WorldWideScience

Sample records for base metal complexes

  1. Antioxidant activity of bovine serum albumin binding amino acid Schiff-bases metal complexes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Glutamic acid-salicylaldehyde Schiff-base metal complexes are bound into bovine serum albumin (BSA), which afforded BSA binding Schiff-base metal complexes (BSA-SalGluM, M=Cu, Co, Ni, Zn). The BSA binding metal complexes were characterized by UV-vis spectra and Native PAGE. It showed that the protein structures of BSA kept after coordinating amino acid Schiff-bases metal complexes. The effect of the antioxidant activity was investigated. The results indicate that the antioxidant capacity of BSA increased more than 10 times after binding Schiff-base metal complexes.

  2. Stacking interaction in metal complexes with compositions of DNA and heteroaromatic N-bases

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The current development in the intramolecular aromatic-ring stacking i nteractions in the complexes with compositions of DNA and heteroaromatic N-bases has been reviewed to a great extent, especially the significant contributions i n several important systems about ternary mixed-ligand complexes, including nucl eotide-metal ion-po- lyaromatic amine, amino acid-metal ion-polyaromatic amine, nucleotide-metal ion-pyridine-like aromatic amine, nucleotide-metal ion-amino ac id, nucleotide-metal ion-nucleic acid base, nucleic acid base-metal ion, and the important factors affecting the intramolecular aromatic-ring stacking interacti ons in the complexes. Based on the study of stacking interaction in the complexe s, the mechanism of interaction between DNA molecules and complexes of heteroaro matic N-bases has been established, which is crucial for the design and synthesi s of the complexes acting as molecular devices of DNA.

  3. Molecular Split-Ring Resonators Based on Metal String Complexes

    CERN Document Server

    Shen, Yao; Ai, Qing; Peng, Shie-Ming; Jin, Bih-Yaw

    2014-01-01

    Metal string complexes or extended metal atom chains (EMACs) belong to a family of molecules that consist of a linear chain of directly bonded metal atoms embraced helically by four multidentate organic ligands. These four organic ligands are usually made up of repeating pyridyl units, single-nitrogen-substituted heterocyclic annulenes, bridged by independent amido groups. Here, in this paper, we show that these heterocyclic annulenes are actually nanoscale molecular split-ring resonators (SRRs) that can exhibit simultaneous negative electric permittivity and magnetic permeability in the UV-Vis region. Moreover, a monolayer of self-assembled EMACs is a periodic array of molecular SRRs which can be considered as a negative refractive index material. In the molecular scale, where the quantum-size effect is significant, we apply the tight-binding method to obtain the frequency-dependent permittivity and permeability of these molecular SRRs with their tensorial properties carefully considered.

  4. Synthesis of Chiral Metal Complexes of Unsymmetrical Schiff Bases

    Institute of Scientific and Technical Information of China (English)

    SONG; Bo

    2001-01-01

    Recently, in asymmetric catalyst research the great developments of chiral Salen complexes have been made, but the report on unsymmetrical schiff bases is deficient. The unsymmetrical schiff bases complexes are an effective system in catalytically selective Olefin-epoxidations1. At the same time, unsymmetrical schiff bases was immobilized onto polymer supports for heterogenization2. The potential benefits of the catalyst include facilitation of catalyst separation from reagents, simplification of methods for catalyst recycle, and the possible adaptation of the immobilized catalyst to continuous-flow processes. A series of new unsymmetrical schiff bases was synthesized to study the relations between unsymmetry and enantioselectivity and select better catalyst. The following is the route:  ……

  5. Photogalvanic and photovoltaic effects in systems based on metal complexes of Schiff bases

    Science.gov (United States)

    Smirnova, E. A.; Besedina, M. A.; Karushev, M. P.; Vasil'ev, V. V.; Timonov, A. M.

    2016-05-01

    The nature of the processes that occur when electrodes modified with complexes [M(Schiff)] (M = Ni, Pd, Pt; Schiff denotes four-dentate Schiff base ligands) are irradiated with visible light for the potential use of these electrodes in photoelectrochemical energy conversion devices is considered. The factors responsible for shifts in the electrode potential upon photoexcitation, i.e., the nature of the metal site, the nature of the substituents in the sensitizer, and the oxygen concentration are discussed. Tentative mechanisms of the photovoltaic effects observed for conventional and semiconductor electrodes modified with [M(Schiff)] complexes are determined.

  6. From Metal String Complexes to Metal Wires

    Institute of Scientific and Technical Information of China (English)

    PENG; SheMing

    2001-01-01

    Our efforts to extend the metal number from dinuclear metal complexes to linear oligonuclear metal complexes with all-syn form of oligo-( α-pyridyl)amido ligands are successful. The oligonuclear complexes are divided into two systems according their MM bond strength, one is the oligonickel( Ⅱ ) complexes without M-M bond, the other is the oligochromium(Ⅱ) and cobalt(H) complexes with a strong M-M bond. Their structures and magnetic behaviors for various metal complexes with specific metal numbers are summarized. The potential application of these metal complexes as a molecular metal wire is discussed by the band structures of hypothetical onedinensional metal strings based on the polynuclear Cr, Co and Ni complexes. Moreover, self-assembled monolayers of n-alkanethiols are employed as a two-dinensional matrix to isolate the metal string complexes, which exhibit protrusions under the measurements of scanning tunneling microscopy (STM) imaging. The topographic STM images reveal that the protruding features for tricobalt and trichromium complexes are, respectively, 0.3 nm and 0.6 nm higher than that of trinickel complex. The increasing trend in conductivity is consistent with their bond orders, obtained from qualitative EHMO calculations.  ……

  7. From Metal String Complexes to Metal Wires

    Institute of Scientific and Technical Information of China (English)

    PENG SheMing

    2001-01-01

    @@ Our efforts to extend the metal number from dinuclear metal complexes to linear oligonuclear metal complexes with all-syn form of oligo-( α-pyridyl)amido ligands are successful. The oligonuclear complexes are divided into two systems according their MM bond strength, one is the oligonickel( Ⅱ ) complexes without M-M bond, the other is the oligochromium(Ⅱ) and cobalt(H) complexes with a strong M-M bond. Their structures and magnetic behaviors for various metal complexes with specific metal numbers are summarized. The potential application of these metal complexes as a molecular metal wire is discussed by the band structures of hypothetical onedinensional metal strings based on the polynuclear Cr, Co and Ni complexes. Moreover, self-assembled monolayers of n-alkanethiols are employed as a two-dinensional matrix to isolate the metal string complexes, which exhibit protrusions under the measurements of scanning tunneling microscopy (STM) imaging. The topographic STM images reveal that the protruding features for tricobalt and trichromium complexes are, respectively, 0.3 nm and 0.6 nm higher than that of trinickel complex. The increasing trend in conductivity is consistent with their bond orders, obtained from qualitative EHMO calculations.

  8. Catalytic hydrogenation using complexes of base metals with tridentate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Kalyan V.; Zhang, Guoqi; Hanson, Susan K.

    2016-09-06

    Complexes of cobalt and nickel with tridentate ligand PNHP.sup.R are effective for hydrogenation of unsaturated compounds. Cobalt complex [(PNHP.sup.Cy)Co(CH.sub.2SiMe.sub.3)]BAr.sup.F.sub.4 (PNHP.sup.Cy=bis[2-(dicyclohexylphosphino)ethyl]amine, BAr.sup.F.sub.4=B(3,5-(CF.sub.3).sub.2C.sub.6H.sub.3).sub.4)) was prepared and used with hydrogen for hydrogenation of alkenes, aldehydes, ketones, and imines under mild conditions (25-60.degree. C., 1-4 atm H.sub.2). Nickel complex [(PNHP.sup.Cy)Ni(H)]BPh.sub.4 was used for hydrogenation of styrene and 1-octene under mild conditions. (PNP.sup.Cy)Ni(H) was used for hydrogenating alkenes.

  9. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    Science.gov (United States)

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  10. Some Transition Metal Complexes of NO Type Schiff Base: Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    Erdal CANPOLAT

    2016-04-01

    Full Text Available Metal complexes of Schiff base ligand (5-bromo-3-methoxysalicyliden-p-iminoacetophenone oxime derived from 5-bromo-3-methoxsalicylaldehyde and p-aminoacetophenoneoxime is reported. Schiff base was found to be bidentate ligand involving the imino nitrogen and carboxyl oxygen atoms in the complexes. Metal to ligand ratio were found to be 1:2 for all of the complexes. Co(II, Ni(II, and Zn(II complexes have been found tetrahedral geometry and Cu(II complex has been found four coordinated geometry. The complexes are found to have the formulae [M(L2]. The compounds obtained have been characterized by their elemental analyses, IR, 1H-NMR, 13C-NMR, UV spectra, magnetic susceptibility and thermogravimetric analyses (TGA.

  11. Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies

    Indian Academy of Sciences (India)

    N Raman; J Dhaveethu Raja; A Sakthivel

    2007-07-01

    A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and -phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.

  12. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    Science.gov (United States)

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  13. A review on versatile applications of transition metal complexes incorporating Schiff bases

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abu-Dief

    2015-06-01

    Full Text Available Schiff bases and their complexes are versatile compounds synthesized from the condensation of an amino compound with carbonyl compounds and widely used for industrial purposes and also exhibit a broad range of biological activities including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties. Many Schiff base complexes show excellent catalytic activity in various reactions and in the presence of moisture. Over the past few years, there have been many reports on their applications in homogeneous and heterogeneous catalysis. The high thermal and moisture stabilities of many Schiff base complexes were useful attributes for their application as catalysts in reactions involving at high temperatures. The activity is usually increased by complexation therefore to understand the properties of both ligands and metal can lead to the synthesis of highly active compounds. The influence of certain metals on the biological activity of these compounds and their intrinsic chemical interest as multidentate ligands has prompted a considerable increase in the study of their coordination behaviour. Development of a new chemotherapeutic Schiff bases and their metal complexes is now attracting the attention of medicinal chemists. This review compiles examples of the most promising applied Schiff bases and their complexes in different areas.

  14. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications

    Directory of Open Access Journals (Sweden)

    Antonella Gentile

    2016-06-01

    Full Text Available Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing. The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic

  15. Antibacterial Evaluation of Some Schiff Bases Derived from 2-Acetylpyridine and Their Metal Complexes

    OpenAIRE

    Thong Kwai Lin; Chai Lay Ching; Cher Lin Ooi; Hadi, A. Hamid A.; Mahmood Ameen Abdulla; Nura Suleiman Gwaram; Hapipah Mohd Ali; Hamid Khaledi

    2012-01-01

    A series of Schiff bases derived from 2-acetylpyridne and their metal complexes were characterized by elemental analysis, NMR, FT-IR and UV-Vis spectral studies. The complexes were screened for anti-bacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumanni (AC), Klebsiella pneumonie (KB) and Pseudomonas aeruginosa (PA) using the disc diffusion and micro broth dilutio...

