WorldWideScience

Sample records for base metal

  1. Ferrocene base metal chelates

    International Nuclear Information System (INIS)

    Review of the works, devoted to different types of ferrocene metal chelates and to a possibility of ferrocene-containing ligand modification by means of complexing, is presented. Structure, properties and spectral characteristics of transitional metal, rare earth element, Cd2+, UO22+, Th4+ etc. complexes with ferrocene diketones, ferrocene acyl derivatives based on thiosemicarbazones and hydrazones and other heterometal ferrocene-containing metal chelates, are considered. 134 refs., 1 tab

  2. Metamaterial metal-based bolometers

    OpenAIRE

    Niesler, Fabian B. P.; Gansel, Justyna K.; Fischbach, Sarah; Wegener, Martin

    2012-01-01

    We demonstrate metamaterial metal-based bolometers, which take advantage of resonant absorption in that a spectral and/or polarization filter can be built into the bolometer. Our proof-of-principle gold-nanostructure-based devices operate around 1.5 \\mum wavelength and exhibit room-temperature time constants of about 134 \\mus. The ultimate detectivity is limited by Johnson noise, enabling room-temperature detection of 1 nW light levels within 1 Hz bandwidth. Graded bolometer arrays might allo...

  3. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  4. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  5. Model Based Metal Transfer Control

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2006-01-01

    In pulsed gas metal arc welding (pulsed GMAW) current pulses are used for detaching drops at the tip of the electrode. To obtain a high weld quality one drop should be detached for every pulse, and moreover, the amount of energy used for detachment should be kept at a minimum. Thus, each pulse mu...

  6. Thermodynamic data-base for metal fluorides

    International Nuclear Information System (INIS)

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project

  7. Thermodynamic data-base for metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.

  8. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  9. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  10. Chemoelectronic circuits based on metal nanoparticles.

    Science.gov (United States)

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions. PMID:26974958

  11. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  12. Metal-based antimicrobial protease inhibitors.

    Science.gov (United States)

    Kellett, A; Prisecaru, A; Slator, C; Molphy, Z; McCann, M

    2013-01-01

    Limitations associated with the production cost, metabolic instability, side-effects, resistance and poor pharmacokinetics of organic protease inhibitors (PIs), which form an essential component of the front line HAART treatment for HIV, have fuelled efforts into finding novel, transition metal-based alternatives. Some of the attractive features of metalbased therapeutics include synthetic simplicity, solubility control, redox capability, expansion of coordination number and topography matching of the complex to the protein's active site. Building asymmetry into the complex, which may offer better discrimination between host and rogue cell, can readily be achieved through coordination of chiral ligands to the metal centre. Although the scope of this review has been limited to metal-based agents that have been reported to bind/inhibit HIV-1 and parasitic proteases, some desirables, such as high activity, low dosage, minimal toxicity, crossinhibition, unique binding modes and selectivity, have already been delivered. The variability of the d-block metals, coupled with the availability of designer organic ligands, augers well for the future development of clinical metallo-drugs for deployment against protease-associated, fatal diseases.

  13. Chemical Sensors Based on Metal Oxide Nanostructures

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  14. Progress in base-metal water oxidation catalysis.

    Science.gov (United States)

    Parent, Alexander Rene; Sakai, Ken

    2014-08-01

    This minireview provides a brief overview of the progress that has been made in developing homogeneous water oxidation catalysts based on base metals (manganese, iron, cobalt, nickel, and copper) from the 1990s to mid-2014. The impact of each contribution is analyzed, and opportunities for further improvement are noted. In addition, the relative stabilities of the base-metal catalysts that have been reported are compared to illustrate the importance of developing more robust catalytic systems by using these metals. This manuscript is intended to provide a firm foundation for researchers entering the field of water oxidation based on base metals and a useful reference for those currently involved in the field.

  15. A Heteroepitaxial Perovskite Metal-Base Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, T.; Hikita, Y.; /Tokyo U.; Hwang, H.Y.; /Tokyo U. /JST, PRESTO /SLAC

    2011-08-11

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  16. Computer-based sensing and visualizing of metal transfer mode in gas metal arc welding

    Institute of Scientific and Technical Information of China (English)

    Chen Maoai; Wu Chuansong; Lü Yunfei

    2008-01-01

    Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of the welding current and arc voltage with high speed imaging of the metal transfer. It can simultaneously display the metal transfer processes and waveforms of electrical welding parameters in real-time The metal transfer videos and waveforms of electrical welding parameters can be recorded. Metal transfers under various welding conditions have been investigated with the system developed.

  17. Crystallization Kinetics of Misch Metal Based Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was found that the apparent activation energy Eg, Ex and Ep of the BMG calculated by Kissinger's method were 189.58, 170.68 and 170.41 kJ·mol-1, respectively, which was bigger than those of La55Al25Cu10Ni5Co5 BMG indicating that thermal stability of the former was higher than that of the latter. The local activation energy obtained using Ozawa equation decreased as crystallization proceeded except for the initial stage. The Avrami exponents were calculated to be in the range of 3.26~5.23 for different crystallization stages and isothermal temperatures. This implied that crystallization of Mm55Al25Cu10Ni5Co5 BMG was governed by diffusion-controlled three-dimensional growth with either reduced or increased nucleation rate, depending on isothermal temperature. Inconsistency of thermal stability with glass-forming ability for Mm(La)-Al-Cu-Ni-Co BMGs was discussed.

  18. Metal-based impurities in graphenes: application for electroanalysis.

    Science.gov (United States)

    Chee, Sze Yin; Pumera, Martin

    2012-05-01

    We show here that metallic impurities presented in graphenes prepared from graphite can be usefully employed for electroanalysis. We demonstrate that cumene hydroperoxide electrochemical reduction on graphene containing iron-based impurities provides significantly larger voltammetric currents than the same experiment using iron oxide nanoparticles. This opens doors for turning metallic impurities into potentially useful components of graphene based electrochemical systems.

  19. Laser -Based Joining of Metallic and Non-metallic Materials

    Science.gov (United States)

    Padmanabham, G.; Shanmugarajan, B.

    Laser as a high intensity heat source can be effectively used for joining of materials by fusion welding and brazing in autogenous or in hybrid modes. In autogenous mode, welding is done in conduction , deep penetration , and keyhole mode. However, due to inherently high energy density available from a laser source, autogenous keyhole welding is the most popular laser welding mode. But, it has certain limitations like need for extremely good joint fit-up, formation of very hard welds in steel , keyhole instability, loss of alloying elements, etc. To overcome these limitations, innovative variants such as laser-arc hybrid welding , induction-assisted welding , dual beam welding , etc., have been developed. Using laser heat, brazing can be performed by melting a filler to fill the joints, without melting the base materials. Accomplishing laser-based joining as mentioned above requires appropriate choice of laser source, beam delivery system, processing head with appropriate optics and accessories. Basic principles of various laser-based joining processes, laser system technology, process parameters, metallurgical effects on different base materials, joint performance, and applications are explained in this chapter.

  20. THE SEPARATION OF BASE METALS FROM PLATINUM METALS BY ION EXCHANGE

    Institute of Scientific and Technical Information of China (English)

    JIANGLingen; HUANGYan

    1992-01-01

    In this paper the separation of base metals Fe,Co,Ni and Cu from the platinum metals on a cation exchanger column was studies.The convenient separation conditions are 0.5mol·dm-3 NaCl,pH=2. The recovery efficiency of Rh is 98%.

  1. Microfluidic platforms for gallium-based liquid metal alloy

    Science.gov (United States)

    Kim, Daeyoung

    As an alternative to toxic mercury, non-toxic gallium-based liquid metal alloy has been gaining popularity due to its higher thermal and electrical conductivities, and low toxicity along with liquid property. However, it is difficult to handle as the alloy becomes readily oxidized in atmospheric air environment. This instant oxidation causes the gallium-based liquid metal alloy to wet almost any solid surface. Therefore, it has been primarily limited to applications which rely only on its deformability, not on its mobility. In this research, various approaches to mobilize gallium-based liquid metal alloy were investigated. Multi-scale surface patterned with polydimethylsiloxane (PDMS) micro pillar array showed super-lyophobic property against gallium-based liquid metal alloy by minimizing the contact area between the solid surface and the liquid metal, and it was expanded to a three-dimensional tunnel shaped microfluidic channel. Vertically-aligned carbon nanotube forest leads to another promising super-lyophobic surface due to its hierarchical micro/nano scale combined structures and chemical inertness. When the carbon nanotubes were transferred onto flexible PDMS by imprinting, the super-lyophobic property was still maintained even under the mechanical deformation such as stretching and bending. Alternatively, the gallium-based liquid metal can be manipulated by modifying the surface of liquid metal itself. With chemical reaction with HCl 'vapor', the oxidized surface (mainly Ga2O3/Ga2O) of gallium-based liquid metal was converted to GaCl3/InCl 3 resulting in the recovery of non-wetting characteristics. Paper which is intrinsically porous is attractive as a super-lyophobic surface and it was found that hydrochloric acid (HCl) impregnation enhanced the anti-wetting property by the chemical reaction. As another alternative method, by coating the viscoelastic oxidized surface of liquid metal with ferromagnetic materials (CoNiMnP or Fe), it showed non

  2. Clinical Delivery of Therapeutic Agents Based on Metals

    OpenAIRE

    Fox, John

    1997-01-01

    Metals have been used in clinical practice for hundreds of years and for a variety of indications. Although potent agents whose activity may be adapted by manipulation of their chemistry and that of associated ligands, their use has been limited by toxic effects. There is now a burgeoning series of delivery technologies available which may be adapted to the administration of metal based drugs. Together with greater understanding of metal chemistry and their mechanisms of action in disease pro...

  3. Synthesis of Novel Metal Ion Sensors Based on DNA-Metal Interactions

    Institute of Scientific and Technical Information of China (English)

    Akira Ono; Shiqi Cao; Humika Togashi; Yoko Miyake

    2005-01-01

    @@ 1Introduction The interactions of metal ions with nucleic acids, nucleosides, and nucleo-bases have been extensively investigated[1,2]. We have reported that thymine-thymine (T-T) and cytosine-cytosine (C- C) miss base pairs in DNA duplexes highly selectively capture HgⅡ ion and Ag Ⅰ ion, which result in formations of metal-mediated base pairs, T-HgⅡ -T and C-AgⅠ -C, in duplexes[3]. The phenomenon is expected to be useful for a variety of studies such as synthesis of nano-wires containing metal ions, developing metal-ion sensing methods, etc.Here, we report novel oligodeoxyribonucleotide (ODN)-based sensors that detect HgⅡ ions and AgⅠ ions in aqueous solutions.

  4. Saccharide-based Approach to Green Metallic Nanostructure Synthesis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Sørensen, Karsten Holm; Jensen, Palle Skovhus;

    A green approach to solution synthesis of metallic nanoparticles has been developed using harmless and bioapplicable chemicals as well as moderate temperatures. Metal precursors are reduced by glucose/buffers and sterically stabilized by starch. The saccharide based procedure is highly diverse pr...

  5. Liquid metal actuation-based reversible frequency tunable monopole antenna

    Science.gov (United States)

    Kim, Daeyoung; Pierce, Richard G.; Henderson, Rashaunda; Doo, Seok Joo; Yoo, Koangki; Lee, Jeong-Bong

    2014-12-01

    We report the fabrication and characterization of a reversible resonant frequency tunable antenna based on liquid metal actuation. The antenna is composed of a coplanar waveguide fed monopole stub printed on a copper-clad substrate, and a tunnel-shaped microfluidic channel linked to the printed metal. The gallium-based liquid metal can be injected and withdrawn from the channel in response to an applied air pressure. The gallium-based liquid metal is treated with hydrochloric acid to eliminate the oxide layer, and associated wetting/sticking problems, that arise from exposure to an ambient air environment. Elimination of the oxide layer allows for reliable actuation and repeatable and reversible tuning. By controlling the liquid metal slug on-demand with air pressure, the liquid metal can be readily controllable to connect/disconnect to the monopole antenna so that the physical length of the antenna reversibly tunes. The corresponding reversible resonant frequency changes from 4.9 GHz to 1.1 GHz. The antenna properties based on the liquid metal actuation were characterized by measuring the reflection coefficient and agreed well with simulation results. Additionally, the corresponding time-lapse images of controlling liquid metal in the channel were studied.

  6. Silicon-based coatings on niobium metal

    Energy Technology Data Exchange (ETDEWEB)

    Stupik, P.D.; Jervis, T.R.; Nastasi, M.; Donovan, M.M.; Barron, A.R. (Harvard Univ., Cambridge, MA (USA). Dept. of Chemistry; Los Alamos National Lab., NM (USA); Harvard Univ., Cambridge, MA (USA). Dept. of Chemistry)

    1989-01-01

    Silicon coatings on niobium substrates were subjected to thermal, ion beam and laser mixing, and the effectiveness of the different methods for the synthesis of graded interfaces was compared. The resulting metal/silicon interfaces were characterized by x-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES) and the Rutherford backscattering (RBS). 6 refs., 4 figs.

  7. Silicon-based coatings on niobium metal

    International Nuclear Information System (INIS)

    Silicon coatings on niobium substrates were subjected to thermal, ion beams and laser mixing, and the effectiveness of the different methods for the synthesis of graded interfaces was compared. The resulting metal/silicon interfaces are characterized by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and Rutherford backscattering (RBS)

  8. Metallicity calibration for solar type stars based on red spectra

    Institute of Scientific and Technical Information of China (English)

    Jing-Kun Zhao; Gang Zhao; Yu-Qin Chen; A-Li Luo

    2011-01-01

    Based on a high resolution and high signal-to-noise ratio (S/N) spectral analysis of 90 solar-type stars, we have established several new metallicity calibrations in the Teff range [5600, 6500] K based on red spectra with the wavelength range of 560-880 nm. The new metallicity calibrations are applied to determine the metallicity of solar analogs selected from Sloan Digital Sky Survey (SDSS) spectra. There is a good consistent result with the adopted value presented in SDSS-DR7 and a small scatter of 0.26 dex for stars with S/N > 50 being obtained. This study provides a new reliable way to derive the metallicity for solar-like stars with low resolution spectra.In particular, our calibrations are useful for finding metal-rich stars, which are missing in the SEGUE Stellar Parameter Pipeline.

  9. CARBON-CONTAINING COMPOSITES BASED ON METALS

    Directory of Open Access Journals (Sweden)

    VAGANOV V. E.

    2015-10-01

    Full Text Available Problem statement Among the developed technologies metal-composites production,a special place takes powder metallurgy, having fundamental differences from conventionally used foundry technologies. The main advantages of this technology are: the possibility of sensitive control, the structure and phase composition of the starting components, and ultimately the possibility of obtaining of bulk material in nanostructured state with a minimum of processing steps. The potential reinforcers metals include micro and nano-sized oxides, carbides, nitrides, whiskers. The special position is occupied with carbon nanostructures (CNS: С60 fullerenes, single-layer and multi-layer nanotubes, onions (spherical "bulbs", nano-diamonds and graphite,their properties are being intensively studied in recent years. These objects have a high thermal and electrical conductivity values, superelasticity, and have a strength approximate to the theoretical value, which can provide an obtaining composite nanomaterial with a unique set of physical and mechanical properties. In creation of a metal matrix composite nanomaterials (CM, reinforced by various CNS, a special attention should be given to mechanical activation processes (MA already at the stage of preparation of the starting components affecting the structure, phase composition and properties of aluminum-matrix composites. Purpose. To investigate the influence of mechanical activation on the structure and phase composition of aluminum-matrix composites. Conclusion. The results of the study of the structure and phase composition of the initial and mechanically activated powders and bulk-modified metal-composites are shown, depending on the type and concentration of modifying varieties CNS, regimes of MA and parameters of compaction. The study is conducted of tribological properties of Al-CNS OF nanostructured materials.

  10. Polysiloxane based CHEMFETs for the detection of heavy metal ions

    NARCIS (Netherlands)

    Lugtenberg, Ronny J.W.; Antonisse, Martijn M.G.; Egberink, Richard J.M.; Engbersen, Johan F.J.; Reinhoudt, David N.

    1996-01-01

    The development of polysiloxane based chemically modified field effect transistors (CHEMFETs) for heavy metal ions is described. Different polar siloxane copolymers have been synthesized via an anionic copolymerization of hexamethylcyclotrisiloxane, [3-(methacryloxy)propyl]pentamethylcyclotrisiloxan

  11. Synthesis and applications of graphene-based noble metal nanostructures

    Directory of Open Access Journals (Sweden)

    Chaoliang Tan

    2013-01-01

    Full Text Available Graphene and its derivatives, such as graphene oxide (GO and reduced graphene oxide (rGO, are ideal platforms for constructing graphene-based nanostructures for various applications. Hybrid materials of noble metal nanocrystal-decorated GO or rGO with novel or enhanced properties and functions have been extensively explored recently. In this mini-review, various approaches for synthesis of graphene-templated noble metal nanomaterials are discussed. In particular, those novel synthetic strategies and interesting architectures are highlighted. Moreover, the applications of graphene-based noble metal nanostructures in fuel cells, electrochemical sensors, and surface enhanced Raman scattering (SERS will be briefly introduced.

  12. Memory impedance in TiO2 based metal-insulator-metal devices

    OpenAIRE

    Li Qingjiang; Ali Khiat; Iulia Salaoru; Christos Papavassiliou; Xu Hui; Themistoklis Prodromakis

    2014-01-01

    Large attention has recently been given to a novel technology named memristor, for having the potential of becoming the new electronic device standard. Yet, its manifestation as the fourth missing element is rather controversial among scientists. Here we demonstrate that TiO2-based metal-insulator-metal devices are more than just a memory-resistor. They possess resistive, capacitive and inductive components that can concurrently be programmed; essentially exhibiting a convolution of memristiv...

  13. In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metal-Organic Framework Nanosheets.

    Science.gov (United States)

    Lu, Qipeng; Zhao, Meiting; Chen, Junze; Chen, Bo; Tan, Chaoliang; Zhang, Xiao; Huang, Ying; Yang, Jian; Cao, Feifei; Yu, Yifu; Ping, Jianfeng; Zhang, Zhicheng; Wu, Xue-Jun; Zhang, Hua

    2016-09-01

    A facile in situ synthetic method is developed to synthesize metal sulfide nanoparticles based on 2D M-TCPP (M = Cu, Cd, or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin)) metal-organic framework nanosheets. The obtained CuS/Cu-TCPP composite nanosheet is used as the active material in photoelectrochemical cells, showing notably increased photocurrent due to the improved exciton separation and charge carrier transport.

  14. CO2 Emission and Firm Heterogeneity: A Study of Metals & Metal based Industries in India

    OpenAIRE

    K., Narayanan; Sahu, Santosh Kumar

    2012-01-01

    Industrial energy efficiency has emerged as one of the key issues in India. The increasing demand for energy that leads to growing challenge of climate change has resulted major issues. It is obvious that high-energy intensity leads to high carbon intensity of the economy. This paper is an attempt to estimate the firm level CO2 emissions for the metals and metal based industries in Indian manufacturing. Calculation of firm level emissions is carried out following IPCC reference approach metho...

  15. Detection of heavy metal by paper-based microfluidics.

    Science.gov (United States)

    Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie

    2016-09-15

    Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed. PMID:27131999

  16. Vegetable Oil-Based Metal Working Fluids-A Review

    Directory of Open Access Journals (Sweden)

    Vaibhav Koushik A.V

    2012-06-01

    Full Text Available Metal working fluids are widely employed to increase the machining productivity and quality of metal cutting, but their usage poses a great threat to ecology and health of workers in the industry. Therefore, a need arose to identify eco-friendly and hazard free alternatives to conventional mineral oil based metal working fluids. Vegetable oils have become identified world over as a potential source of environmentally favorable metal working fluids due to a combination of biodegradability, renewability and excellent lubrication performance. Low oxidation and thermal stability, poor low temperature behavior, however limit their potential application as metal working lubricants and has become the thrust area of research of scientists and tribologists world over.

  17. Zr-based conversion coatings for multi-metal substrates

    OpenAIRE

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of a combination of different metals, therefore, one of the aims of this work is to study the formation mechanism of Zr-based conversion coatings on different metallic surfaces. Prior to the immersion...

  18. Metallic ion release from biocompatible cobalt-based alloy

    Directory of Open Access Journals (Sweden)

    Dimić Ivana D.

    2014-01-01

    Full Text Available Metallic biomaterials, which are mainly used for the damaged hard tissue replacements, are materials with high strength, excellent toughness and good wear resistance. The disadvantages of metals as implant materials are their susceptibility to corrosion, the elastic modulus mismatch between metals and human hard tissues, relatively high density and metallic ion release which can cause serious health problems. The aim of this study was to examine metallic ion release from Co-Cr-Mo alloy in artificial saliva. In that purpose, alloy samples were immersed into artificial saliva with different pH values (4.0, 5.5 and 7.5. After a certain immersion period (1, 3 and 6 weeks the concentrations of released ions were determined using Inductively Coupled Plasma - Mass Spectrophotometer (ICP-MS. The research findings were used in order to define the dependence between the concentration of released metallic ions, artificial saliva pH values and immersion time. The determined released metallic ions concentrations were compared with literature data in order to describe and better understand the phenomenon of metallic ion release from the biocompatible cobalt-based alloy. [Projekat Ministarstva nauke Republike Srbije, br. III 46010 i br. ON 174004

  19. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Science.gov (United States)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-05-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  20. Metal-based nanotoxicity and detoxification pathways in higher plants.

    Science.gov (United States)

    Ma, Chuanxin; White, Jason C; Dhankher, Om Parkash; Xing, Baoshan

    2015-06-16

    The potential risks from metal-based nanoparticles (NPs) in the environment have increased with the rapidly rising demand for and use of nanoenabled consumer products. Plant's central roles in ecosystem function and food chain integrity ensure intimate contact with water and soil systems, both of which are considered sinks for NPs accumulation. In this review, we document phytotoxicity caused by metal-based NPs exposure at physiological, biochemical, and molecular levels. Although the exact mechanisms of plant defense against nanotoxicity are unclear, several relevant studies have been recently published. Possible detoxification pathways that might enable plant resistance to oxidative stress and facilitate NPs detoxification are reviewed herein. Given the importance of understanding the effects and implications of metal-based NPs on plants, future research should focus on the following: (1) addressing key knowledge gaps in understanding molecular and biochemical responses of plants to NPs stress through global transcriptome, proteome, and metablome assays; (2) designing long-term experiments under field conditions at realistic exposure concentrations to investigate the impact of metal-based NPs on edible crops and the resulting implications to the food chain and to human health; and (3) establishing an impact assessment to evaluate the effects of metal-based NPs on plants with regard to ecosystem structure and function.

  1. MCPB.py: A Python Based Metal Center Parameter Builder.

    Science.gov (United States)

    Li, Pengfei; Merz, Kenneth M

    2016-04-25

    MCPB.py, a python based metal center parameter builder, has been developed to build force fields for the simulation of metal complexes employing the bonded model approach. It has an optimized code structure, with far fewer required steps than the previous developed MCPB program. It supports various AMBER force fields and more than 80 metal ions. A series of parametrization schemes to derive force constants and charge parameters are available within the program. We give two examples (one metalloprotein example and one organometallic compound example), indicating the program's ability to build reliable force fields for different metal ion containing complexes. The original version was released with AmberTools15. It is provided via the GNU General Public License v3.0 (GNU_GPL_v3) agreement and is free to download and distribute. MCPB.py provides a bridge between quantum mechanical calculations and molecular dynamics simulation software packages thereby enabling the modeling of metal ion centers. It offers an entry into simulating metal ions in a number of situations by providing an efficient way for researchers to handle the vagaries and difficulties associated with metal ion modeling. PMID:26913476

  2. Detuned Plasmonic Bragg Grating Sensor Based on a Defect Metal-Insulator-Metal Waveguide

    Science.gov (United States)

    Qu, Shinian; Song, Ci; Xia, Xiushan; Liang, Xiuye; Tang, Baojie; Hu, Zheng-Da; Wang, Jicheng

    2016-01-01

    A nanoscale Bragg grating reflector based on the defect metal-insulator-metal (MIM) waveguide is developed and numerically simulated by using the finite element method (FEM). The MIM-based structure promises a highly tunable broad stop-band in transmission spectra. The narrow transmission window is shown to appear in the previous stop-band by changing the certain geometrical parameters. The central wavelengths can be controlled easily by altering the geographical parameters. The development of surface plasmon polarition (SPP) technology in metallic waveguide structures leads to more possibilities of controlling light at deep sub-wavelengths. Its attractive ability of breaking the diffraction limit contributes to the design of optical sensors. PMID:27240381

  3. Therapeutics for Alzheimer's disease based on the metal hypothesis.

    Science.gov (United States)

    Bush, Ashley I; Tanzi, Rudolph E

    2008-07-01

    Alzheimer's disease is the most common form of dementia in the elderly, and it is characterized by elevated brain iron levels and accumulation of copper and zinc in cerebral beta-amyloid deposits (e.g., senile plaques). Both ionic zinc and copper are able to accelerate the aggregation of Abeta, the principle component of beta-amyloid deposits. Copper (and iron) can also promote the neurotoxic redox activity of Abeta and induce oxidative cross-linking of the peptide into stable oligomers. Recent reports have documented the release of Abeta together with ionic zinc and copper in cortical glutamatergic synapses after excitation. This, in turn, leads to the formation of Abeta oligomers, which, in turn, modulates long-term potentiation by controlling synaptic levels of the NMDA receptor. The excessive accumulation of Abeta oligomers in the synaptic cleft would then be predicted to adversely affect synaptic neurotransmission. Based on these findings, we have proposed the "Metal Hypothesis of Alzheimer's Disease," which stipulates that the neuropathogenic effects of Abeta in Alzheimer's disease are promoted by (and possibly even dependent on) Abeta-metal interactions. Increasingly sophisticated pharmaceutical approaches are now being implemented to attenuate abnormal Abeta-metal interactions without causing systemic disturbance of essential metals. Small molecules targeting Abeta-metal interactions (e.g., PBT2) are currently advancing through clinical trials and show increasing promise as disease-modifying agents for Alzheimer's disease based on the "metal hypothesis."

  4. A microspectrometer based on subwavelength metal nanohole array

    Science.gov (United States)

    Cui, Jun; Xia, Liangping; Yang, Zheng; Yin, Lu; Zheng, Guoxing; Yin, Shaoyun; Du, Chunlei

    2014-11-01

    Catering to the active demand of the miniaturization of spectrometers, a simple microspectrometer with small size and light weight is presented in this paper. The presented microspectrometer is a typical filter-based spectrometer using the extraordinary optical transmission property of subwavelength metal hole array structure. Different subwavelength metal nanohole arrays are designed to work as different filter units obtained by changing the lattice parameters. By processing the filter spectra with a unique algorithm based on sparse representation, the proposed spectrometer is demonstrated to have the capability of high spectral resolution and accuracy. Benefit for the thin filmed feature, the microspectrometer is expected to find its application in integrated optical systems.

  5. Compressive fracture characteristics of Zr-based bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The compressive fracture characteristics of Zr-based bulk metallic glass under uniaxial compression tests are studied.The zigzag rheological behavior is observed in the compression stress-strain curves of amorphous alloys.At room temperature the uniaxial compression fracture takes place along the plane which is at a 45-degree angle to the direction of the compressive stress.The microstructure of a typical fracture pattern is the vein network.A unique,finger-like vein pattern is found to exist at the fracture surface of Zr-based bulk metallic glass.

  6. Developing new metal-based therapeutics: challenges and opportunities.

    Science.gov (United States)

    Hambley, Trevor W

    2007-11-21

    Unexpected side effects and problems experienced in clinical trials have created a difficult environment for those developing new pharmaceuticals and, as a consequence, the number of new chemical entities being registered has fallen to a historic low. Those developing metal-based therapeutics will face the same difficulties, but this environment also provides many opportunities for creative solutions to be applied to overcoming the problems and concerns. In this perspective, these challenges and opportunities are considered in the context of examples of a number of classes of metal-based therapeutics.

  7. High responsivity 4H-SiC based metal-semiconductor-metal ultraviolet photodetectors

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    4H-SiC based metal-semiconductor-metal (MSM) photodetectors with diverse spacing were designed, fabricated, and characterized, in which nickel Schottky contacts were needed. Current-voltage and spectral responsivity measurements were carried out at room temperature. The fabricated 4 μm-spacing device showed a very low dark current (0.25 pA at 5 V bias voltage), a typical responsivity of 0.103 A/W at 20 V, and a peak re-sponse wavelength at 290 nm. The fabricated devices held a high DUV to visible re-jection ratio of >103.

  8. Selective fluorescence sensors for detection of nitroaniline and metal Ions based on ligand-based luminescent metal-organic frameworks

    Science.gov (United States)

    Yu, Zongchao; Wang, Fengqin; Lin, Xiangyi; Wang, Chengmiao; Fu, Yiyuan; Wang, Xiaojun; Zhao, Yongnan; Li, Guodong

    2015-12-01

    Metal-organic frameworks (MOFs) are porous crystalline materials with high potential for applications in fluorescence sensors. In this work, two solvent-induced Zn(II)-based metal-organic frameworks, Zn3L3(DMF)2 (1) and Zn3L3(DMA)2(H2O)3 (2) (L=4,4‧-stilbenedicarboxylic acid), were investigated as selective sensing materials for detection of nitroaromatic compounds and metal ions. The sensing experiments show that 1 and 2 both exhibit selective fluorescence quenching toward nitroaniline with a low detection limit. In addition, 1 exhibits high selectivity for detection of Fe3+ and Al3+ by significant fluorescence quenching or enhancement effect. While for 2, it only exhibits significant fluorescence quenching effect for Fe3+. The results indicate that 1 and 2 are both promising fluorescence sensors for detecting and recognizing nitroaniline and metal ions with high sensitivity and selectivity.

  9. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.

    Science.gov (United States)

    Yunsheng, Zhang; Wei, Sun; Qianli, Chen; Lin, Chen

    2007-05-01

    In this paper, two aspects of studies are carried out: (1) synthesis of geopolymer by using slag and metakaolin; (2) immobilization behaviors of slag based geopolymer in a presence of Pb and Cu ions. As for the synthesis of slag based geopolymer, four different slag content (10%, 30%, 50%, 70%) and three types of curing regimes (standard curing, steam curing and autoclave curing) are investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The testing results showed that geopolymer mortar containing 50% slag that is synthesized at steam curing (80 degrees C for 8h), exhibits higher mechanical strengths. The compressive and flexural strengths of slag based geopolymer mortar are 75.2 MPa and 10.1 MPa, respectively. Additionally, Infrared (IR), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques are used to characterize the microstructure of the slag based geopolymer paste. IR spectra show that the absorptive band at 1086 cm(-1) shifts to lower wave number around 1007 cm(-1), and some six-coordinated Als transforms into four-coordination during the synthesis of slag based geopolymer paste. The resulting slag based geopolymeric products are X-ray amorphous materials. SEM observation shows that it is possible to have geopolymeric gel and calcium silicate hydrate (C-S-H) gel forming simultaneously within slag based geopolymer paste. As for immobilization of heavy metals, the leaching tests are employed to investigate the immobilization behaviors of the slag based geopolymer mortar synthesized under the above optimum condition. The leaching tests show that slag based geopolymer mortar can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reach 98.5% greater when heavy metals are incorporated in the slag geopolymeric matrix in the range of 0.1-0.3%. The Pb exhibits better immobilization efficiency than the Cu in the case of large dosages of heavy metals.

  10. A transparent electrode based on a metal nanotrough network

    Science.gov (United States)

    Wu, Hui; Kong, Desheng; Ruan, Zhichao; Hsu, Po-Chun; Wang, Shuang; Yu, Zongfu; Carney, Thomas J.; Hu, Liangbing; Fan, Shanhui; Cui, Yi

    2013-06-01

    Transparent conducting electrodes are essential components for numerous flexible optoelectronic devices, including touch screens and interactive electronics. Thin films of indium tin oxide--the prototypical transparent electrode material--demonstrate excellent electronic performances, but film brittleness, low infrared transmittance and low abundance limit suitability for certain industrial applications. Alternatives to indium tin oxide have recently been reported and include conducting polymers, carbon nanotubes and graphene. However, although flexibility is greatly improved, the optoelectronic performance of these carbon-based materials is limited by low conductivity. Other examples include metal nanowire-based electrodes, which can achieve sheet resistances of less than 10Ω □-1 at 90% transmission because of the high conductivity of the metals. To achieve these performances, however, metal nanowires must be defect-free, have conductivities close to their values in bulk, be as long as possible to minimize the number of wire-to-wire junctions, and exhibit small junction resistance. Here, we present a facile fabrication process that allows us to satisfy all these requirements and fabricate a new kind of transparent conducting electrode that exhibits both superior optoelectronic performances (sheet resistance of ~2Ω □-1 at 90% transmission) and remarkable mechanical flexibility under both stretching and bending stresses. The electrode is composed of a free-standing metallic nanotrough network and is produced with a process involving electrospinning and metal deposition. We demonstrate the practical suitability of our transparent conducting electrode by fabricating a flexible touch-screen device and a transparent conducting tape.

  11. TOOL PATH GENERATION BASED ON STL FILE FOR SHEET METAL DIELESS FORMING

    Institute of Scientific and Technical Information of China (English)

    Liu Jie; Mo Jianhua

    2004-01-01

    Sheet metal dieless forming is a new metal forming technology.This technology adopts the principle of rapid prototyping technology,so it can form sheet metal parts without traditional die and moulds.According to the characteristic of sheet metal dieless forming technology a new way of tool path generation based on the STL file for sheet metal dieless forming is proposed.

  12. Energy reversible switching from amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-08-01

    We report observation of energy reversible switching from amorphous metal based nanoelectromechanical (NEM) switch. For ultra-low power electronics, NEM switches can be used as a complementary switching element in many nanoelectronic system applications. Its inherent zero power consumption because of mechanical detachment is an attractive feature. However, its operating voltage needs to be in the realm of 1 volt or lower. Appropriate design and lower Young\\'s modulus can contribute achieving lower operating voltage. Therefore, we have developed amorphous metal with low Young\\'s modulus and in this paper reporting the energy reversible switching from a laterally actuated double electrode NEM switch. © 2013 IEEE.

  13. Chemical sensors based on molecularly modified metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Haick, Hossam [Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000 (Israel)

    2007-12-07

    This paper presents a concise, although admittedly non-exhaustive, didactic review of some of the main concepts and approaches related to the use of molecularly modified metal nanoparticles in or as chemical sensors. This paper attempts to pull together different views and terminologies used in sensors based on molecularly modified metal nanoparticles, including those established upon electrochemical, optical, surface Plasmon resonance, piezoelectric and electrical transduction approaches. Finally, this paper discusses briefly the main advantages and disadvantages of each of the presented class of sensors. (review article)

  14. Laser based metal and plastics joining for lightweight design

    Science.gov (United States)

    Kahmann, Max; Quentin, Ulf; Kirchhoff, Marc; Brockmann, Rüdiger; Löffler, Klaus

    2015-03-01

    One of the most important issues in automotive industry is lightweight design, especially since the CO2 emission of new cars has to be reduced by 2020. Plastic and fiber reinforced plastics (e.g. CFRP and GFRP) receive besides new manufacturing methods and the employment of high-strength steels or non-ferrous metals increasing interest. Especially the combination of different materials such as metals and plastics to single components exhausts the entire potential on weight reduction. This article presents an approach based on short laser pulses to join such dissimilar materials in industrial applications.

  15. METAL MATRIX COMPOSITES BASED ON ALUMINIUM LITHIUM AND SILICON CARBIDE

    OpenAIRE

    White, J.; Hughes, I; Willis, T.; Jordan, R.

    1987-01-01

    The present study tests the feasibility of producing metal matrix composites based on aluminium-lithium alloys. The first step in this process has been to produce an MMC based on 8090 with SiC. This has been successfully produced by Alcan International using the "Osprey" spray deposition process. The raw billets have been processed initially by extrusion. The tensile properties of this material have been determined and the strength compares favourably with DC cast alloys. Modulus is improved ...

  16. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV0.62Mn1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  17. Quantum-based Atomistic Simulation of Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-08-29

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials.

  18. Formability Evaluation of Sheet Metals Based on Global Strain Distribution

    Science.gov (United States)

    Zhang, Ling; Lin, Jianping; Min, Junying; Ye, You; Kang, Liugen

    2016-06-01

    According to the conventional methods for formability evaluation, e.g., forming limit curve (FLC), limit dome height, and total elongation, inconsistent results are observed when comparing the formability of four advanced high-strength steels (AHSS) with an ultimate tensile strength grade of 1000 MPa. The strain distribution analysis with the aid of digital image correlation technique shows that different uniform deformation capabilities of sheet metals under the same loading conditions are responsible for this inconsistency. In addition, metallurgical analysis suggests that inhomogeneous microstructure distribution and phase transformation during deformation in some materials play important roles in the uniform deformation capability of sheet metal. Limit strains on the commonly used FLC only relate to the major and minor strains of local deforming elements associated with the onset of necking. However, the formability of a sheet metal component is determined by the strain magnitudes of all deforming elements involved during the forming process. Hence, the formability evaluation of sheet metals from a global aspect is more applicable for practical engineering. A new method based on two indices (i.e., which represent global formability and uniform deformation capability, respectively) is proposed to evaluate the formability of sheet metals based on global strain distribution. The formability and evolution of deformation uniformity of the investigated AHSS at different stress states are studied with this new method. Compared with other formability evaluation methods, the new method is demonstrated to be more appropriate for practical engineering, and it is applicable to both in-plane and out-of-plane deformation. Additionally, the global formability of sheet metals can be more comprehensively understood with this new method.

  19. High-Resolution Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Jia-Hu; HUANG Xu-Guang; MEI Xian

    2011-01-01

    @@ A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matched layer absorbing boundary condition.Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing.Based on the relationship,the refractive index of the material can be obtained from the detection of one of the resonant wavelengths.The resolution of refractive index of the nanometeric plasmonic sensor can reach as high as 10-6,giving the wavelength resolution of 0.01 nm.It could be applied to highly-resolution biological sensing.%A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite difference time domain method under a perfectly matcted layer absorbing boundary conditition. Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the resonant wavelengths. The resolutio of refractive index of the nanometeric plasmonic sensor can reach as high as 1O-6, giving the wavelength resolution of 0.01 nm. It could be applied to highly- resolution biological sensing.

  20. Enzymatic biosensors based on the use of metal oxide nanoparticles

    International Nuclear Information System (INIS)

    Over the past decades, various techniques have been developed to obtain materials at a nanoscale level to design biosensors with high sensitivity, selectivity and efficiency. Metal oxide nanoparticles (MONPs) are of particular interests and have received much attention because of their unique physical, chemical and catalytic properties. This review summarizes the progress made in enzymatic biosensors based on the use of MONPs. Synthetic methods, strategies for immobilization, and the functions of MONPs in enzymatic biosensing systems are reviewed and discussed. The article is subdivided into sections on enzymatic biosensors based on (a) zinc oxide nanoparticles, (b) titanium oxide nanoparticles, (c) iron oxide nanoparticles, and (d) other metal oxide nanoparticles. While substantial advances have been made in MONPs-based enzymatic biosensors, their applications to real samples still lie ahead because issues such as reproducibility and sensor stability have to be solved. (author)

  1. Metallomics insights for in vivo studies of metal based nanomaterials.

    Science.gov (United States)

    Wang, Bing; Feng, Weiyue; Zhao, Yuliang; Chai, Zhifang

    2013-06-01

    With the rapid development of engineered nanomaterials (NMs) and wide biomedical applications for new types of multifunctional NMs, an understanding of the behavior patterns of NMs in vivo and clarification of their potential health impact as a result of their novel physicochemical properties is essential for ensuring safety in biomedical applications of nanotechnology. NMs have heterogeneous characteristics in that they combine the bulk properties of solids with the mobility of molecules, and present phase transformation, dissolution, oxidation/reduction as well as nano-bio interface reactions in biological milieu, which affect their in vivo behaviors and biological effects. The accurate study of identification, quantification, transformation state of NMs and their biological effects in vivo remains a challenge. This review aims to provide a "metallomics" (an integrated metal-assisted function bioscience) insight into the in vivo behavior and biological effects of NMs, particularly for metal-based nanomaterials (MNMs) and is based mainly on our own research and other previous works.

  2. Terahertz wave manipulation with metamaterials based on metal and graphene

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Zalkovskij, Maksim;

    2013-01-01

    for active and passive materials and devices. Metamaterials, metal-dielectric artificial composites, propose wide possibilities for achieving unconventional electromagnetic properties, not found in nature. Moreover, metamaterials constructed of graphene, a monolayer of carbon atoms, allow for tunable...... response. In this presentation we overview our results on theory, fabrication and characterization of metal and graphene based metamaterials for the THz range. We show that the multiple layers of structured graphene can form a hyperbolic dispersion medium lens able to resolve the subwavelength features [2......]. We analyze the limitations and demonstrate numerically and experimentally the chiral and nonchiral thin-film metamaterial based polarization converters [3–5] and graphene total absorbers for THz radiation [6]....

  3. Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia E.; Kulkova, Irina V.; Malureanu, Radu;

    2012-01-01

    We investigate plasmonic modulators with a gain material to be implemented as ultra-compact and ultra-fast active nanodevices in photonic integrated circuits. We analyze metal-semiconductor-metal (MSM) waveguides with InGaAsP-based active material layers as ultra-compact plasmonic modulators....... The modulation is achieved by changing the gain of the core that results in different transmittance through the waveguides. A MSM waveguide enables high field localization and therefore high modulation speed. Bulk semiconductor, quantum wells and quantum dots, arranged in either horizontal or vertical layout......, are considered as the core of the MSM waveguide. Dependences on the waveguide core size and gain values of various active materials are studied. The designs consider also practical aspects like n- and p-doped layers and barriers in order to obtain results as close to reality. The effective propagation constants...

  4. Development of a thermodynamic data base for selected heavy metals

    International Nuclear Information System (INIS)

    The report on the development of a thermodynamic data base for selected heavy metals covers the description of experimental methods, the thermodynamic model for chromate, the thermodynamic model for dichromate, the thermodynamic model for manganese (II), the thermodynamic model for cobalt, the thermodynamic model for nickel, the thermodynamic model for copper (I), the thermodynamic model for copper(II), the thermodynamic model for mercury (0) and mercury (I), the thermodynamic model for mercury (III), the thermodynamic model for arsenate.

  5. Heavy metal ion sensors based on organic microcavity lasers

    OpenAIRE

    Lozenko, Sergii

    2011-01-01

    Monitoring of environmental pollutants present at low concentrations requires creation of miniature, low-cost, and highly sensitive detectors that are capable to specifically identify target substances. In this thesis, a detection approach based on refractive index sensing with polymer micro-lasers is proposed and its application to the detection of heavy metal pollutants in water (mercury – Hg2+, cadmium – Cd2+ and lead – Pb2+) is studied. The resonance frequencies of the microcavity are hig...

  6. Molecularly Imprinted Polymer/Metal Organic Framework Based Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Zhenzhong Guo

    2016-10-01

    Full Text Available The present review describes recent advances in the concept of molecular imprinting using metal organic frameworks (MOF for development of chemical sensors. Two main strategies regarding the fabrication, performance and applications of recent sensors based on molecularly imprinted polymers associated with MOF are presented: molecularly imprinted MOF films and molecularly imprinted core-shell nanoparticles using MOF as core. The associated transduction modes are also discussed. A brief conclusion and future expectations are described herein.

  7. Crystallization of Mg-based bulk metallic glass

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; M. FERRY

    2006-01-01

    Mg-based bulk metallic glass fabricated by conventional copper mould method was aged at different temperatures. X-ray diffractometry(XRD), scanning electron microscopy(SEM), atomic force microscopy(AFM) and focused ion beam(FIB) miller were employed to examine specimens obtained under different conditions. The crystallization of Mg-based bulk metallic glass depends upon both the aging temperature and the aging time. As temperature increases or the holding time increases, the microstructure of the aged specimen varies from glassy one to crystalline one plus glassy phase and then to absolutely multiphase crystalline one. From the FIB images, it is clear that Mg-based bulk metallic glass could not only crystallize completely but also display dendrite-like growth style. From the AFM images, there are not only significant variations of microstructures but also surface morphology of specimens obtained under different conditions. It is proposed that the surface morphology varies as the treating temperature increases. The Vickers hardness of different specimens increases as the fraction of crystalline phase (s) increases.

  8. GRAPHENE BASED METAL AND METAL OXIDE NANOCOMPOSITES: SYNTHESIS, PROPERTIES AND THEIR APPLICATIONS

    KAUST Repository

    Khan, Mujeeb

    2015-06-11

    Graphene, an atomically thin two-dimensional carbonaceous material, has attracted tremendous attention in the scientific community, due to its exceptional electronic, electrical, and mechanical properties. Indeed, with the recent explosion of methods for a large-scale synthesis of graphene, the number of publications related to graphene and other graphene based materials have increased exponentially. Particularly the easy preparation of graphene like materials, such as, highly reduced graphene oxide (HRG) via reduction of graphite oxide (GO), offers a wide range of possibilities for the preparation of graphene based inorganic nanocomposites by the incorporation of various functional nanomaterials for a variety of applications. In this review, we discuss the current development of graphene based metal and metal oxide nanocomposites, with a detailed account of their synthesis and properties. Specifically, much attention has been given to their wide range of applications in various fields, including, electronics, electrochemical and electrical fields. Overall, by the inclusion of various references, this review covers in detail aspects of the graphene-based inorganic nanocomposites.

  9. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  10. Atomic structures of Zr-based metallic glasses

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The atomic structures of Zr-Ni and Zr-Ti-Al-Cu-Ni metallic glasses were investigated by using classical molecular dynamic (MD),reverse Monte Carlo (RMC),ab initio MD (AIMD) simulations and high resolution transmission electron microscopy (HRTEM) techniques. We focused on the short-range order (SRO) and medium-range order (MRO) in the glassy structure. It is shown that there are icosahedral,FCC-and BCC-type SROs in the Zr-based metallic glasses. A structural model,characterized by imperfect ordered packing (IOP),was proposed based on the MD simulation and confirmed by the HRTEM observation. Furthermore,the evolution from IOP to nanocrystal during the crystallization of metallic glasses was also ex-plored. It is found that the growth from IOP to nanocrystal proceeds through three distinct stages: the formation of quasi-ordered structure with one-dimensional (1D) periodicity,then 2D periodicity,and finally the formation of 3D nanocrystals. It is also noted that these three growth steps are crosslinked.

  11. Atomic structures of Zr-based metallic glasses

    Institute of Scientific and Technical Information of China (English)

    HUI XiDong; LIU Xiongdun; GAO Rui; HOU HuaiYu; FANG HuaZhi; LIU ZiKui; CHEN GuoLiang

    2008-01-01

    The atomic structures of Zr-Ni and Zr-Ti-Al-Cu-Ni metallic glasses were investigated by using classical molecular dynamic (MD), reverse Monte Carlo (RMC), ab initio MD (AIMD) simulations and high resolution transmission electron microscopy (HRTEM) techniques. We focused on the short-range order (SRO) and medium-range order (MRO) in the glassy structure. It is shown that there are icosahedral, FCC- and BCC-type SROs in the Zr-based metallic glasses. A structural model, characterized by imperfect ordered packing (IOP), was proposed based on the MD simulation and confirmed by the HRTEM observation. Furthermore, the evolution from lOP to nanocrystal during the crystallization of metallic glasses was also ex-plored. It is found that the growth from IOP to nanocrystal proceeds through three distinct stages: the formation of quasi-ordered structure with one-dimensional (1 D) periodicity, then 2D periodicity, and finally the formation of 3D nanocrystals. It is also noted that these three growth steps are crosslinked.

  12. Multiferroic materials based on organic transition-metal molecular nanowires.

    Science.gov (United States)

    Wu, Menghao; Burton, J D; Tsymbal, Evgeny Y; Zeng, Xiao Cheng; Jena, Puru

    2012-09-01

    We report on the density functional theory aided design of a variety of organic ferroelectric and multiferroic materials by functionalizing crystallized transition-metal molecular sandwich nanowires with chemical groups such as -F, -Cl, -CN, -NO(2), ═O, and -OH. Such functionalized polar wires exhibit molecular reorientation in response to an electric field. Ferroelectric polarizations as large as 23.0 μC/cm(2) are predicted in crystals based on fully hydroxylized sandwich nanowires. Furthermore, we find that organic nanowires formed by sandwiching transition-metal atoms in croconic and rhodizonic acids, dihydroxybenzoquinone, dichloro-dihydroxy-p-benzoquinone, or benzene decorated by -COOH groups exhibit ordered magnetic moments, leading to a multiferroic organometallic crystal. When crystallized through hydrogen bonds, the microscopic molecular reorientation translates into a switchable polarization through proton transfer. A giant interface magnetoelectric response that is orders of magnitude greater than previously reported for conventional oxide heterostructure interfaces is predicted. PMID:22881120

  13. Metal shell technology based upon hollow jet instability

    International Nuclear Information System (INIS)

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. We describe a technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal. We have produced shells in the 0.7--2.0 mm size range using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold--lead--antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise

  14. Terahertz Modulator based on Metamaterials integrated with Metal-Semiconductor-Metal Varactors

    Science.gov (United States)

    Nouman, Muhammad Tayyab; Kim, Hyun-Woong; Woo, Jeong Min; Hwang, Ji Hyun; Kim, Dongju; Jang, Jae-Hyung

    2016-01-01

    The terahertz (THz) band of the electromagnetic spectrum, with frequencies ranging from 300 GHz to 3 THz, has attracted wide interest in recent years owing to its potential applications in numerous areas. Significant progress has been made toward the development of devices capable of actively controlling terahertz waves; nonetheless, further advances in device functionality are necessary for employment of these devices in practical terahertz systems. Here, we demonstrate a low voltage, sharp switching terahertz modulator device based on metamaterials integrated with metal semiconductor metal (MSM) varactors, fabricated on an AlGaAs/InGaAs based heterostructure. By varying the applied voltage to the MSM-varactor located at the center of split ring resonator (SRR), the resonance frequency of the SRR-based metamaterial is altered. Upon varying the bias voltage from 0 V to 3 V, the resonance frequency exhibits a transition from 0.52 THz to 0.56 THz, resulting in a modulation depth of 45 percent with an insertion loss of 4.3 dB at 0.58 THz. This work demonstrates a new approach for realizing active terahertz devices with improved functionalities. PMID:27194128

  15. Metal-directed topological diversity of three fluorescent metal-organic frameworks based on a new tetracarboxylate strut

    KAUST Repository

    Lou, Xinhua

    2013-01-01

    Three d- or p-block metal ions based metal-organic frameworks (MOFs) were isolated by employing a new tetracarboxylate linker, featuring unusual flu, self-interpenetrated lvt and new (3,5)-c topological nets, respectively. Interesting photoluminescent properties of these solid-state materials were also observed. © 2013 The Royal Society of Chemistry.

  16. Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007.

    Science.gov (United States)

    Choudhary, Sangeeta; Sar, Pinaki

    2016-07-01

    A uranium (U)-resistant and -accumulating Pseudomonas aeruginosa strain was characterized to assess the response of toxic metals toward its growth and expression of metal resistance determinants. The bacterium showed MIC (minimum inhibitory concentration) values of 6, 3, and 2 mM for Zn, Cu, and Cd, respectively; with resistance phenotype conferred by periplasmic Cu sequestering copA and RND type heavy metal efflux czcA genes. Real-time PCR-based expression analysis revealed significant upregulation of both these genes upon exposure to low concentrations of metals for short duration, whereas the global stress response gene sodA encoding superoxide dismutase enzyme was upregulated only at higher metal concentrations or longer exposure time. It could also be inferred that copA and czcA are involved in providing resistance only at low metal concentrations, whereas involvement of "global stress response" phenomenon (expression of sodA) at higher metal concentration or increased exposure was evident. This study provides significant understanding of the adaptive response of bacteria surviving in metal and radionuclide contaminated environments along with the development of real-time PCR-based quantification method of using metal resistance genes as biomarker for monitoring relevant bacteria in such habitats. PMID:26662317

  17. Base and precious metals exploration by major corporations

    International Nuclear Information System (INIS)

    This chapter analyzes base and precious metals exploration by one of the principal participants in the world of exploration - major corporations. The objective is to identify and assess the factors responsible for changes in the level and distribution of corporate exploration over the last fifteen to twenty years. The chapter discusses exploration as an economic activity, providing a conceptual framework for the analysis. It looks at changes in exploration expenditures over time for a number of North American and European companies. This is followed by an examination of the distribution of exploration funds among minerals, paying particular attention to porphyry copper, massive sulfide, molybdenum, and gold and silver deposits

  18. Tantalum-based diffusion barriers for copper metallization

    OpenAIRE

    Laurila, Tomi

    2001-01-01

    Interfacial reactions between Cu and Si with different Ta-based diffusion barriers are investigated by means of the combined thermodynamic-kinetic and microstructural analysis. The reaction mechanisms and the related microstructures in the Si/Ta/Cu, Si/TaC/Cu and Si/Ta2N/Cu metallization systems are studied experimentally and theoretically by utilizing the ternary Si-Ta-Cu, Si-Ta-C, Si-Ta-N, Ta-C-Cu, and Ta-N-Cu phase diagrams as well as the activity diagrams calculated at different temperatu...

  19. Hydrate-based heavy metal separation from aqueous solution

    Science.gov (United States)

    Song, Yongchen; Dong, Hongsheng; Yang, Lei; Yang, Mingjun; Li, Yanghui; Ling, Zheng; Zhao, Jiafei

    2016-02-01

    A novel hydrate-based method is proposed for separating heavy metal ions from aqueous solution. We report the first batch of experiments and removal characteristics in this paper, the effectiveness and feasibility of which are verified by Raman spectroscopy analysis and cross-experiment. 88.01-90.82% of removal efficiencies for Cr3+, Cu2+, Ni2+, and Zn2+ were obtained. Further study showed that higher R141b-effluent volume ratio contributed to higher enrichment factor and yield of dissociated water, while lower R141b-effluent volume ratio resulted in higher removal efficiency. This study provides insights into low-energy, intensive treatment of wastewater.

  20. Transition-metal dichalcogenide-based dipolariton optoelectronic devices

    Science.gov (United States)

    Kolmakov, German; Byrnes, Tim; He, Andy; Kezerashvili, Roman Ya.

    Using computational modeling, we simulate the dynamics of dipolaritons in an optical microcavity, which encompasses the transition-metal dichalcogenide double-layer structure. We demonstrate that dipolaritons, a three-way superposition of photons, direct excitons and indirect excitons, are guided by a pattern deposited on the microcavity and can be driven by an external electric field or voltage applied to the structure. Focusing on a normal dipolariton gas in Y- and Psi-shaped patterns, we isolate conditions when the dipolariton flow can be switched between the channel branches of the pattern by the electric field. We also studied the superfluid dynamics of dipolariton Bose-Einstein condensates in patterned substrates at low temperatures, showing that the condensate in the channels can be accelerated and then directed by the electric field. We compare the obtained results with those for GaAs-based microcavities and demonstrate that dipolaritons in transition-metal dichalcogenide-based microcavities can be utilized for the design of optical switches and transistors for optoelectronic integrated circuits.

