WorldWideScience

Sample records for base pairing motif

  1. Design and development of three-dimensional DNA crystals utilizing CGAA parallel base paired motifs

    Science.gov (United States)

    Muser, Stephanie Elizabeth

    Three-dimensional (3D) DNA crystals hold great potential for various applications such as the development of molecular scaffolds for use in protein structure determination by x-ray crystallography. The programmability and predictability of DNA make it a powerful tool for self-assembly but it is hindered by the linearity of the duplex structure. Predictable noncanonical base pairs and motifs have the potential to connect linear double-helical DNA segments into complex 3D structures. The sequence d(GCGAAAGCT) has been observed to form 3D crystals containing both noncanonical parallel pairs and canonical Watson-Crick pairs. This provided a template structure that we used in expanding the design and development of 3D DNA crystals along with exploring the use of predictable noncanonical motifs. The structures we determined contained all but one or two of the designed secondary structure interactions, depending on pH.

  2. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs

    DEFF Research Database (Denmark)

    van Beest, M; Dooijes, D; van De Wetering, M;

    2000-01-01

    of promoter elements controlled by the yeast genes ste11 and Rox1 has indicated strict conservation of a larger DNA motif. By site selection, we identify a highly specific 12-base pair motif for Ste11, AGAACAAAGAAA. Similarly, we show that Tcf1, MatMc, and Sox4 bind unique, highly specific DNA motifs of 12......, 12, and 10 base pairs, respectively. Footprinting with a deletion mutant of Ste11 reveals a novel interaction between the 3' base pairs of the extended DNA motif and amino acids C-terminal to the HMG domain. The sequence-specific interaction of Ste11 with these 3' base pairs contributes significantly......Sequence-specific high mobility group (HMG) box factors bind and bend DNA via interactions in the minor groove. Three-dimensional NMR analyses have provided the structural basis for this interaction. The cognate HMG domain DNA motif is generally believed to span 6-8 bases. However, alignment...

  3. Non-Watson Crick base pairs might stabilize RNA structural motifs in ribozymes – A comparative study of group-I intron structures

    Indian Academy of Sciences (India)

    K Chandrasekhar; R Malathi

    2003-09-01

    In recent decades studies on RNA structure and function have gained significance due to discoveries on diversified functions of RNA. A common element for RNA secondary structure formed by series of non-Watson/Watson Crick base pairs, internal loops and pseudoknots have been the highlighting feature of recent structural determination of RNAs. The recent crystal structure of group-I introns has demonstrated that these might constitute RNA structural motifs in ribozymes, playing a crucial role in their enzymatic activity. To understand the functional significance of these non-canonical base pairs in catalytic RNA, we analysed the sequences of group-I introns from nuclear genes. The results suggest that they might form the building blocks of folded RNA motifs which are crucial to the catalytic activity of the ribozyme. The conservation of these, as observed from divergent organisms, argues for the presence of non-canonical base pairs as an important requisite for the structure and enzymatic property of ribozymes by enabling them to carry out functions such as replication, polymerase activity etc. in primordial conditions in the absence of proteins.

  4. In-Phase Assembly of Slim DNA Lattices with Small Circular DNA Motifs via Short Connections of 11 and 16 Base Pairs.

    Science.gov (United States)

    Wang, Meng; Guo, Xin; Jiang, Chuan; Wang, Xuemei; Xiao, Shou-Jun

    2016-06-16

    Two kinds of stable motif were constructed: SAE (semi-crossover, antiparallel, even half-turns) tile from one small circular DNA molecule (42 or 64 nt) and two linear oligonucleotides; and DAE (double-crossover, antiparallel, even half-turns) tile from one small circular DNA molecule (42 or 64 nt) and four linear oligonucleotides. With the SAE tiles, in-phase assembly of SAE-E (SAE tiles with even half-turns as connections (-E)) with the shortest -E of 11 base pairs (bp) generated homogeneous nanotubes with an average length of over 14 μm and a diameter of 16-20 nm; with the DAE tiles, in-phase assembly of DAE-O (DAE tiles with odd half-turns as connections (-O)) with the shortest -O of 16 bp produced slim monolayer nanoyarns (25-30 nm wide), nanoscarfs (100-300 nm wide), and nanoribbons (∼100 nm wide). Interestingly, a phenomenon we term "knitting nanoyarns" into nanoscarfs was observed. Finally a curvature mechanism according to the ring rotation directions is suggested to explain the formation of nanotubes, wavy nanoyarns, nanoscarfs, and nanoribbons.

  5. Mining minimal motif pair sets maximally covering interactions in a protein-protein interaction network

    NARCIS (Netherlands)

    Boyen, P.; Neven, F.; Valentim, F.L.; Dijk, van A.D.J.

    2013-01-01

    Correlated motif covering (CMC) is the problem of finding a set of motif pairs, i.e., pairs of patterns, in the sequences of proteins from a protein-protein interaction network (PPI-network) that describe the interactions in the network as concisely as possible. In other words, a perfect solution fo

  6. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells

    KAUST Repository

    Wong, Ka-Chun

    2015-09-27

    Motivation: The protein-DNA interactions between transcription factors (TFs) and transcription factor binding sites (TFBSs, also known as DNA motifs) are critical activities in gene transcription. The identification of the DNA motifs is a vital task for downstream analysis. Unfortunately, the long-range coupling information between different DNA motifs is still lacking. To fill the void, as the first-of-its-kind study, we have identified the coupling DNA motif pairs on long-range chromatin interactions in human. Results: The coupling DNA motif pairs exhibit substantially higher DNase accessibility than the background sequences. Half of the DNA motifs involved are matched to the existing motif databases, although nearly all of them are enriched with at least one gene ontology term. Their motif instances are also found statistically enriched on the promoter and enhancer regions. Especially, we introduce a novel measurement called motif pairing multiplicity which is defined as the number of motifs that are paired with a given motif on chromatin interactions. Interestingly, we observe that motif pairing multiplicity is linked to several characteristics such as regulatory region type, motif sequence degeneracy, DNase accessibility and pairing genomic distance. Taken into account together, we believe the coupling DNA motif pairs identified in this study can shed lights on the gene transcription mechanism under long-range chromatin interactions. © The Author 2015. Published by Oxford University Press.

  7. Social Network Analysis Based on Network Motifs

    OpenAIRE

    2014-01-01

    Based on the community structure characteristics, theory, and methods of frequent subgraph mining, network motifs findings are firstly introduced into social network analysis; the tendentiousness evaluation function and the importance evaluation function are proposed for effectiveness assessment. Compared with the traditional way based on nodes centrality degree, the new approach can be used to analyze the properties of social network more fully and judge the roles of the nodes effectively. I...

  8. Motifs in triadic random graphs based on Steiner triple systems

    Science.gov (United States)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  9. RNA structural motif recognition based on least-squares distance.

    Science.gov (United States)

    Shen, Ying; Wong, Hau-San; Zhang, Shaohong; Zhang, Lin

    2013-09-01

    RNA structural motifs are recurrent structural elements occurring in RNA molecules. RNA structural motif recognition aims to find RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In view of this, we propose a new method known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.

  10. Bases of motifs for generating repeated patterns with wild cards.

    Science.gov (United States)

    Pisanti, Nadia; Crochemore, Maxime; Grossi, Roberto; Sagot, Marie-France

    2005-01-01

    Motif inference represents one of the most important areas of research in computational biology, and one of its oldest ones. Despite this, the problem remains very much open in the sense that no existing definition is fully satisfying, either in formal terms, or in relation to the biological questions that involve finding such motifs. Two main types of motifs have been considered in the literature: matrices (of letter frequency per position in the motif) and patterns. There is no conclusive evidence in favor of either, and recent work has attempted to integrate the two types into a single model. In this paper, we address the formal issue in relation to motifs as patterns. This is essential to get at a better understanding of motifs in general. In particular, we consider a promising idea that was recently proposed, which attempted to avoid the combinatorial explosion in the number of motifs by means of a generator set for the motifs. Instead of exhibiting a complete list of motifs satisfying some input constraints, what is produced is a basis of such motifs from which all the other ones can be generated. We study the computational cost of determining such a basis of repeated motifs with wild cards in a sequence. We give new upper and lower bounds on such a cost, introducing a notion of basis that is provably contained in (and, thus, smaller) than previously defined ones. Our basis can be computed in less time and space, and is still able to generate the same set of motifs. We also prove that the number of motifs in all bases defined so far grows exponentially with the quorum, that is, with the minimal number of times a motif must appear in a sequence, something unnoticed in previous work. We show that there is no hope to efficiently compute such bases unless the quorum is fixed.

  11. DNA nanotechnology based on i-motif structures.

    Science.gov (United States)

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this

  12. Identification of protein superfamily from structure- based sequence motif

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure-based sequence motif of the distant proteins in evolution, protein tyrosine phosphatases (PTP) Ⅰ and Ⅱ superfamilies, as an example, has been defined by the structural comparison, structure-based sequence alignment and analyses on substitution patterns of residues in common sequence conserved regions. And the phosphatases Ⅰ and Ⅱ can be correctly identified together by the structure-based PTP sequence motif from SWISS-PROT and TrEBML databases. The results show that the correct rates of identification are over 98%. This is the first time to identify PTP Ⅰ and Ⅱ together by this motif.

  13. An algorithm for motif-based network design

    CERN Document Server

    Mäki-Marttunen, Tuomo

    2016-01-01

    A determinant property of the structure of a biological network is the distribution of local connectivity patterns, i.e., network motifs. In this work, a method for creating directed, unweighted networks while promoting a certain combination of motifs is presented. This motif-based network algorithm starts with an empty graph and randomly connects the nodes by advancing or discouraging the formation of chosen motifs. The in- or out-degree distribution of the generated networks can be explicitly chosen. The algorithm is shown to perform well in producing networks with high occurrences of the targeted motifs, both ones consisting of 3 nodes as well as ones consisting of 4 nodes. Moreover, the algorithm can also be tuned to bring about global network characteristics found in many natural networks, such as small-worldness and modularity.

  14. Structure of 2,4-Diaminopyrimidine - Theobromine Alternate Base Pairs

    Science.gov (United States)

    Gengeliczki, Zsolt; Callahan, Michael P.; Kabelac, Martin; Rijs, Anouk M.; deVries, Mattanjah S.

    2011-01-01

    We report the structure of clusters of 2,4-diaminopyrimidine with 3,7-dimethylxanthine (theobromine) in the gas phase determined by IR-UV double resonance spectroscopy in both the near-IR and mid-IR regions in combination with ab initio computations. These clusters represent potential alternate nucleobase pairs, geometrically equivalent to guanine-cytosine. We have found the four lowest energy structures, which include the Watson-Crick base pairing motif. This Watson-Crick structure has not been observed by resonant two-photon ionization (R2PI) in the gas phase for the canonical DNA base pairs.

  15. Motifs in Triadic Random Graphs based on Steiner Triple Systems

    CERN Document Server

    Winkler, Marco

    2013-01-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade the overabundance of certain sub-network patterns, so called motifs, has attracted high attention. It has been hypothesized, these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graphs (ERGMs) to define novel models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obst...

  16. Process-based network decomposition reveals backbone motif structure.

    Science.gov (United States)

    Wang, Guanyu; Du, Chenghang; Chen, Hao; Simha, Rahul; Rong, Yongwu; Xiao, Yi; Zeng, Chen

    2010-06-08

    A central challenge in systems biology today is to understand the network of interactions among biomolecules and, especially, the organizing principles underlying such networks. Recent analysis of known networks has identified small motifs that occur ubiquitously, suggesting that larger networks might be constructed in the manner of electronic circuits by assembling groups of these smaller modules. Using a unique process-based approach to analyzing such networks, we show for two cell-cycle networks that each of these networks contains a giant backbone motif spanning all the network nodes that provides the main functional response. The backbone is in fact the smallest network capable of providing the desired functionality. Furthermore, the remaining edges in the network form smaller motifs whose role is to confer stability properties rather than provide function. The process-based approach used in the above analysis has additional benefits: It is scalable, analytic (resulting in a single analyzable expression that describes the behavior), and computationally efficient (all possible minimal networks for a biological process can be identified and enumerated).

  17. Report on Pairing-based Cryptography.

    Science.gov (United States)

    Moody, Dustin; Peralta, Rene; Perlner, Ray; Regenscheid, Andrew; Roginsky, Allen; Chen, Lily

    2015-01-01

    This report summarizes study results on pairing-based cryptography. The main purpose of the study is to form NIST's position on standardizing and recommending pairing-based cryptography schemes currently published in research literature and standardized in other standard bodies. The report reviews the mathematical background of pairings. This includes topics such as pairing-friendly elliptic curves and how to compute various pairings. It includes a brief introduction to existing identity-based encryption (IBE) schemes and other cryptographic schemes using pairing technology. The report provides a complete study of the current status of standard activities on pairing-based cryptographic schemes. It explores different application scenarios for pairing-based cryptography schemes. As an important aspect of adopting pairing-based schemes, the report also considers the challenges inherent in validation testing of cryptographic algorithms and modules. Based on the study, the report suggests an approach for including pairing-based cryptography schemes in the NIST cryptographic toolkit. The report also outlines several questions that will require further study if this approach is followed.

  18. Bases of motifs for generating repeated patterns with wild cards

    OpenAIRE

    Pisanti, Nadia; Crochemore, Maxime; Grossi, Roberto; Sagot, Marie-France

    2005-01-01

    Motif inference represents one of the most important areas of research in computational biology, and one of its oldest ones. Despite this, the problem remains very much open in the sense that no existing definition is fully satisfying, either in formal terms, or in relation to the biological questions that involve finding such motifs. Two main types of motifs have been considered in the literature: matrices (of letter frequency per position in the motif) and patterns. There is no conclusive e...

  19. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L;

    1998-01-01

    amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  20. Sequence-based classification using discriminatory motif feature selection.

    Directory of Open Access Journals (Sweden)

    Hao Xiong

    Full Text Available Most existing methods for sequence-based classification use exhaustive feature generation, employing, for example, all k-mer patterns. The motivation behind such (enumerative approaches is to minimize the potential for overlooking important features. However, there are shortcomings to this strategy. First, practical constraints limit the scope of exhaustive feature generation to patterns of length ≤ k, such that potentially important, longer (> k predictors are not considered. Second, features so generated exhibit strong dependencies, which can complicate understanding of derived classification rules. Third, and most importantly, numerous irrelevant features are created. These concerns can compromise prediction and interpretation. While remedies have been proposed, they tend to be problem-specific and not broadly applicable. Here, we develop a generally applicable methodology, and an attendant software pipeline, that is predicated on discriminatory motif finding. In addition to the traditional training and validation partitions, our framework entails a third level of data partitioning, a discovery partition. A discriminatory motif finder is used on sequences and associated class labels in the discovery partition to yield a (small set of features. These features are then used as inputs to a classifier in the training partition. Finally, performance assessment occurs on the validation partition. Important attributes of our approach are its modularity (any discriminatory motif finder and any classifier can be deployed and its universality (all data, including sequences that are unaligned and/or of unequal length, can be accommodated. We illustrate our approach on two nucleosome occupancy datasets and a protein solubility dataset, previously analyzed using enumerative feature generation. Our method achieves excellent performance results, with and without optimization of classifier tuning parameters. A Python pipeline implementing the approach is

  1. An Affinity Propagation-Based DNA Motif Discovery Algorithm

    Directory of Open Access Journals (Sweden)

    Chunxiao Sun

    2015-01-01

    Full Text Available The planted (l,d motif search (PMS is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  2. An Affinity Propagation-Based DNA Motif Discovery Algorithm.

    Science.gov (United States)

    Sun, Chunxiao; Huo, Hongwei; Yu, Qiang; Guo, Haitao; Sun, Zhigang

    2015-01-01

    The planted (l, d) motif search (PMS) is one of the fundamental problems in bioinformatics, which plays an important role in locating transcription factor binding sites (TFBSs) in DNA sequences. Nowadays, identifying weak motifs and reducing the effect of local optimum are still important but challenging tasks for motif discovery. To solve the tasks, we propose a new algorithm, APMotif, which first applies the Affinity Propagation (AP) clustering in DNA sequences to produce informative and good candidate motifs and then employs Expectation Maximization (EM) refinement to obtain the optimal motifs from the candidate motifs. Experimental results both on simulated data sets and real biological data sets show that APMotif usually outperforms four other widely used algorithms in terms of high prediction accuracy.

  3. Predicting tissue specific cis-regulatory modules in the human genome using pairs of co-occurring motifs

    Directory of Open Access Journals (Sweden)

    Girgis Hani Z

    2012-02-01

    Full Text Available Abstract Background Researchers seeking to unlock the genetic basis of human physiology and diseases have been studying gene transcription regulation. The temporal and spatial patterns of gene expression are controlled by mainly non-coding elements known as cis-regulatory modules (CRMs and epigenetic factors. CRMs modulating related genes share the regulatory signature which consists of transcription factor (TF binding sites (TFBSs. Identifying such CRMs is a challenging problem due to the prohibitive number of sequence sets that need to be analyzed. Results We formulated the challenge as a supervised classification problem even though experimentally validated CRMs were not required. Our efforts resulted in a software system named CrmMiner. The system mines for CRMs in the vicinity of related genes. CrmMiner requires two sets of sequences: a mixed set and a control set. Sequences in the vicinity of the related genes comprise the mixed set, whereas the control set includes random genomic sequences. CrmMiner assumes that a large percentage of the mixed set is made of background sequences that do not include CRMs. The system identifies pairs of closely located motifs representing vertebrate TFBSs that are enriched in the training mixed set consisting of 50% of the gene loci. In addition, CrmMiner selects a group of the enriched pairs to represent the tissue-specific regulatory signature. The mixed and the control sets are searched for candidate sequences that include any of the selected pairs. Next, an optimal Bayesian classifier is used to distinguish candidates found in the mixed set from their control counterparts. Our study proposes 62 tissue-specific regulatory signatures and putative CRMs for different human tissues and cell types. These signatures consist of assortments of ubiquitously expressed TFs and tissue-specific TFs. Under controlled settings, CrmMiner identified known CRMs in noisy sets up to 1:25 signal-to-noise ratio. CrmMiner was

  4. Alternative DNA base pairing through metal coordination.

    Science.gov (United States)

    Clever, Guido H; Shionoya, Mitsuhiko

    2012-01-01

    Base-pairing in the naturally occurring DNA and RNA oligonucleotide duplexes is based on π-stacking, hydrogen bonding, and shape complementarity between the nucleobases adenine, thymine, guanine, and cytosine as well as on the hydrophobic-hydrophilic balance in aqueous media. This complex system of multiple supramolecular interactions is the product of a long-term evolutionary process and thus highly optimized to serve its biological functions such as information storage and processing. After the successful implementation of automated DNA synthesis, chemists have begun to introduce artificial modifications inside the core of the DNA double helix in order to study various aspects of base pairing, generate new base pairs orthogonal to the natural ones, and equip the biopolymer with entirely new functions. The idea to replace the hydrogen bonding interactions with metal coordination between ligand-like nucleosides and suitable transition metal ions culminated in the development of a plethora of artificial base-pairing systems termed "metal base-pairs" which were shown to strongly enhance the DNA duplex stability. Furthermore, they show great potential for the use of DNA as a molecular wire in nanoscale electronic architectures. Although single electrons have proven to be transmitted by natural DNA over a distance of several base pairs, the high ohmic resistance of unmodified oligonucleotides was identified as a serious obstacle. By exchanging some or all of the Watson-Crick base pairs in DNA with metal complexes, this problem may be solved. In the future, these research efforts are supposed to lead to DNA-like materials with superior conductivity for nano-electronic applications. Other fields of potential application such as DNA-based supramolecular architecture and catalysis may be strongly influenced by these developments as well. This text is meant to illustrate the basic concepts of metal-base pairing and give an outline over recent developments in this field.

  5. Implementation of Cryptosystems Based on Tate Pairing

    Institute of Scientific and Technical Information of China (English)

    Lei Hu; Jun-Wu Dong; Ding-Yi Pei

    2005-01-01

    Tate pairings over elliptic curves are important in cryptography since they can be used to construct efficient identity-based cryptosystems, and their implementation dominantly determines the efficiencies of the cryptosystems. In this paper, the implementation of a cryptosystem is provided based on the Tate pairing over a supersingular elliptic curve of MOV degree 3. The implementation is primarily designed to re-use low-level codes developed in implementation of usual elliptic curve cryptosystems. The paper studies how to construct the underlying ground field and its extension to accelerate the finite field arithmetic, and presents a technique to speedup the time-consuming powering in the Tate pairing algorithm.

  6. A grammar based methodology for structural motif finding in ncRNA database search.

    Science.gov (United States)

    Quest, Daniel; Tapprich, William; Ali, Hesham

    2007-01-01

    In recent years, sequence database searching has been conducted through local alignment heuristics, pattern-matching, and comparison of short statistically significant patterns. While these approaches have unlocked many clues as to sequence relationships, they are limited in that they do not provide context-sensitive searching capabilities (e.g. considering pseudoknots, protein binding positions, and complementary base pairs). Stochastic grammars (hidden Markov models HMMs and stochastic context-free grammars SCFG) do allow for flexibility in terms of local context, but the context comes at the cost of increased computational complexity. In this paper we introduce a new grammar based method for searching for RNA motifs that exist within a conserved RNA structure. Our method constrains computational complexity by using a chain of topology elements. Through the use of a case study we present the algorithmic approach and benchmark our approach against traditional methods.

  7. Transcriptional Network Growing Models Using Motif-Based Preferential Attachment.

    Science.gov (United States)

    Abdelzaher, Ahmed F; Al-Musawi, Ahmad F; Ghosh, Preetam; Mayo, Michael L; Perkins, Edward J

    2015-01-01

    Understanding relationships between architectural properties of gene-regulatory networks (GRNs) has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs - i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent "building blocks" of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here, we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops), its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  8. Transcriptional Network growing Models using Motif-based Preferential Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Farouk Abdelzaher

    2015-10-01

    Full Text Available Understanding relationships between architectural properties of gene-regulatory networks (GRNs has been one of the major goals in systems biology and bioinformatics, as it can provide insights into, e.g., disease dynamics and drug development. Such GRNs are characterized by their scale-free degree distributions and existence of network motifs--i.e., small-node subgraphs that occur more abundantly in GRNs than expected from chance alone. Because these transcriptional modules represent ``building blocks'' of complex networks and exhibit a wide range of functional and dynamical properties, they may contribute to the remarkable robustness and dynamical stability associated with the whole of GRNs. Here we developed network-construction models to better understand this relationship, which produce randomized GRNs by using transcriptional motifs as the fundamental growth unit in contrast to other methods that construct similar networks on a node-by-node basis. Because this model produces networks with a prescribed lower bound on the number of choice transcriptional motifs (e.g., downlinks, feed-forward loops, its fidelity to the motif distributions observed in model organisms represents an improvement over existing methods, which we validated by contrasting their resultant motif and degree distributions against existing network-growth models and data from the model organism of the bacterium Escherichia coli. These models may therefore serve as novel testbeds for further elucidating relationships between the topology of transcriptional motifs and network-wide dynamical properties.

  9. URS DataBase: universe of RNA structures and their motifs.

    Science.gov (United States)

    Baulin, Eugene; Yacovlev, Victor; Khachko, Denis; Spirin, Sergei; Roytberg, Mikhail

    2016-01-01

    The Universe of RNA Structures DataBase (URSDB) stores information obtained from all RNA-containing PDB entries (2935 entries in October 2015). The content of the database is updated regularly. The database consists of 51 tables containing indexed data on various elements of the RNA structures. The database provides a web interface allowing user to select a subset of structures with desired features and to obtain various statistical data for a selected subset of structures or for all structures. In particular, one can easily obtain statistics on geometric parameters of base pairs, on structural motifs (stems, loops, etc.) or on different types of pseudoknots. The user can also view and get information on an individual structure or its selected parts, e.g. RNA-protein hydrogen bonds. URSDB employs a new original definition of loops in RNA structures. That definition fits both pseudoknot-free and pseudoknotted secondary structures and coincides with the classical definition in case of pseudoknot-free structures. To our knowledge, URSDB is the first database supporting searches based on topological classification of pseudoknots and on extended loop classification.Database URL: http://server3.lpm.org.ru/urs/.

  10. Computational design of model scaffold for anion recognition based on the 'C(α) NN' motif.

    Science.gov (United States)

    Sheet, Tridip; Ghosh, Suvankar; Pal, Debnath; Banerjee, Raja

    2017-01-01

    The 'novel phosphate binding 'C(α) NN' motif', consisting of three consecutive amino acid residues, usually occurs in the protein loop regions preceding a helix. Recent computational and complementary biophysical experiments on a series of chimeric peptides containing the naturally occurring 'C(α) NN' motif at the N-terminus of a designed helix establishes that the motif segment recognizes the anion (sulfate and phosphate ions) through local interaction along with extension of the helical conformation which is thermodynamically favored even in a context-free, nonproteinaceous isolated system. However, the strength of the interaction depends on the amino acid sequence/conformation of the motif. Such a locally-mediated recognition of anions validates its intrinsic affinity towards anions and confirms that the affinity for recognition of anions is embedded within the 'local sequence' of the motif. Based on the knowledge gathered on the sequence/structural aspects of the naturally occurring 'C(α) NN' segment, which provides the guideline for rationally engineering model scaffolds, we have modeled a series of templates and investigated their interactions with anions using computational approach. Two of these designed scaffolds show more efficient anion recognition than those of the naturally occurring 'C(α) NN' motif which have been studied. This may provide an avenue in designing better anion receptors suitable for various biochemical applications.

  11. NMR analysis of base-pair opening kinetics in DNA

    Science.gov (United States)

    Szulik, Marta W.; Voehler, Markus; Stone, Michael P.

    2014-01-01

    Base pairing in nucleic acids plays a crucial role in their structure and function. Differences in the base pair opening and closing kinetics of individual double stranded DNA sequences or between chemically modified base pairs provide insight into the recognition of these base pairs by DNA processing enzymes. This unit describes how to quantify the kinetics for localized base pairs by observing changes in the imino proton signals by nuclear magnetic resonance spectroscopy. The determination of all relevant parameters using state of the art techniques and NMR instrumentation, including cryoprobes, is discussed. PMID:25501592

  12. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    Science.gov (United States)

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2016-11-28

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes.

  13. Structural basis for the binding of tryptophan-based motifs by δ-COP.

    Science.gov (United States)

    Suckling, Richard J; Poon, Pak Phi; Travis, Sophie M; Majoul, Irina V; Hughson, Frederick M; Evans, Philip R; Duden, Rainer; Owen, David J

    2015-11-17

    Coatomer consists of two subcomplexes: the membrane-targeting, ADP ribosylation factor 1 (Arf1):GTP-binding βγδζ-COP F-subcomplex, which is related to the adaptor protein (AP) clathrin adaptors, and the cargo-binding αβ'ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the endoplasmic reticulum-localized Dsl1 tether. The motif binds at a site distinct from that used by the homologous AP μ subunits to bind YxxΦ cargo motifs with its two tryptophan residues sitting in compatible pockets. We also show that the Saccharomyces cerevisiae Arf GTPase-activating protein (GAP) homolog Gcs1p uses a related WxxF motif at its extreme C terminus to bind to δ-COP at the same site in the same way. Mutations designed on the basis of the structure in conjunction with isothermal titration calorimetry confirm the mode of binding and show that mammalian δ-COP binds related tryptophan-based motifs such as that from ArfGAP1 in a similar manner. We conclude that δ-COP subunits bind Wxn(1-6)[WF] motifs within unstructured regions of proteins that influence the lifecycle of COPI-coated vesicles; this conclusion is supported by the observation that, in the context of a sensitizing domain deletion in Dsl1p, mutating the tryptophan-based motif-binding site in yeast causes defects in both growth and carboxypeptidase Y trafficking/processing.

  14. Identification of Biomarker and Co-Regulatory Motifs in Lung Adenocarcinoma Based on Differential Interactions.

    Directory of Open Access Journals (Sweden)

    Ning Zhao

    Full Text Available Changes in intermolecular interactions (differential interactions may influence the progression of cancer. Specific genes and their regulatory networks may be more closely associated with cancer when taking their transcriptional and post-transcriptional levels and dynamic and static interactions into account simultaneously. In this paper, a differential interaction analysis was performed to detect lung adenocarcinoma-related genes. Furthermore, a miRNA-TF (transcription factor synergistic regulation network was constructed to identify three kinds of co-regulated motifs, namely, triplet, crosstalk and joint. Not only were the known cancer-related miRNAs and TFs (let-7, miR-15a, miR-17, TP53, ETS1, and so on were detected in the motifs, but also the miR-15, let-7 and miR-17 families showed a tendency to regulate the triplet, crosstalk and joint motifs, respectively. Moreover, several biological functions (i.e., cell cycle, signaling pathways and hemopoiesis associated with the three motifs were found to be frequently targeted by the drugs for lung adenocarcinoma. Specifically, the two 4-node motifs (crosstalk and joint based on co-expression and interaction had a closer relationship to lung adenocarcinoma, and so further research was performed on them. A 10-gene biomarker (UBC, SRC, SP1, MYC, STAT3, JUN, NR3C1, RB1, GRB2 and MAPK1 was selected from the joint motif, and a survival analysis indicated its significant association with survival. Among the ten genes, JUN, NR3C1 and GRB2 are our newly detected candidate lung adenocarcinoma-related genes. The genes, regulators and regulatory motifs detected in this work will provide potential drug targets and new strategies for individual therapy.

  15. An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies

    KAUST Repository

    Chawla, Mohit

    2015-06-27

    Posttranscriptional modifications greatly enhance the chemical information of RNA molecules, contributing to explain the diversity of their structures and functions. A significant fraction of RNA experimental structures available to date present modified nucleobases, with half of them being involved in H-bonding interactions with other bases, i.e. ‘modified base pairs’. Herein we present a systematic investigation of modified base pairs, in the context of experimental RNA structures. To this end, we first compiled an atlas of experimentally observed modified base pairs, for which we recorded occurrences and structural context. Then, for each base pair, we selected a representative for subsequent quantum mechanics calculations, to find out its optimal geometry and interaction energy. Our structural analyses show that most of the modified base pairs are non Watson–Crick like and are involved in RNA tertiary structure motifs. In addition, quantum mechanics calculations quantify and provide a rationale for the impact of the different modifications on the geometry and stability of the base pairs they participate in.

  16. Fast revelation of the motif mode for a yeast protein interaction network through intelligent agent-based distributed computing.

    Science.gov (United States)

    Lee, Wei-Po; Tzou, Wen-Shyong

    2010-09-01

    In the yeast protein-protein interaction network, motif mode, a collection of motifs of special combinations of protein nodes annotated by the molecular function terms of the Gene Ontology, has revealed differences in the conservation constraints within the same topology. In this study, by employing an intelligent agent-based distributed computing method, we are able to discover motif modes in a fast and adaptive manner. Moreover, by focusing on the highly evolutionarily conserved motif modes belonging to the same biological function, we find a large downshift in the distance between nodes belonging to the same motif mode compared with the whole, suggesting that nodes with the same motif mode tend to congregate in a network. Several motif modes with a high conservation of the motif constituents were revealed, but from a new perspective, including that with a three-node motif mode engaged in the protein fate and that with three four-node motif modes involved in the genome maintenance, cellular organization, and transcription. The network motif modes discovered from this method can be linked to the wealth of biological data which require further elucidation with regard to biological functions.

  17. An Identity Based Aggregate Signature from Pairings

    Directory of Open Access Journals (Sweden)

    Yike Yu

    2011-04-01

    Full Text Available An aggregate signature is a useful digital signature that supports aggregation: Given n signatures on n distinct messages from n distinct users, aggregate signature scheme is possible to aggregate all these signature into a single short signature. This single signature, along with the n original messages will convince any verifier that the n users did indeed sign the n original messages respectively (i.e., for i=1,...,n user i signed message  mi. In this paper, we propose an identity based aggregate signature scheme which requires constant pairing operations in the verification and the size of aggregate signature is independent of the number of signers. We prove that the proposed signature scheme is secure against existential forgery under adaptively chosen message and identity attack in the random oracle model assuming the intractability of the computational Diffie-Hellman problem.

  18. Natural versus artificial creation of base pairs in DNA: origin of nucleobases from the perspectives of unnatural base pair studies.

    Science.gov (United States)

    Hirao, Ichiro; Kimoto, Michiko; Yamashige, Rie

    2012-12-18

    Since life began on Earth, the four types of bases (A, G, C, and T(U)) that form two sets of base pairs have remained unchanged as the components of nucleic acids that replicate and transfer genetic information. Throughout evolution, except for the U to T modification, the four base structures have not changed. This constancy within the genetic code raises the question of how these complicated nucleotides were generated from the molecules in a primordial soup on the early Earth. At some prebiotic stage, the complementarity of base pairs might have accelerated the generation and accumulation of nucleotides or oligonucleotides. We have no clues whether one pair of nucleobases initially appeared on the early Earth during this process or a set of two base pairs appeared simultaneously. Recently, researchers have developed new artificial pairs of nucleobases (unnatural base pairs) that function alongside the natural base pairs. Some unnatural base pairs in duplex DNA can be efficiently and faithfully amplified in a polymerase chain reaction (PCR) using thermostable DNA polymerases. The addition of unnatural base pair systems could expand the genetic alphabet of DNA, thus providing a new mechanism for the generation novel biopolymers by the site-specific incorporation of functional components into nucleic acids and proteins. Furthermore, the process of unnatural base pair development might provide clues to the origin of the natural base pairs in a primordial soup on the early Earth. In this Account, we describe the development of three representative types of unnatural base pairs that function as a third pair of nucleobases in PCR and reconsider the origin of the natural nucleic acids. As researchers developing unnatural base pairs, they use repeated "proof of concept" experiments. As researchers design new base pairs, they improve the structures that function in PCR and eliminate those that do not. We expect that this process is similar to the one functioning in the

  19. iTriplet, a rule-based nucleic acid sequence motif finder

    Directory of Open Access Journals (Sweden)

    Gunderson Samuel I

    2009-10-01

    Full Text Available Abstract Background With the advent of high throughput sequencing techniques, large amounts of sequencing data are readily available for analysis. Natural biological signals are intrinsically highly variable making their complete identification a computationally challenging problem. Many attempts in using statistical or combinatorial approaches have been made with great success in the past. However, identifying highly degenerate and long (>20 nucleotides motifs still remains an unmet challenge as high degeneracy will diminish statistical significance of biological signals and increasing motif size will cause combinatorial explosion. In this report, we present a novel rule-based method that is focused on finding degenerate and long motifs. Our proposed method, named iTriplet, avoids costly enumeration present in existing combinatorial methods and is amenable to parallel processing. Results We have conducted a comprehensive assessment on the performance and sensitivity-specificity of iTriplet in analyzing artificial and real biological sequences in various genomic regions. The results show that iTriplet is able to solve challenging cases. Furthermore we have confirmed the utility of iTriplet by showing it accurately predicts polyA-site-related motifs using a dual Luciferase reporter assay. Conclusion iTriplet is a novel rule-based combinatorial or enumerative motif finding method that is able to process highly degenerate and long motifs that have resisted analysis by other methods. In addition, iTriplet is distinguished from other methods of the same family by its parallelizability, which allows it to leverage the power of today's readily available high-performance computing systems.

  20. Efficient Tate pairing computation using double-base chains

    Institute of Scientific and Technical Information of China (English)

    ZHAO ChangAn; ZHANG FangGuo; HUANG JiWu

    2008-01-01

    Pairing-based cryptosystems have developed very fast in the last few years. The effi-ciencies of these cryptosystems depend on the computation of the bilinear pairings. In this paper, a new efficient algorithm based on double-base chains for computing the Tate pairing is proposed for odd characteristic p > 3. The inherent sparseness of double-base number system reduces the computational cost for computing the Tate pairing evidently. The new algorithm is 9% faster than the previous fastest method for the embedding degree k = 6.

  1. Application of motif-based tools on evolutionary analysis of multipartite single-stranded DNA viruses.

    Directory of Open Access Journals (Sweden)

    Hsiang-Iu Wang

    Full Text Available Multipartite viruses contain more than one distinctive genome component, and the origin of multipartite viruses has been suggested to evolve from a non-segmented wild-type virus. To explore whether recombination also plays a role in the evolution of the genomes of multipartite viruses, we developed a systematic approach that employs motif-finding tools to detect conserved motifs from divergent genomic regions and applies statistical approaches to select high-confidence motifs. The information that this approach provides helps us understand the evolution of viruses. In this study, we compared our motif-based strategy with current alignment-based recombination-detecting methods and applied our methods to the analysis of multipartite single-stranded plant DNA viruses, including bipartite begomoviruses, Banana bunchy top virus (BBTV (consisting of 6 genome components and Faba bean necrotic yellows virus (FBNYV (consisting of 8 genome components. Our analysis revealed that recombination occurred between genome components in some begomoviruses, BBTV and FBNYV. Our data also show that several unusual recombination events have contributed to the evolution of BBTV genome components. We believe that similar approaches can be applied to resolve the evolutionary history of other viruses.

  2. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    Science.gov (United States)

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  3. Higher order structural effects stabilizing the reverse watson-crick guanine-cytosine base pair in functional RNAs

    KAUST Repository

    Chawla, Mohit

    2013-10-10

    The G:C reverse Watson-Crick (W:W trans) base pair, also known as Levitt base pair in the context of tRNAs, is a structurally and functionally important base pair that contributes to tertiary interactions joining distant domains in functional RNA molecules and also participates in metabolite binding in riboswitches. We previously indicated that the isolated G:C W:W trans base pair is a rather unstable geometry, and that dicationic metal binding to the Guanine base or posttranscriptional modification of the Guanine can increase its stability. Herein, we extend our survey and report on other H-bonding interactions that can increase the stability of this base pair. To this aim, we performed a bioinformatics search of the PDB to locate all the occurencies of G:C trans base pairs. Interestingly, 66% of the G:C trans base pairs in the PDB are engaged in additional H-bonding interactions with other bases, the RNA backbone or structured water molecules. High level quantum mechanical calculations on a data set of representative crystal structures were performed to shed light on the structural stability and energetics of the various crystallographic motifs. This analysis was extended to the binding of the preQ1 metabolite to a preQ1-II riboswitch. 2013 The Author(s).

  4. Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

    OpenAIRE

    Bettina Linnartz; Yiner Wang; Harald Neumann

    2010-01-01

    Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM-) Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2), signal regulatory protein- 1, and complement re...

  5. Reusable amine-based structural motifs for green house gas (CO2) fixation.

    Science.gov (United States)

    Dalapati, Sasanka; Jana, Sankar; Saha, Rajat; Alam, Md Akhtarul; Guchhait, Nikhil

    2012-07-01

    A series of compounds with an amine based structural motif (ASM) have been synthesized for efficient atmospheric CO(2) fixation. The H-bonded ASM-bicarbonate complexes were formed with an in situ generated HCO(3)(-) ion. The complexes have been characterized by IR, (13)C NMR, and X-ray single-crystal structural analysis. ASM-bicarbonate salts have been converted to pure ASMs in quantitative yield under mild conditions for recycling processes.

  6. Second generation silver(I-mediated imidazole base pairs

    Directory of Open Access Journals (Sweden)

    Susanne Hensel

    2014-09-01

    Full Text Available The imidazole–Ag(I–imidazole base pair is one of the best-investigated artificial metal-mediated base pairs. We show here that its stability can be further improved by formally replacing the imidazole moiety by a 2-methylimidazole or 4-methylimidazole moiety. A comparison of the thermal stability of several double helices shows that the addition of one equivalent of Ag(I leads to a 50% larger increase in the melting temperature when a DNA duplex with methylated imidazole nucleosides is applied. This significant effect can likely be attributed to a better steric shielding of the metal ion within the metal-mediated base pair.

  7. Statistical mechanics of base stacking and pairing in DNA melting

    OpenAIRE

    Ivanov, Vassili; Zeng, Yan; Zocchi, Giovanni

    2004-01-01

    We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at m...

  8. Application of PCR amplicon sequencing using a single primer pair in PCR amplification to assess variations in Helicobacter pylori CagA EPIYA tyrosine phosphorylation motifs

    OpenAIRE

    Karlsson Anneli; Monstein Hans-Jürg; Ryberg Anna; Borch Kurt

    2010-01-01

    Background The presence of various EPIYA tyrosine phosphorylation motifs in the CagA protein of Helicobacter pylori has been suggested to contribute to pathogenesis in adults. In this study, a unique PCR assay and sequencing strategy was developed to establish the number and variation of cagA EPIYA motifs. Findings MDA-DNA derived from gastric biopsy specimens from eleven subjects with gastritis was used with M13- and T7- sequence-tagged primers for amplification of the cagA EPIYA motif regio...

  9. Effect of base pairing on the electrochemical oxidation of guanine.

    Science.gov (United States)

    Costentin, Cyrille; Hajj, Viviane; Robert, Marc; Savéant, Jean-Michel; Tard, Cédric

    2010-07-28

    The effect of base pairing by cytosine on the electrochemical oxidation of guanine is examined by means of cyclic voltammetry on carefully purified reactants in a solvent, CHCl(3), which strongly favors the formation of an H-bonded pair. The thermodynamics and kinetics of the oxidation reaction are not strongly influenced by the formation of the pair. They are actually similar to those of the reaction in which 2,6-lutidine, an encumbered base that cannot form a pair with guanine, replaces cytosine. The reaction does not entail a concerted proton-electron mechanism, as attested by the absence of H/D isotope effect. It rather involves the rate-determining formation of the cation radical, followed by its deprotonation and dimerization of the resulting neutral radical in competition with its further oxidation.

  10. DistAMo: A web-based tool to characterize DNA-motif distribution on bacterial chromosomes

    Directory of Open Access Journals (Sweden)

    Patrick eSobetzko

    2016-03-01

    Full Text Available Short DNA motifs are involved in a multitude of functions such as for example chromosome segregation, DNA replication or mismatch repair. Distribution of such motifs is often not random and the specific chromosomal pattern relates to the respective motif function. Computational approaches which quantitatively assess such chromosomal motif patterns are necessary. Here we present a new computer tool DistAMo (Distribution Analysis of DNA Motifs. The algorithm uses codon redundancy to calculate the relative abundance of short DNA motifs from single genes to entire chromosomes. Comparative genomics analyses of the GATC-motif distribution in γ-proteobacterial genomes using DistAMo revealed that (i genes beside the replication origin are enriched in GATCs, (ii genome-wide GATC distribution follows a distinct pattern and (iii genes involved in DNA replication and repair are enriched in GATCs. These features are specific for bacterial chromosomes encoding a Dam methyltransferase. The new software is available as a stand-alone or as an easy-to-use web-based server version at http://www.computational.bio.uni-giessen.de/distamo.

  11. Predicting gram-positive bacterial protein subcellular localization based on localization motifs.

    Science.gov (United States)

    Hu, Yinxia; Li, Tonghua; Sun, Jiangming; Tang, Shengnan; Xiong, Wenwei; Li, Dapeng; Chen, Guanyan; Cong, Peisheng

    2012-09-07

    The subcellular localization of proteins is closely related to their functions. In this work, we propose a novel approach based on localization motifs to improve the accuracy of predicting subcellular localization of Gram-positive bacterial proteins. Our approach performed well on a five-fold cross validation with an overall success rate of 89.5%. Besides, the overall success rate of an independent testing dataset was 97.7%. Moreover, our approach was tested using a new experimentally-determined set of Gram-positive bacteria proteins and achieved an overall success rate of 96.3%.

  12. Statistical mechanics of base stacking and pairing in DNA melting.

    Science.gov (United States)

    Ivanov, Vassili; Zeng, Yan; Zocchi, Giovanni

    2004-11-01

    We propose a statistical mechanics model for DNA melting in which base stacking and pairing are explicitly introduced as distinct degrees of freedom. Unlike previous approaches, this model describes thermal denaturation of DNA secondary structure in the whole experimentally accessible temperature range. Base pairing is described through a zipper model, base stacking through an Ising model. We present experimental data on the unstacking transition, obtained exploiting the observation that at moderately low pH this transition is moved down to experimentally accessible temperatures. These measurements confirm that the Ising model approach is indeed a good description of base stacking. On the other hand, comparison with the experiments points to the limitations of the simple zipper model description of base pairing.

  13. A Bioinformatics Approach for Detecting Repetitive Nested Motifs using Pattern Matching

    Science.gov (United States)

    Romero, José R.; Carballido, Jessica A.; Garbus, Ingrid; Echenique, Viviana C.; Ponzoni, Ignacio

    2016-01-01

    The identification of nested motifs in genomic sequences is a complex computational problem. The detection of these patterns is important to allow the discovery of transposable element (TE) insertions, incomplete reverse transcripts, deletions, and/or mutations. In this study, a de novo strategy for detecting patterns that represent nested motifs was designed based on exhaustive searches for pairs of motifs and combinatorial pattern analysis. These patterns can be grouped into three categories, motifs within other motifs, motifs flanked by other motifs, and motifs of large size. The methodology used in this study, applied to genomic sequences from the plant species Aegilops tauschii and Oryza sativa, revealed that it is possible to identify putative nested TEs by detecting these three types of patterns. The results were validated through BLAST alignments, which revealed the efficacy and usefulness of the new method, which is called Mamushka. PMID:27812277

  14. Microglial Immunoreceptor Tyrosine-Based Activation and Inhibition Motif Signaling in Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Bettina Linnartz

    2010-01-01

    Full Text Available Elimination of extracellular aggregates and apoptotic neural membranes without inflammation is crucial for brain tissue homeostasis. In the mammalian central nervous system, essential molecules in this process are the Fc receptors and the DAP12-associated receptors which both trigger the microglial immunoreceptor tyrosine-based activation motif- (ITAM- Syk-signaling cascade. Microglial triggering receptor expressed on myeloid cells-2 (TREM2, signal regulatory protein-1, and complement receptor-3 (CD11b/CD18 signal via the adaptor protein DAP12 and activate phagocytic activity of microglia. Microglial ITAM-signaling receptors are counter-regulated by immunoreceptor tyrosine-based inhibition motif- (ITIM- signaling molecules such as sialic acid-binding immunoglobulin superfamily lectins (Siglecs. Siglecs can suppress the proinflammatory and phagocytic activity of microglia via ITIM signaling. Moreover, microglial neurotoxicity is alleviated via interaction of Siglec-11 with sialic acids on the neuronal glycocalyx. Thus, ITAM- and ITIM-signaling receptors modulate microglial phagocytosis and cytokine expression during neuroinflammatory processes. Their dysfunction could lead to impaired phagocytic clearance and neurodegeneration triggered by chronic inflammation.

  15. Model-based Comparative Prediction of Transcription-Factor Binding Motifs in Anabolic Responses in Bone

    Institute of Scientific and Technical Information of China (English)

    Andy; B.; Chen; Kazunori; Hamamura; Guohua; Wang; Weirong; Xing; Subburaman; Mohan; Hiroki; Yokota; Yunlong; Liu

    2007-01-01

    Understanding the regulatory mechanism that controls the alteration of global gene expression patterns continues to be a challenging task in computational biology. We previously developed an ant algorithm, a biologically-inspired computational technique for microarray data, and predicted putative transcription-factor binding motifs (TFBMs) through mimicking interactive behaviors of natural ants. Here we extended the algorithm into a set of web-based software, Ant Modeler, and applied it to investigate the transcriptional mechanism underlying bone formation. Mechanical loading and administration of bone morphogenic proteins (BMPs) are two known treatments to strengthen bone. We addressed a question: Is there any TFBM that stimulates both "anabolic responses of mechanical loading" and "BMP-mediated osteogenic signaling"? Although there is no significant overlap among genes in the two responses, a comparative model-based analysis suggests that the two independent osteogenic processes employ common TFBMs, such as a stress responsive element and a motif for peroxisome proliferator-activated recep- tor (PPAR). The post-modeling in vitro analysis using mouse osteoblast cells sup- ported involvements of the predicted TFBMs such as PPAR, Ikaros 3, and LMO2 in response to mechanical loading. Taken together, the results would be useful to derive a set of testable hypotheses and examine the role of specific regulators in complex transcriptional control of bone formation.

  16. Transduction motif analysis of gastric cancer based on a human signaling network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, G.; Li, D.Z.; Jiang, C.S.; Wang, W. [Fuzhou General Hospital of Nanjing Command, Department of Gastroenterology, Fuzhou, China, Department of Gastroenterology, Fuzhou General Hospital of Nanjing Command, Fuzhou (China)

    2014-04-04

    To investigate signal regulation models of gastric cancer, databases and literature were used to construct the signaling network in humans. Topological characteristics of the network were analyzed by CytoScape. After marking gastric cancer-related genes extracted from the CancerResource, GeneRIF, and COSMIC databases, the FANMOD software was used for the mining of gastric cancer-related motifs in a network with three vertices. The significant motif difference method was adopted to identify significantly different motifs in the normal and cancer states. Finally, we conducted a series of analyses of the significantly different motifs, including gene ontology, function annotation of genes, and model classification. A human signaling network was constructed, with 1643 nodes and 5089 regulating interactions. The network was configured to have the characteristics of other biological networks. There were 57,942 motifs marked with gastric cancer-related genes out of a total of 69,492 motifs, and 264 motifs were selected as significantly different motifs by calculating the significant motif difference (SMD) scores. Genes in significantly different motifs were mainly enriched in functions associated with cancer genesis, such as regulation of cell death, amino acid phosphorylation of proteins, and intracellular signaling cascades. The top five significantly different motifs were mainly cascade and positive feedback types. Almost all genes in the five motifs were cancer related, including EPOR, MAPK14, BCL2L1, KRT18, PTPN6, CASP3, TGFBR2, AR, and CASP7. The development of cancer might be curbed by inhibiting signal transductions upstream and downstream of the selected motifs.

  17. Motif-Based Text Mining of Microbial Metagenome Redundancy Profiling Data for Disease Classification

    Directory of Open Access Journals (Sweden)

    Yin Wang

    2016-01-01

    Full Text Available Background. Text data of 16S rRNA are informative for classifications of microbiota-associated diseases. However, the raw text data need to be systematically processed so that features for classification can be defined/extracted; moreover, the high-dimension feature spaces generated by the text data also pose an additional difficulty. Results. Here we present a Phylogenetic Tree-Based Motif Finding algorithm (PMF to analyze 16S rRNA text data. By integrating phylogenetic rules and other statistical indexes for classification, we can effectively reduce the dimension of the large feature spaces generated by the text datasets. Using the retrieved motifs in combination with common classification methods, we can discriminate different samples of both pneumonia and dental caries better than other existing methods. Conclusions. We extend the phylogenetic approaches to perform supervised learning on microbiota text data to discriminate the pathological states for pneumonia and dental caries. The results have shown that PMF may enhance the efficiency and reliability in analyzing high-dimension text data.

  18. Ultrafast dynamics in DNA base pairs following ultraviolet excitation.

    Science.gov (United States)

    Orr-Ewing, Andrew

    2015-03-01

    Photo-protective mechanisms in DNA are essential to maintain the integrity of the genetic code by preventing damage from absorption of solar ultraviolet (UV) radiation. We have used time-resolved infra-red (TRIR) spectroscopy to observe the dynamics of Watson-Crick nucleobase pairs following absorption of femtosecond UV laser pulses. The base pairs are prepared as nucleosides in solution, and photo-induced dynamics are probed in the carbonyl and N-H bond stretching regions using broadband IR pulses with picosecond time resolution. Results will be presented for the guanine-cytosine (G-C) base pair, contrasting the rapid recovery of ground-state products (the photo-protection pathway) with formation of other photoproducts which might represent photo-damage mechanisms. This work is a collaboration with the group of Prof F. Temps (Christian-Albrechts-Universitat zu Kiel). This research is supported by ERC Advanced Grant 290966 CAPRI.

  19. Hitchcock's Motifs

    NARCIS (Netherlands)

    Walker, Michael

    2005-01-01

    Among the abundant Alfred Hitchcock literature, Hitchcock's Motifs has found a fresh angle. Starting from recurring objects, settings, character-types and events, Michael Walker tracks some forty motifs, themes and clusters across the whole of Hitchcock's oeuvre, including not only all his 52 extant

  20. Identification of Structural Motifs of Imidazolium Based Ionic Liquids from Jet-Cooled Infrared Spectroscopy.

    Science.gov (United States)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2016-06-01

    Highly variable and potentially revolutionary, ionic liquids (IL) are a class of molecules with potential for numerous Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition the role of hydrogen bonding in ILs, especially its relationship to macroscopic properties, is a matter of ongoing research. Here, structural motifs are identified from jet-cooled infrared spectra of different imidazolium based ionic liquids, such as 1-ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide. Measurements of the C-H stretches indicate three structural families present in the gas phase.

  1. A motif extraction algorithm based on hashing and modulo-4 arithmetic.

    Science.gov (United States)

    Sheng, Huitao; Mehrotra, Kishan; Mohan, Chilukuri; Raina, Ramesh

    2008-01-01

    We develop an algorithm to identify cis-elements in promoter regions of coregulated genes. This algorithm searches for subsequences of desired length whose frequency of occurrence is relatively high, while accounting for slightly perturbed variants using hash table and modulo arithmetic. Motifs are evaluated using profile matrices and higher-order Markov background model. Simulation results show that our algorithm discovers more motifs present in the test sequences, when compared with two well-known motif-discovery tools (MDScan and AlignACE). The algorithm produces very promising results on real data set; the output of the algorithm contained many known motifs.

  2. Theoretical analysis of noncanonical base pairing interactions in RNA molecules

    Indian Academy of Sciences (India)

    Dhananjay Bhattacharyya; Siv Chand Koripella; Abhijit Mitra; Vijay Babu Rajendran; Bhabdyuti Sinha

    2007-08-01

    Noncanonical base pairs in RNA have strong structural and functional implications but are currently not considered for secondary structure predictions. We present results of comparative ab initio studies of stabilities and interaction energies for the three standard and 24 selected unusual RNA base pairs reported in the literature. Hydrogen added models of isolated base pairs, with heavy atoms frozen in their ‘away from equilibrium’ geometries, built from coordinates extracted from NDB, were geometry optimized using HF/6-31G** basis set, both before and after unfreezing the heavy atoms. Interaction energies, including BSSE and deformation energy corrections, were calculated, compared with respective single point MP2 energies, and correlated with occurrence frequencies and with types and geometries of hydrogen bonding interactions. Systems having two or more N-H…O/N hydrogen bonds had reasonable interaction energies which correlated well with respective occurrence frequencies and highlighted the possibility of some of them playing important roles in improved secondary structure prediction methods. Several of the remaining base pairs with one N-H…O/N and/or one C-H…O/N interactions respectively, had poor interaction energies and negligible occurrences. High geometry variations on optimization of some of these were suggestive of their conformational switch like characteristics.

  3. Infrared spectrum of the Ag(+)-(pyridine)2 ionic complex: probing interactions in artificial metal-mediated base pairing.

    Science.gov (United States)

    Chakraborty, Shamik; Dopfer, Otto

    2011-07-11

    The isolated pyridine-Ag(+)-pyridine unit (Py-Ag(+)-Py) is employed as a model system to characterize the recently observed Ag(+)-mediated base pairing in DNA oligonucleotides at the molecular level. The structure and infrared (IR) spectrum of the Ag(+)-Py(2) cationic complex are investigated in the gas phase by IR multiple-photon dissociation (IRMPD) spectroscopy and quantum chemical calculations to determine the preferred metal-ion binding site and other salient properties of the potential-energy surface. The IRMPD spectrum has been obtained in the 840-1720 cm(-1) fingerprint region by coupling the IR free electron laser at the Centre Laser Infrarouge d'Orsay (CLIO) with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an electrospray ionization source. The spectroscopic results are interpreted with quantum chemical calculations conducted at the B3LYP/aug-cc-pVDZ level. The analysis of the IRMPD spectrum is consistent with a σ complex, in which the Ag(+) ion binds to the nitrogen lone pairs of the two Py ligands in a linear configuration. The binding motif of Py-Ag(+)-Py in the gas phase is the same as that observed in Ag(+)-mediated base pairing in solution. Ag(+) bonding to the π-electron system of the aromatic ring is predicted to be a substantially less-favorable binding motif.

  4. Semi-regular biorthogonal pairs and generalized Riesz bases

    Science.gov (United States)

    Inoue, H.

    2016-11-01

    In this paper we introduce general theories of semi-regular biorthogonal pairs, generalized Riesz bases and its physical applications. Here we deal with biorthogonal sequences {ϕn} and {ψn} in a Hilbert space H , with domains D ( ϕ ) = { x ∈ H ; ∑ k = 0 ∞ |" separators=" ( x | ϕ k ) | 2 |" separators=" ( x | ψ k ) | 2 paper [H. Inoue, J. Math. Phys. 57, 083511 (2016)], we have shown that if ({ϕn}, {ψn}) is a regular biorthogonal pair then both {ϕn} and {ψn} are generalized Riesz bases defined in the work of Inoue and Takakura [J. Math. Phys. 57, 083505 (2016)]. Here we shall show that the same result holds true if the pair is only semi-regular by using operators Tϕ,e, Te,ϕ, Tψ,e, and Te,ψ defined by an orthonormal basis e in H and a biorthogonal pair ({ϕn}, {ψn}). Furthermore, we shall apply this result to pseudo-bosons in the sense of the papers of Bagarello [J. Math. Phys. 51, 023531 (2010); J. Phys. A 44, 015205 (2011); Phys. Rev. A 88, 032120 (2013); and J. Math. Phys. 54, 063512 (2013)].

  5. The effect of base pair mismatch on DNA strand displacement

    CERN Document Server

    Broadwater, Bo

    2016-01-01

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single base pair mismatch. The apparent displacement rate varied significantly when the mismatch was introduced in the invading DNA strand. The rate generally decreased as the mismatch in the invader was encountered earlier in displacement. Our data indicate that a single base pair mismatch in the invader stalls branch migration, and displacement occurs via direct dissociation of the destabilized incumbent strand from the substrate strand. We combined both branch migration and direct dissociation into a model, which we term, the concurrent displacement model, and used the first passage t...

  6. Isoindigo-based polymer photovoltaics: modifying polymer molecular structures to control the nanostructural packing motif.

    Science.gov (United States)

    Kim, Yu Jin; Lee, Yun-Ji; Kim, Yun-Hi; Park, Chan Eon

    2016-07-21

    Donor molecular structures, and their packing aspects in donor:acceptor active blends, play a crucial role in the photovoltaic performance of polymer solar cells. We systematically investigated a series of isoindigo-based donor polymers within the framework of a three-dimensional (3D) crystalline motif by modifying their chemical structures, thereby affecting device performances. Although our isoindigo-based polymer series contained polymers that differed only by their alkyl side chains and/or donating units, they showed quite different nanoscale morphological properties, which resulted in significantly different device efficiencies. Notably, blends of our isoindigo-based donor polymer systems with an acceptor compound, whereby the blends had more intermixed network morphologies and stronger face-on orientations of the polymer crystallites, provided better-performing photovoltaic devices. This behavior was analyzed using atomic force microscopy (AFM) and two-dimensional grazing incidence wide angle X-ray diffraction (2D-GIWAXD). To the best of our knowledge, no correlation has been reported previously between 3D nano-structural donor crystallites and device performances, particularly for isoindigo-based polymer systems.

  7. Computational studies of ion pairing. 8. Ion pairing of tetraalkylammonium ions to nitrosobenzene and benzaldehyde redox species. A general binding motif for the interaction of tetraalkylammonium ions with benzenoid species.

    Science.gov (United States)

    Fry, Albert J

    2013-06-01

    Very little data is available on the detailed structures of ion pairs in solution, since few general experimental methods are available for obtaining such information. For this reason, computational methods have emerged as the method of choice for determining the structures of organic ion pairs in solution. The present study examines the ion pairs between a series of tetraalkylammonium ions and several redox forms of nitrosobenzene and a series of substituted benzaldehydes. The structures, though previously unexpected, are chemically reasonable and fit into a previous pattern of ion pairing described in previous publications in this series. To date in these studies, a total of 73 ion pairs and related species have in fact been identified having exactly the same unusual orientation of the tetraalkylammonium component with respect to the donor species. The results are pertinent to topics of general current interest, including self-assembly, molecular recognition, and supramolecular assembly.

  8. Coherent pair production in deformed crystals with a complex base

    CERN Document Server

    Mkrtchyan, A R; Saharian, A A

    2006-01-01

    We investigate the coherent electron-positron pair creation by high-energy photons in a periodically deformed single crystal with a complex base. The formula for the corresponding differential cross-section is derived for an arbitrary deformation field. The conditions are specified under which the influence of the deformation is considerable. The case is considered in detail when the photon enters into the crystal at small angles with respect to a crystallographic axis. The results of the numerical calculations are presented for $\\mathrm{SiO}_{2}$ single crystal and Moliere parametrization of the screened atomic potentials in the case of the deformation field generated by the acoustic wave of $S$ type. In dependence of the parameters, the presence of deformation can either enhance or reduce the pair creation cross-section. This can be used to control the parameters of the positron sources for storage rings and colliders.

  9. Physics of base-pairing dynamics in DNA

    Science.gov (United States)

    Manghi, Manoel; Destainville, Nicolas

    2016-05-01

    As a key molecule of life, Deoxyribo-Nucleic Acid (DNA) is the focus of numbers of investigations with the help of biological, chemical and physical techniques. From a physical point of view, both experimental and theoretical works have brought quantitative insights into DNA base-pairing dynamics that we review in this Report, putting emphasis on theoretical developments. We discuss the dynamics at the base-pair scale and its pivotal coupling with the polymer one, with a polymerization index running from a few nucleotides to tens of kilo-bases. This includes opening and closure of short hairpins and oligomers as well as zipping and unwinding of long macromolecules. We review how different physical mechanisms are either used by Nature or utilized in biotechnological processes to separate the two intertwined DNA strands, by insisting on quantitative results. They go from thermally-assisted denaturation bubble nucleation to force- or torque-driven mechanisms. We show that the helical character of the molecule, possibly supercoiled, can play a key role in many denaturation and renaturation processes. We categorize the mechanisms according to the relative timescales associated with base-pairing and chain orientational degrees of freedom such as bending and torsional elastic ones. In some specific situations, these chain orientational degrees of freedom can be integrated out, and the quasi-static approximation is valid. The complex dynamics then reduces to the diffusion in a low-dimensional free-energy landscape. In contrast, some important cases of experimental interest necessarily appeal to far-from-equilibrium statistical mechanics and hydrodynamics.

  10. A viral-human interactome based on structural motif-domain interactions captures the human infectome.

    Directory of Open Access Journals (Sweden)

    Aldo Segura-Cabrera

    Full Text Available Protein interactions between a pathogen and its host are fundamental in the establishment of the pathogen and underline the infection mechanism. In the present work, we developed a single predictive model for building a host-viral interactome based on the identification of structural descriptors from motif-domain interactions of protein complexes deposited in the Protein Data Bank (PDB. The structural descriptors were used for searching, in a database of protein sequences of human and five clinically important viruses; therefore, viral and human proteins sharing a descriptor were predicted as interacting proteins. The analysis of the host-viral interactome allowed to identify a set of new interactions that further explain molecular mechanism associated with viral infections and showed that it was able to capture human proteins already associated to viral infections (human infectome and non-infectious diseases (human diseasome. The analysis of human proteins targeted by viral proteins in the context of a human interactome showed that their neighbors are enriched in proteins reported with differential expression under infection and disease conditions. It is expected that the findings of this work will contribute to the development of systems biology for infectious diseases, and help guide the rational identification and prioritization of novel drug targets.