  16. Antibacterial evaluation of some Schiff bases derived from 2-acetylpyridine and their metal complexes.

    Science.gov (United States)

    Gwaram, Nura Suleiman; Ali, Hapipah Mohd; Khaledi, Hamid; Abdulla, Mahmood Ameen; Hadi, A Hamid A; Lin, Thong Kwai; Ching, Chai Lay; Ooi, Cher Lin

    2012-01-01

    A series of Schiff bases derived from 2-acetylpyridne and their metal complexes were characterized by elemental analysis, NMR, FT-IR and UV-Vis spectral studies. The complexes were screened for anti-bacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA), Acinetobacter baumanni (AC), Klebsiella pneumonie (KB) and Pseudomonas aeruginosa (PA) using the disc diffusion and micro broth dilution assays. Based on the overall results, the complexes showed the highest activities against MRSA while a weak antibacterial activity was observed against A. baumanii and P. aeruginosa. PMID:22609786

  17. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  18. Spectroscopic studies and biological activity of some transition metal complexes of unusual Schiff base

    Science.gov (United States)

    Abu Al-Nasr, Ahmad K.; Ramadan, Ramadan M.

    2013-03-01

    Unusual Schiff base ligand, 4-ethanimidoyl-6-[(1E)-N-(2-hydroxy-4-methylphenyl)ethanimidoyl]benzene-1,3-diol, L, was synthesized via catalytic process involving the interaction of some metal ions with a macrocyclic Schiff base (MSB). The transition metal derivatives [ML(H2O)4](NO3)3, M = Cr(III) and Fe(III), [NiL(H2O)4](NO3)2, [ML(H2O)2](NO3)2, M = Zn(II) and Cd(II), [Cl2Pd(μ-Cl)2PdL], [PtL(Cl)2] and [PtL(Cl)4] were also synthesized from the corresponding metal species with L. The Schiff bases and complexes were characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopy. The crystal structure of L was determined by X-ray analysis. The spectroscopic studies revealed a variety of structure arrangements for the complexes. The biological activities of L and metal complexes against the Escherchia coli as Gram-negative bacteria and Staphylococcus aureus as Gram-positive bacteria, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of [PtL(Cl)2] complex, a cis-platin analogous, was checked as an antitumor agent on two breast cancer cell lines (MCF7 and T47D) and human liver carcinoma cell line (HepG2).

  19. Conducting metal dithiolate complexes

    DEFF Research Database (Denmark)

    Underhill, A. E.; Ahmad, M. M.; Turner, D. J.;

    1985-01-01

    Further work on the chemical composition of the one-dimensional metallic metal dithiolene complex Li-Pt(mnt) is reported. The electrical conduction and thermopower properties of the nickel and palladium complexes are reported and compared with those of the platinum compound...

  20. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    Science.gov (United States)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  1. Tridentate Schiff base (ONO) transition metal complexes: Synthesis, crystal structure, spectroscopic and larvicidal studies

    Indian Academy of Sciences (India)

    SUNDARAMURTHY SANTHA LAKSHMI; KANNAPPAN GEETHA; P MAHADEVI

    2016-07-01

    A series of four new Schiff base transition metal complexes [Co(II), Ni(II), Cu(II) and Zn(II)] derived from N-(salicylidene)-L-alanine and N,N,N',N'-tetramethylethylene-1,2-diamine (tmen) were designed, synthesized and tested for larvicidal activity against Culex quinquefasciatus, the southern house mosquito, which is the primary vector of St. Louis encephalitis virus and West Nile virus. All the complexes were characterized by physicochemical and spectral studies such as UV-Visible, FTIR, and EPR. The X-ray crystallographic analysis of Ni(II) complex revealed that, Ni(II) cation is surrounded by nitrogen and oxygen atoms from the Schiff base ligand, the oxygen atom of a water molecule, and two nitrogen atoms from tmen. Intermolecularhydrogen bonding stabilizes the Ni(II) complex. Results indicated that all the complexes exhibited higher mosquito larvicidal activity against C. quinquefasciatus.

  2. Synthesis and Characterization of Dinuclear Metal Complexes Stabilized by Tetradentate Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Eid A. Abdalrazaq

    2010-01-01

    Full Text Available Problem statement: The synthesis, spectroscopic properties and theoretical calculations of acetylacetonimine and acetylacetanilidimine Schiff-base ligands, L1H and L2H, respectively and their dinuclear complexes of the type [M2LnCl2(H2O2], where n = 1 or 2, M = Co(II, Ni(II, Cu(II, Zn(II and Cd(II are described. Approach: The new tetradentate dianion Schiff base ligand which was used as stabilizers for the complexes were prepared by condensation of hydrazine with acetylacetone or acetylacetanilide. The dinuclear complexes of theses ligands were synthesized by treating an ethanolic solution of the prepared ligand with hydrated metal salts in molar ratio of 1:2 (L:M. Results: The ligand and their dinuclear metal complexes were characterized by CHN elemental analysis, FT-IR, UV-Vis, 1HNMR (for the ligands, conductivity, magnetic susceptibility and theoretical calculation by using MM2 modeling program. Conclusion: The reaction of these ligands in a 1:2 (L:M afford dinuclear M(II metal complexes with tetrahedral arrangement around Co(II, Zn(II and Cd(II and square planar around Ni(II and Cu(II.

  3. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  4. SYNTHESIS AND PROPERTIES OF METAL COMPLEXES OF β-DIKETONE BASED SIDE CHAIN LIQUID CRYSTAL POLYSILOXANE

    Institute of Scientific and Technical Information of China (English)

    WU Fuzhou; ZHANG Rongben; JIANG Yingyan

    1991-01-01

    A new type of metal coordinated liquid crystalline polymers has been synthesized by complexation of metal ions with β-diketone based side chain liquid crystal polysiloxane (DKLCP).The complexation of copper ions with DKLCP greatly increases the phase transition temperature Tk from crystalline state to liquid crystalline state and Tcl from LC to isotropic state and makes the range of phase transition △T(△T= Tcl- Tk ) widened. These complexes are soluble in common organic solvents. However, the incorporation of europium ions into DKLCP molecules gives rise to reduction in liquid crystallinity and crosslinking in some cases. The DKLCP coordinated with suitable amount of Eu ions can show good liquid crystallinity and fluorescent property.

  5. Antibacterial Evaluation of Some Schiff Bases Derived from 2-Acetylpyridine and Their Metal Complexes

    Directory of Open Access Journals (Sweden)

    Thong Kwai Lin

    2012-05-01

    Full Text Available A series of Schiff bases derived from 2-acetylpyridne and their metal complexes were characterized by elemental analysis, NMR, FT-IR and UV-Vis spectral studies. The complexes were screened for anti-bacterial activity against Methicillin-resistant Staphylococcus aureus (MRSA, Acinetobacter baumanni (AC, Klebsiella pneumonie (KB and Pseudomonas aeruginosa (PA using the disc diffusion and micro broth dilution assays. Based on the overall results, the complexes showed the highest activities against MRSA while a weak antibacterial activity was observed against A. baumanii and P. aeruginosa.

  6. Metal based synthetic routes to heavy alkaline earth aryloxo complexes involving ligands of moderate steric bulk.

    Science.gov (United States)

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Guino-o, Marites; Ruhlandt-Senge, Karin

    2009-07-01

    Treatment of an alkaline earth metal (Ca, Sr, Ba) with 2,4,6-trimethylphenol (HOmes) at elevated temperatures in the presence of mercury under solvent-free conditions, followed by extraction of the reaction mixture with 1,2-dimethoxyethane (dme), afforded dinuclear alkaline earth aryloxo complexes [Ae2(Omes)4(dme)4] (Ae = Ca 1, Sr 3, Ba 6). Extraction of the Ca metal and HOmes reaction mixture with thf afforded [Ca3(Omes)6(thf)] 2. In contrast, redox transmetallation ligand exchange reactions between an alkaline earth metal, diphenylmercury and HOmes in dme yielded solely 1 for Ca metal, a mixture of 3 and the methoxide bridged cage [Sr5(Omes)5(OMe)5(dme)4] x 2dme 4 for Sr metal, and solely [Ba5(Omes)5(OMe)5(dme)4] x dme 7 for Ba metal. The methoxide ligands originate from the C-O activation of the dme solvent. Treatment of liquid ammonia activated Sr or Ba metal with HOmes in thf afforded the linear species [Ae3(Omes)6(thf)6] (Ae = Sr 5, Ba 8), and 8 was also obtained from barium metal and HOmes in refluxing thf. The structures of 1 and 3, determined by X-ray crystallography, consist of two six coordinate Ae metal atoms, to each of which is bound a terminal aryloxide ligand, two bridging aryloxide ligands, and chelating and unidentate dme ligands. The structures of 4 and 7 contain five Ae metal atoms arranged on the vertices of a distorted square based pyramid. The Ae atoms are linked by four mu3-OMe ligands and a mu4-OMe ligand. Four bridging aryloxide ligands and four chelating dme ligands complete the coordination spheres of the four seven coordinate Ae atoms at the base of the pyramid, and a terminal aryloxide ligand is bound to the five coordinate apical Ae atom. The structures of 5 and 8 consist of a trinuclear linear array of Ae metal atoms, and contain solely bridging aryloxide ligands. Three thf ligands are bound to each terminal Ae atom, giving all Ae atoms a coordination number of six. PMID:19662279

  7. Synthesis, Spectroscopic Characterization and Biological Activities of Transition Metal Complexes Derived from a Tridentate Schiff Base

    Directory of Open Access Journals (Sweden)

    J. Senthil Kumaran

    2013-01-01

    Full Text Available A new series of Cu (II, Ni (II, Co (II and Zn (II complexes have been synthesized from the Schiff base derived from 4-hydroxy-3-methoxybenzylidine-4-aminoantipyrine and 2-aminophenol. The structural features have been determined from their elemental analysis, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis, 1H-NMR, 13C-NMR and ESR spectral studies. The redox behavior of the copper complex has been studied by cyclic voltammetry. The data confirm that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes propose an octahedral geometry around the central metal ion. All the metal complexes with DNA structure were guided by the presence of inter-molecular C–H⋯O and C–H⋯N hydrogen bonds. The biological activity of the synthesized compounds were tested against the bacterial species such as Bacillus subtilis, Staphylococcus aureus, Proteus vulgaris and fungal species such as Candida albicans by the well-diffusion method.

  8. Metal effect on the supramolecular structure, photophysics, and acid-base character of trinuclear pyrazolato coinage metal complexes.