  1. Antioxidant activity of bovine serum albumin binding amino acid Schiff-bases metal complexes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Glutamic acid-salicylaldehyde Schiff-base metal complexes are bound into bovine serum albumin (BSA), which afforded BSA binding Schiff-base metal complexes (BSA-SalGluM, M=Cu, Co, Ni, Zn). The BSA binding metal complexes were characterized by UV-vis spectra and Native PAGE. It showed that the protein structures of BSA kept after coordinating amino acid Schiff-bases metal complexes. The effect of the antioxidant activity was investigated. The results indicate that the antioxidant capacity of BSA increased more than 10 times after binding Schiff-base metal complexes.

  2. Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy

    Directory of Open Access Journals (Sweden)

    Maria A. Komkova

    2013-10-01

    Full Text Available We report here a way for improving the stability of ultramicroelectrodes (UME based on hexacyanoferrate-modified metals for the detection of hydrogen peroxide. The most stable sensors were obtained by electrochemical deposition of six layers of hexacyanoferrates (HCF, more specifically, an alternating pattern of three layers of Prussian Blue and three layers of Ni–HCF. The microelectrodes modified with mixed layers were continuously monitored in 1 mM hydrogen peroxide and proved to be stable for more than 5 h under these conditions. The mixed layer microelectrodes exhibited a stability which is five times as high as the stability of conventional Prussian Blue-modified UMEs. The sensitivity of the mixed layer sensor was 0.32 A·M−1·cm−2, and the detection limit was 10 µM. The mixed layer-based UMEs were used as sensors in scanning electrochemical microscopy (SECM experiments for imaging of hydrogen peroxide evolution.

  3. Laser spot welding of cobalt-based amorphous metal foils

    International Nuclear Information System (INIS)

    The results concerning weldability of amorphous alloy (VAC 6025F) in shape of foils and the quality of laser-spot welded joints are presented in this paper. The aim of the research was the production of a high quality welding joint, by preserving the amorphous structure. The quality of the joint was tested by shear strength analysis and microhardness measuring. The metallographic studies were made by using optical microscope and SEM. The results show that (1) overlapped Co based amorphous metals foils can be welded with high-quality by a pulsed Nd: YAG-Laser, but only within a very narrow laser parameter window; (2) the laser welded spots show comparably high strength as the basic material; (3) the structure of the welded spot remains amorphous, so that the same characteristics as the base material can be achieved. (author)

  4. Process Windows for Sheet Metal Parts based on Metamodels

    Science.gov (United States)

    Harsch, D.; Heingärtner, J.; Hortig, D.; Hora, P.

    2016-08-01

    Achieving robust production of deep drawn sheet metal parts is challenging. The fluctuations of process and material properties often lead to robustness problems. Numerical simulations are used to validate the feasibility and to detect critical regions of a part. To enhance the consistency with the real process conditions, the measured material data and the force distribution are taken into account. The simulation metamodel contains the virtual knowledge of a particular forming process, which is determined based on a series of finite element simulations with variable input parameters. Based on the metamodels, process windows can be evaluated for different parameter configurations. This helps improving the operating point search, to adjust process settings if the process becomes unstable and to visualize the influence of arbitrary parameters on the process window.

  5. Nanocomposites Based on Metal and Metal Sulfide Clusters Embedded in Polystyrene

    Directory of Open Access Journals (Sweden)

    Gianfranco Carotenuto

    2011-08-01

    Full Text Available Transition-metal alkane-thiolates (i.e., organic salts with formula Me(SRx, where R is a linear aliphatic hydrocarbon group, –CnH2n+1 undergo a thermolysis reaction at moderately low temperatures (close to 200 °C, which produces metal atoms or metal sulfide species and an organic by-product, disulfide (RSSR or thioether (RSR molecules, respectively. Alkane-thiolates are non-polar chemical compounds that dissolve in most techno-polymers and the resulting solid solutions can be annealed to generate polymer-embedded metal or metal sulfide clusters. Here, the preparation of silver and gold clusters embedded into amorphous polystyrene by thermolysis of a dodecyl-thiolate precursor is described in detail. However, this chemical approach is quite universal and a large variety of polymer-embedded metals or metal sulfides could be similarly prepared.

  6. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  7. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-05-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  8. Evaluation of different finish line designs in base metal alloys

    Directory of Open Access Journals (Sweden)

    Aghandeh R

    1999-06-01

    Full Text Available This investigation was performed according to the widespread application of base metal alloys"nand few articles published about the marginal integrity of restorations fabricated by these metals."nThree standard dies of a maxillary first premolar were prepared with a flat shoulder finish line in buccal"naspect and chamfer in palatal. One of them left with no change. On the buccal aspect of the second and"nthird dies 135?and 1607 bevel were added respectively"nUsing dual wax technique, nine wax patterns were formed on each die and casting procedure of selected"nnon precious alloy was performed by centrifugal method. Marginal gaps of each copping seated on dies"nwere measured by scanning electron microscope (SEM with X500 magnification. Measurements were"ndone on three areas of marked dies on buccal aspect. Measurement son palatal aspect was done on"nmarked midpalatal point as control."nResults and statistical analysis showed no significant difference among marginal gaps in lingual aspect."nBut on the buccal aspect there were statistically significant differences among the groups (P<0.001. Flat"nshoulder had the best marginal integrity (mean 4 micron. Shoulder with 160' bevel had the most marginal"ngap (mean 26.5 micron and shoulder with 1357 bevel was between two other groups (mean 15.7 micron.

  9. A metal-based inhibitor of NEDD8-activating enzyme.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available A cyclometallated rhodium(III complex [Rh(ppy(2(dppz](+ (1 (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE. The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.

  10. Metallic glass nanofibers in future hydrogel-based scaffolds.

    Science.gov (United States)

    Sadeghian, Ramin Banan; Ahadian, Samad; Yaginuma, Shin; Ramón-Azcón, Javier; Liang, Xiaobin; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu; Nakayama, Koji S; Khademhosseini, Ali

    2014-01-01

    Electrically conductive reinforced hydrogels offer a wide range of applications as three-dimensional scaffolds in tissue engineering. We report electrical and mechanical characterization of methacrylated gelatin (GelMA) hydrogel, containing palladium-based metallic glass nanofibers (MGNF). Also we show that the fibers are biocompatible and C2C12 myoblasts in particular, planted into the hybrid hydrogel, tend to attach to and elongate along the fibers. The MGNFs in this work were created by gas atomization. Ravel of fibers were embedded in the GelMA prepolymer in two different concentrations (0.5 and 1.0 mg/ml), and then the ensemble was cured under UV light, forming the hybrid hydrogel. The conductivity of the hybrid hydrogel was proportional to the fiber concentration. PMID:25571184

  11. CVD synthesis of carbon-based metallic photonic crystals

    CERN Document Server

    Zakhidov, A A; Baughman, R H; Iqbal, Z

    1999-01-01

    Three-dimensionally periodic nanostructures on the scale of hundreds of nanometers, known as photonic crystals, are attracting increasing interest because of a number of exciting predicted properties. In particular, interesting behavior should be obtainable for carbon- based structures having a dimensional scale larger than fullerenes and nanotubes, but smaller than graphitic microfibers. We show here how templating of porous opals by chemical vapor deposition (CVD) allows us to obtain novel types of graphitic nanostructures. We describe the synthesis of new cubic forms of carbon having extended covalent connectivity in three dimensions, which provide high electrical conductivity and unit cell dimensions comparable to optical wavelengths. Such materials are metallic photonic crystals that show intense Bragg diffraction. (14 refs).

  12. Resistive switching in ZrO2 based metal-oxide-metal structures

    International Nuclear Information System (INIS)

    The goal of this work is a deeper understanding of the influence of the (i) metal-oxide-metal (MOM) layer stacks configuration, (ii) the oxide films microstructure, (iii) and their defect structure on the appearance of different switching modes, i.e. unipolar (UP) and bipolar (BP). The first part deals with the fabrication of ZrO2 thin films by an industrial compatible atomic layer deposition (ALD) process, the chemical, structural and morphological characterization of the films, the growth of ZrO2/TiO2 bilayers, the integration of the layers into metal-oxide-metal (MOM) devices and the electrical characterization with focus on the RS behavior. In the second part the effect of the device structure, in particular the thickness of the electrochemical active electrode (EAE) and the ZrO2 film morphology, on the RS switching polarity of Pt/ZrO2/(EAE) cells is discussed. ZrO2 films and ZrO2/TiO2 bilayers were grown by ALD and were carefully structurally and electrically characterized. The ZrO2 films grown from Zr[N(CH3)C2H5]4 (TEMA-Zr) at 240 C were polycrystalline with a mixture of cubic/tetragonal phases. ALD/H2O-ZrO2 films exhibited a random oriented polycrystalline structure, whereas the ALD/O3-ZrO2 films consisted of preferably oriented cubic shaped grains. Pt/ZrO2/Ti/Pt structures with a Ti top electrode (TE) thickness of 5 to 20 nm showed unipolar type RS behavior, while by increasing the Ti TE thickness a gradual change of switching polarity from unipolar to bipolar with a completely bipolar type RS behavior for a Ti TE thickness of 40 nm is found. The switching in Pt/ZrO2/TiO2/Ti/Pt devices was unipolar, comparable to Pt/ZrO2/Ti/Pt cells. In contrast, bilayers with the reverse structure, Pt/TiO2/ZrO2/Ti/Pt, showed non-switching behavior. The effect of the cells stack structure on the polarity of the RS behavior was studied in detail for 20 nm thick ZrO2 films grown by an ozone based ALD process and integrated into Pt/ZrO2/Ti/Pt cells while the thickness of the

  13. Resistive switching in ZrO{sub 2} based metal-oxide-metal structures

    Energy Technology Data Exchange (ETDEWEB)

    Kaerkkaenen, Irina

    2014-07-01

    detail for 20 nm thick ZrO{sub 2} films grown by an ozone based ALD process and integrated into Pt/ZrO{sub 2}/Ti/Pt cells while the thickness of the electrochemically active electrode (Ti) was varied from 0 nm to 40 nm. Cells with a thin EAE (<20 nm Ti) exhibited a UP-type RS behavior, while cells with thick EAE (>20 nm Ti) showed BP switching characteristics at a lower current compliance as the UP switching cells. A detailed structural analysis of the ozone grown ZrO{sub 2} films revealed a polycrystalline structure of columnar shaped grains with a meta-stable cubic-tetragonal ZrO{sub 2} phase. In the second part of the thesis an empirical model for the polarity dependence of the RS in the ALD ZrO{sub 2} based devices as a function of the EAE thickness was suggested. The model assumed a columnar shaped microstructure and certain impurity content for the ZrO{sub 2} films. In addition, the results of current-voltage behavior, temperature dependency of the resistance states and impedance spectroscopy (IS) measurements of different devices in different RS states were considered. Impedance spectroscopy measurements of UP and BP type switching devices with the same ZrO{sub 2} films but with different EAE thicknesses were carried out for the states prior to electroforming (pristine), after RS into the ON-state and after RS into the OFF-state. The different devices in their pristine states exhibited nearly identical IS characteristics while the ON and OFF states of the UP and BP devices revealed pronounced differences. In the model, the UP switching in ZrO{sub 2} based devices with thin EAE was described as a result of a noncomplete local reduction of the grain boundary cores, which might gave rise to a hard thermal breakdown and the formation of metallic like conduction paths. On the contrary, the suggested idea for BP switching of ZrO{sub 2} based devices with thick EAE based on the formation of local semiconducting oxygen depleted ZrO{sub 2-x} filament-like regions along

  14. Structure and properties of selected Fe-based metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2009-12-01

    Full Text Available Purpose: The paper presents a structure characterization, thermal and soft magnetic properties of Fe-based bulk amorphous materials in as-cast state and after crystallization process.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4 metallic glass in form of ribbons and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples were measured using differential thermal analysis (DTA and differential scanning calorimetry (DSC. The soft magnetic properties examination of tested material contained magnetic permeability and magnetic after-effects measurements.Findings: The X-ray diffraction and transmission electron microscopy investigations revealed that the studied as-cast materials were amorphous. Broad diffraction halo could be seen for all tested samples, indicating the formation of a glassy phase with the diameters up to 2 mm. The fracture surface of rod samples appears to consist of two different zones, which probably inform about different amorphous structures of studied glassy materials. A two stage crystallization process was observed for studied alloy. The first stage of crystallization corresponding to the partial crystallization of α-Fe phase was followed by the formation of iron borides. It has shown that appropriate increasing of annealing temperature, significantly improved soft magnetic properties of examined alloy.Practical implications: The studied Fe-based metallic glass has good glass-forming ability and thermal stability for casting in form of ribbons and rods. The soft magnetic properties of studied alloy could be improved by applying the appropriate conditions of heat treatment (crystallization process.Originality/value: The applied investigation methods are suitable to determine the changes of structure in function of sample thickness and the

  15. Static Behavior of Chalcogenide Based Programmable Metallization Cells

    Science.gov (United States)

    Rajabi, Saba

    Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization. To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities. The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior. The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of

  16. Oxidation behaviour of Zr-based bulk metallic glasses

    International Nuclear Information System (INIS)

    The Zr-based bulk metallic glasses, developed since the late 1980's, have very interesting mechanical properties, which can be considered for many applications including working under oxidizing atmosphere conditions at high temperatures. It is therefore interesting to study their oxidation resistance and to characterize the oxide scale formed on alloys surface. The fundamental objective of this thesis is to enhance the understanding of the role of various thermodynamic and chemistry parameters on the oxidation behaviour of the Zr-based bulk metallic glasses at high temperature under dry air, to determine the residual stresses in the oxide layer, in comparison with their crystalline alloys with the same chemical composition after an annealing treatment. The oxidation kinetics of these glasses and the crystalline structure of oxide scale ZrO2 depend on the temperature and the oxidation duration: for short periods of oxidation or at a temperature below Tg, the kinetics follows a parabolic law, whereas, if the sample is oxidized at T ≥ Tg, the kinetics can be divided into two parts. The crystalline counterparts are oxidized by a parabolic rule whatever the temperature; for long oxidation duration at a temperature close to Tg, the kinetics becomes more complex because of the crystallisation of the glasses during the oxidation tests. Also the crystalline structure of the oxide layers depends on the oxidation temperature: the oxide layer consists only in tetragonal Zirconia at T ≤ Tg, while monoclinic Zirconia was formed at higher temperature. The mechanism of the formation of the oxide scale is due to both the interior diffusion of Oxygen ions and the external diffusion of Zirconium ions. However the diffusion of Zirconium ions slows gradually during the crystallisation process of the glass matrix. When the crystallisation is completed, the formation of Zirconia is controlled by only the internal diffusion of oxygen ions. The corresponding residual stresses

  17. Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, Terry C. [Los Alamos National Laboratory

    2012-07-24

    Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

  18. A New Sheet Metal Forming System Based on Incremental Punching

    Science.gov (United States)

    Luo, Yuanxin

    Stamping is one of the most commonly used manufacturing processes. Everyday, millions of parts are formed by this process. The conventional stamping is to form a part in one or several operations with a press machine and a set/sets of dies. It is very efficient but is not cost effective for small batch production parts and prototypes as the dies are expensive and time consuming to make. Recently, with the increasing demands for low-volume and customer-made products, a die-less forming method, Incremental Sheet Metal Forming (ISMF), has become one of the leading R&D topics in the industry. ISMF uses a small generic tool to apply a sequence of operations along the given path to deform the sheet incrementally. These small deformations accumulate to form the final shape of the part. As a result, different parts can be made by the same setup. Despite of some 30 years of research and development, however, ISMF technology is still premature for industrial applications due to the following reasons: The accuracy of the part is limited; the surface roughness is poor; and the productivity is low. This motivates the presented research. In this research, a new incremental forming system based on incremental punching is designed and built. The system consists of a 3-axes CNC platform, a high speed hydraulic cylinder with a hemispherical forming tool, and a PC-based CNC control system. The hydraulic system provides the forming force to deform the sheet metal with constant stokes, while the CNC system positions the part. When forming a part, the forming tool punches the sheet metal along the given contour of the part punch by punch; when one layer of the part is completed, the forming tool moves down to the next layer; and the process is finished till all layers are completed. The CNC control system works with standard NC code, and hence, is easy to use. In order to ensure the desirable performance of the machine, dynamic analysis of the machine is necessary. The analysis is

  19. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries

    Science.gov (United States)

    Miao, Rongrong; Yang, Jun; Xu, Zhixin; Wang, Jiulin; Nuli, Yanna; Sun, Limin

    2016-02-01

    A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new possibility for high energy-density rechargeable Li metal battery system.

  20. Thermal properties of Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2012-12-01

    Full Text Available Purpose: The aim of paper is presentation of results bulk metallic glasses thermal properties such as temperatures typical for glassy transition and thermal conductivity. Design/methodology/approach: Investigations were realized for Fe36Co36B19.2Si4.8Nb4 samples with dimension 3 mm in diameter. Bulk test pieces were fabricated by copper mold casting method. Thermal analysis of master alloy (DTA and samples in as-cast state (DSC was realized. For amorphous structure confirmation the X-ray diffraction phase analysis (XRD was realized. Additionally scanning electron microscopy (SEM micrographs were performed in order to structure analysis. Thermal conductivity was determined by prototype measuring station.Findings: The XRD and SEM analysis confirmed amorphous structure of samples. Broad diffraction “halo” was observed for every testing piece. Fracture morphology is smooth with many “veins” on the surface, which are characteristic for glassy state. DTA analysis confirmed eutectic chemical composition of master alloy. Thermal conductivity measurements proved that both samples have comparable thermal conductivity.Practical implications: The FeCo-based bulk metallic glasses have attracted great interest for a variety application fields for example precision machinery materials, electric applications, structural materials, sporting goods, medical devices. Thermal conductivity is useful and important property for example computer simulation of temperature distribution and glass forming ability calculation.Originality/value: The obtained results confirm the utility of applied investigation methods in the thermal and structure analysis of examined amorphous alloys. Thermal conductivity was determined using the prototype measuring station, which is original issue of the paper. In future, the measuring station will be expanded for samples with different dimensions.

  1. Stacking interaction in metal complexes with compositions of DNA and heteroaromatic N-bases

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The current development in the intramolecular aromatic-ring stacking i nteractions in the complexes with compositions of DNA and heteroaromatic N-bases has been reviewed to a great extent, especially the significant contributions i n several important systems about ternary mixed-ligand complexes, including nucl eotide-metal ion-po- lyaromatic amine, amino acid-metal ion-polyaromatic amine, nucleotide-metal ion-pyridine-like aromatic amine, nucleotide-metal ion-amino ac id, nucleotide-metal ion-nucleic acid base, nucleic acid base-metal ion, and the important factors affecting the intramolecular aromatic-ring stacking interacti ons in the complexes. Based on the study of stacking interaction in the complexe s, the mechanism of interaction between DNA molecules and complexes of heteroaro matic N-bases has been established, which is crucial for the design and synthesi s of the complexes acting as molecular devices of DNA.

  2. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    Directory of Open Access Journals (Sweden)

    Naomi Tanoue

    2013-07-01

    Full Text Available OBJECTIVE: The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. MATERIAL AND METHODS: Disk specimens (diameter 10 mm and thickness 2.5 mm were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1 air-abraded with 50-70-µm grain alumina (CON; 2 1 + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA; 3 1 + conditioned with a primer including a diphosphate monomer (MDP; 4 treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. RESULTS: The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05 greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. CONCLUSION: Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used.

  3. Functional metal-organic framework based materials and assemblies

    OpenAIRE

    AMELOOT, Rob

    2011-01-01

    Porous solids, such as zeolites and activated carbons, are strategic materials because of the applications they imply. Recently, metal-organic frameworks (MOFs) were introduced as a novel class of porous and crystalline materials. The crystal lattice of these compounds is constructed by coordination bonds between nodes of metal ions and multidentate organic ligands. Because of the wide range of metal ions and ligands that can be combined as MOF building blocks, a vast variety of crystal struc...

  4. Forming limit of sheet metals based on mixed hardening model

    Institute of Scientific and Technical Information of China (English)

    WANG HaiBo; WAN Min

    2009-01-01

    The calculation method of forming limit of sheet metals based on M-K instability theory is proposed,and the method is applicable to different yield criterions and hardening models. The forming limit dia-grams of AA5754-O, AA6111-T4 aluminum alloy sheet and DP steel sheet under combined loading paths are obtained based on mixed hardening model with YLD2000-2D yield criterion proposed by Barlat in 2003 and L-C nonlinear kinematic hardening model proposed by Lemaitre and Chaboche. The results show that the forming limit diagram made up of limit strain (FLD-strain) is evidently influenced by the loading path. The forming limit diagram made up of limit stress (FLD-stress) is also influenced by loading path and it is not an only curve, which differs from the conventional view. The degree of the influence of loading path on FLD-atress is related with pre-strain. The larger the pre-strain is, the greater the influence of loading path on FLD-atress will be. The change of FLD-stress is small only when pre-strain is small. In addition, the hardening behavior of the material will influence the path-dependence of FLD-streas: The larger the proportion of kinematic hardening in the whole hard-ening is, namely the more obvious Bauschinger effect of the material, the greater the influence of loading path on FLD-streas will be.

  5. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    Science.gov (United States)

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process.

  6. Influence of Deuterium Treatments on the Polysilicon-Based Metal-Semiconductor-Metal Photodetector.

    Science.gov (United States)

    Lee, Jae-Sung

    2016-06-01

    The electrical behavior of metal-semiconductor-metal (MSM) Schottky barrier photodetector structure, depending on deuterium treatment, is analyzed by means of the dark current and the photocurrent measurements. Al/Ti bilayer was used as Schottky metal. The deuterium incorporation into the absorption layer, undoped polysilicon, was achieved with annealing process and with ion implantation process, respectively. In the photocurrent-to-dark current ratio measurement, deuterium-ion-implanted photodetector shows over hundred higher than the control device. It means that the heightening of the Schottky barrier and the passivation of grain boundary trap were achieved effectively through the deuterium ion implantation process. PMID:27427689

  7. Surface/structure functionalization of copper-based catalysts by metal-support and/or metal–metal interactions

    Energy Technology Data Exchange (ETDEWEB)

    Konsolakis, Michalis, E-mail: mkonsol@science.tuc.gr [School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Crete (Greece); Ioakeimidis, Zisis [Department of Mechanical Engineering, University of Western Macedonia, Bakola and Sialvera, GR-50100 Kozani (Greece)

    2014-11-30

    Highlights: • The surface chemistry of Cu-based catalysts is adjusted by metal-support or metal–metal interactions. • Three series of catalysts, i.e., Cu/REOs, Cu/Ce{sub 1−x}Sm{sub x}O{sub δ} and Cu–Co/CeO{sub 2} were prepared. • The local structure of Cu sites is remarkably affected by support or active phase modification. • Useful insights toward the fundamental understanding of Cu-catalyzed reactions are provided. - Abstract: Cu-based catalysts have recently attracted great attention both in catalysis and electro-catalysis fields due to their excellent catalytic performance and low cost. Given that their performance is determined, to a great extent, by Cu sites local environment, considerable efforts have been devoted on the strategic modifications of the electronic and structural properties of Cu sites. In this regard, the feasibility of tuning the local structure of Cu entities by means of metal-support or metal–metal interactions is investigated. More specifically, the physicochemical properties of Cu entities are modified by employing: (i) different oxides (CeO{sub 2}, La{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}), or (ii) ceria-based mixed oxides (Ce{sub 1−x}Sm{sub x}O{sub δ}) as supporting carriers, and (iii) a second metal (Cobalt) adjacent to Cu (bimetallic Cu–Co/CeO{sub 2}). A characterization study, involving BET, XRD, TPR, and XPS, reveal that significant modifications on structural, redox and electronic properties of Cu sites can be induced by adopting either different oxide carriers or bimetallic complexes. Fundamental insights into the tuning of Cu local environment by metal-support or metal–metal interactions are provided, paving the way for real-life industrial applications.

  8. Leaching of metals on stabilization of metal sludge using cement based materials

    Institute of Scientific and Technical Information of China (English)

    Carmalin Sophia A; K. Swaminathan

    2005-01-01

    Toxicity characteristic leaching procedure(TCLP) of zinc plating sludge was carried out to assess the leaching potential of the sludge and the leachates were analyzed for heavy metals. The concentration of zinc, chromium, and lead in the leachate were 371.5mg/L, 1.95 mg/L and 1.99 mg/L respectively. Solidification of zinc sludge was carried out using four different binder systems consisting of cement mortar, fly ash, clay and lime and cured for 28 d. The ratio of sludge added varied from 60% to 80% by volume. The solidified products were tested for metal fixing efficiency and physical strength. It was observed that the volume of sludge added that resulted in maximum metal stabilization was 60% for all the combinations, above which the metal fixation efficiency decreased resulting in high values of zinc in the leachate. Addition of 5% sodium silicate enhanced the chemical fixation of metals in all the binder systems. Among the four fixing agents studied, mixture of fly ash: lime, and cement mortar: lime stabilized zinc and other metals in the sludge effectively than other combinations. Addition of lime increased the stabilization of zinc whereas cement mortar increased the strength of the solidified product.

  9. New transparent conductive metal based on polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz Hedayati, Mehdi; Jamali, Mohammad [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Strunkus, Thomas; Zaporochentko, Vladimir; Faupel, Franz [Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Elbahri, Mady [Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University, Kiel (Germany); Helmholtz-Zentrum Geesthacht GmbH, Institute of Polymer Research, Nanochemistry and Nanoengineering (Germany)

    2011-07-01

    Currently great efforts are made to develop new kind of transparent conductors (TCs) to replace ITO. In this regard different materials and composites have been proposed and studied including conductive polymers, carbon nanotubes (CNTs), metal grids, and random networks of metallic nanowires. But so far none of them could be used as a replacing material, since either they are either fragile and brittle or their electrical conductivity is below the typical ITO. Thin metallic films due to their high electrical conductivity could be one of the best replacing materials for ITO, however their poor transparency makes their application as TCs limited. Here we design and fabricate a new polymeric composite coating which enhances the transparency of the thin metal film up to 100% relative to the initial value while having a high electrical conductivity of typical metals. Therefore our proposed device has a great potential to be used as new transparent conductor.

  10. Removal of metal cations from wastewater using recycled wool-based non-woven material

    OpenAIRE

    MAJA RADETIC; DARINKA RADOJEVIC; VESNA ILIC; DRAGAN JOCIC; DRAGAN POVRENOVIC; BRANISLAV POTKONJAK; NEVENA PUAC; PETAR JOVANCIC

    2007-01-01

    In this study, the effect of low-temperature air plasma, biopolymer chitosan and hydrogen peroxide treatment of recycled wool-based non-woven material on metal cation uptake was investigated. Recycled wool-based material either as an untreated or modified material showed ability to bind all investigated metal cations in the following order: Pb2+>Cu2+>Zn2+>Co2+. Material performed good selectivity due to distinct sorption rates of studied metal cations.

  11. Solution-based metal induced crystallization of a-Si

    Institute of Scientific and Technical Information of China (English)

    Wu Chun-Ya; Li Xue-Dong; Zhao Shu-Yun; Li Juan; Meng Zhi-Guo; Xiong Shao-Zhen; Zhang Fang

    2009-01-01

    This paper investigates a simplified metal induced crystallization (MIC) of a-Si, named solution-based MIC (S-MIC). The nickel inducing source was formed on a-Si from salt solution dissolved in de-ionized water or ethanol. a-Si thin film was deposited with low pressure chemical vapour deposition or plasma enhanced chemical vapour deposition as precursor material for MIC. It finds that the content of nickel source formed on a-Si can be controlled by solution concentration and dipping time. The dependence of crystallization rate of a-Si on annealing time illustrated that the linear density of nickel source was another critical factor that affects the crystallization of a-Si, besides the diffusion of nickel disilicide. The highest electron Hall mobility of thus prepared S-MIC poly-Si is 45.6cm2/(V路s). By using this S-MIC poly-Si, thin film transistors and display scan drivers were made, and their characteristics are presented.

  12. Thermodynamical properties of Zr-based bulk metallic glasses

    Science.gov (United States)

    Gaur, Jitendra; Mishra, R. K.

    2015-11-01

    The temperature dependence of Gibb's free energy difference (ΔG), entropy difference (ΔS) and enthalpy difference (ΔH) between the undercooled melt and the corresponding equilibrium solid phases of bulk metallic glass (BMG) forming melts has been proved to be very useful in the study of their thermodynamical behavior. The present study is made by calculating ΔG, ΔS and ΔH in the entire temperature range Tm (melting temperature) to Tg (glass transition temperature) for three Zr-based samples of BMGs: Zr57Cu15.4Ni12.6Al10Nb5, Zr41.2Ti13.8Ni10Cu12.5Be22.5 and Zr58.5Cu15.6Ni12.8Al10.3Nb2.8. The study is made on the basis of Taylor's series expansion and a comparative study is also performed between the present result and the result obtained in the framework of expansions proposed by earlier workers, and also with the experimental results. An attempt has also been made to study the glass forming ability for BMGs.

  13. Porous silicon based anode material formed using metal reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  14. Forming limit of sheet metals based on mixed hardening model

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The calculation method of forming limit of sheet metals based on M-K instability theory is proposed,and the method is applicable to different yield criterions and hardening models.The forming limit dia-grams of AA5754-O,AA6111-T4 aluminum alloy sheet and DP steel sheet under combined loading paths are obtained based on mixed hardening model with YLD2000-2D yield criterion proposed by Barlat in 2003 and L-C nonlinear kinematic hardening model proposed by Lemaitre and Chaboche.The results show that the forming limit diagram made up of limit strain(FLD-strain) is evidently influenced by the loading path.The forming limit diagram made up of limit stress(FLD-stress) is also influenced by loading path and it is not an only curve,which differs from the conventional view.The degree of the influence of loading path on FLD-stress is related with pre-strain.The larger the pre-strain is,the greater the influence of loading path on FLD-stress will be.The change of FLD-stress is small only when pre-strain is small.In addition,the hardening behavior of the material will influence the path-dependence of FLD-stress:The larger the proportion of kinematic hardening in the whole hard-ening is,namely the more obvious Bauschinger effect of the material,the greater the influence of loading path on FLD-stress will be.

  15. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  16. Bivalent metal-based MIL-53 analogues: Synthesis, properties and application

    International Nuclear Information System (INIS)

    Trivalent metal-based MIL-53 (Al3+, Cr3+, Fe3+, In3+) compounds are interesting metal–organic frameworks (MOFs) with breathing effect and are promising gas sorption materials. Replacing bridging μ2-OH group by neutral ligands such as pyridine N-oxide and its derivatives (PNOs), the trivalent metal-based MIL-53 analogous structures could be extended to bivalent metal systems. The introduction of PNOs and bivalent metal elements endows the frameworks with new structural features and physical and chemical properties. This minireview summarizes the recent development of bivalent metal-based MIL-53 analogues (Mn2+, Co2+, Ni2+), typically, focusing on the synthetic strategies and potential applications based on our own works and literatures. We present the synthetic strategy to achieve structures evolution from single-ligand-walled to double-ligand-walled channel. Properties and application of these new materials in a wide range of potential areas are discussed including thermal stability, gas adsorption, magnetism and liquid-phase separation. Promising directions of this research field are also highlighted. - Graphical abstract: The recent development of bivalent metal-based MIL-53 analogues (Mn2+, Co2+, Ni2+) on their synthetic strategies, properties and potential applications was reviewed. - Highlights: • Structure features of bivalent metal-based MIL-53 analogues are illustrated. • Important properties and application are presented. • Host–guest interactions are main impetus for liquid-phase separation. • Promising directions of bivalent metal-based MIL-53 analogues are highlighted

  17. Planning of Sheet Metal Drawing Processes Based on Information Strategies

    Directory of Open Access Journals (Sweden)

    José Roberto Marty Delgado

    2011-10-01

    Full Text Available Sheet metal forming processes represent an important group of manufacturing processes for dissimilar applications. The development of numerical simulation methods has created new possibilities in important industrial aspects with regard to optimization and integration CAPP system in sheet metal drawing processes. The result of the processes depends on a large number of parameters and their interdependence hence, knowledge and experience of the designer are critical. The present work deals with the elements to be considered in the integral design, planning and optimization sheet metal drawing processes under a set of criteria and as such the possibilities that this task offers in the decision making, preparation along with the analysis and synthesis of engineering systems. In addition a methodology for integration design and process planning of sheet metal forming process analysis is summarized.

  18. Metal artifact reduction based on the combined prior image

    CERN Document Server

    Zhang, Yanbo

    2014-01-01

    Metallic implants introduce severe artifacts in CT images, which degrades the image quality. It is an effective method to reduce metal artifacts by replacing the metal affected projection with the forward projection of a prior image. How to find a good prior image is the key of this class methods, and numerous algorithms have been proposed to address this issue recently. In this work, by using image mutual correlation, pixels in the original reconstructed image or linear interpolation corrected image, which are less affected by artifacts, are selected to build a combined image. Thereafter, a better prior image is generated from the combined image by using tissue classification. The results of three patients' CT images show that the proposed method can reduce metal artifacts remarkably.

  19. A Refractive Index Sensor Based on a Metal-Insulator-Metal Waveguide-Coupled Ring Resonator

    Directory of Open Access Journals (Sweden)

    Shu-Bin Yan

    2015-11-01

    Full Text Available A refractive index sensor composed of two straight metal-insulator-metal waveguides and a ring resonator is presented. One end of each straight waveguide is sealed and the other end acts as port. The transmission spectrum and magnetic field distribution of this sensor structure are simulated using finite-difference time-domain method (FDTD. The results show that an asymmetric line shape is observed in the transmission spectrum, and that the transmission spectrum shows a filter-like behavior. The quality factor and sensitivity are taken to characterize its sensing performance and filter properties. How structural parameters affect the sensing performance and filter properties is also studied.

  20. Metal-Supported SOFC with Ceramic-Based Anode

    DEFF Research Database (Denmark)

    Blennow Tullmar, Peter; Klemensø, Trine; Persson, Åsa Helen;

    2011-01-01

    Metal-supported solid oxide fuel cells have shown promise to offer several potential advantages over conventional anode (Ni-YSZ) supported cells, such as increased resistance against mechanical and thermal stresses and a reduction in materials cost. The purpose of this work is to illustrate how......), zirconia-free anode, in a planar metal-supported SOFC concept is discussed. ©2011 COPYRIGHT ECS - The Electrochemical Society...

  1. Cellulose based transition metal nano-composites : structuring and development

    OpenAIRE

    Glatzel, Stefan

    2013-01-01

    Cellulose is the most abundant biopolymer on earth. In this work it has been used, in various forms ranging from wood to fully processed laboratory grade microcrystalline cellulose, to synthesise a variety of metal and metal carbide nanoparticles and to establish structuring and patterning methodologies that produce highly functional nano-hybrids. To achieve this, the mechanisms governing the catalytic processes that bring about graphitised carbons in the presence of iron have been investigat...

  2. Nano-structured noble metal catalysts based on hexametallate architecture for the reforming of hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.

    2015-09-15

    Nano-structured noble metal catalysts based on hexametallate lattices, of a spinel block type, and which are resistant to carbon deposition and metal sulfide formation are provided. The catalysts are designed for the reforming of hydrocarbon fuels to synthesis gas. The hexametallate lattices are doped with noble metals (Au, Pt, Rh, Ru) which are atomically dispersed as isolated sites throughout the lattice and take the place of hexametallate metal ions such as Cr, Ga, In, and/or Nb. Mirror cations in the crystal lattice are selected from alkali metals, alkaline earth metals, and the lanthanide metals, so as to reduce the acidity of the catalyst crystal lattice and enhance the desorption of carbon deposit forming moieties such as aromatics. The catalysts can be used at temperatures as high as 1000.degree. C. and pressures up to 30 atmospheres. A method for producing these catalysts and applications of their use also is provided.

  3. Phase diagrams of microemulsions containing reducing agents and metal salts as bases for the synthesis of metallic nanoparticles.

    Science.gov (United States)

    Najjar, Reza; Stubenrauch, Cosima

    2009-03-01

    We studied the phase diagrams of microemulsions with a view to using these systems for the synthesis of metallic Pt, Pb, and Bi nanoparticles as well as of intermetallic Pt/Pb and Pt/Bi nanoparticles. The microemulsions consisted of H(2)O/salt-n-decane-SDS-1-butanol. The salt was either one metal precursor (H(2)PtCl(6) x 6 H(2)O, Pb(NO(3))(2), or Bi(NO(3))(3) x 5 H(2)O), a mixture of two metal precursors (H(2)PtCl(6) x 6 H(2)O + Pb(NO(3))(2) or H(2)PtCl(6) x 6 H(2)O + Bi(NO(3))(3) x 5 H(2)O), or the reducing agent (NaBH(4)). In addition, other salts needed to be added in order to solubilize the metal precursors, to stabilize the reducing agent, and to adjust the ionic strength. Combining the microemulsion (mu e1) that contains the metal precursor(s) with the microemulsion (mu e2) that contains the reducing agent leads to metallic nanoparticles. To study systematically how the shape and size of the synthesized metallic nanoparticles depend on the size and shape of the respective microemulsion droplets, first of all one has to find those conditions under which mu e1 and mu e2 have the same structure. For that purpose we determined the water emulsification failure boundary (wefb) of each microemulsion as it is at the wefb where the water droplets are known to be spherical. We found that the ionic strength (I) of the aqueous phase as well as the hard acid and hard base properties of the ions are the key tuning parameters for the location of the wefb.

  4. Metallated porphyrin based porous organic polymers as efficient electrocatalysts

    Science.gov (United States)

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-10-01

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system.Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both

  5. Pulse based sensor networking using mechanical waves through metal substrates

    Science.gov (United States)

    Lorenz, S.; Dong, B.; Huo, Q.; Tomlinson, W. J.; Biswas, S.

    2013-05-01

    This paper presents a novel wireless sensor networking technique using ultrasonic signal as the carrier wave for binary data exchange. Using the properties of lamb wave propagation through metal substrates, the proposed network structure can be used for runtime transport of structural fault information to ultrasound access points. Primary applications of the proposed sensor networking technique will include conveying fault information on an aircraft wing or on a bridge to an ultrasonic access point using ultrasonic wave through the structure itself (i.e. wing or bridge). Once a fault event has been detected, a mechanical pulse is forwarded to the access node using shortest path multi-hop ultrasonic pulse routing. The advantages of mechanical waves over traditional radio transmission using pulses are the following: First, unlike radio frequency, surface acoustic waves are not detectable outside the medium, which increases the inherent security for sensitive environments in respect to tapping. Second, event detection can be represented by the injection of a single mechanical pulse at a specific temporal position, whereas radio messages usually take several bits. The contributions of this paper are: 1) Development of a transceiver for transmitting/receiving ultrasound pulses with a pulse loss rate below 2·10-5 and false positive rate with an upper bound of 2·10-4. 2) A novel one-hop distance estimation based on the properties of lamb wave propagation with an accuracy of above 80%. 3) Implementation of a wireless sensor network using mechanical wave propagation for event detection on a 2024 aluminum alloy commonly used for aircraft skin construction.

  6. On the HSAB based estimate of charge transfer between adsorbates and metal surfaces

    International Nuclear Information System (INIS)

    Graphical abstract: Left: molecule-to-metal electron charge transfer (ΔN) is proportional to the difference between the metal’s work function and molecular electronegativity. Right: correlation between the work function and explicitly DFT calculated ΔN. Highlights: ► HSAB based electron transfer parameter, ΔN, is analyzed for adsorbates on metal surfaces. ► ΔN gives reasonably estimated trends of charge transfer for atomic and molecular adsorbates. ► Adatom-metal bond strength is linearly proportional to metal-to-adatom charge transfer. ► DFT calculated adsorption energies of the N, O, and Cl adatoms on 11 different metals. ► DFT calculated work functions of low Miller index surfaces for 11 different metals. - Abstract: The applicability of the HSAB based electron charge transfer parameter, ΔN, is analyzed for molecular and atomic adsorbates on metal surfaces by means of explicit DFT calculations. For molecular adsorbates ΔN gives reasonable trends of charge transfer if work function is used for electronegativity of metal surface. For this reason, calculated work functions of low Miller index surfaces for 11 different metals are reported. As for reactive atomic adsorbates, e.g., N, O, and Cl, the charge transfer is proportional to the adatom valence times the electronegativity difference between the metal surface and the adatom, where the electronegativity of metal is represented by a linear combination of atomic Mulliken electronegativity and the work function of metal surface. It is further shown that the adatom-metal bond strength is linearly proportional to the metal-to-adatom charge transfer thus making the ΔN parameter a useful indicator to anticipate the corresponding adsorption energy trends.

  7. Performances of different metals in optical fibre-based surface plasmon resonance sensor

    Indian Academy of Sciences (India)

    Navneet K Sharma

    2012-03-01

    The capability of various metals used in optical fibre-based surface plasmon resonance (SPR) sensing is studied theoretically. Four metals, gold (Au), silver (Ag), copper (Cu) and aluminium (Al) are considered for the present study. The performance of the optical fibre-based SPR sensor with four different metals is obtained numerically and compared in detail. The performance of optical fibre-based SPR sensor has been analysed in terms of sensitivity, signal-to-noise (SNR) ratio and quality parameter. It is found that the performance of optical fibre-based SPR sensor with Au metal is better than that of the other three metals. The sensitivity of the optical fibre-based SPR sensor with 50 nm thick and 10 mm long Au metal film of exposed sensing region is 2.373 m/RIU with good linearity, SNR is 0.724 and quality parameter is 48.281 RIU-1. The thickness of the metal film and the length of the exposed sensing region of the optical fibre-based SPR sensor for each metal are also optimized.

  8. A plasmonic modulator based on metal-insulator-metal waveguide with barium titanate core

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2013-01-01

    We design a plasmonic modulator which can be utilized as a compact active device in photonic integrated circuits. The active material, barium titanate (BaTiO3), is sandwiched between metal plates and changes its refractive index under applied voltage. Some degree of switching of ferroelectric...

  9. Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells

    OpenAIRE

    Raval, Mehul C.; Solanki, Chetan S.

    2013-01-01

    Given the high percentage of metal cost in cell processing and concerns due to increasing Ag prices, alternative metallization schemes are being considered. Ni-Cu based front side metallization offers potential advantages of finer grid lines, lower series resistance, and reduced costs. A brief overview of various front side patterning techniques is presented. Subsequently, working principle of various plating techniques is discussed. For electroless plated Ni seed layer, fill factor values n...

  10. A Review of Thermal Spray Metallization of Polymer-Based Structures

    Science.gov (United States)

    Gonzalez, R.; Ashrafizadeh, H.; Lopera, A.; Mertiny, P.; McDonald, A.

    2016-06-01

    A literature review on the thermal spray deposition of metals onto polymer-based structures is presented. The deposition of metals onto polymer-based structures has been developed to enhance the thermal and electrical properties of the resulting metal-polymer material system. First, the description of the thermal spray metallization processes and technologies for polymer-based materials are outlined. Then, polymer surface preparation methods and the deposition of metal bond-coats are explored. Moreover, the thermal spray process parameters that affect the properties of metal deposits on polymers are described, followed by studies on the temperature distribution within the polymer substrate during the thermal spray process. The objective of this review is devoted to testing and potential applications of thermal-sprayed metal coatings deposited onto polymer-based substrates. This review aims to summarize the state-of-the-art contributions to research on the thermal spray metallization of polymer-based materials, which has gained recent attention for potential and novel applications.

  11. Review of Ni-Cu Based Front Side Metallization for c-Si Solar Cells

    Directory of Open Access Journals (Sweden)

    Mehul C. Raval

    2013-01-01

    Full Text Available Given the high percentage of metal cost in cell processing and concerns due to increasing Ag prices, alternative metallization schemes are being considered. Ni-Cu based front side metallization offers potential advantages of finer grid lines, lower series resistance, and reduced costs. A brief overview of various front side patterning techniques is presented. Subsequently, working principle of various plating techniques is discussed. For electroless plated Ni seed layer, fill factor values nearing 80% and efficiencies close to 17.5% have been demonstrated, while for Light Induced Plating deposited layers, an efficiency of 19.2% has been reported. Various methods for qualifying adhesion and long term stability of metal stack are discussed. Adhesion strengths in the range of 1–2.7 N/mm have been obtained for Ni-Cu contacts tabbed with conventional soldering process. Given the significance of metallization properties, different methods for characterization are outlined. The problem of background plating for Ni-Cu based metallization along with the various methods for characterization is summarized. An economic evaluation of front side metallization indicates process cost saving of more than 50% with Ni-Cu-Sn based layers. Recent successful commercialization and demonstration of Ni-Cu based metallization on industrial scale indicate a potential major role of Ni-Cu based contacts in near future.

  12. Mn in misch-metal based superlattice metal hydride alloy - Part 1 structural, hydrogen storage and electrochemical properties

    Science.gov (United States)

    Young, K.; Wong, D. F.; Wang, L.; Nei, J.; Ouchi, T.; Yasuoka, S.

    2015-03-01

    The structural, gaseous phase hydrogen storage, and electrochemical properties of a series of Mn-modified misch-metal based superlattice metal hydride alloys were investigated in part one of this two-part series of papers. X-ray diffraction analysis showed that these alloys are all multi-phased compositions with different abundances of AB2, AB3, A2B7, AB4, and AB5 phases. Substitution of Ni in the B-site by Mn promotes AB5 phase formation and decreases both gaseous phase and electrochemical capacities due to the reduction in the abundance of main hexagonal A2B7 phase. AC impedance and magnetic susceptibility measurement were employed to characterize the surface of Mn-free and Mn-modified alloys and show deterioration in surface catalytic ability as the Mn-content increases. Mn-modification adversely affected misch-metal based superlattice metal hydride alloy properties such as phase homogeneity, capacity, cycle stability, high-rate performance, and surface reaction.

  13. Molecular Split-Ring Resonators Based on Metal String Complexes

    CERN Document Server

    Shen, Yao; Ai, Qing; Peng, Shie-Ming; Jin, Bih-Yaw

    2014-01-01

    Metal string complexes or extended metal atom chains (EMACs) belong to a family of molecules that consist of a linear chain of directly bonded metal atoms embraced helically by four multidentate organic ligands. These four organic ligands are usually made up of repeating pyridyl units, single-nitrogen-substituted heterocyclic annulenes, bridged by independent amido groups. Here, in this paper, we show that these heterocyclic annulenes are actually nanoscale molecular split-ring resonators (SRRs) that can exhibit simultaneous negative electric permittivity and magnetic permeability in the UV-Vis region. Moreover, a monolayer of self-assembled EMACs is a periodic array of molecular SRRs which can be considered as a negative refractive index material. In the molecular scale, where the quantum-size effect is significant, we apply the tight-binding method to obtain the frequency-dependent permittivity and permeability of these molecular SRRs with their tensorial properties carefully considered.

  14. Metal-semiconductor-metal ultraviolet photodetector based on GaN

    Institute of Scientific and Technical Information of China (English)

    王俊; 赵德刚; 刘宗顺; 冯淦; 朱建军; 沈晓民; 张宝顺; 杨辉

    2003-01-01

    A metal-semiconductor-metal (MSM) ultraviolet photodetector has been fabricated using unintentionally doped n-GaN films grown on sapphire substrates. Its dark current, photocurrent under the illumination with λ = 360 nm light, responsivity, and the dependence of responsivity on bias voltage were measured at room temperature. The dark current of the photodetector is 1.03 Na under 5 V bias, and is 15.3 Na under 10 V bias. A maximum responsivity of 0.166 A/W has been achieved under the illumination with λ= 366 nm light and 15 V bias. It exhibits a typical sharp band-edge cutoff at the wavelength of 366 nm, and a high responsivity at the wavelength from 320 nm to 366 nm. Its responsivity under the illumination with λ= 360 nm light increases when the bias voltage increases.

  15. Highly effective metal vapor absorbents based on carbon nanotubes

    Science.gov (United States)

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  16. High pressure torsion of Cu-based metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Hobor, S; Kovacs, Zs; Revesz, A [Department of Materials Physics, Eoetvoes University, Budapest, H-1518, P.O.B. 32, Budapest (Hungary); Zhilyaev, A P [Centro Nacional de Investigaciones Metalurgicas, 28040 Madrid, Spain and Institute for Metals Superplasticity Problems, RAS, 450001 Ufa (Russian Federation); Varga, L K [Research Institute for Solid state Physics and Optics, Hungarian Academy of Sciences. H-1525 Budapest, P.O.B. 49 (Hungary); Szabo, P J, E-mail: hobors@metal.elte.h [Deparment of Materials Science and Engineering, University of Technology and Economy, Budapest, H-1111 (Hungary)

    2010-07-01

    Cu-Zr-Ti metallic glass was subjected to high pressure torsion applying different revolution times (180s, 120s, 60s). Both deformation and deformation rate dependent microstructural and thermal properties were characterized by scanning electron microscopy, X-ray diffraction and calorimetry, respectively. In order to estimate the temperature rise in the metallic glass during high pressure torsion, quasi three-dimensional heat conduction equation with a source term was considered. Solutions indicate that the saturation temperature strongly depends on the revolution time, i. e. on the deformation rate.

  17. Ancient concept of metal pharmacology based on Ayurvedic literature.

    Science.gov (United States)

    Sarkar, Prasanta Kumar; Das, Sanjita; Prajapati, P K

    2010-04-01

    Metals have had a long history in Ayurvedic system of medicine. Mercury (Parada), gold (Swarna), silver (Rajata), copper (Tamra), iron (Lauha), tin (Vanga), lead (Naga), and zinc (Yasada) are used in therapeutics in an incinerated (Bhasma) form. The pharmacological actions, therapeutic indications, adverse effects and management of adverse effects of these metals are described and emphasis has been given to the proper preparation, rational dose and duration during clinical practice in the classics of Ayurveda. Most important observation is, there are no contraindications of these Bhasmas, indicating universal applicability to all age levels with suitable adjuvant, proper dose and duration.

  18. Qualification of new filler metal made of high chromium content nickel base alloy

    International Nuclear Information System (INIS)

    A study has been carried out by EDF and FRAMATOME in the context of the French Association for design and manufacturing rules of nuclear power boiler's equipment, to research then qualify filler metals dedicated to the welding of the new nickel base including 30 % chromium alloy components of PWR. The aim is to assess their weldability and their stress corrosion behaviour in the conditions prevailing in the primary cooling system of PWR and to compare with products generally used. Moreover, numerous qualification tests have been carried out to verify that such metals meet the criteria accepted in the RCC-M code. Results allowed to qualify some filler metals made of nickel base alloy of qualify equivalent to the one of NC30Fe including 30 % chromium base metals. These metals are at present time used in manufacturing. (authors). 5 figs

  19. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF[sub 2], ThO[sub 2], YDT(0.85ThO[sub 2]-0.15YO[sub 1.5]), and LDT(0.85ThO[sub 2]- 0.15LaO[sub 1.5]) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  20. The strong reactions of Lewis-base noble-metals with vanadium and other acidic transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Ebbinghaus, B.B.

    1991-05-01

    The noble metals often thought of as unreactive solids,react strongly with nearly 40% of the elements in the periodictable: group IIIB-VB transition metals, lanthanides, theactinides, and group IIIA-IVA non-transition metals. These strong reactions arise from increased bonding/electron transfer fromnonbonding electrons d electron pairs on the noble metal tovacant orbitals on V, etc. This effect is a generalized Lewis acid-base interaction. The partial Gibbs energy of V in the noblemetals has been measured as a function of concentration at a temperature near 1000C. Thermodynamics of the intermetallics are determined by ternary oxide equilibria, ternary carbide equilibria, and the high-temperature galvanic cell technique. These experimental methods use equilibrated solid composite mixtures in which grains of V oxides or of V carbides are interspersed with grains of V-NM(noble-metal) alloys. In equilibrium the activity of V in the oxide or the carbide equals the activity in the alloy. Consequently, the thermodynamics available in the literature for the V oxides and V carbides are reviewed. Test runs on the galvanic cell were attempted. The V oxide electrode reacts with CaF{sub 2}, ThO{sub 2}, YDT(0.85ThO{sub 2}-0.15YO{sub 1.5}), and LDT(0.85ThO{sub 2}- 0.15LaO{sub 1.5}) to interfere with the measured data observed toward the beginning of a galvanic cell experiment are the most accurate. The interaction of vanadium at infinite dilution in the noble-metals was determined.

  1. Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems.

    Science.gov (United States)

    Aron, Allegra T; Ramos-Torres, Karla M; Cotruvo, Joseph A; Chang, Christopher J

    2015-08-18

    Metals are essential for life, playing critical roles in all aspects of the central dogma of biology (e.g., the transcription and translation of nucleic acids and synthesis of proteins). Redox-inactive alkali, alkaline earth, and transition metals such as sodium, potassium, calcium, and zinc are widely recognized as dynamic signals, whereas redox-active transition metals such as copper and iron are traditionally thought of as sequestered by protein ligands, including as static enzyme cofactors, in part because of their potential to trigger oxidative stress and damage via Fenton chemistry. Metals in biology can be broadly categorized into two pools: static and labile. In the former, proteins and other macromolecules tightly bind metals; in the latter, metals are bound relatively weakly to cellular ligands, including proteins and low molecular weight ligands. Fluorescent probes can be useful tools for studying the roles of transition metals in their labile forms. Probes for imaging transition metal dynamics in living systems must meet several stringent criteria. In addition to exhibiting desirable photophysical properties and biocompatibility, they must be selective and show a fluorescence turn-on response to the metal of interest. To meet this challenge, we have pursued two general strategies for metal detection, termed "recognition" and "reactivity". Our design of transition metal probes makes use of a recognition-based approach for copper and nickel and a reactivity-based approach for cobalt and iron. This Account summarizes progress in our laboratory on both the development and application of fluorescent probes to identify and study the signaling roles of transition metals in biology. In conjunction with complementary methods for direct metal detection and genetic and/or pharmacological manipulations, fluorescent probes for transition metals have helped reveal a number of principles underlying transition metal dynamics. In this Account, we give three recent

  2. Chifeng Strives to Build China’s Nonferrous Metals Industrial Processing Base

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>As the largest pillar industry of Chifeng industrial economy, metallurgical industry offers half of industrial added value and approximately 60% of fiscal revenue of the city. In recent years, Chifeng continues to extend industrial chain and enhance industrial level by relying on nonferrous metals resources, striving to build the nonferrous metals industrial processing base of China.

  3. Synthesis of Dichloride-Diphenylacetonitrile Palladium and Metal-Polymer Composite Based on Uhmwpe

    Directory of Open Access Journals (Sweden)

    A. M. Nemeryuk

    2016-05-01

    Full Text Available New complex of Pd (II with phenylacetonitrile, suitable for use as a precursor of palladium nano particles in the composition of metal-based composite UHMWPE was obtained. The thermodynamic characteristics of metal-polymer composite, found the effect of nano particles of palladium in the crystallization processes in UHMWPE and other characteristics of the material.

  4. Impedance-Based Battery Management for Metal-O2 Systems

    DEFF Research Database (Denmark)

    Christensen, Andreas Elkjær; Højberg, Jonathan; Norby, Poul;

    2015-01-01

    of many metal-O2 battery does not change as a function of capacity, this method cannot be used. In this manuscript, we propose a method, based on a single-frequency electrochemical impedance measurement, to estimate the remaining capacity and assess the state-of-health of reversible metal-O2 batteries...

  5. Photogalvanic and photovoltaic effects in systems based on metal complexes of Schiff bases

    Science.gov (United States)

    Smirnova, E. A.; Besedina, M. A.; Karushev, M. P.; Vasil'ev, V. V.; Timonov, A. M.

