,通过实验验证了该方案的可行性,该方案突破了Swift对文件大小的限制,提高了文件的上传和下载速度。

  17. Assessment of the Performance of Semblance Weighted Diffraction Stack (United States)

    Marti, D.; Palomeras, I.; Andara, E.; Carbonell, R.; Zeyen, H.


    A variety of seismic reflection data sets has been use to estimate the assessment of a recently developed true amplitude limited-aperture migration based on a modification of the weighting function in the Kirchoff migration operator. Prestack Kirchoff depth migration has become a conventional processing step in seismic reflection imaging. It provides new insights of the reflecting boundaries in crustal studies and it's also an important method for reliable velocity models building. In this migration scheme the weight function on the amplitude part of the diffraction stack algorithm is derived from the semblance of the slant stack of the data. Thus this weight function is exclusively a function of the energy and the direction from which this reflected energy reaches the receiver. The semblance of the slant stack for a particular offset (the receiver offset) represents the total amount of energy that reaches a particular receiver with specific ray parameter (i.e. direction of propagation of the seismic energy). The weight function reduces the diffraction stack to a weighted stack of the amplitudes at a given travel time to every point along a corresponding isochron. This migration scheme is applied to synthetic and real normal incidence seismic reflection data providing a depth images with a better resolution of the sub-vertical structures. For example it provided a depth image of the north dipping Central Unit of the complex suture zone between the Ossa Morena Zone and the Central Iberian Zone of the IBERSEIS Vibroseis seismic profile. Furthermore, this scheme is also successful when migrating wide-angle deep seismic reflection data. In this case a low fold image of the lower crust, Moho and upper mantle across SW-Iberia was obtained by using 6 wide-angle shot gathers. Finally, depth imaging by using VSP's is also a possibility using this migration scheme.

  18. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li


    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  19. Development and Applications of a Stage Stacking Procedure (United States)

    Kulkarni, Sameer; Celestina, Mark L.; Adamczyk, John J.


    The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure, including a newly defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor used in a power generating gas turbine engine. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to curves as a function of stage inlet flow coefficient and corrected shaft speed. In addition to these blockage curves, the stage stacking procedure utilizes stage characteristics of ideal work coefficient and adiabatic efficiency. These curves are constructed using flow information extracted from computational fluid dynamics (CFD) simulations of groups of stages within the compressor. Performance estimates resulting from the stage stacking procedure are shown to match the results of CFD simulations of the entire compressor to within 1.6% in overall total pressure ratio and within 0.3 points in overall adiabatic efficiency. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressors operating range.


    Institute of Scientific and Technical Information of China (English)

    Sun Jie; Jiang Chaoshu; Chen Zhuming; Zhang Wei


    A novel approach is proposed for the estimation of likelihood on Interacting Multiple-Model (IMM) filter.In this approach,the actual innovation,based on a mismatched model,can be formulated as sum of the theoretical innovation based on a matched model and the distance between matched and mismatched models,whose probability distributions are known.The joint likelihood of innovation sequence can be estimated by convolution of the two known probability density functions.The likelihood of tracking models can be calculated by conditional probability formula.Compared with the conventional likelihood estimation method,the proposed method improves the estimation accuracy of likelihood and robustness of IMM,especially when maneuver occurs.

  1. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations.

    Directory of Open Access Journals (Sweden)

    Tatiana Shashkova

    Full Text Available Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes.In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery.The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial

  2. Comparing Four Touch-Based Interaction Techniques for an Image-Based Audience Response System

    NARCIS (Netherlands)

    Jorritsma, Wiard; Prins, Jonatan T.; van Ooijen, Peter M. A.


    This study aimed to determine the most appropriate touch-based interaction technique for I2Vote, an image-based audience response system for radiology education in which users need to accurately mark a target on a medical image. Four plausible techniques were identified: land-on, take-off, zoom-poin

  3. Hamiltonian multiplex interaction based on excitons effect in semiconductor QCs

    Directory of Open Access Journals (Sweden)

    Arezu Jahanshir


    Full Text Available The subject of modern technology has been the focus of extensive theoretical investigations in semiconducting nanostructures which we know as quantum dots (QCs. The possibility of monitoring and controlling the properties of QCs attracted considerable attention to these objects, as an important basic system in future technology. So, the quantum-mechanical effects play a significant role in the description of the formation mechanism QCs, determination of mass spectrum, binding energy and other characteristics. Based on QFT and by using oscillator representation method (ORM and operator product expansion technique developed in QFT, we study the properties of electron-hole QDs, determine mass spectrum and peruse spin-spin interactions in exciton system and its multiple pair systems. This method has applications to calculate the binding energy of exciton system in ground and excited states with semi-nuclear structure in semiconductor QCs or cold atomic few-body systems and develop the general calculation’s theory of few-body systems based on the Coulomb interaction between particles by forming excitonic pairs in semiconductor QCs. We investigate the binding energy of exciton bound states. It is shown that fermion particles have a very small mass, and after bonding together by dynamically force, constituent particles become massive, which is analogous to what happens in QCD.

  4. The stack on software and sovereignty

    CERN Document Server

    Bratton, Benjamin H


    A comprehensive political and design theory of planetary-scale computation proposing that The Stack -- an accidental megastructure -- is both a technological apparatus and a model for a new geopolitical architecture.

  5. Characterization of Piezoelectric Stacks for Space Applications (United States)

    Sherrit, Stewart; Jones, Christopher; Aldrich, Jack; Blodget, Chad; Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph


    Future NASA missions are increasingly seeking to actuate mechanisms to precision levels in the nanometer range and below. Co-fired multilayer piezoelectric stacks offer the required actuation precision that is needed for such mechanisms. To obtain performance statistics and determine reliability for extended use, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and high temperatures and voltages. In order to study the lifetime performance of these stacks, five actuators were driven sinusoidally for up to ten billion cycles. An automated data acquisition system was developed and implemented to monitor each stack's electrical current and voltage waveforms over the life of the test. As part of the monitoring tests, the displacement, impedance, capacitance and leakage current were measured to assess the operation degradation. This paper presents some of the results of this effort.

  6. Stacking fault energy in some single crystals

    Institute of Scientific and Technical Information of China (English)

    Aditya M.Vora


    The stacking fault energy of single crystals has been reported using the peak shift method.Presently studied all single crystals are grown by using a direct vapor transport (DVT) technique in the laboratory.The structural characterizations of these crystals are made by XRD.Considerable variations are shown in deformation (α) and growth (β) probabilities in single crystals due to off-stoichiometry,which possesses the stacking fault in the single crystal.

  7. Measuring Structural Parameters Through Stacking Galaxy Images (United States)

    Li, Yubin; Zheng, Xian Zhong; Gu, Qiu-Sheng; Wang, Yi-Peng; Wen, Zhang Zheng; Guo, Kexin; An, Fang Xia


    It remains challenging to detect the low surface brightness structures of faint high-z galaxies, which are key to understanding the structural evolution of galaxies. The technique of image stacking allows us to measure the averaged light profile beneath the detection limit and probe the extended structure of a group of galaxies. We carry out simulations to examine the recovery of the averaged surface brightness profile through stacking model Hubble Space Telescope/Advanced Camera for Surveys images of a set of galaxies as functions of the Sérsic index (n), effective radius (R e) and axis ratio (AR). The Sérsic profile best fitting the radial profile of the stacked image is taken as the recovered profile, in comparison with the intrinsic mean profile of the model galaxies. Our results show that, in general, the structural parameters of the mean profile can be properly determined through stacking, though systematic biases need to be corrected when spreads of R e and AR are counted. We find that the Sérsic index is slightly overestimated and R e is underestimated at {AR}\\lt 0.5 because the stacked image appears to be more compact due to the presence of inclined galaxies; the spread of R e biases the stacked profile to have a higher Sérsic index. We stress that the measurements of structural parameters through stacking should take these biases into account. We estimate the biases in the recovered structural parameters from stacks of galaxies when the samples have distributions of {R}{{e}}, AR and n seen in local galaxies.

  8. Correlated lateral phase separations in stacks of lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Takuma, E-mail: [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Komura, Shigeyuki, E-mail: [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo 192-0397 (Japan); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China); Andelman, David, E-mail: [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 (Israel); Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)


    Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, T{sub c}, for larger inter-layer interaction. When the temperature ratio, T/T{sub c}, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.

  9. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    Directory of Open Access Journals (Sweden)

    Yujie Zhu


    Full Text Available Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices.

  10. Calculated stacking-fault energies of elemental metals

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt


    We have performed ab initio calculations of twin, intrinsic, and extrinsic face-centered-cubic stacking faults for all the 3d, 4d, and 5d transition metals by means of a Green's-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic...... in the three transition series vary with atomic number essentially as the calculated structural energy differences between the face-centered-cubic and the hexagonal-close-packed phases. In addition we find that the simple relationships between the different types of fault energies predicted by models based......-sphere approximations. The results are in excellent agreement with recent layer Korringa-Kohn-Rostoker Green's-function calculations where stacking-fault energies for Ni, Cu, Rh, Pd, Ag, Ir, and Au were found by means of the the so-called force theorem. We find that the self-consistent fault energies for all the metals...

  11. Photonic band gap of a graphene-embedded quarter-wave stack

    CERN Document Server

    Fan, Yuancheng; Li, Hongqiang; Chen, Hong; Soukoulis, Costas M


    Here, we present a mechanism for tailoring the photonic band structure of a quarter-wave stack without changing its physical periods by embedding conductive sheets. Graphene is utilized and studied as a realistic, two-dimensional conductive sheet. In a graphene-embedded quarter-wave stack, the synergic actions of Bragg scattering and graphene conductance contributions open photonic gaps at the center of the reduced Brillouin zone, that nonexistent in conventional quarter-wave stacks. Such photonic gaps show giant, loss-independent density of optical states at the fixed lower-gap-edges, of even-multiple characteristic frequency of the quarter-wave stack. The novel conductive sheets induced photonic gaps provide a new platform for the enhancement of light-matter interactions.

  12. Nuclear magnetic shieldings of stacked aromatic and antiaromatic molecules. (United States)

    Sundholm, Dage; Rauhalahti, Markus; Özcan, Nergiz; Mera-Adasme, Raul; Kussmann, Jörg; Luenser, Arne; Ochsenfeld, Christian


    Nuclear magnetic shieldings have been calculated at the density functional theory (DFT) level for stacks of benzene, hexadehydro[12]annulene, dodecadehydro[18]annulene and hexabenzocoronene. The magnetic shieldings due to the ring currents in the adjacent molecules have been estimated by calculating nucleus independent molecular shieldings for the monomer in the atomic positions of neighbor molecules. The calculations show that the independent shielding model works reasonable well for the (1)H NMR shieldings of benzene and hexadehydro[12]annulene, whereas for the larger molecules and for the (13)C NMR shieldings the interaction between the molecules leads to shielding effects that are at least of the same size as the ring current contributions from the adjacent molecules. A better agreement is obtained when the nearest neighbors are also considered at full quantum mechanical (QM) level. The calculations suggest that the nearest solvent molecules must be included in the quantum mechanical system, at least when estimating solvent shifts at the molecular mechanics (MM) level. Current density calculations show that the stacking does not significantly affect the ring current strengths of the individual molecules, whereas the shape of the ring current for a single molecule differs from that of the stacked molecules.