    Science.gov (United States)

    Omary, Mohammad A; Rawashdeh-Omary, Manal A; Gonser, M W Alexander; Elbjeirami, Oussama; Grimes, Tom; Cundari, Thomas R; Diyabalanage, Himashinie V K; Gamage, Chammi S Palehepitiya; Dias, H V Rasika

    2005-11-14

    Varying the coinage metal in cyclic trinuclear pyrazolate complexes is found to significantly affect the solid-state packing, photophysics, and acid-base properties. The three isoleptic compounds used in this study are [[3,5-(CF3)2Pz]M]3 with M = Cu, Ag, and Au (i.e., Cu3, Ag3, and Au3, respectively). They form isomorphous crystals and exist as trimers featuring nine-membered M3N6 rings with linear two-coordinate metal sites. On the basis of the M-N distances, the covalent radii of two-coordinate Cu(I), Ag(I), and Au(I) were estimated as 1.11, 1.34, and 1.25 angstroms, respectively. The cyclic [[3,5-(CF3)2Pz]M]3 complexes pack as infinite chains of trimers with a greater number of pairwise intertrimer M...M interactions upon proceeding to heavier coinage metals. However, the intertrimer distances are conspicuously short in Ag3 (3.204 angstroms) versus Au3 (3.885 angstroms) or Cu3 (3.813 angstroms) despite the significantly larger covalent radius of Ag(I). Remarkable luminescence properties are found for the three M3 complexes, as manifested by the appearance of multiple unstructured phosphorescence bands whose colors and lifetimes change qualitatively upon varying the coinage metal and temperature. The multiple emissions are assigned to different phosphorescent excimeric states that exhibit enhanced M...M bonding relative to the ground state. The startling luminescence thermochromic changes in crystals of each compound are related to relaxation between the different phosphorescent excimers. The trend in the lowest energy phosphorescence band follows the relative triplet energy of the three M(I) atomic ions. DFT calculations indicate that [[3,5-(R)2Pz]M]3 trimers with R = H or Me are bases with the relative basicity order Ag < Cu < Au while fluorination (R = CF3) renders even the Au trimer acidic. These predictions were substantiated experimentally by the isolation of the first acid-base adduct, [[Au3]2:toluene]infinity, in which a trinuclear Au(I) complex acts as

  9. Derivatives of phosphate Schiff base transition metal complexes: synthesis, studies and biological activity

    Science.gov (United States)

    El-Wahab, Z. H. Abd; El-Sarrag, M. R.

    2004-01-01

    We report the synthesis and structural characterization of series of tetra- and hexacoordinate metal chelate complexes of phosphate Schiff base ligands having the general composition LMX n·H 2O and L 2MX n (L=phosphate Schiff base ligand; M=Ag +, Mn 2+, Cu 2+, Zn 2+, Cd 2+, Hg 2+, or Fe 3+ and X=NO 3-, Br - or Cl -). The structure of the prepared compounds was investigated using elemental analysis, IR, 1H and 31P NMR, UV-vis, mass spectra, solid reflectance, magnetic susceptibility and conductance measurements as well as conductometric titration. In all the complexes studied, the ligands act as a chelate ligand with coordination involving the phosphateO-atom and the azomethineN-atom. IR, solid reflectance spectra and magnetic moment measurement are used to infer the structure and to illustrate the coordination capacity of ligand. IR spectra show the presence of coordinated nitrate and water molecule, the magnetic moments of all complexes show normal magnetic behavior and the electronic spectra of the metal complexes indicate a tetra- and octahedral structure for Mn 2+, octahedral structure of Fe 3+ and both square-planar and distorted octahedral structure for Cu 2+ complexes. Antimicrobial activity of the ligands and their complexes were tested using the disc diffusion method and the chosen strains include Staphylococcus aureus, Pseudomonas aereuguinosa, Klebsiella penumoniae, Escherichia coli, Microsporum canis, Trichophyton mentagrophyte and Trichophyton rubrum. Some known antibiotics are included for the sake of comparison and the chosen antibiotic are Amikacin, Doxycllin, Augmantin, Sulperazon, Unasyn, Septrin, Cefobid, Ampicillin, Nitrofurantion, Traivid and Erythromycin.

  10. Reversible photochromic system based on rhodamine B salicylaldehyde hydrazone metal complex.

    Science.gov (United States)

    Li, Kai; Xiang, Yu; Wang, Xiaoyan; Li, Ji; Hu, Rongrong; Tong, Aijun; Tang, Ben Zhong

    2014-01-29

    Photochromic molecules are widely applied in chemistry, physics, biology, and materials science. Although a few photochromic systems have been developed before, their applications are still limited by complicated synthesis, low fatigue resistance, or incomplete light conversion. Rhodamine is a class of dyes with excellent optical properties including long-wavelength absorption, large absorption coefficient, and high photostability in its ring-open form. It is an ideal chromophore for the development of new photochromic systems. However, known photochromic rhodamine derivatives, such as amides, exhibit only millisecond lifetimes in their colored ring-open forms, making their application very limited and difficult. In this work, rhodamine B salicylaldehyde hydrazone metal complex was found to undergo intramolecular ring-open reactions upon UV irradiation, which led to a distinct color and fluorescence change both in solution and in solid matrix. The complex showed good fatigue resistance for the reversible photochromism and long lifetime for the ring-open state. Interestingly, the thermal bleaching rate was tunable by using different metal ions, temperatures, solvents, and chemical substitutions. It was proposed that UV light promoted isomerization of the rhodamine B derivative from enol-form to keto-form, which induced ring-opening of the rhodamine spirolactam in the complex to generate color. The photochromic system was successfully applied for photoprinting and UV strength measurement in the solid state. As compared to other reported photochromic molecules, the system in this study has its advantages of facile synthesis and tunable thermal bleaching rate, and also provides new insights into the development of photochromic materials based on metal complex and spirolactam-containing dyes. PMID:24397593

  11. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    Science.gov (United States)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  12. Co (II and Zn (II Metal Complexes of Heterocyclic Schiff Bases: A Synthesis, Spectral and Antimicrobial Study

    Directory of Open Access Journals (Sweden)

    Sachin R. Joshi

    2014-09-01

    Full Text Available The Schiff bases have been synthesised by the reaction of Benzoinoxime primary ligand with heterocyclic compounds such as 2-aminothiazole (SL1 and 8-hydroxyquinoline (SL2 to form the secondary ligand, which than react with the metal halides to form complexes of Co (II and Zn (II. The elemental analysis data shows that the metal to ligand ratio in all Co (II simple is 1:2 for simple complexes and 1:2:2 for metal complex with oxime as a primary ligand and SL1 as a secondary ligand while it is 1:2:1 for metal complex with oxime as a primary ligand and SL3 as a secondary ligand whereas Zn (II complexes of mixed ligand exhibit the stoichiometry 1:2:2. The structural features have been determined from IR, UV-Vis, and XRD data. All the complex shows a distorted octahedral geometry to mononuclear Co (II complexes of mixed ligands, while square planner geometry to mononuclear Co (II complexes of oximes. Zn (II complexes of mixed ligands shows a distorted octahedral geometry, while square planner geometry to mononuclear Zn (II complexes of oximes. All the synthesised compounds were screened for antimicrobial activity.

  13. Catalytic Kinetics of the Schiff Base Metal Complexes Bearing Side Chain of Cyclic morpholine in Carboxylic Ester Hydrolysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Shu-Lin; LI,Min-Jiao; OU,Zhong-Wen; CHEN,Guo-Xu; LIU,Fu-An; XIE,Jia-Qing

    2007-01-01

    It has been reported that two Schiff base transition metal complexes bearing the side chain of the morpholine ring were synthesized and characterized, and two complexes with the same base agent but different metal ions were used as a simulant hydrolase in the catalytic hydrolysis of p-nitrophenyl picolinate in this paper. The mechanism of PNPP catalytic hydrolysis is proposed and supported by the results of the spectral analysis and the kinetic calculation. A kinetic mathematical model, applied to the calculation of the kinetic and thermodynamics parameters of PNPP catalytic hydrolysis, has been established on the foundation of the mechanism proposed. The result of the study shows that the two complexes have a good catalytic activity in PNPP catalytic hydrolysis, and the rate of the PNPP catalytic hydrolysis was increased with the increase of the pH values in the buffer solution and affected by the polarization effect of metal ion of the complexes.

  14. Synthesis, Spectroscopic, and Magnetic Studies of Mono- and Polynuclear Schiff Base Metal Complexes Containing Salicylidene-Cefotaxime Ligand

    OpenAIRE

    Anacona, J. R.; Johan Calvo; Almanza, Ovidio A.

    2013-01-01

    Metal complexes of a Schiff base ligand derived from cefotaxime and salicylaldehyde were prepared. The salicilydene-cefotaxime ligand (H2L) and mononuclear [M(L)] (M(II) = Co, Ni and Cu), dinuclear [Ag2(L)(OAc)2], and tetranuclear metal complexes [M4(L)(OH)6] (M(II) = Ni, Cu) were characterized on the basis of analytical, thermal, magnetic, and spectral studies (IR, UV-visible, 1H NMR, 13C NMR, and EPR). The electronic spectra of the complexes and their magnetic moments suggesttetrahedral geo...

  15. Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications.

    Science.gov (United States)

    Kareem, Abdul; Laxmi; Arshad, Mohammad; Nami, Shahab A A; Nishat, Nahid

    2016-07-01

    Schiff base ligand, (L), derived from condensation reaction of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, (curcumin), with pyridine-3-carboxamide, (nicotinamide), and its complexes of Co(II), Ni(II) and Cu(II) ions, containing 1,10-phenanthroline as auxiliary ligand were synthesized and characterized by various physico-chemical techniques. From the micro analytical data, the stoichiometry of the complexes 1:1 (metal: ligand) was ascertained. The Co(II) and Cu(II) forms octahedral complexes, while the geometric structure around Ni(II) atom can be described as square planar. The catalytic potential of the metal complexes have been evaluated by recording the rate of decomposition of hydrogen peroxide. The results reveal that the percent decomposition of H2O2increases with time and the highest value (50.50%) was recorded for Co(II) complex. The ligand and its complexes were also screened for their in vitro antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pyogenes and Pseudomonas aeruginosa. The relative order of antibacterial activity against S. Pyogenes, S. aureus and E. coli is Cu(II)>Ni(II)>Co(II)>(L); while with P. aeruginosa, K. pneumoniae the order of activity is Cu(II)>Co(II)>Ni(II)>(L). The anthelmintic screening was performed using Pheretima posthuma. The order of anthelmintic activity of ligand and its complexes is [(Phen)CuLCl2]>[(Phen)CoLCl2]>[(Phen)NiL]Cl2>(L). PMID:27107703

  16. Synthesis, Spectral Characterization, and Biological Evaluation of Transition Metal Complexes of Bidentate N, O Donor Schiff Bases

    Directory of Open Access Journals (Sweden)

    Sajjad Hussain Sumrra

    2014-01-01

    Full Text Available New series of three bidentate N, O donor type Schiff bases (L1–(L3 were prepared by using ethylene-1,2-diamine with 5-methyl furfural, 2-anisaldehyde, and 2-hydroxybenzaldehyde in an equimolar ratio. These ligands were further complexed with Co(II, Cu(II, Ni(II, and Zn(II metals to produce their new metal complexes having an octahedral geometry. These compounds were characterized on the basis of their physical, spectral, and analytical data. Elemental analysis and spectral data of the uncomplexed ligands and their metal(II complexes were found to be in good agreement with their structures, indicating high purity of all the compounds. All ligands and their metal complexes were screened for antimicrobial activity. The results of antimicrobial activity indicated that metal complexes have significantly higher activity than corresponding ligands. This higher activity might be due to chelation process which reduces the polarity of metal ion by coordinating with ligands.