  11. Motif finding in DNA sequences based on skipping nonconserved positions in background Markov chains.

    Science.gov (United States)

    Zhao, Xiaoyan; Sze, Sing-Hoi

    2011-05-01

    One strategy to identify transcription factor binding sites is through motif finding in upstream DNA sequences of potentially co-regulated genes. Despite extensive efforts, none of the existing algorithms perform very well. We consider a string representation that allows arbitrary ignored positions within the nonconserved portion of single motifs, and use O(2(l)) Markov chains to model the background distributions of motifs of length l while skipping these positions within each Markov chain. By focusing initially on positions that have fixed nucleotides to define core occurrences, we develop an algorithm to identify motifs of moderate lengths. We compare the performance of our algorithm to other motif finding algorithms on a few benchmark data sets, and show that significant improvement in accuracy can be obtained when the sites are sufficiently conserved within a given sample, while comparable performance is obtained when the site conservation rate is low. A software program (PosMotif ) and detailed results are available online at http://faculty.cse.tamu.edu/shsze/posmotif.

  12. A Random Number Generator Based on Quantum Entangled Photon Pairs

    Institute of Scientific and Technical Information of China (English)

    MA Hai-Qiang; WANG Su-Mei; ZHANG Da; CHANG Jun-Tao; JI Ling-Ling; HOU Yan-Xue; WU Ling-An

    2004-01-01

    A new scheme for a random number generator based on quantum entangled photon pairs is demonstrated.Signal photons produced by optical parametric down-conversion are detected at two single-photon detectors after transmission or reflection at a 50/50% beamsplitter, to form a truly random binary sequence. Their arrival is signalled by their twin idler photons, so that a cw laser source may be used instead of attenuated laser pulses.Coincidence measurement is employed to obtain the bit sequences, which are shown to fully satisfy the standard tests for randomness.

  13. Three 3D hybrid networks based on octamolybdates and different Cu I/Cu II-bis(triazole) motifs

    Science.gov (United States)

    Zhang, Chun-Jing; Pang, Hai-Jun; Tang, Qun; Wang, Hui-Yuan; Chen, Ya-Guang

    2010-12-01

    Three 3D compounds based on octamolybdate clusters and various Cu I/Cu II-bis(triazole) motifs, [Cu I2btb][ β-Mo 8O 26] 0.5 ( 1), [Cu I2btpe][ β-Mo 8O 26] 0.5 ( 2), and [Cu II(btpe) 2][ β-Mo 8O 26] 0.5 ( 3) [btb=1,4-bis(1,2,4-triazol-1-yl)butane, btpe=1,5-bis(1,2,4-triazol-1-yl)pentane], were isolated via tuning flexible ligand spacer length and metal coordination preferences. In 1, the copper(I)-btb motif is a one-dimensional (1D) chain which is further linked by hexadentate β-[Mo 8O 26] 4- clusters via coordinating to Cu I cations giving a 3D structure. In 2, the copper(I)-btpe motif exhibits a "stairs"-like [Cu I2btpe] 2+ sheet, and the tetradentate β-[Mo 8O 26] 4- clusters interact with two neighboring [Cu I2btpe] 2+ sheets constructing a 3D framework. In 3, the copper(II)-btpe motif possesses a novel (2D→3D) interdigitated structure, which is further connected by the tetradentate β-[Mo 8O 26] 4- clusters forming a 3D framework. The thermal stability and luminescent properties of 1- 3 are investigated in the solid state.

  14. Pyrimidone-based series of glucokinase activators with alternative donor-acceptor motif.

    Science.gov (United States)

    Filipski, Kevin J; Guzman-Perez, Angel; Bian, Jianwei; Perreault, Christian; Aspnes, Gary E; Didiuk, Mary T; Dow, Robert L; Hank, Richard F; Jones, Christopher S; Maguire, Robert J; Tu, Meihua; Zeng, Dongxiang; Liu, Shenping; Knafels, John D; Litchfield, John; Atkinson, Karen; Derksen, David R; Bourbonais, Francis; Gajiwala, Ketan S; Hickey, Michael; Johnson, Theodore O; Humphries, Paul S; Pfefferkorn, Jeffrey A

    2013-08-15

    Glucokinase activators are a class of experimental agents under investigation as a therapy for Type 2 diabetes mellitus. An X-ray crystal structure of a modestly potent agent revealed the potential to substitute the common heterocyclic amide donor-acceptor motif for a pyridone moiety. We have successfully demonstrated that both pyridone and pyrimidone heterocycles can be used as a potent donor-acceptor substituent. Several sub-micromolar analogs that possess the desired partial activator profile were synthesized and characterized. Unfortunately, the most potent activators suffered from sub-optimal pharmacokinetic properties. Nonetheless, these donor-acceptor motifs may find utility in other glucokinase activator series or beyond.

  15. Using Pair Programming to Teach CAD Based Engineering Graphics

    Science.gov (United States)

    Leland, Robert P.

    2010-01-01

    Pair programming was introduced into a course in engineering graphics that emphasizes solid modeling using SolidWorks. In pair programming, two students work at a single computer, and periodically trade off roles as driver (hands on the keyboard and mouse) and navigator (discuss strategy and design issues). Pair programming was used in a design…

  16. Single base pair mutation analysis by PNA directed PCR clamping

    DEFF Research Database (Denmark)

    Ørum, H.; Nielsen, P.E.; Egholm, M.;

    1993-01-01

    A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity...... than the corresponding deoxyribooligonucleotides and that they cannot function as primers for DNA polymerases. We show that a PNA/DNA complex can effectively block the formation of a PCR product when the PNA is targeted against one of the PCR primer sites. Furthermore, we demonstrate that this blockage...... allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers....

  17. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous...

  18. Sorting Pairs of Points Based on Their Distances

    Directory of Open Access Journals (Sweden)

    Mohammad Farshi

    2016-02-01

    Full Text Available Sorting data is one of the main problems in computer science which studied vastly and used in several places. In several geometric problems, like problems on point sets or lines in the plane or Euclidean space with higher dimensions, the problem of sorting pairs of points based on the distance (between them is used. Using general sorting algorithms, sorting n 2 distances between n points can be done in O(n2 log n time. Ofcourse, sorting (n2 independent numbers does not have a faster solution, but since we have dependency between numbers in this case, finding a faster algorithm or showing that the problem in this case has O(n2 log n time complexity is interesting. In this paper, we try to answer this question.

  19. Unique magnetic signatures of mismatched base pairs in DNA

    Science.gov (United States)

    Apalkov, Vadim; Berashevich, Julia; Chakraborty, Tapash

    2010-02-01

    Magnetic properties of DNA containing mispairs, such as different conformations of the GṡA mispair, or a GṡT mispair inserted into the DNA chain, have been theoretically investigated. The essential ingredients for these studies, the charge transfer integrals, were evaluated from the DNA sequences containing the mispair and optimized in the solvent. We find that the magnetic susceptibilities of the host DNA chain containing a large number of Watson-Crick base pairs are significantly altered in the presence of the mispairs, and the effects depend on the choice of mispairs. In particular, insertion of even a single GṡA mispair changes the nature of magnetization (sign of the susceptibility) of the host DNA. We propose that measurement of the magnetic properties of DNA might provide a direct route to detection and identification of those mispairs.

  20. Triazine-Based Sequence-Defined Polymers with Side-Chain Diversity and Backbone-Backbone Interaction Motifs.

    Science.gov (United States)

    Grate, Jay W; Mo, Kai-For; Daily, Michael D

    2016-03-14

    Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions.

  1. Motif based hierarchical random graphs: structural properties and critical points of an Ising model

    CERN Document Server

    Kotorowicz, M; 10.5488/CMP.14.13801

    2011-01-01

    A class of random graphs is introduced and studied. The graphs are constructed in an algorithmic way from five motifs which were found in [Milo R., Shen-Orr S., Itzkovitz S., Kashtan N., Chklovskii D., Alon U., Science, 2002, 298, 824-827]. The construction scheme resembles that used in [Hinczewski M., A. Nihat Berker, Phys. Rev. E, 2006, 73, 066126], according to which the short-range bonds are non-random, whereas the long-range bonds appear independently with the same probability. A number of structural properties of the graphs have been described, among which there are degree distributions, clustering, amenability, small-world property. For one of the motifs, the critical point of the Ising model defined on the corresponding graph has been studied.

  2. Paired structures and other opposite-based models

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco, Camilo; Gómez, Daniel;

    2015-01-01

    In this paper we present a new class of fuzzy sets, paired fuzzy sets, that tries to overcome any conflict between families of fuzzy sets that share a main characteristic: that they are generated from two basic opposite fuzzy sets. Hence, the first issue is to formalize the notion of opposition, ...... as a particular paired structure when the classical fuzzy negation is considered; on the other hand, the relationship of this model with bipolarity is reconsidered from our paired view....

  3. Marker-based filtering of bilingual phrase pairs for SMT

    OpenAIRE

    Sánchez-Martínez, Felipe; Way, Andy

    2009-01-01

    State-of-the-art statistical machine translation systems make use of a large translation table obtained after scoring a set of bilingual phrase pairs automatically extracted from a parallel corpus. The number of bilingual phrase pairs extracted from a pair of aligned sentences grows exponentially as the length of the sentences increases; therefore, the number of entries in the phrase table used to carry out the translation may become unmanageable, especially when online, ‘on demand’ translati...

  4. Paired structures and other opposite-based models

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco, Camilo; Gómez, Daniel

    2015-01-01

    to a more complex valuation structure that still keeps the essence of being paired. In this way several neutral fuzzy sets can appear, in particular indeterminacy, ambivalence and conflict. Two consequences are then presented: on one hand, we will show how Atanassov´s Intuitionistic Fuzzy Sets can be viewed...... as a particular paired structure when the classical fuzzy negation is considered; on the other hand, the relationship of this model with bipolarity is reconsidered from our paired view....

  5. DNA duplex stability of the thio-iso-guanine•methyl-iso-Cytosine base pair.

    Science.gov (United States)

    Lee, Dongkye; Switzer, Christopher

    2015-01-01

    We report the synthesis, incorporation into oligonucleotides, and base-pairing properties of the 2-thio-variant of iso-guanine. Iso-guanine is the purine component of a nonstandard base pair with 5-methyl-iso-cytosine. The 2-thio-iso-guanine • 5-methyl-iso-cytosine base pair is found to have similar stability to an adenine • thymine pair.

  6. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    Science.gov (United States)

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions.

  7. A systems wide mass spectrometric based linear motif screen to identify dominant in-vivo interacting proteins for the ubiquitin ligase MDM2.

    Science.gov (United States)

    Nicholson, Judith; Scherl, Alex; Way, Luke; Blackburn, Elizabeth A; Walkinshaw, Malcolm D; Ball, Kathryn L; Hupp, Ted R

    2014-06-01

    Linear motifs mediate protein-protein interactions (PPI) that allow expansion of a target protein interactome at a systems level. This study uses a proteomics approach and linear motif sub-stratifications to expand on PPIs of MDM2. MDM2 is a multi-functional protein with over one hundred known binding partners not stratified by hierarchy or function. A new linear motif based on a MDM2 interaction consensus is used to select novel MDM2 interactors based on Nutlin-3 responsiveness in a cell-based proteomics screen. MDM2 binds a subset of peptide motifs corresponding to real proteins with a range of allosteric responses to MDM2 ligands. We validate cyclophilin B as a novel protein with a consensus MDM2 binding motif that is stabilised by Nutlin-3 in vivo, thus identifying one of the few known interactors of MDM2 that is stabilised by Nutlin-3. These data invoke two modes of peptide binding at the MDM2 N-terminus that rely on a consensus core motif to control the equilibrium between MDM2 binding proteins. This approach stratifies MDM2 interacting proteins based on the linear motif feature and provides a new biomarker assay to define clinically relevant Nutlin-3 responsive MDM2 interactors.

  8. Cis and trans regulatory mechanisms control AP2-mediated B cell receptor endocytosis via select tyrosine-based motifs.

    Directory of Open Access Journals (Sweden)

    Kathleen Busman-Sahay

    Full Text Available Following antigen recognition, B cell receptor (BCR-mediated endocytosis is the first step of antigen processing and presentation to CD4+ T cells, a crucial component of the initiation and control of the humoral immune response. Despite this, the molecular mechanism of BCR internalization is poorly understood. Recently, studies of activated B cell-like diffuse large B cell lymphoma (ABC DLBCL have shown that mutations within the BCR subunit CD79b leads to increased BCR surface expression, suggesting that CD79b may control BCR internalization. Adaptor protein 2 (AP2 is the major mediator of receptor endocytosis via clathrin-coated pits. The BCR contains five putative AP2-binding YxxØ motifs, including four that are present within two immunoreceptor tyrosine-based activation motifs (ITAMs. Using a combination of in vitro and in situ approaches, we establish that the sole mediator of AP2-dependent BCR internalization is the membrane proximal ITAM YxxØ motif in CD79b, which is a major target of mutation in ABC DLBCL. In addition, we establish that BCR internalization can be regulated at a minimum of two different levels: regulation of YxxØ AP2 binding in cis by downstream ITAM-embedded DCSM and QTAT regulatory elements and regulation in trans by the partner cytoplasmic domain of the CD79 heterodimer. Beyond establishing the basic rules governing BCR internalization, these results illustrate an underappreciated role for ITAM residues in controlling clathrin-dependent endocytosis and highlight the complex mechanisms that control the activity of AP2 binding motifs in this receptor system.

  9. Base pairing in RNA structures: A computational analysis of structural aspects and interaction energies

    Indian Academy of Sciences (India)

    Purshotam Sharma; Abhijit Mitra; Sitansh Sharma; Harjinder Singh

    2007-09-01

    The base pairing patterns in RNA structures are more versatile and completely different as compared to DNA. We present here results of ab-initio studies of structures and interaction energies of eight selected RNA base pairs reported in literature. Interaction energies, including BSSE correction, of hydrogen added crystal geometries of base pairs have been calculated at the HF/6-31G∗∗ level. The structures and interaction energies of the base pairs in the crystal geometry are compared with those obtained after optimization of the base pairs. We find that the base pairs become more planar on full optimization. No change in the hydrogen bonding pattern is seen. It is expected that the inclusion of appropriate considerations of many of these aspects of RNA base pairing would significantly improve the accuracy of RNA secondary structure prediction.

  10. A new unnatural base pair system between fluorophore and quencher base analogues for nucleic acid-based imaging technology.

    Science.gov (United States)

    Kimoto, Michiko; Mitsui, Tsuneo; Yamashige, Rie; Sato, Akira; Yokoyama, Shigeyuki; Hirao, Ichiro

    2010-11-03

    In the development of orthogonal extra base pairs for expanding the genetic alphabet, we created novel, unnatural base pairs between fluorophore and quencher nucleobase analogues. We found that the nucleobase analogue, 2-nitropyrrole (denoted by Pn), and its 4-substitutions, such as 2-nitro-4-propynylpyrrole (Px) and 4-[3-(6-aminohexanamido)-1-propynyl]-2-nitropyrrole (NH(2)-hx-Px), act as fluorescence quenchers. The Pn and Px bases specifically pair with their pairing partner, 7-(2,2'-bithien-5-yl)imidazo[4,5-b]pyridine (Dss), which is strongly fluorescent. Thus, these unnatural Dss-Pn and Dss-Px base pairs function as reporter-quencher base pairs, and are complementarily incorporated into DNA by polymerase reactions as a third base pair in combination with the natural A-T and G-C pairs. Due to the static contact quenching, the Pn and Px quencher bases significantly decreased the fluorescence intensity of Dss by the unnatural base pairings in DNA duplexes. In addition, the Dss-Px pair exhibited high efficiency and selectivity in PCR amplification. Thus, this new unnatural base pair system would be suitable for detection methods of target nucleic acid sequences, and here we demonstrated the applications of the Dss-Pn and Dss-Px pairs as molecular beacons and in real-time PCR. The genetic alphabet expansion system with the replicable, unnatural fluorophore-quencher base pair will be a useful tool for sensing and diagnostic applications, as well as an imaging tool for basic research.

  11. Helix-packing motifs in membrane proteins.

    Science.gov (United States)

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  12. Structural basis for the binding of tryptophan-based motifs by δ-COP

    OpenAIRE

    Suckling, Richard J.; Poon, Pak P.; Travis, Sophie M.; Majoul, Irina V.; Hughson, Frederick M.; Evans, Philip R.; Duden, Rainer; Owen, David J.

    2015-01-01

    This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.1506186112 Coatomer consists of two subcomplexes: the membrane-targeting, Arf1:GTP binding βγδζ-COP F-subcomplex, which is related to the AP clathrin adaptors, and the cargo binding αβ’ε-COP B-subcomplex. We present the structure of the C-terminal μ-homology domain of the yeast δ-COP subunit in complex with the WxW motif from its binding partner, the ER-localised Dsl1 tether....

  13. On the role of the cis Hoogsteen:sugar-edge family of base pairs in platforms and triplets-quantum chemical insights into RNA structural biology.

    Science.gov (United States)

    Sharma, Purshotam; Sponer, Judit E; Sponer, Jirí; Sharma, Sitansh; Bhattacharyya, Dhananjay; Mitra, Abhijit

    2010-03-11

    Base pairs belonging to the cis Hoogsteen:sugar-edge (H:S) family play important structural roles in folded RNA molecules. Several of these are present in internal loops, where they are involved in interactions leading to planar dinucleotide platforms which stabilize higher order structures such as base triplets and quartets. We report results of analysis of 30 representative examples spanning 16 possible base pair combinations, with several of them showing multimodality of base pairing geometry. The geometries of 23 of these base pairs were modeled directly from coordinates extracted from RNA crystal structures. The other seven were predicted structures which were modeled on the basis of observed isosteric analogues. After appropriate satisfaction of residual valencies, these structures were relaxed using the B3LYP/6-31G(d,p) method and interaction energies were derived at the RIMP2/aug-cc-pVDZ level of theory. The geometries for each of the studied base pairs have been characterized in terms of the number and nature of H-bonds, rmsd values observed on optimization, base pair geometrical parameters, and sugar pucker analysis. In addition to its evaluation, the nature of intermolecular interaction in these complexes was also analyzed using Morokuma decomposition. The gas phase interaction energies range between -5.2 and -20.6 kcal/mol and, in contrast to the H:S trans base pairs, show enhanced relative importance of the electron correlation component, indicative of the greater role of dispersion energy in stabilization of these base pairs. The rich variety of hydrogen bonding pattern, involving the flexible sugar edge, appears to hold the key to several features of structural motifs, such as planarity and propensity to participate in triplets, observed in this family of base pairs. This work explores these aspects by integrating database analysis, and detailed base pairing geometry analysis at the atomistic level, with ab initio computation of interaction energies

  14. Calculation of the Stabilization Energies of Oxidatively Damaged Guanine Base Pairs with Guanine

    Directory of Open Access Journals (Sweden)

    Hiroshi Miyazawa

    2012-06-01

    Full Text Available DNA is constantly exposed to endogenous and exogenous oxidative stresses. Damaged DNA can cause mutations, which may increase the risk of developing cancer and other diseases. G:C-C:G transversions are caused by various oxidative stresses. 2,2,4-Triamino-5(2H-oxazolone (Oz, guanidinohydantoin (Gh/iminoallantoin (Ia and spiro-imino-dihydantoin (Sp are known products of oxidative guanine damage. These damaged bases can base pair with guanine and cause G:C-C:G transversions. In this study, the stabilization energies of these bases paired with guanine were calculated in vacuo and in water. The calculated stabilization energies of the Ia:G base pairs were similar to that of the native C:G base pair, and both bases pairs have three hydrogen bonds. By contrast, the calculated stabilization energies of Gh:G, which form two hydrogen bonds, were lower than the Ia:G base pairs, suggesting that the stabilization energy depends on the number of hydrogen bonds. In addition, the Sp:G base pairs were less stable than the Ia:G base pairs. Furthermore, calculations showed that the Oz:G base pairs were less stable than the Ia:G, Gh:G and Sp:G base pairs, even though experimental results showed that incorporation of guanine opposite Oz is more efficient than that opposite Gh/Ia and Sp.

  15. Detecting the bipartite World Trade Web evolution across 2007: a motifs-based analysis

    CERN Document Server

    Saracco, Fabio; Gabrielli, Andrea; Squartini, Tiziano

    2015-01-01

    In the present paper we employ the theoretical tools developed in network theory, in order to shed light on the response of world wide trade to the financial crisis of 2007. In particular, we have explored the evolution of the bipartite country-product World Trade Web across the years 1995-2010, monitoring the behaviour of the system both before and after 2007. Remarkably, our results indicate that, from 2003 on, the abundances of a recently-defined class of bipartite motifs assume values progressively closer to the ones predicted by a null model which preserves only basic features of the observed structure, completely randomizing the rest. In other words, as 2007 approaches the World Trade Web becomes more and more compatible with the picture of a bipartite network where correlations between countries and products are progressively lost. Moreover, the trends characterizing the z-scores of the considered family of motifs suggest that the most evident modification in the structure of the world trade network ca...

  16. Synthetic protein scaffolds based on peptide motifs and cognate adaptor domains for improving metabolic productivity

    Directory of Open Access Journals (Sweden)

    Anselm H.C. Horn

    2015-11-01

    Full Text Available The efficiency of many cellular processes relies on the defined interaction among different proteins within the same metabolic or signaling pathway. Consequently, a spatial colocalization of functionally interacting proteins has frequently emerged during evolution. This concept has been adapted within the synthetic biology community for the purpose of creating artificial scaffolds. A recent advancement of this concept is the use of peptide motifs and their cognate adaptor domains. SH2, SH3, GBD, and PDZ domains have been used most often in research studies to date. The approach has been successfully applied to the synthesis of a variety of target molecules including catechin, D-glucaric acid, H2, hydrochinone, resveratrol, butyrate, gamma-aminobutyric acid, and mevalonate. Increased production levels of up to 77-fold have been observed compared to non-scaffolded systems. A recent extension of this concept is the creation of a covalent linkage between peptide motifs and adaptor domains, which leads to a more stable association of the scaffolded systems and thus bears the potential to further enhance metabolic productivity.

  17. The Interpretation of Motifs in The Color Purple—Based on Their Eyes were Watching God

    Institute of Scientific and Technical Information of China (English)

    Du Juan

    2016-01-01

    美国作家佐拉.尼尔.赫斯顿的《他们仰望上苍》与黑人作家爱丽丝.沃克的《紫色》关注的都是黑人女性的觉醒以及她们与父权社会的抗争.因此,爱丽丝.沃克在佐拉.尼尔.赫斯顿的主题思想的基础上,在其作品《紫色》中阐述了三方面的主题,即:女性的经济独立、女性自我意识的觉醒和两性关系的发展.%Zora Neale Hurston's Their Eyes Were Watching God and Alice Walker's The Color Purple are concerned with African-American women's self-awareness and fighting with the patriarchy. Therefore, Alice Walker inherits the motifs of from Zora Neale Hurston and she develops the motifs in three aspects: the depiction of women's economic independence; the development of women's self-awareness and the improvement of relationship between women and men.

  18. Flexibility of short DNA helices with finite-length effect: From base pairs to tens of base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuan-Yan; Bao, Lei; Zhang, Xi; Tan, Zhi-Jie, E-mail: zjtan@whu.edu.cn [Department of Physics and Key Laboratory of Artificial Micro and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2015-03-28

    Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5–50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ∼6 bps at each helix end. Correspondingly, the apparent persistence length l{sub p} of short DNAs increases gradually from ∼29 nm to ∼45 nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ∼6 bps at each helix end have the similar flexibility with those of kilo bps and can be described by the worm-like chain model with l{sub p} ∼ 50 nm.

  19. Flexibility of short DNA helices with finite-length effect: from base pairs to tens of base pairs

    CERN Document Server

    Wu, Yuan-Yan; Zhang, Xi; Tan, Zhi-Jie

    2015-01-01

    Flexibility of short DNA helices is important for the biological functions such as nucleosome formation and DNA-protein recognition. Recent experiments suggest that short DNAs of tens of base pairs (bps) may have apparently higher flexibility than those of kilo bps, while there is still the debate on such high flexibility. In the present work, we have studied the flexibility of short DNAs with finite-length of 5 to 50 bps by the all-atomistic molecular dynamics simulations and Monte Carlo simulations with the worm-like chain model. Our microscopic analyses reveal that short DNAs have apparently high flexibility which is attributed to the significantly strong bending and stretching flexibilities of ~6 bps at each helix end. Correspondingly, the apparent persistence length lp of short DNAs increases gradually from ~29nm to ~45nm as DNA length increases from 10 to 50 bps, in accordance with the available experimental data. Our further analyses show that the short DNAs with excluding ~6 bps at each helix end have...

  20. Plasmon switching effect based on graphene nanoribbon pair arrays

    Science.gov (United States)

    Liu, Dan; Wu, Lingxi; Liu, Qiong; Zhou, Renlong; Xie, Suxia; Chen, Jiangjiamin; Wu, Mengxiong; Zeng, Lisan

    2016-10-01

    We theoretically demonstrate the existence of plasmon switching effect in graphene nanostructure. By using finite-difference time-domain (FDTD) method, the plasmon resonance modes are studied in graphene nanoribbon pair arrays with the change of Fermi level, graphene width, and carrier mobility. It is found that the Fermi level and graphene width play an important role in changing the distribution of electric energy on different graphene nanoribbons, resulting in a significant plasmon switching effect. Moreover, we study the characteristic of resonance mode of one graphene ribbon by using glass rod with different shape. The effect of kerr material sandwiched between graphene nanoribbon pair is also considered.

  1. Comparable Stability of Hoogsteen and Watson–Crick Base Pairs in Ionic Liquid Choline Dihydrogen Phosphate

    OpenAIRE

    Hisae Tateishi-Karimata; Miki Nakano; Naoki Sugimoto

    2014-01-01

    The instability of Hoogsteen base pairs relative to Watson–Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson–Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stabi...

  2. Genomic analysis of plant chromosomes based on meiotic pairing

    Directory of Open Access Journals (Sweden)

    Lisete Chamma Davide

    2007-12-01

    Full Text Available This review presents the principles and applications of classical genomic analysis, with emphasis on plant breeding. The main mathematical models used to estimate the preferential chromosome pairing in diploid or polyploid, interspecific or intergenera hybrids are presented and discussed, with special reference to the applications and studies for the definition of genome relationships among species of the Poaceae family.

  3. [Under what conditions does G.C Watson-Crick DNA base pair acquire all four configurations characteristic for A.T Watson-Crick DNA base pair?].

    Science.gov (United States)

    Brovarets', O O

    2013-01-01

    At the MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory it was established for the first time, that the Löwdin's G*.C* DNA base pair formed by the mutagenic tautomers can acquire, as the A-T Watson-Crick DNA base pair, four biologically important configurations, namely: Watson-Crick, reverse Watson-Crick, Hoogsteen and reverse Hoogsteen. This fact demonstrates rather unexpected role of the tautomerisation of the one of the Watson-Crick DNA base pairs, in particular, via double proton transfer: exactly the G.C-->G*.C* tautomerisation allows to overcome steric hindrances for the implementation of the above mentioned configurations. Geometric, electron-topological and energetic properties of the H-bonds that stabilise the studied pairs, as well as the energetic characteristics of the latters are presented.

  4. Contiguous metal-mediated base pairs comprising two Ag(I) ions.

    Science.gov (United States)

    Megger, Dominik A; Guerra, Célia Fonseca; Hoffmann, Jan; Brutschy, Bernhard; Bickelhaupt, F Matthias; Müller, Jens

    2011-05-27

    The incorporation of transition-metal ions into nucleic acids by using metal-mediated base pairs has proved to be a promising strategy for the site-specific functionalization of these biomolecules. We report herein the formation of Ag(+)-mediated Hoogsteen-type base pairs comprising 1,3-dideaza-2'-deoxyadenosine and thymidine. By defunctionalizing the Watson-Crick edge of adenine, the formation of regular base pairs is prohibited. The additional substitution of the N3 nitrogen atom of adenine by a methine moiety increases the basicity of the exocyclic amino group. Hence, 1,3-dideazaadenine and thymine are able to incorporate two Ag(+) ions into their Hoogsteen-type base pair (as compared with one Ag(+) ion in base pairs with 1-deazaadenine and thymine). We show by using a combination of experimental techniques (UV and circular dichroism (CD) spectroscopies, dynamic light scattering, and mass spectrometry) that this type of base pair is compatible with different sequence contexts and can be used contiguously in DNA double helices. The most stable duplexes were observed when using a sequence containing alternating purine and pyrimidine nucleosides. Dispersion-corrected density functional theory calculations have been performed to provide insight into the structure, formation and stabilization of the twofold metalated base pair. They revealed that the metal ions within a base pair are separated by an Ag···Ag distance of about 2.88 Å. The Ag-Ag interaction contributes some 16 kcal mol(-1) to the overall stability of the doubly metal-mediated base pair, with the dominant contribution to the Ag-Ag bonding resulting from a donor-acceptor interaction between silver 4d-type and 4s orbitals. These Hoogsteen-type base pairs enable a higher functionalization of nucleic acids with metal ions than previously reported metal-mediated base pairs, thereby increasing the potential of DNA-based nanotechnology.

  5. Interaction of Cu+ with cytosine and formation of i-motif-like C-M+-C complexes: alkali versus coinage metals

    NARCIS (Netherlands)

    J. Gao; G. Berden; M.T. Rodgers; J. Oomens

    2016-01-01

    The Watson-Crick structure of DNA is among the most well-known molecular structures of our time. However, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or the presence of cations. Pairing of cytosine (C) bases induced by the sharing of a single proton

  6. Molecular Design of Ionization-Induced Proton Switching Element Based on Fluorinated DNA Base Pair.

    Science.gov (United States)

    Tachikawa, Hiroto; Kawabata, Hiroshi

    2016-03-10

    To design theoretically the high-performance proton switching element based on DNA base pair, the effects of fluorine substitution on the rate of proton transfer (PT) in the DNA model base pair have been investigated by means of direct ab initio molecular dynamics (AIMD) method. The 2-aminopyridine dimer, (AP)2, was used as the model of the DNA base pair. One of the hydrogen atoms of the AP molecule in the dimer was substituted by a fluorine (F) atom, and the structures of the dimer, expressed by F-(AP)2, were fully optimized at the MP2/6-311++G(d,p) level. The direct AIMD calculations showed that the proton is transferred within the base pair after the vertical ionization. The rates of PT in F-(AP)2(+) were calculated and compared with that of (AP)2(+) without an F atom. It was found that PT rate is accelerated by the F-substitution. Also, the direction of PT between F-AP and AP molecules can be clearly controlled by the position of F-substitution (AP)2 in the dimer.

  7. Design of potent inhibitors of human RAD51 recombinase based on BRC motifs of BRCA2 protein: modeling and experimental validation of a chimera peptide.

    KAUST Repository

    Nomme, Julian

    2010-08-01

    We have previously shown that a 28-amino acid peptide derived from the BRC4 motif of BRCA2 tumor suppressor inhibits selectively human RAD51 recombinase (HsRad51). With the aim of designing better inhibitors for cancer treatment, we combined an in silico docking approach with in vitro biochemical testing to construct a highly efficient chimera peptide from eight existing human BRC motifs. We built a molecular model of all BRC motifs complexed with HsRad51 based on the crystal structure of the BRC4 motif-HsRad51 complex, computed the interaction energy of each residue in each BRC motif, and selected the best amino acid residue at each binding position. This analysis enabled us to propose four amino acid substitutions in the BRC4 motif. Three of these increased the inhibitory effect in vitro, and this effect was found to be additive. We thus obtained a peptide that is about 10 times more efficient in inhibiting HsRad51-ssDNA complex formation than the original peptide.

  8. Solution NMR determination of hydrogen bonding and base pairing between the glyQS T box riboswitch Specifier domain and the anticodon loop of tRNA(Gly).

    Science.gov (United States)

    Chang, Andrew T; Nikonowicz, Edward P

    2013-11-01

    In Gram-positive bacteria the tRNA-dependent T box riboswitch regulates the expression of many amino acid biosynthetic and aminoacyl-tRNA synthetase genes through a transcription attenuation mechanism. The Specifier domain of the T box riboswitch contains the Specifier sequence that is complementary to the tRNA anticodon and is flanked by a highly conserved purine nucleotide that could result in a fourth base pair involving the invariant U33 of tRNA. We show that the interaction between the T box Specifier domain and tRNA consists of three Watson-Crick base pairs and that U33 confers stability to the complex through intramolecular hydrogen bonding. Enhanced packing within the Specifier domain loop E motif may stabilize the complex and contribute to cognate tRNA selection.

  9. Alternative radical pairs for cryptochrome-based magnetoreception

    Science.gov (United States)

    Lee, Alpha A.; Lau, Jason C. S.; Hogben, Hannah J.; Biskup, Till; Kattnig, Daniel R.; Hore, P. J.

    2014-01-01

    There is growing evidence that the remarkable ability of animals, in particular birds, to sense the direction of the Earth's magnetic field relies on magnetically sensitive photochemical reactions of the protein cryptochrome. It is generally assumed that the magnetic field acts on the radical pair [FAD•− TrpH•+] formed by the transfer of an electron from a group of three tryptophan residues to the photo-excited flavin adenine dinucleotide cofactor within the protein. Here, we examine the suitability of an [FAD•− Z•] radical pair as a compass magnetoreceptor, where Z• is a radical in which the electron spin has no hyperfine interactions with magnetic nuclei, such as hydrogen and nitrogen. Quantum spin dynamics simulations of the reactivity of [FAD•− Z•] show that it is two orders of magnitude more sensitive to the direction of the geomagnetic field than is [FAD•− TrpH•+] under the same conditions (50 µT magnetic field, 1 µs radical lifetime). The favourable magnetic properties of [FAD•− Z•] arise from the asymmetric distribution of hyperfine interactions among the two radicals and the near-optimal magnetic properties of the flavin radical. We close by discussing the identity of Z• and possible routes for its formation as part of a spin-correlated radical pair with an FAD radical in cryptochrome. PMID:24671932

  10. Repairing the sickle cell mutation. I. Specific covalent binding of a photoreactive third strand to the mutated base pair.

    Science.gov (United States)

    Broitman, S; Amosova, O; Dolinnaya, N G; Fresco, J R

    1999-07-30

    A DNA third strand with a 3'-psoralen substituent was designed to form a triplex with the sequence downstream of the T.A mutant base pair of the human sickle cell beta-globin gene. Triplex-mediated psoralen modification of the mutant T residue was sought as an approach to gene repair. The 24-nucleotide purine-rich target sequence switches from one strand to the other and has four pyrimidine interruptions. Therefore, a third strand sequence favorable to two triplex motifs was used, one parallel and the other antiparallel to it. To cope with the pyrimidine interruptions, which weaken third strand binding, 5-methylcytosine and 5-propynyluracil were used in the third strand. Further, a six residue "hook" complementary to an overhang of a linear duplex target was added to the 5'-end of the third strand via a T(4) linker. In binding to the overhang by Watson-Crick pairing, the hook facilitates triplex formation. This third strand also binds specifically to the target within a supercoiled plasmid. The psoralen moiety at the 3'-end of the third strand forms photoadducts to the targeted T with high efficiency. Such monoadducts are known to preferentially trigger reversion of the mutation by DNA repair enzymes.

  11. Functional renormalization-group study of the pairing symmetry and pairing mechanism of the FeAs-based high-temperature superconductor.

    Science.gov (United States)

    Wang, Fa; Zhai, Hui; Ran, Ying; Vishwanath, Ashvin; Lee, Dung-Hai

    2009-01-30

    We apply the fermion functional renormalization-group method to determine the pairing symmetry and pairing mechanism of the FeAs-Based materials. Within a five band model with pure repulsive interactions, we find an electronic-driven superconducting pairing instability. For the doping and interaction parameters we have examined, extended s wave, whose order parameter takes on opposite sign on the electron and hole pockets, is always the most favorable pairing symmetry. The pairing mechanism is the inter-Fermi-surface Josephson scattering generated by the antiferromagnetic correlation.

  12. A novel pseudo-complementary PNA G-C base pair

    DEFF Research Database (Denmark)

    Olsen, Anne G.; Dahl, Otto; Petersen, Asger Bjørn;

    2011-01-01

    Pseudo-complementary oligonucleotide analogues and mimics provide novel opportunities for targeting duplex structures in RNA and DNA. Previously, a pseudo-complementary A-T base pair has been introduced. Towards sequence unrestricted targeting, a pseudo-complementary G-C base pair consisting...

  13. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  14. A Project Risk Ranking Approach Based on Set Pair Analysis

    Institute of Scientific and Technical Information of China (English)

    Gao Feng; Chen Yingwu

    2006-01-01

    Set Pair Analysis (SPA) is a new methodology to describe and process system uncertainty. It is different from stochastic or fuzzy methods in reasoning and operation, and it has been applied in many areas recently. In this paper, the application of SPA in risk ranking is presented, which includes review of risk ranking, introduction of Connecting Degree (CD) that is a key role in SPA., Arithmetic and Tendency Grade (TG) of CDs, and a risk ranking approach proposed. Finally a case analysis is presented to illustrate the reasonability of this approach. It is found that this approach is very convenient to operate, while the ranking result is more comprehensible.

  15. Lewis pair polymerization by classical and frustrated Lewis pairs: Acid, base and monomer scope and polymerization mechanism

    KAUST Repository

    Zhang, Yuetao

    2012-01-01

    Classical and frustrated Lewis pairs (LPs) of the strong Lewis acid (LA) Al(C 6F 5) 3 with several Lewis base (LB) classes have been found to exhibit exceptional activity in the Lewis pair polymerization (LPP) of conjugated polar alkenes such as methyl methacrylate (MMA) as well as renewable α-methylene-γ-butyrolactone (MBL) and γ-methyl- α-methylene-γ-butyrolactone (γ-MMBL), leading to high molecular weight polymers, often with narrow molecular weight distributions. This study has investigated a large number of LPs, consisting of 11 LAs as well as 10 achiral and 4 chiral LBs, for LPP of 12 monomers of several different types. Although some more common LAs can also be utilized for LPP, Al(C 6F 5) 3-based LPs are far more active and effective than other LA-based LPs. On the other hand, several classes of LBs, when paired with Al(C 6F 5) 3, can render highly active and effective LPP of MMA and γ-MMBL; such LBs include phosphines (e.g., P tBu 3), chiral chelating diphosphines, N-heterocyclic carbenes (NHCs), and phosphazene superbases (e.g., P 4- tBu). The P 4- tBu/Al(C 6F 5) 3 pair exhibits the highest activity of the LP series, with a remarkably high turn-over frequency of 9.6 × 10 4 h -1 (0.125 mol% catalyst, 100% MMA conversion in 30 s, M n = 2.12 × 10 5 g mol -1, PDI = 1.34). The polymers produced by LPs at RT are typically atactic (P γMMBL with ∼47% mr) or syndio-rich (PMMA with ∼70-75% rr), but highly syndiotactic PMMA with rr ∼91% can be produced by chiral or achiral LPs at -78 °C. Mechanistic studies have identified and structurally characterized zwitterionic phosphonium and imidazolium enolaluminates as the active species of the current LPP system, which are formed by the reaction of the monomer·Al(C 6F 5) 3 adduct with P tBu 3 and NHC bases, respectively. Kinetic studies have revealed that the MMA polymerization by the tBu 3P/ Al(C 6F 5) 3 pair is zero-order in monomer concentration after an initial induction period, and the polymerization

  16. Roles of the Amino Group of Purine Bases in the Thermodynamic Stability of DNA Base Pairing

    Directory of Open Access Journals (Sweden)

    Shu-ichi Nakano

    2014-08-01

    Full Text Available The energetic aspects of hydrogen-bonded base-pair interactions are important for the design of functional nucleotide analogs and for practical applications of oligonucleotides. The present study investigated the contribution of the 2-amino group of DNA purine bases to the thermodynamic stability of oligonucleotide duplexes under different salt and solvent conditions, using 2'-deoxyriboinosine (I and 2'-deoxyribo-2,6-diaminopurine (D as non-canonical nucleotides. The stability of DNA duplexes was changed by substitution of a single base pair in the following order: G•C > D•T ≈ I•C > A•T > G•T > I•T. The apparent stabilization energy due to the presence of the 2-amino group of G and D varied depending on the salt concentration, and decreased in the water-ethanol mixed solvent. The effects of salt concentration on the thermodynamics of DNA duplexes were found to be partially sequence-dependent, and the 2-amino group of the purine bases might have an influence on the binding of ions to DNA through the formation of a stable base-paired structure. Our results also showed that physiological salt conditions were energetically favorable for complementary base recognition, and conversely, low salt concentration media and ethanol-containing solvents were effective for low stringency oligonucleotide hybridization, in the context of conditions employed in this study.

  17. Covering All the Bases in Genetics: Simple Shorthands and Diagrams for Teaching Base Pairing to Biology Undergraduates

    Directory of Open Access Journals (Sweden)

    Sergei Kuchin

    2011-03-01

    Full Text Available Explaining base pairing is an important element in teaching undergraduate genetics. I propose a teaching approach that aims to close the gap between the mantra “A pairs with T, and G pairs with C” and the “intimidating” chemical diagrams. The approach offers a set of simple “shorthands” for the key bases that can be used to quickly deduce all canonical and wobble pairs that the students need to know. The approach can be further developed to analyze mutagenic mismatch pairing.

  18. Pairing state with a time-reversal symmetry breaking in FeAs-based superconductors.

    Science.gov (United States)

    Lee, Wei-Cheng; Zhang, Shou-Cheng; Wu, Congjun

    2009-05-29

    We investigate the competition between the extended s+/--wave and dx2-y2-wave pairing order parameters in the iron-based superconductors. Because of the frustrating pairing interactions among the electron and the hole Fermi pockets, a time-reversal symmetry breaking s+id pairing state could be favored. We analyze this pairing state within the Ginzburg-Landau theory and explore the experimental consequences. In such a state, spatial inhomogeneity induces a supercurrent near a nonmagnetic impurity and the corners of a square sample. The resonance mode between the s+/-- and dx2-y2-wave order parameters can be detected through the B1g Raman spectroscopy.

  19. THE CONSTRUCTIONS OF ALMOST BINARY SEQUENCE PAIRS WITH THREE-LEVEL CORRELATION BASED ON CYCLOTOMY

    Institute of Scientific and Technical Information of China (English)

    Peng Xiuping; Xu Chengqian

    2012-01-01

    In this paper,a new class of almost binary sequence pair with a single zero element is presented.The almost binary sequence pairs with three-level correlation are constructed based on cyclotomic numbers of order 2,4,and 6.Most of them have good correlation and balance property,whose maximum nontrivial correlation magnitudes are 2 and the difference between the numbers of occurrence of +1's and -1's are 0 or 1.In addition,the corresponding binary sequence pairs are investigated as well and we can also get some kinds of binary sequence pairs with optimum balance and good correlation.

  20. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming

    Directory of Open Access Journals (Sweden)

    Lars Matthias Voll

    2011-08-01

    Full Text Available During compatible interactions with their host plants, biotrophic plant pathogens subvert host metabolism to ensure the sustained provision of nutrient assimilates by the colonized host cells. To investigate, whether common motifs can be revealed in the response of primary carbon and nitrogen metabolism towards colonization with biotrophic fungi in cereal leaves, we have conducted a combined metabolome and transcriptome study of three quite divergent pathosystems, the barley powdery mildew fungus (Blumeria graminis f.sp. hordei, the corn smut fungus Ustilago maydis and the maize anthracnose fungus Colletotrichum graminicola, the latter being a hemibiotroph that only exhibits an initial biotrophic phase during its establishment.Based on the analysis of 42 water-soluble metabolites, we were able to separate early biotrophic from late biotrophic interactions by hierarchical cluster analysis and principal component analysis, irrespective of the plant host. Interestingly, the corresponding transcriptome dataset could not discriminate between these stages of biotrophy, irrespective, of whether transcript data for genes of central metabolism or the entire transcriptome dataset was used. Strong differences in the transcriptional regulation of photosynthesis, glycolysis, the TCA cycle, lipid biosynthesis, and cell wall metabolism were observed between the pathosystems. Increased contents of Gln, Asn, and glucose as well as diminished contents of PEP and 3-PGA were common to early post-penetration stages of all interactions. On the transcriptional level, genes of the TCA cycle, nucleotide energy metabolism and amino acid biosynthesis exhibited consistent trends among the compared biotrophic interactions, identifying the requirement for metabolic energy and the rearrangement of amino acid pools as common transcriptional motifs during early biotrophy. Both metabolome and transcript data were employed to generate models of leaf primary metabolism during

  1. Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human Mps1.

    Science.gov (United States)

    Hennrich, Marco L; Marino, Fabio; Groenewold, Vincent; Kops, Geert J P L; Mohammed, Shabaz; Heck, Albert J R

    2013-05-01

    In order to understand cellular signaling, a clear understanding of kinase-substrate relationships is essential. Some of these relationships are defined by consensus recognition motifs present in substrates making them amendable for phosphorylation by designated kinases. Here, we explore a method that is based on two sequential steps of strong cation exchange chromatography combined with differential stable isotope labeling, to define kinase consensus motifs with high accuracy. We demonstrate the value of our method by evaluating the motifs of two very distinct kinases: cAMP regulated protein kinase A (PKA) and human monopolar spindle 1 (Mps1) kinase, also known as TTK. PKA is a well-studied basophilic kinase with a relatively well-defined motif and numerous known substrates in vitro and in vivo. Mps1, a kinase involved in chromosome segregation, has been less well characterized. Its substrate specificity is unclear and here we show that Mps1 is an acidophilic kinase with a striking tendency for phosphorylation of threonines. The final outcomes of our work are high-definition kinase consensus motifs for PKA and Mps1. Our generic method, which makes use of proteolytic cell lysates as a source for peptide-substrate libraries, can be implemented for any kinase present in the kinome.

  2. [Fourier Transform Spectrometer Based on Rotating Parallel-Mirror-Pair].

    Science.gov (United States)

    Zhao, Bao-wei; Xiangli, Bin; Cai, Qi-sheng; Lü, Qun-bo; Zhou, Jin-song

    2015-11-01

    In the temporally-modulated Fourier transform spectroscopy, the translational moving mirror is difficult to drive accurately, causing tilt and shear problems. While, a rotational moving mirror can solve these problems. A rotary Fourier transform spectrometer is recommanded in this paper. Its principle is analyzed and the optical path difference is deduced. Also, the constrains for engineering realization are presented. This spectrometer consists of one beamsplitter, two fixed mirrors, one rotating parallel mirror pair, a collimating lens, a collecting lens, and one detector. From it's principle, this spectrometer show a simple structure, and it is assembled and adjustmented easily because the two split light are interfered with each other after reflected through the same plane mirror; By calculating the expression of it's optical path difference, the spectrometer is easy to realize large optical path difference, meaning high spectral resolution; Through analyzing it's engineering design constraints and computer simulation, it is known that the spectrometer should get the high resolution sample by high-speed spinning motor, so it is easy to achieve precise motion control, good stability, fast measurement speed.

  3. rMotifGen: random motif generator for DNA and protein sequences

    Directory of Open Access Journals (Sweden)

    Hardin C Timothy

    2007-08-01

    Full Text Available Abstract Background Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM. Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Results Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. Conclusion rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

  4. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns.

    Science.gov (United States)

    Klosterman, Peter S; Hendrix, Donna K; Tamura, Makio; Holbrook, Stephen R; Brenner, Steven E

    2004-01-01

    Release 2.0.1 of the Structural Classification of RNA (SCOR) database, http://scor.lbl.gov, contains a classification of the internal and hairpin loops in a comprehensive collection of 497 NMR and X-ray RNA structures. This report discusses findings of the classification that have not been reported previously. The SCOR database contains multiple examples of a newly described RNA motif, the extruded helical single strand. Internal loop base triples are classified in SCOR according to their three-dimensional context. These internal loop triples contain several examples of a frequently found motif, the minor groove AGC triple. SCOR also presents the predominant and alternate conformations of hairpin loops, as shown in the most well represented tetraloops, with consensus sequences GNRA, UNCG and ANYA. The ubiquity of the GNRA hairpin turn motif is illustrated by its presence in complex internal loops.

  5. The extension of a DNA double helix by an additional Watson-Crick base pair on the same backbone

    DEFF Research Database (Denmark)

    Kumar, P.; Sharma, P. K.; Madsen, Charlotte S.

    2013-01-01

    Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand.......Additional base pair: The DNA duplex can be extended with an additional Watson-Crick base pair on the same backbone by the use of double-headed nucleotides. These also work as compressed dinucleotides and form two base pairs with cognate nucleobases on the opposite strand....

  6. Reversibly locked thionucleobase pairs in DNA to study base flipping enzymes

    Directory of Open Access Journals (Sweden)

    Christine Beuck

    2014-10-01

    Full Text Available Covalently interstrand cross-linked DNA is an interesting tool to study DNA binding proteins that locally open up the DNA duplex by flipping single bases out of the DNA helix or melting whole stretches of base pairs to perform their function. The ideal DNA cross-link to study protein–DNA interactions should be specific and easy to synthesize, be stable during protein binding experiments, have a short covalent linker to avoid steric hindrance of protein binding, and should be available as a mimic for both A/T and G/C base pairs to cover all possible binding specificities. Several covalent interstrand cross-links have been described in the literature, but most of them fall short of at least one of the above criteria. We developed an efficient method to site-specifically and reversibly cross-link thionucleoside base pairs in synthetic duplex oligodeoxynucleotides by bisalkylation with 1,2-diiodoethane resulting in an ethylene-bridged base pair. Both linked A/T and G/C base pair analogs can conveniently be prepared which allows studying any base pair-opening enzyme regardless of its sequence specificity. The cross-link is stable in the absence of reducing agents but the linker can be quickly and tracelessly removed by the addition of thiol reagents like dithiothreitol. This property makes the cross-linking reaction fully reversible and allows for a switching of the linked base pair from locked to unlocked during biochemical experiments. Using the DNA methyltransferase from Thermus aquaticus (M.TaqI as example, we demonstrate that the presented cross-linked DNA with an ethylene-linked A/T base pair analog at the target position is a useful tool to determine the base-flipping equilibrium constant of a base-flipping enzyme which lies mostly on the extrahelical side for M.TaqI.

  7. Self-organised criticality in base-pair breathing in DNA with a defect

    CERN Document Server

    Duduiala, Ciprian-Ionut; Laughton, Charles A

    2011-01-01

    We analyse base-pair breathing in a DNA sequence of 12 base-pairs with a defective base at its centre. We use both all-atom molecular dynamics (MD) simulations and a system of stochastic differential equations (SDE). In both cases, Fourier analysis of the trajectories reveals self-organised critical behaviour in the breathing of base-pairs. The Fourier Transforms (FT) of the interbase distances show power-law behaviour with gradients close to -1. The scale-invariant behaviour we have found provides evidence for the view that base-pair breathing corresponds to the nucleation stage of large-scale DNA opening (or 'melting') and that this process is a (second-order) phase transition. Although the random forces in our SDE system were introduced as white noise, FTs of the displacements exhibit pink noise, as do the displacements in the AMBER/MD simulations.

  8. A new improved ID-based proxy ring signature scheme from bilinear pairings

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Ring signature and proxy signature are of vital importance to secure electronic commerce. Recently,the bilinear pairing such as Weil pairing or Tate pairing on elliptic curves and hyperelliptic curves is playing an important role in security solutions. Several ID-based signature schemes have been put forward, many of which are based on bilinear pairings. In key management and moderate security demand scenarios, ID-based public key cryptosystem is more preferable than other public key infrastructure based systems. In this paper, an improved ID-based proxy ring signature scheme from bilinear pairings is proposed which combines the advantages of proxy signature and of ring signatures. Our scheme can guarantee the profits of the proxy signer via preventing the original signer form generating the proxy ring signature. Furthermore, bilinear pairings are introduced to minimize the computation overhead and to improve the related performance of our scheme. In contrast with Zhang's scheme, our scheme is a computational efficiency improvement for signature verification because the computational cost of bilinear pairings required is reduced from O(n) to O( 1 ). In addition, the proxy ring signature presented in this paper can perfectly satisfy all the security requirements of proxy ring signature, i.e.signer-ambiguity, non-forgeability, verification, non-deniability and distinguishability.

  9. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, G.J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer (R

  10. The conserved dileucine- and tyrosine-based motifs in MLV and MPMV envelope glycoproteins are both important to regulate a common Env intracellular trafficking

    Directory of Open Access Journals (Sweden)

    Lopez-Vergès Sandra

    2006-09-01

    Full Text Available Abstract Background Retrovirus particles emerge from the assembly of two structural protein components, Gag that is translated as a soluble protein in the cytoplasm of the host cells, and Env, a type I transmembrane protein. Because both components are translated in different intracellular compartments, elucidating the mechanisms of retrovirus assembly thus requires the study of their intracellular trafficking. Results We used a CD25 (Tac chimera-based approach to study the trafficking of Moloney murine leukemia virus and Mason-Pfizer monkey virus Env proteins. We found that the cytoplasmic tails (CTs of both Env conserved two major signals that control a complex intracellular trafficking. A dileucine-based motif controls the sorting of the chimeras from the trans-Golgi network (TGN toward endosomal compartments. Env proteins then follow a retrograde transport to the TGN due to the action of a tyrosine-based motif. Mutation of either motif induces the mis-localization of the chimeric proteins and both motifs are found to mediate interactions of the viral CTs with clathrin adaptors. Conclusion This data reveals the unexpected complexity of the intracellular trafficking of retrovirus Env proteins that cycle between the TGN and endosomes. Given that Gag proteins hijack endosomal host proteins, our work suggests that the endosomal pathway may be used by retroviruses to ensure proper encountering of viral structural Gag and Env proteins in cells, an essential step of virus assembly.

  11. Fluorescent Protein Based FRET Pairs with Improved Dynamic Range for Fluorescence Lifetime Measurements.

    Directory of Open Access Journals (Sweden)

    Bobin George Abraham

    Full Text Available Fluorescence Resonance Energy Transfer (FRET using fluorescent protein variants is widely used to study biochemical processes in living cells. FRET detection by fluorescence lifetime measurements is the most direct and robust method to measure FRET. The traditional cyan-yellow fluorescent protein based FRET pairs are getting replaced by green-red fluorescent protein variants. The green-red pair enables excitation at a longer wavelength which reduces cellular autofluorescence and phototoxicity while monitoring FRET. Despite the advances in FRET based sensors, the low FRET efficiency and dynamic range still complicates their use in cell biology and high throughput screening. In this paper, we utilized the higher lifetime of NowGFP and screened red fluorescent protein variants to develop FRET pairs with high dynamic range and FRET efficiency. The FRET variations were analyzed by proteolytic activity and detected by steady-state and time-resolved measurements. Based on the results, NowGFP-tdTomato and NowGFP-mRuby2 have shown high potentials as FRET pairs with large fluorescence lifetime dynamic range. The in vitro measurements revealed that the NowGFP-tdTomato has the highest Förster radius for any fluorescent protein based FRET pairs yet used in biological studies. The developed FRET pairs will be useful for designing FRET based sensors and studies employing Fluorescence Lifetime Imaging Microscopy (FLIM.

  12. In vivo Regulation of the Allergic Response by the Interleukin 4 Receptor Alpha Chain Immunoreceptor Tyrosine-based Inhibitory Motif

    Science.gov (United States)

    Tachdjian, Raffi; Khatib, Shadi Al; Schwinglshackl, Andreas; Kim, Hong Sook; Chen, Andrew; Blasioli, Julie; Mathias, Clinton; Kim, Hye-Young; Umetsu, Dale T.; Oettgen, Hans C.; Chatila, Talal A.

    2010-01-01

    Background Signaling by IL-4 and IL-13 via the IL-4 receptor alpha chain (IL-4Rα) plays a critical role in the pathology of allergic diseases. The IL-4Rα is endowed with an immunoreceptor tyrosine-based inhibitory motif (ITIM), centered on tyrosine 709 (Y709) in the cytoplasmic domain, that binds a number of regulatory phosphatases. The function of the ITIM in the in vivo regulation of IL-4R signaling remains unknown. Objective To determine the in vivo function of the IL-4Rα ITIM using mice in which the ITIM was inactivated by mutagenesis of the tyrosine Y709 residue into phenylalanine (F709). Methods F709 ITIM mutant mice were derived by knockin mutagenesis. Activation of intracellular signaling cascades by IL-4 and IL-13 was assessed by intracellular staining of phosphorylated signaling intermediates and by gene expression analysis. In vivo responses to allergic sensitization were assessed using models of allergic airway inflammation. Results The F709 mutation increased STAT6 phosphorylation by IL-4 and, disproportionately, by IL-13. This was associated with exaggerated Th2 polarization, enhanced alternative macrophage activation by IL-13, augmented basal and antigen-induced IgE responses and intensified allergen-induced eosinophilic airway inflammation and hyperreactivity. Conclusions These results point to a physiologic negative regulatory role for the Y709 ITIM in signaling via IL-4Rα, especially by IL-13. PMID:20392476

  13. The tris-urea motif and its incorporation into polydimethylsiloxane-based supramolecular materials presenting self-healing features.

    Science.gov (United States)

    Roy, Nabarun; Buhler, Eric; Lehn, Jean-Marie

    2013-07-01

    Materials of supramolecular nature have attracted much attention owing to their interesting features, such as self-reparability and material robustness, that are imparted by noncovalent interactions to synthetic materials. Among the various structures and synthetic methodologies that may be considered for this purpose, the introduction of extensive arrays of multiple hydrogen bonds allows for the formation of supramolecular materials that may, in principle, present self-healing behavior. Hydrogen bonded networks implement dynamic noncovalent interactions. Suitable selection of structural units gives access to novel dynamic self-repairing materials by incrementing the number of hydrogen-bonding sites present within a molecular framework. Herein, we describe the formation of a tris-urea based motif giving access to six hydrogen-bonding sites, easily accessible through reaction of carbohydrazide with an isocyanate derivative. Extension towards the synthesis of multiply hydrogen-bonded supramolecular materials has been achieved by polycondensation of carbohydrazide with a bis-isocyanate component derived from poly-dimethylsiloxane chains. Such materials underwent self-repair at a mechanically cut surface. This approach gives access to a broad spectrum of materials of varying flexibility by appropriate selection of the bis-isocyanate component that forms the polymer backbone.

  14. Motif-based success scores in coauthorship networks are highly sensitive to author name disambiguation

    Science.gov (United States)

    Klosik, David F.; Bornholdt, Stefan; Hütt, Marc-Thorsten

    2014-09-01

    Following the work of Krumov et al. [Eur. Phys. J. B 84, 535 (2011), 10.1140/epjb/e2011-10746-5] we revisit the question whether the usage of large citation datasets allows for the quantitative assessment of social (by means of coauthorship of publications) influence on the progression of science. Applying a more comprehensive and well-curated dataset containing the publications in the journals of the American Physical Society during the whole 20th century we find that the measure chosen in the original study, a score based on small induced subgraphs, has to be used with caution, since the obtained results are highly sensitive to the exact implementation of the author disambiguation task.

  15. Crystal structure of a new hybrid compound based on an iodido-plumbate(II) anionic motif.

    Science.gov (United States)

    Mokhnache, Oualid; Boughzala, Habib

    2016-01-01

    Crystals of the one-dimensional organic-inorganic lead iodide-based compound catena-poly[bis-(piperazine-1,4-diium) [[tetra-iodido-plumbate(II)]-μ-iodido] iodide monohydrate], (C4N2H12)2[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H12)(2+) cations, water mol-ecules of crystallization and isolated I(-) anions are connected through N-H⋯·I, N-H⋯OW and OW-H⋯I hydrogen-bond inter-actions. Zigzag chains of corner-sharing [PbI6](4-) octa-hedra with composition [PbI4/1I2/2](3-) running parallel to the a axis are present in the structure packing.

  16. Crystal structure of a new hybrid compound based on an iodidoplumbate(II anionic motif

    Directory of Open Access Journals (Sweden)

    Oualid Mokhnache

    2016-01-01

    Full Text Available Crystals of the one-dimensional organic–inorganic lead iodide-based compound catena-poly[bis(piperazine-1,4-diium [[tetraiodidoplumbate(II]-μ-iodido] iodide monohydrate], (C4N2H122[PbI5]I·H2O, were obtained by slow evaporation at room temperature of a solution containing lead iodide and piperazine in a 1:2 molar ratio. Inorganic lead iodide chains, organic (C4N2H122+ cations, water molecules of crystallization and isolated I− anions are connected through N—H...·I, N—H...OW and OW—H...I hydrogen-bond interactions. Zigzag chains of corner-sharing [PbI6]4− octahedra with composition [PbI4/1I2/2]3− running parallel to the a axis are present in the structure packing.

  17. Intelligent Music Composition using Genetic Algorithm based on Motif Uniform Mutation

    Directory of Open Access Journals (Sweden)

    Faria Nassiri-Mofakham

    2015-03-01

    Full Text Available Nowadays, fields of music and artificial intelligence are closer together through research in both areas. Music composition using artificial intelligence (AI solutions has created a challenging research area. Automatic music composition will not only help researchers understand human’s musical thinking, but also helps composers and musicians improve music theory significantly by using the computing power of computers. In this study, an automatic music composition is presented. The system is implemented by using Markov chain and Lindenmayer systems as well as genetic algorithm. Fitness evaluation of the generated music is achord-based. The evaluations show the fast evolution of the results by genetic algorithm using uniform mutation. Creativity in music composition is beyond the present borders of AI and much work is still ahead in this field.

  18. Entanglement and Sources of Magnetic Anisotropy in Radical Pair-Based Avian Magnetoreceptors

    Science.gov (United States)

    Hogben, Hannah J.; Biskup, Till; Hore, P. J.

    2012-11-01

    One of the principal models of magnetic sensing in migratory birds rests on the quantum spin dynamics of transient radical pairs created photochemically in ocular cryptochrome proteins. We consider here the role of electron spin entanglement and coherence in determining the sensitivity of a radical pair-based geomagnetic compass and the origins of the directional response. It emerges that the anisotropy of radical pairs formed from spin-polarized molecular triplets could form the basis of a more sensitive compass sensor than one founded on the conventional hyperfine-anisotropy model. This property offers new and more flexible opportunities for the design of biologically inspired magnetic compass sensors.

  19. Entanglement and Sources of Magnetic Anisotropy in Radical Pair-Based Avian Magnetoreceptors

    CERN Document Server

    Hogben, Hannah J; Hore, P J

    2012-01-01

    One of the principal models of magnetic sensing in migratory birds rests on the quantum spin-dynamics of transient radical pairs created photochemically in ocular cryptochrome proteins. We consider here the role of electron spin entanglement and coherence in determining the sensitivity of a radical pair-based geomagnetic compass and the origins of the directional response. It emerges that the anisotropy of radical pairs formed from spin-polarized molecular triplets could form the basis of a more sensitive compass sensor than one founded on the conventional hyper?ne-anisotropy model. This property offers new and more flexible opportunities for the design of biologically inspired magnetic compass sensors.

  20. Static Dependency Pair Method based on Strong Computability for Higher-Order Rewrite Systems

    CERN Document Server

    Kusakari, Keiichirou; Sakai, Masahiko; Blanqui, Frédéric

    2011-01-01

    Higher-order rewrite systems (HRSs) and simply-typed term rewriting systems (STRSs) are computational models of functional programs. We recently proposed an extremely powerful method, the static dependency pair method, which is based on the notion of strong computability, in order to prove termination in STRSs. In this paper, we extend the method to HRSs. Since HRSs include \\lambda-abstraction but STRSs do not, we restructure the static dependency pair method to allow \\lambda-abstraction, and show that the static dependency pair method also works well on HRSs without new restrictions.