  13. Mathematical modeling of a V-stack piezoelectric aileron actuation

    Directory of Open Access Journals (Sweden)

    Ioan URSU


    Full Text Available The article presents a mathematical modeling of aileron actuation that uses piezo V-shaped stacks. The aim of the actuation is the increasing of flutter speed in the context of a control law, in order to widen the flight envelope. In this way the main advantage of such a piezo actuator, the bandwidth is exploited. The mathematical model is obtained based on free body diagrams, and the numerical simulations allow a preliminary sizing of the actuator.

  14. A universal concept for stacking neutral analytes in micellar capillary electrophoresis. (United States)

    Palmer, J; Munro, N J; Landers, J P


    Unlike recent studies that have depended on manipulation of separation buffer parameters to facilitate stacking of neutral analytes in micellar capillary electrophoresis (MCE) mode, we have developed a method of stacking based simply on manipulation of the sample matrix. Many solutions for sample stacking in MCE are based on strict control of pH, micelle type, electroosmotic flow (EOF) rate, and separation-mode polarity. However, a universal solution to sample stacking in MCE should allow for free manipulation of separation buffer parameters without substantially affecting separation of analytes. Analogous to sample stacking in capillary zone electrophoresis by invoking field amplification of charged analytes in a low-conductivity sample matrix, the proposed method utilizes a high-conductivity sample matrix to transfer field amplification from the sample zone to the separation buffer. This causes the micellar carrier in the separation buffer to stack before it enters the sample zone. Neutral analytes moving out of the sample zone with EOF are efficiently concentrated at the micelle front. Micelle stacking is induced by simply adding salt to the sample matrix to increase the conductivity 2-3-fold higher than the separation buffer. This solution allows free optimization of separation buffer parameters such as micelle concentration, organic modifiers, and pH, providing a method that may complement virtually any existing MCE protocol without restricting the separation method.

  15. Quantum theory for the nanoscale propagation of light through stacked thin film layers (United States)

    Forbes, Kayn A.; Williams, Mathew D.; Andrews, David L.


    Stacked multi-layer films have a range of well-known applications as optical elements. The various types of theory commonly used to describe optical propagation through such structures rarely take account of the quantum nature of light, though phenomena such as Anderson localization can be proven to occur under suitable conditions. In recent and ongoing work based on quantum electrodynamics, it has been shown possible to rigorously reformulate, in photonic terms, the fundamental mechanisms that are involved in reflection and optical transmission through stacked nanolayers. Accounting for sum-over-pathway features in the quantum mechanical description, this theory treats the sequential interactions of photons with material boundaries in terms of individual scattering events. The study entertains an arbitrary number of reflections in systems comprising two or three internally reflective surfaces. Analytical results are secured, without recourse to FTDT (finite-difference time-domain) software or any other finite-element approximations. Quantum interference effects can be readily identified. The new results, which cast the optical characteristics of such structures in terms of simple, constituent-determined properties, are illustrated by model calculations.

  16. Coordinate Descent Based Hierarchical Interactive Lasso Penalized Logistic Regression and Its Application to Classification Problems

    Directory of Open Access Journals (Sweden)

    Jin-Jia Wang


    Full Text Available We present the hierarchical interactive lasso penalized logistic regression using the coordinate descent algorithm based on the hierarchy theory and variables interactions. We define the interaction model based on the geometric algebra and hierarchical constraint conditions and then use the coordinate descent algorithm to solve for the coefficients of the hierarchical interactive lasso model. We provide the results of some experiments based on UCI datasets, Madelon datasets from NIPS2003, and daily activities of the elder. The experimental results show that the variable interactions and hierarchy contribute significantly to the classification. The hierarchical interactive lasso has the advantages of the lasso and interactive lasso.

  17. A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Moeller-Holst, S.; Webb, D.M.; Zawodzinski, C.; Gottesfeld, S. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.


    The objective is to develop and demonstrate a 4 kW, hydrogen-fueled polymer electrolyte fuel cell (PEFC) stack, based on non-machined stainless steel hardware and on membrane/electrode assemblies (MEAs) of low catalyst loadings. The stack is designed to operate at ambient pressure on the air-side and can accommodate operation at higher fuel pressures, if so required. This is to be accomplished by working jointly with a fuel cell stack manufacturer, based on a CRADA. The performance goals are 57% energy conversion efficiency hydrogen-to-electricity (DC) at a power density of 0.9 kW/liter for a stack operating at ambient inlet pressures. The cost goal is $600/kW, based on present materials costs.

  18. ATLAS software stack on ARM64

    CERN Document Server

    Smith, Joshua Wyatt; The ATLAS collaboration


    The ATLAS experiment explores new hardware and software platforms that, in the future, may be more suited to its data intensive workloads. One such alternative hardware platform is the ARM architecture, which is designed to be extremely power efficient and is found in most smartphones and tablets. CERN openlab recently installed a small cluster of ARM 64-bit evaluation prototype servers. Each server is based on a single-socket ARM 64-bit system on a chip, with 32 Cortex-A57 cores. In total, each server has 128 GB RAM connected with four fast memory channels. This paper reports on the port of the ATLAS software stack onto these new prototype ARM64 servers. This included building the "external" packages that the ATLAS software relies on. Patches were needed to introduce this new architecture into the build as well as patches that correct for platform specific code that caused failures on non-x86 architectures. These patches were applied such that porting to further platforms will need no or only very little adj...

  19. An Interactive Web-based Environment using Human Companion

    Directory of Open Access Journals (Sweden)

    Tahar Bouhadada


    Full Text Available This paper describes the architecture of an Interactive Learning Environment (ILE on internet using companions, one of which is a human and geographically distant from the learning site. The achieved system rests on a 3-tier customer/server architecture (customer, web server, data and applications server where human and software actors can communicate via the internet and use the DTL learning strategy. It contains five main actors: a tutor actor in charge to guide the learner; a system actor whose role is to manage and to control the accesses to the system; a teacher actor in charge of the management and the updating of the different bases; a learner actor who represents the main actor of the system for whom is dedicated the teaching. Also, a learning companion actor whose role can be sometimes as an assistant, and other times as a troublemaker.

  20. Interactive brain shift compensation using GPU based programming (United States)

    van der Steen, Sander; Noordmans, Herke Jan; Verdaasdonk, Rudolf


    Processing large images files or real-time video streams requires intense computational power. Driven by the gaming industry, the processing power of graphic process units (GPUs) has increased significantly. With the pixel shader model 4.0 the GPU can be used for image processing 10x faster than the CPU. Dedicated software was developed to deform 3D MR and CT image sets for real-time brain shift correction during navigated neurosurgery using landmarks or cortical surface traces defined by the navigation pointer. Feedback was given using orthogonal slices and an interactively raytraced 3D brain image. GPU based programming enables real-time processing of high definition image datasets and various applications can be developed in medicine, optics and image sciences.

  1. Mixed Reality-based Interactive Technology for Aircraft Cabin Assembly

    Institute of Scientific and Technical Information of China (English)

    LI Shiqi; PENG Tao; WANG Junfeng; XU Chi


    Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of aircraft design, the different stages of the lifecycle of aircraft must be thought about, which include the trial manufacture, assembly, maintenance, recycling and destruction of the product. Recently, thanks to the development of the virtual reality and augmented reality, some low-cost and fast solutions are found for the product assembly. This paper presents a mixed reality-based interactive technology for the aircraft cabin assembly, which can enhance the efficiency of the assemblage in a virtual environment in terms of vision, information and operation. In the mixed reality-based assembly environment, the physical scene can be obtained by a camera and then generated by a computer. The virtual parts, the features of visual assembly, the navigation information, the physical parts and the physical assembly environment will be mixed and presented in the same assembly scene. The mixed or the augmented information will provide some assembling information as a detailed assembly instruction in the mixed reality-based assembly environment. Constraint proxy and its match rules help to reconstruct and visualize the restriction relationship among different parts, and to avoid the complex calculation of constraint's match. Finally, a desktop prototype system of virtual assembly has been built to assist the assembly verification and training with the virtual hand.

  2. Evolving effective behaviours to interact with tag-based populations (United States)

    Yucel, Osman; Crawford, Chad; Sen, Sandip


    Tags and other characteristics, externally perceptible features that are consistent among groups of animals or humans, can be used by others to determine appropriate response strategies in societies. This usage of tags can be extended to artificial environments, where agents can significantly reduce cognitive effort spent on appropriate strategy choice and behaviour selection by reusing strategies for interacting with new partners based on their tags. Strategy selection mechanisms developed based on this idea have successfully evolved stable cooperation in games such as the Prisoner's Dilemma game but relies upon payoff sharing and matching methods that limit the applicability of the tag framework. Our goal is to develop a general classification and behaviour selection approach based on the tag framework. We propose and evaluate alternative tag matching and adaptation schemes for a new, incoming individual to select appropriate behaviour against any population member of an existing, stable society. Our proposed approach allows agents to evolve both the optimal tag for the environment as well as appropriate strategies for existing agent groups. We show that these mechanisms will allow for robust selection of optimal strategies by agents entering a stable society and analyse the various environments where this approach is effective.

  3. ``Stacked reservoirs`` in the Zechstein 2 carbonate (Ca2): inversion tectonics in the pre-Zechstein subdivision-saline base of the Lower Saxony basin (Germany); ``Stacked Reservoirs`` im Zechstein 2 Karbonat (Ca2): Inversionstektonik im prae-Zechstein-salinaren Sockel des Niedersaechsischen Beckens (NW-Deutschland)

    Energy Technology Data Exchange (ETDEWEB)

    Rockenbauch, K.; Brauckmann, F.; Schaefer, H.G.; Utermoehlen, S. [BEB Erdgas und Erdoel GmbH, Hannover (Germany)


    This article looks at areas in the Lower Saxony basis of North-West Germany where the carbonate of the 2nd Zechstein subdivision cycle (Ca2) was tectonically removed from its stratigraphic compound and is found in several stacks elsewhere. Modern 3D seismology and deep drillings were evaluated and tectonic models were developed which could be compared with examples from other saline provinces. This revealed new aspects of exploration for sour natural gas in the Zechstein subdivision (orig.). [Deutsch] Der Artikel behandelt Bereiche innerhalb des Niedersaechsischen Beckens von Nordwestdeutschland, wo das Karbonat des 2. Zechstein-Zyklus (Ca2) tektonisch aus seinem stratigraphischen Verband geloest wurde und an anderer Stelle mehrfach uebereinander gestapelt anzutreffen ist. Hierzu wurden moderne 3D Seismik sowie Tiefbohrungen ausgewertet und tektonische Modelle entwickelt, die mit Beispielen aus anderen Salinarprovinzen verglichen wurden. Hinsichtlich der Exploration auf Sauergas im Zechstein ergeben sich daraus neue Aspekte und Moeglichkeiten. (orig.)