  17. Ferrocene base metal chelates

    International Nuclear Information System (INIS)

    Review of the works, devoted to different types of ferrocene metal chelates and to a possibility of ferrocene-containing ligand modification by means of complexing, is presented. Structure, properties and spectral characteristics of transitional metal, rare earth element, Cd2+, UO22+, Th4+ etc. complexes with ferrocene diketones, ferrocene acyl derivatives based on thiosemicarbazones and hydrazones and other heterometal ferrocene-containing metal chelates, are considered. 134 refs., 1 tab

  18. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies

    Science.gov (United States)

    Ali, Omyma A. M.; El-Medani, Samir M.; Abu Serea, Maha R.; Sayed, Abeer S. S.

    2015-02-01

    A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV-Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats-Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes exhibited intraligand (π-π∗) fluorescence and can potentially serve as photoactive materials. Both the ligand and its complexes have been screened for antibacterial activities.

  19. Synthesis and Structural Characterization of Schiff Base Ligand and their Metal Complexes

    Directory of Open Access Journals (Sweden)

    Amit Kumar Gautam

    2016-05-01

    Full Text Available In the present work, the synthesis and structural characterization of a 2-phenyl- 3(benzamido propyl quinazoline (3H -4- one semicarbazone/ thiosemicarbazone hydrochloride and its metal complexes have been reported. All the synthesized compounds were characterized by using various physico-chemical techniques such as Infrared spectra, electronic spectra, molar conductivity and magnetic susceptibility measurements. The ligand and metal ions reacted to form in the 2:1 ratio as found from the elemental analyses and general stiochiometry was determined, [M(PBPQS2X2] and [M(PBPQT2X2]; where M = Co(II, Ni(II and Cu(II; PBPQS = 2-phenyl- 3 (benzamido propyl quinazoline (3H -4- one semicarbazone and PBPQT = 2- phenyl- 3 (benzamido propyl quinazoline (3H -4- one thiosemicarbazone. On the basis of analytical data, a proposed structure for the Cu(II complexes are distorted octahedral and those for Co(II and Ni(II complexes are octahedral. Ligands PBPQS/ PBPQT have been proposed to act in a bidentate manner co-ordinating to the metal ions though azomethine nitrogen and oxygen/ sulphur atom of either semicarbazone/ thiosemicarbazone moiety. The remaining co-ordination sites are occupied by negative ions such as Cl-, Br-, I- or NO3-. The ligands and its metal complexes were tested for their possible antimicrobial potentials.

  20. Chitosan-based Schiff base-metal complexes (Mn, Cu, Co) as heterogeneous, new catalysts for the -isophorone oxidation

    Indian Academy of Sciences (India)

    C S Thatte; M V Rathnam; A C Pise

    2014-05-01

    A new chitosan-based Schiff base was prepared and complexed with manganese, cobalt and copper. These Schiff base metal complexes were used as heterogeneous catalysts for the air oxidation of -isophorone to ketoisophorone. The obtained complexes were characterized by means of FT-IR, 1HNMR spectroscopy, elemental analysis, powder X-ray diffraction, field emission gun scanning electron microscopy, electron spin resonance spectroscopy, ICP-AES and solubility tests. Thermal properties were also investigated using thermal gravimetric analysis. Data obtained by thermal analysis revealed that these complexes showed good thermal stability. The conversion and selectivity of -isophorone to ketoisophorone for each prepared catalyst was studied using a batch reactor and gas chromatography for product identification and quantification. The results were compared against the homogeneous bis-salicylaldehyde ethylenedi-imine-Mn catalyst. The use of methanol, acetone, methyl isobutyl ketone and -hexane as solvent and its effect on conversion and selectivity was also investigated. Acetone was found to be a promising solvent for the -isophorone oxidation. The role of triethyl amine and acetyl acetone in the oxidation reaction has also been investigated.

  1. Synthesis of copper/nickel nanoparticles using newly synthesized Schiff-base metals complexes and their cytotoxicity/catalytic activities.

    Science.gov (United States)

    Aazam, Elham S; El-Said, Waleed Ahmed

    2014-12-01

    Transition metal complexes compounds with Schiff bases ligand representing an important class of compounds that could be used to develop new metal-based anticancer agents and as precursors of metal NPs. Herein, 2,3-bis-[(3-ethoxy-2-hydroxybenzylidene)amino]but-2-enedinitrile Schiff base ligand and its corresponding copper/nickel complexes were synthesized. Also, we reported a facile and rapid method for synthesis nickel/copper nanoparticles based on thermal reduction of their complexes. Free ligand, its metal complexes and metals nanoparticles have been characterized based on elemental analysis, transmission electron microscopy, powder X-ray diffraction, magnetic measurements and by various spectroscopic (UV-vis, FT-IR, (1)H NMR, GC-MS) techniques. Additionally, the in vitro cytotoxic activity of free ligand and its complexes compounds were assessed against two cancer cell lines (HeLa and MCF-7 cells)and one healthy cell line (HEK293 cell). The copper complex was found to be active against these cancer cell lines at very low LD50 than the free ligand, while nickel complex did not show any anticancer activity against these cell lines. Also, the antibacterial activity of as-prepared copper nanoparticles were screened against Escherichia coli, which demonstrated minimum inhibitory concentration and minimum bactericidal concentration values lower than those values of the commercial Cu NPs as well as the previous reported values. Moreover, the synthesized nickel nanoparticles demonstrated remarkable catalytic performance toward hydrogenation of nitrobenzene that producing clean aniline with high selectivity (98%). This reactivity could be attributed to the high degree of dispersion of Ni nanoparticles.

  2. Synthesis, Spectroscopic, and Magnetic Studies of Mono- and Polynuclear Schiff Base Metal Complexes Containing Salicylidene-Cefotaxime Ligand

    Directory of Open Access Journals (Sweden)

    J. R. Anacona

    2013-01-01

    Full Text Available Metal complexes of a Schiff base ligand derived from cefotaxime and salicylaldehyde were prepared. The salicilydene-cefotaxime ligand (H2L and mononuclear [M(L] (M(II = Co, Ni and Cu, dinuclear [Ag2(L(OAc2], and tetranuclear metal complexes [M4(L(OH6] (M(II = Ni, Cu were characterized on the basis of analytical, thermal, magnetic, and spectral studies (IR, UV-visible, 1H NMR, 13C NMR, and EPR. The electronic spectra of the complexes and their magnetic moments suggesttetrahedral geometry for the isolated complexes. The complexes are nonelectrolytes and insoluble in water and common organic solvents but soluble in DMSO.

  3. Synthesis, spectroscopic, structural characterization, electrochemical and antimicrobial activity studies of the Schiff base ligand and its transition metal complexes

    Science.gov (United States)

    Aslantaş, Mehmet; Kendi, Engin; Demir, Necmettin; Şabik, Ali E.; Tümer, Mehmet; Kertmen, Metin

    2009-10-01

    In this study, the Schiff base ligand trans-N,N'-bis[(2,4-dichlorophenyl) methylidene] cyclohexane-1,2-diamine (L) and its copper(II), nickel(II) and palladium(II) transition metal complexes were prepared and characterized by the analytical and spectroscopic methods. The 1H( 13C) NMR spectra of the ligand and its diamagnetic complexes were recorded in DMSO-d 6 solvent and obtained data confirm that the nitrogen atoms of the imine groups coordinated to the metal ions. Electrochemical properties of the ligand and its metal complexes were investigated in the DMF solvent at the 100 and 250 mV s -1 scan rates. The ligand and metal complexes showed both reversible and irreversible processes at these scan rates. The single crystal of the ligand (L) was obtained from MeOH solution, and its crystal structure was determined by X-ray diffraction. The C-H⋯Cl hydrogen bonding interactions in the molecule were seen which increase the stability of the crystal structure. The antimicrobial activity studies of the ligand and its metal complexes were carried out by using the various bacteria and fungi.

  4. Structural and Spectroscopic Aspects of Schiff Base Metal Complexes of Cobalt(II, Nickel(II and Copper(II

    Directory of Open Access Journals (Sweden)

    B.K. Rai

    2014-09-01

    Full Text Available The complexes of Co(II, Ni(II and Cu(II with Schiff base 2-butyl thioquinazoline 4(3H thiosemicarbazone were synthesized. The general formulae of the complexes are of the type {M(L2X2], L=2 – butyl thioquinazoline 4(3H thiosemicarbazone; x = Cl-, Br-, I- and NO3-. Elemental analyses and spectral (IR, electronic studies of the synthesized complexes suggest the presence of octahedral, environment around the central metal ion. These complexes were also subjected to study their antimicrobial screening against, Gram positive bacteria Candida albicans and gram negative bacteria Escherichia coli by disc diffusion technique.

  5. Hexaniobate as nanoscale catalyst support for copper oxidase mimics based on metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bizeto, Marcos Augusto [Universidade Federal de Sao Paulo (UNIFESP), Diadema, SP (Brazil); Alves, Wendel Andrade [Universidade Federal do ABC, SP (Brazil); Barbosa, Cesar Augusto Sales [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Bunge Fertilizantes; Ferreira, Ana Maria da Costa; Constantino, Vera Regina Leopoldo [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica

    2006-07-01

    Inorganic materials such as nanoporous zeolitic systems and layered structures have been considered special containers for chemical reactions, in which catalytically active species can show an energetic and/or spatial configuration that favors reactions of low activation energy. In this work, hexaniobate nanoscrolls were evaluated as a support for a metal complex that mimics copper oxidase enzymes. The cationic metal complex, 2-[2-(2-pyridyl)ethylimino-1-ethyl]pyridine-imidazole copper(II), [Cu(apip)imH]{sup 2}, was immobilized into hexaniobate scrolls by an ion exchange reaction. Chemical analysis, electronic and vibrational spectroscopies, thermogravimetric analysis and electron paramagnetic resonance (EPR) techniques were used to characterize the hexaniobatecopper complex system. High-resolution transmission electron microscopy of isolated hexaniobate particles containing the cationic complex showed the presence of scrolls with a wall thickness of about 4.5-7.0 nm and an external diameter of about 25-30 nm. X ray diffraction patterns confirmed the presence of the copper complex in the interlayer spaces of hexaniobate nanoscrolls. The reactivity of the copper complex supported on hexaniobate nanoscrolls was investigated for catechol oxidation in the presence of hydrogen peroxide. The formation of hydroxyl radicals (-OH) during the reaction was suggested by EPR data, which were obtained by monitoring the kinetics of DMPO/-OH adduct formation (DMPO is 5,5' dimethyl-1-pyrroline-N-oxide, used as spin trap). (author)

  6. Electrochemical analysis of metal complexes.

    OpenAIRE

    Jong, de, J.