    2016-05-01

    The nature of the processes that occur when electrodes modified with complexes [M(Schiff)] (M = Ni, Pd, Pt; Schiff denotes four-dentate Schiff base ligands) are irradiated with visible light for the potential use of these electrodes in photoelectrochemical energy conversion devices is considered. The factors responsible for shifts in the electrode potential upon photoexcitation, i.e., the nature of the metal site, the nature of the substituents in the sensitizer, and the oxygen concentration are discussed. Tentative mechanisms of the photovoltaic effects observed for conventional and semiconductor electrodes modified with [M(Schiff)] complexes are determined.

  6. A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries

    OpenAIRE

    Rongrong Miao; Jun Yang; Zhixin Xu; Jiulin Wang; Yanna Nuli; Limin Sun

    2016-01-01

    A new ether-based electrolyte to match lithium metal electrode is prepared by introducing 1, 4-dioxane as co-solvent into lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane solution. Under the synergetic effect of solvents and salt, this simple liquid electrolyte presents stable Li cycling with dendrite-free Li deposition even at relatively high current rate, high coulombic efficiency of ca. 98%, and good anodic stability up to ~4.87 V vs Li RE. Its excellent performance will open up a new ...

  7. High-temperature performance of a new nickel-based filler metal for power generation application

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, J.; Coleman, K. [Electric Power Research Institute, Charlotte, NC (United States); Siefert, J.; Tanzosh, J. [Babcok and Wilcox Research Center, Barberton, OH (United States); Newell, W. [Euroweld, Mooresville, NC (United States)

    2010-07-01

    A new nickel-based weld filler metal, EPRI P87, has been developed as a superior alternative to ERNiCr-3 for use in dissimilar metal welds (DMW) between ferritic and austenitic materials. EPRI P87 has a low coefficient of thermal expansion more closely matching alloys such as Grade 91 and 92 than other available filler metals. Additionally, the size of the carbon denuded region adjacent to the weld in the heat-affected-zone is minimized/eliminated by proper control of weld metal composition. In this work the high-temperature mechanical behavior of DMWs utilizing EPRI P87 (GTAW and GMAW processes) was characterized through tensile and long-term creep-rupture testing. Microstructure analysis was also conducted on tested specimens to evaluate the HAZ regions and failure modes. Performance of the weld metal and welded joints is discussed and compared with ERNiCr-3 and typical 9%Cr-MoV filler metals. (orig.)

  8. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors.

    Science.gov (United States)

    Zhang, Zhidong; Luo, Liang; Xue, Chenyang; Zhang, Wendong; Yan, Shubin

    2016-01-01

    A refractive index sensor based on metal-insulator-metal (MIM) waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM). The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission spectra of the sensor, which is induced by the interference between a broad resonance mode in one rectangular and a narrow one in the other. The effect of various structural parameters on the Fano resonance and the refractive index sensitivity of the system based on Fano resonance is investigated. The proposed plasmonic refractive index sensor shows a maximum sensitivity of 596 nm/RIU. PMID:27164101

  9. Fano Resonance Based on Metal-Insulator-Metal Waveguide-Coupled Double Rectangular Cavities for Plasmonic Nanosensors

    Directory of Open Access Journals (Sweden)

    Zhidong Zhang

    2016-05-01

    Full Text Available A refractive index sensor based on metal-insulator-metal (MIM waveguides coupled double rectangular cavities is proposed and investigated numerically using the finite element method (FEM. The transmission properties and refractive index sensitivity of various configurations of the sensor are systematically investigated. An asymmetric Fano resonance lineshape is observed in the transmission spectra of the sensor, which is induced by the interference between a broad resonance mode in one rectangular and a narrow one in the other. The effect of various structural parameters on the Fano resonance and the refractive index sensitivity of the system based on Fano resonance is investigated. The proposed plasmonic refractive index sensor shows a maximum sensitivity of 596 nm/RIU.

  10. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    Science.gov (United States)

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  11. Corrosion and wear resistance of titanium- and aluminum-based metal matrix composites fabricated by direct metal laser deposition

    Science.gov (United States)

    Waldera, Benjamin L.

    Titanium- and Aluminum-based metal matrix composites (MMC) have shown favorable properties for aerospace applications such as airframes, reinforcement materials and joining elements. In this research, such coatings were developed by direct metal laser deposition with a powder-fed fiber coupled diode laser. The MMC formulations consisted of pure titanium and aluminum matrices with reinforcing powder blends of chromium carbide and tungsten carbide nickel alloy. Two powder formulations were investigated for each matrix material (Ti1, Ti2, Al1 and Al2). Titanium based composites were deposited onto a Ti6Al4V plate while aluminum composites were deposited onto AA 7075 and AA 5083 for Al1 and Al2, respectively. Microstructures of the MMCs were studied by optical and scanning electron microscopy. The hardness and reduced Young's modulus (Er) were assessed through depth-sensing instrumented nanoindentation. microhardness (Vickers) was also analyzed for each composite. The corrosion resistance of the MMCs were compared by monitoring open circuit potential (OCP), polarization resistance (Rp) and potentiodynamic polarization in 0.5 M NaCl to simulate exposure to seawater. The Ti-MMCs demonstrated improvements in hardness between 205% and 350% over Ti6Al4V. Al-MMCs showed improvements between 47% and 79% over AA 7075 and AA 5083. The MMCs showed an increase in anodic current density indicating the formation of a less protective surface oxide than the base metals.

  12. The Metal Abundances across Cosmic Time (MACT) Survey. II. Evolution of the Mass-metallicity Relation over 8 Billion Years, Using [OIII]4363AA-based Metallicities

    Science.gov (United States)

    Ly, Chun; Malkan, Matthew A.; Rigby, Jane R.; Nagao, Tohru

    2016-09-01

    We present the first results from MMT and Keck spectroscopy for a large sample of 0.1≤slant z≤slant 1 emission-line galaxies selected from our narrowband imaging in the Subaru Deep Field. We measured the weak [O iii] λ4363 emission line for 164 galaxies (66 with at least 3σ detections, and 98 with significant upper limits). The strength of this line is set by the electron temperature for the ionized gas. Because the gas temperature is regulated by the metal content, the gas-phase oxygen abundance is inversely correlated with [O iii] λ4363 line strength. Our temperature-based metallicity study is the first to span ≈ 8 Gyr of cosmic time and ≈ 3 dex in stellar mass for low-mass galaxies, {log}({M}\\star /{M}⊙ )≈ 6.0-9.0. Using extensive multi-wavelength photometry, we measure the evolution of the stellar mass-gas metallicity relation and its dependence on dust-corrected star formation rate (SFR). The latter is obtained from high signal-to-noise Balmer emission-line measurements. Our mass-metallicity relation is consistent with Andrews & Martini at z≤slant 0.3, and evolves toward lower abundances at a given stellar mass, {log}{({{O/H}})\\propto (1+z)}-{2.32-0.26+0.52}. We find that galaxies with lower metallicities have higher SFRs at a given stellar mass and redshift, although the scatter is large (≈ 0.3 dex) and the trend is weaker than seen in local studies. We also compare our mass-metallicity relation against predictions from high-resolution galaxy formation simulations, and find good agreement with models that adopt energy- and momentum-driven stellar feedback. We identified 16 extremely metal-poor galaxies with abundances of less than a tenth of solar; our most metal-poor galaxy at z≈ 0.84 is similar to I Zw 18.

  13. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions.

    Science.gov (United States)

    Feng, Liang; Li, Hui; Niu, Li-Ya; Guan, Ying-Shi; Duan, Chun-Feng; Guan, Ya-Feng; Tung, Chen-Ho; Yang, Qing-Zheng

    2013-04-15

    A fluorometric paper-based sensor array has been developed for the sensitive and convenient determination of seven heavy-metal ions at their wastewater discharge standard concentrations. Combining with nine cross-reactive BODIPY fluorescent indicators and array technologies-based pattern-recognition, we have obtained the discrimination capability of seven different heavy-metal ions at their wastewater discharge standard concentrations. After the immobilization of indicators and the enrichment of analytes, identification of the heavy-metal ions was readily acquired using a standard chemometric approach. Clear differentiation among heavy-metal ions as a function of concentration was also achieved, even down to 10(-7)M. A semi-quantitative estimation of the heavy-metal ion concentration was obtained by comparing color changes with a set of known concentrations. The sensor array was tentatively investigated in spiked tap water and sea water, and showed possible feasibility for real sample testing. PMID:23601876

  14. Microstructural characterisation of epitaxial rare earth metal based films

    International Nuclear Information System (INIS)

    Epitaxial rare earth films and superlattices grown by molecular beam epitaxy, MBE, can be designed to investigate theoretical predictions of the magnetic and electronic properties of the metals. These investigations ideally require smooth epitaxial layers with atomically flat interfaces and therefore the microstructure of selected epitaxial rare earth systems has been characterised by a combination of techniques. These systems were grown on a (110) niobium parallel (112-bar0) sapphire substrate. Because the crystallographic quality of the subsequent layers is influenced by the quality of the substrate, the niobium-sapphire interface was studied with transmission electron microscopy, TEM, and high resolution electron microscopy, HREM, to identify uniquely the misfit dislocation network. Conventional TEM specimen preparation techniques were inappropriate for the preparation of metallic foils, and so appropriate specimen preparation techniques were developed. HREM was used to characterise the strain relief mechanisms within a partially relaxed holmium/yttrium superlattice

  15. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles

    Science.gov (United States)

    Niagi, John; Warner, John; Andreesco, Silvana

    2007-01-01

    The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.

  16. PHYSICAL BASES OF SYSTEMS CREATION FOR MAGNETIC-IMPULSIVE ATTRACTION OF THIN-WALLED SHEET METALS

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2009-01-01

    Full Text Available The work is dedicated to the physical base of systems creating for the thin-walled sheet metals magnetic pulse attraction. Some practical realization models of the author’s suggestions are represented.

  17. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  18. Photothermal ablation therapy for cancer based on metal nanostructures

    Institute of Scientific and Technical Information of China (English)

    ROZANOVA; Nadejda

    2009-01-01

    Besides conventional surgery, radiation therapy, and chemotherapy, which all tend to have side-effects and damage normal tissues, new medical strategies, such as photothermal sensitization and photo-thermal ablation therapy (PTA) with near-IR laser light, have been explored for treating cancer. Much of the current excitement surrounding nanoscience is directly connected to the promise of new nanotechnology for cancer diagnosis and therapy. The basic principle behind PTA is that heat generated from light can be used to destroy cancer cells. Strong optical absorption and high efficiency of photothermal conversion at the cancer sites are critical to the success of PTA. Because of their unique optical properties, e.g., strong surface plasmon resonance (SPR) absorption, noble metal nanomaterials, such as gold and silver, have been found to significantly enhance photothermal conversion for PTA applications. Substantial effort has been made to develop metal nanostructures with optimal structural and photothermal properties. Ideal metal nanostructures should have strong and tunable SPR, be easy to deliver, have low toxicity, and be convenient for bioconjugation for actively targeting specific cancer cells. This review would highlight some gold nanostructures with various shapes and properties, including nanoparticles (NPs), nanorods (NRs), nanoshells, nanocages, and hollow nanospheres, which have been studied for PTA applications. Among these structures, hollow gold nanospheres (HGNs) exhibit arguably the best combined properties because of their small size (30―50 nm), spherical shape, and strong, narrow, and tunable SPR absorption.

  19. Photothermal ablation therapy for cancer based on metal nanostructures

    Institute of Scientific and Technical Information of China (English)

    ROZANOVA Nadejda; ZHANG JinZhong

    2009-01-01

    Besides conventional surgery, radiation therapy, and chemotherapy, which all tend to have side-effects and damage normal tissues, new medical strategies, such as photothermal sensitization and photothermal ablation therapy (PTA) with near-IR laser light, have been explored for treating cancer. Much of the current excitement surrounding nanoscience is directly connected to the promise of new nanotechnology for cancer diagnosis and therapy. The basic principle behind PTA is that heat generated from light can be used to destroy cancer cells. Strong optical absorption and high efficiency of photothermal conversion at the cancer sites are critical to the success of PTA. Because of their unique optical properties, e.g., strong surface plasmon resonance (SPR) absorption, noble metal nanomaterials, such as gold and silver, have been found to significantly enhance photothermal conversion for PTA applications. Substantial effort has been made to develop metal nanostructures with optimal structural and photothermal properties. Ideal metal nanostructures should have strong and tunable SPR, be easy to deliver, have low toxicity, and be convenient for bioconjugation for actively targeting specific cancer cells. This review would highlight some gold nanostructures with various shapes and properties, including nanoparticles (NPs), nanorods (NRs), nanoshells, nanocages, and hollow nanospheres, which have been studied for PTA applications. Among these structures, hollow gold nanospheres (HGNs) exhibit arguably the best combined properties because of their small size (30-50 nm), spherical shape, and strong, narrow, and tunable SPR absorption.

  20. Precipitation of Niobium Boride Phases at the Base Metal/Weld Metal Interface in Dissimilar Weld Joints

    Science.gov (United States)

    Výrostková, Anna; Kepič, Ján; Homolová, Viera; Falat, Ladislav

    2015-07-01

    In this work, the analysis of failure mechanism in the heat affected zone is described in dissimilar weld joints between advanced martensitic steel T92 and Ni-base weld metal. The joints were treated with two different post-weld heat treatments and tested. For the creep, tensile, and Charpy impact tests, the samples with interfacially located notch were used. Moreover long term aging at 625 °C was applied before the tensile and notch toughness tests. Decohesion fractures ran along carbides at the T92 BM/WM interfaces in case of the modified PWHT, whereas type IV cracking was the prevailing failure mechanism after the classical PWHT in the creep test. In the notch tensile and Charpy impact tests, with the notch at T92 base metal/weld metal interface, fractures ran along the interface with a hard phase on the fracture surface along with the ductile dimple and brittle quasi-cleavage fracture. The phase identified as niobium boride (either NbB and/or Nb3B2) was produced during welding at the end of the solidification process. It was found in the welds regardless of the post-weld heat treatment and long-term aging.

  1. Comparison of metals extractability from Al/Fe-based drinking water treatment residuals.

    Science.gov (United States)

    Wang, Changhui; Bai, Leilei; Pei, Yuansheng; Wendling, Laura A

    2014-12-01

    Recycling of drinking water treatment residuals (WTRs) as environment amendments has attracted substantial interest due to their productive reuse concomitant with waste minimization. In the present study, the extractability of metals within six Al/Fe-hydroxide-comprised WTRs collected throughout China was investigated using fractionation, in vitro digestion and the toxicity characteristic leaching procedure (TCLP). The results suggested that the major components and structure of the WTRs investigated were similar. The WTRs were enriched in Al, Fe, Ca, and Mg, also contained varying quantities of As, Ba, Be, Cd, Co, Cr, Cu, K, Mn, Mo, Na, Ni, Pb, Sr, V, and Zn, but Ag, Hg, Sb, and Se were not detected. Most of the metals within the WTRs were largely non-extractable using the European Community Bureau of Reference (BCR) procedure, but many metals exhibited high bioaccessibility based on in vitro digestion. However, the WTRs could be classified as non-hazardous according to the TCLP assessment method used by the US Environmental Protection Agency (USEPA). Further analysis showed the communication factor, which is calculated as the ratio of total extractable metal by BCR procedure to the total metal, for most metals in the six WTRs, was similar, whereas the factor for Ba, Mn, Sr, and Zn varied substantially. Moreover, metals in the WTRs investigated had different risk assessment code. In summary, recycling of WTRs is subject to regulation based on assessment of risk due to metals prior to practical application. PMID:25023656

  2. Resistive switching on HfO2-based metal-insulator-metal structures: effects of the top metal electrode and the oxygen partial pressure

    International Nuclear Information System (INIS)

    Embedded nonvolatile memories (eNVM) are attractive for a growing number of applications. One promising candidate for next-generation eNVM is based on the electrically switchable resistance change between a high and a low resistive state of a metal-insulator-metal (MIM) structure, called resistance random access memory (RRAM). Due to the cost effectivity and BEOL compatibility with (Bi)CMOS technologies, this approach is highly attractive. In this talk, the resistive switching on HfO2/bottom TiN based devices is demonstrated. The work is focused on the impact of the top metal electrode on the switching behavior of the RRAM devices: Al, Hf and Ti (reactive non-blocking), and Cu, Pt and Au (non-reactive blocking) are used and lead to bipolar or unipolar switching, respectively. The current and capacitance characteristics of the MIM diodes are studied by voltage sweeps and retention measurements under different gas ambient in order to highlight the effect of the oxygen partial pressure for a better understanding of the mechanism.

  3. Creep crack growth in weld metal/base metal/fusion zone regions in chromium molybdenum steels

    Energy Technology Data Exchange (ETDEWEB)

    Norris, R.H.; Saxena, A.

    1996-11-01

    An intensive study of the elevated temperature crack growth behavior of the base metal, weld metal, and heat-affected zone regions was performed on 1{1/4} chromium (Cr)-{1/2} molybdenum (Mo) and 2{1/4} Cr-1 Mo steel weldments at 538 C. Creep tests were conducted on samples removed from the weld and base metal regions of the two alloys to determine the creep deformation properties of the two different regions, whereas constant load creep crack growth tests were performed on compact-type specimens taken from all three aforementioned regions of both alloys. After the mechanical testing of the materials, extensive characterization analyses were performed on samples removed from the test specimens, which included microhardness testing, metallurgical analysis, scanning electron microscopic analysis (SEM), Auger electron spectrography (AES), cleanliness analysis, and quantification of creep-related damage. By using the information generated in this study, a model was developed to describe the crack growth in these alloys in terms of the accumulated creep damage ahead of the advancing crack front. The creep deformation behavior of these alloys is dominated by secondary and tertiary creep. The creep crack growth behavior of the alloys showed good correlation between the crack growth rate (da/dt) and the crack tip parameter (C{sub t}) in the weld metal and heat-affected zone regions. Creep crack propagation appears to occur by continuous nucleation, growth, and coalescence of grain boundary cavities. The model proposed to describe the creep crack growth in these alloys shows good agreement with the experimental results. 81 refs.

  4. PREPARATION AND PROPERTIES OF THE COLLODIAL SOLUTION BASED ON BIOGENIC METAL NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    K. V. Liapina

    2014-12-01

    Full Text Available The aim of the work was obtaining a stable suspension based on biocompatible substances with application of biogenic metal nanoparticles encapsulated into NaCl salt matrix, as a precursor. Water-soluble complex based on different amine derivatives with antiseptic properties was selected as a liquid for salt dissolution. The solution was subjected to dispersion using ultrasonication at elevated temperature. Dispersion is accompanied by salt shell removal with simultaneous formation of an organic shell on the surfaces of metal nanoparticles that ensure their stabilization. Study of the suspension after soaking at room temperature for 100 days showed that its characteristics remain stable. A method for producing a stable colloidal solution based on nanoparticles of biogenic metal (Cu, Co, fem etc. was developed. Metal nanopowder encapsulated into salt shell was used as a precursor. It is shown that such colloidal solutions are characterized by narrow size dispersion, as well as stability to temperature impact and time factor.

  5. On the weldability of grey cast iron using nickel based filler metal

    International Nuclear Information System (INIS)

    Shielded metal arc welding process using nickel based filler metal was used to join grey cast iron. The effect of post weld heat treatment (PWHT) on the microstructure and hardness was studied. PWHT included heating up to 870 oC, holding for 1 h at 870 oC and then furnace cooling. By using nickel based filler metal, formation of hard brittle phase (e.g. carbides and martensite) in the fusion zone is prevented. Before PWHT, heat affected zone exhibited martensitic structure and partially melted zone exhibited white cast iron structure plus martensite. Applied PWHT resulted in the dissolution of martensite in heat affected zone and graphitization and in turn the reduction of partially melted zone hardness. Results showed that welding of grey cast iron with nickel based filler metal and applying PWHT can serve as a solution for cast iron welding problems.

  6. Metal-based chemosensors for amino acids, peptides, and nucleotides

    OpenAIRE

    Buryak, Andrey

    2007-01-01

    An organometallic 4d transition metal complex [Cp*RhCl2]2, together with commercially available dyes, was used to construct indicator displacement assays (IDAs) for the detection of peptides, amino acids, and nucleotides. The combination of the Cp*Rh complex with the dye azophloxine was found to form a chemosensing ensemble for the sequence-selective detection of histidine- and methionine-containing peptides in water at neutral pH. A strong interaction of the rhodium complex with peptides bea...

  7. Metal-based chemosensors for amino acids, peptides, and nucleotides

    OpenAIRE

    Buryak, Andrey; Severin, Kay

    2008-01-01

    An organometallic 4d transition metal complex [Cp*RhCl2]2, together with commercially available dyes, was used to construct indicator displacement assays (IDAs) for the detection of peptides, amino acids, and nucleotides. The combination of the Cp*Rh complex with the dye azophloxine was found to form a chemosensing ensemble for the sequence-selective detection of histidine- and methionine-containing peptides in water at neutral pH. A strong interaction of the rhodium complex with peptides bea...

  8. A Retrieval Algorithm of Sheet Metal Parts Based on Relationships of Features

    Institute of Scientific and Technical Information of China (English)

    WANG Dawei; YAN Guangrong; LEI Yi; ZHANG Jiaying

    2012-01-01

    With the rapid increase in the number of three-dimensional (3D) models each year,to quickly and easily find the part desired has become a big challenge of enterprises.Meanwhile,many methods and algorithms have been proposed for part retrieval.However,most of the existing methods are designed for mechanical parts,and can not be well worked for sheet metal part retrieval.An approach to feature-based retrieval of sheet metal parts is presented.Firstly,the features frequently used in sheet metal part design are chosen as the "key words" in retrieval.Based on those features,a relative position model is built to express the different relationships of the features in 3D space.Secondly,a description method of the model is studied.With the description method the relative position of features in sheet metal parts can be expressed by four location description matrices.Thirdly,based on the relative position model and location description matrices,the equivalent definition of relationships of two feature groups is given which is the basis to calculate the similarity of two sheet metal parts.Next,the formula of retrieval algorithm for sheet metal parts is given.Finally,a prototype system is developed to test and verify the effectiveness of the retrieval method suggested.Experiments verify that the new method is able to meet the requirements of searching sheet metal parts and possesses potentials in practical application.

  9. The development of PC-based real time ultrasonic metal thickness inspection system

    International Nuclear Information System (INIS)

    This paper discusses the development of a PC-Based Real Time Ultrasonic Thickness Measurement system (UTMS) for metallic components such as pipes, pressure vessels and metal slabs. Metal thickness measurement for these components is crucial in industrial plants with dangerous environment, such as in oil and gas industry. From the measured metal thickness, a number of deductions could be made, for example the state and the rate of corrosion propagation inside a pipe or pressure vessel, etc. One of the most widely used methods in assessing metal thickness in industry is through the use of Ultrasonic technology. The benefits of using UTMS lies in the flexibility of data analysis, which includes signal processing, feature extraction, visualization capability and intelligent diagnosis. Data can be acquired in real-time and stored for future usage and application. The system was developed as a standalone computer software using Microsoft Visual-BASIC 6. (Author)

  10. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance.

    Science.gov (United States)

    Cahoon, Rebecca E; Lutke, W Kevin; Cameron, Jeffrey C; Chen, Sixue; Lee, Soon Goo; Rivard, Rebecca S; Rea, Philip A; Jez, Joseph M

    2015-07-10

    Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation. PMID:26018077

  11. Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance.

    Science.gov (United States)

    Cahoon, Rebecca E; Lutke, W Kevin; Cameron, Jeffrey C; Chen, Sixue; Lee, Soon Goo; Rivard, Rebecca S; Rea, Philip A; Jez, Joseph M

    2015-07-10

    Metabolic engineering approaches are increasingly employed for environmental applications. Because phytochelatins (PC) protect plants from heavy metal toxicity, strategies directed at manipulating the biosynthesis of these peptides hold promise for the remediation of soils and groundwaters contaminated with heavy metals. Directed evolution of Arabidopsis thaliana phytochelatin synthase (AtPCS1) yields mutants that confer levels of cadmium tolerance and accumulation greater than expression of the wild-type enzyme in Saccharomyces cerevisiae, Arabidopsis, or Brassica juncea. Surprisingly, the AtPCS1 mutants that enhance cadmium tolerance and accumulation are catalytically less efficient than wild-type enzyme. Metabolite analyses indicate that transformation with AtPCS1, but not with the mutant variants, decreases the levels of the PC precursors, glutathione and γ-glutamylcysteine, upon exposure to cadmium. Selection of AtPCS1 variants with diminished catalytic activity alleviates depletion of these metabolites, which maintains redox homeostasis while supporting PC synthesis during cadmium exposure. These results emphasize the importance of metabolic context for pathway engineering and broaden the range of tools available for environmental remediation.

  12. Comparative study of maxillary complete dentures constructed of metal base and metal structure framework.

    Science.gov (United States)

    Ohkubo, C; Kurtz, K S; Suzuki, Y; Hanatani, S; Abe, M; Hosoi, T

    2001-02-01

    A removable denture designed using a three-dimensional cast metal framework (hereafter referred to as the 'structurally designed' denture) could extend denture longevity because it is unbreakable and easy to adjust. The aim of the present clinical study was to compare two types of maxillary removable dentures: conventional dentures and structurally designed denture. One edentulous and five partially dentate patients were fitted with two maxillary dentures made from the same impression and same occlusal relationship. About 20 days after delivery of the denture, masticatory analysis was conducted chewing phase (open, closed, and occluded); coefficients of variation and average variation were calculated. Denture vibration during tapping was then measured using an accelerometer. The patients were also interviewed about comfort, ease of chewing, speech, stability, aesthetics and preference for regular use. For both masticatory movements and denture vibration, there were no significant differences (P>0.1) between the conventional denture and the structural design denture. In evaluating the dentures according to each criteria, the significant superiority of one denture over the other could not be determined. However, all patients subjectively preferred the structurally designed dentures for regular use. According to these findings, structurally designed dentures do not appear to have any particular physiological problems as compared with the conventional dentures.

  13. Applications of Cr-Based Metal Nitride Hard Coatings Using Multi-Magnetron Sputtering Sources and Elemental Metal Targets

    Institute of Scientific and Technical Information of China (English)

    Shicai Yang; Eric Wiemann; D.G. Teer

    2004-01-01

    Cr-based nitride hard coatings were produced by multi-magnetron sputtering sources using elemental metal materials. Cr, Ti, Mo, V, Al, and Y target materials were used for the metal sources whilst nitrogen was introduced at the same time to produce multilayer nitride hard coatings. The deposition process was optimised according to the properties of hardness, adherence and wear measured using microhardness, scratch, Rockwell indentation and pin-on-disc tests. The coatings were deposited onto hard metal carbide as well as high speed steel cutting tools such as inserts and drills. The coated inserts were tested on a wide range of difficult to machine materials using a Boehringer VDF180-C CNC lathe. The machining was performed under interrupted cutting conditions and the results were compared with those obtained using an advanced commercially available TiA1N coating. The coated carbide drills were tested under dry conditions to cut hard alloy steel and the coated tool steel drills were tested under lubricant conditions to cut carbon steel with comparing the similar tests on commercial TiN coatings. These test results were compared with those from drills coated with a commercial TiN.

  14. Applications of Cr-Based Metal Nitride Hard Coatings Using Multi-Magnetron Sputtering Sources and Elemental Metal Targets

    Institute of Scientific and Technical Information of China (English)

    ShicaiYang; EricWiemann; D.C.Teer

    2004-01-01

    Cr-based nitride hard coatings were produced by multi-magnetron sputtering sources using elemental metal materials. Cr, Ti, Mo, V, A1, and Y target materials were used for the metal sources whilst nitrogen was introduced at the same time to produce multilayer nitride hard coatings. The deposition process was optimised according to the properties of hardness, adherence and wear measured using microhardness, scratch, Rockwell indentation and pin-on-disc tests. The coatings were deposited onto hard metal carbide as well as high speed steel cutting tools such as inserts and drills. The coated inserts were tested on a wide range of difficult to machine materials using a Boehringer VDF180-C CNC lathe. The machining was performed under interrupted cutting conditions and the results were compared with those obtained using an advanced commercially available TiA1N coating. The coated carbide drills were tested under dry conditions to cut hard alloy steel and the coated tool steel drills were tested under lubricant conditions to cut carbon steel with comparing the similar tests on commercial TiN coatings. These test results were compared with those from drills coated with a commercial TiN.

  15. Zr-based conversion coatings for multi-metal substrates

    NARCIS (Netherlands)

    Cerezo Palacios, J.M.

    2015-01-01

    In this PhD work, a new surface treatment based on the application of Zr-based conversion coatings by immersion in a Cu containing Zr-based conversion solution was investigated as a replacement of the traditional phosphating process for the automotive industry. Nowadays most of the cars are made of

  16. Fe-based bulk metallic glasses used for magnetic shielding

    Science.gov (United States)

    Şerban, Va; Codrean, C.; Uţu, D.; Ercuţa, A.

    2009-01-01

    The casting in complex shapes (tubullar) and the main magnetic properties of bulk metallic glasses (BMG) alloys from the ferromagnetic Fe-Cr-Ni-Ga-P-Si-C system, with a small adittion of Ni (3%) were studied. Samples as rods and sockets having the thickness up to 1 mm were obtained from master alloys by melt injection by low cooling rates into a Cu mold and annealed in order to ensure adequate magnetic requirements. The structure was examined by X-ray diffraction (XRD) and the basic magnetic properties (coercivity, magnetic remanence, initial susceptibility, etc.) were determined by conventional low frequency induction method. The experimental investigations on producing of BMG ferromagnetic alloys with 3% Ni show the possibility to obtain magnetic shields of complex shape with satisfactory magnetic properties. The presence of Ni does not affect the glass forming ability, but reduce the shielding capacity.

  17. The genesis of the base metal ore deposit from Herja

    Directory of Open Access Journals (Sweden)

    Gheorghe Damian

    2003-04-01

    Full Text Available The Herja ore deposit is one of the most known of the Baia Mare Neogene metallogenetic district and is associated with a complex stock of Pannonian age. The hydrothermal alterations associated with the mineralizations are represented by: the propylitization, the argillization, the phyllic and potassic alteration. The monoascenedant character of the mineralizations is predominant. The magmatic intrusions have been sequential placed and have represented the heat, metals and hydrothermal solutions source. In the first stages of mineralization the hydrothermal solutions contain predominantly magmatic water and in the final stages the water is of connate and meteoric origin. According to the structural magmatic control, to the mineralogical composition and to the hydrothermal alterations, the Herja ore deposits are of a low sulphidation epithermal systems type.

  18. Gas response properties of metal oxide nanoparticle based sensors on MEMS microhotplate platforms

    OpenAIRE

    Haapalainen, T. (Tomi)

    2015-01-01

    This thesis concentrated on the analysis of the gas response properties of several metal oxide based gas sensors. A thin layer of chosen metal oxide was deposited on SGX Sensortech S.A. sensor platforms using pulsed laser deposition (PLD). Metal oxides used in the studies included tungsten trioxide (WO3), tin oxide zinc oxide (SnO2-ZnO) and vanadium pentoxide (V2O5). The films were deposited at room temperature and various oxygen partial pressures, and were then post-annealed at 400 °C. Gas r...

  19. Single crystal growth of europium and ytterbium based intermetallic compounds using metal flux technique

    Indian Academy of Sciences (India)

    Sumanta Sarkar; Sebastian C Peter

    2012-11-01

    This article covers the use of indium as a potential metal solvent for the crystal growth of europium and ytterbium-based intermetallic compounds. A brief view about the advantage of metal flux technique and the use of indium as reactive and non-reactive flux are outlined. Large single crystals of EuGe2, EuCoGe3 and Yb2AuGe3 compounds were obtained in high yield from the reactions of the elements in liquid indium. The results presented here demonstrate that considerable advances in the discovery of single crystal growth of complex phases are achievable utilizing molten metals as solvents.

  20. A new class of half-metallic ferromagnets based on the pnictide superconductors from first principles

    Science.gov (United States)

    Griffin, Sinead; Neaton, Jeffrey

    Most theoretical and experimental efforts in the Fe-pnictide class of superconductors aim to optimize the superconducting Tc. Significant substitution with other transition-metal ions is detrimental to superconductivity, however recent experiments on doped BaMn2As2 point to its potential as a half-metallic ferromagnet. Using ab initio calculations we investigate Mn-based structures as a new family of half-metallic ferromagnets, and discuss tuning the chemical composition and physical parameters for optimal device performance. Support from Swiss National Science Foundation.

  1. A new metal detection method based on balanced coil for mobile phone wireless charging system

    Science.gov (United States)

    Zhou, B.; Liu, Z. Z.; Chen, H. X.; Zeng, H.; Hei, T.

    2016-08-01

    The wireless charging time of mobile phone will increase greatly if the metal objects mix in the magnetic field coupling area. In addition, the fire may be caused as for the high temperature of metal objects. The paper proposed an improved detecting method based on balance coil for mobile phone wireless charging system according to comparing the advantages and disadvantages of traditional metal detection methods. The circuit model was established, and hardware and software were optimized. At last, experimental results verified the theoretical analysis.

  2. Synthesis, Characterization and Metal Ion Detection of Novel Fluoroionophores Based on Heterocyclic Substituted Alanines

    Directory of Open Access Journals (Sweden)

    M. Manuela M Raposo

    2007-10-01

    Full Text Available The synthesis of new fluorescent probes containing the thiophene andbenzoxazole moieties combined with an alanine residue is described. The resulting highlyfluorescent heterocyclic alanine derivatives respond via a quenching effect, withparamagnetic Cu(II and Ni(II metal ions and with diamagnetic Hg(II, as shown by theabsorption and steady-state fluorescence spectroscopy studies. The formation ofmononuclear or dinuclear metal complexes was postulated based on the presence of thefree carboxylic acid as binding site and also with the interaction with the donor atoms inthe chromophore. Interaction with other important biological metal ions such as Zn(II,Ca(II and Na(I was also explored.

  3. A Comprehensive Review of Glucose Biosensors Based on Nanostructured Metal-Oxides

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2010-05-01

    Full Text Available Nanotechnology has opened new and exhilarating opportunities for exploring glucose biosensing applications of the newly prepared nanostructured materials. Nanostructured metal-oxides have been extensively explored to develop biosensors with high sensitivity, fast response times, and stability for the determination of glucose by electrochemical oxidation. This article concentrates mainly on the development of different nanostructured metal-oxide [such as ZnO, Cu(I/(II oxides, MnO2, TiO2, CeO2, SiO2, ZrO2, and other metal-oxides] based glucose biosensors. Additionally, we devote our attention to the operating principles (i.e., potentiometric, amperometric, impedimetric and conductometric of these nanostructured metal-oxide based glucose sensors. Finally, this review concludes with a personal prospective and some challenges of these nanoscaled sensors.

  4. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-01-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  5. Selective cancer-killing ability of metal-based nanoparticles: implications for cancer therapy.

    Science.gov (United States)

    Akhtar, Mohd Javed; Alhadlaq, Hisham A; Kumar, Sudhir; Alrokayan, Salman A; Ahamed, Maqusood

    2015-11-01

    There has been little focus on the promising ability of metal-based nanoparticles (NPs) to kill cancer cells while sparing normal cells. Many in vitro and in vivo reports suggest that certain metal-based NPs are able to induce apoptosis and autophagy in cancer cells at specific concentrations that are not significantly toxic to non-cancerous cells. Those NPs are thought to exploit the oxidative stress conditions that prevail in cancer cells, which are largely exhausted of antioxidant ability. This review considers the induction of reactive oxygen species (ROS) by metal-based NPs as a mechanism for the specific killing of cancer cells. The article concomitantly provides a comprehensive description of the important pathways and molecules leading to programmed cell death (PCD), which occurs mainly via apoptosis, autophagy, and necroptosis. The PCD pathways are followed as ROS-burdened cancer cells succumb to ROS-generating metal-based NPs. Exploration of nanotechnology interventions in anticancer therapy demands further research into the mechanism of intracellular induction of ROS by metal-based NPs. Furthermore, the induction of ROS by NPs should be strictly controlled if ROS-based therapy is to become a paradigm in cancer therapy.

  6. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization

    OpenAIRE

    Battocchio Chiara; Polzonetti Giovanni; Cametti Cesare; Fratoddi Ilaria; Venditti Iole; Russo Maria

    2011-01-01

    Abstract Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs), coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells cont...

  7. Evaluation on Heavy Metal Pollution of Soil in Pollution-free Agricultural Product Bases in Guangxi

    OpenAIRE

    DENG, Minjun; Luo, Yan

    2014-01-01

    Using data of 6 pollution-free agricultural product bases in Guangxi Zhuang Autonomous Region, this paper analyzed content of heavy metals, including arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and chromium (Cr) in soil. After Pb, Cd, Cr, Hg and As content in soil is determined, it evaluated the pollution of soil using single factor pollution index method and Nemerow synthetic pollution index method in combination with evaluation standard of heavy metals in soil and grading standard ...

  8. Theory of storage, inventory and volatility in the LME base metals

    OpenAIRE

    Geman, Hélyette; Smith, William O.

    2013-01-01

    The theory of storage, as related to commodities, makes two predictions involving the quantity of the commodity held in inventory. When inventory is low (i.e. a situation of scarcity), spot prices will exceed futures prices, and spot price volatility will exceed futures price volatility. Conversely, during periods of no scarcity, both spot prices and spot price volatility will remain relatively subdued. We test these predictions for the six base metals traded on the London Metal Exchange (...

  9. Transition metal based layered double hydroxides tailored for energy conversion and storage

    OpenAIRE

    Xia Long; Zilong Wang; Shuang Xiao; Yiming An; Shihe Yang

    2016-01-01

    Layered double hydroxides (LDHs) are a class of clays with brucite like layers and intercalated anions. The first (3d) series transition metals based LDHs (TM-LDHs) are attracting increasing interest in the field of energy conversion and storage processes due to their unique physicochemical properties. In this article, we review recent developments in the synthesis and applications of TM-LDH in these areas including water splitting, CO2 conversion, metal-air batteries and supercapacitors and ...

  10. Shape assisted fabrication of fluorescent cages of squarate based metal-organic coordination frameworks.

    Science.gov (United States)

    Jayaramulu, Kolleboyina; Krishna, Katla Sai; George, Subi J; Eswaramoorthy, Muthuswamy; Maji, Tapas Kumar

    2013-05-11

    Micronic cage structures of squarate based metal-organic coordination frameworks (MOCFs) have been fabricated for the first time by specific anion selective etching of metal squarate cubes. Time and stoichiometry dependent synthesis and the corresponding microscopic studies have provided mechanistic insight into the cage formation. Furthermore, a non-covalent post-synthetic strategy has been adopted to functionalize the micronic cubes or cages with chromophores rendering the resulting hybrids green fluorescent.

  11. Metal effect on the supramolecular structure, photophysics, and acid-base character of trinuclear pyrazolato coinage metal complexes.

    Science.gov (United States)

    Omary, Mohammad A; Rawashdeh-Omary, Manal A; Gonser, M W Alexander; Elbjeirami, Oussama; Grimes, Tom; Cundari, Thomas R; Diyabalanage, Himashinie V K; Gamage, Chammi S Palehepitiya; Dias, H V Rasika

    2005-11-14

    Varying the coinage metal in cyclic trinuclear pyrazolate complexes is found to significantly affect the solid-state packing, photophysics, and acid-base properties. The three isoleptic compounds used in this study are [[3,5-(CF3)2Pz]M]3 with M = Cu, Ag, and Au (i.e., Cu3, Ag3, and Au3, respectively). They form isomorphous crystals and exist as trimers featuring nine-membered M3N6 rings with linear two-coordinate metal sites. On the basis of the M-N distances, the covalent radii of two-coordinate Cu(I), Ag(I), and Au(I) were estimated as 1.11, 1.34, and 1.25 angstroms, respectively. The cyclic [[3,5-(CF3)2Pz]M]3 complexes pack as infinite chains of trimers with a greater number of pairwise intertrimer M...M interactions upon proceeding to heavier coinage metals. However, the intertrimer distances are conspicuously short in Ag3 (3.204 angstroms) versus Au3 (3.885 angstroms) or Cu3 (3.813 angstroms) despite the significantly larger covalent radius of Ag(I). Remarkable luminescence properties are found for the three M3 complexes, as manifested by the appearance of multiple unstructured phosphorescence bands whose colors and lifetimes change qualitatively upon varying the coinage metal and temperature. The multiple emissions are assigned to different phosphorescent excimeric states that exhibit enhanced M...M bonding relative to the ground state. The startling luminescence thermochromic changes in crystals of each compound are related to relaxation between the different phosphorescent excimers. The trend in the lowest energy phosphorescence band follows the relative triplet energy of the three M(I) atomic ions. DFT calculations indicate that [[3,5-(R)2Pz]M]3 trimers with R = H or Me are bases with the relative basicity order Ag < Cu < Au while fluorination (R = CF3) renders even the Au trimer acidic. These predictions were substantiated experimentally by the isolation of the first acid-base adduct, [[Au3]2:toluene]infinity, in which a trinuclear Au(I) complex acts as

  12. Simplified Technique for Incorporating a Metal Mesh into Record Bases for Mandibular Implant Overdentures.

    Science.gov (United States)

    Godoy, Antonio; Siegel, Sharon C

    2015-12-01

    Mandibular implant-retained overdentures have become the standard of care for patients with mandibular complete edentulism. As part of the treatment, the mandibular implant-retained overdenture may require a metal mesh framework to be incorporated to strengthen the denture and avoid fracture of the prosthesis. Integrating the metal mesh framework as part of the acrylic record base and wax occlusion rim before the jaw relation procedure will avoid the distortion of the record base and will minimize the chances of processing errors. A simplified method to incorporate the mesh into the record base and occlusion rim is presented in this technique article. PMID:25659988

  13. The effect of metal artefact reduction on CT-based attenuation correction for PET imaging in the vicinity of metallic hip implants : a phantom study

    NARCIS (Netherlands)

    Harnish, Roy; Prevrhal, Sven; Alavi, Abass; Zaidi, Habib; Lang, Thomas F.

    2014-01-01

    To determine if metal artefact reduction (MAR) combined with a priori knowledge of prosthesis material composition can be applied to obtain CT-based attenuation maps with sufficient accuracy for quantitative assessment of F-18-fluorodeoxyglucose uptake in lesions near metallic prostheses. A custom h

  14. Ballistic Hot Electron Transport in Heteroepitaxial SrRuO3 Metal-Base Transistors

    Science.gov (United States)

    Kim, Brian; Hikita, Yasuyuki; Yajima, Takeaki; Bell, Christopher; Hwang, Harold

    Perovskite oxide heterostructures is a rapidly emerging field significant for interface-induced electronic and magnetic reconstructions, resulting in novel phases distinct from those found in the bulk counterparts. Notably, utilizing device structures is an effective way to probe these interface-induced phases. One of the most prevalent device structures that has been adopted so far is a three-terminal field-effect geometry, used to probe in-plane electronic transport properties. However, the out-of-plane three-terminal device geometry, though less studied due to its complexity, is also useful in many aspects. In the metal-base transistor (MBT), for instance, ballistic transport of hot electrons injected across a Schottky diode emitter can be used to probe hot electron properties of the metal-base, providing information on inelastic scattering mechanisms, electron confinement effects, and intervalley transfer. One promising model system for the metal-base is SrRuO3 (SRO), characterized by intermediate electron correlations with unusual transport properties. Here we present an all-perovskite oxide heteroepitaxial MBT using SRO as a metal-base layer. Successful MBT operation for various metal-base layer thicknesses was achieved, from which the hot electron attenuation length of SRO was deduced. These results form a foundation on which to examine the properties of hot electrons in strongly correlated systems using the out-of-plane three-terminal device geometry.

  15. Novel Metal Ion Based Estrogen Mimics for Molecular Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopalan, Raghavan

    2006-01-30

    The overall objective of the SBIR Phase I proposal is to prepare and evaluate a new class of {sup 99m}Tc or {sup 94m}Tc containing estrogen-like small molecules ('estrogen mimics') for SPECT or PET molecular imaging of estrogen receptor positive (ER+) tumors. In this approach, the metal ion is integrated into the estrone skeleton by isosteric substitution of a carbon atom in the steroidal structure to give new class of mimics that are topologically similar to the native estrogen (Fig. 1). Although both N{sub 2}S{sub 2} and N{sub 3}S mimics 1 and 2 were considered as target structures, molecular modeling study revealed that the presence of the acetyl group at position-15 in the N{sub 3}S mimic 2 causes steric hinderance toward binding of 2 to SHBG. Therefore, initial efforts were directed at the synthesis and evaluation of the N{sub 2}S{sub 2} mimic 1.

  16. Ion bombardment of Fe-based amorphous metallic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Miglierini, Marcel, E-mail: marcel.miglierini@stuba.sk [Slovak University of Technology, Department of Nuclear Physics and Technology (Slovakia); Lancok, Adriana [AS CR, v. v. i., Institute of Physics (Czech Republic); Pavlovic, Marius [Slovak University of Technology, Department of Nuclear Physics and Technology (Slovakia)

    2009-02-15

    Fe{sub 74}Cu{sub 1}Nb{sub 3}Si{sub 16}B{sub 6} amorphous metallic alloy is investigated after ion irradiation by 110 keV N{sup +} and 593 MeV Au ions. The depth-profiles of the radiation damage were calculated by the SRIM2008 code. Applicability of transmission and conversion electron Moessbauer effect measurements to distinguish between the bulk and surface radiation damage is demonstrated by using different irradiation conditions. The investigated alloy is characterized by ferromagnetic interactions. The implantation does not depict appreciable changes of the samples' surfaces. Changes in chemical short-range order (SRO) are revealed in N{sup +} irradiated alloys. Heavy Au ions caused pronounced effects in the position of the net magnetization though no impact on SRO was observed. After annealing, structural relaxation and annealing-out of the irradiation-induced stresses caused the rotation of the net magnetization back to its original position.

  17. AMQ Protocol Based Performance Analysis of Bare Metal Hypervisors

    Directory of Open Access Journals (Sweden)

    Dr Deepak Arora

    2014-06-01

    Full Text Available Cloud computing is one of the most exciting technology because of its cost-reducing approach, flexibility, and scalability. Hypervisor is the essential part of cloud technology; it is a component of software that provides a virtualized hardware environment to support running multiple operating systems concurrently using one physical server. In this paper we took KVM, XEN, Hyper-V and ESXi as hypervisors. We have compared the performance of Virtual Machines (VMs by RabbitMQ message broker server that uses Advanced Message Queuing Protocol(AMQP for breaking messages. We establish the setup on bare metal hypervisor that is installed directly on the hardware of the system. We took SAN (Shared Storage Network server for maintaining the storage of all VMs. By the evaluation of these hyperviosrs we got a brief idea about their performance on different parameters. These results will be beneficial to small enterprise, social group or any private IT firm which is choosing to build small cloud infrastructure with optimal benefits. Experiment results of checking the performance of VMs for all the hypervisors shows that there is performance variation on different applications and workloads of the hypervisors. None of the hypervisors outperform another at every aspect of our comparison.

  18. Assessment of diffuse trace metal inputs into surface waters - Combining empirical estimates with process based simulations

    Science.gov (United States)

    Schindewolf, Marcus; Steinz, André; Schmidt, Jürgen

    2015-04-01

    As a result of mining activities since the 13th century, surface waters of the German Mulde catchment suffer from deleterious dissolved and sediment attached lead (Pb) and zinc (Zn) inputs. The leaching rate of trace metals with drainage water is a significant criterion for assessing trace metal concentrations of soils and associated risks of ground water pollution. However, the vertical transport rates of trace metals in soils are difficult to quantify. Monitoring is restricted to small lysimeter plots, which limits the transferability of results. Additionally the solid-liquid-transfer conditions in soils are highly variable, primarily due to the fluctuating retention time of percolating soil water. In contrast, lateral sediment attached trace metal inputs are mostly associated with soil erosion and resulting sediment inputs into surface waters. Since soil erosion by water is related to rare single events, monitoring and empirical estimates reveal visible shortcomings. This gap in knowledge can only be closed by process based model calculations. Concerning these calculations it has to be considered, that Pb and Zn are predominantly attached to the fine-grained soil particles (leaching rates from contaminated top soils for standardised transfer conditions and a process based modelling approach for sediment attached trace metal inputs into surface waters. Pb and Zn leaching rates amounts to 20 Mg ha-1 yr-1 resp. 114 Mg ha-1 yr-1. Deviations to observed dissolved trace metal yields at the Bad Düben gauging station are caused by plant uptake and subsoil retention. Sediment attached Pb and Zn input rates amounts to 114 Mg ha-1 yr-1 and 173 Mg ha-1 yr-1 ,which increase measurements by 10 to 25 times. This can only be caused by an inappropriate sampling regime. Routine sampling seems to reflect base load of trace metals rather than total trace metal loads.

  19. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.

    Science.gov (United States)

    Paek, Eunsu; Pak, Alexander J; Hwang, Gyeong S

    2014-08-13

    Chemically doped graphene-based materials have recently been explored as a means to improve the performance of supercapacitors. In this work, we investigate the effects of 3d transition metals bound to vacancy sites in graphene with [BMIM][PF6] ionic liquid on the interfacial capacitance; these results are compared to the pristine graphene case with particular attention to the relative contributions of the quantum and electric double layer capacitances. Our study highlights that the presence of metal-vacancy complexes significantly increases the availability of electronic states near the charge neutrality point, thereby enhancing the quantum capacitance drastically. In addition, the use of metal-doped graphene electrodes is found to only marginally influence the microstructure and capacitance of the electric double layer. Our findings indicate that metal-doping of graphene-like electrodes can be a promising route toward increasing the interfacial capacitance of electrochemical double layer capacitors, primarily by enhancing the quantum capacitance. PMID:24983127

  20. Synthesis of Chiral Metal Complexes of Unsymmetrical Schiff Bases

    Institute of Scientific and Technical Information of China (English)

    SONG; Bo

    2001-01-01

    Recently, in asymmetric catalyst research the great developments of chiral Salen complexes have been made, but the report on unsymmetrical schiff bases is deficient. The unsymmetrical schiff bases complexes are an effective system in catalytically selective Olefin-epoxidations1. At the same time, unsymmetrical schiff bases was immobilized onto polymer supports for heterogenization2. The potential benefits of the catalyst include facilitation of catalyst separation from reagents, simplification of methods for catalyst recycle, and the possible adaptation of the immobilized catalyst to continuous-flow processes. A series of new unsymmetrical schiff bases was synthesized to study the relations between unsymmetry and enantioselectivity and select better catalyst. The following is the route:  ……

  1. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    Science.gov (United States)

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies. PMID:26498319

  2. Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors.

    Science.gov (United States)

    Rim, You Seung; Bae, Sang-Hoon; Chen, Huajun; Yang, Jonathan L; Kim, Jaemyung; Andrews, Anne M; Weiss, Paul S; Yang, Yang; Tseng, Hsian-Rong

    2015-12-22

    Conformal bioelectronics enable wearable, noninvasive, and health-monitoring platforms. We demonstrate a simple and straightforward method for producing thin, sensitive In2O3-based conformal biosensors based on field-effect transistors using facile solution-based processing. One-step coating via aqueous In2O3 solution resulted in ultrathin (3.5 nm), high-density, uniform films over large areas. Conformal In2O3-based biosensors on ultrathin polyimide films displayed good device performance, low mechanical stress, and highly conformal contact determined using polydimethylsiloxane artificial skin having complex curvilinear surfaces or an artificial eye. Immobilized In2O3 field-effect transistors with self-assembled monolayers of NH2-terminated silanes functioned as pH sensors. Functionalization with glucose oxidase enabled d-glucose detection at physiologically relevant levels. The conformal ultrathin field-effect transistor biosensors developed here offer new opportunities for future wearable human technologies.

  3. Laser beam drilling of metal-based composites

    Science.gov (United States)

    Riegel, H.; Merkel, M.; Ã-chsner, A.

    2014-02-01

    Laser drilling is a highly efficient technique to generate holes in almost any material. The relatively small amount of heat being involved during the process results in a small heat affected zone. This characteristic makes laser processing interesting for composite materials. The drilling process has to be adapted to the special characteristics of the composite material. In this paper investigations were performed with an advanced composite material, that is a metallic hollow sphere structure (MHSS). Numerical simulation was used to predict heat flux and temperature levels for different geometric parameters of the spheres (diameter, wall thickness) in order to optimize the drilling process. The numerical simulation allows a detailed analysis of the physical process in the zone that is influenced by the laser beam, which can hardly be analyzed by any measuring technique. The models for transient numerical analysis consider heat conduction and convection. The experimental work was done by a CO2-laser. The percussion drilling method has been used as drilling technique. The pulse duration was in the millisecond time regime. Investigations have been done with a mean power of 100 W, 200 W and 400 W. Two focal lenses have been used with focal lengths of 5.0´´ and 7.5´´. The laser beam melts the hollow sphere structure inside the beam leaving a hole in the structure as well as in individual hollow spheres. An image processing technique was developed to determine the circularity on the spheres and the drilled diameter in the structure. The circularity declines with increasing drill depth. The diameter as function of depth can be well described with lines of constant intensity of the focussed laser beam, the isophotes.

  4. Fabrication methods and applications of microstructured gallium based liquid metal alloys

    Science.gov (United States)

    Khondoker, M. A. H.; Sameoto, D.

    2016-09-01

    This review contains a comparative study of reported fabrication techniques of gallium based liquid metal alloys embedded in elastomers such as polydimethylsiloxane or other rubbers as well as the primary challenges associated with their use. The eutectic gallium–indium binary alloy (EGaIn) and gallium–indium–tin ternary alloy (galinstan) are the most common non-toxic liquid metals in use today. Due to their deformability, non-toxicity and superior electrical conductivity, these alloys have become very popular among researchers for flexible and reconfigurable electronics applications. All the available manufacturing techniques have been grouped into four major classes. Among them, casting by needle injection is the most widely used technique as it is capable of producing features as small as 150 nm width by high-pressure infiltration. One particular fabrication challenge with gallium based liquid metals is that an oxide skin is rapidly formed on the entire exposed surface. This oxide skin increases wettability on many surfaces, which is excellent for keeping patterned metal in position, but is a drawback in applications like reconfigurable circuits, where the position of liquid metal needs to be altered and controlled accurately. The major challenges involved in many applications of liquid metal alloys have also been discussed thoroughly in this article.

  5. Experimental study on the surface characteristics of Pd-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Sun, Bingli [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); Zhao, Na [National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002 (China); Li, Qian, E-mail: qianli@zzu.edu.cn [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China); National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002 (China); Hou, Jianhua; Feng, Weina [School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001 (China); National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001 (China); Key Laboratory for Micro Molding Technology of Henan Province, Zhengzhou University, Zhengzhou, 450001 (China)

    2014-12-01

    Highlights: • Wetting behavior of four polymer melts on Pd-based bulk metallic glass was investigated. • From results, in general, the contact angle of polymer on Pd-based BMG decreases with temperature increasing. • We find a critical temperature for each polymer, above this temperature, contact angle on Pd-based BMG does not decrease with temperature increasing. • Surface free energy of Pd-based BMG was estimated by Owens–Wendt method. - Abstract: The metallic glass has many unique and desirable physical and chemical characteristics for their long-range disordered atomic structure, among them the interfacial properties of the metallic glasses are crucial for their applications and manufacturing. In this work, the contact wetting angles between the polymer melts and Pd{sub 40}Cu{sub 30}Ni{sub 10}P{sub 20} bulk metallic glass (Pd-BMG) with four kinds of roughness were analyzed. Experiments show the order of four polymers wettability on Pd-BMG was PP > HDPE > COC > PC. The surface free energy of Pd-BMG was estimated by Owens–Wendt method using the contact angles of three testing liquids. Neumann method was also used to further evidence the surface free energy of Pd-BMG comparing with PTFE, mold steels NAK80 and LKM2343ESR. The results provide theoretical and technical supports for the fabrication of metallic glass micro mold and the parameter optimization of polymer micro injection molding.