  4. IoT Based Human-Building Interaction

    DEFF Research Database (Denmark)

    Fürst, Jonathan


    and control by transforming the physical building, with its structure, sensors and actuators, into a virtual reality system. For building occupants, we enable the ubiquitous use of appliances and sensors in vicinity by bridging existing off-the-shelf smart appliances to a common Bluetooth Low Energy (BLE...... for the decentralized integration of smart appliances into non-residential buildings that relies on user smartphones as opportunistic gateways and BLE for communication. We design and implement a distributed framework to evaluate BLE performance in such smartphone-peripheral systems. We perform a detailed evaluation...... of multiple smartphone models that shows that the native BLE stack fails to provide homogeneous abstractions for different implementations. We improve the default behavior, by the introduction of a dynamic, smartphone model dependent library, that adapts to the idiosyncrasies of specific BLE implementations....

  5. Analysis of spectrum characteristics of optical scintillation in stack gas flow

    Institute of Scientific and Technical Information of China (English)

    Liu Wen-Qing; Liu He-Lai; Zeng Zong-Yong; Jiang Yu


    Based on the analysis of spectrum characteristics of intensity fluctuations while light beams pass through stack gas flow in an industrial setting, this paper puts emphasis upon discussing the spectrum of optical intensity fluctuations by the variety of particle concentration in stack gas flow. This paper also gives the primary theoretical explanation of the measurement results in the stack of coal-fired utility boilers. Meanwhile, the cross-correlation formula is given as the theoretical basis of velocity measurement by using particle concentration scintillation.

  6. High duty-cycle, high-efficiency QCW stacks for medical applications (United States)

    Kindsvater, A.; Schröder, M.; Werner, E.; Seidel, S.; Wölz, M.; Loyo-Maldonado, V.


    Laser stacks emitting short light pulses are ideally suited for medical and cosmetic applications. Developing enhanced, stable and reliable assembly processes, Jenoptik is reaching for higher energy densities and lower manufacturing costs. In this paper an improved technology for actively cooled QCW stacks is presented. Based on simulations and experimental data, the impacts on the laser stack performance are described and shown as power-current and thermal impedance plots. We show that the bar-to-bar pitch can be reduced from 1.7 mm to 1.2 mm without detrimental thermal effects for pulse durations up to 100 ms.

  7. A Comparison of Interaction in AV-based and Internet-based Distance Courses

    Directory of Open Access Journals (Sweden)

    Melodee Landis


    Full Text Available At the center of the debate over the viability of distance education is whether the newer electronic technologies can offer enough interaction to maintain quality learner outcomes and critical mass. Two of the most commonly used forms of distance education are 1 two-way, fully interactive audio-video classrooms and 2 on-line instruction through the Internet or Worldwide Web. This study used qualitative methods to compare and contrast the interaction that occurred in distance learning courses offered via each medium. The research process confirmed findings that there were fundamental differences in the interaction that occurred in the two environments. On-line interaction is so profoundly different than interaction in the traditional and AV-based class room that it appears instructors and students will need a substantial period of adjustment to feel comfortable with it and to fully appreciate its value. It appears that, as distance teaching and learning moves to a “mixed media” approach to teaching and learning, how interaction is handled with each of the media may be important to the success of a distance program.

  8. Interactive model evaluation tool based on IPython notebook (United States)

    Balemans, Sophie; Van Hoey, Stijn; Nopens, Ingmar; Seuntjes, Piet


    In hydrological modelling, some kind of parameter optimization is mostly performed. This can be the selection of a single best parameter set, a split in behavioural and non-behavioural parameter sets based on a selected threshold or a posterior parameter distribution derived with a formal Bayesian approach. The selection of the criterion to measure the goodness of fit (likelihood or any objective function) is an essential step in all of these methodologies and will affect the final selected parameter subset. Moreover, the discriminative power of the objective function is also dependent from the time period used. In practice, the optimization process is an iterative procedure. As such, in the course of the modelling process, an increasing amount of simulations is performed. However, the information carried by these simulation outputs is not always fully exploited. In this respect, we developed and present an interactive environment that enables the user to intuitively evaluate the model performance. The aim is to explore the parameter space graphically and to visualize the impact of the selected objective function on model behaviour. First, a set of model simulation results is loaded along with the corresponding parameter sets and a data set of the same variable as the model outcome (mostly discharge). The ranges of the loaded parameter sets define the parameter space. A selection of the two parameters visualised can be made by the user. Furthermore, an objective function and a time period of interest need to be selected. Based on this information, a two-dimensional parameter response surface is created, which actually just shows a scatter plot of the parameter combinations and assigns a color scale corresponding with the goodness of fit of each parameter combination. Finally, a slider is available to change the color mapping of the points. Actually, the slider provides a threshold to exclude non behaviour parameter sets and the color scale is only attributed to the

  9. Symmetry and resonant modes in platonic grating stacks

    CERN Document Server

    Haslinger, Stewart G; Movchan, Natasha V; McPhedran, Ross C


    We study the flexural wave modes existing in finite stacks of gratings containing rigid, zero-radius pins. We group the modes into even and odd classes, and derive dispersion equations for each. We study the recently discovered EDIT (elasto-dynamically inhibited transmission) phenomenon, and relate it to the occurrence of trapped waves of even and odd symmetries being simultaneously resonant. We show how the EDIT interaction may be steered over a wide range of frequencies and angles, using a strategy in which the single-grating reflectance is kept high, so enabling the quality factors of the even and odd resonances to be kept large.

  10. Magnetoband structures of AB-stacked zigzag nanographite ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.P.; Chiu, C.W.; Shyu, F.L.; Chen, R.B.; Lin, M.F


    Magnetoband structures of AB-stacked zigzag nanographite ribbons are studied by the tight-binding model. The magnetic field changes band width, energy space, and energy dispersions (the produce of Landau subbands and Landau levels). It causes many zero energy points. Such points and corresponding localized states are studied in detail. There are certain important differences between localized states and edge states. Oscillation period of Landau subbands are determined by these points. The interribbon interactions also affect magnetoband structures, such as energy dispersions, band width, oscillation period of Landau subbands, and flux dependence of Hofstadter butterflies.

  11. High specific power, direct methanol fuel cell stack (United States)

    Ramsey, John C.; Wilson, Mahlon S.


    The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

  12. Incoherent vertical ion losses during multiturn stacking cooling beam injection (United States)

    Syresin, E. M.


    The efficiency of the multiturn ion injection with electron cooling depends on two parameters, namely, cooling efficiency and ion lifetime. The lifetime of freshly injected ions is usually shorter than the lifetime of strongly cooled stacked ions. Freshly injected ions are lost in the vertical direction because the vertical acceptance of the synchrotron is usually a few times smaller than the horizontal acceptance. Incoherent vertical losses of freshly injected ions arise from their multiple scattering by residual gas atoms and transverse diffusion caused by stack noise. Reduced ion lifetime limits the multiturn injection efficiency. Analytical estimations and BETACOOL-based numerical evaluations of the vertical ion losses during multiturn injection are presented in comparison with the experimental data obtained at the HIMAC synchrotron and the S-LSR storage ring.

  13. Rain Sensor with Stacked Light Waveguide Having Tilted Air Gap

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi


    Full Text Available Vehicle sensor to detect rain drop on and above waveguide utilizing light deflection and scattering was realized, keeping wide sensing coverage and sensitivity to detect mist accumulation. Proposed sensor structure under stacked light wave guide consisted of light blocking fixture surrounding photodetector and adjacent light source. Tilted air gap between stacked light waveguide and light blocking fixture played major role to increase sensitivity and to enhance linearity. This sensor structure eliminated complex collimating optics, while keeping wide sensing coverage using simple geometry. Detection algorithm based on time-to-intensity transformation process was used to convert raining intensity into countable raining process. Experimental result inside simulated rain chamber showed distinct different response between light rain and normal rain. Application as automobile rain sensor is expected.

  14. Real-time retrieval for case-based reasoning in interactive multiagent-based simulations

    CERN Document Server

    De Loor, Pierre; Pierre, Chevaillier; 10.1016/j.eswa.2010.10.048


    The aim of this paper is to present the principles and results about case-based reasoning adapted to real- time interactive simulations, more precisely concerning retrieval mechanisms. The article begins by introducing the constraints involved in interactive multiagent-based simulations. The second section pre- sents a framework stemming from case-based reasoning by autonomous agents. Each agent uses a case base of local situations and, from this base, it can choose an action in order to interact with other auton- omous agents or users' avatars. We illustrate this framework with an example dedicated to the study of dynamic situations in football. We then go on to address the difficulties of conducting such simulations in real-time and propose a model for case and for case base. Using generic agents and adequate case base structure associated with a dedicated recall algorithm, we improve retrieval performance under time pressure compared to classic CBR techniques. We present some results relating to the perfor...

  15. Sequence-controlled polymerization guided by aryl-fluoroaryl π-stacking

    KAUST Repository

    Mugemana, Clement


    The ability to control monomer sequences is essential in macromolecular chemistry. Better sequence control leads to better control over macromolecular folding and self-assembly, which, in turn, would enable control over bulk properties (such as thermal behavior, conductivity and rigidity), as well as mimicking the properties of globular proteins. Here, we present a three-part synopsis of recent advances in research on sequence-controlled polymerization guided by aryl-perfluoroaryl π-π stacking of monomer pairs. We also show that for monomers that are capable of strong associative interactions, the classical reactivity ratio analysis based on Fineman-Ross/terminal reactivity models may lead to an imprecise determination of the monomer alternation mode. © 2014 American Chemical Society.