    1987-01-01

    The present study is concerned with the electroanalytical chemistry of complexes of metals with large ligands. The main purpose was to develop quantitative descriptions of the voltammetric current-potential relation of metal complex systems with different diffusion coefficients of the species involved and of the conductometric response of metal/polyelectrolyte systems at various metal-to-ligand ratios. A further goal was to illustrate the theoretical treatments with some experiments on model ...

  7. Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand.

    Science.gov (United States)

    Belal, A A M; El-Deen, I M; Farid, N Y; Zakaria, Rosan; Refat, Moamen S

    2015-01-01

    The main target of this paper is to get an interesting data for the preparation and characterizations of metal oxide (MO) nanoparticles using H2L Schiff base complexes as precursors through the thermal decomposition procedure. Five Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were synthesized from 2-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-benzoic acid new adduct (H2L). Theses complexes were characterized using infrared, electronic, mass and (1)H NMR spectroscopic techniques. The elemental analysis data was confirmed that the stoichiometry of (metal:H2L) is 1:1 molar ratio. The molar conductance indicates that all of complexes are non electrolytic. The general chemical formulas of these complexes is [M(L)(NH3)]·nH2O. All complexes are tetrahedral geometry. The thermal decomposition behavior of H2L hydrated and anhydrous complexes has been discussed using thermogravimetric analysis (TG/DTG) and differential thermal analyses (DTA) under nitrogen atmosphere. The crystalline phases of the reaction products were checked using X-ray diffractometer (XRD) and scanning electron microscopy (SEM). PMID:25989615

  8. Synthesis, characterization and antibacterial activity of a Schiff base derived from cephalexin and sulphathiazole and its transition metal complexes

    Science.gov (United States)

    Anacona, J. R.; Rodriguez, Juan Luis; Camus, Juan

    2014-08-01

    Metal(II) coordination compounds of a cephalexin Schiff base (HL) derived from the condensation of cephalexin antibiotic with sulphathiazole were synthesized. The Schiff base ligand, mononuclear [ML(OAc)(H2O)2] (M(II) = Mn, Co, Ni, Zn) complexes and magnetically diluted trinuclear copper(II) complex [Cu3L(OH)5] were characterized by several techniques, including elemental and thermal analysis, molar conductance and magnetic susceptibility measurements, electronic, FT-IR, EPR and 1H NMR spectral studies. The analytical and molar conductance values indicated that the acetate ions coordinate to the metal ions. The Schiff base ligand HL behaves as a monoanionic tridentate NNO and tetradentate NNOO chelating agent in the mono and trinuclear complexes respectively.

  9. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone

    Science.gov (United States)

    Bal-Demirci, Tülay; Şahin, Musa; Kondakçı, Esin; Özyürek, Mustafa; Ülküseven, Bahri; Apak, Reşat

    2015-03-01

    The nickel(II), iron(III), oxovanadium(IV) complexes of the 3-hydroxysalicylidene-S-methyl-thiosemicarbazone (L) were obtained from the 3-hydroxysalicyldehyde-S-methylthiosemicarbazone with the R1-substituted-salicylaldehyde (R1: H, 3-OH) in the presence of Ni(II), Fe(III), VO(IV) as template ion. The ligand and its complexes were characterized by elemental analysis, electronic, UV/Vis., 1H NMR, EPR and IR studies. The free ligand and its metal complexes have been tested for in vitro antioxidant capacity by reduction of copper(II) neocuproine (Cu(II)-Nc) using the CUPRAC method. The ligand exhibited more potent in vitro antioxidant capacity than its complexes. The obtained trolox equivalent antioxidant capacity (TEAC) value of the iron(III) complex (TEACCUPRAC = 3.27) was higher than those of other complexes. Furthermore, the antioxidant activity of the free ligand and its complexes were determined by in vitro methods measuring the scavenging activity of reactive oxygen species (ROS) including hydroxyl radical (radOH), superoxide anion radical (O2rad -), and hydrogen peroxide (H2O2), showing that especially the V(IV) and Fe(III) complexes had significant scavenging activity for ROS.

  10. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone.

    Science.gov (United States)

    Bal-Demirci, Tülay; Şahin, Musa; Kondakçı, Esin; Özyürek, Mustafa; Ülküseven, Bahri; Apak, Reşat

    2015-03-01

    The nickel(II), iron(III), oxovanadium(IV) complexes of the 3-hydroxysalicylidene-S-methyl-thiosemicarbazone (L) were obtained from the 3-hydroxysalicyldehyde-S-methylthiosemicarbazone with the R1-substituted-salicylaldehyde (R1: H, 3-OH) in the presence of Ni(II), Fe(III), VO(IV) as template ion. The ligand and its complexes were characterized by elemental analysis, electronic, UV/Vis., (1)HNMR, EPR and IR studies. The free ligand and its metal complexes have been tested for in vitro antioxidant capacity by reduction of copper(II) neocuproine (Cu(II)-Nc) using the CUPRAC method. The ligand exhibited more potent in vitro antioxidant capacity than its complexes. The obtained trolox equivalent antioxidant capacity (TEAC) value of the iron(III) complex (TEACCUPRAC=3.27) was higher than those of other complexes. Furthermore, the antioxidant activity of the free ligand and its complexes were determined by in vitro methods measuring the scavenging activity of reactive oxygen species (ROS) including hydroxyl radical (OH), superoxide anion radical (O2(-)), and hydrogen peroxide (H2O2), showing that especially the V(IV) and Fe(III) complexes had significant scavenging activity for ROS. PMID:25467658

  11. Metal-amino acid (or peptide)-nucleoside (or related bases) ternary complexes

    Energy Technology Data Exchange (ETDEWEB)

    Terron, A.; Fiol, J.J.; Herrero, L.A.; Garcia-Raso, A. [Departament de Quimica. Universitat de les Illes Balears. Palma de Mallorca. (Spain); Apella, M.C. [Cerela Centro de Referencia de Lactobacilos, Tucaman, Argentina (Antigua and Barbuda); Caubet, A.; Moreno, V. [Departament de Quimica Inorganica. Universitat de Barcelona. Barcelona (Spain)

    1997-05-01

    The knowledge of simultaneous metal ion interaction with proteins and nucleic acids is one of the most exciting subjects inside the Inorganic Biochemistry. In the last years, several groups have published articles on the synthesis and characterization of ternary complexes bringing relevant data on the structure and stability of metallo biomolecules. In this short review, the last contributions found in the literature are collected. Comments on the factors influencing the behaviour and stability of these systems are offered. (Author) 100 refs.

  12. Synthetic and Structural Studies of Some Bivalent Transition Metal Complexes with Oxygen and Nitrogen Containing Schiff Base

    Directory of Open Access Journals (Sweden)

    Ajit Kumar

    2013-12-01

    Full Text Available The present communication deals with the result of the Schiff base ligand 3-amino 2 ethyl quinazoline 4(3H Semicarbazone (AEQS with bivalent transition metal ions, Cu(II, Co(II and Ni(II. The ligand and its metal complexes are characterized on the basis of molar mass, elemental analyses, IR, electronic spectra, molar conductivity, magnetic moment measurement. The reaction of the ligand with Cu(II, Co(II and Ni(II resulted in the formation of the complexes have the general composition [M(AEQS2]X2 where M= Cu(II, Co(II and Ni(II. AEQS=3-amino 2 ethyl quinazoline 4(3H semicarbazone and X = Cl-, Br- or I-. The studies proposes a distorted octahedral geometry for Cu(II complexes where as octahedral geometry is assigned for Cu(II, Co(II and Ni(II complexes.

  13. Synthesis, characterization and thermal study of some transition metal complexes of an asymmetrical tetradentate Schiff base ligand

    Directory of Open Access Journals (Sweden)

    ACHUT S. MUNDE

    2010-03-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II, Mn(II and Fe(III with an asymmetric tetradentate Schiff base ligand derived from dehydroacetic acid, 4-methyl-o-phenylenediamine and salicylic aldehyde were synthesized and characterized by elemental analysis, conductometry, magnetic susceptibility, UV–Vis, IR, 1H-NMR spectroscopy, X-ray diffraction analysis of powdered samples and thermal analysis, and screened for antimicrobial activity. The IR spectral data suggested that the ligand behaves as a dibasic tetadentate ligand towards the central metal ion with an ONNO donor atoms sequence. From the microanalytical data, the stoichiometry of the complexes 1:1 (metal:ligand was found. The physico-chemical data suggested square planar geometry for the Cu(II and Ni(II complexes and octahedral geometry for the Co(II, Mn(II and Fe(III complexes. The thermal behaviour (TGA/DTA of the complexes was studied and kinetic parameters were determined by Horowitz–Metzger and Coats–Redfern methods. The powder X-ray diffraction data suggested a monoclinic crystal system for the Co(II, Mn(II and Fe(III complexes. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma viride.

  14. Control of Metal Arrays Based on Heterometallics Masquerading in Heterochiral Aggregations of Chiral Clothespin-Shaped Complexes.

    Science.gov (United States)

    Naito, Masaya; Inoue, Ryo; Iida, Masayuki; Kuwajima, Yuuki; Kawamorita, Soichiro; Komiya, Naruyoshi; Naota, Takeshi

    2015-09-01

    Heterometal arrays in molecular aggregations were obtained by the spontaneous and ultrasound-induced gelation of organic liquids containing the chiral, clothespin-shaped trans-bis(salicylaldiminato) d8 transition-metal complexes 1. Heterometallic mixtures of complexes 1 a (Pd) and 1 b (Pt) underwent strict heterochiral aggregation entirely due to the organic shell structure of the clothespin shape, with no effect of the metal cores. This phenomenon provides an unprecedented means of generating highly controlled heterometallic arrangements such as alternating sequences [(+)-Pd(-)-Pt(+)-Pd(-)-Pt⋅⋅⋅] as well as a variety of single metal-enriched arrays (e.g., [(+)-Pt(-)-Pd(+)-Pd(-)-Pd(+)-Pd(-)-Pd⋅⋅⋅] and [(+)-Pd(-)-Pt(+)-Pt(-)-Pt(+)-Pt(-)-Pt⋅⋅⋅]) upon the introduction of an optically active masquerading unit with a different metal core in the heterochiral single-metal sequence. The present method can be applied to form various new aggregates with optically active Pd and Pt units, to allow 1) tuning of the gelation ultrasound sensitivity based on the different hearing abilities of the metal units; 2) aggregation-induced chirality transfer between heterometallic species; and 3) aggregation-induced chirality enhancement. A mechanistic rationale is proposed for these molecular aggregations based on the molecular structures of the units and the morphologies of the aggregates. PMID:26212577

  15. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety

    Science.gov (United States)

    Justin Dhanaraj, Chellaian; Johnson, Jijo

    2014-01-01

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and 1H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77 K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  16. Metallic complexes with glyphosate: a review

    International Nuclear Information System (INIS)

    We present studies involving metallic ions and the herbicide glyphosate. The metallic complexes of Cu(II), Zn(II), Mn(II), Ni(II), Cd(II), Pb(II), Cr(III), Fe(III), Co(III), ammonium, sodium, Ag(I), alkaline earth metals and of some lanthanides ions are described. The complexes are discussed in terms of their synthesis, identification, stability and structural properties, based on data from the current literature. (author)

  17. Dioxygen Affinities and Biomimetic Catalytic Performance of Transition-metal Complexes with Crowned Bis-Schiff Bases

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The dioxygen affinities and biomimetic catalytic performance of transition-metal complexes with (15-crown-5) salophen and its substituted derivatives were examined. The oxygenation constants of Co(II) complexes with crowned bis-Schiff bases were measured and their Mn(III) complexes were employed as models to mimic monooxygenase in catalytic epoxidation of styrene. The highest conversion and selectivity were up to 57.2% and 100% respectively at ambient temperature and pressure. The effects of crown ether ring and substituents R on the dioxygen affinities and catalytic activities were also investigated through comparing with the uncrowned analogues.