  6. Structuralization of Ca(2+)-Based Metal-Organic Frameworks Prepared via Coordination Replication of Calcium Carbonate.

    Science.gov (United States)

    Sumida, Kenji; Hu, Ming; Furukawa, Shuhei; Kitagawa, Susumu

    2016-04-01

    The emergence of metal-organic frameworks (MOFs) as potential candidates to supplant existing adsorbent types in real-world applications has led to an explosive growth in the number of compounds available to researchers, as well as in the diversity of the metal salts and organic linkers from which they are derived. In this context, the use of carbonate-based precursors as metal sources is of interest due to their abundance in mineral deposits and their reaction chemistry with acids, resulting in just water and carbon dioxide as side products. Here, we have explored the use of calcium carbonate as a metal source and demonstrate its versatility as a precursor to several known frameworks, as well as a new flexible compound based on the 2,5-dihydroxybenzoquinone (H2dhbq) linker, Ca(dhbq)(H2O)2. Furthermore, inspired by the ubiquity and unique structures of biomineralized forms of calcium carbonate, we also present examples of the preparation of superstructures of Ca-based MOFs via the coordination replication technique. In all, the results confirm the suitability of carbonate-based metal sources for the preparation of MOFs and further expand upon the growing scope of coordination replication as a convenient strategy for the preparation of structuralized materials. PMID:27002690

  7. Dealloying of Cu-Based Metallic Glasses in Acidic Solutions: Products and Energy Storage Applications

    Directory of Open Access Journals (Sweden)

    Zhifeng Wang

    2015-04-01

    Full Text Available Dealloying, a famous ancient etching technique, was used to produce nanoporous metals decades ago. With the development of dealloying techniques and theories, various interesting dealloying products including nanoporous metals/alloys, metal oxides and composites, which exhibit excellent catalytic, optical and sensing performance, have been developed in recent years. As a result, the research on dealloying products is of great importance for developing new materials with superior physical and chemical properties. In this paper, typical dealloying products from Cu-based metallic glasses after dealloying in hydrofluoric acid and hydrochloric acid solutions are summarized. Several potential application fields of these dealloying products are discussed. A promising application of nanoporous Cu (NPC and NPC-contained composites related to the energy storage field is introduced. It is expected that more promising dealloying products could be developed for practical energy storage applications.

  8. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    Science.gov (United States)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  9. Rapid Finite Element Analysis of Bulk Metal Forming Process Based on Deformation Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Peng; DONG Xiang-huai; FU Li-jun

    2009-01-01

    The one-step finite element method (FEM), based on plastic deformation theory, has been widely used to simulate sheet metal forming processes, but its application in bulk metal forming simulation has been seldom investigated, because of the complexity involved. Thus, a bulk metal forming process was analyzed using a rapid FEM based on deformation theory. The material was assumed to be rigid-plastic and strain-hardened. The constitutive relationship between stress and total strain was adopted, whereas the incompressible condition was enforced by penalty function. The geometrical non-linearity in large plastic deformation was taken into consideration. Furthermore, the force boundary condition was treated by a simplified equivalent approach, considering the contact history. Based on constraint variational principle, the deformation FEM was proposed. The one-step forward simulation of axisymmetric upsetting process was performed using this method. The results were compared with those obtained by the traditional incremental FEM to verify the feasibility of the proposed method.

  10. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions.

    Science.gov (United States)

    Lu, Qipeng; Yu, Yifu; Ma, Qinglang; Chen, Bo; Zhang, Hua

    2016-03-01

    Hydrogen (H2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble-metal-based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot-injection method, the heating-up method, the hydro(solvo)thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed. PMID:26676800

  11. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    Science.gov (United States)

    Perim, Eric; Lee, Dongwoo; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W. Neal; Levy, Ohad; Vlassak, Joost J.; Schroers, Jan; Curtarolo, Stefano

    2016-08-01

    Metallic glasses attract considerable interest due to their unique combination of superb properties and processability. Predicting their formation from known alloy parameters remains the major hindrance to the discovery of new systems. Here, we propose a descriptor based on the heuristics that structural and energetic `confusion' obstructs crystalline growth, and demonstrate its validity by experiments on two well-known glass-forming alloy systems. We then develop a robust model for predicting glass formation ability based on the geometrical and energetic features of crystalline phases calculated ab initio in the AFLOW framework. Our findings indicate that the formation of metallic glass phases could be much more common than currently thought, with more than 17% of binary alloy systems potential glass formers. Our approach pinpoints favourable compositions and demonstrates that smart descriptors, based solely on alloy properties available in online repositories, offer the sought-after key for accelerated discovery of metallic glasses.

  12. Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine

    International Nuclear Information System (INIS)

    In this experimental study, influence of the metallic-based additives on fuel consumption and exhaust emissions of diesel engine were investigated. The metallic-based additives were produced by synthesizing of resin acid (abietic acid) with MnO2 or MgO. These additives were doped into diesel fuel at the rate of 8 μmol/l and 16 μmol/l for preparing test fuels. Both additives improved the properties of diesel fuel such as viscosity, flash point, cloud point and pour point. The fuels with and without additives were tested in a direct injection diesel engine at full load condition. Maximum reduction of specific fuel consumption was recorded as 4.16%. CO emission and smoke opacity decreased by 16.35% and by 29.82%, respectively. NOx emission was measured higher and CO2 emission was not changed considerably with the metallic-based additives.

  13. [Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].

    Science.gov (United States)

    Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao

    2015-12-01

    China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution. PMID:27011999

  14. [Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].

    Science.gov (United States)

    Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao

    2015-12-01

    China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.

  15. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    Science.gov (United States)

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  16. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Antonella Gentile

    2016-06-01

    Full Text Available Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing. The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic

  17. Metal based synthetic routes to heavy alkaline earth aryloxo complexes involving ligands of moderate steric bulk.

    Science.gov (United States)

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Guino-o, Marites; Ruhlandt-Senge, Karin

    2009-07-01

    Treatment of an alkaline earth metal (Ca, Sr, Ba) with 2,4,6-trimethylphenol (HOmes) at elevated temperatures in the presence of mercury under solvent-free conditions, followed by extraction of the reaction mixture with 1,2-dimethoxyethane (dme), afforded dinuclear alkaline earth aryloxo complexes [Ae2(Omes)4(dme)4] (Ae = Ca 1, Sr 3, Ba 6). Extraction of the Ca metal and HOmes reaction mixture with thf afforded [Ca3(Omes)6(thf)] 2. In contrast, redox transmetallation ligand exchange reactions between an alkaline earth metal, diphenylmercury and HOmes in dme yielded solely 1 for Ca metal, a mixture of 3 and the methoxide bridged cage [Sr5(Omes)5(OMe)5(dme)4] x 2dme 4 for Sr metal, and solely [Ba5(Omes)5(OMe)5(dme)4] x dme 7 for Ba metal. The methoxide ligands originate from the C-O activation of the dme solvent. Treatment of liquid ammonia activated Sr or Ba metal with HOmes in thf afforded the linear species [Ae3(Omes)6(thf)6] (Ae = Sr 5, Ba 8), and 8 was also obtained from barium metal and HOmes in refluxing thf. The structures of 1 and 3, determined by X-ray crystallography, consist of two six coordinate Ae metal atoms, to each of which is bound a terminal aryloxide ligand, two bridging aryloxide ligands, and chelating and unidentate dme ligands. The structures of 4 and 7 contain five Ae metal atoms arranged on the vertices of a distorted square based pyramid. The Ae atoms are linked by four mu3-OMe ligands and a mu4-OMe ligand. Four bridging aryloxide ligands and four chelating dme ligands complete the coordination spheres of the four seven coordinate Ae atoms at the base of the pyramid, and a terminal aryloxide ligand is bound to the five coordinate apical Ae atom. The structures of 5 and 8 consist of a trinuclear linear array of Ae metal atoms, and contain solely bridging aryloxide ligands. Three thf ligands are bound to each terminal Ae atom, giving all Ae atoms a coordination number of six. PMID:19662279

  18. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  19. Development a Cu-based Metal Powder for Selective Laser Micro Sintering

    International Nuclear Information System (INIS)

    A Cu-based metal powder which consists of Cu and Cu-P alloy for selective micro laser sintering has been developed based on the theoretical analysis of the characteristics of the laser micro sintering metal powder. The characteristics of the wetting, capillary force and viscosity have been considered. The preliminary experimental investigation on the selective laser micro sintering Cu-based metal powder has been performed. A 50 W CW Nd:YAG laser was employed to sinter the developed metal powder mixture. The sintering mechanism and the effect of the process parameters on the characteristics of the sintering samples have been preliminary investigated. The results show that the mechanism of laser micro sintering this developed metal powder is liquid-phase sintering and Cu-P alloy powder plays an effectively binder in the sintering process. The process parameter has significant effects on the characteristics of the sintering parts. From the SEM image, two different microstructures of samples with different scan spacing parameters were compared and a better binding effect was obtained at a parameter of 0.05mm scan spacing.

  20. Incorporation of Refractory Metals into Niobium Base Alloys

    OpenAIRE

    Antoni-Zdziobek, A.; Driole, J.; Durand, Franck; Durand, F.

    1995-01-01

    Niobium-based alloys with additions such as Al, Ti and Mo were prepared in an inductive cold crucible. A process route was established to provide homogeneous ingots. Key ideas concerning the application of inductive cold crucible to preparation of refractory alloys are brought out. A model is proposed to explain and quantify the experimental observations, which couples the diffusive and convective heat transfers and the heat of mixing involved.

  1. Assessment of diffuse trace metal inputs into surface waters - Combining empirical estimates with process based simulations

    Science.gov (United States)

    Schindewolf, Marcus; Steinz, André; Schmidt, Jürgen

    2015-04-01

    As a result of mining activities since the 13th century, surface waters of the German Mulde catchment suffer from deleterious dissolved and sediment attached lead (Pb) and zinc (Zn) inputs. The leaching rate of trace metals with drainage water is a significant criterion for assessing trace metal concentrations of soils and associated risks of ground water pollution. However, the vertical transport rates of trace metals in soils are difficult to quantify. Monitoring is restricted to small lysimeter plots, which limits the transferability of results. Additionally the solid-liquid-transfer conditions in soils are highly variable, primarily due to the fluctuating retention time of percolating soil water. In contrast, lateral sediment attached trace metal inputs are mostly associated with soil erosion and resulting sediment inputs into surface waters. Since soil erosion by water is related to rare single events, monitoring and empirical estimates reveal visible shortcomings. This gap in knowledge can only be closed by process based model calculations. Concerning these calculations it has to be considered, that Pb and Zn are predominantly attached to the fine-grained soil particles (soil erosion causes a preferential transport of these fine particles, while less contaminated larger particles remain on site. Consequently trace metals are enriched in the eroded sediment compared to the origin soil. This paper aims to introduce both, a new method that allows the assessment of trace metal leaching rates from contaminated top soils for standardised transfer conditions and a process based modelling approach for sediment attached trace metal inputs into surface waters. Pb and Zn leaching rates amounts to 20 Mg ha-1 yr-1 resp. 114 Mg ha-1 yr-1. Deviations to observed dissolved trace metal yields at the Bad Düben gauging station are caused by plant uptake and subsoil retention. Sediment attached Pb and Zn input rates amounts to 114 Mg ha-1 yr-1 and 173 Mg ha-1 yr-1 ,which

  2. The electron-transfer based interaction between transition metal ions and photoluminescent graphene quantum dots (GQDs): a platform for metal ion sensing.

    Science.gov (United States)

    Huang, Hongduan; Liao, Lei; Xu, Xiao; Zou, Mingjian; Liu, Feng; Li, Na

    2013-12-15

    The electron-transfer based quenching effect of commonly encountered transition metal ions on the photoluminescence of grapheme quantum dots (GQDs) was for the first time investigated, and was found to be associated with electron configuration of the individual metal ion. Ethylene diamine tetraacetic acid (EDTA), the metal ion chelator, can competitively interact with metal ions to recover the quenched photoluminescence of GQDs. Basically, metal ions with empty or completely filled d orbits could not quench the photoluminescence of GQDs, but this quenching effect was observed for the metal ions with partly filled d orbits. Based on the quenching-recovering strategy, a simple optical metal sensing platform was established by taking Ni(2+) as an example. Using the nickel ion-specific chelating reagent, dimethylglyoxime (DMG), to replace EDTA, a detection limit of 4.1 μM was obtained in standard solution. This proposed strategy does not need further functionalization of GQDs, facilitating the application for simple, fast and cost-effective screening of metal ions.

  3. Laser brazing of inconel 718 alloy with a silver based filler metal

    Science.gov (United States)

    Khorram, A.; Ghoreishi, M.; Torkamany, M. J.; Bali, M. M.

    2014-03-01

    In the presented study laser brazing of an inconel 718 alloy with silver based filler metal using 400 W pulsed Nd:YAG laser is investigated. Laser brazing was performed with varying laser frequency, pulse width, process speed and gap distance. The effect of preheating on wetting and spreading also was studied. Brazing geometrical images were observed using an optical microscope. The composition analysis and microstructure of the filler metal and brazed joints were examined using X-ray diffraction analyzer (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Micro-hardness and tensile test were performed for investigation of mechanical properties. The experimental observations show that filler metal consist of α-Ag solid solution, ά-Cu solid solution surround by the α-Ag solid solution and eutectic structure. Phases of the brazed joint are similar to the filler metal. The results indicate that the filler metal has adequate wetting and spreading on inconel 718 and the wetting angle depends on the heat input significantly. Interdiffusion occurs in laser brazing and the average thickness of reaction layer is approximately 2.5 μm. Whenever the gap is big, it is needed to use longer pulse width in order to have a better melting flow. Preheating has significant influence on wetting and spreading of the filler metal.

  4. Heterocyclic ring based colorimetric and fluorescent chemosensor for transition metal ions in an aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Udhayakumari, Duraisamy [Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli 620015 (India); Velmathi, Sivan, E-mail: velmathis@nitt.edu [Department of Chemistry, Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli 620015 (India); Boobalan, Maria susai [Department of Chemistry, St. Joseph' s College (Autonomous), Tiruchirappalli 620002 (India); Venkatesan, Parthiban; Wu, Shu-Pao [Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan, ROC (China)

    2015-02-15

    Heterocyclic ring based R1–R3 have been synthesized from the simple condensation method. R1–R3 exhibit highly selective and sensitive recognition towards transition metal ions in an aqueous medium via visual color change and were further confirmed by UV–vis and fluorescent spectroscopic methods. Fluorescent turn on and turn off behavior was observed for receptors tested with transition metal ions. The interaction of transition metal ions and receptors R1–R3 was confirmed to adopt 1:1 binding stoichiometry. Micromolar detection limit was found for R1–R3 with metal ions. DFT theoretical calculations were employed to understand the sensing mechanism of the sensors towards the metal ions. R1 and R2 were also successfully demonstrated as a fluorescent probe for detecting Cu{sup 2+} ions in living cells. - highlights: • R1–R3 act as colorimetric and fluorescent sensors for metal ions. • Receptors (R1–R3) detect Cu{sup 2+} ions in aqueous solution at nanomolar levels. • R1 and R2 act as a fluorescent probe for detecting Cu{sup 2+} ions in living cells.

  5. Effect of hydrogenated low temperature water on fracture toughness of nickel-based weld metals

    Energy Technology Data Exchange (ETDEWEB)

    Ehrnsten, U.; Ahonen, M. (VTT Technical Research Centre of Finland, Espoo (Finland)); Haenninen, H. (Aalto Univ. School of Science and Technology, Espoo (Finland))

    2010-05-15

    Nickel-based alloys are susceptible to a form of hydrogen embrittlement, Low Temperature Crack Propagation (LTCP), which can cause severe degradation of the fracture resistance of nickel-based alloys. LTCP may occur in low temperature water, with the highest susceptibility reported at about 55 deg C, with high stress and slow loading rate in pre-cracked Ni-based materials. Although LTCP has not been reported in commercial reactors, the susceptibility of different alloys is important to establish. As a part of the Finnish Reactor Safety Program, SAFIR 2010, the effect of hydrogenated Pressurized Water Reactor, PWR, primary water on the LTCP susceptibility of nickel-based weld metals of Alloy 182, 82, 152 and 52 was studied performing J-R-tests at a slow displacement rate in simulated low temperature PWR primary water. The results revealed that Alloy 182 is the most susceptible nickel-based weld metal to LTCP. Pure weld metal specimens were substantially more susceptible to LTCP than the dissimilar metal weld specimens. Pre-exposure to high temperature hydrogenated water did not affect remarkably the fracture toughness of any of the test materials. (orig.)

  6. Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells

    Directory of Open Access Journals (Sweden)

    Fei Zhuge

    2015-05-01

    Full Text Available It has been reported that in chalcogenide-based electrochemical metallization (ECM memory cells (e.g., As2S3:Ag, GeS:Cu, and Ag2S, the metal filament grows from the cathode (e.g., Pt and W towards the anode (e.g., Cu and Ag, whereas filament growth along the opposite direction has been observed in oxide-based ECM cells (e.g., ZnO, ZrO2, and SiO2. The growth direction difference has been ascribed to a high ion diffusion coefficient in chalcogenides in comparison with oxides. In this paper, upon analysis of OFF state I–V characteristics of ZnS-based ECM cells, we find that the metal filament grows from the anode towards the cathode and the filament rupture and rejuvenation occur at the cathodic interface, similar to the case of oxide-based ECM cells. It is inferred that in ECM cells based on the chalcogenides such as As2S3:Ag, GeS:Cu, and Ag2S, the filament growth from the cathode towards the anode is due to the existence of an abundance of ready-made mobile metal ions in the chalcogenides rather than to the high ion diffusion coefficient.

  7. Graphene circular polarization analyzer based on spiral metal triangle antennas arrays.

    Science.gov (United States)

    Zhu, Bofeng; Ren, Guobin; Gao, Yixiao; Wu, Beilei; Wan, Chenglong; Jian, Shuisheng

    2015-09-21

    In this paper we propose a circular polarization analyzer based on spiral metal triangle antenna arrays deposited on graphene. Via the dipole antenna resonances, plasmons are excited on graphene surface and the wavefront can be tailed by arranging metal antennas into linetype, circular or spiral arrays. Especially, for spiral antenna arrays, the geometric phase effect can be cancelled by or superposed on the chirality carried within circular polarization incidence, producing spatially separated solid dot or donut shape fields at the center. Such a phenomenon enables the graphene based spiral metal triangle antennas arrays to achieve functionality as a circular polarization analyzer. Extinction ratio over 550 can be achieved and the working wavelength can be tuned by adjusting graphene Fermi level dynamically. The proposed analyzer may find applications in analyzing chiral molecules using different circularly polarized waves.

  8. Reversible light-controlled conductance switching of azobenzene-based metal/polymer nanocomposites

    International Nuclear Information System (INIS)

    We present a new concept of light-controlled conductance switching based on metal/polymer nanocomposites with dissolved chromophores that do not have intrinsic current switching ability. Photoswitchable metal/PMMA nanocomposites were prepared by physical vapor deposition of Au and Pt clusters, respectively, onto spin-coated thin poly(methylmethacrylate) films doped with azo-dye molecules. High dye concentrations were achieved by functionalizing the azo groups with tails and branches, thus enhancing solubility. The composites show completely reversible optical switching of the absorption bands upon alternating irradiation with UV and blue light. We also demonstrate reversible light-controlled conductance switching. This is attributed to changes in the metal cluster separation upon isomerization based on model experiments where analogous conductance changes were induced by swelling of the composite films in organic vapors and by tensile stress.

  9. Metal Iodate-Based Energetic Composites and Their Combustion and Biocidal Performance.

    Science.gov (United States)

    Wang, H; Jian, G; Zhou, W; DeLisio, J B; Lee, V T; Zachariah, M R

    2015-08-12

    The biological agents that can be weaponized, such as Bacillus anthracis, pose a considerable potential public threat. Bacterial spores, in particular, are highly stress resistant and cannot be completely neutralized by common bactericides. This paper reports on synthesis of metal iodate-based aluminized electrospray-assembled nanocomposites which neutralize spores through a combined thermal and chemical mechanism. Here metal iodates (Bi(IO3)3, Cu(IO3)2, and Fe(IO3)3) act as a strong oxidizer to nanoaluminum to yield a very exothermic and violent reaction, and simultaneously generate iodine as a long-lived bactericide. These microparticle-assembled nanocomposites when characterized in terms of reaction times and temporal pressure release show significantly improved reactivity. Furthermore, sporicidal performance superior to conventional metal-oxide-based thermites clearly shows the advantages of combining both a thermal and biocidal mechanism in spore neutralization.

  10. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Escribano, J. A.; Ferrari, B.; Alvaredo, P.; Gordo, E.; Sanchez-Herencia, A. J.

    2013-07-01

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  11. Laser-induced breakdown spectroscopy detection of heavy metal in water based on graphite conch method

    Science.gov (United States)

    Wang, Chunlong; Liu, Jianguo; Zhao, Nanjing; Shi, Huan; Liu, Lituo; Ma, Mingjun; Zhang, Wei; Chen, Dong; Liu, Jing; Zhang, Yujun; Liu, Wenqing

    2012-10-01

    The laser-induced breakdown spectroscopy emission characteristics of trace heavy metal lead in water is studied based on graphite conch method, with a 1064nm wavelength Nd: YAG laser as excitation source, the echelle spectrometer and ICCD detector are used for spectral separation and high sensitive detection with high resolution and wide spectral range. The delay time 900ns and gate time 1600ns are determined in the experiment. The calibration curve of Pb is plotted based on the different concentration measurement results, and a limit of detection of 0.0138mg / L is obtained for Pb in water. Graphite conch method effectively overcomes the current problems on laser-induced breakdown spectroscopy detection of heavy metal in water. The detection limits and stability are improved. The reference data is provided for further study on the fast measurement of trace heavy metals in water by laser induced breakdown spectroscopy technique.

  12. Colloidal processing of Fe-based metal ceramic composites with high content of ceramic reinforcement

    International Nuclear Information System (INIS)

    Major difficulties of processing metal-matrix composites by means of conventional powder metallurgy techniques are the lack of dispersion of the phases within the final microstructure. In this work, processing through colloidal techniques of the Fe-based metal-matrix composites, with a high content of a ceramic reinforcement (Ti(C,N) ), is presented for the first time in the literature. The colloidal approach allows a higher control of the powders packing and a better homogenization of phases since powders are mixed in a liquid medium. The chemical stability of Fe in aqueous medium determines the dispersion conditions of the mixture. The Fe slurries were formulated by optimising their zeta potential and their rheology, in order to shape bulk pieces by slip-casting. Preliminary results demonstrate the viability of this procedure, also opening new paths to the microstructural design of fully sintered Fe-based hard metal, with 50 vol. % of Ti(C,N) in its composition. (Author)

  13. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Science.gov (United States)

    Tanuwijaya, V. V.; Hidayat, N. N.; Agusta, M. K.; Dipojono, H. K.

    2015-09-01

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO3 sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  14. Ab initio investigation on hydrogen adsorption capability in Zn and Cu-based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Tanuwijaya, V. V., E-mail: viny.veronika@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung Jalan Ganeca 10 Gd. T.P. Rachmat, Bandung 40132 (Indonesia); Hidayat, N. N., E-mail: avantgarde.vee@gmail.com; Agusta, M. K., E-mail: kemal@fti.itb.ac.id; Dipojono, H. K., E-mail: dipojono@tf.itb.ac.id

    2015-09-30

    One of the biggest challenge in material technology for hydrogen storage application is to increase hydrogen uptake in room temperature and pressure. As a class of highly porous material, Metal-Organic Frameworks (MOF) holds great potential with its tunable structure. However, little is known about the effect of metal cluster to its hydrogen storage capability. Investigation on this matter has been carried out carefully on small cluster of Zn and Cu-based MOF using first principles method. The calculation of two distinct building units of MOFs, namely octahedral and paddle-wheel models, have been done with B3LYP density functional method using 6-31G(d,p) and LANL2DZ basis sets. From geometry optimization of Zn-based MOF linked by benzene-dicarboxylate (MOF-5), it is found that hydrogen tends to keep distance from metal cluster group and stays above benzene ring. In the other hand, hydrogen molecule prefers to stay atop of the exposed Cu atom in Cu-based MOF system linked by the same linker group (Cu-bdc). Calculated hydrogen binding enthalpies for Zn and Cu octahedral cages at ZnO{sub 3} sites are 1.64kJ/mol and 2.73kJ/mol respectively, while hydrogen binding enthalpies for Zn and Cu paddle-wheel cages calculated on top of metal atoms are found to be at 6.05kJ/mol and 6.10kJ/mol respectively. Major difference between Zn-MOF-5 and Cu-bdc hydrogen uptake performance might be caused by unsaturated metal sites present in Cu-bdc system and the influence of their geometric structures, although a small difference on binding energy in the type of transition metal used is also observed. The comparison between Zn and Cu-based MOF may contribute to a comprehensive understanding of metal clusters and the importance of selecting best transition metal for design and synthesis of metal-organic frameworks.

  15. Environment-assisted cracking and hot cracking of Ni-base alloy dissimilar metal welds

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, P.; Toivonen, A.; Ehrnsten, U. (VTT Technical Research Centre of Finland, Espoo (Finland)); Haenninen, H.; Brederholm, A. (Aalto Univ. School of Science and Engineering, Faculty of Engineering and Architecture, Espoo (Finland))

    2010-05-15

    Environment-assisted cracking (EAC) susceptibility of dissimilar metal mock-up welds of Alloy 182 and 82 as well as Alloy 152 and 52 were studied with four-point bending specimens in steam doped with hydrogen, chloride, sulfate and fluoride at 400 deg C. The doped steam environment accelerated the crack initiation process and the susceptibility of the studied weld metals to EAC was obtained and ranked. High susceptibility to crack initiation and growth was observed with Alloy 182 and 82 weld metals, while Alloy 152 and 52 weld metals showed high resistance to crack initiation. No extension of the hot cracks was observed in the doped steam test in any of the studied materials. Fractography of the broken Alloy 182 and 82 samples showed both nickel deposition and presence of NiO in addition to the continuous spinel type Cr-rich oxide film on the fracture surface inside the crack. Fracture path was intergranular in all the studied samples. The same dissimilar metal welds were exposed to Varestraint hot cracking tests and their hot cracking susceptibility was also ranked and determined as a function of the amount of strain. The microstructures of the weld metals were fully characterized by optical metallography and a modern FE-SEM/EDS system. Hot cracking susceptibility was related to the solidification mechanism and segregation of Nb, Si, P and Mn in the weld metals. Fractography of the EAC and hot cracks was compared and their characteristic features are demonstrated. Finally, the mechanisms of hot cracking and EAC of nickel-base alloy dissimilar metal welds are identified and discussed. (orig.)

  16. Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base.

    Science.gov (United States)

    Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2001-02-01

    The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.

  17. Artificial intelligence-based control system for the analysis of metal casting properties

    Directory of Open Access Journals (Sweden)

    E. Mares

    2010-06-01

    Full Text Available Purpose: The metal casting process requires testing equipment that along with customized computer software properly supports the analysis of casting component characteristic properties. Due to the fact that this evaluation process involves the control of complex and multi-variable melting, casting and solidification factors, it is necessary to develop dedicated software.Design/methodology/approach: The integration of Statistical Process Control methods and Artificial Intelligence techniques (Case-Based Reasoning into Thermal Analysis Data Acquisition Software (NI LabView was developed to analyze casting component properties. The thermal data was tested in terms of accuracy, reliability and timeliness in order to secure metal casting process effectiveness.Findings: Quantitative values were defined as “Low”, “Medium” and “High” to assess the level of improvement in the metal casting analysis by means of the Artificial Intelligence-Based Control System (AIBCS. The traditional process was used as a reference to measure such improvement. As a result, the accuracy, reliability and timeliness were significantly increased to the “High” level.Research limitations/implications: Presently, the AIBCS predicts a limited number of casting properties. Due to its flexible design more properties could be added.Practical implications: The AIBCS has been successfully used at the Ford/Nemak Windsor Aluminum Plant (WAP to analyze Al casting properties of the engine blocks.Originality/value: The metal casting research community has immensely benefited from these developed information technologies that support the metal casting process.

  18. Metallomics insights into the programmed cell death induced by metal-based anticancer compounds.

    Science.gov (United States)

    Tan, Cai-Ping; Lu, Yi-Ying; Ji, Liang-Nian; Mao, Zong-Wan

    2014-05-01

    Since the discovery of cisplatin more than 40 years ago, enormous research efforts have been dedicated to developing metal-based anticancer agents and to elucidating the mechanisms involved in the action of these compounds. Abnormal metabolism and the evasion of apoptosis are important hallmarks of malignant transformation, and the induction of apoptotic cell death has been considered to be a main pathway by which cytotoxic metal complexes combat cancer. However, many cancers have cellular defects involving the apoptotic machinery, which results in an acquired resistance to apoptotic cell death and therefore reduced chemotherapeutic effectiveness. Over the past decade, it has been revealed that a growing number of cell death pathways induced by metal complexes are not dependent on apoptosis. Metal complexes specifically triggering these alternative cell death pathways have been identified and explored as novel cancer treatment options. In this review, we discuss recent examples of metallomics studies on the different types of cell death induced by metal-based anticancer drugs, especially on the three major forms of programmed cell death (PCD) in mammalian cells: apoptosis, autophagy and regulated necrosis, also called necroptosis.

  19. MoM-based topology optimization method for planar metallic antenna design

    Science.gov (United States)

    Liu, Shutian; Wang, Qi; Gao, Renjing

    2016-09-01

    The metallic antenna design problem can be treated as a problem to find the optimal distribution of conductive material in a certain domain. Although this problem is well suited for topology optimization method, the volumetric distribution of conductive material based on 3D finite element method (FEM) has been known to cause numerical bottlenecks such as the skin depth issue, meshed "air regions" and other numerical problems. In this paper a topology optimization method based on the method of moments (MoM) for configuration design of planar metallic antenna was proposed. The candidate structure of the planar metallic antenna was approximately considered as a resistance sheet with position-dependent impedance. In this way, the electromagnetic property of the antenna can be analyzed easily by using the MoM to solve the radiation problem of the resistance sheet in a finite domain. The topology of the antenna was depicted with the distribution of the impedance related to the design parameters or relative densities. The conductive material (metal) was assumed to have zero impedance, whereas the non-conductive material was simulated as a material with a finite but large enough impedance. The interpolation function of the impedance between conductive material and non-conductive material was taken as a tangential function. The design of planar metallic antenna was optimized for maximizing the efficiency at the target frequency. The results illustrated the effectiveness of the method.

  20. Qinghai 10 Million Tonne Grade Multiple Metal Mine Development Base has Initially Taken Shape

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Recently it has been learned that,in 2014Qinghai completed 2.777 billion yuan of prospecting investment in the whole year,implemented a total of 703 prospecting projects,and obtained a group of new prospecting achievements,10 million tonnes grade multiple metal mine development base has initially taken shape.

  1. Base-oxidant promoted metal-free N-demethylation of arylamines

    Indian Academy of Sciences (India)

    VINAYAK BOTLA; CHIRANJEEVI BARREDDI; RAMANA V DAGGUPATI; CHANDRASEKHARAM MALAPAKA

    2016-09-01

    A metal-free oxidative N-demethylation of arylamines with triethylamine as a base and tert-butyl hydroperoxide (TBHP) as oxidant is reported in this paper. The reaction is general, practical, inexpensive, non-toxic, and the method followed is environmentally benign, with moderate to good yields.

  2. A fluorescent, photochromic and thermochromic trifunctional material based on a layered metal-viologen complex.

    Science.gov (United States)

    Wan, Fang; Qiu, Li-Xia; Zhou, Liang-Liang; Sun, Yan-Qiong; You, Yi

    2015-11-14

    The azide anion as an energy acceptor and an electron donor has been introduced into a metal-viologen compound to form a 2D layered viologen-based trifunctional material, which exhibits the rare discolored function of reversible photochromism and thermochromism. Interestingly, its fluorescence can be switched by visible light irradiation and heating in air. PMID:26445888

  3. Novel Base Metal-Palladium Catalytic Diesel Filter Coating with NO2 Reducing Properties

    DEFF Research Database (Denmark)

    Johansen, K.; Dahl, S.; Mogensen, G.;

    2007-01-01

    price structure. The novel base metal/palladium catalytic coat has been applied on commercial silicon carbide wall flow diesel filters and tested in an engine test bench. Results from engine bench tests concerning soot combustion, HC-, CO-, NO2- removal with the novel coat will are compared to present...

  4. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only...

  5. Pharmaceutical development of the novel metal-based anticancer agents NAMI-A and AP 5280

    NARCIS (Netherlands)

    Bouma, M. (Marjan)

    2003-01-01

    The pharmaceutical development of the two novel metal-based anticancer agents NAMI-A and AP 5280 is described in this thesis, starting with the development of analytical methods for the quality control of drug substance and final product, via the formulation process leading to a stable, intravenous

  6. Fatigue Properties of Welded Butt Joint and Base Metal of MB8 Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ying-xia YU

    2016-09-01

    Full Text Available The fatigue properties of welded butt joint and base metal of MB8 magnesium alloy were investigated. The comparative fatigue tests were carried out using EHF-EM200K2-070-1A fatigue testing machine for both welded butt joint and base metal specimens with the same size and shape. The fatigue fractures were observed and analyzed by a scanning electron microscope of 6360 LA type. The experimental results show that the fatigue performance of the welded butt joint of MB8 magnesium alloy is sharply decreased. The conditional fatigue limit (1×107 of base metal and welded butt joint is about 69.41 and 32.76 MPa, respectively. The conditional fatigue limit (1×107 of the welded butt joint is 47.2 % of that of base metal. The main reasons are that the welding can lead to stress concentration in the weld toe area, tensile welding residual stress in the welded joint, as well as grain coarsening in the welding seam. The cleavage steps or quasi-cleavage patterns present on the fatigue fracture surface, indicating the fracture type of the welded butt joint belongs to a brittle fracture.DOI: http://dx.doi.org/10.5755/j01.ms.22.3.9132

  7. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Lin; SHAN De-Bin; MA Ming-Zhen; GUO Bin

    2008-01-01

    The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, compressive deformation promotes the development of nucleation and suppresses the coarsening of nanocrystallites at high ternperatures.

  8. Porphyrin-Based Metal-Organic Frameworks as Heterogeneous Catalysts in Oxidation Reactions

    Directory of Open Access Journals (Sweden)

    Carla F. Pereira

    2016-10-01

    Full Text Available Porphyrin-based Metal-Organic Frameworks (Por-MOFs constitute a special branch of the wide MOF family that has proven its own value and high potential in different applications. In this mini-review the application of these materials as catalysts in oxidation reactions is highlighted.

  9. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    C. Pagis; M. Ferbinteanu; G. Rothenberg; S. Grecea

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the catalysi

  10. Compatibility studies of metallic materials with lithium-based oxides

    Science.gov (United States)

    Hofmann, P.; Dienst, W.

    1988-07-01

    The compatibility of Li 2O, Li 4SiO 4 and Li 2SiO 3 with the cladding materials AISI 316, 1.4914, Hastelloy X and Inconel 625 was investigated at 800-1000°C for annealing times up to 1000 h. A controlled oxygen reactivity was established by adding 1 mol% NiO per mole Li 2O to the Li-based oxides. In addition, some compatibility tests were performed at 600-900°C on Be, which is of interest as a neutron multiplier material, with Li 2SiO 3 as well as AISI 316. Li 2O accounted for the strongest cladding attack, followed by Li 4SiO 4 and Li 2SiO 3. In the absence of NiO, Li 2SiO 3 caused no chemical interactions at all. With respect to the cladding materials, there was no considerable difference in the reaction rates of AISI 316, Hastelloy X and Inconel 625. However, the steel 1.4914 was clearly more heavily attacked at and above 800°C. The compatibility of Be with Li 2SiO 3 or AISI 316 seems to be tolerable up to about 650°C. At higher temperatures a liquid Li suicide phase is formed which results in strong local attack and penetration into Li 2SiO 3.

  11. Free Base Porphyrins as Ionophores for Heavy Metal Sensors

    Directory of Open Access Journals (Sweden)

    Liliana Olenic

    2008-08-01

    Full Text Available Two functionalized porphyrins: 5,10,15,20-tetrakis(3,4-dimethoxyphenyl porphyrin (A and 5,10,15,20-tetrakis(3-hydroxyphenylporphyrin (B obtained and characterized by us were used as ionophores (I for preparing PVC-based membrane sensors selective to Ag+, Pb2+ and Cu2+. The membranes were prepared using three different plasticizers: (bis(2-ethylhexylsebacate (DOS, dioctylphtalate (DOP, o-nitrophenyl octyl ether (NPOE and potassium tetrakis(4-chlorophenylborate (KTClPB as additive. The functional parameters (linear concentration range, slope and selectivity of the sensors with membrane composition: (I:PVC:KTClPB:Plasticizer in different ratios were investigated. The best results were obtained for the membranes in the ratio I:PVC:KTClPB:Plasticizer 10:165:5:330. The influence of pH on the sensors response was studied. The sensors were used for a period of four months and their utility has been tested on synthetic and real samples.

  12. Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Chainer

    2012-11-30

    A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

  13. Laser synthesis of nanostructures based on transition metal oxides

    International Nuclear Information System (INIS)

    Nanostructures based on iron oxides in the form of thin films were synthesized while laser chemical vapor deposition (LCVD) of elements from iron carbonyl vapors (Fe(CO)5) under the action of Ar+ laser radiation (λ L = 488 nm) on the Si substrate surface with power density about 102 W/cm2 and vapor pressure 666 Pa. Analysis of surface morphology and relief of the deposited films was carried out with scanning electron microscopy (SEM) and atomic force microscopy (AFM). This analysis demonstrated their cluster structure with average size no more than 100 nm. It was found out that the thicker the deposited film, the larger sizes of clusters with more oxides of higher oxidized phases were formed. The film thickness (d) was 10 and 28 nm. The deposited films exhibited semiconductor properties in the range 170-340 K which were stipulated by oxide content with different oxidized phases. The width of the band gap E g depends on oxide content in the deposited film and was varied in the range 0.30-0.64 eV at an electrical field of 1.6 x 103 V/m. The band gap E g was varied in the range 0.46-0.58 eV at an electrical field of 45 V/m. The band gap which is stipulated by impurities in iron oxides E i was varied in the range 0.009-0.026 eV at an electrical field of 1.6 x 103 V/m and was varied in the range 0-0.16 eV at an electrical field 45 V/m. These narrow band gap semiconductor thin films displayed of the quantum dimensional effect

  14. Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine.

    Science.gov (United States)

    Chattopadhyay, Sourav; Dash, Sandeep Kumar; Mandal, Debasis; Das, Balaram; Tripathy, Satyajit; Dey, Aditi; Pramanik, Panchanan; Roy, Somenath

    2016-02-10

    In the present study, we would like to evaluate the efficacy of modified metal oxide nanoparticles (NPs) as cancer antigen delivery vehicles for macrophage (MФs) based antitumor vaccine. The cobalt oxide nanoparticles (CoO NPs) were promising tools for delivery of antigens to antigen presenting cells and have induced an antitumor immune response. Synthesized CoO NPs were modified by N-phosphonomethyliminodiacetic acid (PMIDA), facilitated the conjugation of lysate antigen, i.e. cancer antigen derived from lysis of cancer cells. The cancer cell lysate antigen conjugated PMIDA-CoO NPs (Ag-PMIDA-CoO NPs) successfully activated macrophage (MФ) evident by the increasing the serum IFN-γ and TNF-α level. Immunization of mice with the Ag-PMIDA-CoO NPs constructed an efficient immunological adjuvant induced anticancer IgG responses, and increased the antibody dependent cellular cytotoxicity (ADCC) response than only lysate antigen treated group to combat the cancer cell. The nanocomplexes enhanced the anticancer CD4(+)T cell response in mice. The result showed that Ag-PMIDA-CoO NPs can stimulate the immune responses over only lysate antigens, which are the most important findings in this study. These NP-mediated Ag deliveries may significantly improve the anticancer immune response by activating MФs and may act as adjuvant and will balance the pro-inflammatory and anti-inflammatory immunoresponse. The crosstalk between the activated MФ with other immune competent cells will be monitored by measuring the cytokines which illustrate the total immunological network setups.

  15. Rare Earth Application in Sealing Anodized Al-Based Metal Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new method for corrosion protection of Al-based metal matrixcomposites (MMC) was developed using two-step process, which involves anodizing in H2SO4 solution and sealing in rare earth solution. Corrosion resistance of the treated surface was evaluated with polarization curves.The results showed that the effect of the protection using rare earth sealing is equivalent to that using chromate sealing for Al6061/SiCp. The rare earth metal salt can be an alternative to the toxic chromate for sealing anodized Al MMC.

  16. EPR-based approach for the localization of paramagnetic metal ions in biomolecules.

    Science.gov (United States)

    Abdullin, Dinar; Florin, Nicole; Hagelueken, Gregor; Schiemann, Olav

    2015-02-01

    Metal ions play an important role in the catalysis and folding of proteins and oligonucleotides. Their localization within the three-dimensional fold of such biomolecules is therefore an important goal in understanding structure-function relationships. A trilateration approach for the localization of metal ions by means of long-range distance measurements based on electron paramagnetic resonance (EPR) is introduced. The approach is tested on the Cu(2+) center of azurin, and factors affecting the precision of the method are discussed. PMID:25522037

  17. Band-overlap metallization of BaS, BaSe and BaTe

    Science.gov (United States)

    Carlsson, A. E.; Wilkins, J. W.

    1983-01-01

    The insulator-metal transition volumes for BaS, BaSe, and BaTe are calculated for the first time, using the self-consistent augmented spherical wave technique. The metallized transition volumes are smaller than those corresponding to the NaCl yields CsCl structural transitions, but, 10 to 15% larger than those obtained by the Herzfeld dielectric theory. The calculated equilibrium energy gaps in the NaCl structure underestimate the measured ones by 50 to 60%.

  18. Transition metal based layered double hydroxides tailored for energy conversion and storage

    Directory of Open Access Journals (Sweden)

    Xia Long

    2016-05-01

    Full Text Available Layered double hydroxides (LDHs are a class of clays with brucite like layers and intercalated anions. The first (3d series transition metals based LDHs (TM-LDHs are attracting increasing interest in the field of energy conversion and storage processes due to their unique physicochemical properties. In this article, we review recent developments in the synthesis and applications of TM-LDH in these areas including water splitting, CO2 conversion, metal-air batteries and supercapacitors and the underlying mechanisms of these processes. In addition, current challenges and possible strategies are discussed from the viewpoint of material design and performance.

  19. A Naphthalenediimide-Based Metal-Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties.

    Science.gov (United States)

    Xie, Yi-Xin; Zhao, Wen-Na; Li, Guo-Chang; Liu, Peng-Fei; Han, Lei

    2016-01-19

    A multifunctional metal-organic framework, NBU-3, has been explored as a 2D three-connected network based on a naphthalenediimide-based ligand. The NBU-3 crystals display photochromic properties, and NBU-3 thin films on FTO substrates exhibit electrochromic properties. NBU-3 is the first example of MOF materials containing both photochromic and electrochromic properties, which can be desirable for thin film devices. PMID:26713454

  20. Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks.

    Science.gov (United States)

    Wei, Yanhui; Dong, Haiyun; Wei, Cong; Zhang, Wei; Yan, Yongli; Zhao, Yong Sheng

    2016-09-01

    A wavelength-tunable microlaser is realized based on the controlled intramolecular charge transfer (ICT) process in dye-encapsulated metal-organic framework (MOF) material. The confinement effect of the MOFs is beneficial for low-threshold lasing. By effectively controlling the polarity of the MOF pores, the population distribution between the locally excited and ICT states is continuously modulated, thus achieving broadband tunable MOF-based microlasers. PMID:27314453

  1. Stabilization of a highly porous metal-organic framework utilizing a carborane-based linker.

    Science.gov (United States)

    Clingerman, Daniel J; Morris, William; Mondloch, Joseph E; Kennedy, Robert D; Sarjeant, Amy A; Stern, Charlotte; Hupp, Joseph T; Farha, Omar K; Mirkin, Chad A

    2015-04-18

    The first tritopic carborane-based linker, H3BCA (C15B24O6H30), based on closo-1,10-C2B8H10, has been synthesized and incorporated into a metal-organic framework (MOF), NU-700 (Cu3(BCA)2). In contrast to the analogous MOF-143, NU-700 can be activated with retention of porosity, yielding a BET surface area of 1870 m(2) g(-1). PMID:25767827

  2. Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks.

    Science.gov (United States)

    Wei, Yanhui; Dong, Haiyun; Wei, Cong; Zhang, Wei; Yan, Yongli; Zhao, Yong Sheng

    2016-09-01

    A wavelength-tunable microlaser is realized based on the controlled intramolecular charge transfer (ICT) process in dye-encapsulated metal-organic framework (MOF) material. The confinement effect of the MOFs is beneficial for low-threshold lasing. By effectively controlling the polarity of the MOF pores, the population distribution between the locally excited and ICT states is continuously modulated, thus achieving broadband tunable MOF-based microlasers.

  3. Phonon dispersion in alkali metals and their equiatomic sodium-based binary alloys

    Institute of Scientific and Technical Information of China (English)

    Aditya M. VORA

    2008-01-01

    In the present article, the theoretical calcula-tions of the phonon dispersion curves (PDCs) of five alkali metals viz. Li, Na, K, Rb, Cs and their four equia-tomic sodium-based binary alloys viz. Na0.5Li0.5,Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5 to second order in a local model potential is discussed in terms of the real-space sum of the Born yon Karman central force con-stants. Instead of the concentration average of the force constants of pure alkali metals, the pseudo-alloy-atom (PAA) is adopted to directly compute the force constants of the four equiatomic sodium based binary alloys and was successfully applied. The exchange and correlation functions due to the Hartree (H) and Ichimaru-Utsumi (IU) are used to investigate the influence of the screening effects. The phonon frequencies of alkali metals and their four equiatomic sodium-based binary alloys in the longit-udinal branch are more sensitive to the exchange and cor-relation effects in comparison with the transverse branches. The PDCs of pure alkali metals are found in qualitative agreement with the available experimental data. The frequencies in the longitudinal branch are sup-pressed rather due to IU-screening function than those due to static H-screening function.

  4. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    Science.gov (United States)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  5. Theoretical investigation of all-metal-based mushroom plasmonic metamaterial absorbers at infrared wavelengths

    Science.gov (United States)

    Ogawa, Shinpei; Fujisawa, Daisuke; Kimata, Masafumi

    2015-12-01

    High-performance wavelength-selective infrared (IR) sensors require small pixel structures, a low-thermal mass, and operation in the middle-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) regions for multicolor IR imaging. All-metal-based mushroom plasmonic metamaterial absorbers (MPMAs) were investigated theoretically and were designed to enhance the performance of wavelength-selective uncooled IR sensors. All components of the MPMAs are based on thin layers of metals such as Au without oxide insulators for increased absorption. The absorption properties of the MPMAs were investigated by rigorous coupled-wave analysis. Strong wavelength-selective absorption is realized over a wide range of MWIR and LWIR wavelengths by the plasmonic resonance of the micropatch and the narrow-gap resonance, without disturbance from the intrinsic absorption of oxide insulators. The absorption wavelength is defined mainly by the micropatch size and is longer than its period. The metal post width has less impact on the absorption properties and can maintain single-mode operation. Through-holes can be formed on the plate area to reduce the thermal mass. A small pixel size with reduced thermal mass and wideband single-mode operation can be realized using all-metal-based MPMAs.

  6. Uranium and base metal dispersion studies in the Maquire Lake area, Saskatchewan

    International Nuclear Information System (INIS)

    The objective of this study was to study uranium and base metal dispersion in various sample media occurring in the Maguire Lake area of Saskatchewan: bedrock, overburden, lake water, and lake sediments. Factors controlling partitioning of metals among various sample media were investigated, and lake sediment data were interpreted in terms of the factors to determine the significance of lake sediment data in indicating local mineralization. The association between organic matter contents and metal contents was found to vary between lake-center and nearshore sediments. Nickel, cobalt and zinc in lake sediments are strongly controlled by hydroxide precipitation and are less dependent on bedrock type. The concentration of Fe in center-lake sediments appears to reflect only the physicochemical parameters in the lake. Uranium and copper are strongly controlled by and preferentially concentrated in the organic matter; however, in center-lake sediments with >12 percent organic matter, U and Cu strongly reflect rock type

  7. Spectral descriptors for bulk metallic glasses based on the thermodynamics of competing crystalline phases

    CERN Document Server

    Perim, Eric; Liu, Yanhui; Toher, Cormac; Gong, Pan; Li, Yanglin; Simmons, W Neal; Levy, Ohad; Vlassak, Joost J; Schroers, Jan; Curtarolo, Stefano

    2016-01-01

    Metallic glasses have attracted considerable interest in recent years due to their unique combination of superb properties and processability. Predicting bulk metallic glass formers from known parameters remains a challenge and the search for new systems is still performed by trial and error. It has been speculated that some sort of "confusion" during crystallization of the crystalline phases competing with glass formation could play a key role. Here, we propose a heuristic descriptor quantifying confusion and demonstrate its validity by detailed experiments on two well-known glass forming alloy systems. With the insight provided by these results, we develop a robust model for predicting glass formation ability based on the spectral decomposition of geometrical and energetic features of crystalline phases calculated ab-initio in the AFLOW high throughput framework. Our findings indicate that the formation of metallic glass phases could be a much more common phenomenon than currently estimated, with more than ...

  8. Fatigue Strength Prediction of Drilling Materials Based on the Maximum Non-metallic Inclusion Size

    Science.gov (United States)

    Zeng, Dezhi; Tian, Gang; Liu, Fei; Shi, Taihe; Zhang, Zhi; Hu, Junying; Liu, Wanying; Ouyang, Zhiying

    2015-12-01

    In this paper, the statistics of the size distribution of non-metallic inclusions in five drilling materials were performed. Based on the maximum non-metallic inclusion size, the fatigue strength of the drilling material was predicted. The sizes of non-metallic inclusions in drilling materials were observed to follow the inclusion size distribution rule. Then the maximum inclusion size in the fatigue specimens was deduced. According to the prediction equation of the maximum inclusion size and fatigue strength proposed by Murakami, fatigue strength of drilling materials was obtained. Moreover, fatigue strength was also measured through rotating bending tests. The predicted fatigue strength was significantly lower than the measured one. Therefore, according to the comparison results, the coefficients in the prediction equation were revised. The revised equation allowed the satisfactory prediction results of fatigue strength of drilling materials at the fatigue life of 107 rotations and could be used in the fast prediction of fatigue strength of drilling materials.

  9. Chromophore-Based Luminescent Metal-Organic Frameworks as Lighting Phosphors.

    Science.gov (United States)

    Lustig, William P; Wang, Fangming; Teat, Simon J; Hu, Zhichao; Gong, Qihan; Li, Jing

    2016-08-01

    Energy-efficient solid-state-lighting (SSL) technologies are rapidly developing, but the lack of stable, high-performance rare-earth free phosphors may impede the growth of the SSL market. One possible alternative is organic phosphor materials, but these can suffer from lower quantum yields and thermal instability compared to rare-earth phosphors. However, if luminescent organic chromophores can be built into a rigid metal-organic framework, their quantum yields and thermal stability can be greatly improved. This Forum Article discusses the design of a group of such chromophore-based luminescent metal-organic frameworks with exceptionally high performance and rational control of the important parameters that influence their emission properties, including electronic structures of chromophore, coligands, metal ions, and guest molecules. PMID:27244591

  10. Change of immitance during electroforming and resistive switching in the metal-insulator-metal memristive structures based on SiO x

    Science.gov (United States)

    Tikhov, S. V.; Gorshkov, O. N.; Antonov, I. N.; Kasatkin, A. P.; Korolev, D. S.; Belov, A. I.; Mikhaylov, A. N.; Tetel'baum, D. I.

    2016-05-01

    The change of the immitance of the metal-insulator-metal memristive structures based on SiOx, which is observed during electroforming and resistive switching, confirms the formation of conducting channels (filaments) in the insulator during forming and their rupture upon a transition of the structure to a highresistance state. The observed switching of the differential capacitance and conductivity synchronously with the switching of current (resistance) can substantially extend the functional applications of memristive devices of this type.

  11. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation. PMID:27168177

  12. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    Science.gov (United States)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-12-01

    The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  13. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  14. Biocompatibility evaluation of sputtered zirconium-based thin film metallic glass-coated steels

    Directory of Open Access Journals (Sweden)

    Subramanian B

    2015-10-01

    Full Text Available Balasubramanian Subramanian,1 Sundaram Maruthamuthu,2 Senthilperumal Thanka Rajan1 1Electrochemical Material Science Division, 2Corrosion and Materials Protection Division, Central Electrochemical Research Institute, Karaikudi, India Abstract: Thin film metallic glasses comprised of Zr48Cu36Al8Ag8 (at.% of approximately 1.5 µm and 3 µm in thickness were prepared using magnetron sputtering onto medical grade 316L stainless steel. Their structural and mechanical properties, in vitro corrosion, and antimicrobial activity were analyzed. The amorphous thin film metallic glasses consisted of a single glassy phase, with an absence of any detectable peaks corresponding to crystalline phases. Elemental composition close to the target alloy was noted from EDAX analysis of the thin film. The surface morphology of the film showed a smooth surface on scanning electron microscopy and atomic force microscopy. In vitro electrochemical corrosion studies indicated that the zirconium-based metallic glass could withstand body fluid, showing superior resistance to corrosion and electrochemical stability. Interactions between the coated surface and bacteria were investigated by agar diffusion, solution suspension, and wet interfacial contact methods. The results indicated a clear zone of inhibition against the growth of microorganisms such as Escherichia coli and Staphylococcus aureus, confirming the antimicrobial activity of the thin film metallic glasses. Cytotoxicity studies using L929 fibroblast cells showed these coatings to be noncytotoxic in nature. Keywords: thin film metallic glasses, sputtering, biocompatibility, corrosion, antimicrobial activity

  15. Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators

    International Nuclear Information System (INIS)

    Highlights: → Polyurethane based on pristine and metal (Ag and Cu) nanoparticle decorated CNTs nanocomposites are prepared through melt blending process. → The electrical, mechanical, dynamic mechanical, thermal conductivity and electro active shape memory properties of the PU nanocomposites were investigated. → The influence of metal nanoparticle decorated CNTs showed significant improvement in their all properties to compare to pristine CNTs. → Electro active shape memory studies of the PU/M-CNTs nanocomposites reveal extraordinary recoverability of its shape at lower applied dc voltages. - Abstract: Polymer nanocomposites based on thermoplastic polyurethane (PU) elastomer and metal nanoparticle (Ag and Cu) decorated multiwall carbon nanotubes (M-CNTs) were prepared through melt mixing process and investigated for its mechanical, dynamic mechanical and electro active shape memory properties. Structural characterization and morphological characterization of the PU nanocomposites were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Morphological characterization revealed better dispersion of M-CNTs in the polyurethane, which is attributed to the improved interaction between the M-CNTs and polyurethane. Loading of the metal nanoparticle coated carbon nanotubes resulted in the significant improvement on the mechanical properties such as tensile strength of the PU composites in comparison to the pristine carbon nanotubes (P-CNTs). Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the polyurethane increases slightly with increasing loading of both pristine and metal nanoparticle functionalized carbon nanotubes. The metal nanoparticles decorated carbon nanotubes also showed significant improvement in the thermal and electrical conductivity of the PU/M-CNTs nanocomposites. Shape memory studies of the PU/M-CNTs nanocomposites exhibit remarkable recoverability of its shape at lower applied dc voltages.