  16. 基于贝叶斯理论的逐次迭代非线性 AVA 反演方法%Non-Linear Pre-Stack Seismic AVA Inversion Based on Bayesian Theory Using Successive Iteration Method

    Institute of Scientific and Technical Information of China (English)

    代荣获; 张繁昌; 刘汉卿; 李灿灿


    Conventional three-term AVA inversion methods are based on the assumption thatγ (the ratio of S-wave velocity to P-wave velocity)is a constant value usually considered to be 0.5,whileγ is horizontally and vertically varied gradually in many cases.The estimated parameters of the inversion is bound to deviate from its true values with γ invariably being 0.5.and the selection γ needs to be reasonably.Based on Bayesian theory,we presents a nonlinear pre-stack seismic AVA inversion using successive iterative method,which considered the ratio’s initial background varying horizontally and vertically and being calculated by the-given initial model,and the nonlinear inversion problem was solved by successive iteration.The proposed method gived a reasonable solution for the selection of γ and solved the nonlinear problem caused by variable ratioγ.And the accuracy and stability of the three-term AVA inversion were improved.%常规 AVA 三参数反演方法均基于横波速度与纵波速度之比γ为常数这一假设条件,且常被近似地取为0.5。然而在许多情况下γ并不为常数,而是在横向与纵向都渐变。若一概假定γ等于0.5,反演出的岩性参数势必要偏离真实值,因此有必要合理地选择γ。笔者基于贝叶斯理论,提出逐次迭代非线性AVA 的反演方法。该方法把γ看成横向与纵向都渐变的反演初始背景,通过给定初始模型计算初始背景γ,并采用逐次迭代的策略求解该反演问题,解决了关于γ的选取问题以及由于引入变γ值而带来的非线性问题,提高了 AVA 三参数反演结果的精确度。


    Energy Technology Data Exchange (ETDEWEB)

    X, Zhang; J. E. O' Brien; R. C. O' Brien; J. J. Hartvigsen; G. Tao; N. Petigny


    High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

  18. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)


    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  19. Enhancing food engineering education with interactive web-based simulations

    Directory of Open Access Journals (Sweden)

    Alexandros Koulouris


    Full Text Available In the traditional deductive approach in teaching any engineering topic, teachers would first expose students to the derivation of the equations that govern the behavior of a physical system and then demonstrate the use of equations through a limited number of textbook examples. This methodology, however, is rarely adequate to unmask the cause-effect and quantitative relationships between the system variables that the equations embody. Web-based simulation, which is the integration of simulation and internet technologies, has the potential to enhance the learning experience by offering an interactive and easily accessible platform for quick and effortless experimentation with physical phenomena.This paper presents the design and development of a web-based platform for teaching basic food engineering phenomena to food technology students. The platform contains a variety of modules (“virtual experiments” covering the topics of mass and energy balances, fluid mechanics and heat transfer. In this paper, the design and development of three modules for mass balances and heat transfer is presented. Each webpage representing an educational module has the following features: visualization of the studied phenomenon through graphs, charts or videos, computation through a mathematical model and experimentation.  The student is allowed to edit key parameters of the phenomenon and observe the effect of these changes on the outputs. Experimentation can be done in a free or guided fashion with a set of prefabricated examples that students can run and self-test their knowledge by answering multiple-choice questions.

  20. 二苯并噻吩亚砜的单晶结构及其π-π堆积作用理论研究%Crystal Structure of Dibenzothiophene Sulfoxide and the Theoretical Calculations on Itsπ-πStacking Interaction

    Institute of Scientific and Technical Information of China (English)

    徐志广; 古国榜; 刘海洋


      Crystal structure of dibenzothiophene sulfoxide was obtained by the X-ray diffraction method. It crystallizes in triclinic, space group P-1 with a=0.84712 nm, b=0.94137 nm, c=1.20380 nm,α=97.866 °,β=106.2630 °,γ=96.437 °, V=0.9014 nm3, R1 (all data)= 0.0348 and ωR2(all data) = 0.0814. It exhibits a longer S=O bond length, which meaning a weak S=O bond of dibenzothiophene sulfoxide . With antiparallel-sandwich geometry of III and antiparallel-displaced geometry of IV, the crystals constructed with III and IV alternately following π-π stacking interactions. Theoretical calculations on dibenzothiophene sulfoxide had been carried out by BHandH method at the 6-31+G**level can give reasonable results for III, IV and V structure, furthermore, the Eπ-π, π-π stacking interaction energies, are -36.06, -39.83 and -75.72 kJ/mol respectively. The π-π stacking stability of III and IV may be understood by the matching of atoms’ charge populations of between two II structures.%  采用X射线衍射法测定二苯并噻吩亚砜单晶结构,发现晶体中二苯并噻吩亚砜分子以反平行三明治式的结构III和反平行位移式的结构IV两种堆砌方式交替堆砌形成有序π-π堆积晶体.二苯并噻吩亚砜单晶结构属于三斜型,空间群为P-1,晶体参数为:a=0.84712 nm, b=0.94137 nm, c=1.20380 nm,α=97.866°,β=106.2630°,γ=96.437°, V=0.9014 nm3, R1(全部数据)=0.0348和ωR2(全部数据)=0.0814.利用BHandH/6-31+G**方法计算了二苯并噻吩亚砜分子间的π-π堆积作用,III和IV堆砌模式的π-π堆积效应作用能相当大,其计算值分别为-36.06 kJ/mol和-39.83 kJ/mol,电荷布局表明正负电荷匹配是稳定晶体π-π堆积体系的重要因素.

  1. Study on the Strategies of Distance Learning Support Services Based on Effective Interaction

    Institute of Scientific and Technical Information of China (English)

    王文琳; 靳桂阳


    The paper firstly analyzes the problems of distance learning interaction in order to clarify the significance of implement-ing effective interaction. Then it puts forward the learning support services strategies based on effective interaction, which means to design strategies from the perspective of effective interaction to improve the effect of distance learning.

  2. Magnetic interactions in martensitic Ni-Mn based Heusler systems

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda


    In this work, magnetic, magnetocaloric and structural properties are investigated in Ni-Mn-based martensitic Heusler alloys with the aim to tailor these properties as well as to understand in detail the magnetic interactions in the various crystallographic states of these alloys. We choose Ni{sub 50}Mn{sub 34}In{sub 16} as a prototype which undergoes a martensitic transformation and exhibits field-induced strain and the inverse magnetocaloric effect. Using the structural phase diagram of martensitic Ni-Mn-based Heusler alloys, we substitute gallium and tin for indium to carry these effects systematically closer to room temperature by shifting the martensitic transformation. A magneto-calorimeter is designed and built to measure adiabatically the magnetocaloric effect in these alloys. The temperature dependence of strain under an external magnetic field is studied in Ni{sub 50}Mn{sub 50-x}Z{sub x} (Z: Ga, Sn, In and Sb) and Ni{sub 50}Mn{sub 34}In{sub 16-x}Z{sub x} (Z: Ga and Sn). An argument based on the effect of the applied magnetic field on martensite nucleation is adopted to extract information on the direction of the magnetization easy axis in the martensitic unit cell in Heusler alloys. Parallel to these studies, the structure in the presence of an external field is also studied by powder neutron diffraction. It is demonstrated that martensite nucleation is influenced by cooling the sample under a magnetic field such that the austenite phase is arrested within the martensitic state. The magnetic interactions in Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 40}Sb{sub 10} are characterized by using neutron polarization analysis. Below the martensitic transformation temperature, M{sub s}, an antiferromagnetically correlated state is found. Ferromagnetic resonance experiments are carried out on Ni{sub 50}Mn{sub 37}Sn{sub 13} and Ni{sub 50}Mn{sub 34}In{sub 16} to gain more detailed information on the nature of the magnetic interactions. The experimental

  3. Detailed Electrochemical Characterisation of Large SOFC Stacks

    DEFF Research Database (Denmark)

    Mosbæk, Rasmus Rode; Hjelm, Johan; Barfod, R.


    application of advanced methods for detailed electrochemical characterisation during operation. An operating stack is subject to steep compositional gradients in the gaseous reactant streams, and significant temperature gradients across each cell and across the stack, which makes it a complex system...... Fuel Cell A/S was characterised in detail using electrochemical impedance spectroscopy. An investigation of the optimal geometrical placement of the current probes and voltage probes was carried out in order to minimise measurement errors caused by stray impedances. Unwanted stray impedances...... are particularly problematic at high frequencies. Stray impedances may be caused by mutual inductance and stray capacitance in the geometrical set-up and do not describe the fuel cell. Three different stack geometries were investigated by electrochemical impedance spectroscopy. Impedance measurements were carried...

  4. Progress of MCFC stack technology at Toshiba

    Energy Technology Data Exchange (ETDEWEB)

    Hori, M.; Hayashi, T.; Shimizu, Y. [Toshiba Corp., Tokyo (Japan)


    Toshiba is working on the development of MCFC stack technology; improvement of cell characteristics, and establishment of separator technology. For the cell technology, Toshiba has concentrated on both the restraints of NiO cathode dissolution and electrolyte loss from cells, which are the critical issues to extend cell life in MCFC, and great progress has been made. On the other hand, recognizing that the separator is one of key elements in accomplishing reliable and cost-competitive MCFC stacks, Toshiba has been accelerating the technology establishment and verification of an advanced type separator. A sub-scale stack with such a separator was provided for an electric generating test, and has been operated for more than 10,000 hours. This paper presents several topics obtained through the technical activities in the MCFC field at Toshiba.

  5. High frequency model of stacked film capacitors (United States)

    Talbert, T.; Joubert, C.; Daude, N.; Glaize, C.


    Polypropylene metallized capacitors are of general use in power electronics because of their reliability, their self-healing capabilities, and their low price. Though the behavior of metallized coiled capacitors has been discussed, no work has been carried out on stacked and flattened metallized capacitors. The purpose of this article is to suggest an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors. We first solve the equation of propagation of the magnetic potential vector (A) in the dielectric of an homogeneous material. Then, we suggest an original method of resolution, like the one used for resonant cavities, in order to present an analytical solution of the problem. Finally, we give some experimental results proving that the physical knowledge of the parameters of the capacitor (dimension of the component, and material constants), enables us to calculate an analytical model of resonance frequency, stray inductance and impedance of stacked capacitors.

  6. CRS Stacking for Improved Imaging of Inversion Structures in the Donbas Foldbelt (United States)

    Menyoli, E.; Gajewski, D.; Huebscher, C.