  18. Complexity in `simple' metals

    Science.gov (United States)

    Rousseau, Bruno; Ashcroft, Neil W.

    2008-03-01

    In electronic and structural terms, the light alkalis have long been regarded as `simple systems', at least under ordinary conditions. However, when compressed they exhibit unforeseen complexity; the melting curve of sodium, for example, has a striking maximum, falling to near room temperature melting where a complex structure (CI16) is found, this being in the cubic class but with 16 atoms per unit cell [1,2]. The light alkalis have been extensively studied using ab initio methods with standard assumptions of transferability made for the key pseudopotential input information, largely atomic based. Lacking still, however, is a somewhat more intuitive and physical understanding of the developments in electronic structure with progressive increase in density. In the present work, the problem is treated with non-linear response theory and non-overlapping pseudopotentials, and the structural complexity traced to effective ion-ion interactions with features that both at short range and long display competing state dependence. [1] Gregoryanz et al., Phys. Rev. Lett. 94, 185502 (2005) [2] McMahon et al., Chem. Soc. Rev. 35, 943 (2006)

  19. Electrochemical analysis of metal complexes.

    NARCIS (Netherlands)

    Jong, de H.G.

    1987-01-01

    The present study is concerned with the electroanalytical chemistry of complexes of metals with large ligands. The main purpose was to develop quantitative descriptions of the voltammetric current-potential relation of metal complex systems with different diffusion coefficients of the species involv

  20. A fluorescent, photochromic and thermochromic trifunctional material based on a layered metal-viologen complex.

    Science.gov (United States)

    Wan, Fang; Qiu, Li-Xia; Zhou, Liang-Liang; Sun, Yan-Qiong; You, Yi

    2015-11-14

    The azide anion as an energy acceptor and an electron donor has been introduced into a metal-viologen compound to form a 2D layered viologen-based trifunctional material, which exhibits the rare discolored function of reversible photochromism and thermochromism. Interestingly, its fluorescence can be switched by visible light irradiation and heating in air. PMID:26445888

  1. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes

    Science.gov (United States)

    Shebl, Magdy

    2014-01-01

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H and 13C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M = Co, Ni or Cu, m = 4, 0 and n = 2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34 × 104 and 2.5 × 104 M-1, respectively.

  2. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies.

    Science.gov (United States)

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2016-08-01

    Mononuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of an unsymmetric Schiff base ligand, 3-(-(3-(-3,5-dichloro-2-hydroxybenzylideneamino)propylimino)methyl)quinoxalin-2(1H) -one (L) were synthesized and characterized by various analytical and spectral techniques. The molar conductance values of metal complexes indicate non-electrolytic behavior of the metal complexes. The Schiff base act as tetra dentate ONNO donor ligand in Co(II), Ni(II), Zn(II) complexes and tridentate NNO donor in Cu(II) complex. Thermal stabilities of the newly synthesized compounds were determined by thermal analysis. Crystallinity, average grain size and unit cell parameters were determined from powder X-ray diffraction study. Electrochemical behaviors of the compounds were examined by cyclic voltammetry technique. The Schiff base and its complexes have been screened for their in vitro antimicrobial activities against some bacterial and fungal strains by disc diffusion method. The interaction of the compounds with calf thymus DNA (CT DNA) has been investigated by electronic absorption spectral titration and viscosity measurement (hydrodynamic) methods. Furthermore, the pUC18 DNA cleavage activities of the complexes have been explored. The compounds were also subjected to in vitro antioxidant, anticancer activity screening, druglikeness and bioactivity predictions using Molinspiration software. Molecular docking studies of the present compounds were carried out against B-DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor (VEGFR-2) kinase. Quantum chemical calculations were done with DFT method to determine the optimum geometry of the ligand and its metal complexes. From the quantum chemical parameters, the reactivity parameters of the compounds were established.

  3. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies.

    Science.gov (United States)

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2016-08-01

    Mononuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of an unsymmetric Schiff base ligand, 3-(-(3-(-3,5-dichloro-2-hydroxybenzylideneamino)propylimino)methyl)quinoxalin-2(1H) -one (L) were synthesized and characterized by various analytical and spectral techniques. The molar conductance values of metal complexes indicate non-electrolytic behavior of the metal complexes. The Schiff base act as tetra dentate ONNO donor ligand in Co(II), Ni(II), Zn(II) complexes and tridentate NNO donor in Cu(II) complex. Thermal stabilities of the newly synthesized compounds were determined by thermal analysis. Crystallinity, average grain size and unit cell parameters were determined from powder X-ray diffraction study. Electrochemical behaviors of the compounds were examined by cyclic voltammetry technique. The Schiff base and its complexes have been screened for their in vitro antimicrobial activities against some bacterial and fungal strains by disc diffusion method. The interaction of the compounds with calf thymus DNA (CT DNA) has been investigated by electronic absorption spectral titration and viscosity measurement (hydrodynamic) methods. Furthermore, the pUC18 DNA cleavage activities of the complexes have been explored. The compounds were also subjected to in vitro antioxidant, anticancer activity screening, druglikeness and bioactivity predictions using Molinspiration software. Molecular docking studies of the present compounds were carried out against B-DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor (VEGFR-2) kinase. Quantum chemical calculations were done with DFT method to determine the optimum geometry of the ligand and its metal complexes. From the quantum chemical parameters, the reactivity parameters of the compounds were established. PMID:27236046

  4. Synthesis, Spectroscopic, Anticancer, and Antimicrobial Properties of Some Metal(II Complexes of (Substituted Nitrophenol Schiff Base

    Directory of Open Access Journals (Sweden)

    Aderoju A. Osowole

    2012-01-01

    Full Text Available The Schiff base, 2-[(2,3-dihydro-1H-inden-4-yliminomethyl]-5-nitrophenol coordinates to Mn(II, Cu(II, Zn(II, and Pd(II ions through the phenolic O and imine N atoms. The complexes are characterized by physicochemical and spectroscopic methods. The metal complexes formed as [ML2]xH2O with exception of the Cu(II complex which is anhydrous. Spectroscopic data corroborate the adoption of a four-coordinate, tetrahedral geometry for the Mn(II, and Zn(II complexes, and a four-coordinate, square planar geometry for the Cu(II and Pd(II complexes. None is an electrolyte in DMSO. The in vitro anticancer activities of the metal free ligand, Cu(II, Zn(II, and Pd(II complexes against MCF-7 (human breast adenocarcinoma and HT-29 (colon carcinoma cells reveal that the Pd(II complex has the best cytotoxic activity against MCF-7 cells with an IC50 of 5.94 μM, which is within the same order of activity as cisplatin. Furthermore, the ligand and the Zn(II complex exhibit broad-spectrum activity against two gram-positive bacteria, three gram-negative bacteria, and a fungus with inhibitory zones range of 10.0–20.0 and 10.0–17.0 mm, respectively.

  5. Complex formation in the system double charged metal cation-Stenhouse base in water-alcohol solution

    International Nuclear Information System (INIS)

    Using the method of potentiometric titration complex formation reaction of the system metal(II) salt cation (Me2+ = Fe2+, Cd2+, Hg2+, Zn2+, Mn2+, Co2+, Ni2+) Stenhouse base in water-alcohol solution has been studied. Compositions of equilibrium complexes, the constants of their formation and instability have been determined. CoCl2 x 6H2O, NiCl2 x 6H2O and Mn(NO3)2 x 6H2O have been shown to have the most stabilizing effect on Stenhouse base

  6. Metal complexes of triazine - Schiff bases: Spectroscopic and thermodynamic studies of complexation of some divalent metal ions with 3-(a-acetylethylidenehydrazino-5,6-diphenyl-1,2,4-triazine

    Directory of Open Access Journals (Sweden)

    A. TAHA

    1999-10-01

    Full Text Available Metal complexes of some divalent metal ions (Co, Ni, Cu and Zn with 3-(a-acetylethylidenehydrazino-5,6-diphenyl-1,2,4-triazine (AHDT as a Schiff-base have been investigated potentiometrically and spectrophotometrically and found to have the stoichiometric formulae 1:1 and 1:2 (M:L. The formation constants of the proton-ligand and metal-ligand complexes have been determined potentiometrically at different temperatures (10, 20, 30, 40 and 50°C at an ionic strength of 0.1 M KNO3 in 75% (v/v dioxane-water solution. The standard thermodynamic parameters, viz. DG°, DH°, and DS°, for the proton-ligand and the stepwise metal-ligand complexes have been evaluated.

  7. A new Mannich base and its transition metal (II) complexes - Synthesis, structural characterization and electrochemical study

    Indian Academy of Sciences (India)

    N Raman; S Esthar; C Thangaraja

    2004-06-01

    new Mannich base, N-(1-morpholinobenzyl) semicarbazide (MBS), formed by the condensation of morpholine, semicarbazide and benzaldehyde, and its Cu(II), Ni(II), Co(II) and Zn(II) complexes have been synthesized. Their structures have been elucidated on the basis of analytical, magnetic, electrical conductivity and spectral study as well as elemental analyses. The complexes exhibit square-planar geometry. The monomeric and non-electrolytic nature of the complexes is evidenced by their magnetic susceptibility and low conductance data. The electrochemical property of the ligand and its complexes in acetonitrile solution was studied by cyclic voltammetry. The X-band ESR spectra of the Cu(II) complex in DMSO at 300 and 77 K were recorded and their salient features are reported.

  8. Spectroscopic and electrochemical characterization of some Schiff base metal complexes containing benzoin moiety

    Science.gov (United States)

    El-Shahawi, M. S.; Al-Jahdali, M. S.; Bashammakh, A. S.; Al-Sibaai, A. A.; Nassef, H. M.