  1. Motif Yggdrasil: sampling sequence motifs from a tree mixture model.

    Science.gov (United States)

    Andersson, Samuel A; Lagergren, Jens

    2007-06-01

    In phylogenetic foot-printing, putative regulatory elements are found in upstream regions of orthologous genes by searching for common motifs. Motifs in different upstream sequences are subject to mutations along the edges of the corresponding phylogenetic tree, consequently taking advantage of the tree in the motif search is an appealing idea. We describe the Motif Yggdrasil sampler; the first Gibbs sampler based on a general tree that uses unaligned sequences. Previous tree-based Gibbs samplers have assumed a star-shaped tree or partially aligned upstream regions. We give a probabilistic model (MY model) describing upstream sequences with regulatory elements and build a Gibbs sampler with respect to this model. The model allows toggling, i.e., the restriction of a position to a subset of nucleotides, but does not require aligned sequences nor edge lengths, which may be difficult to come by. We apply the collapsing technique to eliminate the need to sample nuisance parameters, and give a derivation of the predictive update formula. We show that the MY model improves the modeling of difficult motif instances and that the use of the tree achieves a substantial increase in nucleotide level correlation coefficient both for synthetic data and 37 bacterial lexA genes. We investigate the sensitivity to errors in the tree and show that using random trees MY sampler still has a performance similar to the original version.

  2. Base pairing interaction between 5'- and 3'-UTRs controls icaR mRNA translation in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Igor Ruiz de los Mozos

    Full Text Available The presence of regulatory sequences in the 3' untranslated region (3'-UTR of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 3'-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 3'-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 3'-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 3'-UTRs may play in controlling mRNA expression. We showed that base pairing between the 3'-UTR and the Shine-Dalgarno (SD region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG within icaR 3'-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 3'-UTR with the 5'-UTR of the same mRNA.

  3. Base pairing interaction between 5'- and 3'-UTRs controls icaR mRNA translation in Staphylococcus aureus.

    Science.gov (United States)

    Ruiz de los Mozos, Igor; Vergara-Irigaray, Marta; Segura, Victor; Villanueva, Maite; Bitarte, Nerea; Saramago, Margarida; Domingues, Susana; Arraiano, Cecilia M; Fechter, Pierre; Romby, Pascale; Valle, Jaione; Solano, Cristina; Lasa, Iñigo; Toledo-Arana, Alejandro

    2013-01-01

    The presence of regulatory sequences in the 3' untranslated region (3'-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 3'-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 3'-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 3'-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 3'-UTRs may play in controlling mRNA expression. We showed that base pairing between the 3'-UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 3'-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 3'-UTR with the 5'-UTR of the same mRNA.

  4. Rule Based Ensembles Using Pair Wise Neural Network Classifiers

    Directory of Open Access Journals (Sweden)

    Moslem Mohammadi Jenghara

    2015-03-01

    Full Text Available In value estimation, the inexperienced people's estimation average is good approximation to true value, provided that the answer of these individual are independent. Classifier ensemble is the implementation of mentioned principle in classification tasks that are investigated in two aspects. In the first aspect, feature space is divided into several local regions and each region is assigned with a highly competent classifier and in the second, the base classifiers are applied in parallel and equally experienced in some ways to achieve a group consensus. In this paper combination of two methods are used. An important consideration in classifier combination is that much better results can be achieved if diverse classifiers, rather than similar classifiers, are combined. To achieve diversity in classifiers output, the symmetric pairwise weighted feature space is used and the outputs of trained classifiers over the weighted feature space are combined to inference final result. In this paper MLP classifiers are used as the base classifiers. The Experimental results show that the applied method is promising.

  5. Selective Targeting of G-Quadruplex Structures by a Benzothiazole-Based Binding Motif.

    Science.gov (United States)

    Buchholz, Ina; Karg, Beatrice; Dickerhoff, Jonathan; Sievers-Engler, Adrian; Lämmerhofer, Michael; Weisz, Klaus

    2017-03-09

    A benzothiazole derivative was identified as potent ligand for DNA G-quadruplex structures. Fluorescence titrations revealed selective binding to quadruplexes of different topologies including parallel, antiparallel and (3+1) hybrid structures. The parallel c-MYC sequence was found to constitute the preferred target with dissociation constants in the micromolar range. Binding of the benzothiazole-based ligand to c-MYC was structurally and thermodynamically characterized in detail by employing a comprehensive set of spectroscopic and calorimetric techniques. Job plot analyses and mass spectral data indicate non-cooperative ligand binding to form 1:1 and 2:1 complex stoichiometries. Whereas stacking interactions are suggested by optical methods, NMR chemical shift perturbations also indicate significant rearrangements of both 5'- and 3'-flanking sequences upon ligand binding. Additional isothermal calorimetry studies yield a thermodynamic profile of the ligand-quadruplex association and reveal enthalpic contributions to be the major driving force for binding. The structural and thermodynamic information obtained in the present work provides the basis for the rational development of benzothiazole derivatives as promising quadruplex binding agents.

  6. Comparable stability of Hoogsteen and Watson-Crick base pairs in ionic liquid choline dihydrogen phosphate.

    Science.gov (United States)

    Tateishi-Karimata, Hisae; Nakano, Miki; Sugimoto, Naoki

    2014-01-08

    The instability of Hoogsteen base pairs relative to Watson-Crick base pairs has limited biological applications of triplex-forming oligonucleotides. Hydrated ionic liquids (ILs) provide favourable environments for a wide range of chemical reactions and are known to impact the stabilities of Watson-Crick base pairs. We found that DNA triplex formation was significantly stabilized in hydrated choline dihydrogen phosphate as compared with an aqueous buffer at neutral pH. Interestingly, the stability of Hoogsteen base pairs was found to be comparable with that of Watson-Crick base pairs in the hydrated IL. Molecular dynamics simulations of a DNA triplex in the presence of choline ions revealed that the DNA triplex was stabilized because of the binding of choline ion around the third strand in the grooves. Our finding will facilitate the development of new DNA materials. Our data also indicate that triplex formation may be stabilized inside cells where choline ions and their derivatives are abundant in vivo.

  7. Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy

    Directory of Open Access Journals (Sweden)

    João Frois Caldeira

    2013-03-01

    Full Text Available Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean- reverting spreads with a certain degree of predictability. This paper applies cointegration tests to identify stocks to be used in pairs trading strategies. In addition to estimating long-term equilibrium and to model the resulting residuals, we select stock pairs to compose a pairs trading portfolio based on an indicator of profitability evaluated in-sample. The profitability of the strategy is assessed with data from the São Paulo stock exchange ranging from January 2005 to October 2012. Empirical analysis shows that the proposed strategy exhibit excess returns of 16.38% per year, Sharpe Ratio of 1.34 and low correlation with the market.

  8. Discrete Frequency Entangled Photon Pair Generation Based on Silicon Micro-ring Cavities

    Science.gov (United States)

    Suo, Jing; Zhang, Wei; Dong, Shuai; Huang, Yidong; Peng, Jiangde

    2016-10-01

    In this paper, we propose and demonstrate a scheme to generate discrete frequency entangled photon pairs based on a silicon micro-ring resonator. The resonator is placed in a Sagnac fiber loop. Stimulated by two pump lights at two different resonance wavelengths of the resonator, photon pairs at another two resonance wavelengths are generated along two opposite directions in the fiber loop, by the nondegenerate spontaneous four wave mixing in the resonator. Their states are superposed and interfered at the output ports of the fiber loop to generate frequency entangled photon pairs. On the other hand, since the pump lights come from two continuous wave lasers, energy-time entanglement is an intrinsic property of the generated photon pairs. The entanglements on frequency and energy-time are demonstrated experimentally by the experiments of spatial quantum beating and Franson-type interference, respectively, showing that the silicon micro-ring resonators are ideal candidates to realize complex photonic quantum state generation.

  9. Intracellular localization of the M1 muscarinic acetylcholine receptor through clathrin-dependent constitutive internalization is mediated by a C-terminal tryptophan-based motif.

    Science.gov (United States)

    Uwada, Junsuke; Yoshiki, Hatsumi; Masuoka, Takayoshi; Nishio, Matomo; Muramatsu, Ikunobu

    2014-07-15

    The M1 muscarinic acetylcholine receptor (M1-mAChR, encoded by CHRM1) is a G-protein-coupled membrane receptor that is activated by extracellular cholinergic stimuli. Recent investigations have revealed the intracellular localization of M1-mAChR. In this study, we observed constitutive internalization of M1-mAChR in mouse neuroblastoma N1E-115 cells without agonist stimulation. Constitutive internalization depended on dynamin, clathrin and the adaptor protein-2 (AP-2) complex. A WxxI motif in the M1-mAChR C-terminus is essential for its constitutive internalization, given that replacement of W(442) or I(445) with alanine residues abolished constitutive internalization. This WxxI motif resembles YxxΦ, which is the canonical binding motif for the μ2 subunit of the AP-2 complex. The M1-mAChR C-terminal WxxI motif interacted with AP-2 μ2. W442A and I445A mutants of the M1-mAChR C-terminal sequence lost AP-2-μ2-binding activity, whereas the W442Y mutant bound more effectively than wild type. Consistent with these results, W442A and I445A M1-mAChR mutants selectively localized to the cell surface. By contrast, the W442Y receptor mutant was found only at intracellular sites. Our data indicate that the cellular distribution of M1-mAChR is governed by the C-terminal tryptophan-based motif, which mediates constitutive internalization.

  10. Intergenic regions of Borrelia plasmids contain phylogenetically conserved RNA secondary structure motifs

    Directory of Open Access Journals (Sweden)

    Delihas Nicholas

    2009-03-01

    Full Text Available Abstract Background Borrelia species are unusual in that they contain a large number of linear and circular plasmids. Many of these plasmids have long intergenic regions. These regions have many fragmented genes, repeated sequences and appear to be in a state of flux, but they may serve as reservoirs for evolutionary change and/or maintain stable motifs such as small RNA genes. Results In an in silico study, intergenic regions of Borrelia plasmids were scanned for phylogenetically conserved stem loop structures that may represent functional units at the RNA level. Five repeat sequences were found that could fold into stable RNA-type stem loop structures, three of which are closely linked to protein genes, one of which is a member of the Borrelia lipoprotein_1 super family genes and another is the complement regulator-acquiring surface protein_1 (CRASP-1 family. Modeled secondary structures of repeat sequences display numerous base-pair compensatory changes in stem regions, including C-G→A-U transversions when orthologous sequences are compared. Base-pair compensatory changes constitute strong evidence for phylogenetic conservation of secondary structure. Conclusion Intergenic regions of Borrelia species carry evolutionarily stable RNA secondary structure motifs. Of major interest is that some motifs are associated with protein genes that show large sequence variability. The cell may conserve these RNA motifs whereas allow a large flux in amino acid sequence, possibly to create new virulence factors but with associated RNA motifs intact.

  11. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity

    NARCIS (Netherlands)

    Martin, Brent R; Giepmans, Ben N G; Adams, Stephen R; Tsien, Roger Y

    2005-01-01

    Membrane-permeant biarsenical dyes such as FlAsH and ReAsH fluoresce upon binding to genetically encoded tetracysteine motifs expressed in living cells, yet spontaneous nonspecific background staining can prevent detection of weakly expressed or dilute proteins. If the affinity of the tetracysteine

  12. Network motif-based identification of transcription factor-target gene relationships by integrating multi-source biological data

    Directory of Open Access Journals (Sweden)

    de los Reyes Benildo G

    2008-04-01

    Full Text Available Abstract Background Integrating data from multiple global assays and curated databases is essential to understand the spatio-temporal interactions within cells. Different experiments measure cellular processes at various widths and depths, while databases contain biological information based on established facts or published data. Integrating these complementary datasets helps infer a mutually consistent transcriptional regulatory network (TRN with strong similarity to the structure of the underlying genetic regulatory modules. Decomposing the TRN into a small set of recurring regulatory patterns, called network motifs (NM, facilitates the inference. Identifying NMs defined by specific transcription factors (TF establishes the framework structure of a TRN and allows the inference of TF-target gene relationship. This paper introduces a computational framework for utilizing data from multiple sources to infer TF-target gene relationships on the basis of NMs. The data include time course gene expression profiles, genome-wide location analysis data, binding sequence data, and gene ontology (GO information. Results The proposed computational framework was tested using gene expression data associated with cell cycle progression in yeast. Among 800 cell cycle related genes, 85 were identified as candidate TFs and classified into four previously defined NMs. The NMs for a subset of TFs are obtained from literature. Support vector machine (SVM classifiers were used to estimate NMs for the remaining TFs. The potential downstream target genes for the TFs were clustered into 34 biologically significant groups. The relationships between TFs and potential target gene clusters were examined by training recurrent neural networks whose topologies mimic the NMs to which the TFs are classified. The identified relationships between TFs and gene clusters were evaluated using the following biological validation and statistical analyses: (1 Gene set enrichment

  13. Does base-pairing strength play a role in microRNA repression?

    OpenAIRE

    2012-01-01

    In this paper, the authors explore the possibility that the base-pairing strength of miRNA–mRNA target plays a role in microRNA-mediated gene regulation. The authors found a significant correlation between the physiological temperature of the organism and the average G/C content of its miRNAs. This study suggests that an organism adapts its miRNA–target free energy according to its physiological temperature, thus highlighting the importance of base-pairing strength in miRNA activity.

  14. [Structural and Dipole Structure Peculiarities of Hoogsteen Base Pairs Formed in Complementary Nucleobases according to ab initio Quantum Mechanics Studies].

    Science.gov (United States)

    Petrenko, Y M

    2015-01-01

    Ab initio quantum mechanics studies for the detection of structure and dipole structure peculiarities of Hoogsteen base pairs relative to Watson-Crick base pairs, were performed during our work. These base pairs are formed as a result of complementary interactions. It was revealed, that adenine-thymine Hoogsteen base pair and adenine-thymine Watson-Crick base pairs can be formed depending on initial configuration. Cytosine-guanine Hoogsteen pairs are formed only when cytosine was originally protonated. Both types of Hoogsteen pairs have noticeable difference in the bond distances and angles. These differences appeared in purine as well as in pyrimidine parts of the pairs. Hoogsteen pairs have mostly shorter hydrogen bond lengths and significantly larger angles of hydrogen bonds and larger angles between the hydrogen bonds than Watson-Crick base pairs. Notable differences are also observed with respect to charge distribution and dipole moment. Quantitative data on these differences are shown in our work. It is also reported that the values of local parameters (according to Cambridge classification of the parameters which determine DNA properties) in Hoogsteen base pairs, are greatly different from Watson-Crick ones.

  15. Single-molecule derivation of salt dependent base-pair free energies in DNA

    CERN Document Server

    Huguet, J M; Forns, N; Smith, S B; Bustamante, C; Ritort, F; 10.1073/pnas.1001454107

    2010-01-01

    Accurate knowledge of the thermodynamic properties of nucleic acids is crucial to predicting their structure and stability. To date most measurements of base-pair free energies in DNA are obtained in thermal denaturation experiments, which depend on several assumptions. Here we report measurements of the DNA base-pair free energies based on a simplified system, the mechanical unzipping of single DNA molecules. By combining experimental data with a physical model and an optimization algorithm for analysis, we measure the 10 unique nearest-neighbor base-pair free energies with 0.1 kcal mol-1 precision over two orders of magnitude of monovalent salt concentration. We find an improved set of standard energy values compared with Unified Oligonucleotide energies and a unique set of 10 base-pair-specific salt-correction values. The latter are found to be strongest for AA/TT and weakest for CC/GG. Our new energy values and salt corrections improve predictions of DNA unzipping forces and are fully compatible with melt...

  16. Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-like Transforms

    CERN Document Server

    Chaudhury, Kunal Narayan

    2009-01-01

    We propose a novel method for constructing Hilbert transform (HT) pairs of wavelet bases based on a fundamental approximation-theoretic characterization of scaling functions--the B-spline factorization theorem. In particular, starting from well-localized scaling functions, we construct HT pairs of biorthogonal wavelet bases of L^2(R) by relating the corresponding wavelet filters via a discrete form of the continuous HT filter. As a concrete application of this methodology, we identify HT pairs of spline wavelets of a specific flavor, which are then combined to realize a family of complex wavelets that resemble the optimally-localized Gabor function for sufficiently large orders. Analytic wavelets, derived from the complexification of HT wavelet pairs, exhibit a one-sided spectrum. Based on the tensor-product of such analytic wavelets, and, in effect, by appropriately combining four separable biorthogonal wavelet bases of L^2(R^2), we then discuss a methodology for constructing 2D directional-selective complex...

  17. Measurement and theory of hydrogen bonding contribution to isosteric DNA base pairs.

    Science.gov (United States)

    Khakshoor, Omid; Wheeler, Steven E; Houk, K N; Kool, Eric T

    2012-02-15

    We address the recent debate surrounding the ability of 2,4-difluorotoluene (F), a low-polarity mimic of thymine (T), to form a hydrogen-bonded complex with adenine in DNA. The hydrogen bonding ability of F has been characterized as small to zero in various experimental studies, and moderate to small in computational studies. However, recent X-ray crystallographic studies of difluorotoluene in DNA/RNA have indicated, based on interatomic distances, possible hydrogen bonding interactions between F and natural bases in nucleic acid duplexes and in a DNA polymerase active site. Since F is widely used to measure electrostatic contributions to pairing and replication, it is important to quantify the impact of this isostere on DNA stability. Here, we studied the pairing stability and selectivity of this compound and a closely related variant, dichlorotoluene deoxyriboside (L), in DNA, using both experimental and computational approaches. We measured the thermodynamics of duplex formation in three sequence contexts and with all possible pairing partners by thermal melting studies using the van't Hoff approach, and for selected cases by isothermal titration calorimetry (ITC). Experimental results showed that internal F-A pairing in DNA is destabilizing by 3.8 kcal/mol (van't Hoff, 37 °C) as compared with T-A pairing. At the end of a duplex, base-base interactions are considerably smaller; however, the net F-A interaction remains repulsive while T-A pairing is attractive. As for selectivity, F is found to be slightly selective for adenine over C, G, T by 0.5 kcal mol, as compared with thymine's selectivity of 2.4 kcal/mol. Interestingly, dichlorotoluene in DNA is slightly less destabilizing and slightly more selective than F, despite the lack of strongly electronegative fluorine atoms. Experimental data were complemented by computational results, evaluated at the M06-2X/6-31+G(d) and MP2/cc-pVTZ levels of theory. These computations suggest that the pairing energy of F to A

  18. Concealed d-wave pairs in the s± condensate of iron-based superconductors.

    Science.gov (United States)

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    2016-05-17

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave ([Formula: see text]) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. Here, we propose a new class of [Formula: see text] state containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave ([Formula: see text]) motion of the pairs with the internal angular momenta [Formula: see text] of the iron orbitals to make a singlet ([Formula: see text]), an [Formula: see text] superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba1-x KXFe2As2 as a reconfiguration of the orbital and internal angular momentum into a high spin ([Formula: see text]) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. The formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.

  19. Genome filtering using methylation-sensitive restriction enzymes with six-base pair recognition sites

    Science.gov (United States)

    The large fraction of repetitive DNA in many plant genomes has complicated all aspects of DNA sequencing and assembly, and thus techniques that enrich for genes and low-copy sequences have been employed to isolate gene space. Methyl sensitive restriction enzymes with six base pair recognition sites...

  20. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays

    NARCIS (Netherlands)

    Urakawa, H.; Fantroussi, El S.; Smidt, H.; Smoot, J.C.; Tribou, E.H.; Kelly, J.J.; Noble, P.A.; Stahl, D.A.

    2003-01-01

    The discrimination between perfect-match and single-base-pair-mismatched nucleic acid duplexes was investigated by using oligonucleotide DNA microarrays and nonequilibrium dissociation rates (melting profiles). DNA and RNA versions of two synthetic targets corresponding to the 16S rRNA sequences of

  1. Facile syntheses of dissymmetric ferrocene-functionalized Lewis acids and acid-base pairs.

    Science.gov (United States)

    Morgan, Ian R; Di Paolo, Angela; Vidovic, Dragoslav; Fallis, Ian A; Aldridge, Simon

    2009-12-21

    A facile synthetic approach is reported for the synthesis of dissymmetric 1,2-ferrocenediyl Lewis acids and mixed acid-base pairs including the first example of a 1-phosphino-2-borylferrocene; the use of non-racemic electrophiles allows for the isolation of single diastereomer products.

  2. A Simple Picosecond Pulse Generator Based on a Pair of Step Recovery Diodes

    CERN Document Server

    Zou, Lianfeng; Caloz, Christophe

    2016-01-01

    A picosecond pulse generator based on a pair of step recovery diodes (SRD), leveraging the transient response of the SRD PN junction and controlling the pulse width by a resistor, is proposed. We first explain the operation principle of the device, decomposing the pulse generation into different phases, and then demonstrate an experimental prototype with two different resistance, and hence pulse width, values.

  3. New ab initio based pair potential for accurate simulation of phase transitions in ZnO

    NARCIS (Netherlands)

    Wang, Shuaiwei; Fan, Zhaochuan; Koster, Rik S.; Fang, Changming; Van Huis, Marijn A.; Yalcin, Anil O.; Tichelaar, Frans D.; Zandbergen, Henny W.; Vlugt, Thijs J H

    2014-01-01

    A set of interatomic pair potentials is developed for ZnO based on the partially charged rigid ion model (PCRIM). The derivation of the potentials combines lattice inversion, empirical fitting, and ab initio energy surface fitting. We show that, despite the low number of parameters in this model (8)

  4. Pair correlation functions of FeAs-based superconductors: Quantum Monte Carlo study

    Science.gov (United States)

    Kashurnikov, V. A.; Krasavin, A. V.

    2015-01-01

    The new generalized quantum continuous time world line Monte Carlo algorithm was developed to calculate pair correlation functions for two-dimensional FeAs-clusters modeling of iron-based superconductors within the framework of the two-orbital model. The analysis of pair correlations depending on the cluster size, temperature, interaction, and the type of symmetry of the order parameter is carried out. The data obtained for clusters with sizes up to 1 0x1 0 FeAs-cells favor the possibility of an effective charge carrier's attraction that is corresponding the A1g-symmetry, at some parameters of interaction.

  5. Identity-based authenticated key exchange protocols from the Tate pairing

    Science.gov (United States)

    Shen, Jun; Jin, Hong; Yang, Zhiyong; Cui, Xiang

    2011-12-01

    Key agreement protocols are designed to establish a session keys between two or multiple entities oven an insecure network and the session key is used to assure confidentiality thought encryption. With the advantages of identity-based (ID-based) cryptography, there have been many ID-based key agreement protocols proposed. However, most of them are based on Weil pairing, which is more cost of computation compared with Tate paring. In this paper, we propose a newly ID-based key agreement protocol from the Tate pairing. Compared with previous protocols, the new protocol minimizes the cost of computation with no extra message exchange time. In addition, the proposed protocol provides known key security, no key control, no key-compromise impersonation and perfect forward secrecy.

  6. Pair correlations in iron-based superconductors: Quantum Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Kashurnikov, V.A.; Krasavin, A.V., E-mail: avkrasavin@gmail.com

    2014-08-01

    The new generalized quantum continuous time world line Monte Carlo algorithm was developed to calculate pair correlation functions for two-dimensional FeAs-clusters modeling of iron-based superconductors using a two-orbital model. The data obtained for clusters with sizes up to 10×10 FeAs-cells favor the possibility of an effective charge carrier's attraction that is corresponding the A{sub 1g}-symmetry, at some parameters of interaction. The analysis of pair correlations depending on the cluster size, temperature, interaction, and the type of symmetry of the order parameter is carried out. - Highlights: • New generalized quantum continuous time world line Monte Carlo algorithm is developed. • Pair correlation functions for two-dimensional FeAs-clusters are calculated. • Parameters of two-orbital model corresponding to attraction of carriers are defined.

  7. Far-end Crosstalk Modeling Based on Capacitive and Inductive Unbalances Between Pairs in a Cable

    Directory of Open Access Journals (Sweden)

    Pavel Lafata

    2011-01-01

    Full Text Available This article deals with new ways of far-end crosstalk (FEXT modeling in multi-pair and multi-quad metallic cables. Current standard modeling methods provide only rough estimations of FEXT characteristics based on average values of crosstalk for the whole cable. However, for practical implementation of vector discrete multi-tone modulation (VDMT is necessary to predict and simulate FEXT characteristics with sufficient accuracy and simulate FEXT transfer functions individually for each combination of symmetrical pairs in a cable. This article contains a theoretical analysis and description of the problem and suggests a new method for modeling of FEXT crosstalk using capacitive and inductive unbalances between pairs in a cable. This proposed model offers more accurate and realistic results of crosstalk. Theoretical simulations and results are also compared with the measured characteristics for specific metallic cable.

  8. The Sentiment Trend Analysis of Twitter Based on Set Pair Contact Degree

    Directory of Open Access Journals (Sweden)

    Chunying Zhang

    2013-01-01

    Full Text Available Sentiment trend of twitter users have a great influence on their friends and the crowd listened. This paper directs at the user sentiment state of twitter, the unique medium, and applies set pair analysis method for trend analysis. First, we begin with set pair contact degree, then based on set pair affective computing model to make comparison with the size relationship of same degree, difference degree, opposition degree of the emotion, to build the user sentiment trend analysis model; Secondly, we analyze the influence for the user's own sentiment trend when the value changed of difference coefficient ; thirdly, after analyze to obtain one user's sentiment orientation threshold as prerequisite for user behavior prediction. Finally, setting an example to calculate the sentiment trend of one twitter, then to get the conclusion is that the analysis of user emotion from a three-dimensional angle is more realistic than the single angle.

  9. Comparison, Analysis and Optimization of Motif Finding Based on Different Algorithms%基于不同算法的Motif预测比较分析与优化

    Institute of Scientific and Technical Information of China (English)

    张斐; 谭军; 谢竞博

    2009-01-01

    研究转录因子结合位点(TFBs)的主要预测模型及其预测的算法,通过基于调控元件预测的3种代表性的算法MEME、Gibbs采样和Weeder预测拟南芥基因组.比较结果表明,Gibbs采样算法和Weeder算法预测长、短motif效率较高.重点分析MEME算法,提出结合不同算法查找motif的优化方法,并以实验验证该方法能有效提高预测效率.%This paper studies some models and discrimination algorithms of Transcription Factor Binding sites(TFBs). Experiment compares advantages and disadvantages in three representative discrimination algorithms which are based on regulation elements, including MEME, Gibbs sample and Weeder through predicting arabidopsis thaliana genome, against Gibbs sampling algorithm and Weeder algorithms are forecast long and short motif of the characteristics of high efficiency, MEME is intensively analyzed, and proposed an effective way to forecast motifs through MEME binding other discrimination algorithms. Experimental result proves that the method can improve the efficiency of motif finding efficiently.

  10. A regenerated electrochemical biosensor for label-free detection of glucose and urea based on conformational switch of i-motif oligonucleotide probe

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong Feng; Chen, Dong Mei [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Lei, Jing Lei [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Hong Qun, E-mail: luohq@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Nian Bing, E-mail: linb@swu.edu.cn [Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2015-10-15

    Improving the reproducibility of electrochemical signal remains a great challenge over the past decades. In this work, i-motif oligonucleotide probe-based electrochemical DNA (E-DNA) sensor is introduced for the first time as a regenerated sensing platform, which enhances the reproducibility of electrochemical signal, for label-free detection of glucose and urea. The addition of glucose or urea is able to activate glucose oxidase-catalyzed or urease-catalyzed reaction, inducing or destroying the formation of i-motif oligonucleotide probe. The conformational switch of oligonucleotide probe can be recorded by electrochemical impedance spectroscopy. Thus, the difference of electron transfer resistance is utilized for the quantitative determination of glucose and urea. We further demonstrate that the E-DNA sensor exhibits high selectivity, excellent stability, and remarkable regenerated ability. The human serum analysis indicates that this simple and regenerated strategy holds promising potential in future biosensing applications. - Highlights: • Conformational switch of i-motif is used for the detection of glucose and urea. • The sensor can be regenerated. • The proposed method is successfully applied in real sample assay. • Our method is label-free and inexpensive.

  11. Theory of phase segregation in DNA assemblies containing two different base-pair sequence types

    Science.gov (United States)

    (O’ Lee, Dominic J.; Wynveen, Aaron; Kornyshev, Alexei A.

    2017-01-01

    Spontaneous pairing of homologous DNA sequences—a challenging subject in molecular biophysics, often referred to as ‘homology recognition’—has been observed in vitro for several DNA systems. One of these experiments involved liquid crystalline quasi-columnar phases formed by a mixture of two kinds of double stranded DNA oligomer. Both oligomer types were of the same length and identical stoichiometric base-pair composition, but the base-pairs followed a different order. Phase segregation of the two DNA types was observed in the experiments, with the formation of boundaries between domains rich in molecules of one type (order) of base pair sequence. We formulate here a modified ‘X–Y model’ for phase segregation in such assemblies, obtain approximate solutions of the model, compare analytical results to Monte Carlo simulations, and rationalise past experimental observations. This study, furthermore, reveals the factors that affect the degree of segregation. Such information could be used in planning new versions of similar segregation experiments, needed for deepening our understanding of forces that might be involved, e.g., in gene–gene recognition.

  12. Assessment of composite motif discovery methods

    Directory of Open Access Journals (Sweden)

    Johansen Jostein

    2008-02-01

    Full Text Available Abstract Background Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery – discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. Results We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Conclusion Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual

  13. Acid-Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization.

    Science.gov (United States)

    Lewis, Jennifer D; Van de Vyver, Stijn; Román-Leshkov, Yuriy

    2015-08-17

    Hf-, Sn-, and Zr-Beta zeolites catalyze the cross-aldol condensation of aromatic aldehydes with acetone under mild reaction conditions with near quantitative yields. NMR studies with isotopically labeled molecules confirm that acid-base pairs in the Si-O-M framework ensemble promote soft enolization through α-proton abstraction. The Lewis acidic zeolites maintain activity in the presence of water and, unlike traditional base catalysts, in acidic solutions.

  14. Thermodynamic contribution and nearest-neighbor parameters of pseudouridine-adenosine base pairs in oligoribonucleotides.

    Science.gov (United States)

    Hudson, Graham A; Bloomingdale, Richard J; Znosko, Brent M

    2013-11-01

    Pseudouridine (Ψ) is the most common noncanonical nucleotide present in naturally occurring RNA and serves a variety of roles in the cell, typically appearing where structural stability is crucial to function. Ψ residues are isomerized from native uridine residues by a class of highly conserved enzymes known as pseudouridine synthases. In order to quantify the thermodynamic impact of pseudouridylation on U-A base pairs, 24 oligoribonucleotides, 16 internal and eight terminal Ψ-A oligoribonucleotides, were thermodynamically characterized via optical melting experiments. The thermodynamic parameters derived from two-state fits were used to generate linearly independent parameters for use in secondary structure prediction algorithms using the nearest-neighbor model. On average, internally pseudouridylated duplexes were 1.7 kcal/mol more stable than their U-A counterparts, and terminally pseudouridylated duplexes were 1.0 kcal/mol more stable than their U-A equivalents. Due to the fact that Ψ-A pairs maintain the same Watson-Crick hydrogen bonding capabilities as the parent U-A pair in A-form RNA, the difference in stability due to pseudouridylation was attributed to two possible sources: the novel hydrogen bonding capabilities of the newly relocated imino group as well as the novel stacking interactions afforded by the electronic configuration of the Ψ residue. The newly derived nearest-neighbor parameters for Ψ-A base pairs may be used in conjunction with other nearest-neighbor parameters for accurately predicting the most likely secondary structure of A-form RNA containing Ψ-A base pairs.

  15. Nucleic Acid Base Analog FRET-Pair Facilitating Detailed Structural Measurements in Nucleic Acid Containing Systems

    DEFF Research Database (Denmark)

    Börjesson, Karl; Preus, Søren; El-Sagheer, Afaf;

    2009-01-01

    toward detailed studies of the inherent dynamics of nucleic acid structures. Moreover, the placement of FRET-pair chromophores inside the base stack will be a great advantage in studies where other (biomacro)molecules interact with the nucleic acid. Lastly, our study gives possibly the first truly solid...... distances covering up to more than one turn of the DNA duplex. Importantly, we show that the rigid stacking of the two base analogs, and consequently excellent control of their exact positions and orientations, results in a high control of the orientation factor and hence very distinct FRET changes...... as the number of bases separating tCO and tC(nitro) is varied. A set of DNA strands containing the FRET-pair at wisely chosen locations will, thus, make it possible to accurately distinguish distance- from orientation-changes using FRET. In combination with the good nucleobase analog properties, this points...

  16. Qualitative detection of class IIa bacteriocinogenic lactic acid bacteria from traditional Chinese fermented food using a YGNGV-motif-based assay.

    Science.gov (United States)

    Liu, Wenli; Zhang, Lanwei; Yi, Huaxi; Shi, John; Xue, Chaohui; Li, Hongbo; Jiao, Yuehua; Shigwedha, Nditange; Du, Ming; Han, Xue

    2014-05-01

    In the present study, a YGNGV-motif-based assay was developed and applied. Given that there is an increasing demand for natural preservatives, we set out to obtain lactic acid bacteria (LAB) that produce bacteriocins against Gram-positive and Gram-negative bacteria. We here isolated 123 LAB strains from 5 types of traditional Chinese fermented food and screened them for the production of bacteriocins using the agar well diffusion assay (AWDA). Then, to acquire LAB producing class IIa bacteriocins, we used a YGNGV-motif-based assay that was based on 14 degenerate primers matching all class IIa bacteriocin-encoding genes currently deposited in NCBI. Eight of the LAB strains identified by AWDA could inhibit Gram-positive and Gram-negative bacteria; 5 of these were YGNGV-amplicon positive. Among these 5 isolates, amplicons from 2 strains (Y31 and Y33) matched class IIa bacteriocin genes. Strain Y31 demonstrated the highest inhibitory activity and the best match to a class IIa bacteriocin gene in NCBI, and was identified as Enterococcus faecium. The bacteriocin from Enterococcus avium Y33 was 100% identical to enterocin P. Both of these strains produced bacteriocins with strong antimicrobial activity against Listeria monocytogenes, Escherichia coli, and Bacillus subtilis, hence these bacteriocins hold promise as potential bio-preservatives in the food industry. These findings also indicated that the YGNGV-motif-based assay used in this study could identify novel class IIa bacteriocinogenic LAB, rapidly and specifically, saving time and labour by by-passing multiple separation and purification steps.

  17. A discriminative approach for unsupervised clustering of DNA sequence motifs.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available Algorithmic comparison of DNA sequence motifs is a problem in bioinformatics that has received increased attention during the last years. Its main applications concern characterization of potentially novel motifs and clustering of a motif collection in order to remove redundancy. Despite growing interest in motif clustering, the question which motif clusters to aim at has so far not been systematically addressed. Here we analyzed motif similarities in a comprehensive set of vertebrate transcription factor classes. For this we developed enhanced similarity scores by inclusion of the information coverage (IC criterion, which evaluates the fraction of information an alignment covers in aligned motifs. A network-based method enabled us to identify motif clusters with high correspondence to DNA-binding domain phylogenies and prior experimental findings. Based on this analysis we derived a set of motif families representing distinct binding specificities. These motif families were used to train a classifier which was further integrated into a novel algorithm for unsupervised motif clustering. Application of the new algorithm demonstrated its superiority to previously published methods and its ability to reproduce entrained motif families. As a result, our work proposes a probabilistic approach to decide whether two motifs represent common or distinct binding specificities.

  18. A light scattering study of the evolution of pairing in Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hackl, Rudi; Kretzschmar, Florian; Muschler, Bernhard; Boehm, Thomas [Walther-Meissner-Institut, DE-85748 Garching (Germany); Wen, Hai-Hu [Nanjing University, Nanjing 210093 (China); Tsurkan, Vladimir [University of Augsburg, DE-86159 Augsburg (Germany); Academy of Sciences of Moldova, MD-2028 Chisinau (Moldova, Republic of); Deisenhofer, Joachim; Loidl, Alois [University of Augsburg, DE-86159 Augsburg (Germany)

    2013-07-01

    The iron-based superconductors are a laboratory for exploring the relevance of electron-electron interactions beyond electron-phonon coupling, being at work in conventional superconductors, since the Fermi surfaces can be varied systematically by atomic substitution. This enables one to systematically study magnetism and superconductivity as a function of the Fermi surface topology. Inelastic light scattering affords a window into the electronic properties of the ordered states. In particular, the evolution of the superconducting pairing upon doping can be probed since light scattering allows access to the anisotropy of the energy gap and, in some cases, of the pairing potential. Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} is one of those cases since the competition between s- and d-wave pairing leads to the appearance of exciton-like modes below the gap edges of the various bands. Along with the results from other materials having different Fermi surface cross-sections the data in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} support the spin fluctuation scenario driven by interband coupling. The experiments show that there exist alternative routes for the analysis of the pairing interaction in superconductors with unconventional coupling and anisotropic gaps.

  19. The Motif Tracking Algorithm

    CERN Document Server

    Wilson, William; Aickelin, Uwe; 10.1007/s11633.008.0032.0

    2010-01-01

    The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper we introduce the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilisation of an intuitive symbolic representation. The resulting population of motifs is shown to have considerable potential value for other ap...

  20. The Motif Tracking Algorithm

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The search for patterns or motifs in data represents a problem area of key interest to finance and economic researchers. In this paper, we introduce the motif tracking algorithm (MTA), a novel immune inspired (IS) pattern identification tool that is able to identify unknown motifs of a non specified length which repeat within time series data. The power of the algorithm comes from the fact that it uses a small number of parameters with minimal assumptions regarding the data being examined or the underlying motifs. Our interest lies in applying the algorithm to financial time series data to identify unknown patterns that exist. The algorithm is tested using three separate data sets. Particular suitability to financial data is shown by applying it to oil price data. In all cases, the algorithm identifies the presence of a motif population in a fast and efficient manner due to the utilization of an intuitive symbolic representation.The resulting population of motifs is shown to have considerable potential value for other applications such as forecasting and algorithm seeding.

  1. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water.

    Science.gov (United States)

    Cafferty, Brian J; Fialho, David M; Khanam, Jaheda; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-25

    The RNA World hypothesis presupposes that abiotic reactions originally produced nucleotides, the monomers of RNA and universal constituents of metabolism. However, compatible prebiotic reactions for the synthesis of complementary (that is, base pairing) nucleotides and mechanisms for their mutual selection within a complex chemical environment have not been reported. Here we show that two plausible prebiotic heterocycles, melamine and barbituric acid, form glycosidic linkages with ribose and ribose-5-phosphate in water to produce nucleosides and nucleotides in good yields. Even without purification, these nucleotides base pair in aqueous solution to create linear supramolecular assemblies containing thousands of ordered nucleotides. Nucleotide anomerization and supramolecular assemblies favour the biologically relevant β-anomer form of these ribonucleotides, revealing abiotic mechanisms by which nucleotide structure and configuration could have been originally favoured. These findings indicate that nucleotide formation and selection may have been robust processes on the prebiotic Earth, if other nucleobases preceded those of extant life.

  2. Hydrogen bonding: a channel for protons to transfer through acid-base pairs.

    Science.gov (United States)

    Wu, Liang; Huang, Chuanhui; Woo, Jung-Je; Wu, Dan; Yun, Sung-Hyun; Seo, Seok-Jun; Xu, Tongwen; Moon, Seung-Hyeon

    2009-09-10

    Different from H(3)O(+) transport as in the vehicle mechanism, protons find another channel to transfer through the poorly hydrophilic interlayers in a hydrated multiphase membrane. This membrane was prepared from poly(phthalazinone ether sulfone kentone) (SPPESK) and H(+)-form perfluorosulfonic resin (FSP), and poorly hydrophilic electrostatically interacted acid-base pairs constitute the interlayer between two hydrophilic phases (FSP and SPPESK). By hydrogen bonds forming and breaking between acid-base pairs and water molecules, protons transport directly through these poorly hydrophilic zones. The multiphase membrane, due to this unique transfer mechanism, exhibits better electrochemical performances during fuel cell tests than those of pure FSP and Nafion-112 membranes: 0.09-0.12 S cm(-1) of proton conductivity at 25 degrees C and 990 mW cm(-2) of the maximum power density at a current density of 2600 mA cm(-2) and a cell voltage of 0.38 V.

  3. Investigation on traceability of 3D Scanning Electron Microscopy based on the Stereo Pair Technique

    DEFF Research Database (Denmark)

    Bariani, Paolo

    The scanning electron microscope (SEM) has a big potential as a metrology instrument for micro and nanotechnology due to its unique combination of three imaging properties: • Lateral ultimate resolution down to 2nm • Large range of possible magnification levels ranging from a few hundred times...... that addresses the performance of 3D topography calculation based on surface topography imaging using secondary electrons and the Stereo Pair Technique....

  4. Optimized distance-dependent atom-pair-based potential DOOP for protein structure prediction.

    Science.gov (United States)

    Chae, Myong-Ho; Krull, Florian; Knapp, Ernst-Walter

    2015-05-01

    The DOcking decoy-based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance-dependent atom-pair interactions. To optimize the atom-pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand-receptor systems (or just pairs). Thus, a total of 8609 ligand-receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand-receptor systems, 1000 evenly sampled docking decoys with 0-10 Å interface root-mean-square-deviation (iRMSD) were generated with a method used before for protein-protein docking. A neural network-based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel-like energy landscape for the interaction between these hypothetical ligand-receptor systems. Thus, our method hierarchically models the overall funnel-like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom-pair-based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation-dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand-receptor systems and their decoys are freely available at http://agknapp.chemie.fu-berlin.de/doop/.

  5. A chemical approach to mapping nucleosomes at base pair resolution in yeast.

    Science.gov (United States)

    Brogaard, Kristin R; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-01-01

    Most eukaryotic DNA exists in DNA-protein complexes known as nucleosomes. The exact locations of nucleosomes along the genome play a critical role in chromosome functions and gene regulation. However, the current methods for nucleosome mapping do not provide the necessary accuracy to identify the precise nucleosome locations. Here we describe a new experimental approach that directly maps nucleosome center locations in vivo genome-wide at single base pair resolution.

  6. Pairing-Free ID-Based Key-Insulated Signature Scheme

    Institute of Scientific and Technical Information of China (English)

    Guo-Bin Zhu; Hu Xiong; Zhi-Guang Qin

    2015-01-01

    Abstract⎯Without the assumption that the private keys are kept secure perfectly, cryptographic primitives cannot be deployed in the insecure environments where the key leakage is inevitable. In order to reduce the damage caused by the key exposure in the identity-based (ID-based) signature scenarios efficiently, we propose an ID-based key-insulated signature scheme in this paper, which eliminates the expensive bilinear pairing operations. Compared with the previous work, our scheme minimizes the computation cost without any extra cost. Under the discrete logarithm (DL) assumption, a security proof of our scheme in the random oracle model has also been given.

  7. Chemical Reasoning Based on an Invariance Property: Bond and Lone Pair Pictures in Quantum Structural Formulas

    Directory of Open Access Journals (Sweden)

    Joseph Alia

    2010-07-01

    Full Text Available Chemists use one set of orbitals when comparing to a structural formula, hybridized AOs or NBOs for example, and another for reasoning in terms of frontier orbitals, MOs usually. Chemical arguments can frequently be made in terms of energy and/or electron density without the consideration of orbitals at all. All orbital representations, orthogonal or not, within a given function space are related by linear transformation. Chemical arguments based on orbitals are really energy or electron density arguments; orbitals are linked to these observables through the use of operators. The Valency Interaction Formula, VIF, offers a system of chemical reasoning based on the invariance of observables from one orbital representation to another. VIF pictures have been defined as one-electron density and Hamiltonian operators. These pictures are classified in a chemically meaningful way by use of linear transformations applied to them in the form of two pictorial rules and the invariance of the number of doubly, singly, and unoccupied orbitals or bonding, nonbonding, and antibonding orbitals under these transformations. The compatibility of the VIF method with the bond pair – lone pair language of Lewis is demonstrated. Different electron lone pair representations are related by the pictorial rules and have stability understood in terms of Walsh’s rules. Symmetries of conjugated ring systems are related to their electronic state by simple mathematical formulas. Description of lone pairs in conjugated systems is based on the strength and sign of orbital interactions around the ring. Simple models for bonding in copper clusters are tested, and the bonding of O2 to Fe(II in hemoglobin is described. Arguments made are supported by HF, B3LYP, and MP2 computations.

  8. Genetic interaction motif finding by expectation maximization – a novel statistical model for inferring gene modules from synthetic lethality

    Directory of Open Access Journals (Sweden)

    Ye Ping

    2005-12-01

    Full Text Available Abstract Background Synthetic lethality experiments identify pairs of genes with complementary function. More direct functional associations (for example greater probability of membership in a single protein complex may be inferred between genes that share synthetic lethal interaction partners than genes that are directly synthetic lethal. Probabilistic algorithms that identify gene modules based on motif discovery are highly appropriate for the analysis of synthetic lethal genetic interaction data and have great potential in integrative analysis of heterogeneous datasets. Results We have developed Genetic Interaction Motif Finding (GIMF, an algorithm for unsupervised motif discovery from synthetic lethal interaction data. Interaction motifs are characterized by position weight matrices and optimized through expectation maximization. Given a seed gene, GIMF performs a nonlinear transform on the input genetic interaction data and automatically assigns genes to the motif or non-motif category. We demonstrate the capacity to extract known and novel pathways for Saccharomyces cerevisiae (budding yeast. Annotations suggested for several uncharacterized genes are supported by recent experimental evidence. GIMF is efficient in computation, requires no training and automatically down-weights promiscuous genes with high degrees. Conclusion GIMF effectively identifies pathways from synthetic lethality data with several unique features. It is mostly suitable for building gene modules around seed genes. Optimal choice of one single model parameter allows construction of gene networks with different levels of confidence. The impact of hub genes the generic probabilistic framework of GIMF may be used to group other types of biological entities such as proteins based on stochastic motifs. Analysis of the strongest motifs discovered by the algorithm indicates that synthetic lethal interactions are depleted between genes within a motif, suggesting that synthetic

  9. Orbital-Parity Selective Superconducting Pairing Structures of Fe-based Superconductors under Glide Symmetry

    Science.gov (United States)

    Lin, Chiahui; Chou, Chung-Pin; Yin, Wei-Guo; Ku, Wei

    2014-03-01

    We show that the superconductivity in Fe-based superconductors consists of zero and finite momentum (π , π , 0) Cooper pairs with the same and different parities of the Fe 3 d orbitals respectively. The former develops the distinct gap structures for each orbital parity, and the latter is characteristic of spin singlet, spacial oddness and time reversal symmetry breaking. This originates from the unit cell containing two Fe atoms and two anions of staggered positioning with respect to the Fe square lattice. The in-plane translation is turned into glide translation, which dictates orbital-parity selective quasiparticles. Such novel pairing structures explain the unusual gap angular modulation on the hole pockets in recent ARPES and STS experiments. Work supported by DOE DE-AC02-98CH10886 and Chinese Academy of Engineering Physics and Ministry of Science and Technology.

  10. Renormalization group analysis of competing orders and the pairing symmetry in Fe-based superconductors

    Science.gov (United States)

    Chubukov, A. V.

    2009-05-01

    We analyze antiferromagnetism and superconductivity in novel Fe-based superconductors within the weak-coupling, itinerant model of electron and hole pockets near (0, 0) and ( π, π) in the folded Brillouin zone. We discuss the interaction Hamiltonian, the nesting, the RG flow of the couplings at energies above and below the Fermi energy, and the interplay between SDW magnetism, superconductivity and charge orbital order. We argue that SDW antiferromagnetism wins at zero doping but looses to superconductivity upon doping. We show that the most likely symmetry of the superconducting gap is A1 g in the folded zone. This gap has no nodes on the Fermi surface but changes sign between hole and electron pockets. We also argue that at weak coupling, this pairing predominantly comes not from spin fluctuation exchange but from a direct pair hopping between hole and electron pockets.

  11. UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation

    Directory of Open Access Journals (Sweden)

    Onori Annalisa

    2013-01-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible. Results We have previously shown that the zinc finger-based artificial transcriptional factor “Jazz” corrects the dystrophic pathology in mdx mice by upregulating utrophin gene expression. Here we describe a novel artificial transcription factor, named “UtroUp”, engineered to further improve the DNA-binding specificity. UtroUp has been designed to recognise an extended DNA target sequence on both the human and mouse utrophin gene promoters. The UtroUp DNA-binding domain contains six zinc finger motifs in tandem, which is able to recognise an 18-base-pair DNA target sequence that statistically is present only once in the human genome. To achieve a higher transcriptional activation, we coupled the UtroUp DNA-binding domain with the innovative transcriptional activation domain, which was derived from the multivalent adaptor protein Che-1/AATF. We show that the artificial transcription factor UtroUp, due to its six zinc finger tandem motif, possesses a low dissociation constant that is consistent with a strong affinity/specificity toward its DNA-binding site. When expressed in mammalian cell lines, UtroUp promotes utrophin transcription and efficiently accesses active chromatin promoting accumulation of the acetylated form of histone H3 in the utrophin promoter locus. Conclusions This novel artificial molecule may represent an improved platform for the development of future applications in DMD treatment.

  12. Prediction of plant promoters based on hexamers and random triplet pair analysis

    Directory of Open Access Journals (Sweden)

    Noman Nasimul

    2011-06-01

    Full Text Available Abstract Background With an increasing number of plant genome sequences, it has become important to develop a robust computational method for detecting plant promoters. Although a wide variety of programs are currently available, prediction accuracy of these still requires further improvement. The limitations of these methods can be addressed by selecting appropriate features for distinguishing promoters and non-promoters. Methods In this study, we proposed two feature selection approaches based on hexamer sequences: the Frequency Distribution Analyzed Feature Selection Algorithm (FDAFSA and the Random Triplet Pair Feature Selecting Genetic Algorithm (RTPFSGA. In FDAFSA, adjacent triplet-pairs (hexamer sequences were selected based on the difference in the frequency of hexamers between promoters and non-promoters. In RTPFSGA, random triplet-pairs (RTPs were selected by exploiting a genetic algorithm that distinguishes frequencies of non-adjacent triplet pairs between promoters and non-promoters. Then, a support vector machine (SVM, a nonlinear machine-learning algorithm, was used to classify promoters and non-promoters by combining these two feature selection approaches. We referred to this novel algorithm as PromoBot. Results Promoter sequences were collected from the PlantProm database. Non-promoter sequences were collected from plant mRNA, rRNA, and tRNA of PlantGDB and plant miRNA of miRBase. Then, in order to validate the proposed algorithm, we applied a 5-fold cross validation test. Training data sets were used to select features based on FDAFSA and RTPFSGA, and these features were used to train the SVM. We achieved 89% sensitivity and 86% specificity. Conclusions We compared our PromoBot algorithm to five other algorithms. It was found that the sensitivity and specificity of PromoBot performed well (or even better with the algorithms tested. These results show that the two proposed feature selection methods based on hexamer frequencies

  13. A three-dimensional RNA motif in Potato spindle tuber viroid mediates trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana.

    Science.gov (United States)

    Takeda, Ryuta; Petrov, Anton I; Leontis, Neocles B; Ding, Biao

    2011-01-01

    Cell-to-cell trafficking of RNA is an emerging biological principle that integrates systemic gene regulation, viral infection, antiviral response, and cell-to-cell communication. A key mechanistic question is how an RNA is specifically selected for trafficking from one type of cell into another type. Here, we report the identification of an RNA motif in Potato spindle tuber viroid (PSTVd) required for trafficking from palisade mesophyll to spongy mesophyll in Nicotiana benthamiana leaves. This motif, called loop 6, has the sequence 5'-CGA-3'...5'-GAC-3' flanked on both sides by cis Watson-Crick G/C and G/U wobble base pairs. We present a three-dimensional (3D) structural model of loop 6 that specifies all non-Watson-Crick base pair interactions, derived by isostericity-based sequence comparisons with 3D RNA motifs from the RNA x-ray crystal structure database. The model is supported by available chemical modification patterns, natural sequence conservation/variations in PSTVd isolates and related species, and functional characterization of all possible mutants for each of the loop 6 base pairs. Our findings and approaches have broad implications for studying the 3D RNA structural motifs mediating trafficking of diverse RNA species across specific cellular boundaries and for studying the structure-function relationships of RNA motifs in other biological processes.

  14. Visibility graph motifs

    CERN Document Server

    Iacovacci, Jacopo

    2015-01-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of visibility graph motifs, smaller substructures that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated to general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable to distinguish among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification a...

  15. 1-t-motifs

    CERN Document Server

    Taelman, Lenny

    2009-01-01

    We show that the module of rational points on an abelian t-module E is canonically isomorphic with the module Ext^1(M_E, K[t]) of extensions of the trivial t-motif K[t] by the t-motif M_E associated with E. This generalizes prior results of Anderson and Thakur and of Papanikolas and Ramachandran. In case E is uniformizable then we show that this extension module is canonically isomorphic with the corresponding extension module of Pink-Hodge structures. This situation is formally very similar to Deligne's theory of 1-motifs and we have tried to build up the theory in a way that makes this analogy as clear as possible.

  16. MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2008-01-01

    . Algorithms that predict which peptides MHC molecules bind have recently been developed and cover many different alleles, but the utility of these algorithms is hampered by the lack of tools for browsing and comparing the specificity of these molecules. We have, therefore, developed a web server, MHC motif...... viewer, that allows the display of the likely binding motif for all human class I proteins of the loci HLA A, B, C, and E and for MHC class I molecules from chimpanzee (Pan troglodytes), rhesus monkey (Macaca mulatta), and mouse (Mus musculus). Furthermore, it covers all HLA-DR protein sequences...

  17. The MHC motif viewer

    DEFF Research Database (Denmark)

    Rapin, Nicolas Philippe Jean-Pierre; Hoof, Ilka; Lund, Ole

    2010-01-01

    of peptides, and knowledge of their binding specificities is important for understanding differences in the immune response between individuals. Algorithms predicting which peptides bind a given MHC molecule have recently been developed with high prediction accuracy. The utility of these algorithms...... is hampered by the lack of tools for browsing and comparing specificity of these molecules. We have developed a Web server, MHC Motif Viewer, which allows the display of the binding motif for MHC class I proteins for human, chimpanzee, rhesus monkey, mouse, and swine, as well as HLA-DR protein sequences...

  18. The analysis of photon pair source at telecom wavelength based on the BBO crystal (Conference Presentation)

    Science.gov (United States)

    Gajewski, Andrzej; Kolenderski, Piotr L.

    2016-10-01

    There are several problems that must be solved in order to increase the distance of quantum communication protocols based on photons as an information carriers. One of them is the dispersion, whose effects can be minimized by engineering spectral properties of transmitted photons. In particular, it is expected that positively correlated photon pairs can be very useful. We present the full characterization of a source of single photon pairs at a telecom wavelength based on type II spontaneous parametric down conversion (SPDC) process in a beta-barium borate (BBO) crystal. In the type II process, a pump photon, which is polarized extraordinarily, splits in a nonlinear medium into signal and idler photons, which are polarized perpendicularly to each other. In order for the process to be efficient a phase matching condition must be fulfilled. These conditions originate from momentum and energy conservation rules and put severe restrictions on source parameters. Seemingly, these conditions force the photon pair to be negatively correlated in their spectral domain. However, it is possible to achieve positive correlation for pulsed pumping. The experimentally available degrees of freedom of a source are the width of the pumping beam, the collected modes' widths, the length of the nonlinear crystal and the duration of the pumping pulse. In our numerical model we use the following figures of merit: the pair production rate, the efficiency of photon coupling into a single mode fiber, the spectral correlation of the coupled photon pair. The last one is defined as the Pearson correlation parameter for a joint spectral distribution. The aim here is to find the largest positive spectral correlation and the highest coupling efficiency. By resorting to the numerical model Ref. [1] we showed in Ref. [2], that by careful adjustment of the pump's and the collected modes' characteristics, one can optimize any of the source's parameters. Our numerical outcomes conform to the

  19. [Study of pH measuring based on i-motif DNA conformation switch and UV-Vis absorption spectroscopy of gold nanoparticles].

    Science.gov (United States)

    Zhong, Jian-hai; Guo, Liang-qia; Wu, Jin-mei; Chen, Jin-feng; Chen, Zhang-jie

    2012-04-01

    A fast, sensitive, colorimetric method for the detection of pH based on the differentiate effect of gold nanoparticles to the configuration of DNA was developed in this study. The UV-Vis absorption spectroscopy of the i-motif DNA-Au NPs system has been investigated, and the effect of the concentration of salt and i-motif DNA, reaction time and DNA sequence on the pH response of the system have been also optimized. Under the optimum conditions, the UV-Vis absorption spectroscopy of the Au NPs is changed regularly with pH in the range of 5.3 - 7.0, the absorbance at 520 nm is increased gradually while at 700 nm decreased. Correspondingly, the color of the Au NPs is varied from violet to red. The pH sensor is no need to modification, low cost, fast and can be carried out by naked eyes. It is promising to use in monitoring some life process which associated with pH variation.

  20. Efficient and Provable Secure Pairing-Free Security-Mediated Identity-Based Identification Schemes

    Directory of Open Access Journals (Sweden)

    Ji-Jian Chin

    2014-01-01

    Full Text Available Security-mediated cryptography was first introduced by Boneh et al. in 2001. The main motivation behind security-mediated cryptography was the capability to allow instant revocation of a user’s secret key by necessitating the cooperation of a security mediator in any given transaction. Subsequently in 2003, Boneh et al. showed how to convert a RSA-based security-mediated encryption scheme from a traditional public key setting to an identity-based one, where certificates would no longer be required. Following these two pioneering papers, other cryptographic primitives that utilize a security-mediated approach began to surface. However, the security-mediated identity-based identification scheme (SM-IBI was not introduced until Chin et al. in 2013 with a scheme built on bilinear pairings. In this paper, we improve on the efficiency results for SM-IBI schemes by proposing two schemes that are pairing-free and are based on well-studied complexity assumptions: the RSA and discrete logarithm assumptions.

  1. Studies of base pair sequence effects on DNA solvation based on all-atom molecular dynamics simulations

    Indian Academy of Sciences (India)

    Surjit B Dixit; Mihaly Mezei; David L Beveridge

    2012-07-01

    Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization were observed in these simulations. The results were compared to essentially all known experimental data on the subject. Proximity analysis was employed to highlight the sequence dependent differences in solvation and ion localization properties in the grooves of DNA. Comparison of the MD-calculated DNA structure with canonical A- and B-forms supports the idea that the G/C-rich sequences are closer to canonical A- than B-form structures, while the reverse is true for the poly A sequences, with the exception of the alternating ATAT sequence. Analysis of hydration density maps reveals that the flexibility of solute molecule has a significant effect on the nature of observed hydration. Energetic analysis of solute–solvent interactions based on proximity analysis of solvent reveals that the GC or CG base pairs interactmore strongly with watermolecules in the minor groove of DNA that the AT or TA base pairs, while the interactions of the AT or TA pairs in the major groove are stronger than those of the GC or CG pairs. Computation of solvent-accessible surface area of the nucleotide units in the simulated trajectories reveals that the similarity with results derived from analysis of a database of crystallographic structures is excellent. The MD trajectories tend to follow Manning’s counterion condensation theory, presenting a region of condensed counterions within a radius of about 17 Å from the DNA surface independent of sequence. The GC and CG pairs tend to associate with cations in the major groove of the DNA structure to a greater extent than the AT and TA pairs. Cation association is more frequent in the minor groove of AT than the GC pairs. In general

  2. An efficient and near linear scaling pair natural orbital based local coupled cluster method

    Science.gov (United States)

    Riplinger, Christoph; Neese, Frank

    2013-01-01

    In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 105-106 relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below 8800 basis functions and >450 atoms. In all larger test calculations done so far, the LPNO-CCSD step took less time than the preceding Hartree-Fock calculation, provided no approximations have been introduced in the latter. Thus, based on the present development reliable CCSD calculations on large molecules with unprecedented efficiency and accuracy are realized.

  3. Ion Pair in Extreme Aqueous Environments, Molecular-Based and Electric Conductance Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chialvo, Ariel A [ORNL; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Simonson, J Michael {Mike} [ORNL; Palmer, Donald [ORNL; Cole, David R [ORNL

    2009-01-01

    We determine by molecular-based simulation the density profiles of the Na+!Cl! ion-pair association constant in steam environments along three supercritical isotherms to interrogate the behavior of ion speciation in dilute aqueous solutions at extreme conditions. Moreover, we describe a new ultra-sensitive flow-through electric conductance apparatus designed to bridge the gap between the currently lowest steam-density conditions at which we are experimentally able to attain electric conductance measurements and the theoretically-reachable zero-density limit. Finally, we highlight important modeling challenges encountered near the zero-density limit and discuss ways to overcome them.

  4. Chemistry of stannylene-based Lewis pairs: dynamic tin coordination switching between donor and acceptor character.

    Science.gov (United States)

    Krebs, Kilian M; Freitag, Sarah; Schubert, Hartmut; Gerke, Birgit; Pöttgen, Rainer; Wesemann, Lars

    2015-03-16

    The coordination chemistry of cyclic stannylene-based intramolecular Lewis pairs is presented. The P→Sn adducts were treated with [Ni(COD)2] and [Pd(PCy3)2] (COD = 1,5-cyclooctadiene, PCy3 = tricyclohexylphosphine). In the isolated coordination compounds the stannylene moiety acts either as an acceptor or a donor ligand. Examples of a dynamic switch between these two coordination modes of the P-Sn ligand are illustrated and the structures in the solid state together with heteronuclear NMR spectroscopic findings are discussed. In the case of a Ni(0) complex, (119)Sn Mössbauer spectroscopy of the uncoordinated and coordinated phosphastannirane ligand is presented.

  5. DFT Description of Intermolecular Forces between 9-Aminoacridines and DNA Base Pairs

    Directory of Open Access Journals (Sweden)

    Sandra Cotes Oyaga

    2013-01-01

    Full Text Available The B3LYP method with 6-31G* basis set was used to predict the geometries of five 9-aminoacridines (9-AA 1(a–e, DNA base pairs, and respective complexes. Polarizabilities, charge distribution, frontier molecular orbital (FMO, and dipole moments were used to analyze the nature of interactions that allow reasonable drug diffusion levels. The results showed that charge delocalization, high polarizabilities, and high dipole moments play an important role in intermolecular interactions with DNA. The interactions of 9-AA 1(a–e with GC are the strongest. 9-AA 1(d displayed the strongest interaction and 9-AA 1(b the weakest.

  6. A map of nucleosome positions in yeast at base-pair resolution.

    Science.gov (United States)

    Brogaard, Kristin; Xi, Liqun; Wang, Ji-Ping; Widom, Jonathan

    2012-06-28

    The exact positions of nucleosomes along genomic DNA can influence many aspects of chromosome function. However, existing methods for mapping nucleosomes do not provide the necessary single-base-pair accuracy to determine these positions. Here we develop and apply a new approach for direct mapping of nucleosome centres on the basis of chemical modification of engineered histones. The resulting map locates nucleosome positions genome-wide in unprecedented detail and accuracy. It shows new aspects of the in vivo nucleosome organization that are linked to transcription factor binding, RNA polymerase pausing and the higher-order structure of the chromatin fibre.

  7. Powered Tate Pairing Computation

    Science.gov (United States)

    Kang, Bo Gyeong; Park, Je Hong

    In this letter, we provide a simple proof of bilinearity for the eta pairing. Based on it, we show an efficient method to compute the powered Tate pairing as well. Although efficiency of our method is equivalent to that of the Tate pairing on the eta pairing approach, but ours is more general in principle.