    The Donbas Foldbelt in the southeastern part of the Dniepr-Donets Basin, Ukraine, displays exceptional characteristics for the study of processes involving repeated destabilisation of cratonic interiors, including rifting and its reactivation during basin uplift and inversion. To image the present state of the crustal evolution of this area a multinational study comprising a combined refraction / reflection profile was carried out in summer 2000. The reflection profile comprises 133~km of deep seismic data where Vibroseis and explosive sources were used to achieve a nominal fold of 60-85. In this presentation we focus on some key areas of the reflection section which are critical to estimate the amount of inversion of the basin. To better image these zones, which already show clear indications of substantial inversion in the conventional processed time migrated section we applied a new stacking technology, the Common Reflection Surface (CRS) stack. This new stacking technique is based on a three parametric search whereas for the conventional CMP stack only one parameter (the stacking velocity) is determined. Although this multiparameter search is more time consuming a multi-fold advantage is obtained. The signal to noise ratio of the reflection section is better than for the conventional CMP section. The continuity of the reflection events in the CRS stack is much improved against the CMP stack and additional information of the structure can be derived from the additional parameters determined by the CRS stacking method. The improved continuity and S / N-ratio is clearly visible when the CRS and CMP stack results of the key areas are compared. The enhanced image quality of the key zones of the Donbas Foldbelt better allow to estimate the amount of inversion and, thus, aid the geological interpretation and velocity/depth model construction.

  7. Four-Terminal Mechanically Stacked GaAs/Si Tandem Solar Cells


    Hassan, S.


    This study investigates a four-terminal mechanically stacked double junction photovoltaic device based on GaAs as a top subcell and Si as a bottom subcell. Unlike two terminal monolithically series connected double junction photovoltaics, four-terminal mechanically stacked devices benefit from the ability to choose a combination of materials that are not constrained to lattice matching condition. GaAs top subcell is the best sensitive to visible light and Si bottom subcell is chosen to be gro...

  8. Molecular dynamics simulations on deformation and fracture of bi-layer graphene with different stacking pattern under tension

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, M.D.; Wang, L. [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Wang, C.Y. [Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013 (China); Zhang, Q., E-mail: [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China); Ye, S.Y.; Wang, F.Y. [College of Mechanics and Materials, Hohai University, Nanjing 210098 (China)


    Based on AIREBO (Adaptive Intermolecular Reactive Empirical Bond Order) potential, molecular dynamics simulations (MDs) are performed to study the mechanical behavior of AB- and AA-stacked bi-layer graphene films (BGFs) under tension. Stress–strain relationship is established and deformation mechanism is investigated via morphology analysis. It is found that AA-stacked BGFs show wavy folds, i.e. the structural instability, and the local structure of AB-stacked BGFs transforms into AA-stacked ones during free relaxation. The values of the Young's modulus obtained for AA-stacked zigzag and armchair BGFs are 797.2 GPa and 727.4 GPa, and those of their AB-stacked counterparts are 646.7 GPa and 603.5 GPa, respectively. In comparison with single-layer graphene, low anisotropy is observed for BGFs, especially AB-stacked ones. During the tensile deformation, hexagonal cells at the edge of BGFs are found to transform into pentagonal rings and the number of such defects increases with the rise of tensile strain. - Highlights: • Molecular dynamics simulations are performed to study the mechanical behavior of AB- and AA-stacked bi-layer graphene films under tension. • Stress–strain relationship is established and deformation mechanism is investigated via morphology analysis. • AA-stacked graphene shows structural instability and the local structure of AB-stacked films transforms into AA-stacked in free relaxation. • Low anisotropy is observed for bi-layer graphene films, especially for AB-stacked ones.

  9. Three wafer stacking for 3D integration.

    Energy Technology Data Exchange (ETDEWEB)

    Greth, K. Douglas; Ford, Christine L.; Lantz, Jeffrey W.; Shinde, Subhash L.; Timon, Robert P.; Bauer, Todd M.; Hetherington, Dale Laird; Sanchez, Carlos Anthony


    Vertical wafer stacking will enable a wide variety of new system architectures by enabling the integration of dissimilar technologies in one small form factor package. With this LDRD, we explored the combination of processes and integration techniques required to achieve stacking of three or more layers. The specific topics that we investigated include design and layout of a reticle set for use as a process development vehicle, through silicon via formation, bonding media, wafer thinning, dielectric deposition for via isolation on the wafer backside, and pad formation.

  10. Study of stacked microstrip phased arrays (United States)

    Arts, M. J.; Smolders, A. B.


    Two theoretical methods for studying stacked-patch microstrip phased arrays are compared: (1) the element-by-element approach (finite array approach) of Pozar (1986) and Smolders (1992); and (2) the infinite approach of Pozar and Shaubert (1984) and Liu et al. (1988). Both theories were found to give almost the same results for a 7 x 7 stacked microstrip antenna, except for edge array elements and for large scan angles. Edge array elements could only be analyzed properly by using a finite array approach. Coupling measurements were made on a 7 x 7 array with a single patch layer, and the results agreed well with calculations.

  11. Geometry and kinematics of experimental antiformal stacks

    Directory of Open Access Journals (Sweden)



    Full Text Available Sandbox experiments with different boundary conditions demonstrate that antiformal stacks result from a forward-breaking thrust sequence. An obstacle blocks forward thrust propagation and transfers the deformation back to the hinterland in a previously formed true duplex. In the hinterland, continued shortening causes faults to merge toward the tectonic transport direction until the older thrusts override the younger thrusts. In experiments using thin sand layers or high basal friction, shortening is accommodated by a cyclic process of thrusting, back rotation of the newly formed thrust combined with strong vertical strain, and nucleation of a new thrust. Continuous deformation produces an antiformal stack through progressive convergence of branch lines.

  12. User-Based Interaction for Content-Based Image Retrieval by Mining User Navigation Patterns.

    Directory of Open Access Journals (Sweden)

    A. Srinagesh


    Full Text Available In Internet, Multimedia and Image Databases image searching is a necessity. Content-Based Image Retrieval (CBIR is an approach for image retrieval. With User interaction included in CBIR with Relevance Feedback (RF techniques, the results are obtained by giving more number of iterative feedbacks for large databases is not an efficient method for real- time applications. So, we propose a new approach which converges rapidly and can aptly be called as Navigation Pattern-Based Relevance Feedback (NPRF with User-based interaction mode. We combined NPRF with RF techniques with three concepts viz., query Re-weighting (QR, Query Expansion (QEX and Query Point Movement (QPM. By using, these three techniques efficient results are obtained by giving a small number of feedbacks. The efficiency of the proposed method with results is proved by calculating Precision, Recall and Evaluation measures.


    Directory of Open Access Journals (Sweden)

    Yonghong Deng,


    Full Text Available Sodium lignosulfonate (SL fractions with narrow molecular weight distribution and known salt content were used to investigate – stacking of the aromatic groups in SL. Results show that the charge-free aromatic groups of SL tend to form oriented – stacking with the spectroscopic characteristics of J–aggregates. The formation of J–aggregates in SL are recognized by a significant spectral red shift in fluorescent excitation spectra. The other effects that may cause spectral shift, such as the SL species, solvent effect, and the impurities, are investigated to confirm that the formation of J-aggregates is the only viable explanation for the significant spectral redshift of SL. Salt causes molecular shrinkage of SL polyelectrolytes, but has no influence on J–aggregates of the aromatic groups as detected by lack of spectral shift, indicating that the aromatic groups are charge-free. This suggests that not all the aromatic groups but only the charge-free aromatic groups can form – stacking. This work demonstrates the presence of J–aggregation in aqueous SL solutions for the first time, which gives an insight in understanding the preferred orientation of the aromatic groups in lignin-based biopolymers.

  14. Infrared, vibrational circular dichroism, and Raman spectral simulations for β-sheet structures with various isotopic labels, interstrand, and stacking arrangements using density functional theory. (United States)

    Welch, William R W; Kubelka, Jan; Keiderling, Timothy A


    Infrared (IR), Raman, and vibrational circular dichroism (VCD) spectral variations for different β-sheet structures were studied using simulations based on density functional theory (DFT) force field and intensity computations. The DFT vibrational parameters were obtained for β-sheet fragments containing nine-amides and constrained to a variety of conformations and strand arrangements. These were subsequently transferred onto corresponding larger β-sheet models, normally consisting of five strands with ten amides each, for spectral simulations. Further extension to fibril models composed of multiple stacked β-sheets was achieved by combining the transfer of DFT parameters for each sheet with dipole coupling methods for interactions between sheets. IR spectra of the amide I show different splitting patterns for parallel and antiparallel β-sheets, and their VCD, in the absence of intersheet stacking, have distinct sign variations. Isotopic labeling by (13)C of selected residues yields spectral shifts and intensity changes uniquely sensitive to relative alignment of strands (registry) for antiparallel sheets. Stacking of multiple planar sheets maintains the qualitative spectral character of the single sheet but evidences some reduction in the exciton splitting of the amide I mode. Rotating sheets with respect to each other leads to a significant VCD enhancement, whose sign pattern and intensity is dependent on the handedness and degree of rotation. For twisted β-sheets, a significant VCD enhancement is computed even for sheets stacked with either the same or opposite alignments and the inter-sheet rotation, depending on the sense, can either further increase or weaken the enhanced VCD intensity. In twisted, stacked structures (without rotation), similar VCD amide I patterns (positive couplets) are predicted for both parallel and antiparallel sheets, but different IR intensity distributions still enable their differentiation. Our simulation results prove useful

  15. Sensing Landscape History with an Interactive Location Based Service

    Directory of Open Access Journals (Sweden)

    Paul Roncken


    Full Text Available This paper introduces the STEAD approach for interpreting data acquired by a “human sensor”, who uses an informal interactive location-based service (iLBS to sense cultural-historic facts and anecdotes of, and in the landscape. This user-generated data is collected outdoors and in situ. The approach consists of four related facets (who, what, where, when. Three of the four facets are discussed and illustrated by user generated data collected during a Dutch survey in 2008. These data represent the personal cultural-historic knowledge and anecdotes of 150 people using a customized iLBS for experiencing the cultural history of a landscape. The “who” facet shows three dominant mentality groups (cosmopolitans, modern materialists and post modern hedonists that generated user content. The “what” facet focuses on three subject types of pictures and four picture framing classes. Pictures of the place type showed to be dominant and foreground framing class was slightly favourite. The “where” facet is explored via density, distribution, and distance of the pictures made. The illustrations of the facets indirectly show the role of the “human sensor” with respect to the domain of interest. The STEAD approach needs further development of the when-facet and of the relations between the four facets. Finally the results of the approach may support data archives of iLBS applications.

  16. Stacking of SKA data: comparing uv-plane and image-plane stacking

    CERN Document Server

    Knudsen, K K; Vlemmings, W; Conway, J; Marti-Vidal, I


    Stacking as a tool for studying objects that are not individually detected is becoming popular even for radio interferometric data, and will be widely used in the SKA era. Stacking is typically done using imaged data rather than directly using the visibilities (the uv-data). We have investigated and developed a novel algorithm to do stacking using the uv-data. We have performed exten- sive simulations comparing to image-stacking, and summarize the results of these simulations. Furthermore, we disuss the implications in light of the vast data volume produced by the SKA. Having access to the uv-stacked data provides a great advantage, as it allows the possibility to properly analyse the result with respect to calibration artifacts as well as source properties such as size. For SKA the main challenge lies in archiving the uv-data. For purposes of robust stacking analysis, it would be strongly desirable to either keep the calibrated uv-data at least in an aver- age form, or implement a stacking queue where stacki...