    2013-09-01

    The ligation behavior of bis-benzoin ethylenediamine (B2ED) and benzoin thiosemicarbazone (BTS) Schiff bases towards Ru3+, Rh3+, Pd2+, Ni2+ and Cu2+ were determined. The bond length of M-N and spectrochemical parameters (10Dq, β, B and LFSE) of the complexes were evaluated. The redox characteristics of selected complexes were explored by cyclic voltammetry (CV) at Pt working electrode in non aqueous solvents. Au mesh (100 w/in.) optically transparent thin layer electrode (OTTLE) was also used for recording thin layer CV for selected Ru complex. Oxidation of some complexes occurs in a consecutive chemical reaction of an EC type mechanism. The characteristics of electron transfer process of the couples M2+/M3+ and M3+/M4+ (M = Ru3+, Rh3+) and the stability of the complexes towards oxidation and/or reduction were assigned. The nature of the electroactive species and reduction mechanism of selected electrode couples were assigned.

  9. A control on hydrophobic and hydrophilic interactions between HEWL and metal Schiff-base complexes comprising of different metal ions and ligands

    Energy Technology Data Exchange (ETDEWEB)

    Koley Seth, Banabithi; Ray, Aurkie; Basu, Samita, E-mail: samita.basu@saha.ac.in

    2015-05-15

    The structural effects of different copper(II) and nickel(II) Schiff base complexes on hen egg white lysozyme (HEWL) have been investigated through steady state and time resolved absorption and fluorescence, and circular dichroism spectroscopy. The Schiff base ligands with N{sub 4} donor atoms show both hydrophobic and hydrophilic interactions, however hydrophilic interaction prevails with ligands having N{sub 2}O{sub 2} donor atoms. Variation of metal ions from Cu{sup 2+} to Ni{sup 2+} with each type of Schiff base ligand increases the probability of hydrophilic over hydrophobic interactions, which supports their significance in regulating the binding affinity between HEWL and metal complexes. On photo-excitation the complexes comprising of Cu{sup 2+} ion instead of Ni{sup 2+} ion and ligands with N{sub 4} donor system rather than N{sub 2}O{sub 2} donor system, increases the probability of intersystem crossing to populate the corresponding triplet state as observed from laser flash photolysis study. The better binding affinity of nickel complexes with different selectivities compared to copper complexes towards HEWL emphasizes the potentiality of less explored nickel complexes in drug–protein interactions. - Highlights: • Ni{sup II} and Cu{sup II} -Schiff base complexes bind hen egg white lysozyme spontaneously. • Both hydrophobic and hydrophilic interactions are effective for N{sub 4} ligands. • For N{sub 2}O{sub 2} ligands the hydrophilic is predominant over hydrophobic interaction. • Binding affinity and selectivity of Ni{sup II}-complexes are better than Cu{sup II}-complexes. • Replacement of Cu{sup 2+} by Ni{sup 2+} in a ligand enhances chance of hydrophilic interaction.

  10. A control on hydrophobic and hydrophilic interactions between HEWL and metal Schiff-base complexes comprising of different metal ions and ligands

    International Nuclear Information System (INIS)

    The structural effects of different copper(II) and nickel(II) Schiff base complexes on hen egg white lysozyme (HEWL) have been investigated through steady state and time resolved absorption and fluorescence, and circular dichroism spectroscopy. The Schiff base ligands with N4 donor atoms show both hydrophobic and hydrophilic interactions, however hydrophilic interaction prevails with ligands having N2O2 donor atoms. Variation of metal ions from Cu2+ to Ni2+ with each type of Schiff base ligand increases the probability of hydrophilic over hydrophobic interactions, which supports their significance in regulating the binding affinity between HEWL and metal complexes. On photo-excitation the complexes comprising of Cu2+ ion instead of Ni2+ ion and ligands with N4 donor system rather than N2O2 donor system, increases the probability of intersystem crossing to populate the corresponding triplet state as observed from laser flash photolysis study. The better binding affinity of nickel complexes with different selectivities compared to copper complexes towards HEWL emphasizes the potentiality of less explored nickel complexes in drug–protein interactions. - Highlights: • NiII and CuII -Schiff base complexes bind hen egg white lysozyme spontaneously. • Both hydrophobic and hydrophilic interactions are effective for N4 ligands. • For N2O2 ligands the hydrophilic is predominant over hydrophobic interaction. • Binding affinity and selectivity of NiII-complexes are better than CuII-complexes. • Replacement of Cu2+ by Ni2+ in a ligand enhances chance of hydrophilic interaction

  11. Syntheses,Structure Analyses and Thermal Stabilities of Two Schiff Base Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yinli; CHEN Sanping; FAN Guang; ZHAO Zhijie; GAO Shengli

    2009-01-01

    A Schiff base ligand 1-salicylideneamino-l,3,4-triazole(L)was prepared.Two new complexes with Schiff base,takes a mononuclear zinc structure and the coordination geometry of zinc atom exhibits a distorted tetrahedron,in which a zig-zag chain is constructed through hydrogen bonding interactions.A 2D supramolecular network is formed through π-π stacking between triazole planes and phenyl planes of adjacent chains,and a 3D supramolecular network is further constructed by these non-covalent π-π stacking interactions between the triazole planes of neighboring layers.Complex 2 takes a dinuclear structure with the bidentate-bridging Schiff base ligands,and cobalt site exhibits a distorted octahedron.The lattice water molecules and neutral complex 2 units form a dimer with hydrogen bonding interactions.In addition,IR and thermal gravimetric analysis are presented.

  12. New metal complexes as potential therapeutics.

    Science.gov (United States)

    Zhang, Christiana Xin; Lippard, Stephen J

    2003-08-01

    The many activities of metal ions in biology have stimulated the development of metal-based therapeutics. Cisplatin, as one of the leading metal-based drugs, is widely used in treatment of cancer, being especially effective against genitourinary tumors such as testicular. Significant side effects and drug resistance, however, have limited its clinical applications. Biological carriers conjugated to cisplatin analogs have improved specificity for tumor tissue, thereby reducing side effects and drug resistance. Platinum complexes with distinctively different DNA binding modes from that of cisplatin also exhibit promising pharmacological properties. Ruthenium and gold complexes with antitumor activity have also evolved. Other metal-based chemotherapeutic compounds have been investigated for potential medicinal applications, including superoxide dismutase mimics and metal-based NO donors/scavengers. These compounds have the potential to modulate the biological properties of superoxide anion and nitric oxide.

  13. Spectral characterization, electrochemical and anticancer studies on some metal(II) complexes containing tridentate quinoxaline Schiff base

    Science.gov (United States)

    Chellaian, Justin Dhanaraj; Johnson, Jijo

    2014-06-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of a tridentate ONO donor Schiff base ligand derived from 3-(2-aminoethylamino)quinoxalin-2(1H)-one were synthesized. The ligand and its metal complexes were characterized using elemental analysis, molar conductance, IR, 1H NMR, mass, magnetic susceptibility, electronic spectra and ESR spectral studies. Electrochemical behavior of the synthesized compounds was studied using cyclic voltammetry. The grain size of the synthesized compounds was determined by powder XRD. The Schiff base and its complexes have been screened for their antimicrobial activities against the bacterial species E. coli, K. pneumoniae, P. aeruginosa and S. aureus; fungal species include, A. niger, and C. albicans by disc diffusion method. The results show that the complexes have higher activity than the free ligand. The interaction of the complexes with calf thymus DNA (CT DNA) has been investigated by electronic absorption method. Furthermore, the DNA cleavage activity of the complexes was studied using agarose gel electrophoresis. In vitro anticancer studies of the ligand and its complexes using MTT assay was also done.

  14. Discovery of Antischistosomal Drug Leads Based on Tetraazamacrocyclic Derivatives and Their Metal Complexes.

    Science.gov (United States)

    Khan, M O Faruk; Keiser, Jennifer; Amoyaw, P N A; Hossain, Mohammad F; Vargas, Mireille; Le, Justin G; Simpson, Natalie C; Roewe, Kimberly D; Freeman, TaRynn N Carder; Hasley, Travis R; Maples, Randall D; Archibald, Stephen J; Hubin, Timothy J

    2016-09-01

    Praziquantel (PZQ) is the only drug available for the treatment of schistosomiasis, and since its large-scale use might be associated with the onset of resistance, new antischistosomal drugs should be developed. A series of 26 synthetic tetraazamacrocyclic derivatives and their metal complexes were synthesized, characterized, and screened for antischistosomal activity by application of a phased screening program. The compounds were first screened against newly transformed schistosomula (NTS) of harvested Schistosoma mansoni cercariae, then against adult worms, and finally, in vivo using the mouse model of S. mansoni infection. At a concentration of 33 μM, incubation with a total of 12 compounds resulted in the mortality of NTS at the 62% to 100% level. Five of these showing 100% inhibition of viability of NTS at 10 μM were selected for further screening for determination of the 50 inhibitory concentrations (IC50s) against both NTS and adult worms. Against NTS, all 5 compounds showed IC50s comparable to the IC50 of the standard drug, PZQ (0.87 to 9.65 μM for the 5 compounds versus 2.20 μM for PZQ). Three of these, which are the bisquinoline derivative of cyclen and its Fe(2+) and Mn(2+) complexes, showed micromolar IC50s (1.62 μM, 1.34 μM, and 4.12 μM, respectively, versus 0.10 μM for PZQ) against adult worms. In vivo, the worm burden reductions were 12.3%, 88.4%, and 74.5%, respectively, at a single oral dose of 400 mg/kg of body weight. The Fe(2+) complex exhibited activity in vivo comparable to that of PZQ, pointing to the discovery of a novel drug lead for schistosomiasis. PMID:27324765

  15. Synthesis, Structure and Characterization of Schiff Base Metal Complexes and Their Electrochemical Properties of Thionyl Chloride Reduction

    Institute of Scientific and Technical Information of China (English)

    CHE,Tu-Lin; GAO,Quan-Chang; ZHAO,Jian-She; ZHANG,Gai

    2008-01-01

    A symmetric tetradentate Schiff base ligand bis(3-methoxysalicylidene)-o-phenylenediamine (H2L) was prepared.A series of transition metal complexes with this Schiff base ligand have been synthesized and structurally characterized by IR and elemental analysis.The catalysis for reduction of thionyl chloride was studied by means of coristant resistance discharge.The result shows that [Mn(Ⅲ)LCI(H2O)]CH3OH and [Co(Ⅱ)HLCI(H2O)] have a good catalytic activity for the reduction of thionyl chloride,which improves the cell voltage,the rate of discharge,and the lifetime of Li/SOCl2 batteries.