  8. Pairings on hyperelliptic curves

    CERN Document Server

    Balakrishnan, Jennifer; Chisholm, Sarah; Eisentraeger, Kirsten; Stange, Katherine; Teske, Edlyn

    2009-01-01

    We assemble and reorganize the recent work in the area of hyperelliptic pairings: We survey the research on constructing hyperelliptic curves suitable for pairing-based cryptography. We also showcase the hyperelliptic pairings proposed to date, and develop a unifying framework. We discuss the techniques used to optimize the pairing computation on hyperelliptic curves, and present many directions for further research.

  9. [Personal motif in art].

    Science.gov (United States)

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  10. Enersy basis of recognition of base pair for platinum-based antitumour drug ZD0473 and cisplatin

    Institute of Scientific and Technical Information of China (English)

    HAO Lan; LI XiChen; TAN HongWei; CHEN GuangJu; JIA MuXin

    2008-01-01

    Platinum-based antitumour drug ZD0473 was designed to reduce the cisplatin resistance to the tumor cells. In this paper, the mixed method of molecular mechanics and quantum chemistry, HF/lan12dz//MM/uff and B3LYP/lan12dz//6-31G*, are used to investigate the differences between four types of GG, 3'AG5', 3'GA5', and AA complexes, which are formed from four discrete DNA fragments recognized by ZD0473 and cisplatin. The results show that the binding interaction of both ZD0473 and cisplatin drugs with the GG base pair is much stronger than with other base pairs, namely the recognition capability of such drugs to the GG base pair is more considerable. Moreover, the interaction of four complexes of ZD0473 with DNA fragments is stronger than that of cisplatin with corresponding DNA fragments, which indicates the stronger binding capability of ZD0473 with DNA fragments and high antitumour activity of ZD0473. The main reason for easier forming of 3'GA5' complex than the 3'AG5' one is that the drug molecule prefers to bind with a single G base to form a monoligand compound firstly; then the con-figuration transformation from such monoligand compound to the bi-ligand one is limited.

  11. Energy basis of recognition of base pair for platinum-based antitumour drug ZD0473 and cisplatin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Platinum-based antitumour drug ZD0473 was designed to reduce the cisplatin resistance to the tumor cells. In this paper, the mixed method of molecular mechanics and quantum chemistry, HF/lanl2dz// MM/uff and B3LYP/lanl2dz//6-31G*, are used to investigate the differences between four types of GG, 3′AG5′, 3′GA5′, and AA complexes, which are formed from four discrete DNA fragments recognized by ZD0473 and cisplatin. The results show that the binding interaction of both ZD0473 and cisplatin drugs with the GG base pair is much stronger than with other base pairs, namely the recognition capability of such drugs to the GG base pair is more considerable. Moreover, the interaction of four complexes of ZD0473 with DNA fragments is stronger than that of cisplatin with corresponding DNA fragments, which indicates the stronger binding capability of ZD0473 with DNA fragments and high antitumour activity of ZD0473. The main reason for easier forming of 3′GA5′ complex than the 3′AG5′ one is that the drug molecule prefers to bind with a single G base to form a monoligand compound firstly; then the con- figuration transformation from such monoligand compound to the bi-ligand one is limited.

  12. Link-based quantitative methods to identify differentially coexpressed genes and gene Pairs

    Directory of Open Access Journals (Sweden)

    Ye Zhi-Qiang

    2011-08-01

    Full Text Available Abstract Background Differential coexpression analysis (DCEA is increasingly used for investigating the global transcriptional mechanisms underlying phenotypic changes. Current DCEA methods mostly adopt a gene connectivity-based strategy to estimate differential coexpression, which is characterized by comparing the numbers of gene neighbors in different coexpression networks. Although it simplifies the calculation, this strategy mixes up the identities of different coexpression neighbors of a gene, and fails to differentiate significant differential coexpression changes from those trivial ones. Especially, the correlation-reversal is easily missed although it probably indicates remarkable biological significance. Results We developed two link-based quantitative methods, DCp and DCe, to identify differentially coexpressed genes and gene pairs (links. Bearing the uniqueness of exploiting the quantitative coexpression change of each gene pair in the coexpression networks, both methods proved to be superior to currently popular methods in simulation studies. Re-mining of a publicly available type 2 diabetes (T2D expression dataset from the perspective of differential coexpression analysis led to additional discoveries than those from differential expression analysis. Conclusions This work pointed out the critical weakness of current popular DCEA methods, and proposed two link-based DCEA algorithms that will make contribution to the development of DCEA and help extend it to a broader spectrum.

  13. Structure prediction of LDLR-HNP1 complex based on docking enhanced by LDLR binding 3D motif.

    Science.gov (United States)

    Esmaielbeiki, Reyhaneh; Naughton, Declan P; Nebel, Jean-Christophe

    2012-04-01

    Human antimicrobial peptides (AMPs), including defensins, have come under intense scrutiny owing to their key multiple roles as antimicrobial agents. Not only do they display direct action on microbes, but also recently they have been shown to interact with the immune system to increase antimicrobial activity. Unfortunately, since mechanisms involved in the binding of AMPs to mammalian cells are largely unknown, their potential as novel anti-infective agents cannot be exploited yet. Following the reported interaction of Human Neutrophil Peptide 1 dimer (HNP1) with a low density lipoprotein receptor (LDLR), a computational study was conducted to discover their putative mode of interaction. State-of-the-art docking software produced a set of LDLR-HNP1 complex 3D models. Creation of a 3D motif capturing atomic interactions of the LDLR binding interface allowed selection of the most plausible configurations. Eventually, only two models were in agreement with the literature. Binding energy estimations revealed that only one of them is particularly stable, but also interaction with LDLR weakens significantly bonds within the HNP1 dimer. This may be significant since it suggests a mechanism for internalisation of HNP1 in mammalian cells. In addition to a novel approach for complex structure prediction, this study proposes a 3D model of the LDLR-HNP1 complex which highlights the key residues which are involved in the interactions. The putative identification of the receptor binding mechanism should inform the future design of synthetic HNPs to afford maximum internalisation, which could lead to novel anti-infective drugs.

  14. Close Color Pair Signature ensemble Adaptive Threshold based Steganalsis for LSB Embedding in Digital Images

    Directory of Open Access Journals (Sweden)

    S. Geetha

    2008-12-01

    Full Text Available We present a novel technique for effective steganalysis of high-color-depth digital images that have been subjected to embedding by LSB steganographic algorithms. The detection theory is based on the idea that under repeated embedding, the disruption of the signal characteristics is the highest for the first embedding and decreases subsequently. That is the marginal distortions due to repeated embeddings decrease monotonically. This decreasing distortion property exploited with Close Color Pair signature is used to construct the classifier that can distinguish between stego and cover images. For evaluation, a database composed of 1200 plain and stego images (at 10% and 20% payload and each one artificially adulterated with 20% additional data was established. Based on this database, extensive experiments were conducted to prove the feasibility of our proposed system. Our main results are (i a 90%+ positive-detection rate; (ii Close Color Pair ratio is not modified significantly when additional bit streams are embedded into a test image that is already tampered with a message.; (iii an image quality metric Czenakowski Measure, that is substantially sensitive to LSB embedding is utilized to derive the effective image adaptive threshold; (iv capable of detecting stego images with an embedding of even 10% payload while the earlier methods can achieve the same detection rate only with 20% payload.

  15. A model for avian magnetoreception by coupling magnetite-based mechanism with radical-pair-based mechanism

    CERN Document Server

    Lu, Yan

    2012-01-01

    Many species of animals have been testified to use the geomagnetic field for their navigation, but the biophysical mechanism of magnetoreception has remained enigmatic. This paper presents a biophysical model consisting of magnetite-based mechanism and radical-pair-based mechanism for the avian magnetoreception. The amplitude of resultant magnetic field outside the magnetic particles correspond to the geomagnetic field direction and effect the yield of singlet/triplet state products in the radical pair reactions, therefore the yield of singlet/triplet state products can connect with the geomagnetic field information for orientational detection by the proposed model. The resultant magnetic fields corresponds to two materials with different magnetic properties were analysed under different directions of the geomagnetic field. The results shown that the ferromagnetic particles in organisms could provide more significant change of singlet state products than that of superparamagnetic particles, and the period of ...

  16. AISMOTIF-An Artificial Immune System for DNA Motif Discovery

    CERN Document Server

    Seeja, K R

    2011-01-01

    Discovery of transcription factor binding sites is a much explored and still exploring area of research in functional genomics. Many computational tools have been developed for finding motifs and each of them has their own advantages as well as disadvantages. Most of these algorithms need prior knowledge about the data to construct background models. However there is not a single technique that can be considered as best for finding regulatory motifs. This paper proposes an artificial immune system based algorithm for finding the transcription factor binding sites or motifs and two new weighted scores for motif evaluation. The algorithm is enumerative, but sufficient pruning of the pattern search space has been incorporated using immune system concepts. The performance of AISMOTIF has been evaluated by comparing it with eight state of art composite motif discovery algorithms and found that AISMOTIF predicts known motifs as well as new motifs from the benchmark dataset without any prior knowledge about the data...

  17. Novel thiol-based histone deacetylase inhibitors bearing 3-phenyl-1H-pyrazole-5-carboxamide scaffold as surface recognition motif: Design, synthesis and SAR study.

    Science.gov (United States)

    Wen, Jiachen; Niu, Qun; Liu, Jiang; Bao, Yu; Yang, Jinyu; Luan, Shenglin; Fan, Yinbo; Liu, Dan; Zhao, Linxiang

    2016-01-15

    A series of novel thiol-based histone deacetylase (HDAC) inhibitors bearing 3-phenyl-1H-pyrazole-5-carboxamide scaffold as surface recognition motif was designed, synthesized, and evaluated for their HDAC inhibition activity. Among them, 15j (IC50=0.08μM) was identified as a better inhibitor than Vorinostat (IC50=0.25μM) against total HDACs. In addition, Structure-activity relationships (SAR) analyses indicated that (i) compounds with different substituents on pyrazole N-1 position exhibited superior activities than those on pyrazole N-2 position, (ii) variation of functional groups on N-1'-alkyl chain terminus followed the trends of carboxyl group>hydroxyl group≫alkyl group, and (iii) methylation on pyrazole C-4 position diminished the HDAC inhibition activity. The SAR will guide us to further refine compounds bearing 3-phenyl-1H-pyrazole-5-carboxamide scaffold to achieve better HDAC inhibitors.

  18. The importance of inter- and intramolecular base pairing for translation reinitiation on a eukaryotic bicistronic mRNA.

    Science.gov (United States)

    Luttermann, Christine; Meyers, Gregor

    2009-02-01

    Calicivirus structure proteins are expressed from a subgenomic mRNA with two overlapping cistrons. The first ORF of this RNA codes for the viral major capsid protein VP1, and the second for the minor capsid protein VP2. Translation of VP2 is mediated by a termination/reinitiation mechanism, which depends on an upstream sequence element of approximately 70 nucleotides denoted "termination upstream ribosomal binding site" (TURBS). Two short sequence motifs within the TURBS were found to be essential for reinitiation. By a whole set of single site mutations and reciprocal base exchanges we demonstrate here for the first time conclusive evidence for the necessity of mRNA/18S rRNA hybridization for translation reinitiation in an eukaryotic system. Moreover, we show that motif 2 exhibits intramolecular hybridization with a complementary region upstream of motif 1, thus forming a secondary structure that positions post-termination ribosomes in an optimal distance to the VP2 start codon. Analysis of the essential elements of the TURBS led to a better understanding of the requirements for translation termination/reinitiation in eukaryotes.

  19. Simulation Based on Negative ion pair Techniques of Electric propulsion In Satellite Mission Using Chlorine Gas

    Science.gov (United States)

    Bakkiyaraj, R.

    R.Bakkiyaraj,Assistant professor,Government college of Engineering ,Bargur,Tamilnadu. *C.Sathiyavel, PG Student and Department of Aeronautical Engineering/Branch of Avionics, PSN college of Engineering and Technology,Tirunelveli,India. Abstract: Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of repulsive between negative ions with low electric power and high efficiency. A Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). When a neutral chlorine atom in the gaseous form picks up an electron to form a cl- ion, it releases energy of 349 kJ/mol or 3.6 eV/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The distance between negative ions pair is important for the evaluation of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of ions is related to the ion beam current. Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense grids and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with low electric power for simulating the ion propulsion rocket system

  20. Evaluating changes in matrix based, recovery-adjusted concentrations in paired data for pesticides in groundwater

    Science.gov (United States)

    Zimmerman, Tammy M.; Breen, Kevin J.

    2012-01-01

    Pesticide concentration data for waters from selected carbonate-rock aquifers in agricultural areas of Pennsylvania were collected in 1993–2009 for occurrence and distribution assessments. A set of 30 wells was visited once in 1993–1995 and again in 2008–2009 to assess concentration changes. The data include censored matched pairs (nondetections of a compound in one or both samples of a pair). A potentially improved approach for assessing concentration changes is presented where (i) concentrations are adjusted with models of matrix-spike recovery and (ii) area-wide temporal change is tested by use of the paired Prentice-Wilcoxon (PPW) statistical test. The PPW results for atrazine, simazine, metolachlor, prometon, and an atrazine degradate, deethylatrazine (DEA), are compared using recovery-adjusted and unadjusted concentrations. Results for adjusted compared with unadjusted concentrations in 2008–2009 compared with 1993–1995 were similar for atrazine and simazine (significant decrease; 95% confidence level) and metolachlor (no change) but differed for DEA (adjusted, decrease; unadjusted, increase) and prometon (adjusted, decrease; unadjusted, no change). The PPW results were different on recovery-adjusted compared with unadjusted concentrations. Not accounting for variability in recovery can mask a true change, misidentify a change when no true change exists, or assign a direction opposite of the true change in concentration that resulted from matrix influences on extraction and laboratory method performance. However, matrix-based models of recovery derived from a laboratory performance dataset from multiple studies for national assessment, as used herein, rather than time- and study-specific recoveries may introduce uncertainty in recovery adjustments for individual samples that should be considered in assessing change.

  1. Computational analyses of synergism in small molecular network motifs.

    Directory of Open Access Journals (Sweden)

    Yili Zhang

    2014-03-01

    Full Text Available Cellular functions and responses to stimuli are controlled by complex regulatory networks that comprise a large diversity of molecular components and their interactions. However, achieving an intuitive understanding of the dynamical properties and responses to stimuli of these networks is hampered by their large scale and complexity. To address this issue, analyses of regulatory networks often focus on reduced models that depict distinct, reoccurring connectivity patterns referred to as motifs. Previous modeling studies have begun to characterize the dynamics of small motifs, and to describe ways in which variations in parameters affect their responses to stimuli. The present study investigates how variations in pairs of parameters affect responses in a series of ten common network motifs, identifying concurrent variations that act synergistically (or antagonistically to alter the responses of the motifs to stimuli. Synergism (or antagonism was quantified using degrees of nonlinear blending and additive synergism. Simulations identified concurrent variations that maximized synergism, and examined the ways in which it was affected by stimulus protocols and the architecture of a motif. Only a subset of architectures exhibited synergism following paired changes in parameters. The approach was then applied to a model describing interlocked feedback loops governing the synthesis of the CREB1 and CREB2 transcription factors. The effects of motifs on synergism for this biologically realistic model were consistent with those for the abstract models of single motifs. These results have implications for the rational design of combination drug therapies with the potential for synergistic interactions.

  2. Cloud Base Height Measurements at Manila Observatory: Initial Results from Constructed Paired Sky Imaging Cameras

    Science.gov (United States)

    Lagrosas, N.; Tan, F.; Antioquia, C. T.

    2014-12-01

    Fabricated all sky imagers are efficient and cost effective instruments for cloud detection and classification. Continuous operation of this instrument can result in the determination of cloud occurrence and cloud base heights for the paired system. In this study, a fabricated paired sky imaging system - consisting two commercial digital cameras (Canon Powershot A2300) enclosed in weatherproof containers - is developed in Manila Observatory for the purpose of determining cloud base heights at the Manila Observatory area. One of the cameras is placed on the rooftop of Manila Observatory and the other is placed on the rooftop of the university dormitory, 489m from the first camera. The cameras are programmed to simultaneously gather pictures every 5 min. Continuous operation of these cameras were implemented since the end of May of 2014 but data collection started end of October 2013. The data were processed following the algorithm proposed by Kassianov et al (2005). The processing involves the calculation of the merit function that determines the area of overlap of the two pictures. When two pictures are overlapped, the minimum of the merit function corresponds to the pixel column positions where the pictures have the best overlap. In this study, pictures of overcast sky prove to be difficult to process for cloud base height and were excluded from processing. The figure below shows the initial results of the hourly average of cloud base heights from data collected from November 2013 to July 2014. Measured cloud base heights ranged from 250m to 1.5km. These are the heights of cumulus and nimbus clouds that are dominant in this part of the world. Cloud base heights are low in the early hours of the day indicating low convection process during these times. However, the increase in the convection process in the atmosphere can be deduced from higher cloud base heights in the afternoon. The decrease of cloud base heights after 15:00 follows the trend of decreasing solar

  3. The selective tRNA aminoacylation mechanism based on a single G•U pair.

    Science.gov (United States)

    Naganuma, Masahiro; Sekine, Shun-ichi; Chong, Yeeting Esther; Guo, Min; Yang, Xiang-Lei; Gamper, Howard; Hou, Ya-Ming; Schimmel, Paul; Yokoyama, Shigeyuki

    2014-06-26

    Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNA(Ala) selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3•U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNA(Ala) with G3•U70 and its A3•U70 variant. AlaRS interacts with both the minor- and the major-groove sides of G3•U70, widening the major groove. The geometry difference between G3•U70 and A3•U70 is transmitted along the acceptor stem to the 3'-CCA region. Thus, the 3'-CCA region of tRNA(Ala) with G3•U70 is oriented to the reactive route that reaches the active site, whereas that of the A3•U70 variant is folded back into the non-reactive route. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.

  4. Peptide tag/probe pairs based on the coordination chemistry for protein labeling.

    Science.gov (United States)

    Uchinomiya, Shohei; Ojida, Akio; Hamachi, Itaru

    2014-02-17

    Protein-labeling methods serve as essential tools for analyzing functions of proteins of interest under complicated biological conditions such as in live cells. These labeling methods are useful not only to fluorescently visualize proteins of interest in biological systems but also to conduct protein and cell analyses by harnessing the unique functions of molecular probes. Among the various labeling methods available, an appropriate binding pair consisting of a short peptide and a de novo designed small molecular probe has attracted attention because of its wide utility and versatility. Interestingly, most peptide tag/probe pairs exploit metal-ligand coordination interactions as the main binding force responsible for their association. Herein, we provide an overview of the recent progress of these coordination-chemistry-based protein-labeling methods and their applications for fluorescence imaging and functional analysis of cellular proteins, while highlighting our originally developed labeling methods. These successful examples clearly exemplify the utility and versatility of metal coordination chemistry in protein functional analysis.

  5. Homosexual Pairing within a Swarm-Based Mating System: The Case of the Chironomid Midge

    Directory of Open Access Journals (Sweden)

    Athol J. McLachlan

    2011-01-01

    Full Text Available Homosexuality has been dubbed the Darwinian paradox, because it raises the question of how behaviour that would seem to reduce the chance of successful mating can be maintained by natural selection. This question rests on the assumption that same sex mating is the result of active choice of partner, hardwired into the mating behaviour, but there is an alternative explanation for such behaviour. I refer to the possibility that same-sex mating is the result, not of adaptive behaviour at all, but rather of errors due to imprecise sensory machinery. Such an explanation finds support within the mating system of insects with swarm-based mating systems. To explore this case, I turn to the common chironomid midge. I show that homosexual pairing here, exclusively involving male/male pairs, is common. I attempt to show that this observation, together with data on insect predators of swarming midges, can be used to penetrate the mysteries of this fascinating but elusive mating system.

  6. Single-molecule measurements of synthesis by DNA polymerase with base-pair resolution.

    Science.gov (United States)

    Christian, Thomas D; Romano, Louis J; Rueda, David

    2009-12-15

    The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule Förster resonance energy transfer intensity drops in discrete steps to values consistent with single-nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer/template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change after the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the preinsertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.

  7. Exploiting bounded signal flow for graph orientation based on cause-effect pairs

    Directory of Open Access Journals (Sweden)

    Niedermeier Rolf

    2011-08-01

    Full Text Available Abstract Background We consider the following problem: Given an undirected network and a set of sender-receiver pairs, direct all edges such that the maximum number of "signal flows" defined by the pairs can be routed respecting edge directions. This problem has applications in understanding protein interaction based cell regulation mechanisms. Since this problem is NP-hard, research so far concentrated on polynomial-time approximation algorithms and tractable special cases. Results We take the viewpoint of parameterized algorithmics and examine several parameters related to the maximum signal flow over vertices or edges. We provide several fixed-parameter tractability results, and in one case a sharp complexity dichotomy between a linear-time solvable case and a slightly more general NP-hard case. We examine the value of these parameters for several real-world network instances. Conclusions Several biologically relevant special cases of the NP-hard problem can be solved to optimality. In this way, parameterized analysis yields both deeper insight into the computational complexity and practical solving strategies.

  8. Determination of electron pairing symmetry of iron-based superconductor FeSe%Determination of electron pairing symmetry of iron-based superconductor FeSe

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The research team led by Prof. Qi-Kun Xue at Department of Physics, Tsinghua University, and Prof. Xucun Ma at Institute of Physics, Chinese Academy of Sciences, has made a major breakthrough in study of the electron pairing symmetry of FeSe superconductor.

  9. Calculating Distortions of Short DNA Duplexes with Base Pairing Between an Oxidatively Damaged Guanine and a Guanine

    Directory of Open Access Journals (Sweden)

    Masayo Suzuki

    2014-07-01

    Full Text Available DNA is constantly being oxidized, and oxidized DNA is prone to mutation; moreover, guanine is highly sensitive to several oxidative stressors. Several oxidatively damaged forms of guanine—including 2,2,4-triamino-5(2H-oxazolone (Oz, iminoallantoin (Ia, and spiroiminodihydantoin (Sp—can be paired with guanine, and cause G:C-C:G transversions. Previous findings indicate that guanine is incorporated more efficiently opposite Oz than opposite Ia or Sp, and that these differences in efficiency cannot be explained by differences in the stabilities of G:Oz, G:Ia, and G:Sp base pairs calculated ab initio. Here, to explain previous experimental result, we used a 3-base-pair model DNA duplex to calculate the difference in the stability and the distortion of DNA containing a G:Oz, G:Ia, or G:Sp base pair. We found that the stability of the structure containing 5ꞌ and 3ꞌ base pairs adjacent to G:Oz was more stable than that containing the respective base pairs adjacent to G:Ia or G:Sp. Moreover, the distortion of the structure in the DNA model duplex that contained a G:Oz was smaller than that containing a G:Ia or G:Sp. Therefore, our discussion can explain the previous results involving translesion synthesis past an oxidatively damaged guanine.

  10. A motif-based search in bacterial genomes identifies the ortholog of the small RNA Yfr1 in all lineages of cyanobacteria

    Directory of Open Access Journals (Sweden)

    Axmann Ilka M

    2007-10-01

    Full Text Available Abstract Background Non-coding RNAs (ncRNA are regulators of gene expression in all domains of life. They control growth and differentiation, virulence, motility and various stress responses. The identification of ncRNAs can be a tedious process due to the heterogeneous nature of this molecule class and the missing sequence similarity of orthologs, even among closely related species. The small ncRNA Yfr1 has previously been found in the Prochlorococcus/Synechococcus group of marine cyanobacteria. Results Here we show that screening available genome sequences based on an RNA motif and followed by experimental analysis works successfully in detecting this RNA in all lineages of cyanobacteria. Yfr1 is an abundant ncRNA between 54 and 69 nt in size that is ubiquitous for cyanobacteria except for two low light-adapted strains of Prochlorococcus, MIT 9211 and SS120, in which it must have been lost secondarily. Yfr1 consists of two predicted stem-loop elements separated by an unpaired sequence of 16–20 nucleotides containing the ultraconserved undecanucleotide 5'-ACUCCUCACAC-3'. Conclusion Starting with an ncRNA previously found in a narrow group of cyanobacteria only, we show here the highly specific and sensitive identification of its homologs within all lineages of cyanobacteria, whereas it was not detected within the genome sequences of E. coli and of 7 other eubacteria belonging to the alpha-proteobacteria, chlorobiaceae and spirochaete. The integration of RNA motif prediction into computational pipelines for the detection of ncRNAs in bacteria appears as a promising step to improve the quality of such predictions.

  11. Structure-Based Analysis of Toxoplasma gondii Profilin: A Parasite-Specific Motif Is Required for Recognition by Toll-Like Receptor 11

    Energy Technology Data Exchange (ETDEWEB)

    K Kucera; A Koblansky; L Saunders; K Frederick; E De La Cruz; S Ghosh; Y Modis

    2011-12-31

    Profilins promote actin polymerization by exchanging ADP for ATP on monomeric actin and delivering ATP-actin to growing filament barbed ends. Apicomplexan protozoa such as Toxoplasma gondii invade host cells using an actin-dependent gliding motility. Toll-like receptor (TLR) 11 generates an innate immune response upon sensing T. gondii profilin (TgPRF). The crystal structure of TgPRF reveals a parasite-specific surface motif consisting of an acidic loop, followed by a long {beta}-hairpin. A series of structure-based profilin mutants show that TLR11 recognition of the acidic loop is responsible for most of the interleukin (IL)-12 secretion response to TgPRF in peritoneal macrophages. Deletion of both the acidic loop and the {beta}-hairpin completely abrogates IL-12 secretion. Insertion of the T. gondii acidic loop and {beta}-hairpin into yeast profilin is sufficient to generate TLR11-dependent signaling. Substitution of the acidic loop in TgPRF with the homologous loop from the apicomplexan parasite Cryptosporidium parvum does not affect TLR11-dependent IL-12 secretion, while substitution with the acidic loop from Plasmodium falciparum results in reduced but significant IL-12 secretion. We conclude that the parasite-specific motif in TgPRF is the key molecular pattern recognized by TLR11. Unlike other profilins, TgPRF slows nucleotide exchange on monomeric rabbit actin and binds rabbit actin weakly. The putative TgPRF actin-binding surface includes the {beta}-hairpin and diverges widely from the actin-binding surfaces of vertebrate profilins.

  12. Fingerprint Identification Using SIFT-Based Minutia Descriptors and Improved All Descriptor-Pair Matching

    Directory of Open Access Journals (Sweden)

    Jiuqiang Han

    2013-03-01

    Full Text Available The performance of conventional minutiae-based fingerprint authentication algorithms degrades significantly when dealing with low quality fingerprints with lots of cuts or scratches. A similar degradation of the minutiae-based algorithms is observed when small overlapping areas appear because of the quite narrow width of the sensors. Based on the detection of minutiae, Scale Invariant Feature Transformation (SIFT descriptors are employed to fulfill verification tasks in the above difficult scenarios. However, the original SIFT algorithm is not suitable for fingerprint because of: (1 the similar patterns of parallel ridges; and (2 high computational resource consumption. To enhance the efficiency and effectiveness of the algorithm for fingerprint verification, we propose a SIFT-based Minutia Descriptor (SMD to improve the SIFT algorithm through image processing, descriptor extraction and matcher. A two-step fast matcher, named improved All Descriptor-Pair Matching (iADM, is also proposed to implement the 1:N verifications in real-time. Fingerprint Identification using SMD and iADM (FISiA achieved a significant improvement with respect to accuracy in representative databases compared with the conventional minutiae-based method. The speed of FISiA also can meet real-time requirements.

  13. Fingerprint identification using SIFT-based minutia descriptors and improved all descriptor-pair matching.

    Science.gov (United States)

    Zhou, Ru; Zhong, Dexing; Han, Jiuqiang

    2013-03-06

    The performance of conventional minutiae-based fingerprint authentication algorithms degrades significantly when dealing with low quality fingerprints with lots of cuts or scratches. A similar degradation of the minutiae-based algorithms is observed when small overlapping areas appear because of the quite narrow width of the sensors. Based on the detection of minutiae, Scale Invariant Feature Transformation (SIFT) descriptors are employed to fulfill verification tasks in the above difficult scenarios. However, the original SIFT algorithm is not suitable for fingerprint because of: (1) the similar patterns of parallel ridges; and (2) high computational resource consumption. To enhance the efficiency and effectiveness of the algorithm for fingerprint verification, we propose a SIFT-based Minutia Descriptor (SMD) to improve the SIFT algorithm through image processing, descriptor extraction and matcher. A two-step fast matcher, named improved All Descriptor-Pair Matching (iADM), is also proposed to implement the 1:N verifications in real-time. Fingerprint Identification using SMD and iADM (FISiA) achieved a significant improvement with respect to accuracy in representative databases compared with the conventional minutiae-based method. The speed of FISiA also can meet real-time requirements.

  14. Base Pairing Interaction between 5′- and 3′-UTRs Controls icaR mRNA Translation in Staphylococcus aureus

    Science.gov (United States)

    Ruiz de los Mozos, Igor; Vergara-Irigaray, Marta; Segura, Victor; Villanueva, Maite; Bitarte, Nerea; Saramago, Margarida; Domingues, Susana; Arraiano, Cecilia M.; Fechter, Pierre; Romby, Pascale; Valle, Jaione; Solano, Cristina; Lasa, Iñigo; Toledo-Arana, Alejandro

    2013-01-01

    The presence of regulatory sequences in the 3′ untranslated region (3′-UTR) of eukaryotic mRNAs controlling RNA stability and translation efficiency is widely recognized. In contrast, the relevance of 3′-UTRs in bacterial mRNA functionality has been disregarded. Here, we report evidences showing that around one-third of the mapped mRNAs of the major human pathogen Staphylococcus aureus carry 3′-UTRs longer than 100-nt and thus, potential regulatory functions. We selected the long 3′-UTR of icaR, which codes for the repressor of the main exopolysaccharidic compound of the S. aureus biofilm matrix, to evaluate the role that 3′-UTRs may play in controlling mRNA expression. We showed that base pairing between the 3′-UTR and the Shine-Dalgarno (SD) region of icaR mRNA interferes with the translation initiation complex and generates a double-stranded substrate for RNase III. Deletion or substitution of the motif (UCCCCUG) within icaR 3′-UTR was sufficient to abolish this interaction and resulted in the accumulation of IcaR repressor and inhibition of biofilm development. Our findings provide a singular example of a new potential post-transcriptional regulatory mechanism to modulate bacterial gene expression through the interaction of a 3′-UTR with the 5′-UTR of the same mRNA. PMID:24367275

  15. POINT PATTERN MATCHING ALGORITHM BASED ON POINT PAIR TOPOLOGICAL CHARACTERISTICS AND SPECTRAL MATCHING

    Institute of Scientific and Technical Information of China (English)

    Lu Chunyan; Zou Huanxin; Zhao Jian; Zhou Shilin

    2012-01-01

    Most of the Point Pattern Matching (PPM) algorithm performs poorly when the noise of the point's position and outliers exist.This paper presents a novel and robust PPM algorithm which combined Point Pair Topological Characteristics (PPTC) and Spectral Matching (SM) together to solve the afore mentioned issues.In which PPTC,a new shape descriptor,is firstly proposed.A new comparability measurement based on PPTC is defined as the matching probability.Finally,the correct matching results are achieved by the spectral matching method.The synthetic data experiments show its robustness by comparing with the other state-of-art algorithms and the real world data experiments show its effectiveness.

  16. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    CERN Document Server

    Fang, Wei; Rossi, Mariana; Feng, Yexin; Li, Xin-Zheng; Michaelides, Angelos

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general.

  17. A bilinear pairing based anonymous authentication scheme in wireless body area networks for mHealth.

    Science.gov (United States)

    Jiang, Qi; Lian, Xinxin; Yang, Chao; Ma, Jianfeng; Tian, Youliang; Yang, Yuanyuan

    2016-11-01

    Wireless body area networks (WBANs) have become one of the key components of mobile health (mHealth) which provides 24/7 health monitoring service and greatly improves the quality and efficiency of healthcare. However, users' concern about the security and privacy of their health information has become one of the major obstacles that impede the wide adoption of WBANs. Anonymous and unlinkable authentication is critical to protect the security and privacy of sensitive physiological information in transit from the client to the application provider. We first show that the anonymous authentication scheme of Wang and Zhang based on bilinear pairing is prone to client impersonation attack. Then, we propose an enhanced anonymous authentication scheme to remedy the flaw in Wang and Zhang's scheme. We give the security analysis to demonstrate that the enhanced scheme achieves the desired security features and withstands various known attacks.

  18. Theoretical Analysis of Lattice Parameter Effect on Order-Disorder Transformation Based on Pair Potential

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on pair potential, the Bragg Williams (B-W) model is modified to take into account the effect of the lattice parameter on theoretical order-disorder transformation analysis. The main purpose of this work is to understand the basic aspects of this effect and related reasonable model on order-disorder transformation. In the present approach, the configuration free energy is chosen as function of the lattice parameter and the long-range order. This energy is calculated through Taylor's expansion, starting from the disordered state. It was found that the configuration free energy has been strongly modified when the lattice parameter is taken into account. It was also found only one type of order-disorder transformation exists in AB alloy and three kinds of order-disorder transformations for non-equiatomic alloy system such as A3B alloy. This result is in agreement with experiments.

  19. Pair normalized channel feature and statistics-based learning for high-performance pedestrian detection

    Science.gov (United States)

    Zeng, Bobo; Wang, Guijin; Ruan, Zhiwei; Lin, Xinggang; Meng, Long

    2012-07-01

    High-performance pedestrian detection with good accuracy and fast speed is an important yet challenging task in computer vision. We design a novel feature named pair normalized channel feature (PNCF), which simultaneously combines and normalizes two channel features in image channels, achieving a highly discriminative power and computational efficiency. PNCF applies to both gradient channels and color channels so that shape and appearance information are described and integrated in the same feature. To efficiently explore the formidably large PNCF feature space, we propose a statistics-based feature learning method to select a small number of potentially discriminative candidate features, which are fed into the boosting algorithm. In addition, channel compression and a hybrid pyramid are employed to speed up the multiscale detection. Experiments illustrate the effectiveness of PNCF and its learning method. Our proposed detector outperforms the state-of-the-art on several benchmark datasets in both detection accuracy and efficiency.

  20. Comment Fail-Stop Blind Signature Scheme Design Based on Pairings

    Institute of Scientific and Technical Information of China (English)

    HU Xiaoming; HUANG Shangteng

    2006-01-01

    Fail-stop signature schemes provide security for a signer against forgeries of an enemy with unlimited computational power by enabling the signer to provide a proof of forgery when a forgery happens. Chang et al proposed a robust fail-stop blind signature scheme based on bilinear pairings. However, in this paper, it will be found that there are several mistakes in Chang et al' fail-stop blind signature scheme. Moreover, it will be pointed out that this scheme doesn' meet the property of a fail-stop signature: unconditionally secure for a signer. In Chang et al' scheme, a forger can forge a valid signature that can' be proved by a signer using the "proof of forgery". The scheme also doesn' possess the unlinkability property of a blind signature.

  1. Use of Manganese(II)-Schiff Base Complexes for Carrying Polar Organometallics and Inorganic Ion Pairs.

    Science.gov (United States)

    Gallo, Emma; Solari, Euro; Floriani, Carlo; Chiesi-Villa, Angiola; Rizzoli, Corrado

    1997-05-07

    This report concerns the carrier properties of [Mn(acacen)]-derived compounds toward polar organometallics, inorganic ion pairs, and salts. Such properties are the consequence of Mn(II) behaving as a Lewis acid and the O&arcraise;O bite of the bidentate Schiff base ligand toward alkali cations. The starting compounds, which occur in a dimeric form, [Mn(acac-L-en)](2) [L' = CH(2)CH(2) (1); L" = C(6)H(10) (2); L"' = R,R-C(6)H(10) (3)] have been synthesized either via a metathesis reaction from MnCl(2) or using [Mn(3)Mes(6)]. The reaction of 1-3 with lithium organometallics allowed the isolation of [Mn(acac-L-en)(R)Li(DME)] [R = Me, L = L' (4); R = Ph, L = L' (5); R = Mes, L = L' (6); R = Me, L = L" (7); R = Me, L = L"' (8)] as metalated forms, where the alkyl or aryl group is sigma-bonded to Mn(II), while the lithium cation is anchored to the Schiff base ligand. The metalated forms 4-8 react with PhCHO to give the corresponding lithium alkoxide, which remains bound in its ion-pair form to the [Mn(acacen)] skeleton in [Mn(2)(acac-L'-en)(2)Li(2)(OCH(Ph)Me)(2)](n)() (9). The use of 8, which has a chiral bridge across two nitrogen atoms, did not lead to a significant asymmetric induction in the reaction with PhCHO, because of the long separation between the lithium cation and the stereogenic center. The metalated form 4 was able to transfer the methyl group to the nitrile function to give the corresponding lithium-imide which then remains bonded to [Mn(acacen)] as the ion pair in a dimeric structure, as revealed for [Mn(2)(acac-L'-en)(2)Li(2)(DME){N=C(Ph)Me}(2)](n)() (10). Their reaction with 1 appears to depend on the steric bulkiness of the alkyl group in NaOR, resulting in either monomeric adducts, i.e. in [Mn(acac-L'-en)(2,6-Bu(t)(2)C(6)H(3)O)Na(DME)(2)] (11.2DME), or polymeric structures, like in [Mn(acac-L'-en)Na(DME)(&mgr;-OEt)](n)() (13). All the dimeric units reported in this paper show a slight antiferromagnetic coupling between the two Mn(II) assisted by

  2. Hydrogen-bonded proton transfer in the protonated guanine-cytosine (GC+H)+ base pair.

    Science.gov (United States)

    Lin, Yuexia; Wang, Hongyan; Gao, Simin; Schaefer, Henry F

    2011-10-13

    The single proton transfer at the different sites of the Watson-Crick (WC) guanine-cytosine (GC) DNA base pair are studied here using density functional methods. The conventional protonated structures, transition state (TS) and proton-transferred product (PT) structures of every relevant species are optimized. Each transition state and proton-transferred product structure has been compared with the corresponding conventional protonated structure to demonstrate the process of proton transfer and the change of geometrical structures. The relative energies of the protonated tautomers and the proton-transfer energy profiles in gas and solvent are analyzed. The proton-transferred product structure G(+H(+))-H(+)C(N3)(-H(+))(PT) has the lowest relative energy for which only two hydrogen bonds exist. Almost all 14 isomers of the protonated GC base pair involve hydrogen-bonded proton transfer following the three pathways, with the exception of structure G-H(+)C(O2). When the positive charge is primarily "located" on the guanine moiety (H(+)G-C, G-H(+)C(C4), and G-H(+)C(C6)), the H(1) proton transfers from the N(1) site of guanine to the N(3) site of cytosine. The structures G-H(+)C(C5) and G-H(+)C(C4) involve H(4a) proton transfer from the N(4) of cytosine to the O(6) site of guanine. H(2a) proton transfer from the N(2) site of guanine to the O(2) site of cytosine is found only for the structure G-H(+)C(C4). The structures to which a proton is added on the six-centered sites adjoining the hydrogen bonds are more prone to proton transfer in the gas phase, whereas a proton added on the minor groove and the sites adjoining the hydrogen bonds is favorable to the proton transfer in energy in the aqueous phase.

  3. Base-pairing versatility determines wobble sites in tRNA anticodons of vertebrate mitogenomes.

    Directory of Open Access Journals (Sweden)

    Miguel M Fonseca

    Full Text Available BACKGROUND: Vertebrate mitochondrial genomes typically have one transfer RNA (tRNA for each synonymous codon family. This limited anticodon repertoire implies that each tRNA anticodon needs to wobble (establish a non-Watson-Crick base pairing between two nucleotides in RNA molecules to recognize one or more synonymous codons. Different hypotheses have been proposed to explain the factors that determine the nucleotide composition of wobble sites in vertebrate mitochondrial tRNA anticodons. Until now, the two major postulates--the "codon-anticodon adaptation hypothesis" and the "wobble versatility hypothesis"--have not been formally tested in vertebrate mitochondria because both make the same predictions regarding the composition of anticodon wobble sites. The same is true for the more recent "wobble cost hypothesis". PRINCIPAL FINDINGS: In this study we have analyzed the occurrence of synonymous codons and tRNA anticodon wobble sites in 1553 complete vertebrate mitochondrial genomes, focusing on three fish species with mtDNA codon usage bias reversal (L-strand is GT-rich. These mitogenomes constitute an excellent opportunity to study the evolution of the wobble nucleotide composition of tRNA anticodons because due to the reversal the predictions for the anticodon wobble sites differ between the existing hypotheses. We observed that none of the wobble sites of tRNA anticodons in these unusual mitochondrial genomes coevolved to match the new overall codon usage bias, suggesting that nucleotides at the wobble sites of tRNA anticodons in vertebrate mitochondrial genomes are determined by wobble versatility. CONCLUSIONS/SIGNIFICANCE: Our results suggest that, at wobble sites of tRNA anticodons in vertebrate mitogenomes, selection favors the most versatile nucleotide in terms of wobble base-pairing stability and that wobble site composition is not influenced by codon usage. These results are in agreement with the "wobble versatility hypothesis".

  4. Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity.

    Science.gov (United States)

    Oertell, Keriann; Harcourt, Emily M; Mohsen, Michael G; Petruska, John; Kool, Eric T; Goodman, Myron F

    2016-04-19

    What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site.

  5. Potent Inhibition of HIV-1 Reverse Transcriptase and Replication by Nonpseudoknot, "UCAA-motif" RNA Aptamers.

    Science.gov (United States)

    Whatley, Angela S; Ditzler, Mark A; Lange, Margaret J; Biondi, Elisa; Sawyer, Andrew W; Chang, Jonathan L; Franken, Joshua D; Burke, Donald H

    2013-02-05

    RNA aptamers that bind the reverse transcriptase (RT) of human immunodeficiency virus (HIV) compete with nucleic acid primer/template for access to RT, inhibit RT enzymatic activity in vitro, and suppress viral replication when expressed in human cells. Numerous pseudoknot aptamers have been identified by sequence analysis, but relatively few have been confirmed experimentally. In this work, a screen of nearly 100 full-length and >60 truncated aptamer transcripts established the predictive value of the F1Pk and F2Pk pseudoknot signature motifs. The screen also identified a new, nonpseudoknot motif with a conserved unpaired UCAA element. High-throughput sequence (HTS) analysis identified 181 clusters capable of forming this novel element. Comparative sequence analysis, enzymatic probing and RT inhibition by aptamer variants established the essential requirements of the motif, which include two conserved base pairs (AC/GU) on the 5' side of the unpaired UCAA. Aptamers in this family inhibit RT in primer extension assays with IC(50) values in the low nmol/l range, and they suppress viral replication with a potency that is comparable with that of previously studied aptamers. All three known anti-RT aptamer families (pseudoknots, the UCAA element, and the recently described "(6/5)AL" motif) are therefore suitable for developing aptamer-based antiviral gene therapies.Molecular Therapy - Nucleic Acids (2013) 2, e71; doi:10.1038/mtna.2012.62; published online 5 February 2013.

  6. Functional diversification of paralogous transcription factors via divergence in DNA binding site motif and in expression.

    Directory of Open Access Journals (Sweden)

    Larry N Singh

    Full Text Available BACKGROUND: Gene duplication is a major driver of evolutionary innovation as it allows for an organism to elaborate its existing biological functions via specialization or diversification of initially redundant gene paralogs. Gene function can diversify in several ways. Transcription factor gene paralogs in particular, can diversify either by changes in their tissue-specific expression pattern or by changes in the DNA binding site motif recognized by their protein product, which in turn alters their gene targets. The relationship between these two modes of functional diversification of transcription factor paralogs has not been previously investigated, and is essential for understanding adaptive evolution of transcription factor gene families. FINDINGS: Based on a large set of human paralogous transcription factor pairs, we show that when the DNA binding site motifs of transcription factor paralogs are similar, the expressions of the genes that encode the paralogs have diverged, so in general, at most one of the paralogs is highly expressed in a tissue. Moreover, paralogs with diverged DNA binding site motifs tend to be diverged in their function. Conversely, two paralogs that are highly expressed in a tissue tend to have dissimilar DNA binding site motifs. We have also found that in general, within a paralogous family, tissue-specific decrease in gene expression is more frequent than what is expected by chance. CONCLUSIONS: While previous investigations of paralogous gene diversification have only considered coding sequence divergence, by explicitly quantifying divergence in DNA binding site motif, our work presents a new paradigm for investigating functional diversification. Consistent with evolutionary expectation, our quantitative analysis suggests that paralogous transcription factors have survived extinction in part, either through diversification of their DNA binding site motifs or through alterations in their tissue-specific expression

  7. Current Hormonal Contraceptive Use Predicts Female Extra-Pair and Dyadic Sexual Behavior: Evidence Based on Czech National Survey Data

    Directory of Open Access Journals (Sweden)

    Kateřina Klapilová

    2014-01-01

    Full Text Available Data from 1155 Czech women (493 using oral contraception, 662 non-users, obtained from the Czech National Survey of Sexual Behavior, were used to investigate evolutionary-based hypotheses concerning the predictive value of current oral contraceptive (OC use on extra-pair and dyadic (in-pair sexual behavior of coupled women. Specifically, the aim was to determine whether current OC use was associated with lower extra-pair and higher in-pair sexual interest and behavior, because OC use suppresses cyclical shifts in mating psychology that occur in normally cycling women. Zero-inflated Poisson (ZIP regression and negative binomial models were used to test associations between OC use and these sexual measures, controlling for other relevant predictors (e.g., age, parity, in-pair sexual satisfaction, relationship length. The overall incidence of having had an extra-pair partner or one-night stand in the previous year was not related to current OC use (the majority of the sample had not. However, among the women who had engaged in extra-pair sexual behavior, OC users had fewer one-night stands than non-users, and tended to have fewer partners, than non-users. OC users also had more frequent dyadic intercourse than non-users, potentially indicating higher commitment to their current relationship. These results suggest that suppression of fertility through OC use may alter important aspects of female sexual behavior, with potential implications for relationship functioning and stability.

  8. Cell pairing using a dielectrophoresis-based device with interdigitated array electrodes.

    Science.gov (United States)

    Şen, Mustafa; Ino, Kosuke; Ramón-Azcón, Javier; Shiku, Hitoshi; Matsue, Tomokazu

    2013-09-21

    We present a chip device with an array of 900 gourd-shaped microwells designed to pair single cells of different types. The device consists of interdigitated array (IDA) electrodes and uses positive dielectrophoresis to trap cells within the microwells. Each side of a microwell is on a different comb of the IDA, so that cells of different types are trapped on opposite sides of the microwells, leading to close cell pairing. Using this device, a large number of cell pairs can be formed easily and rapidly, making it a highly attractive tool for controllable cell pairing in a range of biological applications.

  9. Novel H+-Ion Sensor Based on a Gated Lateral BJT Pair

    Directory of Open Access Journals (Sweden)

    Heng Yuan

    2015-12-01

    Full Text Available An H+-ion sensor based on a gated lateral bipolar junction transistor (BJT pair that can operate without the classical reference electrode is proposed. The device is a special type of ion-sensitive field-effect transistor (ISFET. Classical ISFETs have the advantage of miniaturization, but  they are difficult to fabricate by a single fabrication process because of the bulky and brittle reference electrode materials. Moreover, the reference electrodes need to be separated from the sensor device in some cases. The proposed device is composed of two gated lateral BJT components, one of which had a silicide layer while the other was without the layer. The two components were operated under the metal-oxide semiconductor field-effect transistor (MOSFET-BJT hybrid mode, which can be controlled by emitter voltage and base current. Buffer solutions with different pH values were used as the sensing targets to verify the characteristics of the proposed device. Owing to their different sensitivities, both components could simultaneously detect the H+-ion concentration and function as a reference to each other. Per the experimental results, the sensitivity of the proposed device was found to be approximately 0.175 μA/pH. This experiment demonstrates enormous potential to lower the cost of the ISFET-based sensor technology.

  10. RMOD: a tool for regulatory motif detection in signaling network.

    Directory of Open Access Journals (Sweden)

    Jinki Kim

    Full Text Available Regulatory motifs are patterns of activation and inhibition that appear repeatedly in various signaling networks and that show specific regulatory properties. However, the network structures of regulatory motifs are highly diverse and complex, rendering their identification difficult. Here, we present a RMOD, a web-based system for the identification of regulatory motifs and their properties in signaling networks. RMOD finds various network structures of regulatory motifs by compressing the signaling network and detecting the compressed forms of regulatory motifs. To apply it into a large-scale signaling network, it adopts a new subgraph search algorithm using a novel data structure called path-tree, which is a tree structure composed of isomorphic graphs of query regulatory motifs. This algorithm was evaluated using various sizes of signaling networks generated from the integration of various human signaling pathways and it showed that the speed and scalability of this algorithm outperforms those of other algorithms. RMOD includes interactive analysis and auxiliary tools that make it possible to manipulate the whole processes from building signaling network and query regulatory motifs to analyzing regulatory motifs with graphical illustration and summarized descriptions. As a result, RMOD provides an integrated view of the regulatory motifs and mechanism underlying their regulatory motif activities within the signaling network. RMOD is freely accessible online at the following URL: http://pks.kaist.ac.kr/rmod.

  11. Detecting DNA regulatory motifs by incorporating positional trendsin information content

    Energy Technology Data Exchange (ETDEWEB)

    Kechris, Katherina J.; van Zwet, Erik; Bickel, Peter J.; Eisen,Michael B.

    2004-05-04

    On the basis of the observation that conserved positions in transcription factor binding sites are often clustered together, we propose a simple extension to the model-based motif discovery methods. We assign position-specific prior distributions to the frequency parameters of the model, penalizing deviations from a specified conservation profile. Examples with both simulated and real data show that this extension helps discover motifs as the data become noisier or when there is a competing false motif.

  12. RNAHelix: computational modeling of nucleic acid structures with Watson-Crick and non-canonical base pairs

    Science.gov (United States)

    Bhattacharyya, Dhananjay; Halder, Sukanya; Basu, Sankar; Mukherjee, Debasish; Kumar, Prasun; Bansal, Manju

    2017-02-01

    Comprehensive analyses of structural features of non-canonical base pairs within a nucleic acid double helix are limited by the availability of a small number of three dimensional structures. Therefore, a procedure for model building of double helices containing any given nucleotide sequence and base pairing information, either canonical or non-canonical, is seriously needed. Here we describe a program RNAHelix, which is an updated version of our widely used software, NUCGEN. The program can regenerate duplexes using the dinucleotide step and base pair orientation parameters for a given double helical DNA or RNA sequence with defined Watson-Crick or non-Watson-Crick base pairs. The original structure and the corresponding regenerated structure of double helices were found to be very close, as indicated by the small RMSD values between positions of the corresponding atoms. Structures of several usual and unusual double helices have been regenerated and compared with their original structures in terms of base pair RMSD, torsion angles and electrostatic potentials and very high agreements have been noted. RNAHelix can also be used to generate a structure with a sequence completely different from an experimentally determined one or to introduce single to multiple mutation, but with the same set of parameters and hence can also be an important tool in homology modeling and study of mutation induced structural changes.

  13. Nuclear magnetic resonance solution structure of an N(2)-guanine DNA adduct derived from the potent tumorigen dibenzo[a,l]pyrene: intercalation from the minor groove with ruptured Watson-Crick base pairing.

    Science.gov (United States)

    Tang, Yijin; Liu, Zhi; Ding, Shuang; Lin, Chin H; Cai, Yuqin; Rodriguez, Fabian A; Sayer, Jane M; Jerina, Donald M; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E

    2012-12-04

    The most potent tumorigen identified among the polycyclic aromatic hydrocarbons (PAH) is the nonplanar fjord region dibenzo[a,l]pyrene (DB[a,l]P). It is metabolically activated in vivo through the widely studied diol epoxide (DE) pathway to form covalent adducts with DNA bases, predominantly guanine and adenine. The (+)-11S,12R,13R,14S DE enantiomer forms adducts via its C14 position with the exocyclic amino group of guanine. Here, we present the first nuclear magnetic resonance solution structure of a DB[a,l]P-derived adduct, the 14R-(+)-trans-anti-DB[a,l]P-N(2)-dG (DB[a,l]P-dG) lesion in double-stranded DNA. In contrast to the stereochemically identical benzo[a]pyrene-derived N(2)-dG adduct (B[a]P-dG) in which the B[a]P rings reside in the B-DNA minor groove on the 3'-side of the modifed deoxyguanosine, in the DB[a,l]P-derived adduct the DB[a,l]P rings intercalate into the duplex on the 3'-side of the modified base from the sterically crowded minor groove. Watson-Crick base pairing of the modified guanine with the partner cytosine is broken, but these bases retain some stacking with the bulky DB[a,l]P ring system. This new theme in PAH DE-DNA adduct conformation differs from (1) the classical intercalation motif in which Watson-Crick base pairing is intact at the lesion site and (2) the base-displaced intercalation motif in which the damaged base and its partner are extruded from the helix. The structural considerations that lead to the intercalated conformation of the DB[a,l]P-dG lesion in contrast to the minor groove alignment of the B[a]P-dG adduct, and the implications of the DB[a,l]P-dG conformational motif for the recognition of such DNA lesions by the human nucleotide excision repair apparatus, are discussed.

  14. Protein functional-group 3D motif and its applications

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Representing and recognizing protein active sites sequence motif (1D motif) and structural motif (3D motif) is an important topic for predicting and designing protein function. Prevalent methods for extracting and searching 3D motif always consider residue as the minimal unit, which have limited sensitivity. Here we present a new spatial representation of protein active sites, called "functional-group 3D motif ", based on the fact that the functional groups inside a residue contribute mostly to its function. Relevant algorithm and computer program are developed, which could be widely used in the function prediction and the study of structural-function relationship of proteins. As a test, we defined a functional-group 3D motif of the catalytic triad and oxyanion hole with the structure of porcine trypsin (PDB code: 1mct) as the template. With our motif-searching program, we successfully found similar sub-structures in trypsins, subtilisins and a/b hydrolases, which show distinct folds but share similar catalytic mechanism. Moreover, this motif can be used to elucidate the structural basis of other proteins with variant catalytic triads by comparing it to those proteins. Finally, we scanned this motif against a non-redundant protein structure database to find its matches, and the results demonstrated the potential application of functional group 3D motif in function prediction. Above all, compared with the other 3D-motif representations on residues, the functional group 3D motif achieves better representation of protein active region, which is more sensitive for protein function prediction.

  15. Pairing symmetries of several iron-based superconductor families and some similarities with cuprates and heavy-fermions

    Directory of Open Access Journals (Sweden)

    Das Tanmoy

    2012-03-01

    Full Text Available We show that, by using the unit-cell transformation between 1 Fe per unit cell to 2 Fe per unit cell, one can qualitatively understand the pairing symmetry of several families of iron-based superconductors. In iron-pnictides and iron-chalcogenides, the nodeless s±-pairing and the resulting magnetic resonance mode transform nicely between the two unit cells, while retaining all physical properties unchanged. However, when the electron-pocket disappears from the Fermi surface with complete doping in KFe2As2, we find that the unit-cell invariant requirement prohibits the occurrence of s±-pairing symmetry (caused by inter-hole-pocket nesting. However, the intra-pocket nesting is compatible here, which leads to a nodal d-wave pairing. The corresponding Fermi surface topology and the pairing symmetry are similar to Ce-based heavy-fermion superconductors. Furthermore, when the Fermi surface hosts only electron-pockets in KyFe2-xSe2, the inter-electron-pocket nesting induces a nodeless and isotropic d-wave pairing. This situation is analogous to the electron-doped cuprates, where the strong antiferromagnetic order creates similar disconnected electron-pocket Fermi surface, and hence nodeless d-wave pairing appears. The unit-cell transformation in KyFe2-xSe2 exhibits that the d-wave pairing breaks the translational symmetry of the 2 Fe unit cell, and thus cannot be realized unless a vacancy ordering forms to compensate for it. These results are consistent with the coexistence picture of a competing order and nodeless d-wave superconductivity in both cuprates and KyFe1.6Se2.

  16. A Bayesian Target Predictor Method based on Molecular Pairing Energies estimation.

    Science.gov (United States)

    Oliver, Antoni; Canals, Vincent; Rosselló, Josep L

    2017-03-06

    Virtual screening (VS) is applied in the early drug discovery phases for the quick inspection of huge molecular databases to identify those compounds that most likely bind to a given drug target. In this context, there is the necessity of the use of compact molecular models for database screening and precise target prediction in reasonable times. In this work we present a new compact energy-based model that is tested for its application to Virtual Screening and target prediction. The model can be used to quickly identify active compounds in huge databases based on the estimation of the molecule's pairing energies. The greatest molecular polar regions along with its geometrical distribution are considered by using a short set of smart energy vectors. The model is tested using similarity searches within the Directory of Useful Decoys (DUD) database. The results obtained are considerably better than previously published models. As a Target prediction methodology we propose the use of a Bayesian Classifier that uses a combination of different active compounds to build an energy-dependent probability distribution function for each target.

  17. Cryptanalysis on Identity-based Authenticated Key Agreement Protocols from Pairings

    Directory of Open Access Journals (Sweden)

    Mengbo Hou

    2010-07-01

    Full Text Available Two-party authenticated key agreement protocol is used to authenticate entities and establish session keys in an open network in order to provide secure communications between two parties. Several security attributes are highly desired for such protocols, such as perfect forward secrecy (the corruption of long-term keys of all the entities should not compromise any session key, PKG forward secrecy (the corruption of the PKG's master key in the ID-based system should not compromise the established session keys, and known session-key specific temporary information secrecy (The exposure of private temporary information should not compromise the secrecy of generated session keys. In 2005, Choie et al. proposed three identity-based authenticated key agreement protocols from pairings. Our analysis shows that they all didn't provide protection against known session-key specific temporary information attack and some of them are vulnerable against man-in-the-middle attack, such as the key replicating attack. We analyze some of the attacks under the BR93 security model.

  18. New Extensions of Pairing-based Signatures into Universal (Multi) Designated Verifier Signatures

    CERN Document Server

    Vergnaud, Damien

    2008-01-01

    The concept of universal designated verifier signatures was introduced by Steinfeld, Bull, Wang and Pieprzyk at Asiacrypt 2003. These signatures can be used as standard publicly verifiable digital signatures but have an additional functionality which allows any holder of a signature to designate the signature to any desired verifier. This designated verifier can check that the message was indeed signed, but is unable to convince anyone else of this fact. We propose new efficient constructions for pairing-based short signatures. Our first scheme is based on Boneh-Boyen signatures and its security can be analyzed in the standard security model. We prove its resistance to forgery assuming the hardness of the so-called strong Diffie-Hellman problem, under the knowledge-of-exponent assumption. The second scheme is compatible with the Boneh-Lynn-Shacham signatures and is proven unforgeable, in the random oracle model, under the assumption that the computational bilinear Diffie-Hellman problem is untractable. Both s...

  19. A Bayesian Target Predictor Method based on Molecular Pairing Energies estimation

    Science.gov (United States)

    Oliver, Antoni; Canals, Vincent; Rosselló, Josep L.

    2017-03-01

    Virtual screening (VS) is applied in the early drug discovery phases for the quick inspection of huge molecular databases to identify those compounds that most likely bind to a given drug target. In this context, there is the necessity of the use of compact molecular models for database screening and precise target prediction in reasonable times. In this work we present a new compact energy-based model that is tested for its application to Virtual Screening and target prediction. The model can be used to quickly identify active compounds in huge databases based on the estimation of the molecule’s pairing energies. The greatest molecular polar regions along with its geometrical distribution are considered by using a short set of smart energy vectors. The model is tested using similarity searches within the Directory of Useful Decoys (DUD) database. The results obtained are considerably better than previously published models. As a Target prediction methodology we propose the use of a Bayesian Classifier that uses a combination of different active compounds to build an energy-dependent probability distribution function for each target.

  20. Mismatch base pairing of the mutagen 8-oxoguanine and its derivatives with adenine: A theoretical search for possible antimutagenic agents

    Science.gov (United States)

    Singh, A. K.; Mishra, P. C.

    Molecular geometries of 8-oxoguanine (8OG), those of its substituted derivatives with the substitutions CH2, CF2, CO, CNH, O, and S in place of the N7H7 group, adenine (A), and the base pairs of 8OG and its substituted derivatives with adenine were optimized using the RHF/6-31+G* and B3LYP/6-31+G* methods in gas phase. All the molecules and their hydrogen-bonded complexes were solvated in aqueous media employing the polarized continuum model (PCM) of the self-consistent reaction field (SCRF) theory using the RHF/6-31+G* and B3LYP/6-31+G* methods. The optimized geometrical parameters of the 8OG-A base pair at the RHF/6-31+G* and B3LYP/6-31+G* levels of theory agree satisfactorily with those of an oligonucleotide containing the base pair found from X-ray crystallography. The pattern of hydrogen bonding in the CF2- and O-substituted 8OG-A base pair is of Watson-Crick type and that in the unsubstituted and CH2-, CNH-, and S-substituted base pairs is of Hoogsteen type. In the CO-substituted base pair, the hydrogen bonding pattern is of neither Watson-Crick nor Hoogsteen type. The CF2-substitution appears to introduce steric hindrance for stacking of DNA bases. On the basis of these results, it appears that among all the substituted 8OG molecules considered here, the O-substituted derivative may be useful as an antimutagenic drug. It is, however, subject to experimental verification. Content:text/plain; charset="UTF-8"

  1. BetaSearch: a new method for querying β-residue motifs

    Directory of Open Access Journals (Sweden)

    Ho Hui

    2012-07-01

    Full Text Available Abstract Background Searching for structural motifs across known protein structures can be useful for identifying unrelated proteins with similar function and characterising secondary structures such as β-sheets. This is infeasible using conventional sequence alignment because linear protein sequences do not contain spatial information. β-residue motifs are β-sheet substructures that can be represented as graphs and queried using existing graph indexing methods, however, these approaches are designed for general graphs that do not incorporate the inherent structural constraints of β-sheets and require computationally-expensive filtering and verification procedures. 3D substructure search methods, on the other hand, allow β-residue motifs to be queried in a three-dimensional context but at significant computational costs. Findings We developed a new method for querying β-residue motifs, called BetaSearch, which leverages the natural planar constraints of β-sheets by indexing them as 2D matrices, thus avoiding much of the computational complexities involved with structural and graph querying. BetaSearch exhibits faster filtering, verification, and overall query time than existing graph indexing approaches whilst producing comparable index sizes. Compared to 3D substructure search methods, BetaSearch achieves 33 and 240 times speedups over index-based and pairwise alignment-based approaches, respectively. Furthermore, we have presented case-studies to demonstrate its capability of motif matching in sequentially dissimilar proteins and described a method for using BetaSearch to predict β-strand pairing. Conclusions We have demonstrated that BetaSearch is a fast method for querying substructure motifs. The improvements in speed over existing approaches make it useful for efficiently performing high-volume exploratory querying of possible protein substructural motifs or conformations. BetaSearch was used to identify a nearly identical

  2. Avian magnetoreception model realized by coupling a magnetite-based mechanism with a radical-pair-based mechanism

    Institute of Scientific and Technical Information of China (English)

    Lü Yan; Song Tao

    2013-01-01

    Many animal species have been proven to use the geomagnetic field for their navigation,but the biophysical mechanism of magnetoreception has remained enigmatic.In this paper,we present a special biophysical model that consists of magnetite-based and radical-pair-based mechanisms for avian magnetoreception.The amplitude of the resultant magnetic field around the magnetic particles corresponds to the geomagnetic field direction and affects the yield of singlet/triplet state products in the radical-pair reactions.Therefore,in the proposed model,the singlet/triplet state product yields are related to the geomagnetic field information for orientational detection.The resultant magnetic fields corresponding to two materials with different magnetic properties are analyzed under different geomagnetic field directions.The results show that ferromagnetic particles in organisms can provide more significant changes in singlet state products than superparamagnetic particles,and the period of variation for the singlet state products with an included angle in the geomagnetic field is approximately 180° when the magnetic particles are ferromagnetic materials,consistent with the experimental results obtained from the avian magnetic compass.Further,the calculated results of the singlet state products in a reception plane show that the proposed model can explain the avian magnetoreception mechanism with an inclination compass.