  17. Emission shaping in fluorescent proteins: role of electrostatics and π-stacking. (United States)

    Park, Jae Woo; Rhee, Young Min


    For many decades, simulating the excited state properties of complex systems has been an intriguing but daunting task due to its high computational cost. Here, we apply molecular dynamics based techniques with interpolated potential energy surfaces toward calculating fluorescence spectra of the green fluorescent protein (GFP) and its variants in a statistically meaningful manner. With the GFP, we show that the diverse electrostatic tuning can shape the emission features in many different ways. By computationally modulating the electrostatic interactions between the chromophore phenoxy oxygen and its nearby residues, we demonstrate that we indeed can shift the emission to the blue or to the red side in a predictable manner. We rationalize the shifting effects of individual residues in the GFP based on the responses of both the adiabatic and the diabatic electronic states of the chromophore. We next exhibit that the yellow emitting variant, the Thr203Tyr mutant, generates changes in the electrostatic interactions and an additional π-stacking interaction. These combined effects indeed induce a red shift to emit the fluorescence into the yellow region. With the series of demonstrations, we suggest that our approach can provide sound rationales and useful insights in understanding different responses of various fluorescent complexes, which may be helpful in designing new light emitting proteins and other related systems in future studies.

  18. Sharing programming resources between Bio* projects through remote procedure call and native call stack strategies

    DEFF Research Database (Denmark)

    Prins, Pjotr; Goto, Naohisa; Yates, Andrew


    procedure call (RPC) or by sharing a local call stack. RPC provides a language-independent protocol over a network interface; examples are RSOAP and Rserve. The local call stack provides a between-language mapping not over the network interface, but directly in computer memory; examples are R bindings, RPy...... into R through native R, RSOAP, Rserve, and RPy interfaces, with the performance of native BioPerl, Biopython, BioJava, and BioRuby implementations, and with call stack bindings to BioJava and the European Molecular Biology Open Software Suite. In general, call stack approaches outperform native Bio......* implementations and these, in turn, outperform RPC-based approaches. To test and compare strategies, we provide a downloadable BioNode image with all examples, tools, and libraries included. The BioNode image can be run on VirtualBox-supported operating systems, including Windows, OSX, and Linux....

  19. A multi-stack simulation of shunt currents in vanadium redox flow batteries (United States)

    Wandschneider, F. T.; Röhm, S.; Fischer, P.; Pinkwart, K.; Tübke, J.; Nirschl, H.


    A model for the shunt currents in an all-vanadium redox flow battery consisting of 3 stacks which are electrically connected in series. It is based on an equivalent circuit which treats the shunt current pathways as Ohmic resistors. The conductivity of the vanadium electrolyte has been measured for different state-of-charges in order to implement a dependency of the resistances on the state-of-charge of the system. Published results are used to validate the simulation data of a single stack. Three setups of pipe networks are evaluated using the model. The pipe connections between the stacks give rise to external shunt currents, which also increase the amount of shunt currents within the stacks. These connections also lead to a nonuniform distribution of the shunt currents. The effects of the shunt currents on the Coulombic efficiency and the energy efficiency of the system are studied by the means of the model.

  20. Study on Distance Learning Support Services Strategy Based on Effective Interaction

    Institute of Scientific and Technical Information of China (English)

    王文琳; 靳桂阳


    Achieving effective interaction can the students get good learning results, and enhance the quality of distance learning. The paper firstly analyzes the research on distance learning support services and the problems of distance learning interaction in or-der to clarify the significance of implementing effective interaction. Then it puts forward the learning support services strategies based on effective interaction, which means to promote distance learning interaction and enhance the students' self-learning abili-ty.

  1. Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites


    Li, Z K; Fu, H. M.; Sha, P. F.; Zhu, Z. W.; A. M. Wang; Li, H.; Zhang, H. W.; Zhang, H. F.; Hu, Z. Q.


    The interaction between active element Zr and W damages the W fibers and the interface and decreases the mechanical properties, especially the tensile strength of the W fibers reinforced Zr-based bulk metallic glass composites (BMGCs). From the viewpoint of atomic interaction, the W-Zr interaction can be restrained by adding minor elements that have stronger interaction with W into the alloy. The calculation about atomic interaction energy indicates that Ta and Nb preferred to segregate on th...

  2. Natural Interaction Based Online Military Boxing Learning System (United States)

    Yang, Chenglei; Wang, Lu; Sun, Bing; Yin, Xu; Wang, Xiaoting; Liu, Li; Lu, Lin


    Military boxing, a kind of Chinese martial arts, is widespread and health beneficial. In this paper, the authors introduce a military boxing learning system realized by 3D motion capture, Web3D and 3D interactive technologies. The interactions with the system are natural and intuitive. Users can observe and learn the details of each action of the…

  3. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications (United States)

    Lotrič, A.; Sekavčnik, M.; Hočevar, S.


    Efficiently combining proton exchange membrane fuel cell (PEMFC) stack with methanol steam reformer (MSR) into a small portable system is still quite a topical issue. Using methanol as a fuel in PEMFC stack includes a series of chemical processes where each proceeds at a unique temperature. In a combined MSR-PEMFC-stack system with integrated auxiliary fuel processors (vaporizer, catalytic combustor, etc.) the processes are both endothermic and exothermic hence their proper thermal integration can help raising the system efficiency. A concept of such fully integrated and compact system is proposed in this study. Three separate systems are designed based on different PEMFC stacks and MSR. Low-temperature (LT) and conventional high-temperature (cHT) PEMFC stack characteristics are based on available data from suppliers. Also, a novel high-temperature (nHT) PEMFC stack is proposed because its operating temperature coincides with that of MSR. A comparative study of modelled systems is performed using a mass and energy balances zero-dimensional model, which is interdependently coupled to a physical model based on finite element method (FEM). The results indicate that a system with nHT PEMFC stack is feasible and has the potential to reach higher system efficiencies than systems with LT or cHT PEMFC stacks.

  4. Expectation-driven interaction: a model based on Luhmann's contingency approach

    CERN Document Server

    Barber, M J; Buchinger, E; Cessac, B; Streit, L; Blanchard, Ph.


    We introduce an agent-based model of interaction, drawing on the contingency approach from Luhmann's theory of social systems. The agent interactions are defined by the exchange of distinct messages. Message selection is based on the history of the interaction and developed within the confines of the problem of double contingency. We examine interaction strategies in the light of the message-exchange description using analytical and computational methods.

  5. OpenStack Object Storage (Swift) essentials

    CERN Document Server

    Kapadia, Amar; Varma, Sreedhar


    If you are an IT administrator and you want to enter the world of cloud storage using OpenStack Swift, then this book is ideal for you. Basic knowledge of Linux and server technology is beneficial to get the most out of the book.

  6. OpenStack cloud computing cookbook

    CERN Document Server

    Jackson, Kevin


    A Cookbook full of practical and applicable recipes that will enable you to use the full capabilities of OpenStack like never before.This book is aimed at system administrators and technical architects moving from a virtualized environment to cloud environments with familiarity of cloud computing platforms. Knowledge of virtualization and managing linux environments is expected.

  7. Measuring Structural Parameters Through Stacking Galaxy Images

    CERN Document Server

    Li, Yubin; Gu, Qiu-Sheng; Wang, Yi-Peng; Wen, ZhangZheng; Guo, Kexin; An, FangXia


    It remains challenging to detect the low surface brightness structures of faint high-z galaxies, which is key to understanding the structural evolution of galaxies. The technique of image stacking allows us to measure the averaged light profile beneath the detection limit and probe the extended structure of a group of galaxies. We carry out simulations to examine the recovery of the averaged surface brightness profile through stacking model HST/ACS images of a set of galaxies as functions of Sersic index (n), effective radius (Re) and axis ratio (AR). The Sersic profile best fitting the radial profile of the stacked image is taken as the recovered profile, in comparison with the intrinsic mean profile of the model galaxies. Our results show that, in general, the structural parameters of the mean profile can be properly determined through stacking, although systematic biases need to be corrected when spreads of Re and AR are counted. We find that Sersic index is slightly overestimated and Re is underestimated ...

  8. 40 CFR 61.33 - Stack sampling. (United States)


    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.33 Section 61.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Unless a waiver of emission testing is obtained under § 61.13, each owner or...

  9. 40 CFR 61.53 - Stack sampling. (United States)


    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Stack sampling. 61.53 Section 61.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL... sampling. (a) Mercury ore processing facility. (1) Unless a waiver of emission testing is obtained...

  10. Average Transmission Probability of a Random Stack (United States)

    Lu, Yin; Miniatura, Christian; Englert, Berthold-Georg


    The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower…

  11. Apparatus and method for determining microscale interactions based on compressive sensors such as crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, Harley; AlQuraishi, Mohammed


    Techniques for determining values for a metric of microscale interactions include determining a mesoscale metric for a plurality of mesoscale interaction types, wherein a value of the mesoscale metric for each mesoscale interaction type is based on a corresponding function of values of the microscale metric for the plurality of the microscale interaction types. A plurality of observations that indicate the values of the mesoscale metric are determined for the plurality of mesoscale interaction types. Values of the microscale metric are determined for the plurality of microscale interaction types based on the plurality of observations and the corresponding functions and compressed sensing.

  12. Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Endert, Alexander; North, Chris


    With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focus on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.

  13. Measurement of heat conduction through stacked screens. (United States)

    Lewis, M A; Kuriyama, T; Kuriyama, F; Radebaugh, R


    This paper describes the experimental apparatus for the measurement of heat conduction through stacked screens as well as some experimental results taken with the apparatus. Screens are stacked in a fiberglass-epoxy cylinder, which is 24.4 mm in diameter and 55 mm in length. The cold end of the stacked screens is cooled by a Gifford-McMahon (GM) cryocooler at cryogenic temperature, and the hot end is maintained at room temperature. Heat conduction through the screens is determined from the temperature gradient in a calibrated heat flow sensor mounted between the cold end of the stacked screens and the GM cryocooler. The samples used for these experiments consisted of 400-mesh stainless steel screens, 400-mesh phosphor bronze screens, and two different porosities of 325-mesh stainless steel screens. The wire diameter of the 400-mesh stainless steel and phosphor bronze screens was 25.4 micrometers and the 325-mesh stainless steel screen wire diameters were 22.9 micrometers and 27.9 micrometers. Standard porosity values were used for the experimental data with additional porosity values used on selected experiments. The experimental results showed that the helium gas between each screen enhanced the heat conduction through the stacked screens by several orders of magnitude compared to that in vacuum. The conduction degradation factor is the ratio of actual heat conduction to the heat conduction where the regenerator material is assumed to be a solid rod of the same cross sectional area as the metal fraction of the screen. This factor was about 0.1 for the stainless steel and 0.022 for the phosphor bronze, and almost constant for the temperature range of 40 to 80 K at the cold end.