  16. Synthesis and Heavy Metal Immobilization Behaviors of Fly Ash based Gepolymer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yunsheng; SUN Wei; SHE Wei; SUN Guowei

    2009-01-01

    Two aspects of studies were carried out:1)synthesis of geopolymer by using fly ash and metakaolin;2)Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions.As for the synthesis of fly ash based geopolymer,4 different fly ash content(10%,30%, 50%,70%)and 3 types of curing regimes(standard curing,steam curing and autoclave curing)were investigated to obtain the optimum synthesis condition based on the compressive and flexural strength.The experimental results show that geopolymer,containing 30%fly ash and synthesized at steam curing(80℃ for 8 h),exhibits higher mechanical strengths.The compressive and flexural strengths of fly ash based geopolymer reach 32.2 Mpa and 7.15 Mpa,respectively.Additionally,In-frared (IR) and X-ray diffraction(XRD)techniques were used to characterize the microstructure of the fly ash geopolymer.IR spectra shows that the absorptive band at 1086 cm ~(-1) shifts to lower wave number around 1033 cm ~(-1) ,and the 6-coordinated Al transforms into 4-coordination during the syn-thesis of fly ash based geopolymer.The resulting geopolymeric products were X-ray amorphous ma-terials.As for immobilization of heavy metals,the leaching tests were employed to investigate the immobilization behaviors of the fly ash based geopolymer synthesized under the above optimum condition.The leaching tests showed that fly ash based geopolymer can effectively immobilize Cu and Pb heavy metal ions,and the immobilization efficiency reached 90% greater when heavy metals were incorporated in the fly ash geopolymer in the range of 0.1% to 0.3%.The Pb exhibits better immobilization efficiency than the Cu,especially in the case of large dosages of heavy metals.

  17. 76 FR 7558 - GBC Metals LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...

    Science.gov (United States)

    2011-02-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission GBC Metals LLC; Supplemental Notice That Initial Market-Based Rate Filing...-referenced proceeding of GBC Metals LLC's application for market-based rate authority, with an...

  18. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Science.gov (United States)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  19. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  20. Evaluation on Heavy Metal Pollution of Soil in Pollution-free Agricultural Product Bases in Guangxi

    Institute of Scientific and Technical Information of China (English)

    Minjun; DENG; Yan; LUO

    2014-01-01

    Using data of 6 pollution-free agricultural product bases in Guangxi Zhuang Autonomous Region,this paper analyzed content of heavy metals,including arsenic(As),mercury(Hg),lead(Pb),cadmium(Cd),and chromium(Cr) in soil.After Pb,Cd,Cr,Hg and As content in soil is determined,it evaluated the pollution of soil using single factor pollution index method and Nemerow synthetic pollution index method in combination with evaluation standard of heavy metals in soil and grading standard for soil pollution.Analysis results indicate that As,Hg,Pb,Cd,Cr content is different in pollution-free agricultural product bases,but all conform to related standards and there is no standard exceeding problem.It is concluded that the quality of soil in pollution-free agricultural product bases is excellent,not polluted and completely meet requirements of evaluation standards,and suitable for developing pollution-free agricultural products.

  1. Exhaustive removal of chloride ions from water with the aid of a bismuth-based metallic sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, L.N.; Ushenko, V.G.

    1988-04-20

    The authors discuss the sorption properties of sorbents based on metallic bismuth, in relation to a solution of the problem of exhaustive removal of chloride ions from water. Metallic sorbents with bismuth contents of 10 mass % on polytetrafluoroethylene were used. The sorption properties of sorbents based on metallic bismuth and on Bi/sub 2/O/sub 3/ were studied under dynamic conditions. Their results show that bismuth-based metal sorbents and sorbents based on bismuth oxide can be used as inorganic anion-exchangers. In order to demonstrate the possibility of selective separation of chloride ions from solutions they determined the dynamic exchange capacity for chloride ions at various nitrate-ion concentrations. The use of the proposed sorbents based on metallic bismuth for exhaustive purification of water lowers the chloride-ion concentration in the water sharply in comparison with the level achieved by ion-exchange purification with the aid of organic anion-exchangers.

  2. A review on versatile applications of transition metal complexes incorporating Schiff bases

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2015-06-01

    Full Text Available Schiff bases and their complexes are versatile compounds synthesized from the condensation of an amino compound with carbonyl compounds and widely used for industrial purposes and also exhibit a broad range of biological activities including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties. Many Schiff base complexes show excellent catalytic activity in various reactions and in the presence of moisture. Over the past few years, there have been many reports on their applications in homogeneous and heterogeneous catalysis. The high thermal and moisture stabilities of many Schiff base complexes were useful attributes for their application as catalysts in reactions involving at high temperatures. The activity is usually increased by complexation therefore to understand the properties of both ligands and metal can lead to the synthesis of highly active compounds. The influence of certain metals on the biological activity of these compounds and their intrinsic chemical interest as multidentate ligands has prompted a considerable increase in the study of their coordination behaviour. Development of a new chemotherapeutic Schiff bases and their metal complexes is now attracting the attention of medicinal chemists. This review compiles examples of the most promising applied Schiff bases and their complexes in different areas.

  3. Flexible transparent metal/polymer composite materials based on optical resonant laminate structures.

    Science.gov (United States)

    Narayanan, Sudarshan; Choi, Jihoon; Porter, Lisa; Bockstaller, Michael R

    2013-05-22

    Suitable design of periodic metal/polymer composite materials is shown to facilitate resonant tunneling of light at absorbing wavelengths and to provide a means to significantly reduce optical absorption losses in polymer-based metallodielectric composite structures. The conditions for resonant tunneling are established based on the concept of "photonic band edge alignment" in 1D-periodic systems. For the particular case of a four-layer gold/polystyrene laminate structure, it is shown that the matching of the lower band edge of the 1D-periodic structure with the plasma frequency of the metal component facilitates the increase of optical transmission by about 500% as compared to monolithic film structures of equal total thickness. The effect of sheet thickness on the optical properties of thin metal films is determined and shown to be an important prerequisite for the reliable prediction of resonant metallodielectric structures. The resonant 1D-periodic metal/polymer heterostructures are shown to retain the flexural stability of the polymer matrix and thus could find application as flexible transparent conductors in areas such as "plastic electronics". PMID:23611505

  4. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    Science.gov (United States)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  5. A highly efficient degradation mechanism of methyl orange using Fe-based metallic glass powders

    Science.gov (United States)

    Xie, Shenghui; Huang, Ping; Kruzic, Jamie J.; Zeng, Xierong; Qian, Haixia

    2016-02-01

    A new Fe-based metallic glass with composition Fe76B12Si9Y3 (at. %) is found to have extraordinary degradation efficiency towards methyl orange (MO, C14H14N3SO3) in strong acidic and near neutral environments compared to crystalline zero-valent iron (ZVI) powders and other Fe-based metallic glasses. The influence of temperature (294-328 K) on the degradation reaction rate was measured using ball-milled metallic glass powders revealing a low thermal activation energy barrier of 22.6 kJ/mol. The excellent properties are mainly attributed to the heterogeneous structure consisting of local Fe-rich and Fe-poor atomic clusters, rather than the large specific surface and strong residual stress in the powders. The metallic glass powders can sustain almost unchanged degradation efficiency after 13 cycles at room temperature, while a drop in degradation efficiency with further cycles is attributed to visible surface oxidation. Triple quadrupole mass spectrometry analysis conducted during the reaction was used to elucidate the underlying degradation mechanism. The present findings may provide a new, highly efficient and low cost commercial method for azo dye wastewater treatment.

  6. Fatigue and corrosion of a Pd-based bulk metallic glass in various environments

    International Nuclear Information System (INIS)

    Bulk metallic glasses (BMGs) possess attractive properties for biomedical applications, including high strength, hardness and corrosion resistance, and low elastic modulus. In this study, we conduct rotating beam fatigue tests on Pd43Ni10Cu27P20 bulk metallic glass in air and Eagle's medium (EM) and measure the corrosive resistance of the alloy by submersion in acidic and basic electrolytes. Fatigue results are compared to those of commonly used biometals in EM. Rotating beam fatigue tests conducted in air and in Eagle's medium show no deterioration in fatigue properties in this potentially corrosive environment out to 107 cycles. A specimen size effect is revealed when comparing fatigue results to those of a similar alloy of larger minimum dimensions. Corrosion tests show that the alloy is not affected by highly basic (NaOH) or saline (NaCl) solutions, nor in EM, and is affected by chlorinated acidic solutions (HCl) to a lesser extent than other commonly used biometals. Corrosion in HCl initiates with selective leaching of late transition metals, followed by dissolution of Pd. - Highlights: • Fatigue limit of 600 MPa with no deterioration when exposed to Eagle's medium. • Fatigue shows sample size effect. • Pd-based BMG is unaffected by saline or strong basic solutions. • Pd-based BMG is substantially more resistant to chlorinated acids than CoCrMo, 316 L Stainless, or Ti6Al4V alloys. • Corrosion shows selective leaching of late transition metals, followed by Pd and P

  7. Graphene-Based Microbots for Toxic Heavy Metal Removal and Recovery from Water.

    Science.gov (United States)

    Vilela, Diana; Parmar, Jemish; Zeng, Yongfei; Zhao, Yanli; Sánchez, Samuel

    2016-04-13

    Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nanosystems and nanomaterials for the fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer, and removal of a heavy metal (i.e., lead) and its subsequent recovery for recycling purposes. Microbots' structure consists of nanosized multilayers of graphene oxide, nickel, and platinum, providing different functionalities. The outer layer of graphene oxide captures lead on the surface, and the inner layer of platinum functions as the engine decomposing hydrogen peroxide fuel for self-propulsion, while the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead 10 times more efficiently than nonmotile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals.

  8. Nonlinear Color--Metallicity Relations of Globular Clusters. VI. On Calcium II Triplet Based Metallicities of Globular Clusters in Early-type Galaxies

    CERN Document Server

    Chung, Chul; Lee, Sang-Yoon; Lee, Young-Wook

    2016-01-01

    The metallicity distribution function of globular clusters (GCs) in galaxies is a key to understanding galactic formation and evolution. The calcium II triplet (CaT) index has recently become a popular metal abundance indicator thanks to its sensitivity to GC metallicity. Here we revisit and assess the reliability of CaT as a metallicity indicator using our new stellar population synthesis simulations based on empirical, high-resolution fluxes. The model shows that the CaT strength of old ($>$ 10 Gyr) GCs is proportional to ${\\rm [Fe/H]}$ below $-0.5$. In the modest metal-rich regime, however, CaT does not increase anymore with ${\\rm [Fe/H]}$ due to the little contribution from coolest red giant stars to the CaT absorption. The nonlinear nature of the color--$CaT$ relation is confirmed by the observations of GCs in nearby early-type galaxies. This indicates that the CaT should be used carefully when deriving metallicities of metal-rich stellar populations. Our results offer an explanation for the observed sha...

  9. Impact Ignition and Combustion Behavior of Amorphous Metal-Based Reactive Composites

    Science.gov (United States)

    Mason, Benjamin; Groven, Lori; Son, Steven

    2013-06-01

    Recently published molecular dynamic simulations have shown that metal-based reactive powder composites consisting of at least one amorphous component could lead to improved reaction performance due to amorphous materials having a zero heat of fusion, in addition to having high energy densities and potential uses such as structural energetic materials and enhanced blast materials. In order to investigate the feasibility of these systems, thermochemical equilibrium calculations were performed on various amorphous metal/metalloid based reactive systems with an emphasis on commercially available or easily manufactured amorphous metals, such as Zr and Ti based amorphous alloys in combination with carbon, boron, and aluminum. Based on the calculations and material availability material combinations were chosen. Initial materials were either mixed via a Resodyn mixer or mechanically activated using high energy ball milling where the microstructure of the milled material was characterized using x-ray diffraction, optical microscopy and scanning electron microscopy. The mechanical impact response and combustion behavior of select reactive systems was characterized using the Asay shear impact experiment where impact ignition thresholds, ignition delays, combustion velocities, and temperatures were quantified, and reported. Funding from the Defense Threat Reduction Agency (DTRA), Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  10. Facile synthesis and characterization of trimesic acid-Cu based metal organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Sahiner, Nurettin, E-mail: sahiner71@gmail.com [Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, Terzioglu Campus, 17100 Canakkale (Turkey); Nanoscience and Technology Research and Application Center (NANORAC), Terzioglu Campus, 17100 Canakkale (Turkey); Sel, Kivanc [Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Physics, Terzioglu Campus, 17100 Canakkale (Turkey); Nanoscience and Technology Research and Application Center (NANORAC), Terzioglu Campus, 17100 Canakkale (Turkey); Ozturk, Omer Faruk; Demirci, Sahin; Terzi, Gozde [Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, Terzioglu Campus, 17100 Canakkale (Turkey)

    2014-09-30

    Graphical abstract: - Highlights: • Various MOFs based on trimesic acid (TMA) and various Cu (II) salts. • Benign preparation of TMA-Cu based MOFs in DI water and ethanol. • TMA-Cu MOFs with the mole ratio of Cu(II) to TMA varying between 1.5 and 2. • TMA-Cu MOF with conductivity values were 8.26E−08–5.29E−11 (S/cm). - Abstract: Metal-organic frameworks based on trimesic acid (TMA) as organic linker and Cu (II) as metal ions from different metal salts such as CuCl{sub 2}, Cu(NO{sub 3}){sub 2}, CuSO{sub 4} and Cu(CH{sub 3}COOH){sub 2} were prepared in relatively environmentally friendly media e.g., at room temperature in DI water and at the boiling point of ethanol. The prepared TMA-Cu MOFs showed very interesting porosity and optical coloring based on the source of the used metal salts and preparation medium. The prepared MOFs were characterized in terms of their porosity with BET measurements and it was found that about 850 m{sup 2}/g for the MOF prepared from Cu(NO{sub 3}){sub 2} salt in ethanol. The amounts of metal ions connected to TMA were determined by atomic absorption spectroscopy measurements (AAS) after dissolution of TMA-Cu MOFs by concentrated HCl treatments. From AAS measurements the mole ratio of Cu(II) to TMA was found to vary between 1.5 and 2, depending on the source of metal ions and the solvent used during preparation. The structural analysis and thermal characterization of the prepared MOFs were done by using FT-IR and TGA analysis, respectively. Additionally, TMA-Cu based MOF disks were prepared and their conductivities were determined by I–V measurements. The conductivity of TMA-Cu MOFs was calculated to be between 8.26E−08 and 5.29E−11 S/cm.

  11. Simultaneous and integrated neutron-based techniques for material analysis of a metallic ancient flute

    Science.gov (United States)

    Festa, G.; Pietropaolo, A.; Grazzi, F.; Sutton, L. F.; Scherillo, A.; Bognetti, L.; Bini, A.; Barzagli, E.; Schooneveld, E.; Andreani, C.

    2013-09-01

    A metallic 19th century flute was studied by means of integrated and simultaneous neutron-based techniques: neutron diffraction, neutron radiative capture analysis and neutron radiography. This experiment follows benchmark measurements devoted to assessing the effectiveness of a multitask beamline concept for neutron-based investigation on materials. The aim of this study is to show the potential application of the approach using multiple and integrated neutron-based techniques for musical instruments. Such samples, in the broad scenario of cultural heritage, represent an exciting research field. They may represent an interesting link between different disciplines such as nuclear physics, metallurgy and acoustics.

  12. Some Transition Metal Complexes of NO Type Schiff Base: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Erdal CANPOLAT

    2016-04-01

    Full Text Available Metal complexes of Schiff base ligand (5-bromo-3-methoxysalicyliden-p-iminoacetophenone oxime derived from 5-bromo-3-methoxsalicylaldehyde and p-aminoacetophenoneoxime is reported. Schiff base was found to be bidentate ligand involving the imino nitrogen and carboxyl oxygen atoms in the complexes. Metal to ligand ratio were found to be 1:2 for all of the complexes. Co(II, Ni(II, and Zn(II complexes have been found tetrahedral geometry and Cu(II complex has been found four coordinated geometry. The complexes are found to have the formulae [M(L2]. The compounds obtained have been characterized by their elemental analyses, IR, 1H-NMR, 13C-NMR, UV spectra, magnetic susceptibility and thermogravimetric analyses (TGA.

  13. Stress-Corrosion Interactions in Zr-Based Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Petre Flaviu Gostin

    2015-07-01

    Full Text Available Stress-corrosion interactions in materials may lead to early unpredictable catastrophic failure of structural parts, which can have dramatic effects. In Zr-based bulk metallic glasses, such interactions are particularly important as these have very high yield strength, limited ductility, and are relatively susceptible to localized corrosion in halide-containing aqueous environments. Relevant features of the mechanical and corrosion behavior of Zr-based bulk metallic glasses are described, and an account of knowledge regarding corrosion-deformation interactions gathered from ex situ experimental procedures is provided. Subsequently the literature on key phenomena including hydrogen damage, stress corrosion cracking, and corrosion fatigue is reviewed. Critical factors for such phenomena will be highlighted. The review also presents an outlook for the topic.

  14. Improvement on straightness of metal bar based on straightening stroke-deflection model

    Institute of Scientific and Technical Information of China (English)

    LEOPOLD; Juergen

    2009-01-01

    The straightening technics is one of important means to improve the straightness of metal bar. A nove way of predicting the straightening stroke is proposed based on mathematical methods and bending experimental and numerical simulation. The experimental and numerical simulation is conducted by following the mathematical load-stroke model of press straightening process under the elastic-plastic theory. For the linear guide rails, as an example, the stroke-deflection model focusing on the straight-ening stroke prediction can be achieved by contrasting and integrating the bending experimental results and finite element methods (FEM) simulation data. And then the formula for predicting the straightening stroke is presented based on the precise straightening stroke-deflection model. The stroke prediction formula with high precision can be applied to the straightening stroke prediction in the high straightness metal bar manufacturing process and automatic straightening machine conveniently.

  15. Improvement on straightness of metal bar based on straightening stroke-deflection model

    Institute of Scientific and Technical Information of China (English)

    LU Hong; LING He; LEOPOLD Juergen; ZHANG Xiao; GUO ChangQiao

    2009-01-01

    The straightening technics is one of important means to improve the straightness of metal bar. A novel way of predicting the straightening stroke is proposed based on mathematical methods and bending experimental and numerical simulation. The experimental and numerical simulation is conducted by following the mathematical load-stroke model of press straightening process under the elastic-plastic theory. For the linear guide rails, as an example, the stroke-deflection model focusing on the straightening stroke prediction can be achieved by contrasting and integrating the bending experimental results and finite element methods (FEM) simulation data. And then the formula for predicting the straightening stroke is presented based on the precise straightening stroke-deflection model. The stroke prediction formula with high precision can be applied to the straightening stroke prediction in the high straightness metal bar manufacturing process and automatic straightening machine conveniently.

  16. Thiosemicabazone based fluorescent chemosensor for transition metal ions in aqueous medium

    International Nuclear Information System (INIS)

    Highly efficient fluorescent chemosensors for metal ions have been synthesized by using thiosemicarbazide and aromatic aldehydes. Detection of transition metal ions was performed via UV–vis and fluorescence spectroscopic methods. This is the first report on thiosemicarbazone based sensor capable of detecting transition metal ions in aqueous medium. The binding constant, stoichiometry of the complex were confirmed by using B–H plot and Job's plot method. The fluorescence enhancement of thiosemicarbazones on binding with Hg2+, Zn2+, Co2+, Ni2+ and Sn2+ ions is due to the inhibition of photoinduced electron transfer mechanism whereas, quenching of fluorescence is attributed to the photoinduced electron transfer mechanism in case of Cu2+ and Mn2+ ions. -- Graphical abstract: Three highly sensitive aromatic thiosemicarbazones act as a fluorescent chemosensor for cations. Detection of transition metal ions was performed via UV–vis and fluorescence spectroscopic methods. This represents the first report on thiosemicarbazone based sensor capable of detecting transition metal ions in aqueous medium. The binding constant, stoichiometry of the complex was confirmed by using B–H plot and Job's plot method. The fluorescence enhancement of thiosemicarbazones on binding with Hg2+ , Zn2+, Co2+, Ni2+ and Sn2+ ions is due to the inhibition of photoinduced electron transfer whereas, in the case of Cu2+ and Mn2+ ions quenching of fluorescence occurring is attributed to the photoinduced electron transfer mechanism. Highlights: • The receptors were synthesized and studied for its optical/fluorescence emission properties. • R1+Zn2+/Co2+/Ni2+ and R2+Hg2+/Sn2+ exhibits fluorescence enhancement via inhibition of PET. • R1+Cu2+ and R3+Mn2+ exhibits fluorescence quenching via PET mechanism

  17. Metal inhibition of human alkylpurine-DNA-N-glycosylase activityin base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping; Guliaev, Anton B.; Hang, Bo

    2006-02-28

    Cadmium (Cd{sup 2+}), nickel (Ni{sup 2+}) and cobalt (Co{sup 2+}) are human and/or animal carcinogens. Zinc (Zn{sup 2+}) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (var epsilonA). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 {micro}M, both Cd{sup 2+} and Zn{sup 2+} showed metal-dependent inhibition of the MPG catalytic activity. Ni{sup 2+} also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co{sup 2+} and Mg{sup 2+} did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the var epsilonA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd{sup 2+}, Zn{sup 2+}, and Ni{sup 2+} at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn{sup 2+} showed that the MPG active site has a potential binding site for Zn{sup 2+}, formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo.

  18. Flexible perovskite solar cells based on the metal-insulator-semiconductor structure.

    Science.gov (United States)

    Wei, Jing; Li, Heng; Zhao, Yicheng; Zhou, Wenke; Fu, Rui; Pan, Huiyue; Zhao, Qing

    2016-09-14

    The metal-insulator-semiconductor (MIS) structure is applied to perovskite solar cells, in which the traditional compact layer TiO2 is replaced by Al2O3 as the hole blocking material to realize an all-low-temperature process. Flexible devices based on this structure are also realized with excellent flexibility, which hold 85% of their initial efficiency after bending 100 times. PMID:27524362

  19. Naturally occurring nanoparticles from English ivy: an alternative to metal-based nanoparticles for UV protection

    Directory of Open Access Journals (Sweden)

    Zhang Zhili

    2010-06-01

    Full Text Available Abstract Background Over the last decade safety concerns have arisen about the use of metal-based nanoparticles in the cosmetics field. Metal-based nanoparticles have been linked to both environmental and animal toxicity in a variety of studies. Perhaps the greatest concern involves the large amounts of TiO2 nanoparticles that are used in commercial sunscreens. As an alternative to using these potentially hazardous metal-based nanoparticles, we have isolated organic nanoparticles from English ivy (Hedera helix. In this study, ivy nanoparticles were evaluated for their potential use in sunscreens based on four criteria: 1 ability to absorb and scatter ultraviolet light, 2 toxicity to mammalian cells, 3 biodegradability, and 4 potential for diffusion through skin. Results Purified ivy nanoparticles were first tested for their UV protective effects using a standard spectrophotometric assay. Next the cell toxicity of the ivy nanoparticles was compared to TiO2 nanoparticles using HeLa cells. The biodegradability of these nanoparticles was also determined through several digestion techniques. Finally, a mathematical model was developed to determine the potential for ivy nanoparticles to penetrate through human skin. The results indicated that the ivy nanoparticles were more efficient in blocking UV light, less toxic to mammalian cells, easily biodegradable, and had a limited potential to penetrate through human skin. When compared to TiO2 nanoparticles, the ivy nanoparticles showed decreased cell toxicity, and were easily degradable, indicating that they provided a safer alternative to these nanoparticles. Conclusions With the data collected from this study, we have demonstrated the great potential of ivy nanoparticles as a sunscreen protective agent, and their increased safety over commonly used metal oxide nanoparticles.

  20. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints

    OpenAIRE

    Farnaz Fattahi; Zahra Hashemi Ardakani; Maryam Hashemi Ardakani

    2015-01-01

    Statement of the Problem: Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. Purpose: The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. Materials and Method: A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint...

  1. Antibacterial Evaluation of Some Schiff Bases Derived from 2-Acetylpyridine and Their Metal Complexes

    OpenAIRE

    Thong Kwai Lin; Chai Lay Ching; Cher Lin Ooi; Hadi, A. Hamid A.; Mahmood Ameen Abdulla; Nura Suleiman Gwaram; Hapipah Mohd Ali; Hamid Khaledi

    2012-01-01

    A series of Schiff bases derived from 2-acetylpyridne and their metal complexes were characterized by elemental analysis, NMR, FT-IR and UV-Vis spectral studies. The complexes were screened for anti-bacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumanni (AC), Klebsiella pneumonie (KB) and Pseudomonas aeruginosa (PA) using the disc diffusion and micro broth dilutio...

  2. Niobium-based superconducting nano-devices fabrication using all-metal suspended masks

    OpenAIRE

    Samaddar, Sayanti; Van Zanten, David; Fay, Aurélien; Sacépé, Benjamin; Courtois, Hervé; Winkelmann, Clemens

    2013-01-01

    We report a novel method for the fabrication of superconducting nanodevices based on niobium. The well-known difficulties of lithographic patterning of high-quality niobium are overcome by replacing the usual organic resist mask by a metallic one. The quality of the fabrication procedure is demonstrated by the realization and characterization of long and narrow superconducting lines and niobium-gold-niobium proximity SQUIDs.

  3. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guo-Rui; FENG Guo-Ying; ZHANG Yi; MA Zi; WANG Jian-Jun

    2012-01-01

    A compact temperature sensor based on a symmetrical metal-cladding optical waveguide using free-space coupling is proposed and demonstrated theoretically and experimentally. The symmetrical Au-cladding optical waveguide is based on a thin LiNbO3 slab sandwiched between two metal films, which serve as the coupling layer and reflecting panel, respectively. The sensitivity of this sensor of 9.08×10-2 deg/℃, 6.6 ×10-2 deg/℃ and 4.8 × 10-2 deg/℃ corresponding to 3238-order, 3237-order and 3236-order modes, respectively, are obtained. Higher resolution is predicted with a larger linear expansion coefficient material and a higher resolution θ/2θ goniometer.%A compact temperature sensor based on a symmetrical metal-cladding optical waveguide using free-space coupling is proposed and demonstrated theoretically and experimentally.The symmetrical Au-cladding optical waveguide is based on a thin LiNbO3 slab sandwiched between two metal films,which serve as the coupling layer and reflecting panel,respectively.The sensitivity of this sensor of 9.08 × 10-2 deg/℃,6.6 × 10-2 deg/℃ and 4.8 × 10-2 deg/℃ corresponding to 3238-order,3237-order and 3236-order modes,respectively,are obtained.Higher resolution is predicted with a larger linear expansion coefficient material and a higher resolution θ/2θ goniometer.

  4. Photoswitchable Adsorption in Metal-Organic Frameworks Based on Polar Guest-Host Interactions.

    Science.gov (United States)

    Wang, Zhengbang; Grosjean, Sylvain; Bräse, Stefan; Heinke, Lars

    2015-12-21

    Reversible remote-controlled switching of the properties of nanoporous metal-organic frameworks (MOFs) is enabled by incorporating photoswitchable azobenzene. The interaction of the host material with different guest molecules, which is crucial for all applications, is precisely studied using thin MOF films of the type Cu2 (BDC)2 (AzoBipyB). A molecule-specific effect of the photoswitching, based on dipole-dipole interactions, is found.

  5. Transition metal cation separations with a resorcinarene-based amino acid stationary phase.

    Science.gov (United States)

    Li, Na; Allen, Lee J; Harrison, Roger G; Lamb, John D

    2013-03-01

    A resorcinarene-based macrocyclic ligand functionalized with alanine and undecyl groups (AUA) was synthesized and applied to ion chromatographic separations. The selectivity and separation of transition metal ions on a column packed with AUA adsorbed onto 55% cross-linked styrene-divinylbenzene resin are presented. The upper and lower rims of the resorcinarene were modified with amino acids and -C(11)H(23) alkyl chains, respectively. The four carboxylic acid groups on the upper rim act as cation-exchangers while the four -C(11)H(23) alkyl chains serve to anchor the ligand to the resin surface by the hydrophobic effect. A systematic study of the effect of different eluent components including non-metal-chelating (HNO(3)) and chelating acids (oxalic acid, succinic acid, dipicolinic acid, and citric acid) on the retention of transition metal ions was investigated. Six metal ions (Mn(2+), Co(2+), Ni(2+), Cd(2+), Cu(2+), and Zn(2+)) were separated on the AUA column within a reasonable time with a single eluent gradient using oxalic acid. The separation is compared to that obtained using a commercial column containing carboxylic acid functional groups. The AUA column containing four preorganized carboxylic acid groups showed selectivity for Cu(2+) when no chelating eluent was present, a selectivity which was not observed with the comparison column.

  6. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    Science.gov (United States)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-01-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis. PMID:27404510

  7. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    Directory of Open Access Journals (Sweden)

    A. S. M. A. Haseeb

    2012-05-01

    Full Text Available Recently one dimensional (1-D nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research.

  8. Robust Design of Sheet Metal Forming Process Based on Kriging Metamodel

    Science.gov (United States)

    Xie, Yanmin

    2011-08-01

    Nowadays, sheet metal forming processes design is not a trivial task due to the complex issues to be taken into account (conflicting design goals, complex shapes forming and so on). Optimization methods have also been widely applied in sheet metal forming. Therefore, proper design methods to reduce time and costs have to be developed mostly based on computer aided procedures. At the same time, the existence of variations during manufacturing processes significantly may influence final product quality, rendering non-robust optimal solutions. In this paper, a small size of design of experiments is conducted to investigate how a stochastic behavior of noise factors affects drawing quality. The finite element software (LS_DYNA) is used to simulate the complex sheet metal stamping processes. The Kriging metamodel is adopted to map the relation between input process parameters and part quality. Robust design models for sheet metal forming process integrate adaptive importance sampling with Kriging model, in order to minimize impact of the variations and achieve reliable process parameters. In the adaptive sample, an improved criterion is used to provide direction in which additional training samples can be added to better the Kriging model. Nonlinear functions as test functions and a square stamping example (NUMISHEET'93) are employed to verify the proposed method. Final results indicate application feasibility of the aforesaid method proposed for multi-response robust design.

  9. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies

    Indian Academy of Sciences (India)

    N Raman; J Dhaveethu Raja; A Sakthivel

    2007-07-01

    A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and -phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.

  10. Piezoelectric sensor for sensitive determination of metal ions based on the phosphate-modified dendrimer

    Science.gov (United States)

    Wang, S. H.; Shen, C. Y.; Lin, Y. M.; Du, J. C.

    2016-08-01

    Heavy metal ions arising from human activities are retained strongly in water; therefore public water supplies must be monitored regularly to ensure the timely detection of potential problems. A phosphate-modified dendrimer film was investigated on a quartz crystal microbalance (QCM) for sensing metal ions in water at room temperature in this study. The chemical structures and sensing properties were characterized by Fourier transform infrared spectroscopy and QCM measurement, respectively. This phosphate-modified dendrimer sensor can directly detect metal ions in aqueous solutions. This novel sensor was evaluated for its capacity to sense various metal ions. The sensor exhibited a higher sensitivity level and shorter response time to copper(II) ions than other sensors. The linear detection range of the prepared QCM based on the phosphate-modified dendrimer was 0.0001 ∼ 1 μM Cu(II) ions (R2 = 0.98). The detection properties, including sensitivity, response time, selectivity, reusability, maximum adsorption capacity, and adsorption equilibrium constants, were also investigated.

  11. Role of Metal Contacts in High-Performance Phototransistors Based on WSe 2 Monolayers

    KAUST Repository

    Zhang, Wenjing

    2014-08-26

    Phototransistors based on monolayer transition metal dichalcogenides (TMD) have high photosensitivity due to their direct band gap transition. However, there is a lack of understanding of the effect of metal contacts on the performance of atomically thin TMD phototransistors. Here, we fabricate phototransistors based on large-area chemical vapor deposition (CVD) tungsten diselenide (WSe2) monolayers contacted with the metals of different work function values. We found that the low Schottky-contact WSe2 phototransistors exhibit a very high photo gain (105) and specific detectivity (1014Jones), values higher than commercial Si- and InGaAs-based photodetectors; however, the response speed is longer than 5 s in ambient air. In contrast, the high Schottky-contact phototransistors display a fast response time shorter than 23 ms, but the photo gain and specific detectivity decrease by several orders of magnitude. Moreover, the fast response speed of the high Schottky-contact devices is maintained for a few months in ambient air. This study demonstrates that the contact plays an important role in TMD phototransistors, and barrier height tuning is critical for optimizing the photoresponse and photoresponsivity. © 2014 American Chemical Society.

  12. Graphene-based sensors for detection of heavy metals in water: a review.

    Science.gov (United States)

    Chang, Jingbo; Zhou, Guihua; Christensen, Erik R; Heideman, Robert; Chen, Junhong

    2014-06-01

    Graphene (G) is attracting significant attention because of its unique physical and electronic properties. The production of graphene through the reduction of graphene oxide (GO) is a low-cost method. The reduction of GO can further lead to electrically conductive reduced GO. These graphene-based nanomaterials are attractive for high-performance water sensors due to their unique properties, such as high specific surface areas, high electron mobilities, and exceptionally low electronic noise. Because of potential risks to the environment and human health arising from heavy-metal pollution in water, G-/GO-based water sensors are being developed for rapid and sensitive detection of heavy-metal ions. In this review, a general introduction to graphene and GO properties, as well as their syntheses, is provided. Recent advances in optical, electrochemical, and electrical detection of heavy-metal ions using graphene or GO are then highlighted. Finally, challenges facing G/GO-based water sensor development and outlook for future research are discussed. PMID:24740529

  13. A New Ni-Based Metallic Glass with High Thermal Stability and Hardness

    Directory of Open Access Journals (Sweden)

    Aytekin Hitit

    2015-02-01

    Full Text Available Glass forming ability (GFA, thermal stability and microhardness of Ni51−xCuxW31.6B17.4 (x = 0, 5 metallic glasses have been investigated. For each alloy, thin sheets of samples having thickness of 20 µm and 100 µm were synthesized by piston and anvil method in a vacuum arc furnace. Also, 400 µm thick samples of the alloys were synthesized by suction casting method. The samples were investigated by X-ray diffractometry (XRD and differential scanning calorimetry (DSC. Crystallization temperature of the base alloy, Ni51W31.6B17.4, is found to be 996 K and 5 at.% copper substitution for nickel increases the crystallization temperature to 1063 K, which is the highest value reported for Ni-based metallic glasses up to the present. In addition, critical casting thickness of alloy Ni51W31.6B17.4 is 100 µm and copper substitution does not have any effect on critical casting thickness of the alloys. Also, microhardness of the alloys are found to be around 1200 Hv, which is one of the highest microhardness values reported for a Ni-based metallic glass until now.

  14. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    Science.gov (United States)

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials. PMID:27478958

  15. Theoretical study of a novel solar trigeneration system based on metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangyu; Yang, Fusheng; Bao, Zewei; Deng, Jianqiang; Serge, Nyallang N.; Zhang, Zaoxiao [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-06-15

    In order to utilize the low grade heat energy efficiently, the preliminary scheme of a metal hydride based Combined Cooling, Heating and Power (CCHP) system driven by solar energy and industrial waste heat was proposed, in which both refrigeration and power generation are achieved. Following a step-by-step procedure recently developed by the authors, two pairs of metal hydrides were selected for the CCHP system. The working principle of the system was discussed in detail and further design of the configuration for CCHP was conducted. Based on the cycle mentioned above, the models of energy conversion and exergy analysis were set up. The multi-element valued method was used to assess the performance of the CCHP system in a whole sense, thus the analysis of influence factors on the system performance can be carried out. The typical climate conditions of Xi'an in 2005 were taken for discussion, and the results showed that the system performance is mainly affected by the quantity of solar radiation energy. The objective of the system's optimization is to increase the exergy efficiency of the metal hydride heat pump, based on the quantity of solar radiation energy. The comparison with two different traditional types of CCHP systems proved that the novel CCHP system is superior to the traditional CCHP systems concerning the integrated performance. (author)

  16. Adsorption of lysozyme on base metal surfaces in the presence of an external electric potential.

    Science.gov (United States)

    Ei Ei, Htwe; Nakama, Yuhi; Tanaka, Hiroshi; Imanaka, Hiroyuki; Ishida, Naoyuki; Imamura, Koreyoshi

    2016-11-01

    The impact of external electric potential on the adsorption of a protein to base metal surfaces was examined. Hen egg white lysozyme (LSZ) and six types of base metal plates (stainless steel SUS316L (St), Ti, Ta, Zr, Cr, or Ni) were used as the protein and adsorption surface, respectively. LSZ was allowed to adsorb on the surface under different conditions (surface potential, pH, electrolyte type and concentration, surface material), which was monitored using an ellipsometer. LSZ adsorption was minimized in the potential range above a certain threshold and, in the surface potential range below the threshold, decreasing the surface potential increased the amount of protein adsorbed. The threshold potential for LSZ adsorption was shifted toward a positive value with increasing pH and was lower for Ta and Zr than for the others. A divalent anion salt (K2SO4) as an electrolyte exhibited the adsorption of LSZ in the positive potential range while a monovalent salt (KCl) did not. A comprehensive consideration of the obtained results suggests that two modes of interactions, namely the electric force by an external electric field and electrostatic interactions with ionized surface hydroxyl groups, act on the LSZ molecules and determine the extent of suppression of LSZ adsorption. All these findings appear to support the view that a base metal surface can be controlled for the affinity to a protein by manipulating the surface electric potential as has been reported on some electrode materials.

  17. Impact of Nanograting Phase-Shift on Light Absorption Enhancement in Plasmonics-Based Metal-Semiconductor-Metal Photodetectors

    Directory of Open Access Journals (Sweden)

    Narottam Das

    2011-01-01

    Full Text Available The finite difference time-domain (FDTD method is used to simulate the light absorption enhancement in a plasmonic metal-semiconductor-metal photodetector (MSM-PD structure employing a metal nanograting with phase shifts. The metal fingers of the MSM-PDs are etched at appropriate depths to maximize light absorption through plasmonic effects into a subwavelength aperture. We also analyse the nano-grating phase shift and groove profiles obtained typically in our experiments using focused ion beam milling and atomic force microscopy and discuss the dependency of light absorption enhancement on the nano-gratings phase shift and groove profiles inscribed into MSM-PDs. Our simulation results show that the nano-grating phase shift blue-shifts the wavelength at which the light absorption enhancement is maximum, and that the combined effects of the nano-grating groove shape and phase shift degrade the light absorption enhancement by up to 50%.

  18. Synthesis and Characterization of Sn2+- based and Bi3+- based metal oxides for photocatalytic applications

    KAUST Repository

    Noureldine, Dalal

    2016-07-01

    The main challenge of water splitting technology is to develop stable, visible responsive photocatalysts that satisfy the thermodynamic requirements to achieve water redox reactions. This study investigates development of the semiconductors containing metals with s2d10 electronic configuration such as Sn2+ or Bi3+ which shifts the valence band position negatively. Efficient water splitting can, however, be only achieved by understanding the fundamental semiconductor properties of underlying processes. This work elucidates the semiconductor properties through two approaches: the first is to synthesize the materials of various stoichiometry in various forms (powders, thin film etc.) and the second is to perform a combined experimental-theoretical studies to determine the optoelectronic properties of the synthesized materials. The study includes the synthesis and characterization of a series of Bi3+ based semiconductors (Bi2Ti2O7, Bi12TiO20, and Bi4Ti3O12) to resolve inconsistencies in their optoelectronic properties. The crystal parameters and stoichiometry were confirmed by the Rietveld refinement and XRD measurements. These compounds showed a UV responsive absorption, high dielectric constants, and low electron and hole effective masses in one crystallographic reflecting their good charge separation and carrier diffusion properties. The approach showed to be accurate in determining the optoelectronic properties due to good agreement between experimental and theoretical values. The second study investigated the synthesis of SnNb2O6 and using flux assisted method which afforded control over the surface. Increasing the flux to reactant molar ratio resulted in a 2D platelets with anisotropic growth along bc plane as confirmed by XRD and SEM. The photocatalytic activity increased while increasing the flux to reactant ratio exceeding solid state synthesis. This method minimized the oxidation of the surface and formation of grain boundaries and enabled the synthesis of

  19. Removal of heavy metals from artificial metals contaminated water samples based on micelle-templated silica modified with pyoverdin I

    Institute of Scientific and Technical Information of China (English)

    PANADDA Tansupo; WORAKARN Chamonkolpradit; SAKSIT Chanthai; CHALERM Ruangviriyachai

    2009-01-01

    The micelle-templated silica (MTS) was firstly chemically modified with 3-glycidoxypropyl-trimethoxysilane (GPTMS) before immobilized with pyoverdin I. The characteristics of pyoverdin I-anchored onto the modified MTS were investigated using fluorescence, infrared spectra and scanning electron microscopy. The specific surface area of all materials was calculated by Bnmauer, Emmett and Teller (BET) method using nitrogen isotherm adsorption data. As the results, the surface area of commercial silica gel decreased from 609.2 to 405.4 m2/g, it indicated that the pyoverdin I could be immobilized onto the surface of silica solid support. This adsorbent was used for extraction of Fe(Ⅲ), Cu(Ⅱ), Zn(Ⅱ), and Pb(Ⅱ) in artificial metals contaminated water. Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using batch procedure. The optimum pH value for the removal of metal ions simultaneously on this adsorbent was 4.0. Complete desorption of the adsorbed metal ions from the adsorbent was carded out using 0.25 mol/L of EDTA. The effcct of different cations and anions on the adsorption of these metals on adsorbent was studied and the results showed that the proposed adsorbent could be applied to the highly saline samples and the sample which contains some transition metals.

  20. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    International Nuclear Information System (INIS)

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the refractory metal side. It was also noted that at least some degree of forging on the Ni-based superalloy side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10-μm) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels

  1. Aspects of metal and silicon-based nanomaterials: Synthesis, stability and properties

    Science.gov (United States)

    Elechiguerra Joven, Jose Luis

    Metal and Si-based nanostructures have drawn increasing interest due to their potential uses in catalysis, biological sensors, and nanoelectronics among others. Therefore, in the present work, several nanostructures were produced, characterized and tested. In particular, the conventional synthesis of noble-metal nanostructures through the polyol method was modified by replacing poly-vinyl pyrrolidone PVP with poly-diallyl dimethyl ammonium chloride PDDA. As PDDA is a cationic polyelectrolyte, the initial strong electrostatic interaction between PDDA and the anionic metal precursors produce the formation of stable ion pairs, so the reactivity of the different species can be tailored and particles with different internal structure, i.e. crystallinity, can be produced. Additionally, metal nanostructures such as nanoparticles and nanowires have been proposed as building blocks for several applications in nanofabrication and nanoelectronics. However, even when atmospheric corrosion is common in metals, there is a lack of information about the stability of those nanostructures against such phenomenon. So, the atmospheric corrosion of silver nanowires and nanoparticles synthesized by the polyol method using PVP as capping agent was studied. Recently, five-fold twinned nanorods and nanowires of gold, copper and silver with pentagonal cross-sections have been synthesized by different techniques, including the polyol method. However, there is not a complete explanation of all the features presented in their electron diffraction patterns. Thus, a comprehensive study on the structure of these multi-twinned decahedral based nanorods and nanowires is presented. Another important application of noble-metal nanostructures is in the field of biology. In the present work, it has been demonstrated that silver nanoparticles undergo a size dependent interaction with HIV-1 via preferential binding to the gp120 glycoprotein knobs. Due to this interaction, silver nanoparticles inhibit the

  2. Controlled synthesis and structure tunability of photocatalytically active mesoporous metal-based stannate nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Caihong [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Chen, Haiyan [Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794 (United States); Ren, Zheng [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Dardona, Sameh; Piech, Martin [Department of Physical Sciences, United Technologies Research Center, East Hartford, CT 06108 (United States); Gao, Haiyong [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States); Gao, Pu-Xian, E-mail: puxian.gao@ims.uconn.edu [Department of Materials Science and Engineering and Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136 (United States)

    2014-03-01

    Highlights: • A generic process has been developed for fabricating metal stannate nanostructures by simple substitution solution reactions followed by post-thermal treatments. • Band energy alignment, high carrier mobility and large specific surface area are found to play key roles for the enabled high efficiency in stannate nanostructured photocatalysts. • The developed process can be easily extended to the fabrication of other complex metal oxide nanostructures. - Abstract: A variety of stannate nanostructures have been fabricated for UV photocatalysis, including zinc- and cadmium-based stannates. As the template nanostructures, high surface-area mesoporous metal hydroxystannate [ZnSn(OH){sub 6} and CdSn(OH){sub 6}] nanoparticles (>100 m{sup 2}/g) have been synthesized using a simple, low-temperature substitution chemical process with controlled porosity, morphology and crystallinity. Post-synthetic thermal treatments were employed to obtain amorphous ZnSnO{sub 3}, CdSnO{sub 3}, ilmenite CdSnO{sub 3}, and crystalline Zn{sub 2}SnO{sub 4}–SnO{sub 2} nanoparticles. As a result, the band gaps can be tuned from 5.4 eV to 3.3 eV and from 4.9 eV to 2.1 eV for Zn-based and Cd-based stannates, respectively. Amorphous ZnSnO{sub 3} porous nanoparticles showed highest activity toward dye degradation under UV illumination followed by the Zn{sub 2}SnO{sub 4}-SnO{sub 2} and ilmenite CdSnO{sub 3} nanostructures due to their beneficial band structure alignment, high conductivities, and high specific surface areas. This study may provide an important strategy for high throughput synthesis and screening of functional complex metal oxide nanomaterials, while the enabled stannate nanomaterials could be utilized in various applications.

  3. Structure and physical properties of Fe-based metallic glasses with Ni and Co addition

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2011-10-01

    Full Text Available Purpose: The main aim of the paper was investigation of structure and physical properties of Fe-based metallic glasses with Ni and Co addition.Design/methodology/approach: The structure was characterized by X-ray diffraction (XRD method, transmission electron microscope (TEM, scanning electron microscope (SEM. The measurement of physical properties (magnetic and mechanical were made. The magnetic properties contained initial magnetic permeability μi, coercive force Hc and magnetic after-effects ∆μ/μ measurements were determined by the Maxwell-Wien bridge, coercivemeter and with the use of automatic device for measurements magnetic permeability, respectively. Microhardness tests were performed on Vickers microhardness tester.Findings: The XRD and TEM investigations revealed that the studied ribbons were amorphous. The SEM images showed that studied fractures morphology of ribbons is changing from smooth fracture inside with narrow dense veins pattern on surface having contact with the copper roller during casting to fine (shell chevron pattern on surface freely solidified. The changing of chosen soft magnetic and mechanical properties obtained for samples with different thickness is a result of the non-homogenous amorphous structure of tested metallic glasses.Practical implications: The successful preparation of the Fe-based metallic glasses with Ni and Co addition from industrial raw materials will benefit cost-effective development of functional ferromagnetic materials and may be utilized in construction of magnetic cores such as common mode choke coils and noise filters.Originality/value: In this work, an attempt has been made to prepare the Fe-based metallic glasses more economically by means of replacement of high purity materials with industrial materials (ferroalloys.

  4. Influence of metal-containing carbon fibers on the properties of carbon-filled plastics based on aromatic polyamide

    Science.gov (United States)

    Burya, A. I.; Safonova, A. M.; Rula, I. V.

    2012-07-01

    The influence of metal-containing carbon fibers on the thermal properties of carbon-filled phenylone-based plastics has been investigated. It has been shown that carbometallic fibers containing in their composition 20- 30 mass % of a finely dispersed metal (Co, Cu) are promising fillers of phenylone C-2 for making carbonfilled plastics working in frictional units of various machines and mechanisms.

  5. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes;

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  6. Creep rupture testing of alloy 617 and A508/533 base metals and weldments.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Li, M.; Soppet, W.K.; Rink, D.L. (Nuclear Engineering Division)

    2012-01-17

    The NGNP, which is an advanced HTGR concept with emphasis on both electricity and hydrogen production, involves helium as the coolant and a closed-cycle gas turbine for power generation with a core outlet/gas turbine inlet temperature of 750-1000 C. Alloy 617 is a prime candidate for VHTR structural components such as reactor internals, piping, and heat exchangers in view of its resistance to oxidation and elevated temperature strength. However, lack of adequate data on the performance of the alloy in welded condition prompted to initiate a creep test program at Argonne National Laboratory. In addition, Testing has been initiated to evaluate the creep rupture properties of the pressure vessel steel A508/533 in air and in helium environments. The program, which began in December 2009, was certified for quality assurance NQA-1 requirements during January and February 2010. Specimens were designed and fabricated during March and the tests were initiated in April 2010. During the past year, several creep tests were conducted in air on Alloy 617 base metal and weldment specimens at temperatures of 750, 850, and 950 C. Idaho National Laboratory, using gas tungsten arc welding method with Alloy 617 weld wire, fabricated the weldment specimens. Eight tests were conducted on Alloy 617 base metal specimens and nine were on Alloy 617 weldments. The creep rupture times for the base alloy and weldment tests were up to {approx}3900 and {approx}4500 h, respectively. The results showed that the creep rupture lives of weld specimens are much longer than those for the base alloy, when tested under identical test conditions. The test results also showed that the creep strain at fracture is in the range of 7-18% for weldment samples and were much lower than those for the base alloy, under similar test conditions. In general, the weldment specimens showed more of a flat or constant creep rate region than the base metal specimens. The base alloy and the weldment exhibited tertiary creep

  7. Reliability-Based Design Optimization for Crane Metallic Structure Using ACO and AFOSM Based on China Standards

    Directory of Open Access Journals (Sweden)

    Xiaoning Fan

    2015-01-01

    Full Text Available The design optimization of crane metallic structures is of great significance in reducing their weight and cost. Although it is known that uncertainties in the loads, geometry, dimensions, and materials of crane metallic structures are inherent and inevitable and that deterministic structural optimization can lead to an unreliable structure in practical applications, little amount of research on these factors has been reported. This paper considers a sensitivity analysis of uncertain variables and constructs a reliability-based design optimization model of an overhead traveling crane metallic structure. An advanced first-order second-moment method is used to calculate the reliability indices of probabilistic constraints at each design point. An effective ant colony optimization with a mutation local search is developed to achieve the global optimal solution. By applying our reliability-based design optimization to a realistic crane structure, we demonstrate that, compared with the practical design and the deterministic design optimization, the proposed method could find the lighter structure weight while satisfying the deterministic and probabilistic stress, deflection, and stiffness constraints and is therefore both feasible and effective.

  8. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography

    Science.gov (United States)

    Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A.

    2009-11-01

    Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).

  9. Influence of Crystalline Nanoprecipitates on Shear-Band Propagation in Cu-Zr-Based Metallic Glasses

    Science.gov (United States)

    Brink, Tobias; Peterlechner, Martin; Rösner, Harald; Albe, Karsten; Wilde, Gerhard

    2016-05-01

    The interaction of shear bands with crystalline nanoprecipitates in Cu-Zr-based metallic glasses is investigated by a combination of high-resolution TEM imaging and molecular-dynamics computer simulations. Our results reveal different interaction mechanisms: Shear bands can dissolve precipitates, can wrap around crystalline obstacles, or can be blocked depending on the size and density of the precipitates. If the crystalline phase has a low yield strength, we also observe slip transfer through the precipitate. Based on the computational results and experimental findings, a qualitative mechanism map is proposed that categorizes the various processes as a function of the critical stress for dislocation nucleation, precipitate size, and distance.

  10. Antibacterial evaluation of some Schiff bases derived from 2-acetylpyridine and their metal complexes.

    Science.gov (United States)

    Gwaram, Nura Suleiman; Ali, Hapipah Mohd; Khaledi, Hamid; Abdulla, Mahmood Ameen; Hadi, A Hamid A; Lin, Thong Kwai; Ching, Chai Lay; Ooi, Cher Lin

    2012-01-01

    A series of Schiff bases derived from 2-acetylpyridne and their metal complexes were characterized by elemental analysis, NMR, FT-IR and UV-Vis spectral studies. The complexes were screened for anti-bacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumanni (AC), Klebsiella pneumonie (KB) and Pseudomonas aeruginosa (PA) using the disc diffusion and micro broth dilution assays. Based on the overall results, the complexes showed the highest activities against MRSA while a weak antibacterial activity was observed against A. baumanii and P. aeruginosa. PMID:22609786

  11. Investigation of the microcrack evolution in a Ti-based bulk metallic glass matrix composite

    Institute of Scientific and Technical Information of China (English)

    Yongsheng Wang; Zhenxi Guo; Rui Ma; Guojian Hao; Yong Zhang; Junpin Lin; Manling Sui

    2014-01-01

    The initiation and evolution behavior of the shear-bands and microcracks in a Ti-based metallic-glass-matrix composite (MGMC) were investigated by using an in-situ tensile test under transmission electron microscopy (TEM). It was found that the plastic deformation of the Ti-based MGMC related with the generation of the plastic deformation zone in crystalline and shear deformation zone in glass phase near the crack tip. The dendrites can suppress the propagation of the shear band effectively. Before the rapid propagation of cracks, the extending of plastic deformation zone and shear deformation zone ahead of crack tip is the main pattern in the composite.

  12. Effects of defect density on ultrathin graphene-based metal diffusion barriers

    International Nuclear Information System (INIS)

    The authors investigated the effects of defect density on the performance of monolayer graphene as a barrier to metal diffusion. The defects were introduced to the graphene by controlled ultraviolet-ozone irradiation. The barrier performance of pristine graphene was found to be superior to that of defective graphene at temperatures up to 700 °C. Changes in surface morphology were more prevalent in the defective graphene-based films than in the pristine graphene-based film; the thermal stability of graphene films depends on their defect density. Defect density was found to be a determining factor in the barrier performance of graphene

  13. Composition mediated serration dynamics in Zr-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.; Qiao, J. W., E-mail: qiaojunwei@gmail.com, E-mail: mwchen@wpi-aimr.tohoku.ac.jp; Wang, B. C.; Xu, B. S. [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Tian, H. [College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Sun, B. A. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Kowloon (Hong Kong); Chen, M. W., E-mail: qiaojunwei@gmail.com, E-mail: mwchen@wpi-aimr.tohoku.ac.jp [Laboratory of Applied Physics and Mechanics of Advanced Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-11-16

    The composition mediated serration dynamics in Zr-based bulk metallic glasses (BMGs) is investigated by statistics analyses of the elastic-energy density, and free volumes during shear-banding are beneficial to understand serrated-flow behavior. The amplitude and elastic-energy density display a gradually increasing and then decreasing trend with increasing the content of Zr. It is based on the free-volume theory describing the atomic-level structure of ternary Zr-Cu-Al BMGs. The good agreement between the molecular dynamics simulation and experimental results provides evidence for the variation of free volumes as the elementary mechanism of composition mediated serration dynamics.