  3. Nucleon-pair states of even-even Sn isotopes based on realistic effective interactions

    Science.gov (United States)

    Cheng, Y. Y.; Qi, C.; Zhao, Y. M.; Arima, A.

    2016-08-01

    In this paper we study yrast states of 128,126,124Sn and 104,106,108Sn by using the monopole-optimized realistic interactions in terms of both the shell model (SM) and the nucleon-pair approximation (NPA). For yrast states of 128,126Sn and 104,106Sn, we calculate the overlaps between the wave functions obtained in the full SM space and those obtained in the truncated NPA space, and find that most of these overlaps are very close to 1. Very interestingly, for most of these states with positive parity and even spin or with negative parity and odd spin, the SM wave function is found to be well represented by one nucleon-pair basis state, viz., a simple picture of "nucleon-pair states" (nucleon-pair configuration without mixings) emerges. In 128,126Sn, the positive-parity (or negative-parity) yrast states with spin J >10 (or J >7 ) are found to be well described by breaking one or two S pairs in the 101+ (or 71-) state, i.e., the yrast state of seniority-two, spin-maximum, and positive-parity (or negative-parity), into non-S pair(s). Similar regularity is also pointed out for 104,106Sn. The evolution of E 2 transition rates between low-lying states in 128,126,124Sn is discussed in terms of the seniority scheme.

  4. Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA.

    Science.gov (United States)

    Banyasz, Akos; Vayá, Ignacio; Changenet-Barret, Pascale; Gustavsson, Thomas; Douki, Thierry; Markovitsi, Dimitra

    2011-04-13

    The photochemical properties of the DNA duplex (dA)(20)·(dT)(20) are compared with those of the parent single strands. It is shown that base pairing increases the probability of absorbing UVA photons, probably due to the formation of charge-transfer states. UVA excitation induces fluorescence peaking at ∼420 nm and decaying on the nanosecond time scale. The fluorescence quantum yield, the fluorescence lifetime, and the quantum yield for cyclobutane dimer formation increase upon base pairing. Such behavior contrasts with that of the UVC-induced processes.

  5. DNA base pair resolution measurements using resonance energy transfer efficiency in lanthanide doped nanoparticles.

    Directory of Open Access Journals (Sweden)

    Aleksandra Delplanque

    Full Text Available Lanthanide-doped nanoparticles are of considerable interest for biodetection and bioimaging techniques thanks to their unique chemical and optical properties. As a sensitive luminescence material, they can be used as (bio probes in Förster Resonance Energy Transfer (FRET where trivalent lanthanide ions (La3+ act as energy donors. In this paper we present an efficient method to transfer ultrasmall (ca. 8 nm NaYF4 nanoparticles dispersed in organic solvent to an aqueous solution via oxidation of the oleic acid ligand. Nanoparticles were then functionalized with single strand DNA oligomers (ssDNA by inducing covalent bonds between surface carboxylic groups and a 5' amine modified-ssDNA. Hybridization with the 5' fluorophore (Cy5 modified complementary ssDNA strand demonstrated the specificity of binding and allowed the fine control over the distance between Eu3+ ions doped nanoparticle and the fluorophore by varying the number of the dsDNA base pairs. First, our results confirmed nonradiative resonance energy transfer and demonstrate the dependence of its efficiency on the distance between the donor (Eu3+ and the acceptor (Cy5 with sensitivity at a nanometre scale.

  6. All-pairs Shortest Path Algorithm based on MPI+CUDA Distributed Parallel Programming Model

    Directory of Open Access Journals (Sweden)

    Qingshuang Wu

    2013-12-01

    Full Text Available In view of the problem that computing shortest paths in a graph is a complex and time-consuming process, and the traditional algorithm that rely on the CPU as computing unit solely can't meet the demand of real-time processing, in this paper, we present an all-pairs shortest paths algorithm using MPI+CUDA hybrid programming model, which can take use of the overwhelming computing power of the GPU cluster to speed up the processing. This proposed algorithm can combine the advantages of MPI and CUDA programming model, and can realize two-level parallel computing. In the cluster-level, we take use of the MPI programming model to achieve a coarse-grained parallel computing between the computational nodes of the GPU cluster. In the node-level, we take use of the CUDA programming model to achieve a GPU-accelerated fine grit parallel computing in each computational node internal. The experimental results show that the MPI+CUDA-based parallel algorithm can take full advantage of the powerful computing capability of the GPU cluster, and can achieve about hundreds of time speedup; The whole algorithm has good computing performance, reliability and scalability, and it is able to meet the demand of real-time processing of massive spatial shortest path analysis

  7. Self-Similarity Based Corresponding-Point Extraction from Weakly Textured Stereo Pairs

    Directory of Open Access Journals (Sweden)

    Min Mao

    2014-01-01

    Full Text Available For the areas of low textured in image pairs, there is nearly no point that can be detected by traditional methods. The information in these areas will not be extracted by classical interest-point detectors. In this paper, a novel weakly textured point detection method is presented. The points with weakly textured characteristic are detected by the symmetry concept. The proposed approach considers the gray variability of the weakly textured local regions. The detection mechanism can be separated into three steps: region-similarity computation, candidate point searching, and refinement of weakly textured point set. The mechanism of radius scale selection and texture strength conception are used in the second step and the third step, respectively. The matching algorithm based on sparse representation (SRM is used for matching the detected points in different images. The results obtained on image sets with different objects show high robustness of the method to background and intraclass variations as well as to different photometric and geometric transformations; the points detected by this method are also the complement of points detected by classical detectors from the literature. And we also verify the efficacy of SRM by comparing with classical algorithms under the occlusion and corruption situations for matching the weakly textured points. Experiments demonstrate the effectiveness of the proposed weakly textured point detection algorithm.

  8. Heterochromatin base pair composition and diversification in holocentric chromosomes of kissing bugs (Hemiptera, Reduviidae)

    Science.gov (United States)

    Bardella, Vanessa Bellini; Pita, Sebastián; Vanzela, André Luis Laforga; Galvão, Cleber; Panzera, Francisco

    2016-01-01

    The subfamily Triatominae (Hemiptera, Reduviidae) includes 150 species of blood-sucking insects, vectors of Chagas disease or American trypanosomiasis. Karyotypic information reveals a striking stability in the number of autosomes. However, this group shows substantial variability in genome size, the amount and distribution of C-heterochromatin, and the chromosome positions of 45S rDNA clusters. Here, we analysed the karyotypes of 41 species from six different genera with C-fluorescence banding in order to evaluate the base-pair richness of heterochromatic regions. Our results show a high heterogeneity in the fluorescent staining of the heterochromatin in both autosomes and sex chromosomes, never reported before within an insect subfamily with holocentric chromosomes. This technique allows a clear discrimination of the heterochromatic regions classified as similar by C-banding, constituting a new chromosome marker with taxonomic and evolutionary significance. The diverse fluorescent patterns are likely due to the amplification of different repeated sequences, reflecting an unusual dynamic rearrangement in the genomes of this subfamily. Further, we discuss the evolution of these repeated sequences in both autosomes and sex chromosomes in species of Triatominae. PMID:27759763

  9. Biomolecule Analogues 2-Hydroxypyridine and 2-Pyridone Base Pairing on Ice Nanoparticles.

    Science.gov (United States)

    Rubovič, Peter; Pysanenko, Andriy; Lengyel, Jozef; Nachtigallová, Dana; Fárník, Michal

    2016-07-14

    Ice nanoparticles (H2O)N, N ≈ 450 generated in a molecular beam experiment pick up individual gas phase molecules of 2-hydroxypyridine and 2-pyridone (HP) evaporated in a pickup cell at temperatures between 298 and 343 K. The mass spectra of the doped nanoparticles show evidence for generation of clusters of adsorbed molecules (HP)n up to n = 8. The clusters are ionized either by 70 eV electrons or by two photons at 315 nm (3.94 eV). The two ionization methods yield different spectra, and their comparison provides an insight into the neutral cluster composition, ionization and intracluster ion-molecule reactions, and cluster fragmentation. Quite a few molecules were reported not to coagulate on ice nanoparticles previously. The (HP)n cluster generation on ice nanoparticles represents the first evidence for coagulating of molecules and cluster formation on free ice nanoparticles. For comparison, we investigate the coagulation of HP molecules picked up on large clusters ArN, N ≈ 205, and also (HP)n clusters generated in supersonic expansions with Ar buffer gas. This comparison points to a propensity for the (HP)2 dimer generation on ice nanoparticles. This shows the feasibility of base pairing for model of biological molecules on free ice nanoparticles. This result is important for hypotheses of the biomolecule synthesis on ice grains in the space. We support our findings by theoretical calculations that show, among others, the HP dimer structures on water clusters.

  10. Proton tunneling in the A∙T Watson-Crick DNA base pair: myth or reality?

    Science.gov (United States)

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-01-01

    The results and conclusions reached by Godbeer et al. in their recent work, that proton tunneling in the A∙T(WC) Watson-Crick (WC) DNA base pair occurs according to the Löwdin's (L) model, but with a small (~10(-9)) probability were critically analyzed. Here, it was shown that this finding overestimates the possibility of the proton tunneling at the A∙T(WC)↔A*∙T*(L) tautomerization, because this process cannot be implemented as a chemical reaction. Furthermore, it was outlined those biologically important nucleobase mispairs (A∙A*↔A*∙A, G∙G*↔G*∙G, T∙T*↔T*∙T, C∙C*↔C*∙C, H∙H*↔H*∙H (H - hypoxanthine)) - the players in the field of the spontaneous point mutagenesis - where the tunneling of protons is expected and for which the application of the model proposed by Godbeer et al. can be productive.

  11. Doppler Broadening Analysis of Steel Specimens Using Accelerator Based In Situ Pair Production

    Science.gov (United States)

    Makarashvili, V.; Wells, D. P.; Roy, A. K.

    2009-03-01

    Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma-induced pair-production techniques to produce positrons in thick samples (˜4-40 g/cm2, or ˜0.5-5 cm in steel). These techniques are called 'Accelerator-based Gamma-induced Positron Annihilation Spectroscopy' (AG-PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams by stopping 15 MeV electrons in a 1 mm thick tungsten converter. The accelerator is capable of operating with 30-60 ns pulse width, up to 200 mA peak current at 1 kHz repetition rate. The highly collimated bremsstrahlung beam impinged upon our steel tensile specimens, after traveling through a 1.2 m thick concrete wall. Annihilation radiation was detected by a well-shielded and collimated high-purity germanium detector (HPGe). Conventional Doppler broadening spectrometry (DBS) was performed to determine S, W and T parameters for our samples.

  12. An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs

    Science.gov (United States)

    Lee, Kwan-Soo; Spendelow, Jacob S.; Choe, Yoong-Kee; Fujimoto, Cy; Kim, Yu Seung

    2016-09-01

    Fuel cells are promising devices for clean power generation in a variety of economically and environmentally significant applications. Low-temperature proton exchange membrane (PEM) fuel cells utilizing Nafion require a high level of hydration, which limits the operating temperature to less than 100 ∘C. In contrast, high-temperature PEM fuel cells utilizing phosphoric acid-doped polybenzimidazole can operate effectively up to 180 ∘C however, these devices degrade when exposed to water below 140 ∘C. Here we present a different class of PEM fuel cells based on quaternary ammonium-biphosphate ion pairs that can operate under conditions unattainable with existing fuel cell technologies. These fuel cells exhibit stable performance at 80-160 ∘C with a conductivity decay rate more than three orders of magnitude lower than that of a commercial high-temperature PEM fuel cell. By increasing the operational flexibility, this class of fuel cell can simplify the requirements for heat and water management, and potentially reduce the costs associated with the existing fully functional fuel cell systems.

  13. An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs.

    Science.gov (United States)

    Pan, Zhu; Zhu, Jinwei; Shang, Yuan; Wei, Zhiyi; Jia, Min; Xia, Caihao; Wen, Wenyu; Wang, Wenning; Zhang, Mingjie

    2013-06-01

    LGN plays essential roles in asymmetric cell divisions via its N-terminal TPR-motif-mediated binding to mInsc and NuMA. This scaffolding activity requires the release of the autoinhibited conformation of LGN by binding of Gα(i) to its C-terminal GoLoco (GL) motifs. The interaction between the GL and TPR motifs of LGN represents a distinct GL/target binding mode with an unknown mechanism. Here, we show that two consecutive GL motifs of LGN form a minimal TPR-motif-binding unit. GL12 and GL34 bind to TPR0-3 and TPR4-7, respectively. The crystal structure of a truncated LGN reveals that GL34 forms a pair of parallel α helices and binds to the concave surface of TPR4-7, thereby preventing LGN from binding to other targets. Importantly, the GLs bind to TPR motifs with a mode distinct from that observed in the GL/Gα(i)·GDP complexes. Our results also indicate that multiple and orphan GL motif proteins likely respond to G proteins with distinct mechanisms.

  14. Universal quantum gates for Single Cooper Pair Box based quantum computing

    Science.gov (United States)

    Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.

    2000-01-01

    We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.

  15. Uncertainty evaluation for three-dimensional scanning electron microscope reconstructions based on the stereo-pair technique

    DEFF Research Database (Denmark)

    Carli, Lorenzo; Genta, G; Cantatore, Angela;

    2011-01-01

    3D-SEM is a method, based on the stereophotogrammetry technique, which obtains three-dimensional topographic reconstructions starting typically from two SEM images, called the stereo-pair. In this work, a theoretical uncertainty evaluation of the stereo-pair technique, according to GUM (Guide...... to the Expression of Uncertainty in Measurement), was carried out, considering 3D-SEM reconstructions of a wire gauge with a reference diameter of 250 µm. Starting from the more commonly used tilting strategy, one based on the item rotation inside the SEM chamber was also adopted. The latter enables multiple......-view reconstructions of the cylindrical item under consideration. Uncertainty evaluation was performed starting from a modified version of the Piazzesi equation, enabling the calculation of the z-coordinate from a given stereo-pair. The metrological characteristics of each input variable have been taken into account...

  16. RNAPattMatch: a web server for RNA sequence/structure motif detection based on pattern matching with flexible gaps.

    Science.gov (United States)

    Drory Retwitzer, Matan; Polishchuk, Maya; Churkin, Elena; Kifer, Ilona; Yakhini, Zohar; Barash, Danny

    2015-07-01

    Searching for RNA sequence-structure patterns is becoming an essential tool for RNA practitioners. Novel discoveries of regulatory non-coding RNAs in targeted organisms and the motivation to find them across a wide range of organisms have prompted the use of computational RNA pattern matching as an enhancement to sequence similarity. State-of-the-art programs differ by the flexibility of patterns allowed as queries and by their simplicity of use. In particular-no existing method is available as a user-friendly web server. A general program that searches for RNA sequence-structure patterns is RNA Structator. However, it is not available as a web server and does not provide the option to allow flexible gap pattern representation with an upper bound of the gap length being specified at any position in the sequence. Here, we introduce RNAPattMatch, a web-based application that is user friendly and makes sequence/structure RNA queries accessible to practitioners of various background and proficiency. It also extends RNA Structator and allows a more flexible variable gaps representation, in addition to analysis of results using energy minimization methods. RNAPattMatch service is available at http://www.cs.bgu.ac.il/rnapattmatch. A standalone version of the search tool is also available to download at the site.

  17. Metal-semiconductor pair nanoparticles by a physical route based on bipolar mixing.

    Science.gov (United States)

    Kala, Shubhra; Theissmann, Ralf; Rouenhoff, Marcel; Kruis, Frank Einar

    2016-03-29

    In this report a methodology is described and demonstrated for preparing Au-Ge pair nanoparticles with known compositions by extending and modifying the basic steps normally used to synthesize nanoparticles in carrier gas. For the formation of pair nanoparticles by bipolar mixing, two oppositely charged aerosols of nanoparticles having the desired size are produced with the help of two differential mobility analyzers. Then both are allowed to pass through a tube, which provides sufficient residence time to result in nanoparticle pair formation due to Brownian collisions influenced by Coulomb forces. The effect of residence time on the formation of nanoparticle pairs as well as the influence of diffusion and discharging is described. Subsequently, necessary modifications to the experimental setup are demonstrated systematically. The kinetics of nanoparticles pair formation in a carrier gas is also calculated and compared with measurements made with the help of an online aerosol size analysis technique. This synthesis of nanoparticle pairs can be seen as a possible route towards Janus-type nanoparticles.

  18. Structure, stability and function of 5-chlorouracil modified A:U and G:U base pairs

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Amritraj [Vanderbilt Univ., Nashville, TN (United States); Harp, Joel [Vanderbilt Univ., Nashville, TN (United States); Pallan, Pradeep S. [Vanderbilt Univ., Nashville, TN (United States); Zhao, Linlin [Vanderbilt Univ., Nashville, TN (United States); Abramov, Mikhail [Rega Inst. for Medical Research (Belgium); Herdewijn, Piet [Rega Inst. for Medical Research (Belgium); Univ. of Evry-Val-d' Essonne (France); Egli, Martin [Vanderbilt Univ., Nashville, TN (United States)

    2012-12-28

    The thymine analog 5-chlorouridine, first reported in the 1950s as anti-tumor agent, is known as an effective mutagen, clastogen and toxicant as well as an effective inducer of sister-chromatid exchange. Recently, the first microorganism with a chemically different genome was reported; the selected Escherichia coli strain relies on the four building blocks 5-chloro-2'-deoxyuridine (ClU), A, C and G instead of the standard T, A, C, G alphabet [Marlière,P., Patrouix,J., Döring,V., Herdewijn,P., Tricot,S., Cruveiller,S., Bouzon,M. and Mutzel,R. (2011) Chemical evolution of a bacterium’s genome. Angew. Chem. Int. Ed., 50, 7109–7114]. The residual fraction of T in the DNA of adapted bacteria was <2% and the switch from T to ClU was accompanied by a massive number of mutations, including >1500 A to G or G to A transitions in a culture. The former is most likely due to wobble base pairing between ClU and G, which may be more common for ClU than T. To identify potential changes in the geometries of base pairs and duplexes as a result of replacement of T by ClU, we determined four crystal structures of a B-form DNA dodecamer duplex containing ClU:A or ClU:G base pairs. The structures reveal nearly identical geometries of these pairs compared with T:A or T:G, respectively, and no consequences for stability and cleavage by an endonuclease (EcoRI). The lack of significant changes in the geometry of ClU:A and ClU:G base pairs relative to the corresponding native pairs is consistent with the sustained unlimited self-reproduction of E. coli strains with virtually complete T→ClU genome substitution.

  19. [Structural and energetic properties of the four configurations of the A.T and G.C DNA base pairs].

    Science.gov (United States)

    Brovarets', O O

    2013-01-01

    Using the methods of non-empirical quantum chemistry at the MP2/6-311++G(2df,pd)// B3LYP/6-311++G(d,p) level of theory it was established for the first time, that Hoogsteen, reverse Hoogsteen, Watson-Crick and reverse Watson-Crick configurations of the A.T and G.C DNA base pairs are isoelectronic and isomorphic structures with similar dynamic properties. Based on these results, non-ionisation mechanism of the Hoogsteen <"breathing" of the G*.C* DNA base pair, namely transformation of the tautomerised (Lowdin's) G-C base pair with Watson-Crick geometry into the Hoogsteen electroneutral G*.C* H base pair stabilized by the three O6H...N4, N3H...N7 and C8H...02 H-bonds, was postulated. It is suggested that such scenario activates only in those cases, when DNA is not located in aqueous solution, but works together with proteins and cytosine protonation at the N3 atom is precluded.

  20. STEME: a robust, accurate motif finder for large data sets.

    Directory of Open Access Journals (Sweden)

    John E Reid

    Full Text Available Motif finding is a difficult problem that has been studied for over 20 years. Some older popular motif finders are not suitable for analysis of the large data sets generated by next-generation sequencing. We recently published an efficient approximation (STEME to the EM algorithm that is at the core of many motif finders such as MEME. This approximation allows the EM algorithm to be applied to large data sets. In this work we describe several efficient extensions to STEME that are based on the MEME algorithm. Together with the original STEME EM approximation, these extensions make STEME a fully-fledged motif finder with similar properties to MEME. We discuss the difficulty of objectively comparing motif finders. We show that STEME performs comparably to existing prominent discriminative motif finders, DREME and Trawler, on 13 sets of transcription factor binding data in mouse ES cells. We demonstrate the ability of STEME to find long degenerate motifs which these discriminative motif finders do not find. As part of our method, we extend an earlier method due to Nagarajan et al. for the efficient calculation of motif E-values. STEME's source code is available under an open source license and STEME is available via a web interface.

  1. Probing structural changes of self assembled i-motif DNA

    KAUST Repository

    Lee, Iljoon

    2015-01-01

    We report an i-motif structural probing system based on Thioflavin T (ThT) as a fluorescent sensor. This probe can discriminate the structural changes of RET and Rb i-motif sequences according to pH change. This journal is

  2. High-Resolution Crystal Structure of a Silver(I)-RNA Hybrid Duplex Containing Watson-Crick-like C-Silver(I)-C Metallo-Base Pairs.

    Science.gov (United States)

    Kondo, Jiro; Tada, Yoshinari; Dairaku, Takenori; Saneyoshi, Hisao; Okamoto, Itaru; Tanaka, Yoshiyuki; Ono, Akira

    2015-11-02

    Metallo-base pairs have been extensively studied for applications in nucleic acid-based nanodevices and genetic code expansion. Metallo-base pairs composed of natural nucleobases are attractive because nanodevices containing natural metallo-base pairs can be easily prepared from commercially available sources. Previously, we have reported a crystal structure of a DNA duplex containing T-Hg(II)-T base pairs. Herein, we have determined a high-resolution crystal structure of the second natural metallo-base pair between pyrimidine bases C-Ag(I)-C formed in an RNA duplex. One Ag(I) occupies the center between two cytosines and forms a C-Ag(I)-C base pair through N3-Ag(I)-N3 linear coordination. The C-Ag(I)-C base pair formation does not disturb the standard A-form conformation of RNA. Since the C-Ag(I)-C base pair is structurally similar to the canonical Watson-Crick base pairs, it can be a useful building block for structure-based design and fabrication of nucleic acid-based nanodevices.

  3. Lethal osteogenesis imperfecta congenita and a 300 base pair gene deletion for an α1(I)-like collagen.

    NARCIS (Netherlands)

    F.M. Pope; K.S.E. Cheah (Kathryn); A.C. Nicholls; A.B. Price; F.G. Grosveld (Frank)

    1984-01-01

    textabstractBroad boned lethal osteogenesis imperfecta is a severely crippling disease of unknown cause. By means of recombinant DNA technology a 300 base pair deletion in an alpha 1(I)-like collagen gene was detected in six patients and four complete parent-child groups including patients with this

  4. Transitions between Short-Term and Long-Term Memory in Learning Meaningful Unrelated Paired Associates Using Computer Based Drills.

    Science.gov (United States)

    Goldenberg, Tzvika Y.; Turnure, James E.

    1989-01-01

    Discussion of short-term and long-term memory in learning paired associates focuses on two microcomputer-based instructional design experiments with eleventh and twelfth graders that were modeled after traditional drill and practice routines. Research questions are presented, treatment conditions are explained, and additional research is…

  5. Epitope-based vaccines with the Anaplasma marginale MSP1a functional motif induce a balanced humoral and cellular immune response in mice.

    Directory of Open Access Journals (Sweden)

    Paula S Santos

    Full Text Available Bovine anaplasmosis is a hemoparasitic disease that causes considerable economic loss to the dairy and beef industries. Cattle immunized with the Anaplasma marginale MSP1 outer membrane protein complex presents a protective humoral immune response; however, its efficacy is variable. Immunodominant epitopes seem to be a key-limiting factor for the adaptive immunity. We have successfully demonstrated that critical motifs of the MSP1a functional epitope are essential for antibody recognition of infected animal sera, but its protective immunity is yet to be tested. We have evaluated two synthetic vaccine formulations against A. marginale, using epitope-based approach in mice. Mice infection with bovine anaplasmosis was demonstrated by qPCR analysis of erythrocytes after 15-day exposure. A proof-of-concept was obtained in this murine model, in which peptides conjugated to bovine serum albumin were used for immunization in three 15-day intervals by intraperitoneal injections before challenging with live bacteria. Blood samples were analyzed for the presence of specific IgG2a and IgG1 antibodies, as well as for the rickettsemia analysis. A panel containing the cytokines' transcriptional profile for innate and adaptive immune responses was carried out through qPCR. Immunized BALB/c mice challenged with A. marginale presented stable body weight, reduced number of infected erythrocytes, and no mortality; and among control groups mortality rates ranged from 15% to 29%. Additionally, vaccines have significantly induced higher IgG2a than IgG1 response, followed by increased expression of pro-inflammatory cytokines. This is a successful demonstration of epitope-based vaccines, and protection against anaplasmosis may be associated with elicitation of effector functions of humoral and cellular immune responses in murine model.

  6. Comparison of Three Cre-LoxP Based Paired-End Library Construction Methods

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ze; Nath, Nandita; Tritt, Andrew; Liang, Shoudan; Han, James; Pennacchio, Len; Chen, Feng

    2013-03-26

    Paired-end library sequencing has been proven useful in scaffold construction during de novo whole genome shotgun assembly. The ability of generating mate pairs with > 8 Kb insert sizes is especially important for genomes containing long repeats. To make mate paired libraries for next generation sequencing, DNA fragments need to be circularized to bring the ends together. There are several methods that can be used for DNA circulation, namely ligation, hybridization and Cre-LoxP recombination. With higher circularization efficiency with large insert DNA fragments, Cre-LoxP recombination method generally has been used for constructing >8 kb insert size paired-end libraries. Second fragmentation step is also crucial for maintaining high library complexity and uniform genome coverage. Here we will describe the following three fragmentation methods: restriction enzyme digestion, random shearing and nick translation. We will present the comparison results for these three methods. Our data showed that all three methods are able to generate paired-end libraries with greater than 20 kb insert. Advantages and disadvantages of these three methods will be discussed as well.

  7. Computer simulation of acetonitrile and methanol with ab initio-based pair potentials

    Science.gov (United States)

    Hloucha, M.; Sum, A. K.; Sandler, S. I.

    2000-10-01

    This study address the adequacy of ab initio pair interaction energy potentials for the prediction of macroscopic properties. Recently, Bukowski et al. [J. Phys. Chem. A 103, 7322 (1999)] performed a comprehensive study of the potential energy surfaces for several pairs of molecules using symmetry-adapted perturbation theory. These ab initio energies were then fit to an appropriate site-site potential form. In an attempt to bridge the gap between ab initio interaction energy information and macroscopic properties prediction, we performed Gibbs ensemble Monte Carlo (GEMC) simulations using their developed pair potentials for acetonitrile and methanol. The simulations results show that the phase behavior of acetonitrile is well described by just the pair interaction potential. For methanol, on the other hand, pair interactions are insufficient to properly predict its vapor-liquid phase behavior, and its saturated liquid density. We also explored simplified forms for representing the ab initio interaction energies by refitting a selected range of the data to a site-site Lennard-Jones and to a modified Buckingham (exponential-6) potentials plus Coulombic interactions. These were also used in GEMC simulations in order to evaluate the quality and computational efficiency of these different potential forms. It was found that the phase behavior prediction for acetonitrile and methanol are highly dependent on the details of the interaction potentials developed.

  8. Mitochondrial DNA 4977-base pair common deletion in blood leukocytes and melanoma risk.

    Science.gov (United States)

    Shen, Jie; Wan, Jie; Huff, Chad; Fang, Shenying; Lee, Jeffrey E; Zhao, Hua

    2016-05-01

    The 4977-base pair common deletion DmtDNA4977 is the most frequently observed mitochondrial DNA mutation in human tissues. Because mitochondrial DNA mutations are mainly caused by reactive oxygen species (ROS), and given that oxidative stress plays an important role in melanoma carcinogenesis, the investigation of DmtDNA4977 may be particularly relevant to the development of melanoma. In this study, we compared DmtDNA4977 levels in blood leukocytes from 206 melanoma patients and 219 healthy controls. Overall, melanoma cases had significantly higher levels of DmtDNA4977 than healthy controls (median: 0.60 vs 0.20, P = 0.008). The difference was evident among individuals who were older than 47 yrs, women, and had pigmentation risk factors (e.g., blond or red hair, blue eye, fair skin, light, or none tanning ability after prolonged sun exposure, and freckling in the sun as a child). The difference was also evident among those who had at least one lifetime sunburn with blistering and had no reported use of a sunlamp. Interestingly, among controls, DmtDNA4977 levels differed by phenotypic index and reported use of a sunlamp. In the risk assessment, increased levels of DmtDNA4977 were associated with a 1.23-fold increased risk of melanoma (odds ratio (OR): 1.23, 95% confidence interval (90% CI): 1.01, 1.50). A significant dose-response relationship was observed in quartile analysis (P = 0.001). In summary, our study suggests that high levels of DmtDNA4977 in blood leukocytes are associated with increased risk of melanoma and that association is affected by both pigmentation and personal history of sun exposure.

  9. Mass renormalization and unconventional pairing in multi-band Fe-based superconductors- a phenomenological approach

    Energy Technology Data Exchange (ETDEWEB)

    Drechsler, S.L.; Efremov, D.; Grinenko, V. [IFW-Dresden (Germany); Johnston, S. [Inst. of Quantum Matter, University of British Coulumbia, Vancouver (Canada); Rosner, H. [MPI-cPfS, Dresden, (Germany); Kikoin, K. [Tel Aviv University (Israel)

    2015-07-01

    Combining DFT calculations of the density of states and plasma frequencies with experimental thermodynamic, optical, ARPES, and dHvA data taken from the literature, we estimate both the high-energy (Coulomb, Hund's rule coupling) and the low-energy (el-boson coupling) electronic mass renormalization [H(L)EMR] for typical Fe-pnictides with T{sub c}<40 K, focusing on (K,Rb,Cs)Fe{sub 2}As{sub 2}, (Ca,Na)122, (Ba,K)122, LiFeAs, and LaFeO{sub 1-x}F{sub x}As with and without As-vacancies. Using Eliashberg theory we show that these systems can NOT be described by a very strong el-boson coupling constant λ ≥ ∝ 2, being in conflict with the HEMR as seen by DMFT, ARPES and optics. Instead, an intermediate s{sub ±} coupling regime is realized, mainly based on interband spin fluctuations from one predominant pair of bands. For (Ca,Na)122, there is also a non-negligible intraband el-phonon/orbital fluctuation intraband contribution. The coexistence of magnetic As-vacancies and high-T{sub c}=28 K for LaFeO{sub 1-x}F{sub x}As{sub 1-δ} excludes an orbital fluctuation dominated s{sub ++} scenario at least for that system. In contrast, the line nodal BaFe{sub 2}(As,P){sub 2} near the quantum critical point is found as a superstrongly coupled system. The role of a pseudo-gap is briefly discussed for some of these systems.

  10. Carcinogenesis of asbestos switched on by inducing cross-linkage between DNA complementary pair bases

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Since the beginning of the 1980s, Dai Qianhuan predicted based upon his di-region theory that the carcinogenesis switched on by the so-called physical carcinogenic factors including radiation, asbestos and foreign matter implantation, is just initiated through the cross-linking between DNA complementary pair bases induced by them. In this note, it was evidenced with the DNA filter elution method that the oxygenase activated by asbestos induces the cross-linking between DNA inter-strands and DNA-protein with dosage correlation, in which over 80% of DNA inter-strand cross-link ratio account for the total cross-link ratio. Obviously, both of the cross-linkages are just induced by hydroxyl free radical, HO@, because the ferrous ion increased the cross-link ratios up to several times through Fenton reaction and vitamin C inhibited the cross-link ratios with factors of 8-9 by destroying the hydroxyl radical. Non-carcinogen but with lower free radical formation energy, pyrene, by culturing with asbestos gave 3-4 times cross-link ratios than the original ratios induced by asbestos only. Estradiol, an endogenous carcinogen, as a bio-electrophilic species but with higher free radical formation energy by culturing with asbestos, gave only 1.2 time cross-link ratios than expected ones. Ferrous ion which can increase HO@ concentration through Fenton reaction, increased the ratios to 2-2.5 times in the former case but only 1.2 time in the latter case. Vitamin C, a free radical scavenger, gave a powerful inhibition to the cross-linking with a factor of 8-11 in the former case but a weak inhibition with a factor of 1.2 only in the latter case. So, it is evidenced further that the cross-linkages induced by asbestos are originated from hydroxyl radical. Reasonable structures of the cross-linking products induced by asbestos or hydroxyl radical have been depicted based upon AM1 MO theory. These structures have been verified further by a reasonable explanation of the mutational

  11. Identification of a novel calcium binding motif based on the detection of sequence insertions in the animal peroxidase domain of bacterial proteins.

    Directory of Open Access Journals (Sweden)

    Saray Santamaría-Hernando

    Full Text Available Proteins of the animal heme peroxidase (ANP superfamily differ greatly in size since they have either one or two catalytic domains that match profile PS50292. The orf PP_2561 of Pseudomonas putida KT2440 that we have called PepA encodes a two-domain ANP. The alignment of these domains with those of PepA homologues revealed a variable number of insertions with the consensus G-x-D-G-x-x-[GN]-[TN]-x-D-D. This motif has also been detected in the structure of pseudopilin (pdb 3G20, where it was found to be involved in Ca(2+ coordination although a sequence analysis did not reveal the presence of any known calcium binding motifs in this protein. Isothermal titration calorimetry revealed that a peptide containing this consensus motif bound specifically calcium ions with affinities ranging between 33-79 µM depending on the pH. Microcalorimetric titrations of the purified N-terminal ANP-like domain of PepA revealed Ca(2+ binding with a K(D of 12 µM and stoichiometry of 1.25 calcium ions per protein monomer. This domain exhibited peroxidase activity after its reconstitution with heme. These data led to the definition of a novel calcium binding motif that we have termed PERCAL and which was abundantly present in animal peroxidase-like domains of bacterial proteins. Bacterial heme peroxidases thus possess two different types of calcium binding motifs, namely PERCAL and the related hemolysin type calcium binding motif, with the latter being located outside the catalytic domains and in their C-terminal end. A phylogenetic tree of ANP-like catalytic domains of bacterial proteins with PERCAL motifs, including single domain peroxidases, was divided into two major clusters, representing domains with and without PERCAL motif containing insertions. We have verified that the recently reported classification of bacterial heme peroxidases in two families (cd09819 and cd09821 is unrelated to these insertions. Sequences matching PERCAL were detected in all kingdoms of

  12. Cooper pairing in the insulating valence band in iron-based superconductors

    Science.gov (United States)

    Hu, Lun-Hui; Chen, Wei-Qiang; Zhang, Fu-Chun

    2015-04-01

    Conventional Cooper pairing arises from attractive interaction of electrons in the metallic bands. A recent experiment on Co-doped LiFeAs shows superconductivity in the insulating valence band, which is evolved from a metallic hole band upon doping. Here we examine this phenomenon by studying superconductivity in a three-orbital Hamiltonian relevant to the doped LiFeAs. We show explicitly that Cooper pairing of the insulating hole band requires a finite pairing interaction strength. For strong coupling, the superconductivity in the hole band is robust against the sink of the hole band below the Fermi level. Our theory predicts a substantial upward shift of the chemical potential in the superconducting transition for Co-doped LiFeAs.

  13. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  14. Universal Quantitative Kinase Assay Based on Diagonal SCX Chromatography and Stable Isotope Dimethyl Labeling Provides High-definition Kinase Consensus Motifs for PKA and Human Mps1

    NARCIS (Netherlands)

    Hennrich, Marco L.; Marino, Fabio; Groenewold, Vincent; Kops, Geert J. P. L.; Mohammed, Shabaz; Heck, Albert J. R.

    2013-01-01

    In order to understand cellular signaling, a clear understanding of kinase-substrate relationships is essential. Some of these relationships are defined by consensus recognition motifs present in substrates making them amendable for phosphorylation by designated kinases. Here, we explore a method th

  15. Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human Mps1

    NARCIS (Netherlands)

    Hennrich, M.L.; Marino, F.; Groenewold, V.; Kops, G.J.P.L.; Mohammed, S.; Heck, A.J.R.

    2013-01-01

    In order to understand cellular signaling, a clear understanding of kinase–substrate relationships is essential. Some of these relationships are defined by consensus recognition motifs present in substrates making them amendable for phosphorylation by designated kinases. Here, we explore a method th

  16. NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Schafer-Nielsen, Claus; Lund, Ole

    2011-01-01

    to interpret large data sets. We have recently developed a method, NNAlign, which is generally applicable to any biological problem where quantitative peptide data is available. This method efficiently identifies underlying sequence patterns by simultaneously aligning peptide sequences and identifying motifs...

  17. Ferrocene-based Lewis acids and Lewis pairs: Synthesis and structural characterization

    Indian Academy of Sciences (India)

    Pagidi Sudhakar; Pakkirisamy Thilagar

    2013-01-01

    Optically active Lewis acids and Lewis pairs were synthesized and characterized by multinuclear NMR, UV/Vis spectroscopy and elemental analysis. Optical rotation measurements were carried out and the absolute configuration of the new chiral molecules confirmed by single crystal X-ray diffraction.

  18. Classification between normal and tumor tissues based on the pair-wise gene expression ratio

    Directory of Open Access Journals (Sweden)

    Wong YC

    2004-10-01

    Full Text Available Abstract Background Precise classification of cancer types is critically important for early cancer diagnosis and treatment. Numerous efforts have been made to use gene expression profiles to improve precision of tumor classification. However, reliable cancer-related signals are generally lacking. Method Using recent datasets on colon and prostate cancer, a data transformation procedure from single gene expression to pair-wise gene expression ratio is proposed. Making use of the internal consistency of each expression profiling dataset this transformation improves the signal to noise ratio of the dataset and uncovers new relevant cancer-related signals (features. The efficiency in using the transformed dataset to perform normal/tumor classification was investigated using feature partitioning with informative features (gene annotation as discriminating axes (single gene expression or pair-wise gene expression ratio. Classification results were compared to the original datasets for up to 10-feature model classifiers. Results 82 and 262 genes that have high correlation to tissue phenotype were selected from the colon and prostate datasets respectively. Remarkably, data transformation of the highly noisy expression data successfully led to lower the coefficient of variation (CV for the within-class samples as well as improved the correlation with tissue phenotypes. The transformed dataset exhibited lower CV when compared to that of single gene expression. In the colon cancer set, the minimum CV decreased from 45.3% to 16.5%. In prostate cancer, comparable CV was achieved with and without transformation. This improvement in CV, coupled with the improved correlation between the pair-wise gene expression ratio and tissue phenotypes, yielded higher classification efficiency, especially with the colon dataset – from 87.1% to 93.5%. Over 90% of the top ten discriminating axes in both datasets showed significant improvement after data transformation. The

  19. Asymptotic distribution of motifs in a stochastic context-free grammar model of RNA folding.

    Science.gov (United States)

    Poznanović, Svetlana; Heitsch, Christine E

    2014-12-01

    We analyze the distribution of RNA secondary structures given by the Knudsen-Hein stochastic context-free grammar used in the prediction program Pfold. Our main theorem gives relations between the expected number of these motifs--independent of the grammar probabilities. These relations are a consequence of proving that the distribution of base pairs, of helices, and of different types of loops is asymptotically Gaussian in this model of RNA folding. Proof techniques use singularity analysis of probability generating functions. We also demonstrate that these asymptotic results capture well the expected number of RNA base pairs in native ribosomal structures, and certain other aspects of their predicted secondary structures. In particular, we find that the predicted structures largely satisfy the expected relations, although the native structures do not.

  20. Network motifs in music sequences

    CERN Document Server

    Zanette, Damian H

    2010-01-01

    In this note, I summarize ongoing research on motif distribution in networks built up out of symbolic sequences of Western musical origin. Their motif significance profiles exhibit remarkable consistency over different styles and periods, and define a class that cannot be identified with any of the four "superfamilies" to which most real networks seem to belong. Networks from music sequences possess an unusual abundance of bidirectional connections, due to the inherent reversibility of short musical note patterns. This property contributes to motif significance from both local and large-scale features of musical structure.

  1. DNA methylation analysis of chromosome 21 gene promoters at single base pair and single allele resolution.

    Directory of Open Access Journals (Sweden)

    Yingying Zhang

    2009-03-01

    Full Text Available Differential DNA methylation is an essential epigenetic signal for gene regulation, development, and disease processes. We mapped DNA methylation patterns of 190 gene promoter regions on chromosome 21 using bisulfite conversion and subclone sequencing in five human cell types. A total of 28,626 subclones were sequenced at high accuracy using (long-read Sanger sequencing resulting in the measurement of the DNA methylation state of 580427 CpG sites. Our results show that average DNA methylation levels are distributed bimodally with enrichment of highly methylated and unmethylated sequences, both for amplicons and individual subclones, which represent single alleles from individual cells. Within CpG-rich sequences, DNA methylation was found to be anti-correlated with CpG dinucleotide density and GC content, and methylated CpGs are more likely to be flanked by AT-rich sequences. We observed over-representation of CpG sites in distances of 9, 18, and 27 bps in highly methylated amplicons. However, DNA sequence alone is not sufficient to predict an amplicon's DNA methylation status, since 43% of all amplicons are differentially methylated between the cell types studied here. DNA methylation in promoter regions is strongly correlated with the absence of gene expression and low levels of activating epigenetic marks like H3K4 methylation and H3K9 and K14 acetylation. Utilizing the single base pair and single allele resolution of our data, we found that i amplicons from different parts of a CpG island frequently differ in their DNA methylation level, ii methylation levels of individual cells in one tissue are very similar, and iii methylation patterns follow a relaxed site-specific distribution. Furthermore, iv we identified three cases of allele-specific DNA methylation on chromosome 21. Our data shed new light on the nature of methylation patterns in human cells, the sequence dependence of DNA methylation, and its function as epigenetic signal in gene

  2. Investigations on therapeutic glucocerebrosidases through paired detection with fluorescent activity-based probes

    Science.gov (United States)

    Kallemeijn, Wouter W.; Scheij, Saskia; Hoogendoorn, Sascha; Witte, Martin D.; Herrera Moro Chao, Daniela; van Roomen, Cindy P. A. A.; Ottenhoff, Roelof; Overkleeft, Herman S.; Boot, Rolf G.; Aerts, Johannes M. F. G.

    2017-01-01

    Deficiency of glucocerebrosidase (GBA) causes Gaucher disease (GD). In the common non-neuronopathic GD type I variant, glucosylceramide accumulates primarily in the lysosomes of visceral macrophages. Supplementing storage cells with lacking enzyme is accomplished via chronic intravenous administration of recombinant GBA containing mannose-terminated N-linked glycans, mediating the selective uptake by macrophages expressing mannose-binding lectin(s). Two recombinant GBA preparations with distinct N-linked glycans are registered in Europe for treatment of type I GD: imiglucerase (Genzyme), contains predominantly Man(3) glycans, and velaglucerase (Shire PLC) Man(9) glycans. Activity-based probes (ABPs) enable fluorescent labeling of recombinant GBA preparations through their covalent attachment to the catalytic nucleophile E340 of GBA. We comparatively studied binding and uptake of ABP-labeled imiglucerase and velaglucerase in isolated dendritic cells, cultured human macrophages and living mice, through simultaneous detection of different GBAs by paired measurements. Uptake of ABP-labeled rGBAs by dendritic cells was comparable, as well as the bio-distribution following equimolar intravenous administration to mice. ABP-labeled rGBAs were recovered largely in liver, white-blood cells, bone marrow and spleen. Lungs, brain and skin, affected tissues in severe GD types II and III, were only poorly supplemented. Small, but significant differences were noted in binding and uptake of rGBAs in cultured human macrophages, in the absence and presence of mannan. Mannan-competed binding and uptake were largest for velaglucerase, when determined with single enzymes or as equimolar mixtures of both enzymes. Vice versa, imiglucerase showed more prominent binding and uptake not competed by mannan. Uptake of recombinant GBAs by cultured macrophages seems to involve multiple receptors, including several mannose-binding lectins. Differences among cells from different donors (n = 12

  3. Automatic annotation of protein motif function with Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Gopalakrishnan Vanathi

    2004-09-01

    Full Text Available Abstract Background Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. Results This paperpresents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifsis viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association isfound to be a very useful feature. We take advantageof the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correctassociation. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. Conclusions In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about thefunctions of newly discovered candidate protein motifs.

  4. Free energy landscape and transition pathways from Watson-Crick to Hoogsteen base pairing in free duplex DNA.

    Science.gov (United States)

    Yang, Changwon; Kim, Eunae; Pak, Youngshang

    2015-09-18

    Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson-Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine-thymine (A-T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events.

  5. 4D Flexible Atom-Pairs: An efficient probabilistic conformational space comparison for ligand-based virtual screening

    Directory of Open Access Journals (Sweden)

    Jahn Andreas

    2011-07-01

    Full Text Available Abstract Background The performance of 3D-based virtual screening similarity functions is affected by the applied conformations of compounds. Therefore, the results of 3D approaches are often less robust than 2D approaches. The application of 3D methods on multiple conformer data sets normally reduces this weakness, but entails a significant computational overhead. Therefore, we developed a special conformational space encoding by means of Gaussian mixture models and a similarity function that operates on these models. The application of a model-based encoding allows an efficient comparison of the conformational space of compounds. Results Comparisons of our 4D flexible atom-pair approach with over 15 state-of-the-art 2D- and 3D-based virtual screening similarity functions on the 40 data sets of the Directory of Useful Decoys show a robust performance of our approach. Even 3D-based approaches that operate on multiple conformers yield inferior results. The 4D flexible atom-pair method achieves an averaged AUC value of 0.78 on the filtered Directory of Useful Decoys data sets. The best 2D- and 3D-based approaches of this study yield an AUC value of 0.74 and 0.72, respectively. As a result, the 4D flexible atom-pair approach achieves an average rank of 1.25 with respect to 15 other state-of-the-art similarity functions and four different evaluation metrics. Conclusions Our 4D method yields a robust performance on 40 pharmaceutically relevant targets. The conformational space encoding enables an efficient comparison of the conformational space. Therefore, the weakness of the 3D-based approaches on single conformations is circumvented. With over 100,000 similarity calculations on a single desktop CPU, the utilization of the 4D flexible atom-pair in real-world applications is feasible.

  6. A Practical Parallel Algorithm for All-Pair Shortest Path Based on Pipelining

    Institute of Scientific and Technical Information of China (English)

    Hua Wang; Ling Tian; Chun-Hua Jiang

    2008-01-01

    On the basis of Floyd algorithm with theextended path matrix, a parallel algorithm whichresolves all-pair shortest path (APSP) problem oncluster environment is analyzed and designed.Meanwhile, the parallel APSP pipelining algorithmmakes full use of overlapping technique betweencomputation and communication. Compared withbroadcast operation, the parallel algorithm reducescommunication cost. This algorithm has beenimplemented on MPI on PC-cluster. The theoreticalanalysis and experimental results show that the parallelalgorithm is an efficient and scalable algorithm.

  7. Self-Diffusion Coefficients in Liquid Ag Using the Embedded Atom Model Based Effective Pair Potentials

    OpenAIRE

    DALGIÇ, Seyfettin; ÇOLAKOĞULLARI, Mutlu

    2006-01-01

    We present the dynamical properties of liquid Ag at different temperatures, using the Mishin and Doyoma-Kagure version of the Embedded Atom Model (EAM) potentials. They have been evaluated within the framework of the mode-coupling theory, using a self-consistent scheme that uses as input data only the static structure functions and the interatomic pair potentials of the liquid Ag. We have computed single-particle and collective time dependent properties of liquid Ag, and thereby calc...

  8. Watson-Crick Base Pairing, Electronic and Photophysical Properties of Triazole Modified Adenine Analogues: A Computational Study

    KAUST Repository

    Das, Shubhajit

    2015-09-17

    We employ first-principles Density Functional Theory (DFT) and time-dependent DFT (TDDFT) to elucidate structural, electronic and optical properties of a few recently reported triazole adenine nucleobase analogues. The results are compared against the findings obtained for both natural adenine nucleobase and available experimental data. The optical absorption of these adenine analogues are calculated both in gas-phase and in solvent (methanol) using Polarized Continuum Model (PCM). We find that all the analogues show a red-shifted absorption profile as compared to adenine. Our simulated emission spectra in solvent compare fairly well with experimentally observed results. We investigate base paring ability of these adenine analogues with thymine. The calculations on the intrinsic stability of these base pairs ascertain that all the adenine analogues form the hydrogen bonded Watson-Crick base pair with similar H-bonding energy as obtained for natural adenine-thymine base pair. In our study, we provide a microscopic origin of the low-energy absorption and emission peaks, observed experimentally.

  9. A single Watson-Crick G x C base pair in water: aqueous hydrogen bonds in hydrophobic cavities.

    Science.gov (United States)

    Sawada, Tomohisa; Fujita, Makoto

    2010-05-26

    Hydrogen bond (H-bond) formation in water has been a challenging task because water molecules are constant competitors. In biological systems, however, stable H-bonds are formed by shielding the H-bonding sites from the competing water molecules within hydrophobic pockets. Inspired by the nature's elaborated way, we found that even mononucleotides (G and C) can form the minimal G x C Watson-Crick pair in water by simply providing a synthetic cavity that efficiently shields the Watson-Crick H-bonding sites. The minimal Watson-Crick structure in water was elucidated by NMR study and firmly characterized by crystallographic analysis. The crystal structure also displays that, within the cavity, coencapsulated anions and solvents efficiently mediate the minimal G x C Watson-Crick pair formation. Furthermore, the competition experiments with the other nucleobases clearly revealed the evident selectivity for the G x C base pairing in water. These results show the fact that a H-bonded nucleobase pair was effectively induced and stabilized in the local environment of an artificial hydrophobic cavity.

  10. DNA motif elucidation using belief propagation

    KAUST Repository

    Wong, Ka-Chun

    2013-06-29

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k = 8 ?10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors\\' websites: e.g. http://www.cs.toronto.edu/?wkc/kmerHMM. 2013 The Author(s).

  11. DNA motif elucidation using belief propagation.

    Science.gov (United States)

    Wong, Ka-Chun; Chan, Tak-Ming; Peng, Chengbin; Li, Yue; Zhang, Zhaolei

    2013-09-01

    Protein-binding microarray (PBM) is a high-throughout platform that can measure the DNA-binding preference of a protein in a comprehensive and unbiased manner. A typical PBM experiment can measure binding signal intensities of a protein to all the possible DNA k-mers (k=8∼10); such comprehensive binding affinity data usually need to be reduced and represented as motif models before they can be further analyzed and applied. Since proteins can often bind to DNA in multiple modes, one of the major challenges is to decompose the comprehensive affinity data into multimodal motif representations. Here, we describe a new algorithm that uses Hidden Markov Models (HMMs) and can derive precise and multimodal motifs using belief propagations. We describe an HMM-based approach using belief propagations (kmerHMM), which accepts and preprocesses PBM probe raw data into median-binding intensities of individual k-mers. The k-mers are ranked and aligned for training an HMM as the underlying motif representation. Multiple motifs are then extracted from the HMM using belief propagations. Comparisons of kmerHMM with other leading methods on several data sets demonstrated its effectiveness and uniqueness. Especially, it achieved the best performance on more than half of the data sets. In addition, the multiple binding modes derived by kmerHMM are biologically meaningful and will be useful in interpreting other genome-wide data such as those generated from ChIP-seq. The executables and source codes are available at the authors' websites: e.g. http://www.cs.toronto.edu/∼wkc/kmerHMM.

  12. Electronic structure of an anticancer drug DC81 and its interaction with DNA base pairs

    Science.gov (United States)

    Tiwari, Gargi; Sharma, Dipendra; Dwivedi, K. K.; Dwivedi, M. K.

    2016-05-01

    The drug, 8-Hydroxy-7-methoxy-pyrrolo-[2,1-c][1,4] benzodiazepine-5-one, commonly christened as DC81 belongs to the pyrrolo-[2,1-c][1,4]benzodiazepine (PBDs) family. It is a member of the group of naturally occurring antitumour antibiotics produced by various Streptomyces species. The antitumour activity of DC81 is attributed to its sequence specific interaction with G-C rich DNA region in particular, for Pu-G-Pu motifs. In the present paper, physico-chemical properties DC81 have been carried out using an ab-initio method, HF/6-31G(d,p) with GAMESS program. MEP, HOMO and LUMO surfaces have been scanned. Ionization potential, electron affinity, electronegativity, global hardness and softness of the drug have been calculated. Further, drug-DNA interactions have been examined using modified second order perturbation theory along with multicentred-multipole expansion technique. Results have been discussed in the light of other theoretical and experimental observations. Efforts have been made to elucidate the binding patterns and thereby biological properties of the drug.

  13. A new image reconstruction method for 3-D PET based upon pairs of near-missing lines of response

    Energy Technology Data Exchange (ETDEWEB)

    Kawatsu, Shoji [Department of Radiology, Kyoritu General Hospital, 4-33 Go-bancho, Atsuta-ku, Nagoya-shi, Aichi 456-8611 (Japan) and Department of Brain Science and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3, Gengo Moriaka-cho, Obu-shi, Aichi 474-8522 (Japan)]. E-mail: b6rgw@fantasy.plala.or.jp; Ushiroya, Noboru [Department of General Education, Wakayama National College of Technology, 77 Noshima, Nada-cho, Gobo-shi, Wakayama 644-0023 (Japan)

    2007-02-01

    We formerly introduced a new image reconstruction method for three-dimensional positron emission tomography, which is based upon pairs of near-missing lines of response. This method uses an elementary geometric property of lines of response, namely that two lines of response which originate from radioactive isotopes located within a sufficiently small voxel, will lie within a few millimeters of each other. The effectiveness of this method was verified by performing a simulation using GATE software and a digital Hoffman phantom.

  14. [Quantum-chemical investigation of tautomerization ways of Watson-Crick DNA base pair guanine-cytosine].

    Science.gov (United States)

    Brovarets', O O; Hovorun, D M

    2010-01-01

    A novel physico-chemical mechanism of the Watson-Crick DNA base pair Gua.Cyt tautomerization Gua.Cyt*Gua.CytGua*.Cyt (mutagenic tautomers of bases are marked by asterisks) have been revealed and realized in a pathway of single proton transfer through two mutual isoenergetic transition states with Gibbs free energy of activation 30.4 and 30.6 kcal/mol and they are ion pairs stabilized by three (N2H...N3, N1H...N4- and O6+H...N4-) and five (N2H...O2, N1H...O2, N1H...N3, O6+H...N4- and 06+H...N4-) H-bonds accordingly. Stable base pairs Gua-Cyt* and Gua*.Cyt which dissociate comparably easy into monomers have acceptable relative Gibbs energies--12.9 and 14.3 kcal/mol--for the explanation of the nature of the spontaneous transitions of DNA replication. Results are obtained at the MP2/6-311++G(2df,pd)//B3LYP/6-31 1++G(d,p) level of theory in vacuum approach.

  15. O⁶-carboxymethylguanine in DNA forms a sequence context-dependent wobble base-pair structure with thymine.

    Science.gov (United States)

    Zhang, Fang; Tsunoda, Masaru; Kikuchi, Yuji; Wilkinson, Oliver; Millington, Christopher L; Margison, Geoffrey P; Williams, David M; Takénaka, Akio

    2014-06-01

    N-Nitrosation of glycine and its derivatives generates potent alkylating agents that can lead to the formation of O(6)-carboxymethylguanine (O(6)-CMG) in DNA. O(6)-CMG has been identified in DNA derived from human colon tissue and its occurrence has been linked to diets high in red and processed meats, implying an association with the induction of colorectal cancer. By analogy to O(6)-methylguanine, O(6)-CMG is expected to be mutagenic, inducing G-to-A mutations that may be the molecular basis of increased cancer risk. Previously, the crystal structure of the DNA dodecamer d(CGCG[O(6)-CMG]ATTCGCG) has been reported, in which O(6)-CMG forms a Watson-Crick-type pair with thymine similar to the canonical A:T pair. In order to further investigate the versatility of O(6)-CMG in base-pair formation, the structure of the DNA dodecamer d(CGC[O(6)-CMG]AATTTGCG) containing O(6)-CMG at a different position has been determined by X-ray crystallography using four crystal forms obtained under conditions containing different solvent ions (Sr(2+), Ba(2+), Mg(2+), K(+) or Na(+)) with and without Hoechst 33258. The most striking finding is that the pairing modes of O(6)-CMG with T are quite different from those previously reported. In the present dodecamer, the T bases are displaced (wobbled) into the major groove to form a hydrogen bond between the thymine N(3) N-H and the carboxyl group of O(6)-CMG. In addition, a water molecule is bridged through two hydrogen bonds between the thymine O(2) atom and the 2-amino group of O(6)-CMG to stabilize the pairing. These interaction modes commonly occur in the four crystal forms, regardless of the differences in crystallization conditions. The previous and the present results show that O(6)-CMG can form a base pair with T in two alternative modes: the Watson-Crick type and a high-wobble type, the nature of which may depend on the DNA-sequence context.

  16. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation.

    Science.gov (United States)

    Sampoli Benítez, Benedetta A; Arora, Karunesh; Balistreri, Lisa; Schlick, Tamar

    2008-12-31

    DNA polymerase X (pol X) from the African swine fever virus is a 174-amino-acid repair polymerase that likely participates in a viral base excision repair mechanism, characterized by low fidelity. Surprisingly, pol X's insertion rate of the G*G mispair is comparable to that of the four Watson-Crick base pairs. This behavior is in contrast with another X-family polymerase, DNA polymerase beta (pol beta), which inserts G*G mismatches poorly, and has higher DNA repair fidelity. Using molecular dynamics simulations, we previously provided support for an induced-fit mechanism for pol X in the presence of the correct incoming nucleotide. Here, we perform molecular dynamics simulations of pol X/DNA complexes with different incoming incorrect nucleotides in various orientations [C*C, A*G, and G*G (anti) and A*G and G*G (syn)] and compare the results to available kinetic data and prior modeling. Intriguingly, the simulations reveal that the G*G mispair with the incoming nucleotide in the syn configuration undergoes large-scale conformational changes similar to that observed in the presence of correct base pair (G*C). The base pairing in the G*G mispair is achieved via Hoogsteen hydrogen bonding with an overall geometry that is well poised for catalysis. Simulations for other mismatched base pairs show that an intermediate closed state is achieved for the A*G and G*G mispair with the incoming dGTP in anti conformation, while the protein remains near the open conformation for the C*C and the A*G syn mismatches. In addition, catalytic site geometry and base pairing at the nascent template-incoming nucleotide interaction reveal distortions and misalignments that range from moderate for A*G anti to worst for the C*C complex. These results agree well with kinetic data for pol X and provide a structural/dynamic basis to explain, at atomic level, the fidelity of this polymerase compared with other members of the X family. In particular, the more open and pliant active site of pol X

  17. Cold Fermions with Pairing Interactions: New Results Based on Fluiddynamical Descriptions

    Science.gov (United States)

    Capuzzi, P.; Hernández, E. S.; Szybisz, L.

    2012-03-01

    We present a rigorous derivation of the moment hierarchy of the density and pair density matrices of a two species fermion superfluid in coordinate representation. We discuss the tools to truncate at any desired level and present the derivation of the Extended Superfluid Thomas-Fermi (ESTF) fluiddynamical scheme. In order to establish the equation of state in equilibrium to be incorporated in the truncation, we extend the method of Papenbrock and Bertsch. We examine the dynamics of fluctuations in homogeneous fermion matter and show that it is consistent with the ordinary Random-Phase-approximation. We discuss some numerical results for equilibrium profiles and collective fluctuations of trapped cold gases.

  18. A Practical Parallel Algorithm for All-Pair Shortest Path Based on Pipelining

    Institute of Scientific and Technical Information of China (English)

    Hua Wang; Ling Tian; Chun-Hua Jiang

    2008-01-01

    On the basis of Floyd algorithm with the extended path matrix, a parallel algorithm which resolves all-pair shortest path (APSP) problem on cluster environment is analyzed and designed. Meanwhile, the parallel APSP pipelining algorithm makes full use of overlapping technique between computation and communication. Compared with broadcast operation, the parallel algorithm reduces communication cost. This algorithm has been implemented on MPI on PC-cluster. The theoretical analysis and experimental results show that the parallel algorithm is an efficient and scalable algorithm.

  19. MINER: software for phylogenetic motif identification

    OpenAIRE

    La, David; Livesay, Dennis R.

    2005-01-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at . ...

  20. Trading networks, abnormal motifs and stock manipulation

    OpenAIRE

    2012-01-01

    We study trade-based manipulation of stock prices from the perspective of complex trading networks constructed by using detailed information of trades. A stock trading network consists of nodes and directed links, where every trader is a node and a link is formed from one trader to the other if the former sells shares to the latter. Specifically, three abnormal network motifs are investigated, which are found to be formed by a few traders, implying potential intention of price manipulation. W...

  1. Path integral molecular dynamics method based on a pair density matrix approximation: An algorithm for distinguishable and identical particle systems

    Science.gov (United States)

    Miura, Shinichi; Okazaki, Susumu

    2001-09-01

    In this paper, the path integral molecular dynamics (PIMD) method has been extended to employ an efficient approximation of the path action referred to as the pair density matrix approximation. Configurations of the isomorphic classical systems were dynamically sampled by introducing fictitious momenta as in the PIMD based on the standard primitive approximation. The indistinguishability of the particles was handled by a pseudopotential of particle permutation that is an extension of our previous one [J. Chem. Phys. 112, 10 116 (2000)]. As a test of our methodology for Boltzmann statistics, calculations have been performed for liquid helium-4 at 4 K. We found that the PIMD with the pair density matrix approximation dramatically reduced the computational cost to obtain the structural as well as dynamical (using the centroid molecular dynamics approximation) properties at the same level of accuracy as that with the primitive approximation. With respect to the identical particles, we performed the calculation of a bosonic triatomic cluster. Unlike the primitive approximation, the pseudopotential scheme based on the pair density matrix approximation described well the bosonic correlation among the interacting atoms. Convergence with a small number of discretization of the path achieved by this approximation enables us to construct a method of avoiding the problem of the vanishing pseudopotential encountered in the calculations by the primitive approximation.

  2. Weighted profile likelihood-based confidence interval for the difference between two proportions with paired binomial data.