  14. Support for Dynamic Service Composition with Role-Based Interaction Model

    Institute of Scientific and Technical Information of China (English)


    This paper aims to present a role-based interaction model for dynamic service composition in Grid environments. Assigning roles to a service means to associate with it capabilities that describes all the operations the service intends to perform. When all of the services can be recognized by their roles, the appropriate services can be selected. Based on the interaction policy, a role-based interaction model not only facilitates access control, but also offers flexible interaction mechanism for adapting service-oriented applications. This interaction model adopts programmable reactive tuple space to facilitate context-dependent coordination.

  15. Mobile gaze-based screen interaction in 3D environments

    DEFF Research Database (Denmark)

    Mardanbeigi, Diako; Witzner Hansen, Dan


    in the field of view of the user is also presented which can be applied in a general scenario in which multiple users can interact with multiple screens. A particular application of using this technique is implemented in a home environment with two big screens and a mobile phone. In this application a user......Head-mounted eye trackers can be used for mobile interaction as well as gaze estimation purposes. This paper presents a method that enables the user to interact with any planar digital display in a 3D environment using a head-mounted eye tracker. An effective method for identifying the screens...

  16. Agent based models for wealth distribution with preference in interaction

    CERN Document Server

    Goswami, Sanchari


    We propose a set of conservative models in which agents exchange wealth with a preference in the choice of interacting agents in different ways. The common feature in all the models is that the temporary values of financial status of agents is a deciding factor for interaction. Other factors which may play important role are past interactions and wealth possessed by individuals. Wealth distribution, network properties and activity are the main quantities which have been studied. Evidence of phase transitions and other interesting features are presented. The results show that certain observations of real economic system can be reproduced by the models.

  17. A reliability measure of protein-protein interactions and a reliability measure-based search engine. (United States)

    Park, Byungkyu; Han, Kyungsook


    Many methods developed for estimating the reliability of protein-protein interactions are based on the topology of protein-protein interaction networks. This paper describes a new reliability measure for protein-protein interactions, which does not rely on the topology of protein interaction networks, but expresses biological information on functional roles, sub-cellular localisations and protein classes as a scoring schema. The new measure is useful for filtering many spurious interactions, as well as for estimating the reliability of protein interaction data. In particular, the reliability measure can be used to search protein-protein interactions with the desired reliability in databases. The reliability-based search engine is available at We believe this is the first search engine for interacting proteins, which is made available to public. The search engine and the reliability measure of protein interactions should provide useful information for determining proteins to focus on.

  18. Pendaphonics: A Tangible Pendulum-based Sonic Interaction Experience

    DEFF Research Database (Denmark)

    Overholt, Daniel; Hansen, Anne-Marie S.; Burleson, Winslow


    , presents a strategy for the design and evaluation of a low-cost, flexible, distributed system for public interaction and performance in a large scale tangible system. Pendaphonics has been installed in a public new media arts space, where over 200 people experienced the initial opening of the environment......, and is now active within five different research university interaction laboratories. This paper presents the development process and findings from observations and evaluation of Pendaphonics’ users and the social interaction patterns among performers and members of the public. In particular, the repeated...... along with descriptions of the broad potential of this system as a compositional and choreographic tool, an educational exhibit and classroom manipulative, and as an interface that facilitates playful interaction, exploration, discovery and creativity....

  19. On-line and real-time diagnosis method for proton membrane fuel cell (PEMFC) stack by the superposition principle (United States)

    Lee, Young-Hyun; Kim, Jonghyeon; Yoo, Seungyeol


    The critical cell voltage drop in a stack can be followed by stack defect. A method of detecting defective cell is the cell voltage monitoring. The other methods are based on the nonlinear frequency response. In this paper, the superposition principle for the diagnosis of PEMFC stack is introduced. If critical cell voltage drops exist, the stack behaves as a nonlinear system. This nonlinearity can explicitly appear in the ohmic overpotential region of a voltage-current curve. To detect the critical cell voltage drop, a stack is excited by two input direct test-currents which have smaller amplitude than an operating stack current and have an equal distance value from the operating current. If the difference between one voltage excited by a test current and the voltage excited by a load current is not equal to the difference between the other voltage response and the voltage excited by the load current, the stack system acts as a nonlinear system. This means that there is a critical cell voltage drop. The deviation from the value zero of the difference reflects the grade of the system nonlinearity. A simulation model for the stack diagnosis is developed based on the SPP, and experimentally validated.

  20. Interactive Rendering For Projection-Based Augmented Reality Displays


    Bimber, Oliver


    The rapid advances in computing and communications are dramatically changing all aspects of our lives. In particular, sophisticated 3D visualization, display, and interaction technologies are being used to complement our familiar physical world with computer-generated augmentations. These new interaction and display techniques are expected to make our work, learning, and leisure environments vastly more efficient and appealing. Within different application areas, variants of these technologie...

  1. Acid-base interactions in microbial adhesion to hexadecane and chloroform

    NARCIS (Netherlands)

    Bos, R; Busscher, HJ; Geertsema-Doornbusch, GI; Van Der Mei, HC; Mittal, KL


    Acid-base interactions play an important role in adhesion, including microbial adhesion to surfaces. Qualitatively acid-base interactions in microbial adhesion can be demonstrated by comparing adhesion to hexadecane (a negatively charged interface in aqueous solutions, unable to exert acid-base inte


    DEFF Research Database (Denmark)

    Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD

    This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...

  3. Testing the sampling efficiency of a nuclear power station stack monitor

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L.H. [Instrumentinvest, Nykoeping (Sweden)


    The test method comprises the injection of known amounts of monodisperse particles in the stack air stream, at a suitable point upstream of the sampling installation. To find a suitable injection polls, the gas flow was mapped by means of a tracer gas, released in various points in the stack base. The resulting concentration distributions at the stack sampler level were observed by means of an array of gas detectors. An injection point that produced symmetrical distribution over the stack area, and low concentrations at the stack walls was selected for the particle tests. Monodisperse particles of 6, 10, and 19 {mu}m aerodynamic diameter, tagged with dysprosium, were dispersed in the selected injection point. Particle concentration at the sampler level was measured. The losses to the stack walls were found to be less than 10 %. The particle concentrations at the four sampler inlets were calculated from the observed gas distribution. The amount calculated to be aspirated into the sampler piping was compared with the quantity collected by the sampling train ordinary filter, to obtain the sampling line transmission efficiency. 1 ref., 2 figs.

  4. A high-performance aluminum-feed microfluidic fuel cell stack (United States)

    Wang, Yifei; Leung, Dennis Y. C.


    In this paper, a six-cell microfluidic fuel cell (MFC) stack is demonstrated. Low-cost aluminum is fed directly to the stack, which produces hydrogen fuel on site, through the Al-H2O reaction. This design is not only cost-efficient, but also eliminates the need for hydrogen storage. Unlike the conventional MFC stacks which generally require complex electrolyte distribution and management, the present Al-feed MFC stack requires only a single electrolyte stream, flowing successively through individual cells, which is finally utilized for hydrogen generation. In this manner, the whole system is greatly simplified while the operational robustness is also improved. With 2 M sodium hydroxide solution as electrolyte and kitchen foil Al as fuel, the present six-cell stack (in series) exhibits an open circuit voltage of nearly 6 V and a peak power density of 180.6 mWcm-2 at room temperature. In addition, an energy density of 1 Whg-1(Al) is achieved, which is quite high and comparable with its proton exchange membrane-based counterparts. Finally, pumpless operation of the present stack, together with its practical applications are successfully demonstrated, including lightening LED lights, driving an electric fan, and cell phone charging.

  5. Design, calibration, and operation of 220Rn stack effluent monitoring systems at Argonne National Laboratory. (United States)

    Munyon, W J; Kretz, N D; Marchetti, F P


    A group of stack effluent monitoring systems have been developed to monitor discharges of 220Rn from a hot cell facility at Argonne National Laboratory. The stack monitors use flow-through scintillation cells and are completely microprocessor-based systems. A method for calibrating the stack monitors in the laboratory and in the field is described. A nominal calibration factor for the stack monitoring systems in use is 15.0 cts min-1 per kBq m-3 (0.56 cts min-1 per pCi L-1) +/- 26% at the 95% confidence level. The plate-out fraction of decay products in the stack monitor scintillation cells, without any pre-filtering, was found to be nominally 25% under normal operating conditions. When the sample was pre-filtered upstream of the scintillation cell, the observed cell plate-out fraction ranged from 16-22%, depending on the specific sampling conditions. The instantaneous 220Rn stack concentration can be underestimated or overestimated when the steady state condition established between 220Rn and its decay products in the scintillation cell is disrupted by sudden changes in the monitored 220Rn concentration. For long-term measurements, however, the time-averaged response of the monitor represents the steady state condition and leads to a reasonable estimate of the average 220Rn concentration during the monitoring period.

  6. DNA-Conjugated Organic Chromophores in DNA Stacking Interactions

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V.; Pedersen, Erik Bjerregaard


    Since the discovery of the intercalation of acridine derivatives into DNA (1961), chemists have synthesized many intercalators tethered to DNA. Advances in the chemical synthesis of modified nucleosides along with progress in oligonucleotide synthesis have made it possible to introduce organic ch...... review presents those efforts in the design of intercalators/organic chromophores as oligonucleotide conjugates that form a foundation for the generation of novel nucleic acid architectures...

  7. Project W-420 Stack Monitoring system upgrades conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    TUCK, J.A.


    This document describes the scope, justification, conceptual design, and performance of Project W-420 stack monitoring system upgrades on six NESHAP-designated, Hanford Tank Farms ventilation exhaust stacks.