  14. Deforming analysis of sheet metal based on stereo vision and coordinate grid

    Institute of Scientific and Technical Information of China (English)

    Hongqin Wei; Dehong Yu; Xueyu Ruan; Youqing Wang

    2004-01-01

    A new approach based on stereo vision technology is introduced to analyze sheet metal deformation. By measuring the deformed circle grids that are printed on the sheet surface before forming, the strain distribution of the workpiece is obtained. The measurement and analysis results can be used to verify numerical simulation results and guide production. To get good accuracy,some new techniques are employed: camera calibration based on genetic algorithm, feature abstraction based on self-adaptive technology, image matching based on structure feature and camera modeling pre-constrains, and parameter calculation based on curve and surface optimization. The experimental values show that the approach proposed is rational and practical, which can provide better measurement accuracy with less time than the conventional method.

  15. On the Existence of Our Metals-Based Civilization: I. Phase Space Analysis

    Energy Technology Data Exchange (ETDEWEB)

    D.D. Macdonald

    2005-06-22

    than are equilibrium thermodynamic diagrams. Thus, KSDs more accurately account for the limits of passivity in highly acidic systems, where acid depassivation occurs, and at high potentials, where transition to the transpassive state may occur in some systems. In any event, phase space analysis of the PDM permits specification of the conditions over which reactive metals will remain passive in contact with aqueous systems and hence of the conditions that must be met for the existence of our metals-based civilization.

  16. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    International Nuclear Information System (INIS)

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel base alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed

  17. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    Energy Technology Data Exchange (ETDEWEB)

    ME Petrichek

    2005-12-16

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel base alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed

  18. Synthesis and Characterization of Dinuclear Metal Complexes Stabilized by Tetradentate Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Eid A. Abdalrazaq

    2010-01-01

    Full Text Available Problem statement: The synthesis, spectroscopic properties and theoretical calculations of acetylacetonimine and acetylacetanilidimine Schiff-base ligands, L1H and L2H, respectively and their dinuclear complexes of the type [M2LnCl2(H2O2], where n = 1 or 2, M = Co(II, Ni(II, Cu(II, Zn(II and Cd(II are described. Approach: The new tetradentate dianion Schiff base ligand which was used as stabilizers for the complexes were prepared by condensation of hydrazine with acetylacetone or acetylacetanilide. The dinuclear complexes of theses ligands were synthesized by treating an ethanolic solution of the prepared ligand with hydrated metal salts in molar ratio of 1:2 (L:M. Results: The ligand and their dinuclear metal complexes were characterized by CHN elemental analysis, FT-IR, UV-Vis, 1HNMR (for the ligands, conductivity, magnetic susceptibility and theoretical calculation by using MM2 modeling program. Conclusion: The reaction of these ligands in a 1:2 (L:M afford dinuclear M(II metal complexes with tetrahedral arrangement around Co(II, Zn(II and Cd(II and square planar around Ni(II and Cu(II.

  19. Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading

    Science.gov (United States)

    Banerjee, Amit; Jiang, Chenchen; Lohiya, Lokesh; Yang, Yong; Lu, Yang

    2016-04-01

    Plastic deformation in metallic glasses is highly localized and often associated with shear banding, which may cause momentary release of heat upon fracture. Here, we report an explosive fracture phenomenon associated with momentary (˜10 ms) light emission (flash) in Lanthanum-based (LaAlNi) metallic glass microwires (dia. ˜50 μm) under quasi-static tensile loading. The load-displacement data as well as the visual information of the tensile deformation process were acquired through an in situ measurement set-up, which clearly showed nonlinear stress (σ)-strain ( ɛ) curves prior to yielding and also captured the occurrence of the flash at high fracture stresses (˜1 GPa). Through the postmortem fractographic analysis, it can be revealed that the fracto-emission upon quasi-static loading could be mainly attributed to the localized adiabatic work accumulated at a very large elastic strain confined within the microscale sample volume, followed by a localized high temperature rise up to ˜1000 K at the fracture surface through localized energy dissipation. Our findings suggest that the La-based metallic glass microwires could be useful for energetic microchips, micro-ignition devices, and other functional applications.

  20. Synchrotron-based investigation of transition-metal getterability in n-type multicrystalline silicon

    Science.gov (United States)

    Morishige, Ashley E.; Jensen, Mallory A.; Hofstetter, Jasmin; Yen, Patricia X. T.; Wang, Chenlei; Lai, Barry; Fenning, David P.; Buonassisi, Tonio

    2016-05-01

    Solar cells based on n-type multicrystalline silicon (mc-Si) wafers are a promising path to reduce the cost per kWh of photovoltaics; however, the full potential of the material and how to optimally process it are still unknown. Process optimization requires knowledge of the response of the metal-silicide precipitate distribution to processing, which has yet to be directly measured and quantified. To supply this missing piece, we use synchrotron-based micro-X-ray fluorescence (μ-XRF) to quantitatively map >250 metal-rich particles in n-type mc-Si wafers before and after phosphorus diffusion gettering (PDG). We find that 820 °C PDG is sufficient to remove precipitates of fast-diffusing impurities and that 920 °C PDG can eliminate precipitated Fe to below the detection limit of μ-XRF. Thus, the evolution of precipitated metal impurities during PDG is observed to be similar for n- and p-type mc-Si, an observation consistent with calculations of the driving forces for precipitate dissolution and segregation gettering. Measurements show that minority-carrier lifetime increases with increasing precipitate dissolution from 820 °C to 880 °C PDG, and that the lifetime after PDG at 920 °C is between the lifetimes achieved after 820 °C and 880 °C PDG.

  1. Gas Sensors Based on Locally Heated Multiwall Carbon Nanotubes Decorated with Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. Savu

    2015-01-01

    Full Text Available We report the design and fabrication of microreactors and sensors based on metal nanoparticle-decorated carbon nanotubes. Titanium adhesion layers and gold films were sputtered onto Si/SiO2 substrates for obtaining the electrical contacts. The gold layers were electrochemically thickened until 1 μm and the electrodes were patterned using photolithography and wet chemical etching. Before the dielectrophoretic deposition of the nanotubes, a gap 1 μm wide and 5 μm deep was milled in the middle of the metallic line by focused ion beam, allowing the fabrication of sensors based on suspended nanotubes bridging the electrodes. Subsequently, the sputtering technique was used for decorating the nanotubes with metallic nanoparticles. In order to test the as-obtained sensors, microreactors (100 μL volume were machined from a single Kovar piece, being equipped with electrical connections and 1/4′′ Swagelok-compatible gas inlet and outlets for controlling the atmosphere in the testing chamber. The sensors, electrically connected to the contact pins by wire-bonding, were tested in the 10−5 to 10−2 W working power interval using oxygen as target gas. The small chamber volume allowed the measurement of fast characteristic times (response/recovery, with the sensors showing good sensitivity.

  2. Metalizing reduction and magnetic separation of vanadium titano-magnetite based on hot briquetting

    Institute of Scientific and Technical Information of China (English)

    Shuang-yin Chen; Man-sheng Chu

    2014-01-01

    To achieve high efficiency utilization of Panzhihua vanadium titano-magnetite, a new process of metalizing reduction and mag-netic separation based on hot briquetting is proposed, and factors that affect the cold strength of the hot-briquetting products and the effi-ciency of reduction and magnetic separation are successively investigated through laboratory experiments. The relevant mechanisms are elu-cidated on the basis of microstructural observations. Experimental results show that the optimal process parameters for hot briquetting in-clude a hot briquetting temperature of 475°C, a carbon ratio of 1.2, ore and coal particle sizes of less than 74 µm. Additionally, with respect to metalizing reduction and magnetic separation, the rational parameters include a magnetic field intensity of 50 mT, a reduction temperature of 1350°C, a reduction time of 60 min, and a carbon ratio of 1.2. Under these above conditions, the crushing strength of the hot-briquetting agglomerates is 1480 N, and the recovery ratios of iron, vanadium, and titanium are as high as 91.19%, 61.82%, and 85.31%, respectively. The new process of metalizing reduction and magnetic separation based on hot briquetting demonstrates the evident technological advan-tages of high efficiency separation of iron from other valuable elements in the vanadium titano-magnetite.

  3. A numerical study of multi filament formation in metal-ion based CBRAM

    Directory of Open Access Journals (Sweden)

    Dan Berco

    2016-02-01

    Full Text Available This study investigates the underlying mechanisms of multiple conductive filaments (CF creation in metal-ion based conductive bridge RRAM (CBRAM by using the Metropolis Monte Carlo algorithm and suggests a possible explanation for this phenomenon. The simulation method is demonstrated over a Cu/HfO2 structure, starting from a random initial distribution of oxygen vacancies (OV defects in the resistive switching layer, to a formed CF and ending in a ruptured state. the results indicate that “Hot Spots” (HS, where agglomeration of OV trap like states for electron hopping based conduction induce local heating, create favorable energy conditions to attract diffused metal species originating from the top electrode. While HS may be created and annihilated by random OV generation and recombination processes, the precipitated metal forms a stem out of which a CF could evolve. The CF stem’s final growth stage is mainly driven by drift and diffusion. This process may lead to the formation of one or more CFs as a function of the forming bias voltage. This bias dependence is demonstrated over a large range, where the creation of a single, double and multiple CFs are shown. In addition, the reset process of the multi CF device is presented, and the experimentally observed, step like, gradual CBRAM reset is verified. The simulated results are in good agreement with experimental data and promote the idea that OV defect engineering may be used to improve CBRAM performance.

  4. Microfluidic-based metal enhanced fluorescence for capillary electrophoresis by Ag nanorod arrays

    Science.gov (United States)

    Xiao, Chenyu; Cao, Zhen; Deng, Junhong; Huang, Zhifeng; Xu, Zheng; Fu, Junxue; Yobas, Levent

    2014-06-01

    As metal nanorods show much higher metal enhanced fluorescence (MEF) than metal nanospheres, microfluidic-based MEF is first explored with Ag nanorod (ND) arrays made by oblique angle deposition. By measuring the fluorescein isothiocyanate (FITC) solution sandwiched between the Ag NDs and a piece of cover slip, the enhancement factors (EFs) are found as 3.7 ± 0.64 and 6.74 ± 2.04, for a solution thickness at 20.8 μm and 10 μm, respectively. Because of the strong plasmonic coupling between the adjacent Ag NDs, only the emission of the fluorophores present in the three-dimensional NDs array gets enhanced. Thus, the corresponding effective enhancement factors (EEFs) are revealed to be relatively close, 259 ± 92 and 340 ± 102, respectively. To demonstrate the application of MEF in microfluidic systems, a multilayer of SiO2 NDs/Ag NDs is integrated with a capillary electrophoresis device. At a microchannel depth of 10 μm, an enhancement of 6.5 fold is obtained for amino acids separation detection. These results are very encouraging and open the possibility of MEF applications for the Ag ND arrays decorated microchannels. With the miniaturization of microfluidic devices, microfluidic-based MEF by Ag ND arrays will likely find more applications with further enhancement.

  5. SYNTHESIS, CHARACTERIZATION AND SPECTROSCOPIC INVESTIGATION OF PYRAZINOPORPHYRAZINE NETWORK POLYMER-SUPPORTED METAL (Ⅱ)-BASED CATALYSTS

    Institute of Scientific and Technical Information of China (English)

    H.H.Abdel-Razik; B.H.Asghar; E.Kenawy

    2013-01-01

    Chloranil through condensation reaction with vicinal diamine such as diaminomaleonitrile produced heterocyclic monomer,p-benzoquinonebis[2,3-b; 2',3'-b']pyrazine-5,6-dinitrile.The tetranitrile monomer was cyclo-tetramerised using lithium/pentanol and acetic acid affording the corresponding tetra p-benzoquinone bis[2,3-b; 2',3'-b']pyrazinoporphyrazine)]-based network polymer (2H-Pz).The tetranitril monomer was cyclo-tetramerised using metal salt and quinoline affording the corresponding porphyrazinato-metal Ⅱ-based network polymers (M-Pz),M =Co,Ni or Cu.Elemental analytical results,IR and NMR spectral data of the prepared molecules are consistent with their assigned formulations.Molecular masses and metal contents of the synthesized polymers proved to be of high molecular masses which confirm the efficiency of tetramerization polymerization and complexation reactions.The prepared pyrazinoporphyrazines were used as efficient catalysts for the oxidation of thiophenol and benzylthiol to their disulfides in the presence of air atmosphere.The results of oxidation of thiophenol and benzylthiol show that after 15 min the maximum yield of the corresponding disulfides reached 95%,91%,respectively.

  6. Reliability of welded austenitic stainless steel containing base metal delta ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Hamdy M. [Kuwait Institute for Scientific Research (Kuwait)

    2004-07-01

    The paper presents the results of a failure case study carried out on welded 304L stainless steel (SS) pipeline of waste gas header (WGH). The environment inside the WGH was mainly wet steam with hydrocarbons, H{sub 2}S, oxygen, CO{sub 2}, organic acids, and organic chlorides. The outside pipe wall temperature was 91-97 deg C. The failure of the pipe was at the heat-affected zone (HAZ). The study was made on four welded pipeline samples, three of which were in service. The pipe samples were welded using three different techniques that included autogenous gas tungsten arc, shielded metal arc, and flux core arc. The investigation revealed that cracking at HAZ was due to base metal delta ferrite decay accompanied with sigma phase formation due to high heat input during welding. However, the morphology and orientation of the cracks suggested that stress-rupture and stress corrosion cracking had occurred. The presence of base metal delta ferrite made all used welding procedures un-successful. The study concluded that utilization of delta ferrite free austenitic SS should eliminate the problem. (author)

  7. Graphene-based half-metal and spin-semiconductor for spintronic applications

    International Nuclear Information System (INIS)

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics. (paper)

  8. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan

    2011-12-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary diffusion, grain boundary sliding and dislocation activities are considered. Effects of pressure on the grain boundary diffusion and sliding mechanisms are taken into account. Furthermore, the influence of grain size distribution on macroscopic response is studied. The model is shown to capture the fundamental mechanical characteristics of nanocrystalline metals. These include grain size dependence of the strength, i.e., both the traditional and the inverse Hall-Petch effects, the tension-compression asymmetry and the enhanced rate sensitivity. © 2011 Elsevier B.V. All rights reserved.

  9. Method for separating metal chelates from other materials based on solubilities in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Chien M. (Moscow, ID); Smart, Neil G. (Workington, GB); Phelps, Cindy (Moscow, ID)

    2001-01-01

    A method for separating a desired metal or metalloi from impurities using a supercritical extraction process based on solubility differences between the components, as well as the ability to vary the solvent power of the supercritical fluid, is described. The use of adduct-forming agents, such as phosphorous-containing ligands, to separate metal or metalloid chelates in such processes is further disclosed. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones; phosphine oxides, such as trialkylphosphine oxides, triarylphosphine oxides and alkylarylphosphine oxides; phosphinic acids; carboxylic acids; phosphates, such as trialkylphosphates, triarylphosphates and alkylarylphosphates; crown ethers; dithiocarbamates; phosphine sulfides; phosphorothioic acids; thiophosphinic acids; halogenated analogs of these chelating agents; and mixtures of these chelating agents. In especially preferred embodiments, at least one of the chelating agents is fluorinated.

  10. Graphene-based half-metal and spin-semiconductor for spintronic applications

    Science.gov (United States)

    Qi, Jingshan; Chen, Xiaofang; Hu, Kaige; Feng, Ji

    2016-03-01

    In this letter we propose a strategy to make graphene become a half-metal or spin-semiconductor by combining the magnetic proximity effects and sublattice symmetry breaking in graphone/graphene and graphone/graphene/BN heterostructures. Exchange interactions lift the spin degeneracy and sublattice symmetry breaking opens a band gap in graphene. More interestingly, the gap opening depends on the spin direction and the competition between the sublattice asymmetry and exchange field determines the system is a half-metal or a spin-semiconductor. By first-principles calculations and a low-energy effective model analysis, we elucidate the underlying physical mechanism of spin-dependent gap opening and spin degeneracy splitting. This offers an alternative practical platform for graphene-based spintronics.

  11. SYNTHESIS AND PROPERTIES OF METAL COMPLEXES OF β-DIKETONE BASED SIDE CHAIN LIQUID CRYSTAL POLYSILOXANE

    Institute of Scientific and Technical Information of China (English)

    WU Fuzhou; ZHANG Rongben; JIANG Yingyan

    1991-01-01

    A new type of metal coordinated liquid crystalline polymers has been synthesized by complexation of metal ions with β-diketone based side chain liquid crystal polysiloxane (DKLCP).The complexation of copper ions with DKLCP greatly increases the phase transition temperature Tk from crystalline state to liquid crystalline state and Tcl from LC to isotropic state and makes the range of phase transition △T(△T= Tcl- Tk ) widened. These complexes are soluble in common organic solvents. However, the incorporation of europium ions into DKLCP molecules gives rise to reduction in liquid crystallinity and crosslinking in some cases. The DKLCP coordinated with suitable amount of Eu ions can show good liquid crystallinity and fluorescent property.

  12. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    KAUST Repository

    Choudhury, Snehashis

    2015-12-04

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  13. Tuning the Magnetic Properties of Cobalt-Based Metallic Glass Nanocomposites

    Science.gov (United States)

    Veligatla, Medha; Das, Santanu; Lee, Won Ki; Hwang, Junyeon; Thumthan, Orathai; Hao, Yaowu; Mukherjee, Sundeep

    2016-01-01

    Temperature-induced variation in magnetic properties for cobalt-based metallic glass was investigated. The formation of metastable nanocrystalline phases prior to complete devitrification and their effect on magnetic properties for Co72B19.2Si4.8Cr4 metallic glass was studied. The nature, shape, and distribution of the intermediate nanocrystalline phases were characterized using transmission electron microscopy and x-ray diffraction. A drastic change in magnetic properties was found in going from a fully amorphous state to different stages of nanocrystallization. The coercivity changes from amorphous soft magnetic state ( H c ~ 0.12 Oe) to a nanocrystalline-dispersed hard magnetic state ( H c ~ 187 Oe), with no significant change in saturation magnetization. This suggests potential use in futuristic magnetic switches, fluxgate sensors, and electromagnetic shielding devices.

  14. Sensors Based on Plasmonic-Photonic Coupling in Metallic Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Zhaoguang Pang

    2012-09-01

    Full Text Available An optical sensor based on the coupling between the plasmonic and photonic resonance modes in metallic photonic crystals is investigated. Large-area metallic photonic crystals consisting of periodically arranged gold nanostructures with dimensions down to sub-100 nm are fabricated using solution-processible gold nanoparticles in combination with interference lithography or interference ablation, which introduces a variety of fabrication techniques for the construction of this kind of sensor device. Sensitivity of the plasmonic response of the gold nanostructures to the changes in the environmental refractive index is enhanced through the coupling between the narrow-band photonic resonance mode and the relatively broad-band plasmon resonance, which is recognized as a Fano-like effect and is utilized to explore sensors. Theoretical modeling shows the characterization and the optimization of the sensitivity of this kind of sensor device. Theoretical and experimental results are demonstrated for the approaches to improve the sensitivity of the sensor device.

  15. Deformation behavior of Zr-based bulk metallic glass and composite in the supercooled liquid region

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A Zr-based bulk metallic glass (BMG) with a composition of (Zr75Cu25)78.5Ta4Ni10Al7.5 and a bulk metallic glass matrix composite (BMGC) with a composition of (Zr75Cu25)74.5Ta8Ni10Al7.5 have been prepared by copper-mold casting. The compres-sive deformation behavior of the BMG and BMGC was investigated in the super-cooled region at different temperatures and various strain rates ranging from 8×10-4s-1 to 8×10-2s-1. It was found that both the strain rate and test temperature signifi-cantly affect the deformation behavior of the two alloys. The deformation follows Newtonian flow at low strain rates but non-Newtonian flow at high strain rates. The deformation mechanism for the two kinds of alloys was discussed in terms of the transition state theory.

  16. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    Science.gov (United States)

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs. PMID:26726416

  17. In2O3-based multicomponent metal oxide films and their prospects for thermoelectric applications

    Science.gov (United States)

    Korotcenkov, G.; Brinzari, V.; Cho, B. K.

    2016-02-01

    Thermoelectric properties of In2O3-SnO2-based multi-component metal oxide films formed by spray pyrolysis method are studied. It is shown that the introduction of additional components such as gallium and zinc can control the parameters of the deposited layers. At that, the doping with gallium is more effective for optimization of the efficiency of the thermoelectric conversion. The explanation of the observed changes in the electro-physical and thermoelectric properties of the films at the composition change is given. It is found that the main changes in the properties of multicomponent metal oxide films take place at concentrations of dopants which correspond to their limit solubility in the dominant oxide.

  18. Metal-organic frameworks as biosensors for luminescence-based detection and imaging.

    Science.gov (United States)

    Miller, Sophie E; Teplensky, Michelle H; Moghadam, Peyman Z; Fairen-Jimenez, David

    2016-08-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses.

  19. Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design

    International Nuclear Information System (INIS)

    Highlights: • A new 3D modeling for Mg-based metal hydride reactor is proposed. • Hydriding kinetics of Mg-based alloys is modeled based on the experimental data. • Helical coil heat exchanger has better heat transfer effect than traditional one. • The reactor with smaller non-dimensional pitch has favorable performance. - Abstract: Magnesium based metal hydride has been viewed as one of the most commonly-used materials in the practical applications of hydrogen energy systems. The heat and mass transfer processes have significant effects on the hydrogen storage performance of magnesium based metal hydride reactors. Incorporating helical coil heat exchanger into the reactor could be an effective way to improve the performance of heat and mass transfer. In this work, a new three-dimensional model for magnesium based metal hydride reactor with helical coil heat exchanger is proposed and solved using the commercial software package COMSOL Multiphysics V3.5a. The comparison of hydrogen storage behaviors between the reactors incorporating the traditional straight pipe and new helical coil heat exchangers is firstly conducted based on the numerical simulation. The comparison results show that the helical coil heat exchanger has better effect on improving the characteristics of reactor than the straight pipe heat exchanger due to its secondary circulation. The effects of key parameters, including the initial conditions, heat transfer coefficients of heat transfer fluid and helical coil geometry on the characteristics of reactor with the helical coil heat exchanger are also analyzed systematically. It is discovered that larger initial hydrogen pressure and lower initial temperature are beneficial to the improvement of hydrogen absorption kinetics, because of the greater driving force for the hydriding reaction. The results of optimal design suggest that smaller non-dimensional pitch, the ratio of helical pitch to helical diameter, improves the heat and mass transfer

  20. A new method for the characterisation and quantitative speciation of base metal smelter stack particulates.

    Science.gov (United States)

    Skeaff, James M; Thibault, Yves; Hardy, David J

    2011-06-01

    Base metal smelters may be a source of particulates containing metals of environmental concern released to the atmosphere. Knowledge of the quantitative chemical speciation of particulate releases from base metal smelters will be of value in smelter emission fingerprinting, site-specific risk assessments, predictions of the behaviour of smelter stack particulates released to the environment and in resolving liability issues related to current and historic releases. Accordingly, we have developed an innovative approach comprising bulk chemical analysis, a leaching procedure, X-ray diffraction analysis and scanning electron microscopy/electron probe microanalysis characterisation in a step-wise apportioning procedure to derive the quantitative speciation of particulate samples from the stacks of three copper smelters designated as A, B and C. For the A smelter stack particulates, the major calculated percentages were 29 CuSO(4), 20 ZnSO(4).H(2)O, 13 (Cu(0.94)Zn(0.06))(2)(AsO(4))(OH), 11 PbSO(4) and four As(2)O(3). For the B smelter stack particulates, the primary calculated percentages were 20 ZnSO(4).H(2)O, 20 PbSO(4), 12 CuSO(4) and nine As(2)O(3). Finally, we calculated that the C smelter stack particulates mostly comprised 34 ZnSO(4).H(2)O, 19 (Cu(0.84)Zn(0.16))(AsO(3)OH), 11 PbSO(4), 10 As(2)O(3) and nine Zn(3)(AsO(4))(2). Between 56% and 67% by weight of the smelter stack particulates, including the As, was soluble in water. For these and other operations, the data and approach may be useful in estimating metals partitioning among water, soil and sediment, as well as predictions of the effects of the stack particulates released to the environment. PMID:20676929

  1. X-ray residual stress measurement on weld metal of nickel based alloy

    International Nuclear Information System (INIS)

    Residual stress on the weld metal of nickel based alloy was evaluated through x-ray diffraction and metallurgical study of the microstructure. Weld metal specimens were prepared from Alloy182 (JIS DNiCrFe-3) and Alloy132 (JIS DNiCrFe-1J) deposited on a steel plate. X-ray diffraction results show a strong [100] preferred orientation nearly normal to the surface of the weld metal. Crystallographic consideration predicts that dominant 311 diffractions appear around 25.2 and 72.5 degrees of ψ angle. For each diffraction, the peak shift was measured at the ψ angle showing the maximum diffraction intensity, using the side-inclination method (ψ-goniometer method) with a Mn x-ray tube and a PSPC (position sensitive proportional counter). The residual stress was determined by the peak shifts according to the two tilt method. The x-ray stress constant, K, on Alloy182 was determined experimentally. The depth profile of the residual stress was measured on the ground specimens with and without laser peening. Tensile residual stress due to the grinding work is observed in the surface layer of the unpeened specimen; however it changes to compressive after laser peening. The overall behavior of the depth profile of laser peened material agrees well with that of Alloy600 base metal measured in the previous studies, where the compressive residual stress with several hundred MPa at the surface gradually decreases and reaches to around 0 MPa at the depth of about 1 mm. (author)

  2. A generalized physiologically-based toxicokinetic modeling system for chemical mixtures containing metals

    Directory of Open Access Journals (Sweden)

    Isukapalli Sastry S

    2010-06-01

    Full Text Available Abstract Background Humans are routinely and concurrently exposed to multiple toxic chemicals, including various metals and organics, often at levels that can cause adverse and potentially synergistic effects. However, toxicokinetic modeling studies of exposures to these chemicals are typically performed on a single chemical basis. Furthermore, the attributes of available models for individual chemicals are commonly estimated specifically for the compound studied. As a result, the available models usually have parameters and even structures that are not consistent or compatible across the range of chemicals of concern. This fact precludes the systematic consideration of synergistic effects, and may also lead to inconsistencies in calculations of co-occurring exposures and corresponding risks. There is a need, therefore, for a consistent modeling framework that would allow the systematic study of cumulative risks from complex mixtures of contaminants. Methods A Generalized Toxicokinetic Modeling system for Mixtures (GTMM was developed and evaluated with case studies. The GTMM is physiologically-based and uses a consistent, chemical-independent physiological description for integrating widely varying toxicokinetic models. It is modular and can be directly "mapped" to individual toxicokinetic models, while maintaining physiological consistency across different chemicals. Interaction effects of complex mixtures can be directly incorporated into the GTMM. Conclusions The application of GTMM to different individual metals and metal compounds showed that it explains available observational data as well as replicates the results from models that have been optimized for individual chemicals. The GTMM also made it feasible to model toxicokinetics of complex, interacting mixtures of multiple metals and nonmetals in humans, based on available literature information. The GTMM provides a central component in the development of a "source

  3. Fatigue and corrosion of a Pd-based bulk metallic glass in various environments

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, L.Y. [East Los Angeles College, Monterey Park, CA 91754 (United States); Roberts, S.N. [Keck Laboratory of Materials Science, California Institute of Technology, Pasadena, CA 91125 (United States); Baca, N. [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330 (United States); Wiest, A. [Naval Surface Warfare Center, Norco, CA (United States); Garrett, S.J. [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330 (United States); Conner, R.D., E-mail: rdconner@csun.edu [Department of Manufacturing Systems Engineering and Management, California State University Northridge, 18111 Nordhoff St., Mail Code 8295, Northridge, CA 91330 (United States)

    2013-10-15

    Bulk metallic glasses (BMGs) possess attractive properties for biomedical applications, including high strength, hardness and corrosion resistance, and low elastic modulus. In this study, we conduct rotating beam fatigue tests on Pd{sub 43}Ni{sub 10}Cu{sub 27}P{sub 20} bulk metallic glass in air and Eagle's medium (EM) and measure the corrosive resistance of the alloy by submersion in acidic and basic electrolytes. Fatigue results are compared to those of commonly used biometals in EM. Rotating beam fatigue tests conducted in air and in Eagle's medium show no deterioration in fatigue properties in this potentially corrosive environment out to 10{sup 7} cycles. A specimen size effect is revealed when comparing fatigue results to those of a similar alloy of larger minimum dimensions. Corrosion tests show that the alloy is not affected by highly basic (NaOH) or saline (NaCl) solutions, nor in EM, and is affected by chlorinated acidic solutions (HCl) to a lesser extent than other commonly used biometals. Corrosion in HCl initiates with selective leaching of late transition metals, followed by dissolution of Pd. - Highlights: • Fatigue limit of 600 MPa with no deterioration when exposed to Eagle's medium. • Fatigue shows sample size effect. • Pd-based BMG is unaffected by saline or strong basic solutions. • Pd-based BMG is substantially more resistant to chlorinated acids than CoCrMo, 316 L Stainless, or Ti6Al4V alloys. • Corrosion shows selective leaching of late transition metals, followed by Pd and P.

  4. Preparation, structure and properties of Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2010-06-01

    Full Text Available Purpose: The work presents preparation methods, structure characterization and chosen properties analysis of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe43Co14Ni14B20Si5Nb4 metallic glass in form of rings, plates and rods. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The thermal properties of the glassy samples was measured using differential scanning calorimetry (DSC. The soft magnetic properties examination of tested material contained coercive force, initial magnetic permeability and magnetic permeability relaxation measurements. Findings: The XRD and TEM investigations revealed that the studied as-cast samples were amorphous. Broad diffraction halo is typical for metallic amorphous structures that have a large degree of short-range order. The characteristics of the fractured surfaces showed different zones, which might correspond with different amorphous structures of studied materials. The temperature interval of the supercooled liquid region (ΔTx defined by the difference between Tg and Tx, is as large as 56 K for the rod with diameter of 3 mm. Differences in coercivity and magnetic permeability between samples with different thickness might be resulted by some difference of amorphous structure.Practical implications: The centrifugal casting method and the pressure die casting method are useful to produce bulk amorphous materials in form of rings, plats and rods.Originality/value: The preparation of studied Fe-based bulk metallic glass in form of rings, plates and rods is important for the future progress in research and practical application of that glassy materials.

  5. Surface modified Ti based metallic glasses for bioactivation by electrochemical treatment technique

    Energy Technology Data Exchange (ETDEWEB)

    Oak, Jeong-Jung, E-mail: ojj69@pusan.ac.kr [GCRC-SOP, Pusan Nat’l University, Busan (Korea, Republic of); Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai (Japan); Rao, K. Venkat [Division of Engineering Materials Physics, KTH, Stockholm (Sweden); Chun, Ho-Hwan [Dept. of Naval Architecture and Ocean Engineering, Pusan Nat’l University, Busan (Korea, Republic of); Park, Yong Ho [Dept. of Materials Science and Engineering, Pusan Nat’l University, Busan (Korea, Republic of)

    2014-12-05

    The aim of this study is surface modification of Ni-free type Ti based metallic glass (Ti{sub 42}Hf{sub 11}Cu{sub 11}Pd{sub 36} at.%) for increasing calcification by electrochemical treatment. Ni-free type Ti based metallic glass has excellent mechanical and chemical properties which are comparable with those of Ti based alloys. Surface of Ti based metallic glasses was prepared as follows; one is anodically-oxidized porous layer by potentiostatic control in 5 M NaOH solution at 25 °C for 2 h, and the other is simple hydrothermal treated poros layer by immersion in 5 M NaOH solution at 60 °C for 24 h. The synthesized surface structures were characterized by X-ray diffraction (XRD) identification, SEM observation, energy dispersive X-ray spectroscopy (EDS) analysis and Auger electron spectroscopy (AES) analysis. These surfaces on the modified specimens have nano-mesh laminated structures and are consist of sodium titanate and titanium oxide. In addition, the above two types surfaces with nano-mesh laminated layer were immersed in Hank’s balance salt solution (HBSS) at 37 °C for 21 days for evaluation of calcification. The apatite-forming ability on these surfaces is observed by SEM observation and EDS analysis. As stated above surface modifications are also discussed about calcification effect by different surface treatment and different formability of porosity in this study. - Highlights: • Electrochemical treatment synthesizes nano-mesh laminated structures. • Large reticular area and fine nanopores are synthesized in alkali-solution at 25 °C. • Low crystal growth of sodium titanate densifies nano-mesh laminated structures. • The modified surface increases calcification in simulated body fluid.

  6. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    Science.gov (United States)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  7. Third Workshop of IGCP 450:Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana

    Institute of Scientific and Technical Information of China (English)

    JacquesL.H.Cailteux; HenriA.B.Kampunzu

    2004-01-01

    The third workshop of the IGCP 450 project “Proterozoic Sediment-hosted Base Metal Deposits of Western Gondwana” washeld at the Don Bosco Theologicum Center, Lubumbashi (D.R.Congo) from 14 to 24 July 2003.

  8. Assessment of Creep Strain Distribution Across Base Metal of 316LN Austenitic Stainless Steel Weld Joint by an EBSD-Based Parameter

    Science.gov (United States)

    Vijayanand, V. D.; Ganesan, V.; Ganesh Kumar, J.; Parameswaran, P.; Naveena; Laha, K.

    2015-11-01

    Electron backscatter diffraction (EBSD) analysis has been used to estimate the accumulated strain in base metal region of 316LN austenitic stainless steel weld joints, creep tested at 923 K (650 °C), and at stresses of 175 and 225 MPa. The variation in strength of weld metal, heat-affected zone (HAZ), and base metal-induced stress and strain gradients across the weld joint under creep exposure. Finite element analysis (FEA) of von-Mises stress distribution across the joint has been carried out on incorporating strength of different constituents of the joint, derived by miniature specimen testing techniques. The FEA simulations revealed preferential accumulation of von-Mises stress in the base metal region near to HAZ. The variation in accumulated plastic strain across the base metal has been estimated using a `crystal deformation' ( C d) parameter which quantifies the orientation spread within a grain. This parameter was obtained by EBSD analysis carried out using a scanning electron microscope. The trend in variation of accumulated plastic strain across the base metal accounted well with the von-Mises stress variation, which causes plastic deformation. The plastic strain in the base metal in both the stress levels was found to accumulate preferentially near to the HAZ and reduced steadily toward the ridge at the end of specimen. Transmission electron microscopic study has been carried out to substantiate the findings of the EBSD investigation.

  9. Extended metal-organic solids based on benzenepolycarboxylic and aminobenzoic acids

    Indian Academy of Sciences (India)

    R Murugavel; G Anantharaman; D Krishnamurthy; M Sathiyendiran; M G Walawalkar

    2000-06-01

    This article describes the recent results obtained in our laboratory on the interaction of polyfunctional ligands with divalent alkaline earth metal ions and a few divalent transition metal ions. Treatment of MCl2$\\cdot$ H2O (M = Mg, Ca, Sr or Ba) with 2-amino benzoic acid leads to the formation of complexes [Mg(2-aba)2] (1), [Ca(2-aba)2(OH2)3]∞ (2), [{Sr(2-aba)2(OH2)2}2$\\cdot$H2O)]∞ (3), [Ba(2-aba)2(OH2)]∞ (4), respectively. While the calcium ions in 2 are hepta-coordinated, the strontium and barium ions in 3 and 4 reveal a coordination number of nine apart from additional metal-metal interactions. Apart from the carboxylate functionality, the amino group also binds to the metal centres in the case of strontium and barium complexes 3 and 4. Complexes [{Mg(H2O)6}(4-aba)2$\\cdot$2H2O] (5), [Ca(4-aba)2(H2O)2] (6) prepared from 4-aminobenzoic acid reveal more open or layered structures. Interaction of 2-mercaptobenzoic acid with MCl2$\\cdot$6H2O (M = Mg, Ca), however, leads to the.oxidation of the thiol group resulting in the disulphide 2,2'-dithiobis(benzoic acid). New metal-organic framework based hydrogen-bonded porous solids [{M(btec)(OH2)4} $\\cdot$ (C4H12N2) 4H2O] (btec = 1,2,4,5-benzene tetracarboxylate) (M = Co 9; Ni 10; Zn 11) have been synthesized from 1,2,4,5-benzene tetracarboxylic acid in the presence of piperazine. These compounds are made up of extensively hydrogenbonded alternating layers of anionic M-btec co-ordination polymer and piperazinium cations. Compounds 2-11 described herein form polymeric networks in the solid-state with the aid of different coordinating capabilities of the carboxylate anions hydrogen bonding interactions.

  10. INVESTIGATION OF THE LOW-CYCLE FATIGUE AND FATIGUE CRACK GROWTH BEHAVIORS OF P91 BASE METAL AND WELD JOINTS

    Institute of Scientific and Technical Information of China (English)

    H.C. Yang; Y. Tu; M.M. Yu; J. Zhao

    2004-01-01

    Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature,550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed.

  11. Systems and Methods for Implementing Bulk Metallic Glass-Based Strain Wave Gears and Strain Wave Gear Components

    Science.gov (United States)

    Hofmann, Douglas C. (Inventor); Wilcox, Brian (Inventor)

    2016-01-01

    Bulk metallic glass-based strain wave gears and strain wave gear components. In one embodiment, a strain wave gear includes: a wave generator; a flexspline that itself includes a first set of gear teeth; and a circular spline that itself includes a second set of gear teeth; where at least one of the wave generator, the flexspline, and the circular spline, includes a bulk metallic glass-based material.

  12. Evaluation of Characteristics of Non-Metallic Inclusions in P/M Ni-Base Superalloy by Automatic Image Analysis

    Institute of Scientific and Technical Information of China (English)

    Li; Xinggang; Ge; Changchun; Shen; Weiping

    2007-01-01

    Non-metallic inclusions,especially the large ones,within P/M Ni-base superalloy have a major influence on fatigue characteristics,but are not directly measurable by routine inspection.In this paper,a method,automatic image analysis,is proposed for estimation of the content,size and amount of non-metallic inclusions in superalloy.The methodology for the practical application of this method is described and the factors affecting the precision of the estimation are discussed.In the experiment,the characteristics of the non-metallic inclusions in Ni-base P/M superalloy are analyzed.

  13. An eddy-current-based sensor for preventing knots in metallic wire drawing processes

    Science.gov (United States)

    Esteban, Bernat; Riba, Jordi-Roger; Baquero, Grau; Ferrater, Cèsar

    2011-06-01

    During metallic wire drawing processes, the presence of knots and the failure to detect them can lead to long production interruptions, significant economic losses and a lower quality of final product. Consequently, there is a pressing need to develop methods for real-time detection and prevention of this fault. In this paper, a sensor to prevent the formation of knots during the metallic wire drawing process is presented and evaluated by means of experimental data. This fast, inexpensive, non-contact sensor is based on electromagnetic principles such as eddy current induction, magnetic reluctance variations and magnetic coupling. The proposed sensor without direct contact can detect knots in a target metallic wire by measuring the impedance variations of a calibrated sensing coil caused by either a knot or an unwound loop rising from a wire rod. The incorporation of this type of sensor into a wire-drawing machine can avoid the tightening of the knot, thereby reducing downtime and increasing the security and reliability of the process. Experiments were conducted using a scale model of the above proposed system. This allowed highlighting the sensor's potential by carrying out an automatic, real-time knot detection during steel wire drawing.

  14. Density functional theory based study of chlorine doped WS2-metal interface

    Science.gov (United States)

    Chanana, Anuja; Mahapatra, Santanu

    2016-03-01

    Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS2 with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS2 supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS2.

  15. Analysis of Metal Contents in Portland Type V and MTA-Based Cements

    Directory of Open Access Journals (Sweden)

    Maura Cristiane Gonçales Orçati Dorileo

    2014-01-01

    Full Text Available The aim of this study was to determine, by Atomic Absorption Spectrometry (AAS, the concentration levels of 11 metals in Type V gray and structural white PC, ProRoot MTA, and MTA Bio. Samples, containing one gram of each tested cement, were prepared and transferred to a 100 mL Teflon tube with a mixture of 7.0 mL of nitric acid and 21 mL of hydrochloric acid. After the reaction, the mixture was filtered and then volumed to 50 mL of distilled water. For each metal, specific patterns were determined from universal standards. Arsenic quantification was performed by hydride generator. The analysis was performed five times and the data were statistically analyzed at 5% level of significance. Only the cadmium presented concentration levels of values lower than the quantification limit of the device. The AAS analysis showed increased levels of calcium, nickel, and zinc in structural white PC. Type V PC presented the greatest concentration levels of arsenic, chromium, copper, iron, lead, and manganese (P<0.05. Bismuth was found in all cements, and the lowest concentration levels were observed in Portland cements, while the highest were observed in ProRoot MTA. Both PC and MTA-based cements showed evidence of metals inclusion.

  16. High temperature strain sensor based on a fiber Bragg grating and rhombus metal structure.

    Science.gov (United States)

    Zhang, Liang; Liu, Yueming; Gao, Xiaoliang; Xia, Zhongcheng

    2015-10-01

    In this paper, a novel high temperature strain sensor based on a polyimide-coated fiber Bragg grating (FBG) and a rhombus metal structure is presented and experimentally demonstrated. By heating low softening point glass via a micro torch, the polyimide-coated FBG could be fixed into the rhombus metal structure. Consequently, when the rhombus structure is stretched and compressed, respectively, then the FBG will be subjected to a reverse state. Moreover, the strain sensitivity is controllable and enhanced by adjusting the dimension of the rhombus metal structure appropriately. The experiment was then carried out by using an equi-intensity cantilever beam and high temperature chamber, and the result showed that the proposed high temperature strain sensor could be used at the high temperature of 300°C. A resolution of ∼10  με has been experimentally achieved. The average wavelength strain sensitivity at 300°C is 1.821 and 1.814 pm/με, for the compressed and stretched states, respectively. PMID:26479639

  17. MSWI Fly Ash Based Novel Solidification/Stabilization Matrices for Heavy Metals

    Institute of Scientific and Technical Information of China (English)

    DENG Faqing; QIAN Guangren

    2008-01-01

    The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWl fly ash with rich aluminum components,which was added as bauxite cement or metakaolinite instead,to form Friedel and Ettringite phases with high fixing capacities for heavy metals.The physical properties,heavy metals-fixing capacity,mineral phases and its vibration bands in the novel matrices were characterized by compressive strength,TCLP(toxic characteristic leaching procedure),XRD (x-ray diffraction),DTG (derivative thermogravimetry),and FTIR (fourier transform infrared spectroscopy),respectively.The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb,Cd and Zn ions.The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb,Cd and Zn ions effectively by physical encapsulation and chemical fixation,and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes.

  18. Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    In the present work we study the formation mechanism and crystallization behavior of Fe-based bulk metallic glasses influenced by the addition of rare-earth elements. Samples are characterized by conventional X-ray diffractometry, optical microscopy, and high-resolution field-emission-gun scanning and transmission electron microscopy. In the rare-earth-containing alloys, bulk metallic glasses are formed with populations of quenched-in nuclei. Consequently, crystallization on isothermal annealing occurs without any incubation period. This behavior, not typical of bulk metallic glasses in general, implies that in the rare-earth-containing alloys glass formation is possible only because of restricted crystal growth: both on cooling from the molten and on heating from the glassy state, growth of the primary χ-Fe36Cr12Mo10 crystals is too slow to be significant on a reasonable timescale. The low growth rate is connected with large inhomogeneous strain in the growing nanoparticles, while nucleation of eutectic colonies is hampered by slow diffusion of a rare-earth alloying element

  19. Level of neurotoxic metals in amyotrophic lateral sclerosis: A population-based case-control study.

    Science.gov (United States)

    Bocca, Beatrice; Forte, Giovanni; Oggiano, Riccardo; Clemente, Simonetta; Asara, Yolande; Peruzzu, Angela; Farace, Cristiano; Pala, Salvatore; Fois, Alessandro Giuseppe; Pirina, Pietro; Madeddu, Roberto

    2015-12-15

    The association between exposure to toxic metals and amyotrophic lateral sclerosis (ALS) was explored in a population-based case-control study in the Sardinia island (Italy), a region characterized by elevated rates of ALS cases. In 34 patients with ALS (mean age, 62 ± 10 years) and 30 controls (mean age, 65 ± 11 years), Al, Cd, Hg, Mn and Pb were determined in blood, hair and urine by sector field inductively coupled mass spectrometry. Results indicated that, in blood, concentrations of Al (p=0.045) and Pb were higher (p=0.026) in ALS patients than in control subjects. In hair, a depletion of Al (p=0.006) and Mn (p=0.032) concentrations in ALS subjects respect to controls was found. In urine, no significant differences between cases and controls were observed. Thus, some metals seemed to be associated with ALS degeneration, but a definitive conclusion is still far considering the multiple risk factors (genetic mutations, environmental toxicants and stressors) involved in the disease. Finally, the interpretation that deregulated metal concentrations can be a consequence of the degenerative process, rather than a cause, is also valid. PMID:26671079

  20. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Battocchio Chiara

    2011-01-01

    Full Text Available Abstract Noble metal nanoparticles of different sizes and shapes combined with conjugated functional polymers give rise to advanced core shell hybrids with interesting physical characteristics and potential applications in sensors or cancer therapy. In this paper, a versatile and facile synthesis of core shell systems based on noble metal nanoparticles (AuNPs, AgNPs, PtNPs, coated by copolymers belonging to the class of substituted polyacetylenes has been developed. The polymeric shells containing functionalities such as phenyl, ammonium, or thiol pending groups have been chosen in order to tune hydrophilic and hydrophobic properties and solubility of the target core shell hybrids. The Au, Ag, or Pt nanoparticles coated by poly(dimethylpropargylamonium chloride, or poly(phenylacetylene-co-allylmercaptan. The chemical structure of polymeric shell, size and size distribution and optical properties of hybrids have been assessed. The mean diameter of the metal core has been measured (about 10-30 nm with polymeric shell of about 2 nm.

  1. Biomonitoring Study of Heavy Metals in Blood from a Cement Factory Based Community

    Directory of Open Access Journals (Sweden)

    Bank M.S.

    2014-07-01

    Full Text Available Little is known about the effects of cement factory pollution, emissions, and kiln dust on contaminant exposure in human populations, including school environments, in close proximity to these point sources. In Ravena, New York, USA and vicinity, environmental pollution from a local cement plant is considered significant and substantial according to the United States Environmental Protection Agency’s Toxic Release Inventory, published in 2006, 2007, and 2010. We hypothesized that cement factory based communities, such as the one in Ravena, NY, may be differentially exposed to heavy metals, including mercury, via dust, soil, and air in addition to any contributions from fish consumption, dental amalgams, smoking habits, and occupational exposures, etc. Here we report measurements of several heavy metals in blood (Pb, Cd, As, Hg, Se and Al and, for comparative purposes, total mercury in hair from a local (six-mile radius population of Caucasian adults and children. We also report and synthesize local atmospheric emissions inventory information and new indoor air data (NYSERDA, 2011 from the local school which is situated directly across the street (within 750 feet from the cement factory and quarry. In addition, to our human and environmental heavy metal results we also discuss scientific outreach coordination, and public health action opportunities that will likely have wide applicability for other community and environmental health studies confronting similar pollution issues.

  2. Robust Quantum-Based Interatomic Potentials for Multiscale Modeling in Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-09-27

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in transition metals and alloys within density-functional quantum mechanics. In the central bcc metals, where multi-ion angular forces are important to materials properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions. Selected applications to multiscale modeling discussed here include dislocation core structure and mobility, atomistically informed dislocation dynamics simulations of plasticity, and thermoelasticity and high-pressure strength modeling. Recent algorithm improvements have provided a more general matrix representation of MGPT beyond canonical bands, allowing improved accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed for dynamic simulations, and the development of temperature-dependent potentials.

  3. Antioxidant and Metal Chelation-Based Therapies in the Treatment of Prion Disease.

    Science.gov (United States)

    Brazier, Marcus W; Wedd, Anthony G; Collins, Steven J

    2014-04-21

    Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well as disturbances to transition metal homeostasis. Utilising a variety of disease model paradigms, many laboratories have demonstrated that copper can act as a cofactor in the antioxidant activity displayed by the prion protein while manganese has been implicated in the generation and stabilisation of disease-associated conformers. This and other evidence has led several groups to test dietary and chelation therapy-based regimens to manipulate brain metal concentrations in attempts to influence the progression of prion disease in experimental mice. Results have been inconsistent. This review examines published data on transition metal dyshomeostasis, free radical generation and subsequent oxidative damage in the pathogenesis of prion disease. It also comments on the efficacy of trialed therapeutics chosen to combat such deleterious changes.

  4. Antioxidant and Metal Chelation-Based Therapies in the Treatment of Prion Disease

    Directory of Open Access Journals (Sweden)

    Marcus W. Brazier

    2014-04-01

    Full Text Available Many neurodegenerative disorders involve the accumulation of multimeric assemblies and amyloid derived from misfolded conformers of constitutively expressed proteins. In addition, the brains of patients and experimental animals afflicted with prion disease display evidence of heightened oxidative stress and damage, as well as disturbances to transition metal homeostasis. Utilising a variety of disease model paradigms, many laboratories have demonstrated that copper can act as a cofactor in the antioxidant activity displayed by the prion protein while manganese has been implicated in the generation and stabilisation of disease-associated conformers. This and other evidence has led several groups to test dietary and chelation therapy-based regimens to manipulate brain metal concentrations in attempts to influence the progression of prion disease in experimental mice. Results have been inconsistent. This review examines published data on transition metal dyshomeostasis, free radical generation and subsequent oxidative damage in the pathogenesis of prion disease. It also comments on the efficacy of trialed therapeutics chosen to combat such deleterious changes.

  5. Fate of gold and base metals during metamorphic devolatilization of a pelite

    Science.gov (United States)

    Zhong, Richen; Brugger, Joël; Tomkins, Andrew G.; Chen, Yanjing; Li, Wenbo

    2015-12-01

    Scavenging of gold during metamorphic devolatilization is a widely accepted model for fluid and metal sourcing in orogenic gold deposits. In order to further constrain this process and quantify the capacity of autogenous fluids to release metals from pelites, we investigated the behaviors of S, Au, As, Cu, Pb, and Zn during pelite metamorphic devolatilization using thermodynamic modeling within the Al-As-Au-Cl-Cu-Fe-H-K-Mg-Na-O-Pb-S-Si-Ti-Zn system over a P-T range of 350-650 °C and 0.8-5 kbar. The model revealed that S, Au and base metals are predominantly released via partitioning into the fluid phase during reactions that liberate H2O: the dehydration of chlorite and muscovite, and to a lesser extent, the replacement of pyrite by pyrrhotite. Negligible sulfur is liberated during the pyrite-pyrrhotite transition, because the excess sulfur reacts with Fe in chlorite and muscovite to form pyrrhotite. The sulfidation of chlorite/muscovite releases water, so that a significant amount of Au can be liberated from S-rich pelites at the pyrite to pyrrhotite transition: up to 0.5 ppb Au (as a proportion of bulk rock) can be stripped from a pelite containing 1 wt.% sulfur, whereas only trace amounts of base metals can be mobilized under these conditions. Chlorite dehydration is the most important process in metal extraction; up to 2 ppb Au, 1.5 ppm Cu, 1 ppm Pb and 2 ppm Zn (as proportions of bulk rock) can be extracted from a pelite by autogenous fluids upon crossing the greenschist-amphibolite facies boundary. In comparison, an average pelite contains ∼3 ppb Au, indicating that most Au within an average pelite can be scavenged as a result of the breakdown of chlorite. Prograde metamorphism is an efficient mechanism for generating Au-bearing ore fluids: most Au can be extracted during chlorite dehydration from a source rock of average pelitic composition. In contrast, only a small portion of base metals can be released in autogenous fluids, and therefore only minor

  6. Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger

    Science.gov (United States)

    Oi, Tsutomu; Maki, Kohei; Sakaki, Yoshinori

    Heat transfer characteristics of the metal hydride vessel based on the plate-fin type heat exchanger were investigated. Metal hydride beds were filled with AB 2 type hydrogen-storage alloy's particles, Ti 0.42Zr 0.58Cr 0.78Fe 0.57Ni 0.2Mn 0.39Cu 0.03, with a storage capacity of 0.92 wt.%. Heat transfer model in the metal hydride bed based on the heat transfer mechanism for packed bed proposed by Kunii and co-workers is presented. The time-dependent hydrogen absorption/desorption rate and pressure in the metal hydride vessel calculated by the model were compared with the experimental results. During the hydriding, calculated hydrogen absorption rates agreed with measured ones. Calculated thermal equilibrium hydrogen pressures were slightly lower than the measured hydrogen pressures at the inlet of metal hydride vessel. Taking account of the pressure gradient between the inlet of metal hydride vessel and the metal hydride bed, it is considered that this discrepancy is reasonable. During the dehydriding, there were big differences between the calculated hydrogen desorption rates and measured ones. As calculated hydrogen desorption rates were lower than measured ones, there were big differences between the calculated thermal equilibrium hydrogen pressures and the measured hydrogen pressures at the inlet of metal hydride vessel. It is considered that those differences are due to the differences of the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity between the assumed and actual ones. It is important to obtain the heat transfer characteristics such as thermal conductivity of metal hydride particles and porosity both during the hydriding and dehydriding to design a metal hydride vessel.

  7. SPR-based PCF D-type sensor based on a metamaterial composed of planar metals for refractive index sensing

    Science.gov (United States)

    Santos, D. F.; Guerreiro, A.; Baptista, J. M.

    2016-05-01

    This paper presents a numerically investigation of the performance analysis of a conventional photonic crystal fiber (PCF) with a planar metamaterials structure for refractive index sensing, based on surface plasmon resonance (SPR), using the finite element method (FEM). We study the concentration metamaterials conformed by the aluminium oxide (Al2O3) and silver (Ag) and compared its performance with a single metal (Ag), assessing their impacts in the effective refractive index. Furthermore, we also use different types of mechanics to describe the effects of varying the structural parameters sensor on the evanescent field and the sensor performance.

  8. New Cerium-Based Metal-Organic Scintillators for Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Boatner, Lynn A [ORNL; Neal, John S [ORNL; Ramey, Joanne Oxendine [ORNL; Chakoumakos, Bryan C [ORNL; Custelcean, Radu [ORNL; Van Loef, Edgar [Radiation Monitoring Devices, Watertown, MA; Markosyan, G [Radiation Monitoring Devices, Watertown, MA

    2013-01-01

    We have previously shown that a new class of scintillating materials can be developed based on the synthesis and crystal growth of rare-earth metal-organic compounds. The first scintillator of this type consisted of single crystals of CeCl3(CH3OH)4 that were grown from a methanol solution. These crystals were shown to be applicable to both gamma-ray and fast neutron detection. Subsequently, metal-organic scintillators consisting of the compound LaBr3(CH3OH)4 activated with varying levels of Ce3+ and of CeBr3(CH3OH)4 were grown in single crystal form. We have now extended the development of this new class of scintillators to more complex organic components by reacting rare-earth halides such as CeCl3 or CeBr3 with different isomers of propanol and butanol including 1-propanol, isobutanol, n-butanol, and tert-butanol. The reaction of CeCl3 or CeBr3 with these organics results in the formation of new and relatively complex molecular crystals whose structures were determined using single-crystal X-ray diffraction. These new metal-organic scintillating materials were grown in single crystal form from solution, and their scintillation characteristics have been investigated using X-ray-excited luminescence plus energy spectra obtained with gamma-ray and alpha-particle sources. If the reactions between the inorganic and organic components are not carried out under very dry and highly controlled conditions, molecular structures can be formed that incorporate waters of hydration. The present observation of scintillation in these hydrated rare-earth metal-organic compounds is apparently an original finding, since we are not aware of any previous reports of scintillation being observed in a material that incorporates waters of hydration

  9. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  10. Stabilization and solidification of metal-laden wastes by compaction and magnesium phosphate-based binder.