    Science.gov (United States)

    Pradhan, Vivek; Saha, Krishna K; Banerjee, Tathagata; Evans, John C

    2014-07-30

    Inference on the difference between two binomial proportions in the paired binomial setting is often an important problem in many biomedical investigations. Tang et al. (2010, Statistics in Medicine) discussed six methods to construct confidence intervals (henceforth, we abbreviate it as CI) for the difference between two proportions in paired binomial setting using method of variance estimates recovery. In this article, we propose weighted profile likelihood-based CIs for the difference between proportions of a paired binomial distribution. However, instead of the usual likelihood, we use weighted likelihood that is essentially making adjustments to the cell frequencies of a 2 × 2 table in the spirit of Agresti and Min (2005, Statistics in Medicine). We then conduct numerical studies to compare the performances of the proposed CIs with that of Tang et al. and Agresti and Min in terms of coverage probabilities and expected lengths. Our numerical study clearly indicates that the weighted profile likelihood-based intervals and Jeffreys interval (cf. Tang et al.) are superior in terms of achieving the nominal level, and in terms of expected lengths, they are competitive. Finally, we illustrate the use of the proposed CIs with real-life examples.

  3. A Search for Spectral Galaxy Pairs of Overlapping Galaxies based on Fuzzy Recognition

    CERN Document Server

    Yang, Haifeng; Chen, Xiaoyan; Zhang, Jifu; Hou, Wen; Cai, Jianghui; Wei, Peng; Ren, Juanjuan; Liu, Xiaojie; Zhao, Yongheng

    2014-01-01

    The Spectral Galaxy Pairs (SGPs) are de?ned as the composite galaxy spectra which contain two independent redshift systems. These spectra are useful for studying dust properties of the foreground galaxies. In this paper, a total of 165 spectra of SGPs are mined out from Sloan Digital Sky Survey (SDSS) Data Release 9 (DR9) using the concept of membership degree from the fuzzy set theory particularly de?ned to be suitable for fuzzily identifying emission lines. The spectra and images of this sample are classi?ed according to the membership degree and their image features, respectively. Many of these 2nd redshift systems are too small or too dim to select from the SDSS images alone, making the sample a potentially unique source of information on dust e?ects in low-luminosity or low-surface-brightness galaxies that are underrepresented in morphological pair samples. The dust extinction of the objects with high membership degree is also estimated by Balmer decrement. Additionally, analyses for a series of spectros...

  4. A simplified concentration series to produce a pair of 2D asynchronous spectra based on the DAOSD approach

    Science.gov (United States)

    Kang, Xiaoyan; He, Anqi; Guo, Ran; Zhai, Yanjun; Xu, Yizhuang; Noda, Isao; Wu, Jinguang

    2016-11-01

    We propose a substantially simplified approach to construct a pair of 2D asynchronous spectra based on the DAOSD approach proposed in our previous papers. By using a new concentration series, only three 1D spectra are used to generate a pair of 2D correlation spectra together with two reference spectra. By using this method, the previous problem of labor intensive traditional DAOSD approach has been successfully addressed. We apply the new approach to characterize intermolecular interaction between acetonitrile and butanone dissolved in carbon tetrachloride. The existence of intermolecular interaction between the two solutes can be confirmed by the presence of a cross peak in the resultant 2D IR spectra. In addition, the absence of cross peak around (2254, 2292) in Ψbutanone provides another experimental evidence to reveal the intrinsic relationship between the Ctbnd N stretching band and an overtone band (δCH3+νC-C).

  5. DFT study on the attacking mechanisms of H and OH radicals to G-C and A-T base pairs in water

    Energy Technology Data Exchange (ETDEWEB)

    Okutsu, N.; Shimamura, K.; Shimizu, E.; Kurita, N., E-mail: kurita@cs.tut.ac.jp [Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580 (Japan); Shulga, S. [Institute for Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv (Ukraine); Danilov, V. I. [Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv (Ukraine)

    2016-02-01

    To elucidate the effect of radicals on DNA base pairs, we investigated the attacking mechanism of OH and H radicals to the G-C and A-T base pairs, using the density functional theory (DFT) calculations in water approximated by the continuum solvation model. The DFT calculations revealed that the OH radical abstracts the hydrogen atom of a NH{sub 2} group of G or A base and induces a tautomeric reaction for an A-T base pair more significantly than for a G-C base pair. On the other hand, the H radical prefers to bind to the Cytosine NH{sub 2} group of G-C base pair and induce a tautomeric reaction from G-C to G*-C*, whose activation free energy is considerably small (−0.1 kcal/mol) in comparison with that (42.9 kcal/mol) for the reaction of an A-T base pair. Accordingly, our DFT calculations elucidated that OH and H radicals have a significant effect on A-T and G-C base pairs, respectively. This finding will be useful for predicting the effect of radiation on the genetic information recorded in the base sequences of DNA duplexes.

  6. XP结对编程探究%Research of Pair Programming Based on Extreme Programming

    Institute of Scientific and Technical Information of China (English)

    李云超

    2009-01-01

    结对编程(Pair Programming)是限编程(Extreme Programming,简称XP)的十二个实践之一.它指的是两个软件开发人员共用一台计算机.其中一个人负责具体细节工作,而另一个人关注整体,但这两个人的角色可以随时互换.这是一种轻量、高效、低风险、柔性、可预测、科学而充满乐趣的软件开发方式.结对编程可改进设计质量、减少程序缺陷、降低人员风险、提高技术技能和团队合作精神.

  7. Alpha–beta monitoring system based on pair of simultaneous Multi-Wire Proportional Counters

    Energy Technology Data Exchange (ETDEWEB)

    Wengrowicz, U.; Amidan, D. [Department of Nuclear Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel); NRC-Negev, P.O. Box 9001, Beer-Sheva 84190 (Israel); Orion, I. [Department of Nuclear Engineering, Ben Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-08-11

    A new approach for a simultaneous alpha–beta Multi-wire Proportional Counter (MWPC) is presented. The popular approach for alpha–beta monitoring systems consists of a large area MWPC using noble gas flow such as Argon Methane. This method of measurement is effective but requires large-scale and expensive maintenance due to the needs of gas flow control and periodic replacements. In this work, a pair of simultaneous MWPCs for alpha–beta measuring is presented. The developed detector consists of a sealed gas MWPC sensor for beta particles, behind a free air alpha sensor. This approach allows effective simultaneous detection and discrimination of both alpha and beta radiation without the maintenance cost noble gas flow required for unsealed detectors.

  8. Alpha-beta monitoring system based on pair of simultaneous Multi-Wire Proportional Counters

    Science.gov (United States)

    Wengrowicz, U.; Amidan, D.; Orion, I.

    2016-08-01

    A new approach for a simultaneous alpha-beta Multi-wire Proportional Counter (MWPC) is presented. The popular approach for alpha-beta monitoring systems consists of a large area MWPC using noble gas flow such as Argon Methane. This method of measurement is effective but requires large-scale and expensive maintenance due to the needs of gas flow control and periodic replacements. In this work, a pair of simultaneous MWPCs for alpha-beta measuring is presented. The developed detector consists of a sealed gas MWPC sensor for beta particles, behind a free air alpha sensor. This approach allows effective simultaneous detection and discrimination of both alpha and beta radiation without the maintenance cost noble gas flow required for unsealed detectors.

  9. The ALHAMBRA survey: An empirical estimation of the cosmic variance for merger fraction studies based on close pairs

    Science.gov (United States)

    López-Sanjuan, C.; Cenarro, A. J.; Hernández-Monteagudo, C.; Varela, J.; Molino, A.; Arnalte-Mur, P.; Ascaso, B.; Castander, F. J.; Fernández-Soto, A.; Huertas-Company, M.; Márquez, I.; Martínez, V. J.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Perea, J.; Prada, F.; Quintana, J. M.

    2014-04-01

    Aims: Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first time. Methods: We compute the merger fraction from photometric redshift close pairs with 10 h-1 kpc ≤ rp ≤ 50 h-1 kpc and Δv ≤ 500 km s-1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors (including the Poisson shot noise term). Results: The cosmic variance σv of the merger fraction depends mainly on (i) the number density of the populations under study for both the principal (n1) and the companion (n2) galaxy in the close pair and (ii) the probed cosmic volume Vc. We do not find a significant dependence on either the search radius used to define close companions, the redshift, or the physical selection (luminosity or stellar mass) of the samples. Conclusions: We have estimated the cosmic variance that affects the measurement of the merger fraction by close pairs from observations. We provide a parametrisation of the cosmic variance with n1, n2, and Vc, σv ∝ n1-0.54Vc-0.48 (n_2/n_1)-0.37 . Thanks to this prescription, future merger fraction studies based on close pairs could properly account for the cosmic variance on their results. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (IAA-CSIC).Appendix is available in electronic form at http://www.aanda.org

  10. Network motifs provide signatures that characterize metabolism†

    OpenAIRE

    Shellman, Erin R.; Burant, Charles F.; Schnell, Santiago

    2013-01-01

    Motifs are repeating patterns that determine the local properties of networks. In this work, we characterized all 3-node motifs using enzyme commission numbers of the International Union of Biochemistry and Molecular Biology to show that motif abundance is related to biochemical function. Further, we present a comparative analysis of motif distributions in the metabolic networks of 21 species across six kingdoms of life. We found the distribution of motif abundances to be similar between spec...

  11. Strategi Mengenali Motif Khas Kain Tenun Cual Bangka Dengan AHP

    Directory of Open Access Journals (Sweden)

    Hilyah Magdalena

    2016-12-01

    Full Text Available Woven fabric cual Bangka currently used as one of the identity of community pride in Bangka Belitung Islands. The specificity of this fart cual fabric interesting to study because of the motives that have similarities with songket palembang. Woven fabric cual Bangka and Palembang songket cloth looks similar because the same cloth-making techniques - both using techniques sungkit. The purpose of this research is how to recognize a particular motif woven fabric cual fart. This research using Analytical Hierarchy Process ( AHP to classify some specific motifs that exist in woven fabric cual fart. Experts in the field of woven fabric cual is to inform you that the woven fabric cual farts have tabled motif, motifs or patterns, motifs fabric edge, motif gold thread, fabric base material, as well as the specific color. The research involved four experts that the results of the questionnaires is processed by software Expert Choice 2000. The results showed that the main peculiarity of the woven fabric cual fart is in a pattern or motif with a percentage of 31.5, and is the chosen alternative product is songket with a percentage of 25.4.

  12. A critical base pair in k-turns that confers folding characteristics and correlates with biological function

    Science.gov (United States)

    McPhee, Scott A.; Huang, Lin; Lilley, David M. J.

    2014-10-01

    Kink turns (k-turns) are widespread elements in RNA that mediate tertiary contacts by kinking the helical axis. We have found that the ability of k-turns to undergo ion-induced folding is conferred by a single base pair that follows the conserved A·G pairs, that is, the 3b·3n position. A Watson-Crick pair leads to an inability to fold in metal ions alone, while 3n=G or 3b=C (but not both) permits folding. Crystallographic study reveals two hydrated metal ions coordinated to O6 of G3n and G2n of Kt-7. Removal of either atom impairs Mg2+-induced folding in solution. While SAM-I riboswitches have 3b·3n sequences that would predispose them to ion-induced folding, U4 snRNA are strongly biased to an inability to such folding. Thus riboswitch sequences allow folding to occur independently of protein binding, while U4 should remain unfolded until bound by protein. The empirical rules deduced for k-turn folding have strong predictive value.

  13. The ALHAMBRA survey: an empirical estimation of the cosmic variance for merger fraction studies based on close pairs

    CERN Document Server

    López-Sanjuan, C; Hernández-Monteagudo, C; Varela, J; Molino, A; Arnalte-Mur, P; Ascaso, B; Castander, F J; Fernández-Soto, A; Huertas-Company, M; Márquez, I; Martínez, V J; Masegosa, J; Moles, M; Pović, M; Aguerri, J A L; Alfaro, E; Benítez, N; Broadhurst, T; Cabrera-Caño, J; Cepa, J; Cerviño, M; Cristóbal-Hornillos, D; Del Olmo, A; Delgado, R M González; Husillos, C; Infante, L; Perea, J; Prada, F; Quintana, J M

    2014-01-01

    Our goal is to estimate empirically, for the first time, the cosmic variance that affects merger fraction studies based on close pairs. We compute the merger fraction from photometric redshift close pairs with 10h^-1 kpc <= rp <= 50h^-1 kpc and Dv <= 500 km/s, and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger fractions, that follow a log-normal function, and estimate the cosmic variance sigma_v as the intrinsic dispersion of the observed distribution. We develop a maximum likelihood estimator to measure a reliable sigma_v and avoid the dispersion due to the observational errors (including the Poisson shot noise term). The cosmic variance of the merger fraction depends mainly on (i) the number density of the populations under study, both for the principal (n_1) and the companion (n_2) galaxy in the close pair, and (ii) the probed cosmic volume V_c. We find a significant dependence on neither the search radius used to define close companions, t...

  14. Return and Risk of Pairs Trading Using a Simulation-Based Bayesian Procedure for Predicting Stable Ratios of Stock Prices

    Directory of Open Access Journals (Sweden)

    David Ardia

    2016-03-01

    Full Text Available We investigate the direct connection between the uncertainty related to estimated stable ratios of stock prices and risk and return of two pairs trading strategies: a conditional statistical arbitrage method and an implicit arbitrage one. A simulation-based Bayesian procedure is introduced for predicting stable stock price ratios, defined in a cointegration model. Using this class of models and the proposed inferential technique, we are able to connect estimation and model uncertainty with risk and return of stock trading. In terms of methodology, we show the effect that using an encompassing prior, which is shown to be equivalent to a Jeffreys’ prior, has under an orthogonal normalization for the selection of pairs of cointegrated stock prices and further, its effect for the estimation and prediction of the spread between cointegrated stock prices. We distinguish between models with a normal and Student t distribution since the latter typically provides a better description of daily changes of prices on financial markets. As an empirical application, stocks are used that are ingredients of the Dow Jones Composite Average index. The results show that normalization has little effect on the selection of pairs of cointegrated stocks on the basis of Bayes factors. However, the results stress the importance of the orthogonal normalization for the estimation and prediction of the spread—the deviation from the equilibrium relationship—which leads to better results in terms of profit per capital engagement and risk than using a standard linear normalization.

  15. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties.

    Science.gov (United States)

    Tiller, Thomas; Schuster, Ingrid; Deppe, Dorothée; Siegers, Katja; Strohner, Ralf; Herrmann, Tanja; Berenguer, Marion; Poujol, Dominique; Stehle, Jennifer; Stark, Yvonne; Heßling, Martin; Daubert, Daniela; Felderer, Karin; Kaden, Stefan; Kölln, Johanna; Enzelberger, Markus; Urlinger, Stefanie

    2013-01-01

    This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds.

  16. Reversible phospholipid nanogels for deoxyribonucleic acid fragment size determinations up to 1500 base pairs and integrated sample stacking.

    Science.gov (United States)

    Durney, Brandon C; Bachert, Beth A; Sloane, Hillary S; Lukomski, Slawomir; Landers, James P; Holland, Lisa A

    2015-06-23

    Phospholipid additives are a cost-effective medium to separate deoxyribonucleic acid (DNA) fragments and possess a thermally-responsive viscosity. This provides a mechanism to easily create and replace a highly viscous nanogel in a narrow bore capillary with only a 10°C change in temperature. Preparations composed of dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) self-assemble, forming structures such as nanodisks and wormlike micelles. Factors that influence the morphology of a particular DMPC-DHPC preparation include the concentration of lipid in solution, the temperature, and the ratio of DMPC and DHPC. It has previously been established that an aqueous solution containing 10% phospholipid with a ratio of [DMPC]/[DHPC]=2.5 separates DNA fragments with nearly single base resolution for DNA fragments up to 500 base pairs in length, but beyond this size the resolution decreases dramatically. A new DMPC-DHPC medium is developed to effectively separate and size DNA fragments up to 1500 base pairs by decreasing the total lipid concentration to 2.5%. A 2.5% phospholipid nanogel generates a resolution of 1% of the DNA fragment size up to 1500 base pairs. This increase in the upper size limit is accomplished using commercially available phospholipids at an even lower material cost than is achieved with the 10% preparation. The separation additive is used to evaluate size markers ranging between 200 and 1500 base pairs in order to distinguish invasive strains of Streptococcus pyogenes and Aspergillus species by harnessing differences in gene sequences of collagen-like proteins in these organisms. For the first time, a reversible stacking gel is integrated in a capillary sieving separation by utilizing the thermally-responsive viscosity of these self-assembled phospholipid preparations. A discontinuous matrix is created that is composed of a cartridge of highly viscous phospholipid assimilated into a separation matrix

  17. A speedup technique for (l, d-motif finding algorithms

    Directory of Open Access Journals (Sweden)

    Dinh Hieu

    2011-03-01

    Full Text Available Abstract Background The discovery of patterns in DNA, RNA, and protein sequences has led to the solution of many vital biological problems. For instance, the identification of patterns in nucleic acid sequences has resulted in the determination of open reading frames, identification of promoter elements of genes, identification of intron/exon splicing sites, identification of SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have proven to be extremely helpful in domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, etc. Motifs are important patterns that are helpful in finding transcriptional regulatory elements, transcription factor binding sites, functional genomics, drug design, etc. As a result, numerous papers have been written to solve the motif search problem. Results Three versions of the motif search problem have been proposed in the literature: Simple Motif Search (SMS, (l, d-motif search (or Planted Motif Search (PMS, and Edit-distance-based Motif Search (EMS. In this paper we focus on PMS. Two kinds of algorithms can be found in the literature for solving the PMS problem: exact and approximate. An exact algorithm identifies the motifs always and an approximate algorithm may fail to identify some or all of the motifs. The exact version of PMS problem has been shown to be NP-hard. Exact algorithms proposed in the literature for PMS take time that is exponential in some of the underlying parameters. In this paper we propose a generic technique that can be used to speedup PMS algorithms. Conclusions We present a speedup technique that can be used on any PMS algorithm. We have tested our speedup technique on a number of algorithms. These experimental results show that our speedup technique is indeed very

  18. Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs.

    Science.gov (United States)

    Tian, Cheng; Zhang, Chuan

    2017-01-01

    Tile-based DNA self-assembly is a promising method in DNA nanotechnology and has produced a wide range of nanostructures by using a small set of unique DNA strands. DNA star motif, as one of DNA tiles, has been employed to assemble varieties of symmetric one-, two-, three-dimensional (1, 2, 3D) DNA nanostructures. Herein, we describe the design principles, assembly methods, and characterization methods of 3D DNA nanostructures assembled from the DNA star motifs.

  19. Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules.

    Science.gov (United States)

    Fyta, Maria; Netz, Roland R

    2012-03-28

    Using molecular dynamics (MD) simulations in conjunction with the SPC/E water model, we optimize ionic force-field parameters for seven different halide and alkali ions, considering a total of eight ion-pairs. Our strategy is based on simultaneous optimizing single-ion and ion-pair properties, i.e., we first fix ion-water parameters based on single-ion solvation free energies, and in a second step determine the cation-anion interaction parameters (traditionally given by mixing or combination rules) based on the Kirkwood-Buff theory without modification of the ion-water interaction parameters. In doing so, we have introduced scaling factors for the cation-anion Lennard-Jones (LJ) interaction that quantify deviations from the standard mixing rules. For the rather size-symmetric salt solutions involving bromide and chloride ions, the standard mixing rules work fine. On the other hand, for the iodide and fluoride solutions, corresponding to the largest and smallest anion considered in this work, a rescaling of the mixing rules was necessary. For iodide, the experimental activities suggest more tightly bound ion pairing than given by the standard mixing rules, which is achieved in simulations by reducing the scaling factor of the cation-anion LJ energy. For fluoride, the situation is different and the simulations show too large attraction between fluoride and cations when compared with experimental data. For NaF, the situation can be rectified by increasing the cation-anion LJ energy. For KF, it proves necessary to increase the effective cation-anion Lennard-Jones diameter. The optimization strategy outlined in this work can be easily adapted to different kinds of ions.

  20. Using weakly conserved motifs hidden in secretion signals to identify type-III effectors from bacterial pathogen genomes.

    Directory of Open Access Journals (Sweden)

    Xiaobao Dong

    Full Text Available BACKGROUND: As one of the most important virulence factor types in gram-negative pathogenic bacteria, type-III effectors (TTEs play a crucial role in pathogen-host interactions by directly influencing immune signaling pathways within host cells. Based on the hypothesis that type-III secretion signals may be comprised of some weakly conserved sequence motifs, here we used profile-based amino acid pair information to develop an accurate TTE predictor. RESULTS: For a TTE or non-TTE, we first used a hidden Markov model-based sequence searching method (i.e., HHblits to detect its weakly homologous sequences and extracted the profile-based k-spaced amino acid pair composition (HH-CKSAAP from the N-terminal sequences. In the next step, the feature vector HH-CKSAAP was used to train a linear support vector machine model, which we designate as BEAN (Bacterial Effector ANalyzer. We compared our method with four existing TTE predictors through an independent test set, and our method revealed improved performance. Furthermore, we listed the most predictive amino acid pairs according to their weights in the established classification model. Evolutionary analysis shows that predictive amino acid pairs tend to be more conserved. Some predictive amino acid pairs also show significantly different position distributions between TTEs and non-TTEs. These analyses confirmed that some weakly conserved sequence motifs may play important roles in type-III secretion signals. Finally, we also used BEAN to scan one plant pathogen genome and showed that BEAN can be used for genome-wide TTE identification. The webserver and stand-alone version of BEAN are available at http://protein.cau.edu.cn:8080/bean/.

  1. MENGUNGKAP SEJARAH DAN MOTIF BATIK SEMARANGAN

    Directory of Open Access Journals (Sweden)

    Dewi Yuliati

    2011-10-01

    Full Text Available Batik Semarang was born in line with the needs of the people of Hyderabad of the material with a new motif or style tailored to the taste, intention, and creativity of the craftsmen. Batik is a combination of several countries influence developing in Indonesian culture. Based on its shape, Batik designs can be divided into two major groups, namely geometric and non-Geometric. The development of Semarangan batik was due to the fact that certain motif of batik can only be worn by certain people, not for all group of people. Batik semarangan craftments are found in coastal regions. It displays the design composing of ornaments plucked from marine environment. Indonesian Batik develops not only to display a blending of court Batik designs with the coastal Batik technique, but also to incorporate other ornaments which come from many various ethnic groups in Indonesia.   Key words: batik, history, ornaments, marine environment, designs   Batik Semarang lahirkan sejalan dengan kebutuhan dari orang-orang dari Hyderabad akan bahan dengan motif atau gaya baru yang berdasarkan pada rasa, niat, dan kreatifitas dari pembuatnya. Batik merupakan perpaduan dari pengaruh beberapa negara yang berkembang dalam budaya Indonesia. Ditinjau dari desainnya, desain batik dapat dibagi menjadi dua kelompok utama, yakni geometrik dan nongeometrik. Pengembangan yang dilakukan terhadap batik semarangan disebabkan adanya beberapa motif batik yang hanya digunakan oleh kalangan tertentu, dan tidak boleh untuk kalangan umum. Pengrajin batik Semarangan berkembang di kawasan pesisir. Ia menampilkan desain yang terdiri atas berbagai ornamen yang menunjukkan ciri khas kemaritiman. Batik ini dikembangakan tidak hanya menampilkan desain batik khas pesisiran, tetapi juga memasukkan berbagai ornament dari beragam kelompok etnis di Indonesia.   Kata kunci: batik, sejarah, ragam hias, lingkungan pesisir, desain  

  2. Bilinear Pairing Implementation Based on Three Type Algebraic Curves%基于三类代数曲线上的双线性对实现

    Institute of Scientific and Technical Information of China (English)

    年晓宇; 游林

    2016-01-01

    In pairings,the most common is the Tate pairing,Eta pairing and Ate pairing are the variations of the Tate pairing. For the elliptic curve y 2 + y = x 3 + x + b where b ∈ F 2 , the implementation algorithms of Tate pairing and Eta pairing in four cases are given by discussing respectively.Meanwhile,the implementation algorithms of Tate pairing and Ate pairing based on the hyperelliptic curve y 2 + y =x 5 +ax +b where a,b ∈ F 2 and the implementation algorithms of Ate pairing based on the hyperelliptic curve y 2 =x p -ax -b where a ,b ∈F p are proposed.It provides a reference for the research and application of the pairing-based cryptosystem.%双线性对中,最常见的是 Tate 对,Eta 对和 Ate 对是 Tate 对的变种。针对椭圆曲线 y 2+y =x 3+x+b,其中 b∈F 2,通过分类讨论,给出了4种情况下的 Tate 对和 Eta 对实现算法。同时,还提出了基于超椭圆曲线 y 2+y =x 5+ax+b(其中 a,b∈F 2)上的 Tate 对和 Ate 对实现算法,以及基于超椭圆曲线 y 2=x p -ax-b(其中 a,b∈F p )上的 Ate 对实现算法。为基于双线性对密码体制的研究和应用提供了一定的参考。

  3. Cryptanalysis and Improvement on "Robust EPR-Pairs-Based Quantum Secure Communication with Authentication Resisting Collective Noise"

    Science.gov (United States)

    Yue, Qiu-Ling; Yu, Chao-Hua; Liu, Bin; Wang, Qing-Le

    2016-10-01

    Recently, Chang et al. [Sci Chin-Phys Mech Astron. 57(10), 1907-1912, 2014] proposed two robust quantum secure communication protocols with authentication based on Einstein-Podolsky-Rosen (EPR) pairs, which can resist collective noise. In this paper, we analyze the security of their protocols, and show that there is a kind of security flaw in their protocols. By a kind of impersonation attack, the eavesdropper can obtain half of the message on average. Furthermore, an improved method of their protocols is proposed to close the security loophole.

  4. A 2×2 SOI mach-zehnder thermo-optical switch based on strongly guided paired multimode interference couplers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A silicon-on-insulator 2×2 Mach-Zehnder thermo-optical switch is developed based on strongly guided paired multimode interference couplers. The multimode-interference couplers were etched deeply for improving coupler characteristics such as self-imaging quality, uniformity and fabrication tolerance. The proposed switch achieves good performances, including a low insertion loss of -11 .OdB, a fiber-waveguide coupling loss of -4.3dB and a fast response speed measured to be 3.5 and 8.8 μs for raise and fall switching time, respectively.

  5. Characteristic analysis of a novel F-P interferometer based on a pair of FBGs with built-in LPFGs

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-bao; ZHANG Wei-gang; RUAN Juan; SHANG Jia-bin; YAN Ai-dong

    2012-01-01

    The transmission characteristics of a Fabry-Pérot (F-P) interferometer based on a fiber Bragg grating (FBG) pair with a built-in long-period fiber grating (LPFG) are theoretically analyzed,and the shift of transmission interference fringe as a function of environmental refractive index is acquired.The influence of the lengths of F-P cavity,LPFG and FBG on the transmission characteristics of the proposed interferometer has been numerically investigated,and the simulation results indicate that the sensitivity of refractive index reaches 2.27 × 10-6 for an optical spectrum analyzer (OSA) with a resolution of 1 pm.

  6. Polarization entangled photon-pair source based on quantum nonlinear photonics and interferometry

    Science.gov (United States)

    Kaiser, F.; Ngah, L. A.; Issautier, A.; Delord, T.; Aktas, D.; D'Auria, V.; De Micheli, M. P.; Kastberg, A.; Labonté, L.; Alibart, O.; Martin, A.; Tanzilli, S.

    2014-09-01

    We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in Kaiser et al. (Laser Phys. Lett. 10 (2013) 045202).

  7. SEMIAUTOMATIC BUILDING EXTRACTION FROM STEREOIMAGE PAIR BASED ON LINES GROUPING AND LEAST SQUARES MATCHING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper presents a general paradigm of semiautomatic building extrac tion from aerial stereo image pair.In the semiautomatic extraction system,the building model is defined by selected roof type through human-machine interface and input the approximation of area where the extracted building exists.Then un der the knowledge of the roof type,low-level and mid-level processing including edge detection,straight line segments extraction and line segments grouping ar e used to establish the initial geometrical model of the roof-top.However,the initial geometrical model is not so accurate in geometry.To attain accurate res ults,a general least squares adjustment integrating the linear templates matchin g model with geometrical constraints in object-space is applied to refine the ini tial geometrical model.The adjustment model integrating the straight edge pat tern and 3D constraints together is a well-studied optimal and ant i-noise method.After gaining proper initial values,this adjustment model can f lexibly process extraction of kinds of roof types by changing or assembling the geometrical constraints in object-space.

  8. Au pair trajectories

    DEFF Research Database (Denmark)

    Dalgas, Karina Märcher

    2015-01-01

    and dreams for the future become intertwined with their financial possibilities, limitations and responsibilities. The following three articles employ the notion of relatedness to explore the transnational and local social networks, including family relations, of which the au pairs are part. Arguing...... that Filipina au pairs see their stay abroad as an avenue of personal development and social recognition, I examine how the au pairs re-position themselves within their families at home through migration, and how they navigate between the often conflicting expectations of participation in the sociality...... important remittances back home. Their time in Denmark is also often part of long-term migration trajectories involving future stays in Scandinavia and southern Europe. Based on ten months of fieldwork among current and former au pairs in Denmark and ten weeks of fieldwork among prospective au pairs and au...

  9. Analysis of difference spectra of protonated DNA: determination of degree of protonation of nitrogen bases and the fractions of disordered nucleotide pairs.

    Science.gov (United States)

    Smol'janinova, T I; Zhidkov, V A; Sokolov, G V

    1982-01-01

    The titration curves of nitrogen bases and fractions of disordered nucleotide pairs are obtained during DNA protonation. It is shown that purine bases are the first sites of the DNA double helix protonation. The cytosine protonation is due to proton-induced conformational transition within GC pairs with the sequence proton transfer from (N-7) of guanine to (N-3) of cytosine. Within DNA with unwound regions the bases are protonated in the following order: cytosine, adenine, guanine. It is shown that GC pairs are the primary centres in which the unwinding of protonated DNAs occurs. PMID:7079177

  10. Comprehensive evaluation of medium and long range correlated density functionals in TD-DFT investigation of DNA bases and base pairs: gas phase and water solution study

    Science.gov (United States)

    Shukla, Manoj K.; Leszczynski, Jerzy

    2010-11-01

    A comprehensive analysis of the performance of the TD-DFT method using different density functionals including recently developed medium and long-range correlation corrected density functionals have been carried out for lower-lying electronic singlet valence transitions of nucleic acid bases and the Watson-Crick base pairs in the gas phase and in the water solution. The standard 6-311++G(d,p) basis set was used. Ground state geometries of bases and base pairs were optimized at the M05-2X/6-311++G(d,p) level. The nature of potential energy surfaces (PES) was ascertained through the harmonic vibrational frequency analysis; all geometries were found to be minima at the respective PES. Electronic singlet vertical transition energies were also computed at the CC2/def2-TZVP level in the gas phase. The effect of state-specific water solvation on TD-DFT computed transition energies was considered using the PCM model. For the isolated bases the performance of the B3LYP functional was generally found to be superior among all functionals, but it measurably fails for charge-transfer states in the base pairs. The CC2/def2-TZVP computed transition energies were also revealed to be inferior compared with B3LYP results for the isolated bases. The performance of the ωB97XD, CAM-B3LYP and BMK functionals were found to be similar and comparable with the CC2 results for the isolated bases. However, for the Watson-Crick adenine-thymine and guanine-cytosine base pairs the performance of the ωB97XD functional was found to be the best among all the studied functionals in the present work in predicting the locally excited transitions as well as charge transfer states.

  11. Experimental demonstration of wavelength domain rogue-free ONU based on wavelength-pairing for TDM/WDM optical access networks.

    Science.gov (United States)

    Lee, Jie Hyun; Park, Heuk; Kang, Sae-Kyoung; Lee, Joon Ki; Chung, Hwan Seok

    2015-11-30

    In this study, we propose and experimentally demonstrate a wavelength domain rogue-free ONU based on wavelength-pairing of downstream and upstream signals for time/wavelength division-multiplexed optical access networks. The wavelength-pairing tunable filter is aligned to the upstream wavelength channel by aligning it to one of the downstream wavelength channels. Wavelength-pairing is implemented with a compact and cyclic Si-AWG integrated with a Ge-PD. The pairing filter covered four 100 GHz-spaced wavelength channels. The feasibility of the wavelength domain rogue-free operation is investigated by emulating malfunction of the misaligned laser. The wavelength-pairing tunable filter based on the Si-AWG blocks the upstream signal in the non-assigned wavelength channel before data collision with other ONUs.

  12. Reference: TCA1MOTIF [PLACE

    Lifescience Database Archive (English)

    Full Text Available TCA1MOTIF Goldsbrough AP, Albrecht H, Stratford R Salicylic acid-inducible binding ...of a tobacco nuclear protein to a 10 bp sequence which is highly conserved amongst stress-inducible genes. Plant J 3:563-571 (1993) PubMed: 8220463; ...

  13. Structure of the 2-Aminopurine-Cytosine Base Pair Formed in the Polymerase Active Site of the RB69 Y567A-DNA Polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Reha-Krantz, Linda J.; Hariharan, Chithra; Subuddhi, Usharani; Xia, Shuangluo; Zhao, Chao; Beckman, Jeff; Christian, Thomas; Konigsberg, William (Yale); (Alberta)

    2011-11-21

    The adenine base analogue 2-aminopurine (2AP) is a potent base substitution mutagen in prokaryotes because of its enhanceed ability to form a mutagenic base pair with an incoming dCTP. Despite more than 50 years of research, the structure of the 2AP-C base pair remains unclear. We report the structure of the 2AP-dCTP base pair formed within the polymerase active site of the RB69 Y567A-DNA polymerase. A modified wobble 2AP-C base pair was detected with one H-bond between N1 of 2AP and a proton from the C4 amino group of cytosine and an apparent bifurcated H-bond between a proton on the 2-amino group of 2-aminopurine and the ring N3 and O2 atoms of cytosine. Interestingly, a primer-terminal region rich in AT base pairs, compared to GC base pairs, facilitated dCTP binding opposite template 2AP. We propose that the increased flexibility of the nucleotide binding pocket formed in the Y567A-DNA polymerase and increased 'breathing' at the primer-terminal junction of A+T-rich DNA facilitate dCTP binding opposite template 2AP. Thus, interactions between DNA polymerase residues with a dynamic primer-terminal junction play a role in determining base selectivity within the polymerase active site of RB69 DNA polymerase.

  14. Milestones and Millennials: A Perfect Pairing-Competency-Based Medical Education and the Learning Preferences of Generation Y.

    Science.gov (United States)

    Desy, Janeve R; Reed, Darcy A; Wolanskyj, Alexandra P

    2017-02-01

    Millennials are quickly becoming the most prevalent generation of medical learners. These individuals have a unique outlook on education and have different preferences and expectations than their predecessors. As evidenced by its implementation by the Accreditation Council for Graduate Medical Education in the United States and the Royal College of Physicians and Surgeons in Canada, competency based medical education is rapidly gaining international acceptance. Characteristics of competency based medical education can be perfectly paired with Millennial educational needs in several dimensions including educational expectations, the educational process, attention to emotional quotient and professionalism, assessment, feedback, and intended outcomes. We propose that with its attention to transparency, personalized learning, and frequent formative assessment, competency based medical education is an ideal fit for the Millennial generation as it realigns education and assessment with the needs of these 21st century learners.

  15. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing

    Science.gov (United States)

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V. Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J. W.; Patolsky, Fernando; Gazit, Ehud

    2015-05-01

    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs—CG, GC and GG—could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

  16. A novel Bayesian DNA motif comparison method for clustering and retrieval.

    Directory of Open Access Journals (Sweden)

    Naomi Habib

    2008-02-01

    Full Text Available Characterizing the DNA-binding specificities of transcription factors is a key problem in computational biology that has been addressed by multiple algorithms. These usually take as input sequences that are putatively bound by the same factor and output one or more DNA motifs. A common practice is to apply several such algorithms simultaneously to improve coverage at the price of redundancy. In interpreting such results, two tasks are crucial: clustering of redundant motifs, and attributing the motifs to transcription factors by retrieval of similar motifs from previously characterized motif libraries. Both tasks inherently involve motif comparison. Here we present a novel method for comparing and merging motifs, based on Bayesian probabilistic principles. This method takes into account both the similarity in positional nucleotide distributions of the two motifs and their dissimilarity to the background distribution. We demonstrate the use of the new comparison method as a basis for motif clustering and retrieval procedures, and compare it to several commonly used alternatives. Our results show that the new method outperforms other available methods in accuracy and sensitivity. We incorporated the resulting motif clustering and retrieval procedures in a large-scale automated pipeline for analyzing DNA motifs. This pipeline integrates the results of various DNA motif discovery algorithms and automatically merges redundant motifs from multiple training sets into a coherent annotated library of motifs. Application of this pipeline to recent genome-wide transcription factor location data in S. cerevisiae successfully identified DNA motifs in a manner that is as good as semi-automated analysis reported in the literature. Moreover, we show how this analysis elucidates the mechanisms of condition-specific preferences of transcription factors.

  17. Advanced formulation of base pair changes in the stem regions of ribosomal RNAs; its application to mitochondrial rRNAs for resolving the phylogeny of animals.

    Science.gov (United States)

    Otsuka, Jinya; Sugaya, Nobuyoshi

    2003-06-21

    The ribosomal RNAs (rRNAs) of animal mitochondria, especially those of arthropod mitochondria, have a higher content of G:U and U:G base pairs in their stem regions than the nuclear rRNAs. Thus, the theoretical formulation of base pair changes is extended to incorporate the faster base pair changes A:UG:UG:C and U:AU:GC:G into the previous formulation of the slower base pair changes between A:U, G:C, C:G and U:A. The relative base pair change probability containing the faster and slower base pair changes is theoretically derived to estimate the divergence time of rRNAs under the influence of selection for these base pairs. Using the cartilaginous fish-teleost fish divergence and the crustacean-insect divergence as calibration points, the present method successfully predicts the divergence times of the main branches of animals: Deuterostomia and Protostomia diverged 9.2 x 10(8) years ago, the divergence of Echinodermata, Hemichordata and Cephalochordata succeedingly occurred during the period from 8 x 10(8) to 6 x 10(8) years ago, while Arthropoda, Annelida and Mollusca diverged almost concomitantly about 7 x 10(8) years ago. The dating for the divergence of Platyhelminthes and Cnidaria is traced back to 1.2 x 10(9) years ago. This result is consistent with the fossil records in the Stirling Range Formation of southwestern Australia, the Ediacara and Avalon faunas and the Cambrian Burgess Shale. Thus, the present method may be useful for estimating the divergence times of animals ranging from 10(8) to 10(9) years ago, resolving the difficult problems, e.g. deviation from rate constancy and large sampling variances, in the usual methods of treating apparent change rates between individual bases and/or base pairs.

  18. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of spliced-leader genes.

    Science.gov (United States)

    Cura, Carolina I; Mejía-Jaramillo, Ana M; Duffy, Tomás; Burgos, Juan M; Rodriguero, Marcela; Cardinal, Marta V; Kjos, Sonia; Gurgel-Gonçalves, Rodrigo; Blanchet, Denis; De Pablos, Luis M; Tomasini, Nicolás; da Silva, Alexandre; Russomando, Graciela; Cuba, Cesar A Cuba; Aznar, Christine; Abate, Teresa; Levin, Mariano J; Osuna, Antonio; Gürtler, Ricardo E; Diosque, Patricio; Solari, Aldo; Triana-Chávez, Omar; Schijman, Alejandro G

    2010-12-01

    The intergenic region of spliced-leader (SL-IR) genes from 105 Trypanosoma cruzi I (Tc I) infected biological samples, culture isolates and stocks from 11 endemic countries, from Argentina to the USA were characterised, allowing identification of 76 genotypes with 54 polymorphic sites from 123 aligned sequences. On the basis of the microsatellite motif proposed by Herrera et al. (2007) to define four haplotypes in Colombia, we could classify these genotypes into four distinct Tc I SL-IR groups, three corresponding to the former haplotypes Ia (11 genotypes), Ib (11 genotypes) and Id (35 genotypes); and one novel group, Ie (19 genotypes). Genotypes harbouring the Tc Ic motif were not detected in our study. Tc Ia was associated with domestic cycles in southern and northern South America and sylvatic cycles in Central and North America. Tc Ib was found in all transmission cycles from Colombia. Tc Id was identified in all transmission cycles from Argentina and Colombia, including Chagas cardiomyopathy patients, sylvatic Brazilian samples and human cases from French Guiana, Panama and Venezuela. Tc Ie gathered five samples from domestic Triatoma infestans from northern Argentina, nine samples from wild Mepraia spinolai and Mepraia gajardoi and two chagasic patients from Chile and one from a Bolivian patient with chagasic reactivation. Mixed infections by Tc Ia+Tc Id, Tc Ia+Tc Ie and Tc Id+Tc Ie were detected in vector faeces and isolates from human and vector samples. In addition, Tc Ia and Tc Id were identified in different tissues from a heart transplanted Chagas cardiomyopathy patient with reactivation, denoting histotropism. Trypanosoma cruzi I SL-IR genotypes from parasites infecting Triatoma gerstaeckeri and Didelphis virginiana from USA, T. infestans from Paraguay, Rhodnius nasutus and Rhodnius neglectus from Brazil and M. spinolai and M. gajardoi from Chile are to our knowledge described for the first time.

  19. Evaluating changes in matrix-based, recovery-adjusted concentrations in paired data for pesticides in groundwater.

    Science.gov (United States)

    Zimmerman, Tammy M; Breen, Kevin J

    2012-01-01

    Pesticide concentration data for waters from selected carbonate-rock aquifers in agricultural areas of Pennsylvania were collected in 1993-2009 for occurrence and distribution assessments. A set of 30 wells was visited once in 1993-1995 and again in 2008-2009 to assess concentration changes. The data include censored matched pairs (nondetections of a compound in one or both samples of a pair). A potentially improved approach for assessing concentration changes is presented where (i) concentrations are adjusted with models of matrix-spike recovery and (ii) area-wide temporal change is tested by use of the paired Prentice-Wilcoxon (PPW) statistical test. The PPW results for atrazine, simazine, metolachlor, prometon, and an atrazine degradate, deethylatrazine (DEA), are compared using recovery-adjusted and unadjusted concentrations. Results for adjusted compared with unadjusted concentrations in 2008-2009 compared with 1993-1995 were similar for atrazine and simazine (significant decrease; 95% confidence level) and metolachlor (no change) but differed for DEA (adjusted, decrease; unadjusted, increase) and prometon (adjusted, decrease; unadjusted, no change). The PPW results were different on recovery-adjusted compared with unadjusted concentrations. Not accounting for variability in recovery can mask a true change, misidentify a change when no true change exists, or assign a direction opposite of the true change in concentration that resulted from matrix influences on extraction and laboratory method performance. However, matrix-based models of recovery derived from a laboratory performance dataset from multiple studies for national assessment, as used herein, rather than time- and study-specific recoveries may introduce uncertainty in recovery adjustments for individual samples that should be considered in assessing change.

  20. Chain propagation and termination mechanisms for polymerization of conjugated polar alkenes by [Al]-based frustrated Lewis pairs

    KAUST Repository

    He, Jianghua

    2014-11-25

    A combined experimental and theoretical study on mechanistic aspects of polymerization of conjugated polar alkenes by frustrated Lewis pairs (FLPs) based on N-heterocyclic carbene (NHC) and Al(C6F5)3 pairs is reported. This study consists of three key parts: structural characterization of active propagating intermediates, propagation kinetics, and chain-termination pathways. Zwitterionic intermediates that simulate the active propagating species in such polymerization have been generated or isolated from the FLP activation of monomers such as 2-vinylpyridine and 2-isopropenyl-2-oxazoline-one of which, IMes+-CH2C(Me)=(C3H2NO)Al(C6F5)3 - (2), has been structurally characterized. Kinetics performed on the polymerization of 2-vinylpyridine by ItBu/Al(C6F5)3 revealed that the polymerization follows a zero-order dependence on monomer concentration and a first-order dependence on initiator (ItBu) and activator [Al(C6F5)3] concentrations, indicating a bimolecular, activated monomer propagation mechanism. The Lewis pair polymerization of conjugate polar alkenes such as methacrylates is accompanied by competing chain-termination side reactions; between the two possible chain-termination pathways, the one that proceeds via intramolecular backbiting cyclization involving nucleophilic attack of the activated ester group of the growing polymer chain by the O-ester enolate active chain end to generate a six-membered lactone (δ-valerolactone)-terminated polymer chain is kinetically favored, but thermodynamically disfavored, over the pathway leading to the -ketoester-terminated chain, as revealed by computational studies.

  1. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors.

    Science.gov (United States)

    Zhang, Degang

    2009-10-30

    The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.

  2. Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches.

    Science.gov (United States)

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2013-11-15

    It was established that the cytosine·thymine (C·T) mismatched DNA base pair with cis-oriented N1H glycosidic bonds has propeller-like structure (|N3C4C4N3| = 38.4°), which is stabilized by three specific intermolecular interactions-two antiparallel N4H…O4 (5.19 kcal mol(-1)) and N3H…N3 (6.33 kcal mol(-1)) H-bonds and a van der Waals (vdW) contact O2…O2 (0.32 kcal mol(-1)). The C·T base mispair is thermodynamically stable structure (ΔG(int) = -1.54 kcal mol(-1) ) and even slightly more stable than the A·T Watson-Crick DNA base pair (ΔG(int) = -1.43 kcal mol(-1)) at the room temperature. It was shown that the C·T ↔ C*·T* tautomerization via the double proton transfer (DPT) is assisted by the O2…O2 vdW contact along the entire range of the intrinsic reaction coordinate (IRC). The positive value of the Grunenberg's compliance constants (31.186, 30.265, and 22.166 Å/mdyn for the C·T, C*·T*, and TS(C·T ↔ C*·T*), respectively) proves that the O2…O2 vdW contact is a stabilizing interaction. Based on the sweeps of the H-bond energies, it was found that the N4H…O4/O4H…N4, and N3H…N3 H-bonds in the C·T and C*·T* base pairs are anticooperative and weaken each other, whereas the middle N3H…N3 H-bond and the O2…O2 vdW contact are cooperative and mutually reinforce each other. It was found that the tautomerization of the C·T base mispair through the DPT is concerted and asynchronous reaction that proceeds via the TS(C·T ↔ C*·T*) stabilized by the loosened N4-H-O4 covalent bridge, N3H…N3 H-bond (9.67 kcal mol(-1) ) and O2…O2 vdW contact (0.41 kcal mol(-1) ). The nine key points, describing the evolution of the C·T ↔ C*·T* tautomerization via the DPT, were detected and completely investigated along the IRC. The C*·T* mispair was revealed to be the dynamically unstable structure with a lifetime 2.13·× 10(-13) s. In this case, as for the A·T Watson-Crick DNA base pair, activates the mechanism of the quantum protection of the C

  3. Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant

    Science.gov (United States)

    Daugherty, Ashley B.; Yang, Zunyi; Shaw, Ryan; Dong, Mengxing; Lutz, Stefan; Benner, Steven A.

    2017-01-01

    One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be available at sufficient concentrations within the cell. To achieve this goal, the unnatural nucleoside analogues must be phosphorylated to the corresponding nucleoside triphosphates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally considered the rate limiting step because of the high specificity of dNKs. Here, we applied a Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) to the phosphorylation of an UBP (a pyrimidine analogue (6-amino-5-nitro-3-(1’-b-d-2’-deoxyribofuranosyl)-2(1H)-pyridone, Z) and its complementary purine analogue (2-amino-8-(1’-b-d-2’-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, P). The results showed that DmdNK could efficiently phosphorylate only the dP nucleoside. To improve the catalytic efficiency, a DmdNK-Q81E mutant was created based on rational design and structural analyses. This mutant could efficiently phosphorylate both dZ and dP nucleoside. Structural modeling indicated that the increased efficiency of dZ phosphorylation by the DmdNK-Q81E mutant might be related to the three additional hydrogen bonds formed between E81 and the dZ base. Overall, this study provides a groundwork for the biological phosphorylation and synthesis of unnatural base pair in vivo. PMID:28323896

  4. Application of Acupoints in Pairs

    Institute of Scientific and Technical Information of China (English)

    季扬

    2004-01-01

    @@ Application of acupoints in pairs is a kind of point association in which only a pair of compatible points is used. Based on the principle of compatibility, the author of this article often uses the "pair-point needling" to treat some common diseases, and have obtained very good therapeutic results. Some examples are introduced below.

  5. Demonstration of polarization sensitivity of emulsion-based pair conversion telescope for cosmic gamma-ray polarimetry

    CERN Document Server

    Ozaki, Keita; Aoki, Shigeki; Kamada, Keiki; Kaneyama, Taichi; Nakagawa, Ryo; Rokujo, Hiroki

    2016-01-01

    Linear polarization of high-energy gamma-rays (10 MeV-100 GeV) can be detected by measuring the azimuthal angle of electron-positron pairs and observing the modulation of the azimuthal distribution. To demonstrate the gamma-ray polarization sensitivity of emulsion, we conducted a test using a polarized gamma-ray beam at SPring-8/LEPS. Emulsion tracks were reconstructed using scanning data, and gamma-ray events were selected automatically. Using an optical microscope, out of the 2381 gamma-ray conversions that were observed, 1372 remained after event selection, on the azimuthal angle distribution of which we measured the modulation. From the distribution of the azimuthal angles of the selected events, a modulation factor of 0.21 + 0.11 - 0.09 was measured, from which the detection of a non-zero modulation was established with a significance of 3.06 $\\sigma$. This attractive polarimeter will be applied to the GRAINE project, a balloon-borne experiment that observes cosmic gamma-rays with an emulsion-based pair ...

  6. Detection of Wuchereria bancrofti DNA in paired serum and urine samples using polymerase chain reaction-based systems

    Directory of Open Access Journals (Sweden)

    Camila Ximenes

    2014-12-01

    Full Text Available The Global Program for the Elimination of Lymphatic Filariasis (GPELF aims to eliminate this disease by the year 2020. However, the development of more specific and sensitive tests is important for the success of the GPELF. The present study aimed to standardise polymerase chain reaction (PCR-based systems for the diagnosis of filariasis in serum and urine. Twenty paired biological urine and serum samples from individuals already known to be positive for Wuchereria bancrofti were collected during the day. Conventional PCR and semi-nested PCR assays were optimised. The detection limit of the technique for purified W. bancrofti DNA extracted from adult worms was 10 fg for the internal systems (WbF/Wb2 and 0.1 fg by using semi-nested PCR. The specificity of the primers was confirmed experimentally by amplification of 1 ng of purified genomic DNA from other species of parasites. Evaluation of the paired urine and serum samples by the semi-nested PCR technique indicated only two of the 20 tested individuals were positive, whereas the simple internal PCR system (WbF/Wb2, which has highly promising performance, revealed that all the patients were positive using both samples. This study successfully demonstrated the possibility of using the PCR technique on urine for the diagnosis of W. bancrofti infection.

  7. A likelihood-based approach for assessment of extra-pair paternity and conspecific brood parasitism in natural populations

    Science.gov (United States)

    Lemons, Patrick R.; Marshall, T.C.; McCloskey, Sarah E.; Sethi, S.A.; Schmutz, Joel A.; Sedinger, James S.

    2015-01-01

    Genotypes are frequently used to assess alternative reproductive strategies such as extra-pair paternity and conspecific brood parasitism in wild populations. However, such analyses are vulnerable to genotyping error or molecular artifacts that can bias results. For example, when using multilocus microsatellite data, a mismatch at a single locus, suggesting the offspring was not directly related to its putative parents, can occur quite commonly even when the offspring is truly related. Some recent studies have advocated an ad-hoc rule that offspring must differ at more than one locus in order to conclude that they are not directly related. While this reduces the frequency with which true offspring are identified as not directly related young, it also introduces bias in the opposite direction, wherein not directly related young are categorized as true offspring. More importantly, it ignores the additional information on allele frequencies which would reduce overall bias. In this study, we present a novel technique for assessing extra-pair paternity and conspecific brood parasitism using a likelihood-based approach in a new version of program cervus. We test the suitability of the technique by applying it to a simulated data set and then present an example to demonstrate its influence on the estimation of alternative reproductive strategies.

  8. MINER: software for phylogenetic motif identification.

    Science.gov (United States)

    La, David; Livesay, Dennis R

    2005-07-01

    MINER is web-based software for phylogenetic motif (PM) identification. PMs are sequence regions (fragments) that conserve the overall familial phylogeny. PMs have been shown to correspond to a wide variety of catalytic regions, substrate-binding sites and protein interfaces, making them ideal functional site predictions. The MINER output provides an intuitive interface for interactive PM sequence analysis and structural visualization. The web implementation of MINER is freely available at http://www.pmap.csupomona.edu/MINER/. Source code is available to the academic community on request.

  9. Identification of genes that promote or antagonize somatic homolog pairing using a high-throughput FISH-based screen.

    Directory of Open Access Journals (Sweden)

    Eric F Joyce

    Full Text Available The pairing of homologous chromosomes is a fundamental feature of the meiotic cell. In addition, a number of species exhibit homolog pairing in nonmeiotic, somatic cells as well, with evidence for its impact on both gene regulation and double-strand break (DSB repair. An extreme example of somatic pairing can be observed in Drosophila melanogaster, where homologous chromosomes remain aligned throughout most of development. However, our understanding of the mechanism of somatic homolog pairing remains unclear, as only a few genes have been implicated in this process. In this study, we introduce a novel high-throughput fluorescent in situ hybridization (FISH technology that enabled us to conduct a genome-wide RNAi screen for factors involved in the robust somatic pairing observed in Drosophila. We identified both candidate "pairing promoting genes" and candidate "anti-pairing genes," providing evidence that pairing is a dynamic process that can be both enhanced and antagonized. Many of the genes found to be important for promoting pairing are highly enriched for functions associated with mitotic cell division, suggesting a genetic framework for a long-standing link between chromosome dynamics during mitosis and nuclear organization during interphase. In contrast, several of the candidate anti-pairing genes have known interphase functions associated with S-phase progression, DNA replication, and chromatin compaction, including several components of the condensin II complex. In combination with a variety of secondary assays, these results provide insights into the mechanism and dynamics of somatic pairing.

  10. Main: TCA1MOTIF [PLACE

    Lifescience Database Archive (English)

    Full Text Available TCA1MOTIF S000159 17-May-1998 (last modified) kehi TCA-1 (tobacco nuclear protein 1...) binding site; Related to salicylic acid-inducible expression of many genes; Found in barley beta-1,3-gluca...nase and over 30 different plant genes which are known to be induced by one or more forms of stress; A similar sequence (TCA... et al., 1997); SA; salicylic acid; stress; TCA-1; barley (Hordeum vulgare); tobacco (Nicotiana tabacum); TCATCTTCTT ...

  11. Discovering Pair-Wise Genetic Interactions: An Information Theory-Based Approach

    Science.gov (United States)

    Ignac, Tomasz M.; Skupin, Alexander; Sakhanenko, Nikita A.; Galas, David J.

    2014-01-01

    Phenotypic variation, including that which underlies health and disease in humans, results in part from multiple interactions among both genetic variation and environmental factors. While diseases or phenotypes caused by single gene variants can be identified by established association methods and family-based approaches, complex phenotypic traits resulting from multi-gene interactions remain very difficult to characterize. Here we describe a new method based on information theory, and demonstrate how it improves on previous approaches to identifying genetic interactions, including both synthetic and modifier kinds of interactions. We apply our measure, called interaction distance, to previously analyzed data sets of yeast sporulation efficiency, lipid related mouse data and several human disease models to characterize the method. We show how the interaction distance can reveal novel gene interaction candidates in experimental and simulated data sets, and outperforms other measures in several circumstances. The method also allows us to optimize case/control sample composition for clinical studies. PMID:24670935

  12. An innovative monolithic column preparation for the isolation of 25 kilo base pairs DNA.

    Science.gov (United States)

    Ongkudon, Clarence M; Pan, Sharadwata; Danquah, Michael K

    2013-11-29

    The use of large DNAs in preparing multivalent vaccines that will eventually give protective immunity against multiple pathogenic microbes is becoming a major debate nowadays. One of the important issues in ensuring the successful implementation of the new vaccine technology is the development of a chromatographic technique that can handle larger DNAs. This paper reports the development of a novel conical monolithic column format with pore and surface characteristics engineered for the isolation of 25 kbp DNA in a single step fashion. An effective method of eliminating wall channelling, a defect of most conventional monolithic chromatography systems which has caused significant loss of product, was applied to maximise DNA recovery. This method was based on a systematic reduction of wall channel size based on a predetermined correlation between column’s back pressure and wall channel size of a particular monolith pore size.

  13. Distance-dependent proton transfer along water wires connecting acid-base pairs

    NARCIS (Netherlands)

    Cox, M.J.; Timmer, R.L.A.; Bakker, H.J.; Park, S.; Agmon, N.

    2009-01-01

    We report time-resolved mid-IR kinetics for the ultrafast acid−base reaction between photoexcited 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS), and acetate at three concentrations (0.5, 1.0, and 2.0 M) and three temperatures (5, 30, and 65 °C) in liquid D2O. The observed proton-trans

  14. Timing of Colonization of Caries-Producing Bacteria: An Approach Based on Studying Monozygotic Twin Pairs

    OpenAIRE

    Bockmann, Michelle R.; Harris, Abbe V.; Bennett, Corinna N.; Ruba Odeh; Hughes, Toby E.; Townsend, Grant C

    2011-01-01

    Findings are presented from a prospective cohort study of timing of primary tooth emergence and timing of oral colonization of Streptococcus mutans (S. mutans) in Australian twins. The paper focuses on differences in colonization timing in genetically identical monozygotic (MZ) twins. Timing of tooth emergence was based on parental report. Colonization timing of S. mutans were established by plating samples of plaque and saliva on selective media at 3 monthly intervals and assessing colony mo...

  15. Event Networks and the Identification of Crime Pattern Motifs.

    Directory of Open Access Journals (Sweden)

    Toby Davies

    Full Text Available In this paper we demonstrate the use of network analysis to characterise patterns of clustering in spatio-temporal events. Such clustering is of both theoretical and practical importance in the study of crime, and forms the basis for a number of preventative strategies. However, existing analytical methods show only that clustering is present in data, while offering little insight into the nature of the patterns present. Here, we show how the classification of pairs of events as close in space and time can be used to define a network, thereby generalising previous approaches. The application of graph-theoretic techniques to these networks can then offer significantly deeper insight into the structure of the data than previously possible. In particular, we focus on the identification of network motifs, which have clear interpretation in terms of spatio-temporal behaviour. Statistical analysis is complicated by the nature of the underlying data, and we provide a method by which appropriate randomised graphs can be generated. Two datasets are used as case studies: maritime piracy at the global scale, and residential burglary in an urban area. In both cases, the same significant 3-vertex motif is found; this result suggests that incidents tend to occur not just in pairs, but in fact in larger groups within a restricted spatio-temporal domain. In the 4-vertex case, different motifs are found to be significant in each case, suggesting that this technique is capable of discriminating between clustering patterns at a finer granularity than previously possible.

  16. The value of position-specific priors in motif discovery using MEME

    Directory of Open Access Journals (Sweden)

    Whitington Tom

    2010-04-01

    Full Text Available Abstract Background Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs sampler-based motif discovery algorithms. Information of many types–including sequence conservation, nucleosome positioning, and negative examples–can be converted into a prior over the location of motif sites, which then guides the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, but has not previously been studied with methods based on expectation maximization (EM. Results We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their effectiveness for discovering transcription factor (TF motifs in yeast and mouse DNA sequences. Utilizing a discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior. Conclusions We conclude that using position-specific priors can substantially increase the power of EM-based motif discovery algorithms such as MEME algorithm.

  17. BioCores: identification of a drug/natural product-based privileged structural motif for small-molecule lead discovery.

    Science.gov (United States)

    Kombarov, Roman; Altieri, Andrea; Genis, Dmitry; Kirpichenok, Mikhail; Kochubey, Valeriy; Rakitina, Natalia; Titarenko, Zoya

    2010-02-01

    The analysis of known drugs (Comprehensive Medicinal Chemistry database (2008 version): http://www.mdl.com/products/knowledge/medicinal_chem/index.jsp ) and natural products (Koch et al., Proc Natl Acad Sci USA 102:17272-17277, 2008) has led to the identification of privileged saturated and aromatic heterocyclic ring pairs that we have termed as "BioCores." This article explains how the BioCores can be used for the design of novel lead-like scaffolds.

  18. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.

    Science.gov (United States)

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/.

  19. Nematic fluctuations, fermiology and the pairing potential in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kretzschmar, Florian

    2015-08-18

    The thesis comprises a systematic study on the doping, temperature and momentum dependent electron dynamics in iron-based superconductors using inelastic light scattering. The observation of Bardasis-Schrieffer modes in the excitation spectrum of superconducting Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} is reported and the energy and symmetry dependence of the modes are analyzed. The analysis yields the identification of a strong subdominant component of the interaction potential V(k,k{sup '}). Strong nematic fluctuations are investigated in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2}. The nature of the fluctuations and the origin of nematicity in Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} are identified.

  20. Cyanine-based probe\\tag-peptide pair fluorescence protein imaging and fluorescence protein imaging methods

    Science.gov (United States)

    Mayer-Cumblidge, M. Uljana; Cao, Haishi

    2013-01-15

    A molecular probe comprises two arsenic atoms and at least one cyanine based moiety. A method of producing a molecular probe includes providing a molecule having a first formula, treating the molecule with HgOAc, and subsequently transmetallizing with AsCl.sub.3. The As is liganded to ethanedithiol to produce a probe having a second formula. A method of labeling a peptide includes providing a peptide comprising a tag sequence and contacting the peptide with a biarsenical molecular probe. A complex is formed comprising the tag sequence and the molecular probe. A method of studying a peptide includes providing a mixture containing a peptide comprising a peptide tag sequence, adding a biarsenical probe to the mixture, and monitoring the fluorescence of the mixture.

  1. Rational design and identification of a non-peptidic aggregation inhibitor of amyloid-β based on a pharmacophore motif obtained from cyclo[-Lys-Leu-Val-Phe-Phe-].

    Science.gov (United States)

    Arai, Tadamasa; Araya, Takushi; Sasaki, Daisuke; Taniguchi, Atsuhiko; Sato, Takeshi; Sohma, Youhei; Kanai, Motomu

    2014-07-28

    Inhibition of pathogenic protein aggregation may be an important and straightforward therapeutic strategy for curing amyloid diseases. Small-molecule aggregation inhibitors of Alzheimer's amyloid-β (Aβ) are extremely scarce, however, and are mainly restricted to dye- and polyphenol-type compounds that lack drug-likeness. Based on the structure-activity relationship of cyclic Aβ16-20 (cyclo-[KLVFF]), we identified unique pharmacophore motifs comprising side-chains of Leu(2), Val(3), Phe(4), and Phe(5) residues without involvement of the backbone amide bonds to inhibit Aβ aggregation. This finding allowed us to design non-peptidic, small-molecule aggregation inhibitors that possess potent activity. These molecules are the first successful non-peptidic, small-molecule aggregation inhibitors of amyloids based on rational molecular design.

  2. seeMotif: exploring and visualizing sequence motifs in 3D structures

    OpenAIRE

    2009-01-01

    Sequence motifs are important in the study of molecular biology. Motif discovery tools efficiently deliver many function related signatures of proteins and largely facilitate sequence annotation. As increasing numbers of motifs are detected experimentally or predicted computationally, characterizing the functional roles of motifs and identifying the potential synergetic relationships between them are important next steps. A good way to investigate novel motifs is to utilize the abundant 3D st...

  3. A model for gamma-ray binaries, based on the effect of pair production feedback in shocked pulsar winds

    CERN Document Server

    Derishev, E

    2016-01-01

    We analyze the model of gamma-ray binaries, consisting of a massive star and a pulsar with ultrarelativistic wind. We consider radiation from energetic particles, accelerated at the pulsar wind termination shock, and feedback of this radiation on the wind through production of secondary electron-positron pairs. We show that the pair feedback limits the Lorentz factor of the pulsar wind and creates a population of very energetic pairs, whose radiation may be responsible for the observed gamma-ray signal.