  8. Tackling the stacking disorder of melon--structure elucidation in a semicrystalline material. (United States)

    Seyfarth, Lena; Seyfarth, Jan; Lotsch, Bettina V; Schnick, Wolfgang; Senker, Jürgen


    In this work we tackle the stacking disorder of melon, a layered carbon imide amide polymer with the ideal composition (C(6)N(7)(NH)(NH(2))). Although its existence has been postulated since 1834 the structure of individual melon layers could only recently be solved via electron diffraction and high-resolution (15)N solid-state NMR spectroscopy. With only weak van der Waals interactions between neighboring layers its long range stacking order is poorly defined preventing an efficient use of diffraction techniques. We, therefore, rely on a combination of solid-state NMR experiments and force field calculations. The key information is obtained based on heteronuclear ((1)H-(13)C) and homonuclear ((1)H-(1)H) second moments M(2) acquired from (1)H-(13)C cross polarization experiments. To allow for an interpretation of the polarization transfer rates the resonances in the (13)C MAS spectra have to be assigned and the hydrogen atoms have to be located. The assignment was performed using a two-dimensional (15)N-(13)C iDCP experiment. For the determination of the position of the hydrogen atoms NH and HH distances were measured via(1)H-(15)N Lee-Goldburg CP and (1)H-(1)H double-quantum build-up curves, respectively. Furthermore, the homogeneity of the material under examination was investigated exploiting (15)N spin-diffusion. Based on force field methods 256 structure models with varying lateral arrangements between neighboring layers were created. For each model the M(2) were calculated allowing them to be ranked by comparing calculated and measured M(2) as well as via their force field energies. This allows the creation of markedly structured hypersurfaces with two distinctly favored shift vectors for the displacement of neighboring layers.

  9. The computational optimization of heat exchange efficiency in stack chimneys

    Energy Technology Data Exchange (ETDEWEB)

    Van Goch, T.A.J.


    stack chimney heat exchanger is used for heating or cooling applications, what is the expected performance and how do the design parameters relate to this performance'. Simulation models were developed in the BPS tool ESP-r. The most important design parameters and their relative influence on the performance indicators were analysed based on sensitivity analysis (SA). From this analysis general design guidelines were derived ('optimal set of design parameters'). A multi objective optimization of the design parameters was performed on the simulation models, using the responsive surface methods and artificial neural network capabilities of optimization environment ModEContier to speed up the iteration process. In this optimization, 'heat exchange in stack chimneys is optimized annually'. The uncertainty in the optimized results has been analysed using uncertainty analysis (UA). Finally, the appropriateness of deploying a complex, high resolution simulation has been evaluated by studying current modelling resolution selection methodology found in literature.

  10. Asymmetrical prism for beam shaping of laser diode stacks. (United States)

    Zeng, Xiaodong; Cao, Changqing; An, Yuying


    A beam-shaping scheme for a laser diode stack to obtain a flattop output intensity profile is proposed. The shaping element consists of an asymmetrical glass prism. The large divergence-angle compression in the direction perpendicular to the junction plane and the small divergence-angle expansion in the parallel direction are performed simultaneously by a single shaping element. The transformation characteristics are presented, and the optimization performance is investigated based on the ray-tracing method. Analysis shows that a flattop intensity profile can be obtained. This beam-shaping system can be fabricated easily and has a large alignment tolerance.

  11. Dispersive mirrors designed with mixed metal multilayer dielectric stacks

    Institute of Scientific and Technical Information of China (English)

    Jinlong Zhang; Zhanshan Wang; Xinbin Cheng


    A different approach to construct dispersive mirrors (DMs) for ultrafast applications is proposed based on the high reflectivity and constant phase property of a novel metal in ultrawide spectral band.A 200-nm bandwidth DM,a high dispersive DM,and a complementary DM are designed with mixed metal multilayer dielectric stacks.The results show that the mixed-metal multilayer dielectric DMs (MMDMs)have much less layers and total thickness compared with an all-dielectric DM under the case of comparable performance.Such an approach will save manufacturing time and remarkably improve the stress of the DM.

  12. Ductilizing Bulk Metallic Glass Composite by Tailoring Stacking Fault Energy (United States)

    Wu, Y.; Zhou, D. Q.; Song, W. L.; Wang, H.; Zhang, Z. Y.; Ma, D.; Wang, X. L.; Lu, Z. P.


    Martensitic transformation was successfully introduced to bulk metallic glasses as the reinforcement micromechanism. In this Letter, it was found that the twinning property of the reinforcing crystals can be dramatically improved by reducing the stacking fault energy through microalloying, which effectively alters the electron charge density redistribution on the slipping plane. The enhanced twinning propensity promotes the martensitic transformation of the reinforcing austenite and, consequently, improves plastic stability and the macroscopic tensile ductility. In addition, a general rule to identify effective microalloying elements based on their electronegativity and atomic size was proposed.

  13. ESL Students' Interaction in Second Life: Task-Based Synchronous Computer-Mediated Communication (United States)

    Jee, Min Jung


    The purpose of the present study was to explore ESL students' interactions in task-based synchronous computer-mediated communication (SCMC) in Second Life, a virtual environment by which users can interact through representational figures. I investigated Low-Intermediate and High-Intermediate ESL students' interaction patterns before, during, and…

  14. Magnet-based Around Device Interaction for Playful Music Composition and Gaming

    NARCIS (Netherlands)

    El Ali, A.; Ketabdar, H.


    Around Device Interaction (ADI) has expanded the interaction space on mobile devices to allow 3D gesture interaction around the device. In this paper, the authors look specifically at magnet-based ADI and its applied use in a playful, music-related context. Using three musical applications developed

  15. Characterization of stacked-crystal PET detector designs for measurement of both TOF and DOI (United States)

    Schmall, Jeffrey P.; Surti, Suleman; Karp, Joel S.


    A PET detector with good timing resolution and two-level depth-of-interaction (DOI) discrimination can be constructed using a single-ended readout of scintillator stacks of Lanthanum Bromide (LaBr3), with various Cerium dopant concentrations, including pure Cerium Bromide (CeBr3). The stacked crystal geometry creates a unique signal shape for interactions occurring in each layer, which can be used to identify the DOI, while retaining the inherently good timing properties of LaBr3 and CeBr3. In this work, single pixel elements are used to optimize the choice of scintillator, coupling of layers, and type of photodetector, evaluating the performance using a fast, single-channel photomultiplier tube (PMT) and a single 4 × 4 mm2 silicon photomultiplier (SiPM). We also introduce a method to quantify and evaluate the DOI discrimination accuracy. From signal shape measurements using fast waveform sampling, we found that in addition to differences in signal rise times, between crystal layers, there were also differences in the signal fall times. A DOI accuracy of 98% was achieved using our classification method for a stacked crystal pair, consisting of a 15 mm long LaBr3(Ce:20%) crystal on top of a 15 mm long CeBr3 crystal, readout using a PMT. A DOI accuracy of 95% was measured with a stack of two, identical, 12 mm long, CeBr3 crystals. The DOI accuracy of this crystal pair was reduced to 91% when using a SiPM for readout. For the stack of two, 12 mm long, CeBr3 crystals, a coincidence timing resolution (average of timing results from the top and bottom layer) of 199 ps was measured using a PMT, and this was improved to 153 ps when using a SiPM. These results show that with stacked LaBr3/CeBr3 scintillators and fast waveform sampling nearly perfect DOI accuracy can be achieved with excellent timing resolution—timing resolution that is only minimally degraded compared to results from a single CeBr3 crystal of comparable length to the stacked crystals. The

  16. Luminescence associated with stacking faults in GaN


    Lähnemann, Jonas; Jahn, Uwe; Brandt, Oliver; Flissikowski, Timur; Dogan, Pinar; Grahn, Holger T.


    Basal-plane stacking faults are an important class of optically active structural defects in wurtzite semiconductors. The local deviation from the 2H stacking of the wurtzite matrix to a 3C zinc-blende stacking induces a bound state in the gap of the host crystal, resulting in the localization of excitons. Due to the two-dimensional nature of these planar defects, stacking faults act as quantum wells, giving rise to radiative transitions of excitons with characteristic energies. Luminescence ...

  17. Stacking from Tags: Clustering Bookmarks around a Theme


    Zubiaga, Arkaitz; García-Plaza, Alberto Pérez; Fresno, Víctor; Martínez, Raquel


    Since very recently, users on the social bookmarking service Delicious can stack web pages in addition to tagging them. Stacking enables users to group web pages around specific themes with the aim of recommending to others. However, users still stack a small subset of what they tag, and thus many web pages remain unstacked. This paper presents early research towards automatically clustering web pages from tags to find stacks and extend recommendations.

  18. DEVS Models of Palletized Ground Stacking in Storeyed Grain Warehouse

    Directory of Open Access Journals (Sweden)

    Hou Shu-Yi


    Full Text Available Processed grain stored in storeyed warehouse is generally stacked on the ground without pallets. However, in order to improve the storing way, we developed a new stacking method, palletized ground stacking. Simulation should be used to present this new storing way. DEVS provides a formalized way to describe the system model. In this paper, DEVS models of palletized ground stacking in storeyed grain warehouse are given and a simulation model is developed by AutoMod.

  19. 基于μC/OS-Ⅱ系统的TCP/IP协议栈实现%Realization of TCP/IP Protocol Stack Based on μC/OS- Ⅱ System

    Institute of Scientific and Technical Information of China (English)

    董峰; 李小明


    The introduction of real-time operating system in embedded TCP/IP protocol stack, to support embedded devices access the network, becomes an important research direction in the field of embedded. This article introduced the structure of the open source real-time operating system μC/OS- Ⅱ and the method of transplant in STM32, studied the structure and work processes of the embedded TCP/IP protocol stack, described the concrete realization in μC/OS-II system of the three most important protocols ARP and IP and TCP.%在嵌入式实时操作系统中引入TCP/IP协议栈,以支持嵌入式设备接入网络,成为嵌入式领域重要的研究方向.介绍了开源的μC/OS-Ⅱ实时操作系统结构和在STM32上的移植方法,研究了嵌入式TCP/IP协议栈结构及工作流程,并详细描述协议栈中ARP、IP和TCP这3种最重要协议在μC/OS-Ⅱ系统上的具体实现.

  20. Stacked Polymer nanofiber array for high-performance supercapacitors (United States)

    Wang, Shiren; Qiu, Jenny


    The vertically aligned polyaniline (PANI) nanowires arrays and monolayer graphene sheets were layer-by-layered deposited to specific substrate for tailored structures. Driven by external voltage, aniline molecules and graphene oxide were alternatively assembled for hierarchical porous three-dimensional nanostructures while graphene oxide was in-situ reduced to graphene during the assembly process. As-produced stacked arrays were used as the electrodes of an ultra-capacitor, and an unusual electrochemical behavior was discovered. The capacitance increases as the stack of nanowire arrays increases, resulting in high energy density and high power density at same time. Further analysis found that the distinctive electrochemical behavior originates from the electrode/electrolyte interactions and the dependence on the diffusion and charge transferring process. The specific energy density was as high as 137 Wh/Kg while power density is in excess of 2000 W/Kg. This work pointed a simple pathway to tailor polymer structure and electrochemistry for robust design of high-performance ultra-capacitor at a limited lateral size. National Science Foundation.