    Science.gov (United States)

    Rao, A J; Pagilla, K R; Wagh, A S

    2000-09-01

    Bench-scale and full-scale investigations of waste stabilization and volume reduction were conducted using spiked soil and ash wastes containing heavy metals such as Cd, Cr, Pb, Ni, and Hg. The waste streams were stabilized and solidified using chemically bonded phosphate ceramic (CBPC) binder, and then compacted by either uniaxial or harmonic press for volume reduction. The physical properties of the final waste forms were determined by measuring volume reduction, density, porosity, and compressive strength. The leachability of heavy metals in the final waste forms was determined by a toxicity characteristic leaching procedure (TCLP) test and a 90-day immersion test (ANS 16.1). The structural composition and nature of waste forms were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. CBPC binder and compaction can achieve 80-wt% waste loading and 39-47% reduction in waste volume. Compressive strength of final waste forms ranged from 1500 to 2000 psi. TCLP testing of waste forms showed that all heavy metals except Hg passed the TCLP limits using the phosphate-based binder. When Na2S was added to the binder, the waste forms also passed TCLP limits for Hg. Long-term leachability resistance of the final waste forms was achieved for all metals in both soil and ash wastes, and the leachability index was approximately 14. XRD patterns of waste forms indicated vermiculite in the ash waste was chemically incorporated into the CBPC matrix. SEM showed that waste forms are layered when compacted by uniaxial press and are homogeneous when compacted by harmonic press. PMID:11055158

  11. Electrically tunable, optical microcavity based on metallized and ultra-soft PDMS gel

    Science.gov (United States)

    Franke, M.; Slowik, I.; Paschew, G.; Merkel, U.; Fröb, H.; Leo, K.; Richter, A.

    2016-04-01

    Tunable, optical microcavities (MC) gain more and more importance for display, laser or other optical applications. The setup of dielectric elastomer actuators (DEA) enables a simple integration of an optical cavity, since reflective electrodes can confine a cavity that is filled with a transparent elastomer. Applying a voltage to the electrodes leads to squeezing of the elastomer and, due to the cavity thickness decrease, the resonator modes of interfering light changes. In this work we present an electrically tunable, optical MC based on ultra-soft poly(dimethylsiloxane) (PDMS). The PDMS gel is coated on a glass substrate with a distributed Bragg reflector, an ITO bottom electrode and a flexible, highly reflective metal electrode and mirror on top. The usage of an ultra-soft PDMS gel, with a storage modulus of about 1kPa, allows to decrease the operating voltage down to a few hundred or even several ten volts. The critical step of fabrication is the metallization of the PDMS gel layer that requires a previous oxidizing surface activation to gain reflective and conductive silver based layers on top. Therefore, the effects of oxygen plasma and UV/ozone treatment on PDMS and the created metal layer were investigated intensively. The performance of the electrically tunable, optical MC is tremendously dependent from an adequate surface activation and structuring of the top electrodes considering the mirror displacement and activation voltage. Here we could show that tunable MCs based on oxygen plasma activated PDMS show a homogenous and high thickness decrease up to 70% at 200V.

  12. Analysis of crystallization process of selected Fe-based bulk metallic glasses

    Directory of Open Access Journals (Sweden)

    P. Sakiewicz

    2012-12-01

    Full Text Available Purpose: The paper mainly aims to present the influence of annealing temperature on structural changes and magnetic properties of selected Fe-based bulk metallic glasses with chemical composition of Fe43Co14Ni14B20Si5Nb4 (at.%.Design/methodology/approach: The investigated samples were cast in form of the rods with diameter of 1.5 mm by the pressure die casting method. The structure changes in function of annealing temperature were examined by X-ray diffraction (XRD and transmission electron microscopy (TEM methods. The crystallization behaviour of the studied alloy was also examined by differential scanning calorimetry (DSC. Magnetic measurements of annealed samples included the initial magnetic permeability and the magnetic permeability relaxation measurements.Findings: The annealing process at temperature range from 373 to 773 K caused a structural relaxation of tested material, which caused the atomic rearrangements and changes of physical properties in relation to as-cast state. The annealing at higher temperatures (823-923 K obviously caused a formation of α-Fe and iron borides crystalline phases. The increasing of annealing temperature significantly improved soft magnetic properties of examined alloy by increase the initial magnetic permeability and decrease the magnetic permeability relaxation.Practical implications: The investigation of the crystallization process of Fe-based metallic glasses is important for understanding the mechanisms of forming controlled microstructures of these materials with specific physical properties.Originality/value: A proper understanding of crystallization process of Fe-based bulk metallic glasses is still novel scientific problem.

  13. Fe-based bulk metallic glasses prepared by centrifugal casting method

    Directory of Open Access Journals (Sweden)

    R. Babilas

    2011-10-01

    Full Text Available Purpose: The work presents a casting method, structure characterization and analysis of chosen properties of Fe-based bulk metallic glasses in as-cast state.Design/methodology/approach: The studies were performed on Fe72B20Si4Nb4, Fe36Co36B19Si5Nb4, Fe43Co14Ni14B20Si5Nb4 metallic glasses in form of rings. The amorphous structure of tested samples was examined by X-ray diffraction (XRD, transmission electron microscopy (TEM and scanning electron microscopy (SEM methods. The crystallization behaviour of the studied alloys was examined by differential thermal analysis (DTA. The soft magnetic property examinations of tested materials contained initial magnetic permeability and measurements of magnetic permeability relaxation.Findings: The XRD and TEM investigations revealed that the studied as-cast bulk glassy samples in forms of ring were amorphous for all tested alloys. The SEM images showed that fractures of studied rings indicated two structurally different zones, which contained “river” patterns and “smooth” areas. The samples of studied alloys presented two stage crystallization process, which was observed for all tested rings with different thickness. The changes of crystallization temperatures versus the thickness of the glassy samples were stated. The magnetic permeability relaxation, which is directly proportional to the microvoids concentration in amorphous structure decreased with increase of sample thickness. These results could be assumed as the change of amorphous structure in function of thickness.Practical implications: The centrifugal casting method is very simple, useful and effective method to produce bulk amorphous materials in the form of rings or tubes.Originality/value: The preparation of bulk metallic glasses in the form of rings for three different Fe-based alloy systems is very important for the future progress in research and practical applications of iron-based bulk amorphous materials.

  14. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    Science.gov (United States)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  15. Shear bond strength of a ceromer to noble and base metal alloys

    Directory of Open Access Journals (Sweden)

    Dorriz H.

    2006-08-01

    Full Text Available Background and Aim: The improvement of the physical and chemical properties of resins as well as great advances achieved in the field of chemical bonding of resin to metal has changed the trend of restorative treatments. Today the second generation of laboratory resins have an important role in the restoration of teeth. The clinical bond strength should be reliable in order to gain successful results. In this study the shear bond strength (SBS between targis (a ceromer and two alloys (noble and base metal was studied and the effect of thermocycling on the bond investigated. Materials and Methods: In this experimental study, alloys samples were prepared according to the manufacturer. After sandblasting of bonding surfaces with 50µ AI2o3 Targis was bonded to the alloy using Targis I link. All of the samples were placed in 37°C water for a period of 24 hours. Then half of the samples were subjected to 1000 cycles of thermocycling at temperatures of 5°C and 55°C. Planear shear test was used to test the bond strength in the Instron machine with the speed rate of 0.5mm/min. Data were analyzed by SPSS software. Two-way analysis of variance was used to compare the bond strength among the groups. T test was used to compare the alloys. The influence of thermocycling and alloy type on bond strength was studied using Mann Whitney test. P<0.05 was considered as the limit of significance. Result: The studied alloys did not differ significantly, when the samples were not thermocycled (P=0.136 but after thermocycling a significant difference was observed in SBS of resin to different alloys (P=000.1. Thermal stress and alloy type had significant interaction, with regard to shear bond strength (P=0.003. There was a significant difference in SBS before and after thermocycling in noble alloys (P=0.009, but this was not true in base metals (P=0.29. Maximum SBS (19.09 Mpa belonged to Degubond 4, before thermocycling. Minimum SBS (8.21 Mpa was seen in Degubond 4

  16. Facile creation of bio-inspired superhydrophobic Ce-based metallic glass surfaces

    International Nuclear Information System (INIS)

    A bio-inspired synthesis strategy was conducted to fabricate superhydrophobic Ce-based bulk metallic glass (BMG) surfaces with self-cleaning properties. Micro-nanoscale hierarchical structures were first constructed on BMG surfaces and then modified with the low surface energy coating. Surface structures, surface chemical compositions, and wettability were characterized by combining scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, and contact angle measurements. Research indicated that both surface multiscale structures and the low surface free energy coating result in the final formation of superhydrophobicity.

  17. Electrical Switching in Thin Film Structures Based on Transition Metal Oxides

    Directory of Open Access Journals (Sweden)

    A. Pergament

    2015-01-01

    Full Text Available Electrical switching, manifesting itself in the nonlinear current-voltage characteristics with S- and N-type NDR (negative differential resistance, is inherent in a variety of materials, in particular, transition metal oxides. Although this phenomenon has been known for a long time, recent suggestions to use oxide-based switching elements as neuristor synapses and relaxation-oscillation circuit components have resumed the interest in this area. In the present review, we describe the experimental facts and theoretical models, mainly on the basis of the Mott transition in vanadium dioxide as a model object, of the switching effect with special emphasis on the emerging applied potentialities for oxide electronics.

  18. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    International Nuclear Information System (INIS)

    Fabrication of high-quality Schottky barriers on InP epitaxial layers prepared by liquid-phase epitaxy from rare-earth treated melts is reported. The Schottky structures are based on metal nanoparticles and a graphite layer deposited from colloidal solutions onto epitaxial layers with varying carrier concentration. The structures have notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi-level pinning. Electrical characteristics of these diodes are shown to be extremely sensitive to the exposure of gas mixtures with small hydrogen content. (paper)

  19. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    Science.gov (United States)

    Grym, Jan; Yatskiv, Roman

    2013-04-01

    Fabrication of high-quality Schottky barriers on InP epitaxial layers prepared by liquid-phase epitaxy from rare-earth treated melts is reported. The Schottky structures are based on metal nanoparticles and a graphite layer deposited from colloidal solutions onto epitaxial layers with varying carrier concentration. The structures have notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi-level pinning. Electrical characteristics of these diodes are shown to be extremely sensitive to the exposure of gas mixtures with small hydrogen content.

  20. MEMS-based fabrication of multiple-degree-of-freedom ionic polymer-metal composite actuators

    Science.gov (United States)

    Chen, Zheng; Tan, Xiaobo

    2010-04-01

    Ionic polymer-metal composites (IPMC) are soft actuation materials with promising applications in robotics and biomedical devices. In this paper, a MEMS-based approach is presented for monolithic, batch fabrication of IPMC pectoral fin actuators that are capable of complex deformation. Such an actuator consists of multiple, individually controlled IPMC regions that are mechanically coupled through compliant, passive regions. Prototypes of artificial pectoral fins have been fabricated with the proposed method, and sophisticated deformation modes, including bending, twisting, and cupping, have been demonstrated, which shows the promise of the pectoral fin in robotic fish applications.

  1. Producing multilayer composites based on metal-carbon by vacuum ion-plasma method

    Science.gov (United States)

    Shekhtman, S. R.; Sukhova, N. A.

    2016-07-01

    The possibility of changing the coating properties and perspective of forming a compound having the unique mechanical properties, high hardness and high corrosion resistance is of particular interest to multilayer coatings based on metal-carbon composition. To investigate the mechanisms of formation of coatings and to demonstrate technological possibilities synthesis technology of multilayer composites, the titanium cathode and the silicon-graphite cathode were made. Coatings microhardness analysis showed that in forming the multilayer structure, microhardness increases by 15-20%, and when forming a multilayer composite, microhardness increases by 60-65%.

  2. Metallic and Insulating Interfaces of Amorphous SrTiO3-Based Oxide Heterostructures

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Kleibeuker, Josée E.;

    2011-01-01

    The conductance confined at the interface of complex oxide heterostructures provides new opportunities to explore nanoelectronic as well as nanoionic devices. Herein we show that metallic interfaces can be realized in SrTiO3-based heterostructures with various insulating overlayers of amorphous La......AlO3, SrTiO3, and yttria-stabilized zirconia films. On the other hand, samples of amorphous La7/8Sr1/8MnO3 films on SrTiO3 substrates remain insulating. The interfacial conductivity results from the formation of oxygen vacancies near the interface, suggesting that the redox reactions on the surface...

  3. Manipulating fluorescence color and intensity with regular metal nanoparticle-based composite materials

    International Nuclear Information System (INIS)

    This paper first studies the role of structural parameters of ordered metal nanoparticle-based composites in the modification of the spectra and intensity of directional emission from organic molecules. It then investigates the possibilities of white light generation via color conversion using two materials, one emitting in the green and the other one in the red spectral region. The structures under study exhibit enhanced emission within small solid angle in the forward direction due to excitation of the quasiguided modes. These modes modify the angle-dependent local photon density of states and, thus, result in efficient directional outcoupling of radiation

  4. A porphyrin-based metal-organic framework as a pH-responsive drug carrier

    Science.gov (United States)

    Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong

    2016-05-01

    A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.

  5. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    Science.gov (United States)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  6. Periodic large-area metallic split-ring resonator metamaterial fabrication based on shadow nanosphere lithography.

    Science.gov (United States)

    Gwinner, Michael Christian; Koroknay, Elisabeth; Fu, Liwei; Patoka, Piotr; Kandulski, Witold; Giersig, Michael; Giessen, Harald

    2009-03-01

    A fast and cheap, large-area (>1 cm(2)), high-coverage fabrication technique for periodic metallic split-ring resonator metamaterials is presented, which allows control of inner- and outer-ring diameters, gap angles, as well as thickness and periodicity. This method, based on shadow nanosphere lithography, uses tilted-angle-rotation thermal evaporation onto Langmuir-Blodgett-type monolayers of close-packed polystyrene nanospheres. Excellent agreement of the process parameters with a simplified model is demonstrated. Pronounced, tunable optical metamaterial resonances in the range of 100 THz are consistent with simulations. PMID:19148886

  7. Shield gas induced cracks during nanosecond-pulsed laser irradiation of Zr-based metallic glass

    Science.gov (United States)

    Huang, Hu; Noguchi, Jun; Yan, Jiwang

    2016-10-01

    Laser processing techniques have been given increasing attentions in the field of metallic glasses (MGs). In this work, effects of two kinds of shield gases, nitrogen and argon, on nanosecond-pulsed laser irradiation of Zr-based MG were comparatively investigated. Results showed that compared to argon gas, nitrogen gas remarkably promoted the formation of cracks during laser irradiation. Furthermore, crack formation in nitrogen gas was enhanced by increasing the peak laser power intensity or decreasing the laser scanning speed. X-ray diffraction and micro-Raman spectroscopy indicated that the reason for enhanced cracks in nitrogen gas was the formation of ZrN.

  8. Thermodynamic and structural basis for electrochemical response of Cu–Zr based metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chunzhi, E-mail: mse201109@126.com; Qiu, Nannan; Kong, Lingliang; Yang, Xiaodan; Li, Huiping

    2015-10-05

    Highlights: • Thermodynamic and structural basis for electrochemical response were proposed. • La improves the corrosion resistance by inhibition of the selective dissolution. • Corrosion of the MG responses well with thermodynamic and structural parameters. - Abstract: Cu–Zr based metallic glasses were prepared by hyperquenching strategy to explore the thermodynamic and structural basis for electrochemical response. The thermodynamic parameters and the local atomic structure were obtained. Corrosion resistance in seawater was investigated via potentiodynamic polarization curve. The results indicate that increasing thermodynamic parameter values improves the corrosion resistance. The topological instability represented by the nearest neighbor atomic distance yields same tendency as the corrosion resistance with La addition.

  9. Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications

    Science.gov (United States)

    Xu, Yong; Chen, Lei; Wang, Xuchun; Yao, Weitang; Zhang, Qiao

    2015-06-01

    This Review article provides a report on progress in the synthesis, properties and catalytic applications of noble metal based composite nanomaterials. We begin with a brief discussion on the categories of various composite materials. We then present some important colloidal synthetic approaches to the composite nanostructures; here, major attention has been paid to bimetallic nanoparticles. We also introduce some important physiochemical properties that are beneficial from composite nanomaterials. Finally, we highlight the catalytic applications of such composite nanoparticles and conclude with remarks on prospective future directions.

  10. Laser-based ultrasonic generation in metal film with nanometer thickness used in ICF experiment

    International Nuclear Information System (INIS)

    The generation and detection of laser-based ultrasound were introduced. The experiment was performed. A beam of laser with pulse width of 7 ns produced by Q switch Nd : YAG was used to irradiate Al/Au/Ag metal films with thickness of 200 nm. The signal was detected by Michael interference method and transferred by Fourier method. The ultrasonic vibration frequencies excited in the sample are 32.36, 26.17 and 29.39 MHz, respectively. The work is valuable to detect nano- and micro-meter films used to ICF experiment for the future. (authors)

  11. A Ti/Ti-Based-Metallic-Glass Interpenetrating Phase Composite with Remarkable Mutual Reinforcement Effect

    Directory of Open Access Journals (Sweden)

    J. Mu

    2014-01-01

    Full Text Available A Ti/Ti-based-metallic-glass interpenetrating phase composite (IPC was prepared by infiltrating the Ti34.3Zr31.5Ni5.5Cu5Be23.7 melt into the porous Ti skeleton. Porous Ti limits the shear band (SB propagation and promotes the SB multiplication, leading to the improved ductility. Moreover, the interpenetrating phase structure shows a mutual reinforcement effect for both amorphous and crystalline phases, making IPC possess higher strength than that calculated by the models held for the conventional composites. This finding will suggest a new way for preparing composites with high strength and ductility.

  12. Manipulating fluorescence color and intensity with regular metal nanoparticle-based composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Andrey G., E-mail: nikitin@cinam.univ-mrs.fr [Centre Interdisciplinaire de Nanoscience de Marseille (CINaM, UPR 3118 CNRS), Aix-Marseille University, Campus de Luminy, Case 913, 13288 Marseille, France and Faculty of Physics and Technology, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040 Almaty (Kazakhstan)

    2016-02-01

    This paper first studies the role of structural parameters of ordered metal nanoparticle-based composites in the modification of the spectra and intensity of directional emission from organic molecules. It then investigates the possibilities of white light generation via color conversion using two materials, one emitting in the green and the other one in the red spectral region. The structures under study exhibit enhanced emission within small solid angle in the forward direction due to excitation of the quasiguided modes. These modes modify the angle-dependent local photon density of states and, thus, result in efficient directional outcoupling of radiation.

  13. Statistical model for combustion of high-metal magnesium-based hydro-reactive fuel

    Institute of Scientific and Technical Information of China (English)

    Hu Jian-Xin; Han Chao; Xia Zhi-Xun; Huang Li-Ya; Huang Xu

    2012-01-01

    We investigate experimentally and analytically the combustion behavior of a high-metal magnesium-based hydro-reactive fuel under high temperature gaseous atmosphere.The fuel studied in this paper contains 73% magnesium powders.An experimental system is designed and experimeuts are carried out in both argon and water vapor atmospheres.It is found that the burning surface temperature of the fuel is higher in water vapor than that in argon and both of them are higher than the melting point of magnesium,which indicates the molten state of magnesium particles in the burning surface of the fuel.Based on physical considerations and experimental results,a mathematical one-dimensional model is formulated to describe the combustion behavior of the high-metal magnesium-based hydro-reactive fuel.The model enables the evaluation of the burning surface temperature,the burning rate and the flame standoff distance each as a function of chamber pressure and water vapor concentration.The results predicted by the model show that the burning rate and the surface temperature increase when the chamber pressure and the water vapor concentration increase,which are in agreement with the observed experimental trends.

  14. PVC-based composite material containing recycled non-metallic printed circuit board (PCB) powders.

    Science.gov (United States)

    Wang, Xinjie; Guo, Yuwen; Liu, Jingyang; Qiao, Qi; Liang, Jijun

    2010-12-01

    The study is directed to the use of non-metallic powders obtained from comminuted recycled paper-based printed circuit boards (PCBs) as an additive to polyvinyl chloride (PVC) substrate. The physical properties of the non-metallic PCB (NMPCB) powders were measured, and the morphological, mechanical and thermal properties of the NMPCB/PVC composite material were investigated. The results show that recycled NMPCB powders, when added below a threshold, tended to increase the tensile strength and bending strength of PVC. When 20 wt% NMPCB powders (relative to the substrate PVC) of an average diameter of 0.08 mm were added, the composite tensile strength and bending strength reached 22.6 MPa and 39.83 MPa, respectively, representing 107.2% and 123.1% improvement over pure PVC. The elongation at break of the composite material reached 151.94% of that of pure PVC, while the Vicat softening temperature of the composite material did not increase significantly compared to the pure PVC. The above results suggest that paper-based NMPCB powders, when used at appropriate amounts, can be effective for toughening PVC. Thus, this study suggests a new route for reusing paper-based NMPCB, which may have a significant beneficial environmental impact.

  15. Comparison of Shear Bond Strengths of three resin systems for a Base Metal Alloy bonded to

    Directory of Open Access Journals (Sweden)

    Jlali H

    1999-12-01

    Full Text Available Resin-bonded fixed partial dentures (F.P.D can be used for conservative treatment of partially edentulous"npatients. There are numerous studies regarding the strength of resin composite bond to base meta! alloys. Shear bond"nstrength of three resin systems were invistigated. In this study these systems consisted of: Panavia Ex, Mirage FLC and"nMarathon V. Thirty base metal specimens were prepared from rexillium III alloy and divided into three groups. Then each"ngroup was bonded to enamel of human extracted molar teeth with these systems. All of specimens were stored in water at"n37ac for 48 hours. A shear force was applied to each specimen by the instron universal testing machine. A statistical"nevaluation of the data using one-way analysis of variance showed that there was highly significant difference (P<0.01"nbetween the bond strengths of these three groups."nThe base metal specimens bonded with panavia Ex luting agent, exhibited the highest mean bond strength. Shear bond"nstrength of the specimens bonded to enamel with Mirage F1C showed lower bond strenght than panavia EX. However, the"nlowest bond strength was obtained by the specimens bonded with Marathon V.

  16. A study of metalized electrode self-clearing in electroactive polymer (EAP) based actuators

    Science.gov (United States)

    Ahmed, Saad; Ounaies, Zoubeida

    2016-04-01

    Electroactive polymer (EAP) based technologies have shown promise in areas such as artificial muscles, actuator, aerospace, medical and soft robotics. Still challenges remain such as low induced forces and defects-driven electrical breakdown, which impede the practical implementation of this technology. Multilayered or stacked configuration can address the low induced force issue whereas self-clearing can be a technique to improve breakdown limit of EAP based actuators. Self-clearing refers to the partial local breakdown of dielectric medium due to the presence of impurities, which in turn results in the evaporation of some of the metalized electrode. After this evaporation, the impurity is cleared and any current path would be safely cut off, which means the actuator continues to perform. It is a widely studied concept in the capacitor community, while it has not been studied much for EAP technologies. In this paper we report a systematic approach to precondition a silver-metalized electroactive polymer (EAP), more specifically P(VDF-TrFE-CTFE) terpolymer, using self-clearing concept. First, we show improvement in the dielectric breakdown strength of EAP based unimorph actuators after pre-clearing the impurities using low electric field (lower than dielectric breakdown of the terpolymer). Inspired by this improvement, we used Weibull statistics to systematically estimate the self-clearing/ preconditioning field needed to clear the defects. Then electrical breakdown experiments are conducted with and without preconditioning the samples to investigate its effect on the breakdown strength of the sample.

  17. Chemical Reactions Catalyzed by Metalloporphyrin-Based Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Kelly Aparecida Dias de Freitas Castro

    2013-06-01

    Full Text Available The synthetic versatility and the potential application of metalloporphyrins (MP in different fields have aroused researchers’ interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs, contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  18. Chemical reactions catalyzed by metalloporphyrin-based metal-organic frameworks.

    Science.gov (United States)

    Nakagaki, Shirley; Ferreira, Gabriel Kaetan Baio; Ucoski, Geani Maria; Dias de Freitas Castro, Kelly Aparecida

    2013-06-21

    The synthetic versatility and the potential application of metalloporphyrins (MP) in different fields have aroused researchers' interest in studying these complexes, in an attempt to mimic biological systems such as cytochrome P-450. Over the last 40 years, synthetic MPs have been mainly used as catalysts for homogeneous or heterogeneous chemical reactions. To employ them in heterogeneous catalysis, chemists have prepared new MP-based solids by immobilizing MP onto rigid inorganic supports, a strategy that affords hybrid inorganic-organic materials. More recently, materials obtained by supramolecular assembly processes and containing MPs as building blocks have been applied in a variety of areas, like gas storage, photonic devices, separation, molecular sensing, magnets, and heterogeneous catalysis, among others. These coordination polymers, known as metal-organic frameworks (MOFs), contain organic ligands or complexes connected by metal ions or clusters, which give rise to a 1-, 2- or 3-D network. These kinds of materials presents large surface areas, Brønsted or redox sites, and high porosity, all of which are desirable features in catalysts with potential use in heterogeneous phases. Building MOFs based on MP is a good way to obtain solid catalysts that offer the advantages of bioinspired systems and zeolitic materials. In this mini review, we will adopt a historical approach to present the most relevant MP-based MOFs applicable to catalytic reactions such as oxidation, reduction, insertion of functional groups, and exchange of organic functions.

  19. Safety evaluation system for hydraulic metal structures based on knowledge engineering

    Institute of Scientific and Technical Information of China (English)

    Yang Guangming; Gu Chongshi

    2008-01-01

    A comprehensive safety evaluation system taking the most influential factors into account has been developed to evaluate the reliability of hydraulic metal structures. Applying the techniques of AI and DB, the idea of a one-machine and three-base system is proposed. The framework of the three-base system has been designed and the structural framework constructed in turn. A practical example is given to illustrate the process of using this system and it can be used for comparison and analysis purposes. The key technology of the system is its ability to reorganize and improve the expert system's knowledge base by establishing the expert system. This system utilizes the computer technology inference process, making safety evaluation conclusions more reasonable and applicable to the actual situation. The system is not only advanced, but also feasible, reliable, artificially intelligent, and has the capacity to constantly grow.

  20. Composite anodes based on nanotube titanium oxide from electro-oxidation of Ti metal substrate

    Science.gov (United States)

    Pozio, A.; Carewska, M.; Mura, F.; D'Amato, R.; Falconieri, M.; De Francesco, M.; Appetecchi, G. B.

    2014-02-01

    In this manuscript is reported an investigation on lithium-ion battery composite anodes based on nanotube titanium oxide active material obtained from electrochemical oxidation of titanium metal substrates. Nanotube TiO2 showed a good nominal capacity, particularly taking into account that no electronic conductive additive as well as no binder was incorporated into the TiO2 material. The performance of nanotube titanium oxide anode tapes was compared with that of electrodes based on TiO2 both commercially available and obtained from laser pyrolysis. Cycling tests have indicated that the anodes based on electrosynthesized nanotube TiO2 exhibit the best performance in terms of capacity values and rate capability in combination with very good capacity retention and coulombic efficiency leveling 100% even at high rates.

  1. The potential of operando XAFS for determining the role and structure of noble metal additives in metal oxide based gas sensors

    Science.gov (United States)

    Grunwaldt, Jan-Dierk; Hübner, Michael; Koziej, Dorota; Barsan, Nicolae; Weimar, Udo

    2013-04-01

    Noble metal additives significantly improve the performance of SnO2 based sensors. Recently, it has been found that X-ray absorption spectroscopy is an excellent tool to identify their structure under sensing conditions, despite of the low concentrations and the rather thin (50 μm) and highly porous layers. For this purpose a new in situ approach has been established and here we highlight the potential with an overview on the results of Pd-, Pt-, and Au-additives in SnO2-based sensors at work. Emphasis was laid on recording the structure (by XANES and EXAFS) and performance at the same time. In contrast to earlier studies, Pd- and Pt-additives were observed to be in oxidized and finely dispersed state under sensing conditions excluding a spillover from metallic noble metal particles. However, Au was mainly present as metallic particles in the sensing SnO2-layer. For the Pt- and Au-doped SnO2-layers high energy-resolved fluorescence detected X-ray absorption spectra (HERFD-XAS) were recorded not only to minimize the lifetime-broadening but also to eliminate the Au- and Pt-fluorescence effectively and to record range-extended EXAFS.

  2. The potential of operando XAFS for determining the role and structure of noble metal additives in metal oxide based gas sensors

    International Nuclear Information System (INIS)

    Noble metal additives significantly improve the performance of SnO2 based sensors. Recently, it has been found that X-ray absorption spectroscopy is an excellent tool to identify their structure under sensing conditions, despite of the low concentrations and the rather thin (50 μm) and highly porous layers. For this purpose a new in situ approach has been established and here we highlight the potential with an overview on the results of Pd-, Pt-, and Au-additives in SnO2-based sensors at work. Emphasis was laid on recording the structure (by XANES and EXAFS) and performance at the same time. In contrast to earlier studies, Pd- and Pt-additives were observed to be in oxidized and finely dispersed state under sensing conditions excluding a spillover from metallic noble metal particles. However, Au was mainly present as metallic particles in the sensing SnO2-layer. For the Pt- and Au-doped SnO2-layers high energy-resolved fluorescence detected X-ray absorption spectra (HERFD-XAS) were recorded not only to minimize the lifetime-broadening but also to eliminate the Au- and Pt-fluorescence effectively and to record range-extended EXAFS.

  3. Hotspot-engineered quasi-3D metallic network for surface-enhanced Raman scattering based on colloid monolayer templating

    Science.gov (United States)

    Du, Wei; Liu, Long; Gu, Ping; Hu, Jingguo; Zhan, Peng; Liu, Fanxin; Wang, Zhenlin

    2016-09-01

    A hotspot-engineered quasi-3D metallic network with controllable nanogaps is purposed as a high-quality surface-enhanced Raman scattering (SERS) substrate, which is prepared by a combination of non-close-packed colloid monolayer templating and metal physical deposition. The significant SERS effect arises from a strongly enhanced local electric field originating from the ultra-small-gaps between neighboring metal-caps and tiny interstices and between the metal-caps and the metal-bumps on the base, which is recognized by the numerical simulation. A remarkable average SERS enhancement factor of up to 1.5 × 108 and a SERS intensity relative standard deviation (RSD) of 10.5% are achieved by optimizing the nanogap size to sub-10 nm scale, leading to an excellent capability for Raman detection, which is represented by the clearly identified SERS signal of the Rhodamine 6G solution with a fairly low concentration of 1 nM.

  4. Metal-based nanoparticle interactions with the nervous system: The challenge of brain entry and the risk of retention in the organism

    Science.gov (United States)

    This review of metal and metal-oxide based nanoparticles focuses on factors that influence their distribution into the nervous system, evidence that they enter brain parenchyma, and nervous system responses. Emphasis is placed on gold as a model metal-based nanoparticle and for r...

  5. Resorcarene-based receptor: versatile behavior in its interaction with heavy and soft metal cations.

    Science.gov (United States)

    Danil de Namor, Angela F; Chaaban, Jinane K; Piro, Oscar E; Castellano, Eduardo E

    2006-02-01

    Standard solution Gibbs energies, DeltasG degrees, of the resorcarene-based receptor 5,11,17,23-ethylthiomethylated calix[4]resorcarene, (characterized by 1H NMR and X-ray diffraction studies) in its monomeric state (established through partition experiments) in various solvents are for the first time reported in the area of resorcarene chemistry. Transfer Gibbs energies of from hexane (reference solvent) to other medium are calculated. Agreement between DeltatG degrees (referred to the pure solvents) and standard partition Gibbs energies, DeltapG degrees (solvent mutually saturated) is found. Cation-ligand interactions were investigated through 1H NMR (CD3CN and CD3OD) and conductometric titrations in acetonitrile and methanol. 1H NMR data revealed the sites of interaction of with the metal cation. The composition of the metal-ion complexes (Ag+ and Pb2+ in acetonitrile and Ag+ and Cu2+ in methanol) was established through conductometric titrations. Thus, complexes of 1:1 stoichiometry were formed between and Ag+ and Pb2+ in acetonitrile and Cu2+ in methanol. However, in moving from acetonitrile to methanol, the composition of the silver complex was altered. Thus, two metal cations are hosted by a unit of the ligand. As far as Cu2+ and in acetonitrile is concerned, conductance data suggest that metalates are formed in which up to four units of Cu2+ are taken up per unit of resorcarene. The contrasting behavior of with Cu2+ in acetonitrile relative to methanol is discussed. As far as mercury (II) is concerned, the unusual jump in conductance observed in the titration of Hg2+ with in acetonitrile and methanol after the formation of a multicharged complex (undefined composition) is attributed to the presence of highly charged smaller units (higher mobility) resulting from the departure of pendant arms from the resorcarene backbone. Isolation of these species followed by X-ray diffraction studies corroborated this statement. The thermodynamic characterization of metal

  6. Resorcarene-based receptor: versatile behavior in its interaction with heavy and soft metal cations.

    Science.gov (United States)

    Danil de Namor, Angela F; Chaaban, Jinane K; Piro, Oscar E; Castellano, Eduardo E

    2006-02-01

    Standard solution Gibbs energies, DeltasG degrees, of the resorcarene-based receptor 5,11,17,23-ethylthiomethylated calix[4]resorcarene, (characterized by 1H NMR and X-ray diffraction studies) in its monomeric state (established through partition experiments) in various solvents are for the first time reported in the area of resorcarene chemistry. Transfer Gibbs energies of from hexane (reference solvent) to other medium are calculated. Agreement between DeltatG degrees (referred to the pure solvents) and standard partition Gibbs energies, DeltapG degrees (solvent mutually saturated) is found. Cation-ligand interactions were investigated through 1H NMR (CD3CN and CD3OD) and conductometric titrations in acetonitrile and methanol. 1H NMR data revealed the sites of interaction of with the metal cation. The composition of the metal-ion complexes (Ag+ and Pb2+ in acetonitrile and Ag+ and Cu2+ in methanol) was established through conductometric titrations. Thus, complexes of 1:1 stoichiometry were formed between and Ag+ and Pb2+ in acetonitrile and Cu2+ in methanol. However, in moving from acetonitrile to methanol, the composition of the silver complex was altered. Thus, two metal cations are hosted by a unit of the ligand. As far as Cu2+ and in acetonitrile is concerned, conductance data suggest that metalates are formed in which up to four units of Cu2+ are taken up per unit of resorcarene. The contrasting behavior of with Cu2+ in acetonitrile relative to methanol is discussed. As far as mercury (II) is concerned, the unusual jump in conductance observed in the titration of Hg2+ with in acetonitrile and methanol after the formation of a multicharged complex (undefined composition) is attributed to the presence of highly charged smaller units (higher mobility) resulting from the departure of pendant arms from the resorcarene backbone. Isolation of these species followed by X-ray diffraction studies corroborated this statement. The thermodynamic characterization of metal

  7. Flaw evaluation technologies for dissimilar metal welds of nickel based alloy

    International Nuclear Information System (INIS)

    Stress Corrosion Cracking (SCC), which occurs in a dissimilar metal weld between a shroud support made of nickel based alloy and a reactor pressure vessel made of low alloy steel in BWR plant, is concerned to induce propagation into the pressure vessel wall thickness. No experience of propagating the crack into the pressure vessel base metal has been reported in both Japan and overseas until now. However, it is necessary to study possibility and evaluation method concerning propagation into the pressure vessel by SCC crack, in order to ensure the safety of Nuclear Power Plants. This safety assessment started for the purpose of preparing evaluation method and collecting data, in order to serve technical examination of the consensus standard and to cross-check of utility's periodic inspections by regulatory body. The residue stress in the weld joint was analyzed in detail by FEM code and compared with the past test results, and further adequacy of analysis model was discussed. (author)

  8. Potentiality of the "Gum Metal" titanium-based alloy for biomedical applications.

    Science.gov (United States)

    Gordin, D M; Ion, R; Vasilescu, C; Drob, S I; Cimpean, A; Gloriant, T

    2014-11-01

    In this study, the "Gum Metal" titanium-based alloy (Ti-23Nb-0.7Ta-2Zr-1.2O) was synthesized by melting and then characterized in order to evaluate its potential for biomedical applications. Thus, the mechanical properties, the corrosion resistance in simulated body fluid and the in vitro cell response were investigated. It was shown that this alloy presents a very high strength, a low Young's modulus and a high recoverable strain by comparison with the titanium alloys currently used in medicine. On the other hand, all electrochemical and corrosion parameters exhibited more favorable values showing a nobler behavior and negligible toxicity in comparison with the commercially pure Ti taken as reference. Furthermore, the biocompatibility tests showed that this alloy induced an excellent response of MC3T3-E1 pre-osteoblasts in terms of attachment, spreading, viability, proliferation and differentiation. Consequently, the "Gum Metal" titanium-based alloy processes useful characteristics for the manufacturing of highly biocompatible medical devices.

  9. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. USE OF A COBALT BASED METALLIC-GLASS IN JOINING MOSI2 TO STAINLESS STEEL

    Energy Technology Data Exchange (ETDEWEB)

    R. VAIDYA; P. RANGASWAMY; ET AL

    2001-04-01

    The successful use of a cobalt-based metallic-glass in joining molybdenum disilicide (MoSi{sub 2}) to stainless steel 316L was demonstrated. Such joints are being investigated for sensor tube applications in glass melting operations. The cobalt-based metallic-glass (METGLAS{trademark} 2714A) was found to wet the MoSi{sub 2} and stainless steel surfaces and provide high quality joints. Joining was completed at 1050 C for 60 minutes in two different ways; either by feeding excess braze into the braze gap upon heating or by constraining the MoSi{sub 2}/stainless steel assembly with an alumina (Al{sub 2}O{sub 3}) fixture during the heating cycle. These steps were necessary to ensure the production of a high quality void free joint. Post-brazing metallographic evaluations coupled with quantitative elemental analysis indicated the presence of a Co-Cr-Si ternary phase with CoSi and CoSi{sub 2} precipitates within the braze. The residual stresses in these molybdenum disilicide (MoSi{sub 2})/stainless steel 316 L joints were evaluated using X-ray diffraction and instrumented indentation techniques. These measurements revealed that significant differences are induced in the residual stresses in MoSi{sub 2} and stainless steel depending on the joining technique employed. Push-out tests were carried out on these joints to evaluate the joint strength.

  11. Metal oxide resistive random access memory based synaptic devices for brain-inspired computing

    Science.gov (United States)

    Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan

    2016-04-01

    The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.

  12. Low-Cost Impact Detection and Location for Automated Inspections of 3D Metallic Based Structures

    Directory of Open Access Journals (Sweden)

    Carlos Morón

    2015-05-01

    Full Text Available This paper describes a new low-cost means to detect and locate mechanical impacts (collisions on a 3D metal-based structure. We employ the simple and reasonably hypothesis that the use of a homogeneous material will allow certain details of the impact to be automatically determined by measuring the time delays of acoustic wave propagation throughout the 3D structure. The location of strategic piezoelectric sensors on the structure and an electronic-computerized system has allowed us to determine the instant and position at which the impact is produced. The proposed automatic system allows us to fully integrate impact point detection and the task of inspecting the point or zone at which this impact occurs. What is more, the proposed method can be easily integrated into a robot-based inspection system capable of moving over 3D metallic structures, thus avoiding (or minimizing the need for direct human intervention. Experimental results are provided to show the effectiveness of the proposed approach.

  13. Tribological characterisation of Zr-based bulk metallic glass in simulated physiological media

    Science.gov (United States)

    Chen, Q.; Chan, K. C.; Liu, L.

    2011-10-01

    Due to their excellent wear resistant properties and high strength, as well as a low Young's modulus, Zr-based bulk metallic glasses (BMGs) are potentially suitable biomaterials for low-friction arthroplasty. The wear characteristics of the Zr60.14Cu22.31Fe4.85Al9.7Ag3 bulk amorphous alloy against ultra-high-molecular-weight polyethylene (UHMWPE) compared to a CoCrMo/UHMWPE combination were investigated in two different wear screening test devices, reciprocating and unidirectional. Hank's solution and sterile calf bovine serum were selected as the lubricant fluid media. It was found that different fluid media had insignificant effect on polyethylene wear against BMG counterfaces. The wear behaviour obtained on both test devices demonstrated that Zr-based BMG achieved UHMWPE counterface wear rates superior to conventional cast CoCrMo alloy, where the wear rate of UHMWPE is decreased by over 20 times. The tribological performance of these joints is superior to that of conventional metal-on-polymer designs. Contact angle measurements suggested that the advantage of BMG over a CoCrMo alloy counterface is attributed to its highly hydrophilic surfaces.

  14. Electrochemical and XPS studies of Ni-based metallic glasses in boiling nitric acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Qin Chunling [WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)], E-mail: clqin@imr.tohoku.ac.jp; Asami, Katsuhiko; Kimura, Hisamichi; Zhang Wei; Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2009-02-01

    This work systematically reports the electrochemical properties and surface characteristics of Ni-based metallic glasses in boiling nitric acid solutions. The Ni-based glassy alloys demonstrate high corrosion resistance in boiling 6 N HNO{sub 3} solutions with and without Cr{sup 6+} ions, which may be of great potential for nuclear fuel reprocessing applications. X-ray photoelectron spectroscopy analysis reveals that the high corrosion resistance of the alloys is due to the formation of the passive film composed exclusively of Nb{sup 5+} and Ta{sup 5+} cations after immersion in the solution without Cr{sup 6+} ions, and Nb{sup 5+}, Ta{sup 5+} and Cr{sup 3+} cations after immersion in the solution with Cr{sup 6+} ions.

  15. High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes

    DEFF Research Database (Denmark)

    Chatzichristodoulou, Christodoulos; Allebrod, Frank; Mogensen, Mogens Bjerg

    2016-01-01

    in the metal foam based gas diffusion electrodes. A novel cell production method, based on tape casting and hot pressing, was developed which allows to increase the cell size from lab scale (1 cm2) to areas of 25 cm2 or larger. The thickness of the electrolyte matrix could be adjusted to only 200 μm, achieving...... a serial resistance and total area specific resistance of only 60 mΩ cm2 and 150 mΩ cm2, respectively, at 200°C and 20 bar, yielding a record high current density of 3.75 A cm-2 at a cell voltage of 1.75 V. Encouraging long-term stability was obtained over 400 h of continuous electrolysis. This novel cell...

  16. Antibacterial Evaluation of Some Schiff Bases Derived from 2-Acetylpyridine and Their Metal Complexes

    Directory of Open Access Journals (Sweden)

    Thong Kwai Lin

    2012-05-01

    Full Text Available A series of Schiff bases derived from 2-acetylpyridne and their metal complexes were characterized by elemental analysis, NMR, FT-IR and UV-Vis spectral studies. The complexes were screened for anti-bacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA, Acinetobacter baumanni (AC, Klebsiella pneumonie (KB and Pseudomonas aeruginosa (PA using the disc diffusion and micro broth dilution assays. Based on the overall results, the complexes showed the highest activities against MRSA while a weak antibacterial activity was observed against A. baumanii and P. aeruginosa.

  17. Evaluation of Johnson-Cook model constants for aluminum based particulate metal matrix composites

    Science.gov (United States)

    Hilfi, H.; Brar, N. S.

    1996-05-01

    High strain rate and high temperature response of three types of aluminum based particulate metal matrix ceramic composites is investigated by performing split Hopkinson pressure bar (SHPB) experiments. The composites are: NGP-2014 (15% SiC), NGT-6061 (15% SiC), and NGU-6061 (15% Al2O3), in which all the reinforcement materials are percentage by volume. Johnson-Cook constitutive model constants are evaluated from the high strain rate/high temperature data and implemented in a two dimensional finite element computer code (EPIC-2D) to simulate the penetration of an ogive nose tungsten projectile (23 grams) at a velocity 1.17 km/sec into the base 6061-T6 aluminum alloy and the composite NGU-6061. The simulated penetrations in the composite and in 6061-T6 aluminum agree with in 2%, in both materials, with the measured values.

  18. Deformation behavior of Fe-based bulk metallic glass during nanoindentation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore,it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conven-tional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work,the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was in-vestigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow,the typical plastic deformation feature of BMGs,could not be found in as-cast and partially crystallized samples during nanoinden-tation. In addition,the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

  19. Springback Control of Sheet Metal Forming Based on High Dimension Model Representation and Genetic Algorithm

    Science.gov (United States)

    Long, Tang; Hu, Wang; Yong, Cai; Lichen, Mao; Guangyao, Li

    2011-08-01

    Springback is related to multi-factors in the process of metal forming. In order to construct an accurate metamodel between technical parameters and springback, a general set of quantitative model assessment and analysis tool, termed high dimension model representations (HDMR), is applied to building metamodel. Genetic algorithm is also integrated for optimization based on metamodel. Compared with widely used metamodeling techniques, the most remarkable advantage of this method is its capacity to dramatically reduce sampling effort for learning the input-output behavior from exponential growth to polynomial level. In this work, the blank holding forces (BHFs) and corresponding key time are design variables. The final springback is well controlled by the HDMR-based metamodeling technique.

  20. Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion.

    Science.gov (United States)

    Cao, Xiehong; Tan, Chaoliang; Zhang, Xiao; Zhao, Wei; Zhang, Hua

    2016-08-01

    The development of renewable energy storage and conversion devices is one of the most promising ways to address the current energy crisis, along with the global environmental concern. The exploration of suitable active materials is the key factor for the construction of highly efficient, highly stable, low-cost and environmentally friendly energy storage and conversion devices. The ability to prepare two-dimensional (2D) metal dichalcogenide (MDC) nanosheets and their functional composites in high yield and large scale via various solution-based methods in recent years has inspired great research interests in their utilization for renewable energy storage and conversion applications. Here, we will summarize the recent advances of solution-processed 2D MDCs and their hybrid nanomaterials for energy storage and conversion applications, including rechargeable batteries, supercapacitors, electrocatalytic hydrogen generation and solar cells. Moreover, based on the current progress, we will also give some personal insights on the existing challenges and future research directions in this promising field.

  1. Prospects of steady state magnetic diagnostic of fusion reactors based on metallic Hall sensors

    Science.gov (United States)

    Ďuran, I.; Sentkerestiová, J.; Kovařík, K.; Viererbl, L.

    2012-06-01

    Employment of sensors based on Hall effect (Hall sensors) is one of the candidate approaches to detection of almost steady state magnetic fields in future fusion reactors based on magnetic confinement (tokamaks, stellarators etc.), and also in possible fusion-fission hybrid systems having these fusion reactors as a neutron source and driver. This contribution reviews the initial considerations concerning application of metallic Hall sensors in fusion reactor harsh environment that include high neutron loads (>1018 cm-2) and elevated temperatures (>200°C). In particular, the candidate sensing materials, candidate technologies for sensors production, initial analysis of activation and transmutation of sensors under reactor relevant neutron loads and the tests of the the first samples of copper Hall sensors are presented.

  2. Tridentate Schiff base (ONO) transition metal complexes: Synthesis, crystal structure, spectroscopic and larvicidal studies

    Indian Academy of Sciences (India)

    SUNDARAMURTHY SANTHA LAKSHMI; KANNAPPAN GEETHA; P MAHADEVI

    2016-07-01

    A series of four new Schiff base transition metal complexes [Co(II), Ni(II), Cu(II) and Zn(II)] derived from N-(salicylidene)-L-alanine and N,N,N',N'-tetramethylethylene-1,2-diamine (tmen) were designed, synthesized and tested for larvicidal activity against Culex quinquefasciatus, the southern house mosquito, which is the primary vector of St. Louis encephalitis virus and West Nile virus. All the complexes were characterized by physicochemical and spectral studies such as UV-Visible, FTIR, and EPR. The X-ray crystallographic analysis of Ni(II) complex revealed that, Ni(II) cation is surrounded by nitrogen and oxygen atoms from the Schiff base ligand, the oxygen atom of a water molecule, and two nitrogen atoms from tmen. Intermolecularhydrogen bonding stabilizes the Ni(II) complex. Results indicated that all the complexes exhibited higher mosquito larvicidal activity against C. quinquefasciatus.

  3. Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors

    Directory of Open Access Journals (Sweden)

    Sangryun Lee

    2015-11-01

    Full Text Available Possessing a strong piezoresistivity, nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowire percolation network as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolation network, which leads to a bottleneck in the electric path. We find that, due to enhanced percolation, the linearity of the sensor improves with increasing aspect ratio or volume fraction of the nanowires at the expense of decreasing gauge factor. In addition, we show that a wide range of gauge factors (from negative to positive can be obtained by changing the orientation distribution of nanowires. Our study suggests a way to intelligently design nanocomposite-based piezoresistive sensors for flexible and wearable devices.

  4. Computational analysis of metallic nanowire-elastomer nanocomposite based strain sensors

    Science.gov (United States)

    Lee, Sangryun; Amjadi, Morteza; Pugno, Nicola; Park, Inkyu; Ryu, Seunghwa

    2015-11-01

    Possessing a strong piezoresistivity, nanocomposites of metal nanowires and elastomer have been studied extensively for its use in highly flexible, stretchable, and sensitive sensors. In this work, we analyze the working mechanism and performance of a nanocomposite based stretchable strain sensor by calculating the conductivity of the nanowire percolation network as a function of strain. We reveal that the nonlinear piezoresistivity is attributed to the topological change of percolation network, which leads to a bottleneck in the electric path. We find that, due to enhanced percolation, the linearity of the sensor improves with increasing aspect ratio or volume fraction of the nanowires at the expense of decreasing gauge factor. In addition, we show that a wide range of gauge factors (from negative to positive) can be obtained by changing the orientation distribution of nanowires. Our study suggests a way to intelligently design nanocomposite-based piezoresistive sensors for flexible and wearable devices.

  5. Remote stabilization of copper paddlewheel based molecular building blocks in metal-organic frameworks

    KAUST Repository

    Gao, Wenyang

    2015-03-24

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal-organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu2(O2C-)4], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu3O(N4-x(CH)xC-)3] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1. © 2015 American Chemical Society.

  6. Engineered metal based nanomaterials in aqueous environments: Interactions, transformations and implications

    Science.gov (United States)

    Mudunkotuwa, Imali Ama

    Nanoscience and nanotechnology offer potential routes towards addressing critical issues such as clean and sustainable energy, environmental protection and human health. Specifically, metal and metal oxide nanomaterials are found in a wide range of applications and therefore hold a greater potential of possible release into the environment or for the human to be exposed. Understanding the aqueous phase behavior of metal and metal oxide nanomaterials is a key factor in the safe design of these materials because their interactions with living systems are always mediated through the aqueous phase. Broadly the transformations in the aqueous phase can be classified as dissolution, aggregation and adsorption which are dependent and linked processes to one another. The complexity of these processes at the liquid-solid interface has therefore been one of the grand challenges that has persisted since the beginning of nanotechnology. Although classical models provide guidance for understanding dissolution and aggregation of nanoparticles in water, there are many uncertainties associated with the recent findings. This is often due to a lack of fundamental knowledge of the surface structure and surface energetics for very small particles. Therefore currently the environmental health and safety studies related to nanomaterials are more focused on understanding the surface chemistry that governs the overall processes in the liquid-solid interfacial region at the molecular level. The metal based nanomaterials focused on in this dissertation include TiO2, ZnO, Cu and CuO. These are among the most heavily used in a number of applications ranging from uses in the construction industry to cosmetic formulation. Therefore they are produced in large scale and have been detected in the environment. There is debate within the scientific community related to their safety as a result of the lack of understanding on the surface interactions that arise from the detailed nature of the surfaces

  7. The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico

    Science.gov (United States)

    Findley, A. A.; Olivo, G. R.; Godin, L.

    2009-05-01

    The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and

  8. The determination, by x-ray-fluorescence spectrometry, of noble and base metals in matte-leach residues

    International Nuclear Information System (INIS)

    An accurate and precise method is described for the determination of noble and base metals in matte-leach residues. Preparation of the samples essentially involves fusion with sodium peroxide in a zirconium crucible and leaching with hydrochloric and nitric acids. Matrix correction and calibration are achieved by use of the single-standard calibration method with reference solutions prepared from pure metals or from compounds of the element to be determined

  9. Screening metal-organic framework-based mixed-matrix membranes for CO2/CH4 separations

    OpenAIRE

    Keskin, Seda; Eruçar, İlknur

    2011-01-01

    1 Screening Metal Organic Framework-based Mixed Matrix Membranes for CO2/CH4 Separations Ilknur Erucar† and Seda Keskin‡* †Department of Computational Sciences and Engineering, Koç University, 34450, Istanbul, Turkey ‡Department of Chemical and Biological Engineering, Koç University, 34450, Istanbul, Turkey Submitted to Ind. Eng. Chem. Res. Abstract In this study, the challenge of selecting metal organic frameworks (MOFs) as filler particles in high performance mixe...

  10. Robust, chiral, and porous BINAP-based metal-organic frameworks for highly enantioselective cyclization reactions.

    Science.gov (United States)

    Sawano, Takahiro; Thacker, Nathan C; Lin, Zekai; McIsaac, Alexandra R; Lin, Wenbin

    2015-09-30

    We report here the design of BINAP-based metal-organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee's) and 4-7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson-Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson-Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson-Khand cyclization reactions without deterioration of yields or ee's. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions. PMID:26335305

  11. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.