  4. Finding a Leucine in a Haystack: Searching the Proteome for ambigous Leucine-Aspartic Acid motifs

    KAUST Repository

    Arold, Stefan T.

    2016-01-25

    Leucine-aspartic acid (LD) motifs are short helical protein-protein interaction motifs involved in cell motility, survival and communication. LD motif interactions are also implicated in cancer metastasis and are targeted by several viruses. LD motifs are notoriously difficult to detect because sequence pattern searches lead to an excessively high number of false positives. Hence, despite 20 years of research, only six LD motif–containing proteins are known in humans, three of which are close homologues of the paxillin family. To enable the proteome-wide discovery of LD motifs, we developed LD Motif Finder (LDMF), a web tool based on machine learning that combines sequence information with structural predictions to detect LD motifs with high accuracy. LDMF predicted 13 new LD motifs in humans. Using biophysical assays, we experimentally confirmed in vitro interactions for four novel LD motif proteins. Thus, LDMF allows proteome-wide discovery of LD motifs, despite a highly ambiguous sequence pattern. Functional implications will be discussed.

  5. Fast and Accurate Discovery of Degenerate Linear Motifs in Protein Sequences

    Science.gov (United States)

    Levy, Emmanuel D.; Michnick, Stephen W.

    2014-01-01

    Linear motifs mediate a wide variety of cellular functions, which makes their characterization in protein sequences crucial to understanding cellular systems. However, the short length and degenerate nature of linear motifs make their discovery a difficult problem. Here, we introduce MotifHound, an algorithm particularly suited for the discovery of small and degenerate linear motifs. MotifHound performs an exact and exhaustive enumeration of all motifs present in proteins of interest, including all of their degenerate forms, and scores the overrepresentation of each motif based on its occurrence in proteins of interest relative to a background (e.g., proteome) using the hypergeometric distribution. To assess MotifHound, we benchmarked it together with state-of-the-art algorithms. The benchmark consists of 11,880 sets of proteins from S. cerevisiae; in each set, we artificially spiked-in one motif varying in terms of three key parameters, (i) number of occurrences, (ii) length and (iii) the number of degenerate or “wildcard” positions. The benchmark enabled the evaluation of the impact of these three properties on the performance of the different algorithms. The results showed that MotifHound and SLiMFinder were the most accurate in detecting degenerate linear motifs. Interestingly, MotifHound was 15 to 20 times faster at comparable accuracy and performed best in the discovery of highly degenerate motifs. We complemented the benchmark by an analysis of proteins experimentally shown to bind the FUS1 SH3 domain from S. cerevisiae. Using the full-length protein partners as sole information, MotifHound recapitulated most experimentally determined motifs binding to the FUS1 SH3 domain. Moreover, these motifs exhibited properties typical of SH3 binding peptides, e.g., high intrinsic disorder and evolutionary conservation, despite the fact that none of these properties were used as prior information. MotifHound is available (http://michnick.bcm.umontreal.ca or http

  6. Statistical tests to compare motif count exceptionalities

    Directory of Open Access Journals (Sweden)

    Vandewalle Vincent

    2007-03-01

    Full Text Available Abstract Background Finding over- or under-represented motifs in biological sequences is now a common task in genomics. Thanks to p-value calculation for motif counts, exceptional motifs are identified and represent candidate functional motifs. The present work addresses the related question of comparing the exceptionality of one motif in two different sequences. Just comparing the motif count p-values in each sequence is indeed not sufficient to decide if this motif is significantly more exceptional in one sequence compared to the other one. A statistical test is required. Results We develop and analyze two statistical tests, an exact binomial one and an asymptotic likelihood ratio test, to decide whether the exceptionality of a given motif is equivalent or significantly different in two sequences of interest. For that purpose, motif occurrences are modeled by Poisson processes, with a special care for overlapping motifs. Both tests can take the sequence compositions into account. As an illustration, we compare the octamer exceptionalities in the Escherichia coli K-12 backbone versus variable strain-specific loops. Conclusion The exact binomial test is particularly adapted for small counts. For large counts, we advise to use the likelihood ratio test which is asymptotic but strongly correlated with the exact binomial test and very simple to use.

  7. Ambiguous base pairing of the purine analogue 1-(2-deoxy-beta-D-ribofuranosyl)-imidazole-4-carboxamide during PCR.

    Science.gov (United States)

    Sala, M; Pezo, V; Pochet, S; Wain-Hobson, S

    1996-09-01

    In principle the hydrogen bonding capacities of 1-(2-deoxy-beta-D-ribofuranosyl)-imidazole-4-carboxamide (dY), and its N-propyl derivative (dYPr), allow them to pair to all four deoxynucleosides. Their triphosphate derivatives (dYTP and dYPrTP) are preferentially incorporated as dATP analogues in a PCR reaction. However, once incorporated into a DNA template their ambiguous hydrogen bonding potential gave rise to misincorporation at frequencies of approximately 3 x 10(-2) per base per amplification. Most of the substitutions were transitions resulting from rotation about the carboxamide bond when part of the template. Between 11-15% of transversions were noted implying rotation of purine or imidazole moieties about the glycosidic bond. As part of a DNA template, dYPr behaved in the same way as dY, despite its propyl moiety. These deoxyimidazole derivatives are among the most radical departures from the canonical bases used so far as substrates in PCR and could be used to generate mutant gene libraries.

  8. Design of A 5-Bit Fully Parallel Analog to Digital Converter Using Common Gate Differrential Mos Pair-Based Comparator

    Science.gov (United States)

    Aytar, Oktay

    2015-09-01

    This paper presents a novel comparator structure based on the common gate differential MOS pair. The proposed comparator has been applied to fully parallel analog to digital converter (A/D converter). Furthermore, this article presents 5 bit fully parallel A/D Converter design using the cadence IC5141 design platform and NCSU(North Carolina State University) design kit with 0.18 μm CMOS technology library. The proposed fully parallel A/D converter consist of resistor array block, comparator block, 1-n decoder block and programmable logic array. The 1-n decoder block includes latch block and thermometer code circuit that is implemented using transmission gate based multiplexer circuit. Thus, sampling frequency and analog bandwidth are increased. The INL and DNL of the proposed fully parallel A/D converter are (0/ + 0.63) LSB and (-0.26/ + 0.31) LSB at a sampling frequency of 5 GS/s with an input signal of 50 MHz, respectively. The proposed fully parallel A/D Converter consumes 340 mW from 1.8 V supply.

  9. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element

    Science.gov (United States)

    Fukunaga, Junichi; Nomura, Yusuke; Tanaka, Yoichiro; Amano, Ryo; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Sakamoto, Taiichi; Kozu, Tomoko

    2013-01-01

    AML1 (RUNX1) is a key transcription factor for hematopoiesis that binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. Aberrations in the AML1 gene are frequently found in human leukemia. To better understand AML1 and its potential utility for diagnosis and therapy, we obtained RNA aptamers that bind specifically to the AML1 Runt domain. Enzymatic probing and NMR analyses revealed that Apt1-S, which is a truncated variant of one of the aptamers, has a CACG tetraloop and two stem regions separated by an internal loop. All the isolated aptamers were found to contain the conserved sequence motif 5′-NNCCAC-3′ and 5′-GCGMGN′N′-3′ (M:A or C; N and N′ form Watson–Crick base pairs). The motif contains one AC mismatch and one base bulged out. Mutational analysis of Apt1-S showed that three guanines of the motif are important for Runt binding as are the three guanines of RDE, which are directly recognized by three arginine residues of the Runt domain. Mutational analyses of the Runt domain revealed that the amino acid residues used for Apt1-S binding were similar to those used for RDE binding. Furthermore, the aptamer competed with RDE for binding to the Runt domain in vitro. These results demonstrated that the Runt domain of the AML1 protein binds to the motif of the aptamer that mimics DNA. Our findings should provide new insights into RNA function and utility in both basic and applied sciences. PMID:23709277

  10. Investigation on the ion pair amphiphiles and their in vitro release of amantadine drug based on PLGA–PEG–PLGA gel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: yxx-678@163.com; Ji, Xiaoqing; Shi, Chunhuan; Liu, Jing [Shandong University, School of Pharmaceutical Science and Center for Pharmaceutical Research & Drug Delivery Systems (China); Wang, Haiyang [Institute of Materia Medica Shandong Academy of Medical Sciences, Shandong Taitian Newdrug Discovery Co.Ltd (China); Luan, Yuxia, E-mail: yuxialuan@sdu.edu.cn [Shandong University, School of Pharmaceutical Science and Center for Pharmaceutical Research & Drug Delivery Systems (China)

    2014-12-15

    The amantadine drug and oleic acid surfactant are used to form amantadine-based ion pair amphiphiles based on proton transfer reaction between the drug and the surfactant molecules. The ion pair amphiphiles are characterized by {sup 1}H-nuclear magnetic resonance, Fourier transform infrared spectroscopy, and X-ray diffraction. Self-assembly properties of amantadine-based ion pair amphiphiles are studied by surface tension determination, transmission electron microscopy, zeta potential, and dynamic light scattering. The aggregation behavior studies indicate that the as-prepared ion pair amphiphiles can self-assemble into vesicles with the size of 200–300 nm in aqueous solution. The drug release results show that the amantadine release rate could be well controlled by incorporating the amantadine-based ion pair vesicles in poly (lactic-co-glycolic acid)-poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PLGA–PEG–PLGA) copolymer hydrogel. The drug release from the AT–OA vesicle-loaded PLGA–PEG–PLGA hydrogel is significantly inhibited in comparison with the AT-loaded PLGA–PEG–PLGA hydrogel. The present work thus demonstrates that the vesicle-loaded hydrogel is a good candidate for the drug delivery system with long-term controlled drug release behavior.

  11. Design of laser pulses for selective vibrational excitation of the N6-H bond of adenine and adenine-thymine base pair using optimal control theory.

    Science.gov (United States)

    Sharma, Sitansh; Sharma, Purshotam; Singh, Harjinder; Balint-Kurti, Gabriel G

    2009-06-01

    Time dependent quantum dynamics and optimal control theory are used for selective vibrational excitation of the N6-H (amino N-H) bond in free adenine and in the adenine-thymine (A-T) base pair. For the N6-H bond in free adenine we have used a one dimensional model while for the hydrogen bond, N6-H(A)...O4(T), present in the A-T base pair, a two mathematical dimensional model is employed. The conjugate gradient method is used for the optimization of the field dependent cost functional. Optimal laser fields are obtained for selective population transfer in both the model systems, which give virtually 100% excitation probability to preselected vibrational levels. The effect of the optimized laser field on the other hydrogen bond, N1(A)...H-N3(T), present in A-T base pair is also investigated.

  12. Exhaustive Search for Over-represented DNA Sequence Motifs with CisFinder

    Science.gov (United States)

    Sharov, Alexei A.; Ko, Minoru S.H.

    2009-01-01

    We present CisFinder software, which generates a comprehensive list of motifs enriched in a set of DNA sequences and describes them with position frequency matrices (PFMs). A new algorithm was designed to estimate PFMs directly from counts of n-mer words with and without gaps; then PFMs are extended over gaps and flanking regions and clustered to generate non-redundant sets of motifs. The algorithm successfully identified binding motifs for 12 transcription factors (TFs) in embryonic stem cells based on published chromatin immunoprecipitation sequencing data. Furthermore, CisFinder successfully identified alternative binding motifs of TFs (e.g. POU5F1, ESRRB, and CTCF) and motifs for known and unknown co-factors of genes associated with the pluripotent state of ES cells. CisFinder also showed robust performance in the identification of motifs that were only slightly enriched in a set of DNA sequences. PMID:19740934

  13. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition.

    Directory of Open Access Journals (Sweden)

    Edze R Westra

    Full Text Available Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat, into which invader DNA fragments are incorporated. CRISPR transcripts are processed into small RNAs that guide CRISPR-associated (Cas proteins to invading nucleic acids by complementary base pairing. However, to avoid autoimmunity it is essential that these RNA-guides exclusively target invading DNA and not complementary DNA sequences (i.e., self-sequences located in the host's own CRISPR locus. Previous work on the Type III-A CRISPR system from Staphylococcus epidermidis has demonstrated that a portion of the CRISPR RNA-guide sequence is involved in self versus non-self discrimination. This self-avoidance mechanism relies on sensing base pairing between the RNA-guide and sequences flanking the target DNA. To determine if the RNA-guide participates in self versus non-self discrimination in the Type I-E system from Escherichia coli we altered base pairing potential between the RNA-guide and the flanks of DNA targets. Here we demonstrate that Type I-E systems discriminate self from non-self through a base pairing-independent mechanism that strictly relies on the recognition of four unchangeable PAM sequences. In addition, this work reveals that the first base pair between the guide RNA and the PAM nucleotide immediately flanking the target sequence can be disrupted without affecting the interference phenotype. Remarkably, this indicates that base pairing at this position is not involved in foreign DNA recognition. Results in this paper reveal that the Type I-E mechanism of avoiding self sequences and preventing autoimmunity is fundamentally different from that employed by Type III-A systems. We propose the exclusive targeting of PAM-flanked sequences to be termed a target versus non-target discrimination mechanism.

  14. Paired fuzzy sets

    DEFF Research Database (Denmark)

    Rodríguez, J. Tinguaro; Franco de los Ríos, Camilo; Gómez, Daniel

    2015-01-01

    In this paper we want to stress the relevance of paired fuzzy sets, as already proposed in previous works of the authors, as a family of fuzzy sets that offers a unifying view for different models based upon the opposition of two fuzzy sets, simply allowing the existence of different types...

  15. Pairing Learners in Pair Work Activity

    Science.gov (United States)

    Storch, Neomy; Aldosari, Ali

    2013-01-01

    Although pair work is advocated by major theories of second language (L2) learning and research findings suggest that pair work facilitates L2 learning, what is unclear is how to best pair students in L2 classes of mixed L2 proficiency. This study investigated the nature of pair work in an English as a Foreign Language (EFL) class in a college in…

  16. Network Motifs in Object-Oriented Software Systems

    CERN Document Server

    Ma, Yutao; Liu, Jing

    2008-01-01

    Nowadays, software has become a complex piece of work that may be beyond our control. Understanding how software evolves over time plays an important role in controlling software development processes. Recently, a few researchers found the quantitative evidence of structural duplication in software systems or web applications, which is similar to the evolutionary trend found in biological systems. To investigate the principles or rules of software evolution, we introduce the relevant theories and methods of complex networks into structural evolution and change of software systems. According to the results of our experiment on network motifs, we find that the stability of a motif shows positive correlation with its abundance and a motif with high Z score tends to have stable structure. These findings imply that the evolution of software systems is based on functional cloning as well as structural duplication and tends to be structurally stable. So, the work presented in this paper will be useful for the analys...

  17. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques

    Science.gov (United States)

    Schmitz, Gunnar; Hättig, Christof

    2016-12-01

    We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.

  18. Implementation of FFT by using MATLAB: SIMULINK on Xilinx Virtex-4 FPGAs: Performance of a Paired Transform Based FFT

    Directory of Open Access Journals (Sweden)

    Ranganadh Narayanam

    2013-06-01

    Full Text Available Discrete Fourier Transform is principal mathematical method for the frequency analysis and is having wide applications in Engineering and Sciences. Because the DFT is so ubiquitous, fast methods for computing DFT have been studied extensively, and continuous to be an active research. The way of splitting the DFT gives out various fast algorithms. In this paper, we present the implementation of two fast algorithms for the DFT for evaluating their performance. One of them is the popular radix-2 Cooley-Tukey fast Fourier transform algorithm (FFT [1] and the other one is the Grigoryan FFT based on the splitting by the paired transform [2]. We evaluate the performance of these algorithms by implementing them on the Xilinx Virtex-4 FPGAs [3], by developing our own FFT processor architectures. Finally we show that the Grigoryan FFT is working faster than Cooley-Tukey FFT, consequently it is useful for higher sampling rates. Operating at higher sampling rates is a challenge in DSP applications.

  19. Representation of multi-target activity landscapes through target pair-based compound encoding in self-organizing maps.

    Science.gov (United States)

    Iyer, Preeti; Bajorath, Jürgen

    2011-11-01

    Activity landscape representations provide access to structure-activity relationships information in compound data sets. In general, activity landscape models integrate molecular similarity relationships with biological activity data. Typically, activity against a single target is monitored. However, for steadily increasing numbers of compounds, activity against multiple targets is reported, resulting in an opportunity, and often a need, to explore multi-target structure-activity relationships. It would be attractive to utilize activity landscape representations to aid in this process, but the design of activity landscapes for multiple targets is a complicated task. Only recently has a first multi-target landscape model been introduced, consisting of an annotated compound network focused on the systematic detection of activity cliffs. Herein, we report a conceptually different multi-target activity landscape design that is based on a 2D projection of chemical reference space using self-organizing maps and encodes compounds as arrays of pair-wise target activity relationships. In this context, we introduce the concept of discontinuity in multi-target activity space. The well-ordered activity landscape model highlights centers of discontinuity in activity space and is straightforward to interpret. It has been applied to analyze compound data sets with three, four, and five target annotations and identify multi-target structure-activity relationships determinants in analog series.

  20. Chemical shifts assignments of the archaeal MC1 protein and a strongly bent 15 base pairs DNA duplex in complex.

    Science.gov (United States)

    Loth, Karine; Landon, Céline; Paquet, Françoise

    2015-04-01

    MC1 is the most abundant architectural protein present in Methanosarcina thermophila CHTI55 in laboratory growth conditions and is structurally unrelated to other DNA-binding proteins. MC1 functions are to shape and to protect DNA against thermal denaturation by binding to it. Therefore, MC1 has a strong affinity for any double-stranded DNA. However, it recognizes and preferentially binds to bent DNA, such as four-way junctions and negatively supercoiled DNA minicircles. Combining NMR data, electron microscopy data, biochemistry, molecular modelisation and docking approaches, we proposed recently a new type of DNA/protein complex, in which the monomeric protein MC1 binds on the concave side of a strongly bent 15 base pairs DNA. We present here the NMR chemical shifts assignments of each partner in the complex, (1)H (15)N MC1 protein and (1)H (13)C (15)N bent duplex DNA, as first step towards the first experimental 3D structure of this new type of DNA/protein complex.

  1. Isolation breeds naivety: island living robs Australian varanid lizards of toad-toxin immunity via four-base-pair mutation.

    Science.gov (United States)

    Ujvari, Beata; Mun, Hee-chang; Conigrave, Arthur D; Bray, Alessandra; Osterkamp, Jens; Halling, Petter; Madsen, Thomas

    2013-01-01

    Since their introduction to the toad-free Australian continent cane toads (Bufo marinus) have caused a dramatic increase in naïve varanid mortality when these large lizards attempt to feed on this toxic amphibian. In contrast Asian-African varanids, which have coevolved with toads, are resistant to toad toxin. Toad toxins, such as Bufalin target the H1-H2 domain of the α(1) subunit of the sodium-potassium-ATPase enzyme. Sequencing of this domain revealed identical nucleotide sequences in four Asian as well as in three African varanids, and identical sequences in all 11 Australian varanids. However, compared to the Asian-African varanids, the Australian varanids showed four-base-pair substitutions, resulting in the alteration in three of the 12 amino acids representing the H1-H2 domain. The phenotypic effect of the substitutions was investigated in human embryonic kidney (HEK) 293 cells stably transfected with the Australian and the Asian-African H1-H2 domains. The transfections resulted in an approximate 3000-fold reduction in resistance to Bufalin in the Australian HEK293 cells compared to the Asian-African HEK293 cells, demonstrating the critical role of this minor mutation in providing Bufalin resistance. Our study hence presents a clear link between genotype and phenotype, a critical step in understanding the evolution of phenotypic diversity.

  2. Can copper(II) mediate Hoogsteen base-pairing in a left-handed DNA duplex? A pulse EPR study.

    Science.gov (United States)

    Santangelo, Maria Grazia; Antoni, Philipp M; Spingler, Bernhard; Jeschke, Gunnar

    2010-02-22

    Pulse EPR spectroscopy is used to investigate possible structural features of the copper(II) ion coordinated to poly(dG-dC).poly(dG-dC) in a frozen aqueous solution, and the structural changes of the polynucleotide induced by the presence of the metal ion. Two different copper species were identified and their geometry explained by a molecular model. According to this model, one species is exclusively coordinated to a single guanine with the N7 nitrogen atom forming a coordinative bond with the copper. In the other species, a guanine and a cytosine form a ternary complex together with the copper ion. A copper crosslink between the N7 of guanine and N3 of cytosine is proposed as the most probable coordination site. Moreover, no evidence was found for an interaction of either copper species with a phosphate group or equatorial water molecules. In addition, circular dichroism (CD) spectroscopy showed that the DNA of the Cu(II)-poly(dG-dC).poly(dG-dC) adducts resembles the left-handed Z-form. These results suggest that metal-mediated Hoogsteen base pairing, as previously proposed for a right-handed DNA duplex, can also occur in a double-stranded left-handed DNA.

  3. Can tautomerization of the A·T Watson-Crick base pair via double proton transfer provoke point mutations during DNA replication? A comprehensive QM and QTAIM analysis.

    Science.gov (United States)

    Brovarets, Ol'ha O; Hovorun, Dmytro M

    2014-01-01

    Trying to answer the question posed in the title, we have carried out a detailed theoretical investigation of the biologically important mechanism of the tautomerization of the A·T Watson-Crick DNA base pair, information that is hard to establish experimentally. By combining theoretical investigations at the MP2 and density functional theory levels of QM theory with quantum theory of atoms in molecules analysis, the tautomerization of the A·T Watson-Crick base pair by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ϵ = 4) corresponding to a hydrophobic interfaces of protein-nucleic acid interactions. Based on the sweeps of the electron-topological, geometric, and energetic parameters, which describe the course of the tautomerization along its intrinsic reaction coordinate (IRC), it was proved that the A·T → A(∗)·T(∗) tautomerization through the DPT is a concerted (i.e. the pathway without an intermediate) and asynchronous (i.e. protons move with a time gap) process. The limiting stage of this phenomenon is the final PT along the N6H⋯O4 hydrogen bond (H-bond). The continuum with ϵ = 4 does not affect qualitatively the course of the tautomerization reaction: similar to that observed in vacuo, it proceeds via a concerted asynchronous process with the same structure of the transition state (TS). For the first time, the nine key points along the IRC of the A·T base pair tautomerization, which could be considered as electron-topological "fingerprints" of a concerted asynchronous process of the tautomerization via the DPT, have been identified and fully characterized. These nine key points have been used to define the reactant, TS, and product regions of the DPT in the A·T base pair. Considering the energy dependence of each of the three H-bonds, which stabilize the Watson-Crick and Löwdin's base pairs, along the IRC of the tautomerization, it was found that all these H

  4. Ion pairs of indobenzimidazolo cyanines: a structural study based on conductivity, absorption, fluorescence and 1H-NMR

    Science.gov (United States)

    Tatikolov, Aleksandr S.; Ishchenko, Aleksandr A.; Ghelli, Stefano; Ponterini, Glauco

    1998-11-01

    Asymmetric benzimidazolo carbo, di- and tricarbocyanines form ion pairs of the solvent-separated and contact types with different counterions in tetrahydrofuran, toluene and toluene-nitrile mixtures. The dissociation constants of the ion pairs in tetrahydrofuran, evaluated from conductivity data, do not depend on the length of the polymethine chain and show only a small decrease with decreasing counterion size. The absorption and fluorescence excitation spectra of the contact ion pairs exhibit a pronounced hypsochromic shift with respect to the solvated ions and the solvent-separated ion pairs. 1H-NMR experiments have provided information about the electronic structures of the ions of both the asymmetric dyes and the corresponding symmetric carbocyanines. They have also revealed different preferred anion locations in the contact ion pairs of the symmetric indocarbocyanine on one hand, and of the benzimidazolo carbocyanine and the asymmetric dyes on the other. This structural difference is suggested to be a cause of the observed opposite effects of ion pairing on the isomerization kinetics of the two groups of dyes.

  5. Investigation of base pairs containing oxidized guanine using ab initio method and ABEEMσπ polarizable force field.

    Science.gov (United States)

    Liu, Cui; Wang, Yang; Zhao, Dongxia; Gong, Lidong; Yang, Zhongzhi

    2014-02-01

    The integrity of the genetic information is constantly threatened by oxidizing agents. Oxidized guanines have all been linked to different types of cancers. Theoretical approaches supplement the assorted experimental techniques, and bring new sight and opportunities to investigate the underlying microscopic mechanics. Unfortunately, there is no specific force field to DNA system including oxidized guanines. Taking high level ab initio calculations as benchmark, we developed the ABEEMσπ fluctuating charge force field, which uses multiple fluctuating charges per atom. And it was applied to study the energies, structures and mutations of base pairs containing oxidized guanines. The geometries were obtained in reference to other studies or using B3LYP/6-31+G* level optimization, which is more rational and timesaving among 24 quantum mechanical methods selected and tested by this work. The energies were determined at MP2/aug-cc-pVDZ level with BSSE corrections. Results show that the constructed potential function can accurately simulate the change of H-bond and the buckled angle formed by two base planes induced by oxidized guanine, and it provides reliable information of hydrogen bonding, stacking interaction and the mutation processes. The performance of ABEEMσπ polarizable force field in predicting the bond lengths, bond angles, dipole moments etc. is generally better than those of the common force fields. And the accuracy of ABEEMσπ PFF is close to that of the MP2 method. This shows that ABEEMσπ model is a reliable choice for further research of dynamics behavior of DNA fragment including oxidized guanine.

  6. ACL2 Meets the GPU: Formalizing a CUDA-based Parallelizable All-Pairs Shortest Path Algorithm in ACL2

    Directory of Open Access Journals (Sweden)

    David S. Hardin

    2013-04-01

    Full Text Available As Graphics Processing Units (GPUs have gained in capability and GPU development environments have matured, developers are increasingly turning to the GPU to off-load the main host CPU of numerically-intensive, parallelizable computations. Modern GPUs feature hundreds of cores, and offer programming niceties such as double-precision floating point, and even limited recursion. This shift from CPU to GPU, however, raises the question: how do we know that these new GPU-based algorithms are correct? In order to explore this new verification frontier, we formalized a parallelizable all-pairs shortest path (APSP algorithm for weighted graphs, originally coded in NVIDIA's CUDA language, in ACL2. The ACL2 specification is written using a single-threaded object (stobj and tail recursion, as the stobj/tail recursion combination yields the most straightforward translation from imperative programming languages, as well as efficient, scalable executable specifications within ACL2 itself. The ACL2 version of the APSP algorithm can process millions of vertices and edges with little to no garbage generation, and executes at one-sixth the speed of a host-based version of APSP coded in C – a very respectable result for a theorem prover. In addition to formalizing the APSP algorithm (which uses Dijkstra's shortest path algorithm at its core, we have also provided capability that the original APSP code lacked, namely shortest path recovery. Path recovery is accomplished using a secondary ACL2 stobj implementing a LIFO stack, which is proven correct. To conclude the experiment, we ported the ACL2 version of the APSP kernels back to C, resulting in a less than 5% slowdown, and also performed a partial back-port to CUDA, which, surprisingly, yielded a slight performance increase.

  7. Complex lasso: new entangled motifs in proteins

    Science.gov (United States)

    Niemyska, Wanda; Dabrowski-Tumanski, Pawel; Kadlof, Michal; Haglund, Ellinor; Sułkowski, Piotr; Sulkowska, Joanna I.

    2016-11-01

    We identify new entangled motifs in proteins that we call complex lassos. Lassos arise in proteins with disulfide bridges (or in proteins with amide linkages), when termini of a protein backbone pierce through an auxiliary surface of minimal area, spanned on a covalent loop. We find that as much as 18% of all proteins with disulfide bridges in a non-redundant subset of PDB form complex lassos, and classify them into six distinct geometric classes, one of which resembles supercoiling known from DNA. Based on biological classification of proteins we find that lassos are much more common in viruses, plants and fungi than in other kingdoms of life. We also discuss how changes in the oxidation/reduction potential may affect the function of proteins with lassos. Lassos and associated surfaces of minimal area provide new, interesting and possessing many potential applications geometric characteristics not only of proteins, but also of other biomolecules.

  8. MSDmotif: exploring protein sites and motifs

    Directory of Open Access Journals (Sweden)

    Henrick Kim

    2008-07-01

    Full Text Available Abstract Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures.

  9. [Specific motifs in the genomes of the family Chlamydiaceae].

    Science.gov (United States)

    Demkin, V V; Kirillova, N V

    2012-01-01

    Specific motifs in the genomes of the family Chlamydiaceae were discussed. The search for genetic markers ofbacteria identification and typing is an urgent problem. The progress in sequencing technology resulted in compilation of the database of genomic nucleotide sequences of bacteria. This raised the problem of the search and selection of genetic targets for identification and typing in bacterial genes based on comparative analysis of complete genomic sequences. The goal of this work was to implement comparative genetic analysis of different species of the family Chlamydiaceae. This analysis was focused to detection of specific motifs capable of serving as genetic marker of this family. The consensus domains were detected using the Visual Basic for Application software for MS Excel. Complete coincidence of segments 25 nucleotide long was used as the test for consensus domain selection. One complete genomic sequence for each of 8 bacterial species was taken for the experiment. The experimental sample did not contain complete sequence of C. suis, because at the moment of this research this species was absence in the database GenBank. Comparative assay of the sequences of the C. trachomatis and other representatives of the family Chlamydiaceae revealed 41 common motifs for 8 Chlamydiaceae species tested in this work. The maximal number of consensus motifs was observed in genes of ribosomal RNA and t-RNA. In addition to genes of r-RNA and t-RNA consensus motifs were observed in 5 genes and 6 intergene segments. The gene CTL0299, CTLO800, dagA, and hctA consensus motifs detected in this work can be regarded as identification domains of the family Chlamydiaceae.

  10. Polymerase recognition of 2-thio-iso-guanine·5-methyl-4-pyrimidinone (iGs·P)--A new DD/AA base pair.

    Science.gov (United States)

    Lee, Dong-Kye; Switzer, Christopher

    2016-02-15

    Polymerase specificity is reported for a previously unknown base pair with a non-standard DD/AA hydrogen bonding pattern: 2-thio-iso-guanine·5-methyl-4-pyrimidinone. Our findings suggest that atomic substitution may provide a solution for low fidelity previously associated with enzymatic copying of iso-guanine.

  11. Self-deflection of bright soliton in a separate bright-dark screening soliton pair based on higher-order space charge field

    Institute of Scientific and Technical Information of China (English)

    Zhonghua Hao(郝中华); Jinsong Liu(刘劲松)

    2003-01-01

    Based on the interaction of the separate soliton pair, the self-deflection of the bright screening soliton in a bright-dark pair is studied by taking the higher order space charge field into account. Both numerical and analytical methods are adopted to obtain the result that the higher order of space charge field can enhance the deflection process of the bright soliton and varying the peak intensity of the dark soliton can influence the self-deflection strongly. The expression of the deflection distance with the dark soliton's peak intensity is derived, and some corresponding properties of the self-deflection process are figured out.

  12. Fitness for synchronization of network motifs

    DEFF Research Database (Denmark)

    Vega, Y.M.; Vázquez-Prada, M.; Pacheco, A.F.

    2004-01-01

    We study the synchronization of Kuramoto's oscillators in small parts of networks known as motifs. We first report on the system dynamics for the case of a scale-free network and show the existence of a non-trivial critical point. We compute the probability that network motifs synchronize, and fi...

  13. Correlation Analysis and Modeling of Multiple Wind Power Based on Pair Copula%基于 Pair Copula 的多维风电功率相关性分析及建模

    Institute of Scientific and Technical Information of China (English)

    吴巍; 汪可友; 李国杰; 王志林

    2015-01-01

    Large-scale integration of wind farms leads to the complex dependence among wind power outputs.It is important to model the stochastic and dependent wind generation accurately to analyze the impact of wind generation on power system operation.Current methods,such as the Copula theory,are accurate enough for describing two dependent random variables. However,they are inadequate for modeling more random variables as accurately.Thus,a high-dimensional probabilistic model is proposed for dependent wind power outputs based on the canonical-vine Pair Copula theory.The corresponding sampling method is also introduced.Pair Copula can describe different patterns of dependence between pairs of wind power outputs. Hence high-dimensional wind power outputs with complex dependence can be modeled accurately.Moreover,The Pair Copula model can be easily constructed and has wide applicability as well as flexibility.The modeling and analysis of wind generation in a number of wind farms in Australia are implemented to prove the effectiveness of the proposed model. Finally, the probabilistic load flow of an IEEE 1 18-bus system is solved.Simulation results show that the operation characteristics of power systems incorporating wind farms can be analyzed more accurately if dependent wind power outputs are rationally described.%大规模风电场的接入使风电相关性更加复杂,合理描述多风电场出力的随机性和相关性特性,对准确分析风电对电力系统运行的影响具有重要意义。现有的 Copula 等方法能较准确描述二元相关性,但对于更高维模型的相关性描述则不够准确。基于此,提出了基于 C 藤 Pair Copula 的风电功率高维相关性模型,以及相应的采样方法。Pair Copula 能够描述风电功率两两之间不同的相关性结构,从而能较好描述复杂的多维相关性,且建模步骤简单,使用灵活,适用范围广。对澳大利亚多个风电场出力样本进行分析和

  14. 2012 IUPAP C10 Young Scientist Prize on the Structure and Dynamics of Condensed Matter Lecture: Spin Fluctuations and Pairing in Fe-based Superconductors

    Science.gov (United States)

    Christianson, A. D.

    2012-02-01

    The origin of superconductivity in the Fe-based superconductors, like that in other unconventional superconductors, remains shrouded in mystery. How the pairing bosons emerge either due to or in spite of the strong magnetic interactions found in the Fe-based superconductors is one of the most thoroughly investigated questions in the field. A prominent example of the interplay of superconductivity and magnetism is the dramatic shift of spectral weight from the low energy spin excitations to an energy which is related to the superconducting gap resulting in a peak in the spin excitation spectrum localized in both momentum and energy which occurs at the onset of superconductivity. The appearance of the new peak in the spin excitation spectrum below the superconducting transition temperature is referred to as s spin resonance and is most commonly interpreted as indicating a sign change of the superconducting order parameter on different portions of the Fermi surface and thus is consistent with an extended s-wave or s± pairing symmetry in many Fe-based superconductors. We will review the observations and implications of the spin resonance across the Fe-based superconductors. In particular we will examine the relationship between the resonance energy and the superconducting transition temperature as a function of chemical doping and pressure. While the spin resonance provides important information about pairing symmetry, there does not appear to be sufficient spectral to explain the pairing strength. Thus the remainder of the spin excitation spectrum must be examined to determine if spin fluctuations are ultimately responsible for pairing in the Fe-based materials. Consequently, we will discuss in detail the way in which the spin excitations evolve from the nonsuperconducting compounds to their superconducting relatives as a function of chemical doping.

  15. Robustness of s-wave pairing symmetry in iron-based superconductors and its implications for fundamentals of magnetically driven high-temperature superconductivity

    Science.gov (United States)

    Hu, Jiangping; Yuan, Jing

    2016-10-01

    Based on the assumption that the superconducting state belongs to a single irreducible representation of lattice symmetry, we propose that the pairing symmetry in all measured iron-based superconductors is generally consistent with the A 1 g s-wave. Robust s-wave pairing throughout the different families of iron-based superconductors at different doping regions signals two fundamental principles behind high- T c superconducting mechanisms: (i) the correspondence principle: the short-range magnetic-exchange interactions and the Fermi surfaces act collaboratively to achieve high- T c superconductivity and determine pairing symmetries; (ii) the magnetic-selection pairing rule: superconductivity is only induced by the magnetic-exchange couplings from the super-exchange mechanism through cation-anion-cation chemical bonding. These principles explain why unconventional high- T c superconductivity appears to be such a rare but robust phenomena, with its strict requirements regarding the electronic environment. The results will help us to identify new electronic structures that can support high- T c superconductivity.

  16. Systematic exploration of a class of hydrophobic unnatural base pairs yields multiple new candidates for the expansion of the genetic alphabet.

    Science.gov (United States)

    Dhami, Kirandeep; Malyshev, Denis A; Ordoukhanian, Phillip; Kubelka, Tomáš; Hocek, Michal; Romesberg, Floyd E

    2014-01-01

    We have developed a family of unnatural base pairs (UBPs), which rely on hydrophobic and packing interactions for pairing and which are well replicated and transcribed. While the pair formed between d5SICS and dNaM (d5SICS-dNaM) has received the most attention, and has been used to expand the genetic alphabet of a living organism, recent efforts have identified dTPT3-dNaM, which is replicated with even higher fidelity. These efforts also resulted in more UBPs than could be independently analyzed, and thus we now report a PCR-based screen to identify the most promising. While we found that dTPT3-dNaM is generally the most promising UBP, we identified several others that are replicated nearly as well and significantly better than d5SICS-dNaM, and are thus viable candidates for the expansion of the genetic alphabet of a living organism. Moreover, the results suggest that continued optimization should be possible, and that the putatively essential hydrogen-bond acceptor at the position ortho to the glycosidic linkage may not be required. These results clearly demonstrate the generality of hydrophobic forces for the control of base pairing within DNA, provide a wealth of new structure-activity relationship data and importantly identify multiple new candidates for in vivo evaluation and further optimization.

  17. Pair-bonded humans conform to sexual stereotypes in web-based advertisements for extra-marital partners.

    Science.gov (United States)

    Kelley, Trish C; Hare, James F

    2010-10-20

    Partners advertisements provide advertisers with access to a large pool of prospective mates, and have proven useful in documenting sex differences in human mating preferences. We coded data from an Internet site (AshleyMadison.com) catering to advertisers engaged in existing pair-bonded relationships. While we predicted that pair-bonding may liberate advertisers from conforming to sexual stereotypes of male promiscuity and female choosiness, our results are uniformly consistent with those stereotypes. Our findings thus provide further evidence that human mating behavior is highly constrained by fundamental biological differences between males and females.

  18. Analysis of the intactness of Helicobacter pylori cag pathogenicity island in Iranian strains by a new PCR-based strategy and its relationship with virulence genotypes and EPIYA motifs.

    Science.gov (United States)

    Yadegar, Abbas; Alebouyeh, Masoud; Zali, Mohammad Reza

    2015-10-01

    Variants of the Helicobacter pylori cag pathogenicity island (cagPAI) and certain virulence genotypes have been proposed to be associated with different gastric disorders. In the present study, we designed a new PCR-based strategy to investigate the intactness of cagPAI in Iranian patients using highly specific primer sets spanning the cagPAI region. The possible relationship between the cagPAI status of the strains and clinical outcomes was also determined. We also characterized virulence genotypes (cagL, cagA, vacA, babA2 and sabA) and variants of CagA EPIYA motifs in these strains. H. pylori was detected in 61 out of 126 patients with various gastroduodenal diseases. The cagL, cagA, vacA s1m1, vacA s1m2, vacA s2m2, babA2, and sabA genotypes were detected in 96.7%, 85.2%, 29.5%, 45.9%, 24.6%, 96.7%, and 83.6% of the strains, respectively. Among the 52 cagA-positive strains, EPIYA motifs ABC, ABCC, ABCCC, and mixed types were orderly detected in the 39, 7, 1, and 5 strains. The cagPAI positivity included both intact and partially deleted, with the overall frequencies of 70.5% and 26.2%, respectively. The majority of the strains from patients with PUD (87.5%), gastric erosion (83.3%) and cancer (80%) presented an intact cagPAI, while a lower frequency of cagPAI intactness was detected in gastritis patients (61.1%). However, no significant relationship was found between the possession of intact cagPAI and clinical outcomes. Furthermore, we found that cagA and vacA s1m1 genotypes were significantly correlated with intact cagPAI (P=0.015 and P=0.012). A significant correlation was also found between EPIYA-ABC and intact cagPAI (P=0.010). The proposed PCR-based scheme was found to be useful for determining the intactness of cagPAI. Our findings also indicate that the cagPAI appears to be intact and rather conserved in majority of Iranian strains. Finally, our study proposed that H. pylori strains with partially deleted cagPAI were less likely to cause severe diseases

  19. A hallmark of immunoreceptor, the tyrosine-based inhibitory motif ITIM, is present in the G protein-coupled receptor OX1R for orexins and drives apoptosis: a novel mechanism.

    Science.gov (United States)

    Voisin, Thierry; El Firar, Aadil; Rouyer-Fessard, Christiane; Gratio, Valérie; Laburthe, Marc

    2008-06-01

    Orexins acting at the G protein-coupled receptor (GPCR) OX1R have recently been shown to promote dramatic apoptosis in cancer cells. We report here that orexin-induced apoptosis is driven by an immunoreceptor tyrosine-based inhibitory motif (ITIM) (IIY(358)NFL) present in the OX1R. This effect is mediated by SHP-2 phosphatase recruitment via a mechanism that requires Gq protein but is independent of phospholipase C activation. This is based on the following observations: 1) mutation of Y(358) into F abolished orexin-induced tyrosine phosphorylation in ITIM, orexin-induced apoptosis, and uncoupled OX1R from Gq protein in transfected Chinese hamster ovary (CHO) cells; 2) orexin-induced apoptosis in CHO cells expressing recombinant OX1R and in colon cancer cells expressing the native receptor was abolished by treatment with the tyrosine phosphatase inhibitor PAO and by transfection with a dominant-negative mutant of SHP-2; 3) orexins were unable to promote apoptosis in fibroblast cells invalidated for the G alpha q subunit and transfected with OX1R cDNA, whereas they promoted apoptosis in cells equipped with G alpha q and OX1R; and 4) the phospholipase C inhibitor U-73122 blocked orexin-stimulated inositol phosphate formation, whereas it had no effect on orexin-induced apoptosis in CHO cells expressing OX1R. These data unravel a novel mechanism, whereby ITIM-expressing GPCRs may trigger apoptosis.

  20. Reversible cyclometalation at Rh-I as a motif for metal-ligand bifunctional bond activation and base-free formic acid dehydrogenation

    NARCIS (Netherlands)

    Jongbloed, L.S.; de Bruin, B.; Reek, J.N.H.; Lutz, M.; van der Vlugt, J.I.

    2016-01-01

    Reversible cyclometalation is demonstrated as a strategy for the activation of small protic molecules, with a proof-of-principle catalytic application in the dehydrogenation of formic acid in the absence of an exogenous base. The well-defined RhI complex Rh(CO)(L) 1, bearing the reactive cyclometala

  1. Reversible cyclometalation at RhI as a motif for metal–ligand bifunctional bond activation and base-free formic acid dehydrogenation

    NARCIS (Netherlands)

    Jongbloed, L. S.; De Bruin, B.; Reek, J. N. H.; Lutz, M.|info:eu-repo/dai/nl/304828971; Van Der Vlugt, J. I.

    2016-01-01

    Reversible cyclometalation is demonstrated as a strategy for the activation of small protic molecules, with a proof-of-principle catalytic application in the dehydrogenation of formic acid in the absence of an exogenous base. The well-defined RhI complex Rh(CO)(L) 1, bearing the reactive cyclometala

  2. 铁基超导体材料和物理研究%Iron-Based Superconducting Materials and Pairing Mechanism

    Institute of Scientific and Technical Information of China (English)

    闻海虎

    2015-01-01

    .In addition,we will give an introduction about the present understanding of the pairing mechanism.Finally we will try to give a perspective on the potential applications of the iron-based superconductors.

  3. The physico-chemical "anatomy" of the tautomerization through the DPT of the biologically important pairs of hypoxanthine with DNA bases: QM and QTAIM perspectives.

    Science.gov (United States)

    Brovarets', Ol'ha O; Zhurakivsky, Roman O; Hovorun, Dmytro M

    2013-10-01

    The biologically important tautomerization of the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs to the Hyp·Cyt, Hyp·Thy and Hyp·Hyp base pairs, respectively, by the double proton transfer (DPT) was comprehensively studied in vacuo and in the continuum with a low dielectric constant (ε = 4) corresponding to hydrophobic interfaces of protein-nucleic acid interactions by combining theoretical investigations at the B3LYP/6-311++G(d,p) level of QM theory with QTAIM topological analysis. Based on the sweeps of the energetic, electron-topological, geometric and polar parameters, which describe the course of the tautomerization along the intrinsic reaction coordinate (IRC), it was proved that the tautomerization through the DPT is concerted and asynchronous process for the Hyp·Cyt and Hyp·Thy base pairs, while concerted and synchronous for the Hyp·Hyp homodimer. The continuum with ε = 4 does not affect qualitatively the course of the tautomerization reaction for all studied complexes. The nine key points along the IRC of the Hyp·Cyt↔Hyp·Cyt and Hyp·Thy↔Hyp·Thy tautomerizations and the six key points of the Hyp·Hyp↔Hyp·Hyp tautomerization have been identified and fully characterized. These key points could be considered as electron-topological "fingerprints" of concerted asynchronous (for Hyp·Cyt and Hyp·Thy) or synchronous (for Hyp·Hyp) tautomerization process via the DPT. It was found, that in the Hyp·Cyt, Hyp·Thy, Hyp·Hyp and Hyp·Hyp base pairs all H-bonds are significantly cooperative and mutually reinforce each other, while the C2H…O2 H-bond in the Hyp·Cyt base pair and the O6H…O4 H-bond in the Hyp·Thy base pair behave anti-cooperatively, i.e., they become weakened, while two others become strengthened.

  4. VARUN: discovering extensible motifs under saturation constraints.

    Science.gov (United States)

    Apostolico, Alberto; Comin, Matteo; Parida, Laxmi

    2010-01-01

    The discovery of motifs in biosequences is frequently torn between the rigidity of the model on one hand and the abundance of candidates on the other hand. In particular, motifs that include wild cards or "don't cares" escalate exponentially with their number, and this gets only worse if a don't care is allowed to stretch up to some prescribed maximum length. In this paper, a notion of extensible motif in a sequence is introduced and studied, which tightly combines the structure of the motif pattern, as described by its syntactic specification, with the statistical measure of its occurrence count. It is shown that a combination of appropriate saturation conditions and the monotonicity of probabilistic scores over regions of constant frequency afford us significant parsimony in the generation and testing of candidate overrepresented motifs. A suite of software programs called Varun is described, implementing the discovery of extensible motifs of the type considered. The merits of the method are then documented by results obtained in a variety of experiments primarily targeting protein sequence families. Of equal importance seems the fact that the sets of all surprising motifs returned in each experiment are extracted faster and come in much more manageable sizes than would be obtained in the absence of saturation constraints.

  5. Detecting Motifs in System Call Sequences

    CERN Document Server

    Wilson, William O; Aickelin, Uwe

    2010-01-01

    The search for patterns or motifs in data represents an area of key interest to many researchers. In this paper we present the Motif Tracking Algorithm, a novel immune inspired pattern identification tool that is able to identify unknown motifs which repeat within time series data. The power of the algorithm is derived from its use of a small number of parameters with minimal assumptions. The algorithm searches from a completely neutral perspective that is independent of the data being analysed, and the underlying motifs. In this paper the motif tracking algorithm is applied to the search for patterns within sequences of low level system calls between the Linux kernel and the operating system's user space. The MTA is able to compress data found in large system call data sets to a limited number of motifs which summarise that data. The motifs provide a resource from which a profile of executed processes can be built. The potential for these profiles and new implications for security research are highlighted. A...

  6. Sequence-Based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families

    Science.gov (United States)

    Maimanakos, Janine; Chow, Jennifer; Gaßmeyer, Sarah K.; Güllert, Simon; Busch, Florian; Kourist, Robert; Streit, Wolfgang R.

    2016-01-01

    Arylmalonate Decarboxylases (AMDases, EC 4.1.1.76) are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta-, and Gamma-proteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the tripartite tricarboxylate transporters family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99%) of the (R)-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes. PMID:27610105

  7. Sequence-based Screening for Rare Enzymes: New Insights into the World of AMDases Reveal a Conserved Motif and 58 Novel Enzymes Clustering in Eight Distinct Families.

    Directory of Open Access Journals (Sweden)

    Janine Maimanakos

    2016-08-01

    Full Text Available Arylmalonate-Decarboxylases (AMDases, EC 4.1.1.76 are very rare and mostly underexplored enzymes. Currently only four known and biochemically characterized representatives exist. However, their ability to decarboxylate α-disubstituted malonic acid derivatives to optically pure products without cofactors makes them attractive and promising candidates for the use as biocatalysts in industrial processes. Until now, AMDases could not be separated from other members of the aspartate/glutamate racemase superfamily based on their gene sequences. Within this work, a search algorithm was developed that enables a reliable prediction of AMDase activity for potential candidates. Based on specific sequence patterns and screening methods 58 novel AMDase candidate genes could be identified in this work. Thereby, AMDases with the conserved sequence pattern of Bordetella bronchiseptica’s prototype appeared to be limited to the classes of Alpha-, Beta- and Gammaproteobacteria. Amino acid homologies and comparison of gene surrounding sequences enabled the classification of eight enzyme clusters. Particularly striking is the accumulation of genes coding for different transporters of the TTT family, TRAP transporters and ABC transporters as well as genes coding for mandelate racemases/muconate lactonizing enzymes that might be involved in substrate uptake or degradation of AMDase products. Further, three novel AMDases were characterized which showed a high enantiomeric excess (>99% of the (R-enantiomer of flurbiprofen. These are the recombinant AmdA and AmdV from Variovorax sp. strains HH01 and HH02, originated from soil, and AmdP from Polymorphum gilvum found by a data base search. Altogether our findings give new insights into the class of AMDases and reveal many previously unknown enzyme candidates with high potential for bioindustrial processes.

  8. Hunting Motifs in Situla Art

    Directory of Open Access Journals (Sweden)

    Andrej Preložnik

    2013-07-01

    Full Text Available Situla art developed as an echo of the toreutic style which had spread from the Near East through the Phoenicians, Greeks and Etruscans as far as the Veneti, Raeti, Histri, and their eastern neighbours in the region of Dolenjska (Lower Carniola. An Early Iron Age phenomenon (c. 600—300 BC, it rep- resents the major and most arresting form of the contemporary visual arts in an area stretching from the foot of the Apennines in the south to the Drava and Sava rivers in the east. Indeed, individual pieces have found their way across the Alpine passes and all the way north to the Danube. In the world and art of the situlae, a prominent role is accorded to ani- mals. They are displayed in numerous representations of human activities on artefacts crafted in the classic situla style – that is, between the late 6th  and early 5th centuries BC – as passive participants (e.g. in pageants or in harness or as an active element of the situla narrative. The most typical example of the latter is the hunting scene. Today we know at least four objects decorat- ed exclusively with hunting themes, and a number of situlae and other larger vessels where hunting scenes are embedded in composite narratives. All this suggests a popularity unparallelled by any other genre. Clearly recognisable are various hunting techniques and weapons, each associated with a particu- lar type of game (Fig. 1. The chase of a stag with javelin, horse and hound is depicted on the long- familiar and repeatedly published fibula of Zagorje (Fig. 2. It displays a hound mauling the stag’s back and a hunter on horseback pursuing a hind, her neck already pierced by the javelin. To judge by the (so far unnoticed shaft end un- der the stag’s muzzle, the hunter would have been brandishing a second jave- lin as well, like the warrior of the Vače fibula or the rider of the Nesactium situla, presumably himself a hunter. Many parallels to his motif are known from Greece, Etruria, and

  9. ANALYSIS OF STABILITY OF TRINUCLEOTIDE TTC MOTIFS IN COMMON FLAX PLANTED IN THE CHERNOBYL AREA

    Directory of Open Access Journals (Sweden)

    Veronika Lancíková

    2015-02-01

    Full Text Available Flax (Linum usitatissimum L. is one of the oldest domesticated plants — it was cultivated as early as in ancient Egypt and Samaria 10,000 years ago to serve as a source of fiber and oil, whence it later spread around the world. Compared with other plants, the flax genome consists of a high number of repetitive sequences, middle repetitive sequences and small repetitive sequences of nucleotides. The aim of the study was to analyze the stability of the existing trinucleotides motifs of microsatellite DNA of the flax genome (genotype Kyivskyi, growing in the Chernobyl conditions. The Chernobyl area is the most extensive “natural” laboratory suitable for the study of radiation effects. Over the last 20 years, the researches collected important knowledge about the effects of low and high radiation doses on the DNA isolated from the plant material growing on the remediated fields near Chernobyl and the plant material from fields contaminated by radioactive cesium 137Cs and strontium 90Sr. Using eight pairs of microsatellite primers, we successfully amplified the samples from the remediated fields. For each primer in the control samples and remediated samples, we detected 1 to 3 fragments per locus, each in size up to 120 to 250 base pairs. The applied microsatellite primers confirmed the monomorphic condition of microsatellite loci.

  10. seeMotif: exploring and visualizing sequence motifs in 3D structures.

    Science.gov (United States)

    Chang, Darby Tien-Hao; Chien, Ting-Ying; Chen, Chien-Yu

    2009-07-01

    Sequence motifs are important in the study of molecular biology. Motif discovery tools efficiently deliver many function related signatures of proteins and largely facilitate sequence annotation. As increasing numbers of motifs are detected experimentally or predicted computationally, characterizing the functional roles of motifs and identifying the potential synergetic relationships between them are important next steps. A good way to investigate novel motifs is to utilize the abundant 3D structures that have also been accumulated at an astounding rate in recent years. This article reports the development of the web service seeMotif, which provides users with an interactive interface for visualizing sequence motifs on protein structures from the Protein Data Bank (PDB). Researchers can quickly see the locations and conformation of multiple motifs among a number of related structures simultaneously. Considering the fact that PDB sequences are usually shorter than those in sequence databases and/or may have missing residues, seeMotif has two complementary approaches for selecting structures and mapping motifs to protein chains in structures. As more and more structures belonging to previously uncharacterized protein families become available, combining sequence and structure information gives good opportunities to facilitate understanding of protein functions in large-scale genome projects. Available at: http://seemotif.csie.ntu.edu.tw,http://seemotif.ee.ncku.edu.tw or http://seemotif.csbb.ntu.edu.tw.

  11. Predicting Bond Dissociation Energies of Transition-Metal Compounds by Multiconfiguration Pair-Density Functional Theory and Second-Order Perturbation Theory Based on Correlated Participating Orbitals and Separated Pairs.

    Science.gov (United States)

    Bao, Junwei Lucas; Odoh, Samuel O; Gagliardi, Laura; Truhlar, Donald G

    2017-02-14

    We study the performance of multiconfiguration pair-density functional theory (MC-PDFT) and multireference perturbation theory for the computation of the bond dissociation energies in 12 transition-metal-containing diatomic molecules and three small transition-metal-containing polyatomic molecules and in two transition-metal dimers. The first step is a multiconfiguration self-consistent-field calculation, for which two choices must be made: (i) the active space and (ii) its partition into subspaces, if the generalized active space formulation is used. In the present work, the active space is chosen systematically by using three correlated-participating-orbitals (CPO) schemes, and the partition is chosen by using the separated-pair (SP) approximation. Our calculations show that MC-PDFT generally has similar accuracy to CASPT2, and the active-space dependence of MC-PDFT is not very great for transition-metal-ligand bond dissociation energies. We also find that the SP approximation works very well, and in particular SP with the fully translated BLYP functional SP-ftBLYP is more accurate than CASPT2. SP greatly reduces the number of configuration state functions relative to CASSCF. For the cases of FeO and NiO with extended-CPO active space, for which complete active space calculations are unaffordable, SP calculations are not only affordable but also of satisfactory accuracy. All of the MC-PDFT results are significantly better than the corresponding results with broken-symmetry spin-unrestricted Kohn-Sham density functional theory. Finally we test a perturbation theory method based on the SP reference and find that it performs slightly worse than CASPT2 calculations, and for most cases of the nominal-CPO active space, the approximate SP perturbation theory calculations are less accurate than the much less expensive SP-PDFT calculations.

  12. Monte Carlo simulations of biaxial structure in thin hybrid nematic film based upon spatially anisotropic pair potential

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi-Dong; Chang Chun-Rui; Ma Dong-Lai

    2009-01-01

    Hybrid nematic films have been studied by Monte Carlo simulations using a lattice spin model,in which the pair potential is spatially anisotropic and dependent on elastic constants of liquid crystals.We confirm in the thin hybrid nematic film the existence of a biaxially nonbent structure and the structarc transition from the biaxial to the bent-director structure,which is similar to the result obtained using the Lebwohl-Lasher model.However,the step-like director's profile,characteristic for the biaxial structure,is spatially asymmetric in the film because the pair potential leads to K1≠K3.We estimate the upper cell thickness to be 69 spin layers,in which the biaxial structure can be found.

  13. Solar radiation concentrators paired with multijunction photoelectric converters in ground-based solar power plants (part I)

    Science.gov (United States)

    Ionova, E. A.; Ulanov, M. V.; Davidyuk, N. Yu.; Sadchikov, N. A.

    2016-12-01

    We have developed a method for determining parameters of radiation concentrator in solar power plants. To estimate the efficiency of concentrators in the form of Fresnel lenses in setups with three-junction photoelectric converters, the concept of the efficiency of the concentrator-photoelectric converter pair has been introduced. We have proposed a method for calculating the refracting profile of concentrators taking into account the dispersion relation for the refractive index and its variations with temperature for the material of the refracting profile of the concentrator (Wacker RT604 silicone compound). The results of calculation make it possible to achieve the maximal efficiency of the concentrator-photoelectric converter pair in the presence of chromatic aberrations in the optical system of solar radiation concentration.

  14. Historical Matching Strategies in Kidney Paired Donation: The 7-Year Evolution of a Web-Based Virtual Matching System.

    Science.gov (United States)

    Fumo, D E; Kapoor, V; Reece, L J; Stepkowski, S M; Kopke, J E; Rees, S E; Smith, C; Roth, A E; Leichtman, A B; Rees, M A

    2015-10-01

    Failure to convert computer-identified possible kidney paired donation (KPD) exchanges into transplants has prohibited KPD from reaching its full potential. This study analyzes the progress of exchanges in moving from "offers" to completed transplants. Offers were divided into individual segments called 1-way transplants in order to calculate success rates. From 2007 to 2014, the Alliance for Paired Donation performed 243 transplants, 31 in collaboration with other KPD registries and 194 independently. Sixty-one of 194 independent transplants (31.4%) occurred via cycles, while the remaining 133 (68.6%) resulted from nonsimultaneous extended altruistic donor (NEAD) chains. Thirteen of 35 (37.1%) NEAD chains with at least three NEAD segments accounted for 68% of chain transplants (8.6 tx/chain). The "offer" and 1-way success rates were 21.9 and 15.5%, respectively. Three reasons for failure were found that could be prospectively prevented by changes in protocol or software: positive laboratory crossmatch (28%), transplant center declined donor (17%) and pair transplanted outside APD (14%). Performing a root cause analysis on failures in moving from offer to transplant has allowed the APD to improve protocols and software. These changes have improved the success rate and the number of transplants performed per year.

  15. Microevolution between paired antral and paired antrum and corpus Helicobacter pylori isolates recovered from individual patients.

    Science.gov (United States)

    Carroll, Ian M; Ahmed, Niyaz; Beesley, Sarah M; Khan, Aleem A; Ghousunnissa, Sheikh; Moráin, Colm A O; Habibullah, C M; Smyth, Cyril J

    2004-07-01

    Sequence variations located at the signal sequence and mid-region within the vacA gene, the 3'-end of the cagA gene, the indel motifs at the 3'-end of the cag pathogenicity island and the regions upstream of the vacA and ribA genes were determined by PCR in 19 paired antral or antrum and corpus Helicobacter pylori isolates obtained at the same endoscopic session, and three antral pairs taken sequentially. Random amplification of polymorphic DNA (RAPD)-PCR and fluorescent amplified fragment length polymorphism (FAFLP)-PCR fingerprinting were applied to these paired clinical isolates. The FAFLP-PCR profiles generated were phylogenetically analysed. For the 22 paired isolates there were no differences within pairs at five of the genetic loci studied. However, six pairs of isolates (27%), of which four were antrum and corpus pairs, showed differences in the numbers of repeats located at the 3'-end of the cagA gene. RAPD-PCR fingerprinting showed that 16 (73%) pairs, nine of which were antrum and corpus pairs, possessed identical profiles, while six (27%) displayed distinctly different profiles, indicating mixed infections. Three of the six pairs showing differences at the 3'-end of the cagA gene yielded identical RAPD-PCR fingerprints. FAFLP-PCR fingerprinting and phylogenetic analysis revealed that all 16 pairs that displayed identical RAPD-PCR profiles had highly similar, but not identical, fingerprints, demonstrating that these pairs were ancestrally related but had undergone minor genomic alterations. Two antrum and corpus pairs of isolates, within the latter group, were isolates obtained from two siblings from the same family. This analysis demonstrated that each sibling was colonized by ancestrally related strains that exhibited differences in vacA genotype characteristics.

  16. Ion pair-based liquid-phase microextraction combined with cuvetteless UV-vis micro-spectrophotometry as a miniaturized assay for monitoring ammonia in waters.

    Science.gov (United States)

    Senra-Ferreiro, Sonia; Pena-Pereira, Francisco; Costas-Mora, Isabel; Romero, Vanesa; Lavilla, Isela; Bendicho, Carlos

    2011-09-15

    A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L(-1) ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n=7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples.

  17. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.

    Science.gov (United States)

    Pugalenthi, Ganesan; Kandaswamy, Krishna Kumar; Suganthan, P N; Sowdhamini, R; Martinetz, Thomas; Kolatkar, Prasanna R

    2010-12-01

    Knowledge of three dimensional structure is essential to understand the function of a protein. Although the overall fold is made from the whole details of its sequence, a small group of residues, often called as structural motifs, play a crucial role in determining the protein fold and its stability. Identification of such structural motifs requires sufficient number of sequence and structural homologs to define conservation and evolutionary information. Unfortunately, there are many structures in the protein structure databases have no homologous structures or sequences. In this work, we report an SVM method, SMpred, to identify structural motifs from single protein structure without using sequence and structural homologs. SMpred method was trained and tested using 132 proteins domains containing 581 motifs. SMpred method achieved 78.79% accuracy with 79.06% sensitivity and 78.53% specificity. The performance of SMpred was evaluated with MegaMotifBase using 188 proteins containing 1161 motifs. Out of 1161 motifs, SMpred correctly identified 1503 structural motifs reported in MegaMotifBase. Further, we showed that SMpred is useful approach for the length deviant superfamilies and single member superfamilies. This result suggests the usefulness of our approach for facilitating the identification of structural motifs in protein structure in the absence of sequence and structural homologs. The dataset and executable for the SMpred algorithm is available at http://www3.ntu.edu.sg/home/EPNSugan/index_files/SMpred.htm.

  18. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  19. Interaction of Cu(+) with cytosine and formation of i-motif-like C-M(+)-C complexes: alkali versus coinage metals.

    Science.gov (United States)

    Gao, Juehan; Berden, Giel; Rodgers, M T; Oomens, Jos

    2016-03-14

    The Watson-Crick structure of DNA is among the most well-known molecular structures of our time. However, alternative base-pairing motifs are also known to occur, often depending on base sequence, pH, or the presence of cations. Pairing of cytosine (C) bases induced by the sharing of a single proton (C-H(+)-C) may give rise to the so-called i-motif, which occurs primarily in expanded trinucleotide repeats and the telomeric region of DNA, particularly at low pH. At physiological pH, silver cations were recently found to stabilize C dimers in a C-Ag(+)-C structure analogous to the hemiprotonated C-dimer. Here we use infrared ion spectroscopy in combination with density functional theory calculations at the B3LYP/6-311G+(2df,2p) level to show that copper in the 1+ oxidation state induces an analogous formation of C-Cu(+)-C structures. In contrast to protons and these transition metal ions, alkali metal ions induce a different dimer structure, where each ligand coordinates the alkali metal ion in a bidentate fashion in which the N3 and O2 atoms of both cytosine ligands coordinate to the metal ion, sacrificing hydrogen-bonding interactions between the ligands for improved chelation of the metal cation.