    Science.gov (United States)

    Li, Kai; Xiang, Yu; Wang, Xiaoyan; Li, Ji; Hu, Rongrong; Tong, Aijun; Tang, Ben Zhong

    2014-01-29

    Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Although a few photochromic systems have been developed before, their applications are still limited by complicated synthesis, low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. It is an ideal chromophore for the development of new photochromic systems. However, known photochromic rhodamine derivatives, such as amides, exhibit only millisecond lifetimes in their colored ring-open forms, making their application very limited and difficult. In this work, rhodamine B salicylaldehyde hydrazone metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, which led to a distinct color and fluorescence change both in solution and in solid matrix. The complex showed good fatigue resistance for the reversible photochromism and long lifetime for the ring-open state. Interestingly, the thermal bleaching rate was tunable by using different metal ions, temperatures, solvents, and chemical substitutions. It was proposed that UV light promoted isomerization of the rhodamine B derivative from enol-form to keto-form, which induced ring-opening of the rhodamine spirolactam in the complex to generate color. The photochromic system was successfully applied for photoprinting and UV strength measurement in the solid state. As compared to other reported photochromic molecules, the system in this study has its advantages of facile synthesis and tunable thermal bleaching rate, and also provides new insights into the development of photochromic materials based on metal complex and spirolactam-containing dyes. PMID:24397593

  12. Response Characteristics of Bisphenols on a Metal-Organic Framework-Based Tyrosinase Nanosensor.

    Science.gov (United States)

    Lu, Xianbo; Wang, Xue; Wu, Lidong; Wu, Lingxia; Dhanjai; Fu, Lei; Gao, Yuan; Chen, Jiping

    2016-06-29

    Bisphenols (BPs), which have more than ten kinds of structural analogues, are emerging as the most important endocrine disrupting chemicals that adversely affect human health and aquatic life. A tyrosinase nanosensor based on metal-organic frameworks (MOFs) and chitosan was developed to investigate the electrochemical response characteristics and mechanisms of nine kinds of BPs for the first time. The developed tyrosinase nanosensor showed a sensitive response to bisphenol A, bisphenol F, bisphenol E, bisphenol B, and bisphenol Z, and the responsive sensitivities were highly dependent on their respective log Kow values. However, the nanosensor showed no response to bisphenol S (BPS), bisphenol AP (BPAP), bisphenol AF (BPAF), or tetrabromobisphenol A, although BPS, BPAP, and BPAF have structures similar to those of the responsive BPs. The obtained results reveal that the electrochemical response of different BPs is affected not only by the molecular structure, especially the available ortho positions of phenolic hydroxyl groups, but also by the substituent group properties (electron acceptor or electron donor) on the bisphenol framework. The electronic cloud distribution of the phenolic hydroxyl groups, which is affected by the substituent group, determines whether the available ortho positions of phenolic hydroxyl groups can be oxidized by the tyrosinase biosensor. These response mechanisms are very significant as they can be used for predicting the response characteristics of many BPs and their various derivatives and metabolites on biosensors. The unexpected anti-interference ability of the biosensor to nine heavy metal ions was also discovered and discussed. The MOF-chitosan nanocomposite proves to be a promising sensing platform for the construction of diverse biosensors for selective detection of targets even in the presence of a high concentration of heavy metal ions. PMID:27281291

  13. Training and operation of an integrated neuromorphic network based on metal-oxide memristors

    Science.gov (United States)

    Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B. D.; Adam, G. C.; Likharev, K. K.; Strukov, D. B.

    2015-05-01

    Despite much progress in semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex, with its approximately 1014 synapses, makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. To provide comparable complexity while operating much faster and with manageable power dissipation, networks based on circuits combining complementary metal-oxide-semiconductors (CMOSs) and adjustable two-terminal resistive devices (memristors) have been developed. In such circuits, the usual CMOS stack is augmented with one or several crossbar layers, with memristors at each crosspoint. There have recently been notable improvements in the fabrication of such memristive crossbars and their integration with CMOS circuits, including first demonstrations of their vertical integration. Separately, discrete memristors have been used as artificial synapses in neuromorphic networks. Very recently, such experiments have been extended to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence these devices are much harder to scale than metal-oxide memristors, whose nonlinear current-voltage curves enable transistor-free operation. Here we report the experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification). The network can be taught in situ using a coarse-grain variety of the delta rule algorithm to perform the perfect classification of 3 × 3-pixel black/white images into three classes (representing letters). This demonstration is an important step towards much larger and more complex memristive neuromorphic networks.

  14. Response Characteristics of Bisphenols on a Metal-Organic Framework-Based Tyrosinase Nanosensor.

    Science.gov (United States)

    Lu, Xianbo; Wang, Xue; Wu, Lidong; Wu, Lingxia; Dhanjai; Fu, Lei; Gao, Yuan; Chen, Jiping

    2016-06-29

    Bisphenols (BPs), which have more than ten kinds of structural analogues, are emerging as the most important endocrine disrupting chemicals that adversely affect human health and aquatic life. A tyrosinase nanosensor based on metal-organic frameworks (MOFs) and chitosan was developed to investigate the electrochemical response characteristics and mechanisms of nine kinds of BPs for the first time. The developed tyrosinase nanosensor showed a sensitive response to bisphenol A, bisphenol F, bisphenol E, bisphenol B, and bisphenol Z, and the responsive sensitivities were highly dependent on their respective log Kow values. However, the nanosensor showed no response to bisphenol S (BPS), bisphenol AP (BPAP), bisphenol AF (BPAF), or tetrabromobisphenol A, although BPS, BPAP, and BPAF have structures similar to those of the responsive BPs. The obtained results reveal that the electrochemical response of different BPs is affected not only by the molecular structure, especially the available ortho positions of phenolic hydroxyl groups, but also by the substituent group properties (electron acceptor or electron donor) on the bisphenol framework. The electronic cloud distribution of the phenolic hydroxyl groups, which is affected by the substituent group, determines whether the available ortho positions of phenolic hydroxyl groups can be oxidized by the tyrosinase biosensor. These response mechanisms are very significant as they can be used for predicting the response characteristics of many BPs and their various derivatives and metabolites on biosensors. The unexpected anti-interference ability of the biosensor to nine heavy metal ions was also discovered and discussed. The MOF-chitosan nanocomposite proves to be a promising sensing platform for the construction of diverse biosensors for selective detection of targets even in the presence of a high concentration of heavy metal ions.

  15. Bond strength of resin cements to noble and base metal alloys with different surface treatments.

    Directory of Open Access Journals (Sweden)

    Farkhondeh Raeisosadat

    2014-10-01

    Full Text Available The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen.Cylinders of light cured Z 250 composite were cemented to "Degubond 4" (Au Pd and "Verabond" (Ni Cr alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05.When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021 and Verabond (P< 0.001. No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291 and Verabond (P=0.899. Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003. The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011. The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59. RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035.The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2.

  16. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nevedomskiy, V. N., E-mail: nevedom@mail.ioffe.ru; Bert, N. A.; Chaldyshev, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation)

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  17. Simulation of metal cutting using the particle finite-element method and a physically based plasticity model

    Science.gov (United States)

    Rodríguez, J. M.; Jonsén, P.; Svoboda, A.

    2016-08-01

    Metal cutting is one of the most common metal-shaping processes. In this process, specified geometrical and surface properties are obtained through the break-up of material and removal by a cutting edge into a chip. The chip formation is associated with large strains, high strain rates and locally high temperatures due to adiabatic heating. These phenomena together with numerical complications make modeling of metal cutting difficult. Material models, which are crucial in metal-cutting simulations, are usually calibrated based on data from material testing. Nevertheless, the magnitudes of strains and strain rates involved in metal cutting are several orders of magnitude higher than those generated from conventional material testing. Therefore, a highly desirable feature is a material model that can be extrapolated outside the calibration range. In this study, a physically based plasticity model based on dislocation density and vacancy concentration is used to simulate orthogonal metal cutting of AISI 316L. The material model is implemented into an in-house particle finite-element method software. Numerical simulations are in agreement with experimental results, but also with previous results obtained with the finite-element method.

  18. Automatic BSS-based filtering of metallic interference in MEG recordings: definition and validation using simulated signals

    Science.gov (United States)

    Migliorelli, Carolina; Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Nowak, Rafał; Russi, Antonio

    2015-08-01

    Objective. One of the principal drawbacks of magnetoencephalography (MEG) is its high sensitivity to metallic artifacts, which come from implanted intracranial electrodes and dental ferromagnetic prosthesis and produce a high distortion that masks cerebral activity. The aim of this study was to develop an automatic algorithm based on blind source separation (BSS) techniques to remove metallic artifacts from MEG signals. Approach. Three methods were evaluated: AMUSE, a second-order technique; and INFOMAX and FastICA, both based on high-order statistics. Simulated signals consisting of real artifact-free data mixed with real metallic artifacts were generated to objectively evaluate the effectiveness of BSS and the subsequent interference reduction. A completely automatic detection of metallic-related components was proposed, exploiting the known characteristics of the metallic interference: regularity and low frequency content. Main results. The automatic procedure was applied to the simulated datasets and the three methods exhibited different performances. Results indicated that AMUSE preserved and consequently recovered more brain activity than INFOMAX and FastICA. Normalized mean squared error for AMUSE decomposition remained below 2%, allowing an effective removal of artifactual components. Significance. To date, the performance of automatic artifact reduction has not been evaluated in MEG recordings. The proposed methodology is based on an automatic algorithm that provides an effective interference removal. This approach can be applied to any MEG dataset affected by metallic artifacts as a processing step, allowing further analysis of unusable or poor quality data.

  19. Mineralogy and geochemistry of base-metal deposits at Halilar area, NW Turkey

    Science.gov (United States)

    Kiran Yildirim, D.; Abdelnasser, A.; Doner, Z.; Kumral, M.

    2015-12-01

    This study focuses on the base-metal deposits at Halilar area (NW Turkey) by reporting new data obtained from mineralogical, petrographical and geochemical investigation of this deposit. It is to determine key features of the host rocks, mineralogical changes and alteration zones related to this mineralization. Halilar area is located about 25-30 km NE of Edremit in Balikseir district (NW Turkey). This area contains Halilar group that overlies pre-Late Triassic metamorphic rocks and Permian limestone in the surrounding areas. This Halilar group consists of Bagcagiz and Sakarkaya Formations; later intruded by Duztarla granitic rocks. The base metal deposits at study area represent locally Cu-Pb with some Zn vein type deposits. These deposits restricted to fault gouge zone directed NE-SW as well as occurred at the lower boundary of Bagcagiz and Duztarla granite. It also closely associated with intense hydrothermal alteration within brecciation, and quartz stockwork veining. The mineral assemblage includes chalcopyrite, galena, and some sphalerite, with covellite, and goethite in an abundant gangue of quartz and pyrite. Paragenetic relationships reveal three stages of mineralization; pre-ore, ore, and supergene. Wall-rock hydrothermal alteration includes pervasive silicification, sulfidation, carbonatization, and selective chloritization, sericitization and muscovitization. The geochemical studies refer to the altered samples have high CIA relative to the least altered rocks. The relationship between Na2O and K2O with the Ishikawa alteration index refers to the data plot close to chlorite/sericite. Also, based on alteration box plotting (Ishikawa alteration index vs. chlorite-carbonate-pyrite index), they mostly plotted in the field of the hydrothermal alteration close to chlorite and pyrite minerals with more hydrothermal trends; Intense sericite-chlorite ± pyrite alteration, chlorite ± sericite ± pyrite alteration, and sericite-carbonate alteration.

  20. Synthesis, Spectroscopic Characterization and Biological Activities of Transition Metal Complexes Derived from a Tridentate Schiff Base

    Directory of Open Access Journals (Sweden)

    J. Senthil Kumaran

    2013-01-01

    Full Text Available A new series of Cu (II, Ni (II, Co (II and Zn (II complexes have been synthesized from the Schiff base derived from 4-hydroxy-3-methoxybenzylidine-4-aminoantipyrine and 2-aminophenol. The structural features have been determined from their elemental analysis, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis, 1H-NMR, 13C-NMR and ESR spectral studies. The redox behavior of the copper complex has been studied by cyclic voltammetry. The data confirm that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes propose an octahedral geometry around the central metal ion. All the metal complexes with DNA structure were guided by the presence of inter-molecular C–H⋯O and C–H⋯N hydrogen bonds. The biological activity of the synthesized compounds were tested against the bacterial species such as Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris and fungal species such as Candida albicans by the well-diffusion method.

  1. Development of a heavy metals enzymatic-based assay using papain

    Energy Technology Data Exchange (ETDEWEB)

    Shukor, Yunus [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia)]. E-mail: yunus@biotech.upm.edu.my; Baharom, Nor Azlan [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Rahman, Fadhil Abd. [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Abdullah, Mohd. Puad [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Shamaan, Nor Aripin [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Syed, Mohd. Arif [Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2006-05-04

    A heavy metals enzymatic-based assay using papain was developed. Papain was assayed using the Casein-coomassie-dye-binding assay. The assay is sensitive to several heavy metals. The IC{sub 50} (concentration of toxicant giving 50% inhibition) of Hg{sup 2+}, Ag{sup 2+}, Pb{sup 2}, Zn{sup 2+} is 0.39, 0.40, 2.16, 2.11 mg l{sup -1}, respectively. For Cu{sup 2+} and Cd{sup 2+} the LOQ (limits of quantitation) is 0.004 and 0.1 mg l{sup -1}, respectively. The IC{sub 50} and LOQ values were found to be generally comparable to several other enzymatic and bioassays tests such as: immobilized urease, 15-min Microtox{sup TM}, 48 h Daphnia magna, and 96 h Rainbow trout. The papain assay is xenobiotics tolerant, has a wide pH for optimum activity, is temperature stable, and has a relatively quick assay time. The papain assay was used to identify polluted water samples from industrial sources in Penang, Malaysia. We found one site where the assay gave a positive toxic response. The toxicity of the site was confirmed using Atomic Emission Spectrometry analysis.

  2. Microstructural evolution during direct laser sintering of multi-component Cu-based metal powder

    Institute of Scientific and Technical Information of China (English)

    SHEN Yi-fu; GU Dong-dong; WU Peng; YANG Jia-lin; WANG Yang

    2005-01-01

    A multi-component Cu-based metal powder was chosen for direct laser sintering. The powder consists of a mixture of high-purity Cu powder, pre-alloyed CuSn and CuP powder. Liquid phase sintering with complete melting of the binder (CuSn) but non-melting of the cores of structural metal (Cu) proves to be a feasible mechanism for laser sintering of this powder system. The microstructural evolution of the sintered powder with variation of laser processing parameters was presented. High sintering activities and sound densification response were obtained by optimizing the laser powers and scan speeds. Using a high laser power accompanied by a high scan speed gives rise to balling effect. At a high laser power with a slow scan speed the sintering mechanism may change into complete melting/solidification, which decreases the obtainable sintered density. The role of additive phosphorus in the laser sintering process is addressed. Phosphorus can act as a fluxing agent and has a preferential reaction with oxygen to form phosphatic slag, protecting the Cu particles from oxidation. The phosphatic slag shows a concentration along grain boundaries due to its light mass as well as the short thermal cycle of SLS.

  3. The Importance of Rare-Earth Additions in Zr-Based AB2 Metal Hydride Alloys

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2016-07-01

    Full Text Available Effects of substitutions of rare earth (RE elements (Y, La, Ce, and Nd to the Zr-based AB2 multi-phase metal hydride (MH alloys on the structure, gaseous phase hydrogen storage (H-storage, and electrochemical properties were studied and compared. Solubilities of the RE atoms in the main Laves phases (C14 and C15 are very low, and therefore the main contributions of the RE additives are through the formation of the RENi phase and change in TiNi phase abundance. Both the RENi and TiNi phases are found to facilitate the bulk diffusion of hydrogen but impede the surface reaction. The former is very effective in improving the activation behaviors. −40 °C performances of the Ce-doped alloys are slightly better than the Nd-doped alloys but not as good as those of the La-doped alloys, which gained the improvement through a different mechanism. While the improvement in ultra-low-temperature performance of the Ce-containing alloys can be associated with a larger amount of metallic Ni-clusters embedded in the surface oxide, the improvement in the La-containing alloys originates from the clean alloy/oxide interface as shown in an earlier transmission electron microscopy study. Overall, the substitution of 1 at% Ce to partially replace Zr gives the best electrochemical performances (capacity, rate, and activation and is recommended for all the AB2 MH alloys for electrochemical applications.

  4. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs

    Directory of Open Access Journals (Sweden)

    Mercedes Crego-Calama

    2007-09-01

    Full Text Available Fluorescent self assembled monolayers (SAMs on glass were previouslydeveloped in our group as new sensing materials for metal ions. These fluorescent SAMs arecomprised by fluorophores and small molecules sequentially deposited on a monolayer onglass. The preorganization provided by the surface avoids the need for complex receptordesign, allowing for a combinatorial approach to sensing systems based on small molecules.Now we show the fabrication of an effective microarray for the screening of metal ions andthe properties of the sensing SAMs. A collection of fluorescent sensing SAMs wasgenerated by combinatorial methods and immobilized on the glass surfaces of a custom-made 140 well microtiter-plate. The resulting libraries are easily measured and show variedresponses to a series cations such as Cu2+ , Co2+ , Pb2+ , Ca2+ and Zn2+ . These surfaces are notdesigned to complex selectively a unique analyte but rather they are intended to producefingerprint type responses to a range of analytes by less specific interactions. The unselectiveresponses of the library to the presence of different cations generate a characteristic patternfor each analyte, a “finger print” response.

  5. Cross-Reactive Sensor Array for Metal Ion Sensing Based on Fluorescent SAMs

    Science.gov (United States)

    Basabe-Desmonts, Lourdes; van der Baan, Frederieke; Zimmerman, Rebecca S.; Reinhoudt, David N.; Crego-Calama, Mercedes

    2007-01-01

    Fluorescent self assembled monolayers (SAMs) on glass were previously developed in our group as new sensing materials for metal ions. These fluorescent SAMs are comprised by fluorophores and small molecules sequentially deposited on a monolayer on glass. The preorganization provided by the surface avoids the need for complex receptor design, allowing for a combinatorial approach to sensing systems based on small molecules. Now we show the fabrication of an effective microarray for the screening of metal ions and the properties of the sensing SAMs. A collection of fluorescent sensing SAMs was generated by combinatorial methods and immobilized on the glass surfaces of a custom-made 140 well microtiter-plate. The resulting libraries are easily measured and show varied responses to a series cations such as Cu2+, Co2+, Pb2+, Ca2+ and Zn2+. These surfaces are not designed to complex selectively a unique analyte but rather they are intended to produce fingerprint type responses to a range of analytes by less specific interactions. The unselective responses of the library to the presence of different cations generate a characteristic pattern for each analyte, a “finger print” response.

  6. Metal-organic frameworks as biosensors for luminescence-based detection and imaging.

    Science.gov (United States)

    Miller, Sophie E; Teplensky, Michelle H; Moghadam, Peyman Z; Fairen-Jimenez, David

    2016-08-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847

  7. Oligonucleotide-based fluorogenic sensor for simultaneous detection of heavy metal ions.

    Science.gov (United States)

    Hao, Changlong; Xua, Liguang; Xing, Changrui; Kuang, Hua; Wang, Libing; Xu, Chuanlai

    2012-01-01

    In this study, we report a new fluorogenic sensor based on fluorescence resonance energy transfer (FRET) for detection of heavy metal ions in aqueous solution. The method showed the advantage of being simple, highly sensitive and selective, and rapid. The donor (CdTe QDs) and acceptor (TAMRA or Cy5) are brought into close proximity to one another due to Hg(2+) and Ag(+) form strong and stable T-Hg(2+)-T complexes and C-Ag(+)-C complexes, which quenches the fluorescent intensity of CdTe QDs and enables the energy transfer from donor to acceptor. This sensor showed high sensitivity and selectivity when only one kind of ion (Ag(+) or Hg(2+)) exists. Furthermore, the assay can also simultaneously detect Ag(+) and Hg(2+) in water media with the limit of detection (LOD) of 2.5 and 1.8 nM, separately, which satisfactorily meets the sensitivity demands of Environmental Protection Agency (EPA) and World Health Organization (WHO). This assay also exhibits excellent selectivity toward Ag(+) and Hg(2+). Therefore, this method is of great practical and theoretical importance for detecting heavy metal ions in aqueous solution. PMID:22560162

  8. Nanoparticle-based immunosensor with apoferritin templated metallic phosphate label for quantification of phosphorylated acetylcholinesterase

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Chen, Aiqiong; Xie, Yunying; Zhang, Aidong; Lin, Yuehe

    2011-05-15

    A new sandwich-like electrochemical immunosensor has been developed for quantification of organophosphorylated acetylcholinesterase (OP-AChE), an exposure biomarker of organophosphate pesticides and nerve agents. Zirconia nanoparticles (ZrO2 NPs) were anchored on a screen printed electrode (SPE) to preferably capture OP-AChE adducts by metal chelation with phospho-moieties, which was selectively recognized by lead phosphate-apoferritin labeled anti-AChE antibody (LPA-anti-AChE). The sandwich-like immunoreactions were performed among ZrO2 NPs, OP-AChE and LPA-anti-AChE to form ZrO2/OP-AChE/LPA-anti-AChE complex and the released lead ions were detected on a disposable SPE. The binding affinity was investigated by both square wave voltammetry (SWV) and quartz crystal microbalance (QCM) measurements. The proposed immunosensor yielded a linear response current over a broad OP-AChE concentrations range from 0.05 nM to 10 nM, with detection limit of 0.02 nM, which has enough sensitivity for monitoring of low-dose exposure to OPs. This method avoids the drawback of unavailability of commercial OP-specific antibody as well as amplifies detection signal by using apoferritin encoded metallic phosphate nanoparticle tags. This nanoparticle-based immunosensor offers a new method for rapid, sensitive, selective and inexpensive quantification of phosphorylated adducts for monitoring of OP pesticides and nerve agents exposures.

  9. Preparation of New Type Ni-P Micro/Nano Metal Material Based on Bacteria Shape

    Institute of Scientific and Technical Information of China (English)

    Xin Liang; Jianhua Liu; Songmei Li

    2009-01-01

    A new type of Ni-P alloy with rod-shape was prepared by electroless deposition method based on the shape of Nocadia, a kind of bacteria. The material was characterized by microbiological method, scanning elec-tron microscope, energy dispersion spectroscopy, transmission electron microscopy, fourier transform infrared spectroscopy, X-ray diffraction and vibrant sample magnetometer. It was found that Ni-P alloy deposited on Nocadia surface was amorphous when pH=8.0. The amount of Ni crystalline increased with pH of plating solution. Ni-P nano-particles deposited on active locations on the surface at the initial stage, and then ho-mogeneous Ni-P film formed with time. Nocadia remained their original rod shape after Ni-P nano-particles deposition. The new type metal material formed of Ni-P alloy with nano-particles was prepared. The mag-netization of the material prepared at pH=9.7 is greater than that prepared at pH=8.0. The magnetic loss of the material prepared at pH=9.7 is less than 0.1. The dielectric loss exceeds 0.3 when frequency is higher than 14 GHz, which is 1.5 at 18 GHz. The new type Ni-P metal material with Nocadia shape has dielectric loss property.

  10. Risk-Based Approach for Thermal Treatment of Soils Contaminated with Heavy Metals

    Directory of Open Access Journals (Sweden)

    Cocârţă D. M.

    2013-04-01

    Full Text Available In the actual context of limited soil resources and the significant degree of environmental pollution, public administrations and authorities are interested in restoring contaminated sites paying attention to the impact of these soils on human health. This paper aims to present the efficiency of the the incineration as a method for treatment of the contaminated soils t based on human health risk assessment. Through various experimentations, the following metals have been studied: Zn, Cu, Fe, Mn, Ni, Pb, Cr, Co, Cd, Hg, As and Be. The most important and interesting results concerning both thermal treatment removal efficiency and associated human health risk assessments were achieved concerning Cd, Pb and Ni contaminants. The behavior of Cadmium (Cd, Lead (Pb and Nickel (Ni concentrations from heavy metals incineration soil has been analyzed for three incineration temperatures (600°C, 800°C and 1000°C and two resident times of soil within the incineration reactor (30 min. and 60 min.. In this case, the level of contaminants in the treated soil can be reduced but not enough to ensure an acceptable risk for human health.

  11. Simulation of the emission properties of patterned metal-based nanostructures

    Science.gov (United States)

    Li, Weijun; Luo, Jun; Peng, Sha; Zhu, Yaping; Lei, Yu; Tong, Qing; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-12-01

    Enormous pressures have been puts on current optical storage technologies as the rapid development of information technologies. Recently, it has been found that the surface plasmon-polaritons'modes (SPPMs) in metallic nanostructures may lead to the high localization of guided light beams with nanometer size and only limited by several factors such as atomic structure, dissipation, and light dispersion, and thus far beyond the common diffraction limit of electromagnetic waves in dielectric media. This discovery provides a way to produce nanoscale light signal and thus makes a significant breakthrough in optical storage technologies. In this paper, our work focuses on the modeling and simulation of particular kinds of patterned metal-based nanostructure fabricated over silicon dioxide (SiO2) wafer. The nanostructures designed are expected to concentrate, deliver incident light energy into nanoscale regions and generate nanoscale light signal. In our research, the duty cycle of patterned nanostructures is taken as a key parameter, and then the factors including the patterned nanostructures, the frequency of the incident electromagnetic wave, the size of patterned nanostructure and the distance arrangement between adjacent single patterns, are taken as variables. The common CST microwave studio is used to simulate beam transportation and transformation behaviors. By comparing electric-field intensity distribution in nano-areas and the reflectance of the nanostructure array, the nano-light-emission effects are analyzed.

  12. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement.

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300 Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time. PMID:24182144

  13. A novel Ni/ceria-based anode for metal-supported solid oxide fuel cells

    Science.gov (United States)

    Rojek-Wöckner, Veronika A.; Opitz, Alexander K.; Brandner, Marco; Mathé, Jörg; Bram, Martin

    2016-10-01

    For optimization of ageing behavior, electrochemical performance, and sulfur tolerance of metal-supported solid oxide fuel cells a new anode concept is introduced, which is based on a Ni/GDC cermet replacing the established Ni/YSZ anodes. In the present work optimized processing parameters compatible with MSC substrates are specified by doing sintering studies on pressed bulk specimen and on real porous anode structures. The electrochemical performance of the Ni/GDC anodes was characterized by means of symmetrical electrolyte supported model-type cells. In this study, three main objectives are pursued. Firstly, the effective technical realization of the Ni/GDC concept is demonstrated. Secondly, the electrochemical behavior of Ni/GDC porous anodes is characterized by impedance spectroscopy and compared with the current standard Ni/YSZ anode. Further, a qualitative comparison of the sulfur poisoning behavior of both anode types is presented. Thirdly, preliminary results of a successful implementation of the Ni/GDC cermet into a metal-supported single cell are presented.

  14. Characterizing and modeling electrical response to light for metal-based EUV photoresists

    Science.gov (United States)

    Pret, Alessandro V.; Kocsis, Mike; De Simone, Danilo; Vandenberghe, Geert; Stowers, Jason; Giglia, Angelo; de Schepper, Peter; Mani, Antonio; Biafore, John J.

    2016-03-01

    Metal-based photoresists are appealing for use in EUV lithography due to their improved etch resistance and absorption compared with organic resists, and due to their resolving power demonstrated with 13.53 nm exposures using synchrotron light. Recently imec has started a new project to study novel photoresists for EUV lithography, with particular attention to metal containing materials, in order to explore alternative approaches that may offer superior characteristics in photoresist imaging and etching performance compared with more mature chemically amplified resists. In order to model these novel resists it is mandatory to understand both the optical properties and the electronic response to photon absorption. As in previous experiments on organic materials, some of the optical properties can be determined by merging analysis from high-energy electron scattering models (e.g. CXRO website), X-ray absorption spectroscopy, and DUV spectroscopic ellipsometry. Dispersion curves can be used to calculate the electronic inelastic and elastic mean-free paths; convolved with the expected spectrum at wafer level it is possible to estimate the electron yield and the secondary electron blur of the photoresist. These material properties can be used to modify the physical models currently used to simulate organic photoresist performance in computational lithography software.

  15. Modeling of stored charge in metallized biaxially oriented polypropylene film capacitors based on charging current measurement

    Science.gov (United States)

    Li, Hua; Wang, Bowen; Li, Zhiwei; Liu, De; Lin, Fuchang; Dai, Ling; Zhang, Qin; Chen, Yaohong

    2013-10-01

    Metallized biaxially oriented polypropylene film (BOPP) capacitors are widely used in pulsed power systems. When the capacitor is used as the energy storage equipment under high electric field, more charges should be provided to maintain the voltage of the capacitor. This should be ascribed to the completion of the slow polarization which may take several hours or even longer. This paper focuses on the stored charge in metallized BOPP film capacitors. The modeling of the stored charge by the equivalent conversion of circuits is conducted to analyse the slow polarization in the BOPP film. The 3-RC network is proposed to represent the time-dependent charge stored in the capacitor. A charging current measurement system is established to investigate the charge storage property of the capacitor. The measurement system can measure the long time charging current with a sampling rate of 300Hz. The total charge calculated by the charging current indicates that the stored charge in the capacitor under the electric field of 400 V/μm is 13.5% larger than the product of the voltage and the capacitance measured by the AC bridge. The nonlinear effect of the electric field on the slow polarization charge is also demonstrated. And the simulation of charge storage based on the 3-RC network can match well with the trend of the stored charge increasing with the time.

  16. Optical properties of metal-dielectric based epsilon near zero metamaterials

    Science.gov (United States)

    Subramania, Ganapathi; Fischer, Arthur; Luk, Ting

    2014-03-01

    Epsilon(ɛ) near zero(ENZ) materials are metamaterials where the effective dielectric constant(ɛ) is close to zero for a range of wavelengths resulting in zero effective displacement field (D = ɛE) and displacement current. ENZ structures are of great interest in many application areas such as optical nanocircuits, supercoupling, cloaking, emission enhancement etc. Effective ENZ behavior has been demonstrated using cut-off frequency region in a metallic waveguide where the modal index vanishes. Here we demonstrate the fabrication of ENZ metamaterials operating at visible wavelengths (λ ~ 640nm) using an effective medium approach based on a metal-dielectric composites(App. Phys. Let.,101,241107(2012)) that can act as ``bulk'' ENZ material. The structure consists of a multilayer stack composite of alternating nanoscale thickness layers of Ag and TiO2. Optical spectroscopy shows transmission and absorption response is consistent with ENZ behavior and matches well with simulations. We will discuss the criteria necessary in the design and practical implementation of the composite that better approximates a homogenous effective medium including techniques to minimize the effect of optical losses to boost transmission. The potential for hosting gain media in the gratings to address losses and emission control will be discussed. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Dual wavelength demultiplexer based on metal–insulator–metal plasmonic circular ring resonators

    Science.gov (United States)

    Rakhshani, Mohammad Reza; Mansouri-Birjandi, Mohammad Ali

    2016-06-01

    In this paper, we investigated a plasmonic demultiplexer structure based on Metal-Insulator-Metal (MIM) waveguides and circular ring resonators. In order to achieve the structure of demultiplexer, two improved ring resonators have been used, which input and outputs MIM waveguides coupled by the ring resonators. To improve the transmission efficiency, a reflector was introduced at the right end of the input and output waveguides. By substituting the ring core with dielectric, the possibility of tuning the resonance wavelength of the proposed structure is illustrated, and the effect of various parameters such as radius and refractive index in transmission efficiency is studied in detail. This is useful for the design of integrated circuits in which it is not possible to extend the dimension of the ring resonator to attain a longer resonance wavelength. Transmission efficiency and quality factor of the single ring are 84% and 110, respectively. The simulation results using finite difference time domain method shows that in the proposed demultiplexer, which is composed of two rings with different core refractive indexes, the average power efficiency, bandwidth for each output channel, and the mean value of crosstalk are estimated 80%, 17 nm, and -26.95 dB, respectively. It is revealed that the significant features of the device are high transmission efficiency, low crosstalk, high-quality factor, and tunability for desired wavelengths. Therefore, the proposed structure has the potential to be applied in plasmonic integrated circuits.

  18. Fermi Level Pinning at the Interface of Molybdenum Based Chalcogenides and Metals

    Science.gov (United States)

    Moon, Inyong; Kim, Changsik; Nam, Seunggeol; Cho, Yeonchoo; Shin, Hyeon-Jin; Park, Seongjun; Yoo, Won Jong

    MoS2 and MoTe2 as the layered two dimensional materials have a sizable band gap suitable for future semiconductor application. However, their Schottky/ohmic contact engineering is found difficult to perform when varying contact metals due to Fermi level pinning at their metal interface. In this work, we investigate Schottky barrier heights at the interfaces formed between mono- or bi-layer MoS2, MoTe2 and Ti, Cr, Au, Pd. By varying temperature in the range from 200 to 500 K, we obtained their current - voltage and hysteresis characteristics so as to determine accurate Schottky barrier heights. It is found that the Pd contact with MoS2 and MoTe2 shows the most pronounced Fermi level pinning; -0.8 and -1.2 eV respectively. Furthermore, the pinned energy level is found to be located near the conduction band edge for MoS2 whereas it is near the intrinsic level for MoTe2. These results are found to be crucial to understand the Fermi level pinning mechanism of two dimensional materials, which can be used for developing future MoS2 and MoTe2 based transistor devices.

  19. Novel Two-Dimensional Mechano-Electric Generators and Sensors Based on Transition Metal Dichalcogenides

    Science.gov (United States)

    Yu, Sheng; Eshun, Kwesi; Zhu, Hao; Li, Qiliang

    2015-08-01

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, provide two-dimensional atomic crystals with semiconductor band gap. In this work, we present a design of new mechano-electric generators and sensors based on transition metal dichalcogenide nanoribbon PN junctions and heterojunctions. The mechano-electric conversion was simulated by using a first-principle calculation. The output voltage of MoS2 nanoribbon PN junction increases with strain, reaching 0.036 V at 1% strain and 0.31 V at 8% strain, much larger than the reported results. Our study indicates that the length, width and layer number of TMDC nanoribbon PN junctions have an interesting but different impact on the voltage output. Also, the results indicate that doping position and concentration only cause a small fluctuation in the output voltage. These results have been compared with the mechano-electric conversion of TMDC heterojunctions. Such novel mechano-electric generators and sensors are very attractive for applications in future self-powered, wearable electronics and systems.

  20. Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices

    Directory of Open Access Journals (Sweden)

    Paul C. McIntyre

    2012-07-01

    Full Text Available The literature on polar Gallium Nitride (GaN surfaces, surface treatments and gate dielectrics relevant to metal oxide semiconductor devices is reviewed. The significance of the GaN growth technique and growth parameters on the properties of GaN epilayers, the ability to modify GaN surface properties using in situ and ex situ processes and progress on the understanding and performance of GaN metal oxide semiconductor (MOS devices are presented and discussed. Although a reasonably consistent picture is emerging from focused studies on issues covered in each of these topics, future research can achieve a better understanding of the critical oxide-semiconductor interface by probing the connections between these topics. The challenges in analyzing defect concentrations and energies in GaN MOS gate stacks are discussed. Promising gate dielectric deposition techniques such as atomic layer deposition, which is already accepted by the semiconductor industry for silicon CMOS device fabrication, coupled with more advanced physical and electrical characterization methods will likely accelerate the pace of learning required to develop future GaN-based MOS technology.

  1. Hot Embossing of Zr-Based Bulk Metallic Glass Micropart Using Stacked Silicon Dies

    Directory of Open Access Journals (Sweden)

    Zhijing Zhu

    2015-01-01

    Full Text Available We demonstrated hot embossing of Zr65Cu17.5Ni10Al7.5 bulk metallic glass micropart using stacked silicon dies. Finite element simulation was carried out, suggesting that it could reduce the stress below 400 MPa in the silicon dies and enhance the durability of the brittle silicon dies when using varying load mode (100 N for 60 s and then 400 N for 60 s compared with using constant load mode (200 N for 120 s. A micropart with good appearance was fabricated under the varying load, and no silicon die failure was observed, in agreement with the simulation. The amorphous state of the micropart was confirmed by differential scanning calorimeter and X-ray diffraction, and the nanohardness and Young’s modulus were validated close to those of the as-cast BMG rods by nanoindentation tests. The results proved that it was feasible to adopt the varying load mode to fabricate three-dimensional Zr-based bulk metallic glass microparts by hot embossing process.

  2. Metal-organic frameworks as biosensors for luminescence-based detection and imaging

    Science.gov (United States)

    Miller, Sophie E.; Teplensky, Michelle H.; Moghadam, Peyman Z.; Fairen-Jimenez, David

    2016-01-01

    Metal-organic frameworks (MOFs), formed by the self-assembly of metal centres or clusters and organic linkers, possess many key structural and chemical features that have enabled them to be used in sensing platforms for a variety of environmentally, chemically and biomedically relevant compounds. In particular, their high porosity, large surface area, tuneable chemical composition, high degree of crystallinity, and potential for post-synthetic modification for molecular recognition make MOFs promising candidates for biosensing applications. In this review, we separate our discussion of MOF biosensors into two categories: quantitative sensing, focusing specifically on luminescence-based sensors for the direct measurement of a specific analyte, and qualitative sensing, where we describe MOFs used for fluorescence microscopy and as magnetic resonance imaging contrast agents. We highlight several key publications in each of these areas, concluding that MOFs present an exciting, versatile new platform for biosensing applications and imaging, and we expect to see their usage grow as the field progresses. PMID:27499847

  3. Development of Fe-based bulk metallic glasses as potential biomaterials.

    Science.gov (United States)

    Li, Shidan; Wei, Qin; Li, Qiang; Jiang, Bingliang; Chen, You; Sun, Yanfei

    2015-01-01

    A new series of Fe80-x-yCrxMoyP13C7 (x = 10, y = 10; x = 20, y = 5; x = 2 0, y = 10, all in at.%) bulk metallic glasses (BMGs) with the maximum diameter of 6mm have been developed for biomedical implant application by the combination method of fluxing treatment and J-quenching technique. The corrosion performance of the present Fe-based BMGs is investigated in both Hank's solution (pH = 7.4) and artificial saliva solution (pH = 6.3) at 37 °C by electrochemical measurements. The result indicates that the corrosion resistance of the present Fe-based BMGs in the above two simulated body solutions is much better than that of biomedical 316 L stainless steel (316 L SS), and approaching that of Ti6Al4V biomedical alloy (TC4). The concentrations of Fe, Ni and Cr ions released into the Hank's solution and artificial saliva solution from the present Fe-based BMGs after potentiodynamic polarization are significant lower than that released from 316 L SS. The biocompatibility of the present Fe-based BMGs is evaluated through the in vitro test of NIH3T3 cells culture in the present Fe-based BMG extraction media for 1, 3 and 5 days. The result indicates that the present Fe-based BMGs exhibit no cytotoxicity to NIH3T3 cells. And the test result of the cell adhesion and growth on the surface of the samples indicates that the present Fe-based BMGs exhibit the better cell viability compared with 316 L SS and TC4 biomedical alloys. The present Fe-based BMGs, especially Fe55Cr20Mo5P13C7 BMG, exhibit good glass formation ability, the high corrosion resistance and excellent biocompatibility, suggesting their promising potential as biomaterials. PMID:25953563

  4. Raman spectroscopy of metal/organic/inorganic heterostructures and pentacene-based OFETs

    Energy Technology Data Exchange (ETDEWEB)

    Paez-Sierra, Beynor Antonio

    2007-12-20

    In the framework of this thesis the interaction of In and Mg as top electrodes on two perylene derivates, 3,4,9,10-perylene tetracarbonic acid dianhydride (PTCDA) and dimethyl-3,4,9,10-perylene tetracarbonic acid diimide (DiMe-PTCDI) was studied. The metal-organic layers wer fabricated on S-passivated GaAs(100)2 x 1 substrates. As main characterization method the Raman spectroscopy was applied. The PTCDA/Mg form themselves by two stages of the metal growth, the first belongs to a new molecular structure for a Mg layer thinner than 2.8 nm, whereby the PTCA molecule loses the oxygen atom from the dianhydride group. The second belongs to the surface-amplified Raman spectrum of the preceding structure. In the case of the Mg/DiMe-PTCDI heterostructures the molecule is well conserved, whereby the Raman shift on the diimide group is not modified. Also this structure shows a coupling between discrete molecule eigenvibrations of 221 cm{sup -1}, 1291 cm{sup -1}, and 1606 cm{sup -1} of the organic material and the electronic continuum states of the Mg metal contact. The studies on the preceding heterostructures helped to analyze experimentally the channel formation of pentacene-based organic field-effect transistors. [German] Im Rahmen dieser Arbeit wurden die Wechselwirkung von In und Mg als Topelektroden auf zwei Perylen-Derivativen, 3,4,9,10-Perylentetracarbonsaure Dianhydrid (PTCDA) und Dimethyl-3,4,9,10- Perylentetracarbonsaure Diimid (DiMe-PTCDI) untersucht. Die Metal/organische Schichten wurden auf S-passivierten GaAs(100):2 x 1-Substraten hergestellt. Als Hauptcharakterisierungsmethode wird die Raman-Spektroskopie eingesetzt. Die PTCDA/Mg Strukturen formen sich durch zwei Stufen des Metallwachstum, die erste gehoert zu einer neuen molekularen Struktur fuer eine Mg Schicht duenner als 2.8 nm, wobei das PTCA-Molekuel das Sauerstoffatom von der Dianhydridgruppe verliert. Die zweite gehoert zu dem oberflaechenverstaerkten Ramanspektrum von der vorherigen Struktur. Im

  5. Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis.

    Science.gov (United States)

    Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-08-23

    Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings.

  6. Green and selective polycondensation methods toward linear sorbitol-based polyesters: enzymatic versus organic and metal-based catalysis.

    Science.gov (United States)

    Gustini, Liliana; Lavilla, Cristina; Janssen, William W T J; Martínez de Ilarduya, Antxon; Muñoz-Guerra, Sebastián; Koning, Cor E

    2016-08-23

    Renewable polyesters derived from a sugar alcohol (i.e., sorbitol) were synthesized by solvent-free polycondensation. The aim was to prepare linear polyesters with pendant hydroxyl groups along the polymer backbone. The performance of the sustainable biocatalyst SPRIN liposorb CALB [an immobilized form of Candida antarctica lipase B (CALB); SPRIN technologies] and the organo-base catalyst 1,5,7-triazabicyclo[4,4,0]dec-5-ene (TBD) were compared with two metal-based catalysts: dibutyl tin oxide (DBTO) and scandium trifluoromethanesulfonate [also known as scandium triflate, Sc(OTf)3 ]. For the four catalytic systems, the efficiency and selectivity for the incorporation of sorbitol were studied, mainly using (13) C and (31) P NMR spectroscopies, whereas side reactions, such as ether formation and dehydration of sorbitol, were evaluated using MALDI-TOF-MS. Especially the biocatalyst SPRIN liposorb CALB succeeded in incorporating sorbitol in a selective way without side reactions, leading to close-to-linear polyesters. By using a renewable hydroxyl-reactive curing agent based on l-lysine, transparent and glossy poly(ester urethane) networks were successfully synthesized offering a tangible example of bio-based coatings. PMID:27406029

  7. Fiber-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-09-06

    A fiber-based adsorbent and a related method of manufacture are provided. The fiber-based adsorbent includes polymer fibers with grafted side chains and an increased surface area per unit weight over known fibers to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. The polymer fibers include a circular morphology in some embodiments, having a mean diameter of less than 15 microns, optionally less than about 1 micron. In other embodiments, the polymer fibers include a non-circular morphology, optionally defining multiple gear-shaped, winged-shaped or lobe-shaped projections along the length of the polymer fibers. A method for forming the fiber-based adsorbents includes irradiating high surface area polymer fibers, grafting with polymerizable reactive monomers, reacting the grafted fibers with hydroxylamine, and conditioning with an alkaline solution. High surface area fiber-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  8. Voltage-Controlled Magnetic Anisotropy in Heavy Metal/Ferromagnet/Insulator-Based Structures

    Science.gov (United States)

    Li, Xiang

    Electric-field assisted writing of magnetic memory that exploits the voltage-controlled magnetic anisotropy (VCMA) effect offers a great potential for high density and low power applications. Magnetoelectric Random Access Memory (MeRAM) has been investigated due to its lower switching current, compared with traditional current-controlled devices utilizing spin transfer torque (STT) or spin-orbit torque (SOT) for magnetization switching. It is of great promise to integrate MeRAM into the advanced CMOS back-end-of-line (BEOL) processes for on-chip embedded applications, and enable non-volatile electronic systems with low static power dissipation and instant-on operation capability. In this thesis, different heavy metal|ferromagnet|insulator-based structures are grown by magnetron sputtering to improve the VCMA effect over the traditional Ta|CoFeB|MgO-based structures. We also established an accurate measurement technique for VCMA characterization. An improved thermal annealing stability of VCMA over 400°C is achieved in Mo|CoFeB|MgO-based structures. In addition, we observed a weak CoFeB thickness dependence of both VCMA coefficient and interfacial perpendicular magnetic anisotropy (PMA) in both Ta|CoFeB|MgO and Mo|CoFeB|MgO-based structures.

  9. Fuzzy logic based sensor performance evaluation of vehicle mounted metal detector systems

    Science.gov (United States)

    Abeynayake, Canicious; Tran, Minh D.

    2015-05-01

    Vehicle Mounted Metal Detector (VMMD) systems are widely used for detection of threat objects in humanitarian demining and military route clearance scenarios. Due to the diverse nature of such operational conditions, operational use of VMMD without a proper understanding of its capability boundaries may lead to heavy causalities. Multi-criteria fitness evaluations are crucial for determining capability boundaries of any sensor-based demining equipment. Evaluation of sensor based military equipment is a multi-disciplinary topic combining the efforts of researchers, operators, managers and commanders having different professional backgrounds and knowledge profiles. Information acquired through field tests usually involves uncertainty, vagueness and imprecision due to variations in test and evaluation conditions during a single test or series of tests. This report presents a fuzzy logic based methodology for experimental data analysis and performance evaluation of VMMD. This data evaluation methodology has been developed to evaluate sensor performance by consolidating expert knowledge with experimental data. A case study is presented by implementing the proposed data analysis framework in a VMMD evaluation scenario. The results of this analysis confirm accuracy, practicability and reliability of the fuzzy logic based sensor performance evaluation framework.

  10. All-optical modulator based on a ferrofluid core metal cladding waveguide chip

    International Nuclear Information System (INIS)

    We propose a novel optical intensity modulator based on the combination of a symmetrical metal cladding optical waveguide (SMCW) and ferrofluid, where the ferrofluid is sealed in the waveguide to act as a guiding layer. The light matter interaction in the ferrofluid film leads to the formation of a regular nanoparticle pattern, which changes the phase match condition of the ultrahigh order modes in return. When two lasers are incident on the same spot of the waveguide chip, experiments illustrate all-optical modulation of one laser beam by adjusting the intensity of the other laser. A possible theoretical explanation may be due to the optical trapping and Soret effect since the phenomenon is considerable only when the control laser is effectively coupled into the waveguide. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Application of Two Cobalt-Based Metal-Organic Frameworks as Oxidative Desulfurization Catalysts.

    Science.gov (United States)

    Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali

    2015-12-01

    Two new porous cobalt-based metal-organic frameworks, [Co6(oba)5(OH)2(H2O)2(DMF)4]n · 5DMF (TMU-10) and [Co3(oba)3(O) (Py)0.5] n · 4DMF · Py (TMU-12) have been synthesized by solvothermal method using a nonlinear dicarboxylate ligand. Under mild reaction conditions, these compounds exhibited good catalytic activity and reusability in oxidative desulfurization (ODS) reaction of model oil which was prepared by dissolving dibenzothiophene (DBT) in n-hexane. FT-IR and Mass analysis showed that the main product of DBT oxidation is its corresponding sulfone, which was adsorbed on the surfaces of catalysts. The activation energy was obtained as 13.4 kJ/mol. PMID:26571113

  12. Coal fly ash-slag-based geopolymers: microstructure and metal leaching.

    Science.gov (United States)

    Izquierdo, Maria; Querol, Xavier; Davidovits, Joseph; Antenucci, Diano; Nugteren, Henk; Fernández-Pereira, Constantino

    2009-07-15

    This study deals with the use of fly ash as a starting material for geopolymeric matrices. The leachable concentrations of geopolymers were compared with those of the starting fly ash to evaluate the retention of potentially harmful elements within the geopolymer matrix. Geopolymer matrices give rise to a leaching scenario characterised by a highly alkaline environment, which inhibits the leaching of heavy metals but may enhance the mobilization of certain oxyanionic species. Thus, fly ash-based geopolymers were found to immobilize a number of trace pollutants such as Be, Bi, Cd, Co, Cr, Cu, Nb, Ni, Pb, Sn, Th, U, Y, Zr and rare earth elements. However, the leachable levels of elements occurring in their oxyanionic form such as As, B, Mo, Se, V and W were increased after geopolymerization. This suggests that an optimal dosage, synthesis and curing conditions are essential in order to obtain a long-term stable final product that ensures an efficient physical encapsulation.

  13. Fly ash based geopolymer thin coatings on metal substrates and its thermal evaluation.

    Science.gov (United States)

    Temuujin, Jadambaa; Minjigmaa, Amgalan; Rickard, William; Lee, Melissa; Williams, Iestyn; van Riessen, Arie

    2010-08-15

    Class F fly ash based Na-geopolymer formulations have been applied as fire resistant coatings on steel. The main variables for the coating formulations were Si: Al molar and water: cement weight ratios. We have determined that the adhesive strength of the coatings strongly depend on geopolymer composition. The ease with which geopolymer can be applied onto metal surfaces and the resultant thickness depend on the water content of the formulation. Adhesive strengths of greater than 3.5 MPa have been achieved on mild steel surfaces for compositions with Si:Al of 3.5. Microstructure evolution and thermal properties of the optimised coating formulations show that they have very promising fire resistant characteristics.

  14. Mechanical Testing of Iron based Bulk Metallic Glasses and Their Suitability for Force Sensors

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available Thermal, mechanical and magnetic properties of (Fe-Co-(Zr/Si-Nb-B alloys in the form of rapidly quenched rods of 1.2 mm in diameter were studied. The as-cast alloys with Zr were crystalline, and the alloys with Si were amorphous. Microhardness measured at 50 g load is from 500 to 2000 HV (the less cobalt, the higher, and the compressive strength reaches nearly 4000 MPa for Si doped alloys and 2000 MPa for Zr doped ones. This substantial difference may be attributed to partial crystallinity of the latter alloys. The magnetic hysteresis loops of fully amorphous rods measured under compression, exhibited a clear dependence of permeability vs. stress, proving that iron-based bulk metallic glasses may be promising materials for magnetoelastic force sensors.

  15. Position control of ionic polymer metal composite actuator based on neuro-fuzzy system

    Science.gov (United States)

    Nguyen, Truong-Thinh; Yang, Young-Soo; Oh, Il-Kwon

    2009-07-01

    This paper describes the application of Neuro-Fuzzy techniques for controlling an IPMC cantilever configuration under water to improve tracking ability for an IPMC actuator. The controller was designed using an Adaptive Neuro-Fuzzy Controller (ANFC). The measured input data based including the tip-displacements and electrical signals have been recorded for generating the training in the ANFC. These data were used for training the ANFC to adjust the membership functions in the fuzzy control algorithm. The comparison between actual and reference values obtained from the ANFC gave satisfactory results, which showed that Adaptive Neuro-Fuzzy algorithm is reliable in controlling IPMC actuator. In addition, experimental results show that the ANFC performed better than the pure fuzzy controller (PFC). Present results show that the current adaptive neuro-fuzzy controller can be successfully applied to the real-time control of the ionic polymer metal composite actuator for which the performance degrades under long-term actuation.

  16. Crystallization of a Ti-based Bulk Metallic Glass Induced by Electropulsing Treatment

    Institute of Scientific and Technical Information of China (English)

    Yong-jiang HUANG; Xiang CHENG; Hong-bo FAN; Shi-song GUAN; Zhi-liang NING; Jian-fei SUN

    2016-01-01

    The effect of electropulsing treatment (EPT)on the microstructure of a Ti-based bulk metallic glass (BMG)has been studied.The maximum current density applied during EPT can exert a crucial role on tuning the microstructure of the BMG.When the maximum current density is no more than 2 720 A/mm2 ,the samples retains amorphous nature,whereas,beyond that,crystalline phases precipitate from the glassy matrix.During EPT,the maximum temperature within the samples EPTed at the maximum current densities larger than 2 720 A/mm2 is higher than the crystallization temperature of the BMG,leading to the crystallization event.

  17. A biomimetic jellyfish robot based on ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    A biomimetic jellyfish robot based on ionic polymer metal composite actuators was fabricated and activated to mimic real locomotive behavior with pulse and recovery processes. To imitate the curved shape of the jellyfish, a thermal treatment was applied to obtain a permanent initial deformation of a hemispherical form. The bio-inspired input signal was generated for mimicking real locomotion of the jellyfish. The vertical floating displacement and the thrust force of the biomimetic jellyfish robot under various input signals were measured and compared. The present results show that the bio-inspired electrical input signal with pulse-recovery process generates much higher floating velocity of the biomimetic jellyfish robot in comparison with pure sinusoidal excitations. The curved shape of the IPMC actuator through thermal treatments can be successfully applied to mimic the real biomimetic robots with smooth curves

  18. Removal of heavy metals from aqueous solution by adsorption on biomass based adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Sultan; Azmatullah, M. [Malakand Univ., Chakdara, Dir (Pakistan). Dept. of Chemistry; Bangash, Fazlullah Khan [Peshawar Univ. (Pakistan). Inst. of Chemical Sciences; Amin, Noor-ul [Abdul Wali Khan Univ., Mardan (Pakistan). Dept. of Chemistry

    2013-09-15

    Removal of heavy metals i.e. Zn{sup 2+} and Cd{sup 2+} from aqueous solution by adsorption onto biomass based adsorbent was investigated as a function of time and different concentrations. The sample was characterized by FTIR, EDS, BET surface area and Zeta potential technique, which was reported earlier. Adsorption kinetics of Zn{sup 2+} and Cd{sup 2+} was tested by first order kinetics, 'Elovich and parabolic diffusion kinetic equations which show that the process of adsorption is diffusion controlled process. The rate of adsorption was high at high adsorption temperature. Thermodynamic parameters like {Delta}H , {Delta}S and {Delta}G were calculated from the kinetic data. The negative value of Gibbs free energy ({Delta}G ) shows the spontaneous nature of the process. Freundlich, Langmuir, Temkin isotherms and distribution coefficient were found fit to the adsorption isotherm data. (orig.)

  19. The structural relaxation effect on the nanomechanical properties of a Ti-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongjiang, E-mail: yjhuang@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Zhou, Binjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chiu, YuLung, E-mail: y.chiu@bham.ac.uk [School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Fan, Hongbo [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Wang, Dongjun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Ministry of Education, Harbin 150001 (China); Sun, Jianfei; Shen, Jun [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2014-09-01

    Highlights: • The effect of structural relaxation on the nano-mechanical behaviors of BMGs is studied. • The indent load at first pop-in event, the hardness and Young’s modulus are enhanced after annealing. • The differences in nanomechanical properties can be attributed to their different atomic structure. - Abstract: Indentation experiments were performed on the as-cast and the annealed Ti-based bulk metallic glass samples to investigate the effect of structural relaxation on the nanomechanical behaviors of the material. The onset of pop-in event, Young’s modulus, and hardness were found to be sensitive to the structural relaxation of the testing material. The difference in nanomechanical properties between the as-cast and annealed BMG samples is interpreted in terms of free volume theory.

  20. Fabrication of directional solidification components of nickel-base superalloys by laser metal forming

    Institute of Scientific and Technical Information of China (English)

    Liping Feng; Weidong Huang; Darong Chen; Xin Lin; Haiou Yang

    2004-01-01

    Straight plates, hollow columns, ear-like blade tips, twist plates with directional solidification microstructure made of Rene 95 superalloys were successfully fabricated on Nickel-base superalloy and DD3 substrates, respectively. The processing conditions for production of the parts with corresponding shapes were obtained. The fabrication precision was high and the components were compact. The solidification microstructure of the parts was analyzed by optical microscopy. The results show that the solidification microstructure is composed of columnar dendrites, by epitaxial growth onto the directional solidification substrates. The crystallography orientation of the parts was parallel to that of the substrates. The primary arm spacing was about 10 μm, which is in the range of superfine dendrites, and the secondary arm was small or even degenerated. It is concluded that the laser metal forming technique provides a method to manufacture directional solidification components.