  20. Motif-specific sampling of phosphoproteomes.

    Science.gov (United States)

    Ruse, Cristian I; McClatchy, Daniel B; Lu, Bingwen; Cociorva, Daniel; Motoyama, Akira; Park, Sung Kyu; Yates, John R

    2008-05-01

    Phosphoproteomics, the targeted study of a subfraction of the proteome which is modified by phosphorylation, has become an indispensable tool to study cell signaling dynamics. We described a methodology that linked phosphoproteome and proteome analysis based on Ba2+ binding properties of amino acids. This technology selected motif-specific phosphopeptides independent of the system under analysis. MudPIT (Multidimensional Identification Technology) identified 1037 precipitated phosphopeptides from as little as 250 microg of proteins. To extend coverage of the phosphoproteome, we sampled the nuclear extract of HeLa cells with three values of Ba2+ ions molarity. The presence of more than 70% of identified phosphoproteins was further substantiated by their nonmodified peptides. Upon isoproterenol stimulation of HEK cells, we identified an increasing number of phosphoproteins from MAPK cascades and AKAP signaling hubs. We quantified changes in both protein and phosphorylation levels of 197 phosphoproteins including a critical kinase, MAPK1. Integration of differential phosphorylation of MAPK1 with knowledge bases constructed modules that correlated well with its role as node in cross-talk of canonical pathways.

  1. Ecological and Economic System Health Assessment Based on Fuzzy Set Pair Analysis: A Case Study of Northwest Region, China%Ecological and Economic System Health Assessment Based on Fuzzy Set Pair Analysis: A Case Study of Northwest Region, China

    Institute of Scientific and Technical Information of China (English)

    Chen Junfei; Zhou Xiaolan; Wang Huimin

    2012-01-01

    Due to the increasingly serious environmental pollution and destruction, especially humans' unreasonable activities, the ecological and economic system (EES) issues of Northwest region in China have attracted more and more attention of the researchers. Aiming at evaluating its ecological and economic system health, a multi-objective evaluation framework called Pressure- State-Response (PSR) was established to. describe the ecological and economic health situations. Meanwhile, an integrative set pair model combining set pair analysis (SPA) and fuzzy analytic hierarchy process (FAHP) was proposed to assess the ecological and economic system. Then the EES status of five northwest provinces (Shanxi, Gansu, Qinghai, Ningxia and Xinjiang) of Northwest region in China was evaluated during 1985 to 2009. The EES development trends of five provinces are obtained. In general, the health values of five provinces showed a rising trend. The health values of five provinces grew rapidly during 1985 to 2000. After 2000, the health values of five provinces still followed the present growth trend, but the growth is relatively smooth. The results show that the method proposed is effective for assessing the health of ecological and economic system.

  2. Chaotic motifs in gene regulatory networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  3. Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Zhang, X.; Dantas Machado, A. C.; Ding, Y.; Chen, Z.; Qin, P. Z.; Rohs, R.; Chen, L.

    2013-07-08

    The p53 core domain binds to response elements (REs) that contain two continuous half-sites as a cooperative tetramer, but how p53 recognizes discontinuous REs is not well understood. Here we describe the crystal structure of the p53 core domain bound to a naturally occurring RE located at the promoter of the Bcl-2-associated X protein (BAX) gene, which contains a one base-pair insertion between the two half-sites. Surprisingly, p53 forms a tetramer on the BAX-RE that is nearly identical to what has been reported on other REs with a 0-bp spacer. Each p53 dimer of the tetramer binds in register to a half-site and maintains the same protein–DNA interactions as previously observed, and the two dimers retain all the protein–protein contacts without undergoing rotation or translation. To accommodate the additional base pair, the DNA is deformed and partially disordered around the spacer region, resulting in an apparent unwinding and compression, such that the interactions between the dimers are maintained. Furthermore, DNA deformation within the p53-bound BAX-RE is confirmed in solution by site-directed spin labeling measurements. Our results provide a structural insight into the mechanism by which p53 binds to discontinuous sites with one base-pair spacer.

  4. Refinements of Double-Base Chains Algorithm for Computing Tate Pairing%双基数链算法计算Tate对的一种改进

    Institute of Scientific and Technical Information of China (English)

    翁江; 豆允旗; 马传贵

    2012-01-01

    Pairings have been widely used in the study of identity-based cryptosystems (BC) .Miller algorithm is the key of computing pairings.We propose an efficient Miller algorithm computing Tate pairing based on the double-base chain.Through the application of norm function and conjugate technique, our refinements reduce the total number of lines and vertical lines in the rational function,and replace the inverse by its conjugate in Miller algorithm.Results show that the efficiency of our algorithm can be improved by more than 10% compared with the previous method.%双线性对在基于身份的密码体制中有着广泛的应用.Miller算法是计算双线性对的核心算法,本文在双基数链计算Tate对的基础上给出了一种高效的Miller算法.通过范函数和共轭技巧的应用,减少了Miller算法中有理函数直线和垂线的数量并用共轭代替了求逆运算.结果表明新算法与已有算法相比效率提高了10%以上.

  5. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  6. Base-pair opening dynamics of the microRNA precursor pri-miR156a affect temperature-responsive flowering in Arabidopsis.

    Science.gov (United States)

    Kim, Hee-Eun; Kim, Wanhui; Lee, Ae-Ree; Jin, Suhyun; Jun, A Rim; Kim, Nak-Kyoon; Lee, Joon-Hwa; Ahn, Ji Hoon

    2017-03-18

    Internal and environmental cues, including ambient temperature changes, regulate the timing of flowering in plants. Arabidopsis miR156 represses flowering and plays an important role in the regulation of temperature-responsive flowering. However, the molecular basis of miR156 processing at lower temperatures remains largely unknown. Here, we performed nuclear magnetic resonance studies to investigate the base-pair opening dynamics of model RNAs at 16 °C and investigated the in vivo effects of the mutant RNAs on temperature-responsive flowering. The A9C and A10CG mutations in the B5 bulge of the lower stem of pri-miR156a stabilized the C15∙G98 and U16∙A97 base-pairs at the cleavage site of pri-miR156a at 16 °C. Consistent with this, production of mature miR156 was severely affected in plants overexpressing the A9C and A10CG constructs and these plants exhibited almost no delay in flowering at 16 °C. The A10G and A9AC mutations did not strongly affect C15∙G98 and U16∙A97 base-pairs at 16 °C, and plants overexpressing A10G and A9AC mutants of miR156 produced more mature miR156 than plants overexpressing the A9C and A10CG mutants and showed a strong delay in flowering at 16 °C. Interestingly, the A9AC mutation had distinct effects on the opening dynamics of the C15∙G98 and U16∙A97 base-pairs between 16 °C and 23 °C, and plants expressing the A9AC mutant miR156 showed only a moderate delay in flowering at 16 °C. Based on these results, we propose that fine-tuning of the base-pair stability at the cleavage site is essential for efficient processing of pri-miR156a at a low temperature and for reduced flowering sensitivity to ambient temperature changes.

  7. WebMOTIFS: automated discovery, filtering and scoring of DNA sequence motifs using multiple programs and Bayesian approaches.

    Science.gov (United States)

    Romer, Katherine A; Kayombya, Guy-Richard; Fraenkel, Ernest

    2007-07-01

    WebMOTIFS provides a web interface that facilitates the discovery and analysis of DNA-sequence motifs. Several studies have shown that the accuracy of motif discovery can be significantly improved by using multiple de novo motif discovery programs and using randomized control calculations to identify the most significant motifs or by using Bayesian approaches. WebMOTIFS makes it easy to apply these strategies. Using a single submission form, users can run several motif discovery programs and score, cluster and visualize the results. In addition, the Bayesian motif discovery program THEME can be used to determine the class of transcription factors that is most likely to regulate a set of sequences. Input can be provided as a list of gene or probe identifiers. Used with the default settings, WebMOTIFS accurately identifies biologically relevant motifs from diverse data in several species. WebMOTIFS is freely available at http://fraenkel.mit.edu/webmotifs.

  8. Atomic-Level Organization of Vicinal Acid-Base Pairs through the Chemisorption of Aniline and Derivatives onto Mesoporous SBA15

    KAUST Repository

    Basset, Jean-Marie

    2016-06-09

    The design of novel heterogeneous catalysts with multiple adjacent functionalities is of high interest for heterogeneous catalysis. Herein, we report a method to obtain a majority bifunctional acid-base pairs on SBA15. Aniline reacts with SBA15 by opening siloxane bridges leading to N-phenylsilanamine-silanol pairs. In contrast with ammonia treated surfaces, the material is stable under air/moisture. Advanced solid state MAS NMR: 2D ¹H-¹H double-quantum, ¹H-¹³C HETCOR experiments and dynamic nuclear polarization enhanced ²⁹Si and ¹⁵N spectra demonstrate both the close proximity between the two moieties and the formation of a covalent Si-N surface bond and confirm the design of vicinal acid-base pairs. This approach was successfully applied to the design of a series of aniline derivatives bifunctional SBA15. A correlation of the substituents effects on the aromatic ring (Hammet parameters) on the kinetics of the model reaction of Knoevenagel is observed.

  9. A Co-expression System Based on Phage and Phagemid to Select Cognate Antibody-antigen Pairs in vivo

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A modified selectively-infective phage (SIP) is developed to facilitate the selection of interacting antibody-antigen pairs from a large single-chain antibody (scFv) library in vivo. The system is constructed with a modified helper phage M13KO7 and phagemid pCANTAB 5 E. The antigen fused to the C-terminal of N1-N2 domain and the scFv to the N-terminal of CT domain of the gIIIp of filamentous phage are encoded on the phage and phagemid vectors respectively. The phages produced by co-transformants restore infectivity via interaction between antigen and antibody fusions in the cell periplasm. In a model system, the scFv fragment of the anti-hemagglutinin 17/9 antibody and its corresponding antigen are detected in the presence of a 105 fold excess of a non-interacting control pairs, which demonstrates this system to be very sensitive and facile to screen a large single-chain antibody library.

  10. Conserved sequence motifs upstream from the co-ordinately expressed vitellogenin and apoVLDLII genes of chicken.

    Science.gov (United States)

    van het Schip, F; Strijker, R; Samallo, J; Gruber, M; Geert, A B

    1986-11-11

    The vitellogenin and apoVLDLII yolk protein genes of chicken are transcribed in the liver upon estrogenization. To get information on putative regulatory elements, we compared more than 2 kb of their 5' flanking DNA sequences. Common sequence motifs were found in regions exhibiting estrogen-induced changes in chromatin structure. Stretches of alternating pyrimidines and purines of about 30-nucleotides long are present at roughly similar positions. A distinct box of sequence homology in the chicken genes also appears to be present at a similar position in front of the vitellogenin genes of Xenopus laevis, but is absent from the estrogen-responsive egg-white protein genes expressed in the oviduct. In front of the vitellogenin (position -595) and the VLDLII gene (position -548), a DNA element of about 300 base-pairs was found, which possesses structural characteristics of a mobile genetic element and bears homology to the transposon-like Vi element of Xenopus laevis.

  11. Adaptation of the short intergenic spacers between co-directional genes to the Shine-Dalgarno motif among prokaryote genomes

    DEFF Research Database (Denmark)

    Caro, Albert Pallejà; García-Vallvé, Santiago; Romeu, Antoni

    2009-01-01

    influence the stop codon usage or the spacing lengths between co-directional genes. RESULTS: The SD sequences for 530 prokaryote genomes have been predicted using computer calculations of the base-pairing free energy between translation initiation regions and the 16S rRNA 3' tail. Genomes with a large......ABSTRACT: BACKGROUND: In prokaryote genomes most of the co-directional genes are in close proximity. Even the coding sequence or the stop codon of a gene can overlap with the Shine-Dalgarno (SD) sequence of the downstream co-directional gene. In this paper we analyze how the presence of SD may...... number of genes with the SD sequence concentrate this regulatory motif from 4 to 11 bps before the start codon. However, not all genes seem to have the SD sequence. Genes separated from 1 to 4 bps from a co-directional upstream gene show a high SD presence, though this regulatory signal is located...

  12. Prevalent RNA recognition motif duplication in the human genome.

    Science.gov (United States)

    Tsai, Yihsuan S; Gomez, Shawn M; Wang, Zefeng

    2014-05-01

    The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner.

  13. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein.

    Science.gov (United States)

    Senis, Yotis A; Tomlinson, Michael G; García, Angel; Dumon, Stephanie; Heath, Victoria L; Herbert, John; Cobbold, Stephen P; Spalton, Jennifer C; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant S; Martin, Ashley; Wakelam, Michael J O; Watson, Stephen P

    2007-03-01

    The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomics and genomics approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography, biotin/NeutrAvidin affinity chromatography, and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68, and 22 surface membrane, intracellular membrane, and membrane proteins of unknown subcellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomics studies, we analyzed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multitransmembrane proteins. Strikingly 17 of the 25 most megakaryocyte-specific genes (relative to 30 other serial analysis of gene expression libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2 domain-containing phosphatase

  14. Structural motifs are closed into cycles in proteins.

    Science.gov (United States)

    Efimov, Alexander V

    2010-08-27

    Beta-hairpins, triple-strand beta-sheets and betaalphabeta-units represent simple structural motifs closed into cycles by systems of hydrogen bonds. Secondary closing of these simple motifs into large cycles by means of different superhelices, split beta-hairpins or SS-bridges results in the formation of more complex structural motifs having unique overall folds and unique handedness such as abcd-units, phi-motifs, five- and seven-segment alpha/beta-motifs. Apparently, the complex structural motifs are more cooperative and stable and this may be one of the main reasons of high frequencies of occurrence of the motifs in proteins.

  15. Functional characterization of variations on regulatory motifs.

    Directory of Open Access Journals (Sweden)

    Michal Lapidot

    2008-03-01

    Full Text Available Transcription factors (TFs regulate gene expression through specific interactions with short promoter elements. The same regulatory protein may recognize a variety of related sequences. Moreover, once they are detected it is hard to predict whether highly similar sequence motifs will be recognized by the same TF and regulate similar gene expression patterns, or serve as binding sites for distinct regulatory factors. We developed computational measures to assess the functional implications of variations on regulatory motifs and to compare the functions of related sites. We have developed computational means for estimating the functional outcome of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. We predict the effects of nucleotide variations within motifs on gene expression patterns. In cases where such predictions could be compared to suitable published experimental evidence, we found very good agreement. We further accumulated statistics from multiple substitutions across various binding sites in an attempt to deduce general properties that characterize nucleotide substitutions that are more likely to alter expression. We found that substitutions involving Adenine are more likely to retain the expression pattern and that substitutions involving Guanine are more likely to alter expression compared to the rest of the substitutions. Our results should facilitate the prediction of the expression outcomes of binding site variations. One typical important implication is expected to be the ability to predict the phenotypic effect of variation in regulatory motifs in promoters.

  16. Sublinear Time Motif Discovery from Multiple Sequences

    Directory of Open Access Journals (Sweden)

    Yunhui Fu

    2013-10-01

    Full Text Available In this paper, a natural probabilistic model for motif discovery has been used to experimentally test the quality of motif discovery programs. In this model, there are k background sequences, and each character in a background sequence is a random character from an alphabet, Σ. A motif G = g1g2 ... gm is a string of m characters. In each background sequence is implanted a probabilistically-generated approximate copy of G. For a probabilistically-generated approximate copy b1b2 ... bm of G, every character, bi, is probabilistically generated, such that the probability for bi ≠ gi is at most α. We develop two new randomized algorithms and one new deterministic algorithm. They make advancements in the following aspects: (1 The algorithms are much faster than those before. Our algorithms can even run in sublinear time. (2 They can handle any motif pattern. (3 The restriction for the alphabet size is a lower bound of four. This gives them potential applications in practical problems, since gene sequences have an alphabet size of four. (4 All algorithms have rigorous proofs about their performances. The methods developed in this paper have been used in the software implementation. We observed some encouraging results that show improved performance for motif detection compared with other software.

  17. A pair of novel Cd(II) enantiomers based on lactate derivatives: Synthesis, crystal structures and properties

    Science.gov (United States)

    Xu, Zhong-Xuan; Ao, Ke-Hou; Zhang, Jian

    2016-09-01

    A pair of novel 3D homochiral metal-organic frameworks (HMOFs), namely [Cd2.5((R)-CIA)6(1,4-DIB)(H2O)2]·((CH3)2NH2)·H2O (1-D), [Cd2.5((S)-CIA)6(1,4-DIB)(H2O)2]·((CH3)2NH2)·H2O (1-L), have been synthesized using lactic acid derivative ligands ((R)-H3CIA and (S)-H3CIA) and 1,4-DIB. Crystallographic analyses indicate that the complexes 1-D and 1-L are packed by cage substructures. Some physical characteristics, such as solid-state circular dichroism (CD), thermal stabilities and photoluminescent properties are also investigated. Our results highlight the effective method to apply lactic acid derivative ligands to form interesting HMOFs.

  18. Novel cationic surfactant ion pair based solid phase microextraction fiber for nano-level analysis of BTEX.

    Science.gov (United States)

    Hosseinzadeh, Reza; Tahmasebi, Raheleh; Farhadi, Khalil; Moosavi-Movahedi, Ali Akbar; Jouyban, Abolghasem; Badraghi, Jalil

    2011-05-01

    Ion pair of cationic surfactant (cetytrimethylammonium bromide) and tungestosilicic acid incorporated in PVC matrix, was used for coating a piece of copper wire as a new high sensitive SPME fiber in extraction and determination of BTEX compounds from the headspace of water samples prior to GC/FID analysis. Under optimum extraction conditions, limits of detection for benzene, toluene, ethylbenzene, p-xylene, m-xylene and o-xylene were found to be 1.18, 5.61, 0.87, 0.29, 0.22 and 0.33 ng L(-1) respectively. Low detection limits, wide linear dynamic ranges, good reproducibility (RSD% 1.48-4.27), high fiber capacity and high mechanical durability are some of the most important advantages of the new fiber.

  19. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  20. S-1-Based versus capecitabine-based preoperative chemoradiotherapy in the treatment of locally advanced rectal cancer: a matched-pair analysis.

    Directory of Open Access Journals (Sweden)

    Meng Su

    Full Text Available OBJECTIVE: The aim of this paper was to compare the efficacy and safety of S-1-based and capecitabine-based preoperative chemoradiotherapy regimens in patients with locally advanced rectal cancer through a retrospective matched-pair analysis. MATERIALS AND METHODS: Between Jan 2010 and Mar 2014, 24 patients with locally advanced rectal cancer who received preoperative radiotherapy concurrently with S-1 were individually matched with 24 contemporary patients with locally advanced rectal cancer who received preoperative radiotherapy concurrently with capecitabine according to clinical stage (as determined by pelvic magnetic resonance imaging and computed tomography and age (within five years. All these patients performed mesorectal excision 4-8 weeks after the completion of chemoradiotherapy. RESULTS: The tumor volume reduction rates were 55.9±15.1% in the S-1 group and 53.8±16.0% in the capecitabine group (p = 0.619. The overall downstaging, including both T downstaging and N downstaging, occurred in 83.3% of the S-1 group and 70.8% of the capecitabine group (p = 0.508. The significant tumor regression, including regression grade I and II, occurred in 33.3% of S-1 patients and 25.0% of capecitabine patients (p = 0.754. In the two groups, Grade 4 adverse events were not observed and Grade 3 consisted of only two cases of diarrhea, and no patient suffered hematologic adverse event of Grade 2 or higher. However, the incidence of diarrhea (62.5% vs 33.3%, p = 0.014 and hand-foot syndrome (29.2% vs 0%, p = 0.016 were higher in capecitabine group. Other adverse events did not differ significantly between two groups. CONCLUSIONS: The two preoperative chemoradiotherapy regimens were effective and safe for patients of locally advanced rectal cancer, but regimen with S-1 exhibited a lower incidence of adverse events.

  1. A new motif for inhibitors of geranylgeranyl diphosphate synthase.

    Science.gov (United States)

    Foust, Benjamin J; Allen, Cheryl; Holstein, Sarah A; Wiemer, David F

    2016-08-15

    The enzyme geranylgeranyl diphosphate synthase (GGDPS) is believed to receive the substrate farnesyl diphosphate through one lipophilic channel and release the product geranylgeranyl diphosphate through another. Bisphosphonates with two isoprenoid chains positioned on the α-carbon have proven to be effective inhibitors of this enzyme. Now a new motif has been prepared with one isoprenoid chain on the α-carbon, a second included as a phosphonate ester, and the potential for a third at the α-carbon. The pivaloyloxymethyl prodrugs of several compounds based on this motif have been prepared and the resulting compounds have been tested for their ability to disrupt protein geranylgeranylation and induce cytotoxicity in myeloma cells. The initial biological studies reveal activity consistent with GGDPS inhibition, and demonstrate a structure-function relationship which is dependent on the nature of the alkyl group at the α-carbon.

  2. Assembly of supramolecular DNA complexes containing both G-quadruplexes and i-motifs by enhancing the G-repeat-bearing capacity of i-motifs

    Science.gov (United States)

    Cao, Yanwei; Gao, Shang; Yan, Yuting; Bruist, Michael F.; Wang, Bing; Guo, Xinhua

    2017-01-01

    The single-step assembly of supramolecular complexes containing both i-motifs and G-quadruplexes (G4s) is demonstrated. This can be achieved because the formation of four-stranded i-motifs appears to be little affected by certain terminal residues: a five-cytosine tetrameric i-motif can bear ten-base flanking residues. However, things become complex when different lengths of guanine-repeats are added at the 3′ or 5′ ends of the cytosine-repeats. Here, a series of oligomers d(XGiXC5X) and d(XC5XGiX) (X = A, T or none; i < 5) are designed to study the impact of G-repeats on the formation of tetrameric i-motifs. Our data demonstrate that tetramolecular i-motif structure can tolerate specific flanking G-repeats. Assemblies of these oligonucleotides are polymorphic, but may be controlled by solution pH and counter ion species. Importantly, we find that the sequences d(TGiAC5) can form the tetrameric i-motif in large quantities. This leads to the design of two oligonucleotides d(TG4AC7) and d(TGBrGGBrGAC7) that self-assemble to form quadruplex supramolecules under certain conditions. d(TG4AC7) forms supramolecules under acidic conditions in the presence of K+ that are mainly V-shaped or ring-like containing parallel G4s and antiparallel i-motifs. d(TGBrGGBrGAC7) forms long linear quadruplex wires under acidic conditions in the presence of Na+ that consist of both antiparallel G4s and i-motifs. PMID:27899568

  3. Key Roles of Lewis Acid-base Pairs on ZnxZryOz in Direct Ethanol/Acetone to Isobutene Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Baylon, Rebecca A.; Liu, Changjun; Mei, Donghai; Martin, Kevin J.; Venkitasubramanian, Padmesh; Wang, Yong

    2016-01-20

    The effects of surface acidity on the cascade ethanol-to-isobutene conversion were studied using ZnxZryOz catalysts. The ethanol-to-isobutene reaction was found to be limited by the secondary reaction of the key intermediate, acetone, namely the acetone-to-isobutene reaction. Although the catalysts with coexisting Brønsted acidity could catalyze the rate-limiting acetone-to-isobutene reaction, the presence of Brønsted acidity is also detrimental. First, secondary isobutene isomerization is favored, producing a mixture of butene isomers. Second, undesired polymerization and coke formation prevail, leading to rapid catalyst deactivation. Most importantly, both steady-state and kinetic reaction studies as well as FTIR analysis of adsorbed acetone-d6 and D2O unambiguously showed that a highly active and selective nature of balanced Lewis acid-base pairs was masked by the coexisting Brønsted acidity in the aldolization and self-deoxygenation of acetone to isobutene. As a result, ZnxZryOz catalysts with only Lewis acid-base pairs were discovered, on which nearly a theoretical selectivity to isobutene (~88.9%) was successfully achieved, which has never been reported before. Moreover, the absence of Brønsted acidity in such ZnxZryOz catalysts also eliminates the side isobutene isomerization and undesired polymerization/coke reactions, resulting in the production of high purity isobutene with significantly improved catalyst stability (< 2% activity loss after 200 h time-on-stream). This work not only demonstrates a balanced Lewis acid-base pair for the highly active and selective cascade ethanol-to-isobutene reaction, but also sheds light on the rational design of selective and robust acid-base catalyst for C-C coupling via aldolization reaction.

  4. Comparative Analysis of Regulatory Motif Discovery Tools for Transcription Factor Binding Sites

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the post-genomic era, identification of specific regulatory motifs or transcription factor binding sites (TFBSs) in non-coding DNA sequences, which is essential to elucidate transcriptional regulatory networks, has emerged as an obstacle that frustrates many researchers. Consequently, numerous motif discovery tools and correlated databases have been applied to solving this problem. However, these existing methods, based on different computational algorithms, show diverse motif prediction efficiency in non-coding DNA sequences. Therefore, understanding the similarities and differences of computational algorithms and enriching the motif discovery literatures are important for users to choose the most appropriate one among the online available tools. Moreover, there still lacks credible criterion to assess motif discovery tools and instructions for researchers to choose the best according to their own projects. Thus integration of the related resources might be a good approach to improve accuracy of the application. Recent studies integrate regulatory motif discovery tools with experimental methods to offer a complementary approach for researchers, and also provide a much-needed model for current researches on transcriptional regulatory networks. Here we present a comparative analysis of regulatory motif discovery tools for TFBSs.

  5. A Novel Protein Interaction between Nucleotide Binding Domain of Hsp70 and p53 Motif

    Directory of Open Access Journals (Sweden)

    Asita Elengoe

    2015-01-01

    Full Text Available Currently, protein interaction of Homo sapiens nucleotide binding domain (NBD of heat shock 70 kDa protein (PDB: 1HJO with p53 motif remains to be elucidated. The NBD-p53 motif complex enhances the p53 stabilization, thereby increasing the tumor suppression activity in cancer treatment. Therefore, we identified the interaction between NBD and p53 using STRING version 9.1 program. Then, we modeled the three-dimensional structure of p53 motif through homology modeling and determined the binding affinity and stability of NBD-p53 motif complex structure via molecular docking and dynamics (MD simulation. Human DNA binding domain of p53 motif (SCMGGMNR retrieved from UniProt (UniProtKB: P04637 was docked with the NBD protein, using the Autodock version 4.2 program. The binding energy and intermolecular energy for the NBD-p53 motif complex were −0.44 Kcal/mol and −9.90 Kcal/mol, respectively. Moreover, RMSD, RMSF, hydrogen bonds, salt bridge, and secondary structure analyses revealed that the NBD protein had a strong bond with p53 motif and the protein-ligand complex was stable. Thus, the current data would be highly encouraging for designing Hsp70 structure based drug in cancer therapy.

  6. Sequential motif profile of natural visibility graphs

    CERN Document Server

    Iacovacci, Jacopo

    2016-01-01

    The concept of sequential visibility graph motifs -subgraphs appearing with characteristic frequencies in the visibility graphs associated to time series- has been advanced recently along with a theoretical framework to compute analytically the motif profiles associated to Horizontal Visibility Graphs (HVGs). Here we develop a theory to compute the profile of sequential visibility graph motifs in the context of Natural Visibility Graphs (VGs). This theory gives exact results for deterministic aperiodic processes with a smooth invariant density or stochastic processes that fulfil the Markov property and have a continuous marginal distribution. The framework also allows for a linear time numerical estimation in the case of empirical time series. A comparison between the HVG and the VG case (including evaluation of their robustness for short series polluted with measurement noise) is also presented.

  7. Armadillo motifs involved in vesicular transport.

    Directory of Open Access Journals (Sweden)

    Harald Striegl

    Full Text Available Armadillo (ARM repeat proteins function in various cellular processes including vesicular transport and membrane tethering. They contain an imperfect repeating sequence motif that forms a conserved three-dimensional structure. Recently, structural and functional insight into tethering mediated by the ARM-repeat protein p115 has been provided. Here we describe the p115 ARM-motifs for reasons of clarity and nomenclature and show that both sequence and structure are highly conserved among ARM-repeat proteins. We argue that there is no need to invoke repeat types other than ARM repeats for a proper description of the structure of the p115 globular head region. Additionally, we propose to define a new subfamily of ARM-like proteins and show lack of evidence that the ARM motifs found in p115 are present in other long coiled-coil tethering factors of the golgin family.

  8. Targeting functional motifs of a protein family

    Science.gov (United States)

    Bhadola, Pradeep; Deo, Nivedita

    2016-10-01

    The structural organization of a protein family is investigated by devising a method based on the random matrix theory (RMT), which uses the physiochemical properties of the amino acid with multiple sequence alignment. A graphical method to represent protein sequences using physiochemical properties is devised that gives a fast, easy, and informative way of comparing the evolutionary distances between protein sequences. A correlation matrix associated with each property is calculated, where the noise reduction and information filtering is done using RMT involving an ensemble of Wishart matrices. The analysis of the eigenvalue statistics of the correlation matrix for the β -lactamase family shows the universal features as observed in the Gaussian orthogonal ensemble (GOE). The property-based approach captures the short- as well as the long-range correlation (approximately following GOE) between the eigenvalues, whereas the previous approach (treating amino acids as characters) gives the usual short-range correlations, while the long-range correlations are the same as that of an uncorrelated series. The distribution of the eigenvector components for the eigenvalues outside the bulk (RMT bound) deviates significantly from RMT observations and contains important information about the system. The information content of each eigenvector of the correlation matrix is quantified by introducing an entropic estimate, which shows that for the β -lactamase family the smallest eigenvectors (low eigenmodes) are highly localized as well as informative. These small eigenvectors when processed gives clusters involving positions that have well-defined biological and structural importance matching with experiments. The approach is crucial for the recognition of structural motifs as shown in β -lactamase (and other families) and selectively identifies the important positions for targets to deactivate (activate) the enzymatic actions.

  9. Casimir light: photon pairs.

    OpenAIRE

    1993-01-01

    Expressions are developed for weak single pair emission probability and strong emission average number of pairs. The water transparency cutoff is closely realized, showing that the fundamental time scale is even shorter.

  10. Magnetic properties and pairing tendencies of the iron-based superconducting ladder BaFe2S3 : Combined ab initio and density matrix renormalization group study

    Science.gov (United States)

    Patel, Niravkumar D.; Nocera, Alberto; Alvarez, Gonzalo; Arita, Ryotaro; Moreo, Adriana; Dagotto, Elbio

    2016-08-01

    The recent discovery of superconductivity under high pressure in the two-leg ladder compound BaFe2S3 [H. Takahashi et al., Nat. Mater. 14, 1008 (2015), 10.1038/nmat4351] opens a broad avenue of research, because it represents the first report of pairing tendencies in a quasi-one-dimensional iron-based high-critical-temperature superconductor. Similarly, as in the case of the cuprates, ladders and chains can be far more accurately studied using many-body techniques and model Hamiltonians than their layered counterparts, particularly if several orbitals are active. In this publication, we derive a two-orbital Hubbard model from first principles that describes individual ladders of BaFe2S3 . The model is studied with the density matrix renormalization group. These first reported results are exciting for two reasons: (i) at half-filling, ferromagnetic order emerges as the dominant magnetic pattern along the rungs of the ladder, and antiferromagnetic order along the legs, in excellent agreement with neutron experiments; and (ii) with hole doping, pairs form in the strong coupling regime, as found by studying the binding energy of two holes doped on the half-filled system. In addition, orbital selective Mott phase characteristics develop with doping, with only one Wannier orbital receiving the hole carriers while the other remains half-filled. These results suggest that the analysis of models for iron-based two-leg ladders could clarify the origin of pairing tendencies and other exotic properties of iron-based high-critical-temperature superconductors in general.

  11. Effect of LNA- and OMeN-modified oligonucleotide probes on the stability and discrimination of mismatched base pairs of duplexes

    Indian Academy of Sciences (India)

    Ying Yan; Jing Yan; Xianyu Piao; Tianbiao Zhang; Yifu Guan

    2012-06-01

    Locked nucleic acid (LNA) and 2′--methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3′-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target–probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.

  12. Characterization of the tandem CWCH2 sequence motif: a hallmark of inter-zinc finger interactions

    Directory of Open Access Journals (Sweden)

    Aruga Jun

    2010-02-01

    Full Text Available Abstract Background The C2H2 zinc finger (ZF domain is widely conserved among eukaryotic proteins. In Zic/Gli/Zap1 C2H2 ZF proteins, the two N-terminal ZFs form a single structural unit by sharing a hydrophobic core. This structural unit defines a new motif comprised of two tryptophan side chains at the center of the hydrophobic core. Because each tryptophan residue is located between the two cysteine residues of the C2H2 motif, we have named this structure the tandem CWCH2 (tCWCH2 motif. Results Here, we characterized 587 tCWCH2-containing genes using data derived from public databases. We categorized genes into 11 classes including Zic/Gli/Glis, Arid2/Rsc9, PacC, Mizf, Aebp2, Zap1/ZafA, Fungl, Zfp106, Twincl, Clr1, and Fungl-4ZF, based on sequence similarity, domain organization, and functional similarities. tCWCH2 motifs are mostly found in organisms belonging to the Opisthokonta (metazoa, fungi, and choanoflagellates and Amoebozoa (amoeba, Dictyostelium discoideum. By comparison, the C2H2 ZF motif is distributed widely among the eukaryotes. The structure and organization of the tCWCH2 motif, its phylogenetic distribution, and molecular phylogenetic analysis suggest that prototypical tCWCH2 genes existed in the Opisthokonta ancestor. Within-group or between-group comparisons of the tCWCH2 amino acid sequence identified three additional sequence features (site-specific amino acid frequencies, longer linker sequence between two C2H2 ZFs, and frequent extra-sequences within C2H2 ZF motifs. Conclusion These features suggest that the tCWCH2 motif is a specialized motif involved in inter-zinc finger interactions.

  13. Electron-hole pair mechanism for the magnetic field effect in organic light emitting diodes based on poly(paraphenylene vinylene)

    Science.gov (United States)

    Bagnich, S. A.; Niedermeier, U.; Melzer, C.; Sarfert, W.; von Seggern, H.

    2009-12-01

    We investigated the magnetic field effect (MFE) on current and electroluminescence in organic light emitting diodes based on poly(paraphenylene vinylene). The MFE was strictly positive in the full range of device operation and showed nonmonotonic dependencies on applied voltage and temperature. Furthermore, the MFE on current obtained in bipolar devices was significantly larger than in hole-dominated devices. We discuss our results in the framework of an electron-hole pair model and show that the model can explain all functional dependencies observed in our devices.

  14. MAR characteristic motifs mediate episomal vector in CHO cells.

    Science.gov (United States)

    Lin, Yan; Li, Zhaoxi; Wang, Tianyun; Wang, Xiaoyin; Wang, Li; Dong, Weihua; Jing, Changqin; Yang, Xianjun

    2015-04-01

    An ideal gene therapy vector should enable persistent transgene expression without limitations in safety and reproducibility. Recent researches' insight into the ability of chromosomal matrix attachment regions (MARs) to mediate episomal maintenance of genetic elements allowed the development of a circular episomal vector. Although a MAR-mediated engineered vector has been developed, little is known on which motifs of MAR confer this function during interaction with the host genome. Here, we report an artificially synthesized DNA fragment containing only characteristic motif sequences that served as an alternative to human beta-interferon matrix attachment region sequence. The potential of the vector to mediate gene transfer in CHO cells was investigated. The short synthetic MAR motifs were found to mediate episomal vector at a low copy number for many generations without integration into the host genome. Higher transgene expression was maintained for at least 4 months. In addition, MAR was maintained episomally and conferred sustained EGFP expression even in nonselective CHO cells. All the results demonstrated that MAR characteristic sequence-based vector can function as stable episomes in CHO cells, supporting long-term and effective transgene expression.

  15. A stabilized pairing functional

    CERN Document Server

    Erler, J; Reinhard, P --G

    2008-01-01

    We propose a modified pairing functional for nuclear structure calculations which avoids the abrupt phase transition between pairing and non-pairing states. The intended application is the description of nuclear collective motion where the smoothing of the transition is compulsory to remove singularities. The stabilized pairing functional allows a thoroughly variational formulation, unlike the Lipkin-Nogami (LN) scheme which is often used for the purpose of smoothing. First applications to nuclear ground states and collective excitations prove the reliability and efficiency of the proposed stabilized pairing.

  16. Can an excess electron localize on a purine moiety in the adenine-thymine Watson-Crick base pair? A computational study

    Science.gov (United States)

    Mazurkiewicz, Kamil; Harańczyk, Maciej; Gutowski, Maciej; Rak, Janusz

    The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson-Crick adenine-thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39-2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson-Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.0

  17. Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites

    Directory of Open Access Journals (Sweden)

    Lim Carmay

    2007-03-01

    Full Text Available Abstract Background For many metalloproteins, sequence motifs characteristic of metal-binding sites have not been found or are so short that they would not be expected to be metal-specific. Striking examples of such metalloproteins are those containing Mg2+, one of the most versatile metal cofactors in cellular biochemistry. Even when Mg2+-proteins share insufficient sequence homology to identify Mg2+-specific sequence motifs, they may still share similarity in the Mg2+-binding site structure. However, no structural motifs characteristic of Mg2+-binding sites have been reported. Thus, our aims are (i to develop a general method for discovering structural patterns/motifs characteristic of ligand-binding sites, given the 3D protein structures, and (ii to apply it to Mg2+-proteins sharing 2+-structural motifs are identified as recurring structural patterns. Results The structural alphabet-based motif discovery method has revealed the structural preference of Mg2+-binding sites for certain local/secondary structures: compared to all residues in the Mg2+-proteins, both first and second-shell Mg2+-ligands prefer loops to helices. Even when the Mg2+-proteins share no significant sequence homology, some of them share a similar Mg2+-binding site structure: 4 Mg2+-structural motifs, comprising 21% of the binding sites, were found. In particular, one of the Mg2+-structural motifs found maps to a specific functional group, namely, hydrolases. Furthermore, 2 of the motifs were not found in non metalloproteins or in Ca2+-binding proteins. The structural motifs discovered thus capture some essential biochemical and/or evolutionary properties, and hence may be useful for discovering proteins where Mg2+ plays an important biological role. Conclusion The structural motif discovery method presented herein is general and can be applied to any set of proteins with known 3D structures. This new method is timely considering the increasing number of structures for

  18. Extraction de motifs graduels emergents

    OpenAIRE

    Laurent, Anne; Lesot, Marie-Jeanne; Rifqi, Maria

    2015-01-01

    National audience; Mining emerging patterns aims at contrasting data sets and identifying itemsets that characterise a data set by contrast to a reference data set, so as to capture and highlight their differences. This paper considers the case of emerging gradual patterns, to extract discriminant attribute co-variations. It discusses the specific features of these gradual patterns and proposes to transpose an efficient border-based algorithm, justifying its applicability to the gradual case....

  19. Identifying motifs in folktales using topic models

    NARCIS (Netherlands)

    Karsdorp, F.; Bosch, A.P.J. van den

    2013-01-01

    With the undertake of various folktale digitalization initiatives, the need for computational aids to explore these collections is increasing. In this paper we compare Labeled LDA (L-LDA) to a simple retrieval model on the task of identifying motifs in folktales. We show that both methods are well a

  20. Highly scalable Ab initio genomic motif identification

    KAUST Repository

    Marchand, Benoit

    2011-01-01

    We present results of scaling an ab initio motif family identification system, Dragon Motif Finder (DMF), to 65,536 processor cores of IBM Blue Gene/P. DMF seeks groups of mutually similar polynucleotide patterns within a set of genomic sequences and builds various motif families from them. Such information is of relevance to many problems in life sciences. Prior attempts to scale such ab initio motif-finding algorithms achieved limited success. We solve the scalability issues using a combination of mixed-mode MPI-OpenMP parallel programming, master-slave work assignment, multi-level workload distribution, multi-level MPI collectives, and serial optimizations. While the scalability of our algorithm was excellent (94% parallel efficiency on 65,536 cores relative to 256 cores on a modest-size problem), the final speedup with respect to the original serial code exceeded 250,000 when serial optimizations are included. This enabled us to carry out many large-scale ab initio motiffinding simulations in a few hours while the original serial code would have needed decades of execution time. Copyright 2011 ACM.

  1. The Motif of Meeting in Digital Education

    Science.gov (United States)

    Sheail, Philippa

    2015-01-01

    This article draws on theoretical work which considers the composition of meetings, in order to think about the form of the meeting in digital environments for higher education. To explore the motif of meeting, I undertake a "compositional interpretation" (Rose, 2012) of the default interface offered by "Collaborate", an…

  2. Bioactive motifs of agouti signal protein.

    Science.gov (United States)

    Virador, V M; Santis, C; Furumura, M; Kalbacher, H; Hearing, V J

    2000-08-25

    The switch between the synthesis of eu- and pheomelanins is modulated by the interaction of two paracrine signaling molecules, alpha-melanocyte stimulating hormone (MSH) and agouti signal protein (ASP), which interact with melanocytes via the MSH receptor (MC1R). Comparison of the primary sequence of ASP with the known MSH pharmacophore provides no suggestion about the putative bioactive domain(s) of ASP. To identify such bioactive motif(s), we synthesized 15-mer peptides that spanned the primary sequence of ASP and determined their effects on the melanogenic activities of murine melanocytes. Northern and Western blotting were used, together with chemical analysis of melanins and enzymatic assays, to identify three distinct bioactive regions of ASP that down-regulate eumelanogenesis. The decrease in eumelanin production was mediated by down-regulation of mRNA levels for tyrosinase and other melanogenic enzymes, as occurs in vivo, and these effects were comparable to those elicited by intact recombinant ASP. Shorter peptides in those motifs were synthesized and their effects on melanogenesis were further investigated. The amino acid arginine, which is present in the MSH peptide pharmacophore (HFRW), is also in the most active domain of ASP (KVARP). Our data suggest that lysines and an arginine (in motifs such as KxxxxKxxR or KxxRxxxxK) are important for the bioactivity of ASP. Identification of the specific ASP epitope that interacts with the MC1R has potential pharmacological applications in treating dysfunctions of skin pigmentation.

  3. Parallel motif extraction from very long sequences

    KAUST Repository

    Sahli, Majed

    2013-01-01

    Motifs are frequent patterns used to identify biological functionality in genomic sequences, periodicity in time series, or user trends in web logs. In contrast to a lot of existing work that focuses on collections of many short sequences, modern applications require mining of motifs in one very long sequence (i.e., in the order of several gigabytes). For this case, there exist statistical approaches that are fast but inaccurate; or combinatorial methods that are sound and complete. Unfortunately, existing combinatorial methods are serial and very slow. Consequently, they are limited to very short sequences (i.e., a few megabytes), small alphabets (typically 4 symbols for DNA sequences), and restricted types of motifs. This paper presents ACME, a combinatorial method for extracting motifs from a single very long sequence. ACME arranges the search space in contiguous blocks that take advantage of the cache hierarchy in modern architectures, and achieves almost an order of magnitude performance gain in serial execution. It also decomposes the search space in a smart way that allows scalability to thousands of processors with more than 90% speedup. ACME is the only method that: (i) scales to gigabyte-long sequences; (ii) handles large alphabets; (iii) supports interesting types of motifs with minimal additional cost; and (iv) is optimized for a variety of architectures such as multi-core systems, clusters in the cloud, and supercomputers. ACME reduces the extraction time for an exact-length query from 4 hours to 7 minutes on a typical workstation; handles 3 orders of magnitude longer sequences; and scales up to 16, 384 cores on a supercomputer. Copyright is held by the owner/author(s).

  4. A nine-base pair deletion distinguishes two En/Spm transposon alleles in maize: Their genetic activity and molecular description

    Directory of Open Access Journals (Sweden)

    Menssen Adriane

    2008-01-01

    Full Text Available Two En/Spm-transposable element alleles of the A1 locus in maize (Zea mays are described. One of the alleles is al-m (papu, (PETERSON, 1961. The distinctive phenotype of this allele is characterized with pale and purple sectoring amidst large areas of no sectoring. The other allele, al-m (Au, appears full colored but is heavily mutating and expresses large colorless areas. These two alleles differ in the frequency of derivative products [al-m( papu-colorless and pale exceptions vs al- m(Au-mostly colorless exceptions]. A molecular description is provided in an attempt to explain these differences in phenotypes and derivative products. A nine-base-pair deficiency in Exon 2 of the A1 locus of the a1- m (papu allele originated following the origin of this allele and this deficiency is likely responsible for the differential phenotypes. The possible origin of this nine-base-pair deletion is discussed. .

  5. Bridging of anions by hydrogen bonds in nest motifs and its significance for Schellman loops and other larger motifs within proteins.

    Science.gov (United States)

    Afzal, Avid M; Al-Shubailly, Fawzia; Leader, David P; Milner-White, E James

    2014-11-01

    The nest is a protein motif of three consecutive amino acid residues with dihedral angles 1,2-αR αL (RL nests) or 1,2-αL αR (LR nests). Many nests form a depression in which an anion or δ-negative acceptor atom is bound by hydrogen bonds from the main chain NH groups. We have determined the extent and nature of this bridging in a database of protein structures using a computer program written for the purpose. Acceptor anions are bound by a pair of bridging hydrogen bonds in 40% of RL nests and 20% of LR nests. Two thirds of the bridges are between the NH groups at Positions 1 and 3 of the motif (N1N3-bridging)-which confers a concavity to the nest; one third are of the N2N3 type-which does not. In bridged LR nests N2N3-bridging predominates (14% N1N3: 75% N2N3), whereas in bridged RL nests the reverse is true (69% N1N3: 25% N2N3). Most bridged nests occur within larger motifs: 45% in (hexapeptide) Schellman loops with an additional 4 → 0 hydrogen bond (N1N3), 11% in Schellman loops with an additional 5 → 1 hydrogen bond (N2N3), 12% in a composite structure including a type 1β-bulge loop and an asx- or ST- motif (N1N3)-remarkably homologous to the N1N3-bridged Schellman loop-and 3% in a composite structure including a type 2β-bulge loop and an asx-motif (N2N3). A third hydrogen bond is a previously unrecognized feature of Schellman loops as those lacking bridged nests have an additional 4 → 0 hydrogen bond.

  6. The Verrucomicrobia LexA-Binding Motif: Insights into the Evolutionary Dynamics of the SOS Response.

    Science.gov (United States)

    Erill, Ivan; Campoy, Susana; Kılıç, Sefa; Barbé, Jordi

    2016-01-01

    The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division, and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  7. The Verrucomicrobia LexA-binding Motif: Insights into the Evolutionary Dynamics of the SOS Response

    Directory of Open Access Journals (Sweden)

    Ivan Erill

    2016-07-01

    Full Text Available The SOS response is the primary bacterial mechanism to address DNA damage, coordinating multiple cellular processes that include DNA repair, cell division and translesion synthesis. In contrast to other regulatory systems, the composition of the SOS genetic network and the binding motif of its transcriptional repressor, LexA, have been shown to vary greatly across bacterial clades, making it an ideal system to study the co-evolution of transcription factors and their regulons. Leveraging comparative genomics approaches and prior knowledge on the core SOS regulon, here we define the binding motif of the Verrucomicrobia, a recently described phylum of emerging interest due to its association with eukaryotic hosts. Site directed mutagenesis of the Verrucomicrobium spinosum recA promoter confirms that LexA binds a 14 bp palindromic motif with consensus sequence TGTTC-N4-GAACA. Computational analyses suggest that recognition of this novel motif is determined primarily by changes in base-contacting residues of the third alpha helix of the LexA helix-turn-helix DNA binding motif. In conjunction with comparative genomics analysis of the LexA regulon in the Verrucomicrobia phylum, electrophoretic shift assays reveal that LexA binds to operators in the promoter region of DNA repair genes and a mutagenesis cassette in this organism, and identify previously unreported components of the SOS response. The identification of tandem LexA-binding sites generating instances of other LexA-binding motifs in the lexA gene promoter of Verrucomicrobia species leads us to postulate a novel mechanism for LexA-binding motif evolution. This model, based on gene duplication, successfully addresses outstanding questions in the intricate co-evolution of the LexA protein, its binding motif and the regulatory network it controls.

  8. Analysis and Simulation of the Simplified Aircraft-Based Paired Approach Concept With the ALAS Alerting Algorithm in Conjunction With Echelon and Offset Strategies

    Science.gov (United States)

    Torres-Pomales, Wilfredo; Madden, Michael M.; Butler, Rickey W.; Perry, Raleigh B.

    2014-01-01

    This report presents analytical and simulation results of an investigation into proposed operational concepts for closely spaced parallel runways, including the Simplified Aircraft-based Paired Approach (SAPA) with alerting and an escape maneuver, MITRE?s echelon spacing and no escape maneuver, and a hybrid concept aimed at lowering the visibility minima. We found that the SAPA procedure can be used at 950 ft separations or higher with next-generation avionics and that 1150 ft separations or higher is feasible with current-rule compliant ADS-B OUT. An additional 50 ft reduction in runway separation for the SAPA procedure is possible if different glideslopes are used. For the echelon concept we determined that current generation aircraft cannot conduct paired approaches on parallel paths using echelon spacing on runways less than 1400 ft apart and next-generation aircraft will not be able to conduct paired approach on runways less than 1050 ft apart. The hybrid concept added alerting and an escape maneuver starting 1 NM from the threshold when flying the echelon concept. This combination was found to be effective, but the probability of a collision can be seriously impacted if the turn component of the escape maneuver has to be disengaged near the ground (e.g. 300 ft or below) due to airport buildings and surrounding terrain. We also found that stabilizing the approach path in the straight-in segment was only possible if the merge point was at least 1.5 to 2 NM from the threshold unless the total system error can be sufficiently constrained on the offset path and final turn.

  9. Paired structures in knowledge representation

    DEFF Research Database (Denmark)

    Montero, J.; Bustince, H.; Franco de los Ríos, Camilo;

    2016-01-01

    In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here it is clai......In this position paper we propose a consistent and unifying view to all those basic knowledge representation models that are based on the existence of two somehow opposite fuzzy concepts. A number of these basic models can be found in fuzzy logic and multi-valued logic literature. Here...... of paired structures, generated from two paired concepts together with their associated neutrality, all of them to be modeled as fuzzy sets. In this way, paired structures can be viewed as a standard basic model from which different models arise. This unifying view should therefore allow a deeper analysis...

  10. Sevoflurane Alters Spatiotemporal Functional Connectivity Motifs That Link Resting-State Networks during Wakefulness

    Science.gov (United States)

    Kafashan, MohammadMehdi; Ching, ShiNung; Palanca, Ben J. A.

    2016-01-01

    Background: The spatiotemporal patterns of correlated neural activity during the transition from wakefulness to general anesthesia have not been fully characterized. Correlation analysis of blood-oxygen-level dependent (BOLD) functional magnetic resonance imaging (fMRI) allows segmentation of the brain into resting-state networks (RSNs), with functional connectivity referring to the covarying activity that suggests shared functional specialization. We quantified the persistence of these correlations following the induction of general anesthesia in healthy volunteers and assessed for a dynamic nature over time. Methods: We analyzed human fMRI data acquired at 0 and 1.2% vol sevoflurane. The covariance in the correlated activity among different brain regions was calculated over time using bounded Kalman filtering. These time series were then clustered into eight orthogonal motifs using a K-means algorithm, where the structure of correlated activity throughout the brain at any time is the weighted sum of all motifs. Results: Across time scales and under anesthesia, the reorganization of interactions between RSNs is related to the strength of dynamic connections between member pairs. The covariance of correlated activity between RSNs persists compared to that linking individual member pairs of different RSNs. Conclusions: Accounting for the spatiotemporal structure of correlated BOLD signals, anesthetic-induced loss of consciousness is mainly associated with the disruption of motifs with intermediate strength within and between members of different RSNs. In contrast, motifs with higher strength of connections, predominantly with regions-pairs from within-RSN interactions, are conserved among states of wakefulness and sevoflurane general anesthesia. PMID:28082871

  11. SiteBinder: an improved approach for comparing multiple protein structural motifs.

    Science.gov (United States)

    Sehnal, David; Vařeková, Radka Svobodová; Huber, Heinrich J; Geidl, Stanislav; Ionescu, Crina-Maria; Wimmerová, Michaela; Koča, Jaroslav

    2012-02-27

    There is a paramount need to develop new techniques and tools that will extract as much information as possible from the ever growing repository of protein 3D structures. We report here on the development of a software tool for the multiple superimposition of large sets of protein structural motifs. Our superimposition methodology performs a systematic search for the atom pairing that provides the best fit. During this search, the RMSD values for all chemically relevant pairings are calculated by quaternion algebra. The number of evaluated pairings is markedly decreased by using PDB annotations for atoms. This approach guarantees that the best fit will be found and can be applied even when sequence similarity is low or does not exist at all. We have implemented this methodology in the Web application SiteBinder, which is able to process up to thousands of protein structural motifs in a very short time, and which provides an intuitive and user-friendly interface. Our benchmarking analysis has shown the robustness, efficiency, and versatility of our methodology and its implementation by the successful superimposition of 1000 experimentally determined structures for each of 32 eukaryotic linear motifs. We also demonstrate the applicability of SiteBinder using three case studies. We first compared the structures of 61 PA-IIL sugar binding sites containing nine different sugars, and we found that the sugar binding sites of PA-IIL and its mutants have a conserved structure despite their binding different sugars. We then superimposed over 300 zinc finger central motifs and revealed that the molecular structure in the vicinity of the Zn atom is highly conserved. Finally, we superimposed 12 BH3 domains from pro-apoptotic proteins. Our findings come to support the hypothesis that there is a structural basis for the functional segregation of BH3-only proteins into activators and enablers.

  12. Recurring RNA structural motifs underlie the mechanics of L1 stalk movement

    Science.gov (United States)

    Mohan, Srividya; Noller, Harry F.

    2017-02-01

    The L1 stalk of the large ribosomal subunit undergoes large-scale movements coupled to the translocation of deacylated tRNA during protein synthesis. We use quantitative comparative structural analysis to localize the origins of L1 stalk movement and to understand its dynamic interactions with tRNA and other structural elements of the ribosome. Besides its stacking interactions with the tRNA elbow, stalk movement is directly linked to intersubunit rotation, rotation of the 30S head domain and contact of the acceptor arm of deacylated tRNA with helix 68 of 23S rRNA. Movement originates from pivoting at stacked non-canonical base pairs in a Family A three-way junction and bending in an internal G-U-rich zone. Use of these same motifs as hinge points to enable such dynamic events as rotation of the 30S subunit head domain and in flexing of the anticodon arm of tRNA suggests that they represent general strategies for movement of functional RNAs.

  13. Matched-pair classification

    Energy Technology Data Exchange (ETDEWEB)

    Theiler, James P [Los Alamos National Laboratory

    2009-01-01

    Following an analogous distinction in statistical hypothesis testing, we investigate variants of machine learning where the training set comes in matched pairs. We demonstrate that even conventional classifiers can exhibit improved performance when the input data has a matched-pair structure. Online algorithms, in particular, converge quicker when the data is presented in pairs. In some scenarios (such as the weak signal detection problem), matched pairs can be generated from independent samples, with the effect not only doubling the nominal size of the training set, but of providing the structure that leads to better learning. A family of 'dipole' algorithms is introduced that explicitly takes advantage of matched-pair structure in the input data and leads to further performance gains. Finally, we illustrate the application of matched-pair learning to chemical plume detection in hyperspectral imagery.

  14. Five-State Molecular Shuttling of a Pair of [2]Rotaxanes: Distinct Outputs in Response to Acid and Base Stimuli.

    Science.gov (United States)

    Ueda, Masahiro; Terazawa, Shoya; Deguchi, Yasuaki; Kimura, Masaki; Matsubara, Naoki; Miyagawa, Shinobu; Kawasaki, Tsuneomi; Tokunaga, Yuji

    2016-08-19

    In this study we synthesized two acid-/base-controllable [2]rotaxanes featuring aminodiazobenzene and aminocoumarin units, respectively, as chromophores and dibenzo[24]crown-8 and dibenzo[25]crown-8 units, respectively, as their macrocyclic components. Each [2]rotaxane contained N-alkylarylamine (ammonium) and N,N-dialkylamine (ammonium) centers as binding sites for their crown ether components. The absorption patterns of the chromophores were dependent on the position of the encircling macrocyclic component and the degree of protonation, with three distinct states (under acidic, neutral, and basic conditions) evident for each [2]rotaxane. The mixed [2]rotaxane system displayed stepwise and independent molecular shuttling behavior based on the degree of protonation of the amino groups in response to both the amount and strength of added acids or bases; as such, the system provided five different absorption signals as outputs that could be read using UV/Vis spectroscopy.

  15. Ion pair-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography as a new method for determining five folate derivatives in foodstuffs.

    Science.gov (United States)

    Nojavan, Yones; Kamankesh, Marzieh; Shahraz, Farzaneh; Hashemi, Maryam; Mohammadi, Abdorreza

    2015-05-01

    A novel technique for simultaneous determination of five folate derivatives in various food matrices was developed by ion pair-based dispersive liquid-liquid microextraction (IP-DLLME) combined with high-performance liquid chromatography (HPLC). In the proposed method, N-methyl-N,N-dioctyloctan-1-ammonium chloride (aliquat-336) was used as an ion-pair reagent. Effective variables of microextraction process were optimized. Under optimum conditions, the method yielded a linear calibration curve ranging from 1-200 ng g(-1) with correlation coefficients (r(2)) higher than 0.98. The relative standard deviation for the seven analyses was 5.2-7.4%. Enrichment factors for the five folates ranged between 108-135. Limits of detection were 2-4.1 ng g(-1). A comparison of this method with other methods described that the new proposed method is rapid and accurate, and gives very good enrichment factors and detection limits for determining five folate derivatives. The newly developed method was successfully applied for the determination of five folate derivatives in wheat flour, egg yolk and orange juice samples.

  16. Overview of Herb-pairs Compatibility Based on Transporters%基于转运蛋白研究中药对配伍概述

    Institute of Scientific and Technical Information of China (English)

    江纯劼; 夏玉凤

    2015-01-01

    药物转运蛋白与药物在体内的药动学过程密切相关,药物对转运蛋白的抑制或诱导作用是药物配伍使用时产生药代动相互作用的主要因素,这种作用可能是药对配伍原则的重要机制。因此,本文介绍了常见转运蛋白,并以转运蛋白为切入点,对药对配伍机制及合理性作一综述。%Drug transporters are related to the pharmacokinetics closely.The pharmacokinetic interaction caused by the inhibition or induction of drugs on transporters is an important mechanism of herb-pairs compatibility.Therefore,this article introduced common transporters,and reviewed the mechanism and rationality of herb-pairs compatibility based on transporters.

  17. LC-MS/MS determination and interaction of the main components from the traditional Chinese drug pair Danshen-Sanqi based on rat intestinal absorption.

    Science.gov (United States)

    Huang, Juan; Zhang, Jing; Bai, Junqi; Xu, Wen; Wu, Dinghong; Qiu, Xiaohui

    2016-12-01

    The Chinese drug pair Danshen (Salvia miltiorrhiza)-Sanqi (Panax ginseng) has been widely used for centuries treating various cardiovascular disorders, among which salvianlic acid B (SAB), ginsenoside Rg1 (GRg1 ), ginsenoside Rb1 (GRb1 ) and notoginsenoside R1 (NGR1 ) were identified as the major components. The present study focused on the interaction between these components based on investigating their intestinal absorption using the Ussing chamber technique. The concentrations of SAB, GRg1 , GRb1 and NGR1 in the intestinal perfusate were determined by LC-MS/MS method, followed by Q (accumulative quantity) and Papp (apparent permeability). The results showed that all these four main components displayed very low permeabilities, which implied their poor absorption in the rat intestine. The intestinal absorption level of SAB displayed regioselectivity: duodenum absorption of GRg1 and GRb1 in the different segments. The Q and Papp values of the four main components were obviously increased in jejunum when co-administrating Danshen extract with Sanqi extract. In conclusion, compatibility of Danshen and Sanqi could remarkably improve the intestinal absorption level of the main components in the pair. To some extent, this might explain the nature of the compatibility mechanisms of composite formulae in TCMs.

  18. Using SCOPE to identify potential regulatory motifs in coregulated genes.

    Science.gov (United States)

    Martyanov, Viktor; Gross, Robert H

    2011-05-31

    SCOPE is an ensemble motif finder that uses three component algorithms in parallel to identify potential regulatory motifs by over-representation and motif position preference. Each component algorithm is optimized to find a different kind of motif. By taking the best of these three approaches, SCOPE performs better than any single algorithm, even in the presence of noisy data. In this article, we utilize a web version of SCOPE to examine genes that are involved in telomere maintenance. SCOPE has been incorporated into at least two other motif finding programs and has been used in other studies. The three algorithms that comprise SCOPE are BEAM, which finds non-degenerate motifs (ACCGGT), PRISM, which finds degenerate motifs (ASCGWT), and SPACER, which finds longer bipartite motifs (ACCnnnnnnnnGGT). These three algorithms have been optimized to find their corresponding type of motif. Together, they allow SCOPE to perform extremely well. Once a gene set has been analyzed and candidate motifs identified, SCOPE can look for other genes that contain the motif which, when added to the original set, will improve the motif score. This can occur through over-representation or motif position preference. Working with partial gene sets that have biologically verified transcription factor binding sites, SCOPE was able to identify most of the rest of the genes also regulated by the given transcription factor. Output from SCOPE shows candidate motifs, their significance, and other information both as a table and as a graphical motif map. FAQs and video tutorials are available at the SCOPE web site which also includes a "Sample Search" button that allows the user to perform a trial run. Scope has a very friendly user interface that enables novice users to access the algorithm's full power without having to become an expert in the bioinformatics of motif finding. As input, SCOPE can take a list of genes, or FASTA sequences. These can be entered in browser text fields, or read from

  19. GPUmotif: an ultra-fast and energy-efficient motif analysis program using graphics processing units.

    Directory of Open Access Journals (Sweden)

    Pooya Zandevakili

    Full Text Available Computational detection of TF binding patterns has become an indispensable tool in functional genomics research. With the rapid advance of new sequencing technologies, large amounts of protein-DNA interaction data have been produced. Analyzing this data can provide substantial insight into the mechanisms of transcriptional regulation. However, the massive amount of sequence data presents daunting challenges. In our previous work, we have developed a novel algorithm called Hybrid Motif Sampler (HMS that enables more scalable and accurate motif analysis. Despite much improvement, HMS is still time-consuming due to the requirement to calculate matching probabilities position-by-position. Using the NVIDIA CUDA toolkit, we developed a graphics processing unit (GPU-accelerated motif analysis program named GPUmotif. We proposed a "fragmentation" technique to hide data transfer time between memories. Performance comparison studies showed that commonly-used model-based motif scan and de novo motif finding procedures such as HMS can be dramatically accelerated when running GPUmotif on NVIDIA graphics cards. As a result, energy consumption can also be greatly reduced when running motif analysis using GPUmotif. The GPUmotif program is freely available at http://sourceforge.net/projects/gpumotif/

  20. An analysis of multi-type relational interactions in FMA using graph motifs with disjointness constraints.

    Science.gov (United States)

    Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S

    2012-01-01

    The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.