  16. Synthesis of fatty monoester lubricant base oil catalyzed by Fe-Zn double-metal cyanide complex

    Indian Academy of Sciences (India)

    Ravindra K Raut; Mehejabeen Shaikh; Srinivas Darbha

    2014-07-01

    Fatty monoester lubricant base oils as high as 96.7 mol% were prepared by reacting methyl oleate with long-chain alcohols viz., 2-ethyl-1-hexanol (C8−OH), 1-decanol (C10OH) and 1-dodecanol (C12OH) in the presence of a solid Fe-Zn double-metal cyanide (DMC) complex catalyst. Unlike many other acid catalysts, DMC doesn't produce undesired ether side products. The catalyst was reusable in four recycling experiments with little loss in catalytic activity and ester yield. The long-chain esters prepared in the study have the desired physical properties for their application as lubricant base oils.

  17. Model based multi-wavelength spectrophotometric method for calculation of formation constants of phenanthrenequinone thiosemicarbazone complexes with some metallic cations

    Directory of Open Access Journals (Sweden)

    Naser Samadi

    2013-04-01

    Full Text Available In traditional spectrophotometric determination of stability constants of complexation, it is necessary to find a wavelength at which only one of the components has absorbance without any spectroscopic interference of the other reaction components. In the present work, a simple multi-wavelength model-based method has been developed to determine stability constants for complexation reaction regardless of the spectra overlapping of components. Also, pure spectra and concentration profiles of all components are extracted using multi-wavelength model based method. In the present work spectrophotometric titration of several cationic metal ions with new synthetic ligand were studied in order to calculate the formation constant(s. In order to estimate the formation constants a chemometrics method, model based analysis was applied.

  18. Influence of Schiff base and lanthanide metals on the synthesis, stability, and reactivity of monoamido lanthanide complexes bearing two Schiff bases.

    Science.gov (United States)

    Han, Fubin; Teng, Qiaoqiao; Zhang, Yong; Wang, Yaorong; Shen, Qi

    2011-03-21

    The monoamido lanthanide complexes stabilized by Schiff base ligand L(2)LnN(TMS)(2) (L = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-8-C(9)H(6)N, Ln = Yb (1), Y (2), Eu (3), Nd (4), and La (5)) were synthesized in good yields by the reactions of Ln[N(TMS)(2)](3) with 1.8 equiv of HL in hexane at room temperature. It was found that the stability of 1-5 depends greatly on the size of the lanthanide metals with the increasing trend of Yb ≈ Y metals of Y and Yb, L''(2)LnN(TMS)(2) (Ln = Yb (13) and Y (14)), and the more stable tris-Schiff base complexes with the large metals of La and Nd, yielded L''(3)Ln as the only product. Complexes 1-14 were fully characterized including X-ray crystal structural analysis. Complexes 1-5, 10, and 14 can serve as the efficient catalysts for addition of amines to carbodiimides, and the catalytic activity is greatly affected by the lanthanide metals with the active sequence of Yb < Y < Eu ≈ Nd ≈ La.

  19. Metallacarborane-Based Metal-Organic Framework with a Complex Topology

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, RD; Clingerman, DJ; Morris, W; Wilmer, CE; Sarjeant, AA; Stern, CL; O' Keeffe, M; Snurr, RQ; Hupp, JT; Farha, OK; Mirkin, CA

    2014-03-01

    The long, linear cobalt(III) bis(dicarbollide)-based bis(isophthalic acid) anion was synthesized as a tetraphenylphosphonium salt in five steps from 8-iodo-closo-1,2-C2B10H11. The solvothermal reaction between the anionic bis(isophthalic acid) linker and copper(II) nitrate in acidified DMF yielded single crystals. Despite the tendency for copper(II) and analogous linear tetraacids to form members of an isoreticular family of metal-organic frameworks (MOFs) with the fof topology, single-crystal X-ray diffraction analysis revealed the growth of three different frameworks. These MOFs, NU-150, NU-151, and NU-152, have three distinct topologies: fof, sty, and hbk, respectively. NU-152 has a novel quadrinodal topology in which cuboctahedral coordination polyhedra are each connected to 10 neighboring polyhedra via the cobalt bis(dicarbollide) portions of the linkers. The formation of these frameworks illustrates the limitations of structure prediction in MOP chemistry and the possibility of using flexible linkers to generate unexpected topologies. Furthermore, this work represents the first example of the incorporation of an anionic bis(dicarbollide) unit into a MOF.

  20. Synthesis, spectral characterisation, morphology, biological activity and DNA cleavage studies of metal complexes with chromone Schiff base

    Directory of Open Access Journals (Sweden)

    P. Kavitha

    2016-07-01

    Full Text Available Cu(II, Co(II, Ni(II and Zn(II complexes have been synthesized using 3-((pyridine-2-yliminomethyl-4H-chromen-4-one as a ligand derived from 3-formyl chromone and 2-amino pyridine. All the complexes were characterised by analytical, conductivity, IR, electronic, magnetic, ESR, thermal, powder XRD and SEM studies. The analytical data revealed that the metal to ligand molar ratio is 1:2 in all the complexes. Molar conductivity data indicates that all the complexes are neutral in nature. On the basis of magnetic and electronic spectral data, octahedral geometry is proposed for all the complexes. Thermal behaviour of the synthesized complexes indicates the coordinated and lattice water molecules are present in the complexes. The X-ray diffraction data suggest a triclinic system for all compounds. Different surface morphologies were identified from SEM micrographs. All metal complexes exhibit fluorescence. The antimicrobial and nematicidal activity data show that metal complexes are more potent than the parent ligand. The DNA cleavage activity of the ligand and its metal complexes were observed in the presence of H2O2.

  1. Synthesis of Schiff bases of naphtha[1,2-d]thiazol-2-amine and metal complexes of 2-(2'-hydroxy)benzylideneaminonaphthothiazole as potential antimicrobial agents

    Institute of Scientific and Technical Information of China (English)

    AZAM Faizul; SINGH Satendra; KHOKHRA Sukhbir Lal; PRAKASH Om

    2007-01-01

    Objective:A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes.Methods:Schiff bases were synthesized by the reaction of naphtha[1,2-d]thiazol-2-amine with various substituted aromatic aldehydes.2-(2'-Hydroxy)benzylideneaminonaphthothiazole was converted to its Co(Ⅱ),Ni(Ⅱ) and Cu(Ⅱ) metal complexes upon treatment with metal salts in ethanol.All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria.The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution method.Results:All the compounds moderately inhibited the growth of Gram positive and Gram negative bacteria.In the present study among all Schiff bases 2-(2'-hydroxy)benzylideneaminonaphthothiazole showed maximum inhibitory activity and among metal complexes Cu(Ⅱ) metal complex was found to be most potent.Conclusion:The results obtained validate the hypothesis that Schiff bases having substitution with halogens,hydroxyl group and nitro group at phenyl ring are required for the antibacterial activity while methoxy group at different positions in the aromatic ring has minimal role in the inhibitory activity.The results also indicated that the metal complexes are better antibacterial agents as compared to the Schiff bases.

  2. Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection.

    Science.gov (United States)

    Flis, Paulina; Ouerdane, Laurent; Grillet, Louis; Curie, Catherine; Mari, Stéphane; Lobinski, Ryszard

    2016-08-01

    Description of metal species in plant fluids such as xylem, phloem or related saps remains a complex challenge usually addressed either by liquid chromatography-mass spectrometry, X-ray analysis or computational prediction. To date, none of these techniques has achieved a complete and true picture of metal-containing species in plant fluids, especially for the least concentrated complexes. Here, we present a generic analytical methodology for a large-scale (> 10 metals, > 50 metal complexes) detection, identification and semiquantitative determination of metal complexes in the xylem and embryo sac liquid of the green pea, Pisum sativum. The procedure is based on direct injection using hydrophilic interaction chromatography with dual detection by elemental (inductively coupled plasma mass spectrometry) and molecular (high-resolution electrospray mass spectrometry) mass spectrometric detection. Numerous and novel complexes of iron(II), iron(III), copper(II), zinc, manganese, cobalt(II), cobalt(III), magnesium, calcium, nickel and molybdenum(IV) with several ligands including nicotianamine, citrate, malate, histidine, glutamine, aspartic acid, asparagine, phenylalanine and others are observed in pea fluids and discussed. This methodology provides a large inventory of various types of metal complexes, which is a significant asset for future biochemical and genetic studies into metal transport/homeostasis. PMID:27111838

  3. Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base

    Science.gov (United States)

    Devi, Jai; Batra, Nisha

    2015-01-01

    Mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with various uninegative tridentate ligands derived from isatin monohydrazone with 2-hydroxynapthaldehyde/substituted salicylaldehyde and heterocyclic nitrogen base 8-hydroxyquinoline have been synthesized and characterized by elemental analysis, conductometric studies, magnetic susceptibility and spectroscopic techniques (IR, UV-VIS, NMR, mass and ESR). On the basis of these characterizations, it was revealed that Schiff base ligands existed as monobasic tridentate ONO bonded to metal ion through oxygen of carbonyl group, azomethine nitrogen and deprotonated hydroxyl oxygen and heterocyclic nitrogen base 8-hydroxyquinoline existed as monobasic bidentate ON bonded through oxygen of hydroxyl group and nitrogen of quinoline ring with octahedral or distorted octahedral geometry around metal ion. All the compounds have been tested in vitro against various pathogenic Gram positive bacteria, Gram negative bacteria and fungi using different concentrations (25, 50, 100, 200 μg/mL) of ligands and their complexes. Comparative study of antimicrobial activity of ligands, and their mixed complexes indicated that complexes exhibit enhanced activity as compared to free ligands and copper(II) Cu(LIV)(Q)ṡH2O complex was found to be most potent antimicrobial agent.

  4. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    International Nuclear Information System (INIS)

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2′-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy)2(pbpy)][PF6]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  5. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.

    Science.gov (United States)

    Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B

    2010-07-01

    A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:20338672

  6. Versatile chemical transformations of benzoxazole based ligands on complexation with 3d-metal ions.

    Science.gov (United States)

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Tommasino, Jean Bernard; Roques, Nans; Luneau, Dominique

    2012-02-20

    Two benzoxazoles derivative ligands were synthesized from the condensation of 3,5-di-tert-butyl-o-benzoquinone (DTBBQ) with ethanolamine or 1,3-diamino-2-hydroxypropane in methanol. Condensation of DTBBQ with ethanolamine gives the expected 5,7-di-tert-butyl-2-methylenhydroxylbenzoxazole (HL1) while with 1,3-diamino-2-hydroxypropane it gives (2-hydroxyethyl-2-{2,4-bis(1,1-dimethylethyl)-1-phenol-6 amino}-2{5,7-di-tert-butyl-benzoxazole}) (H(2)L2) with only one benzoxazole ring instead of the symmetric bis-benzoxazole derivative. The structure of HL1 and H(2)L2 were confirmed by NMR-spectroscopy and X-ray diffraction on a single crystal for HL1. The reaction of HL1 with CuCl(2) gives a mononuclear [Cu(II)(HL1)(2)Cl(2)] (1) complex for which the crystal structure shows that HL1 is preserved. In contrast, upon reaction with nickel(II), cobalt(II), and manganese(II) H(2)L2 is further oxidized and transformed in new ligands HL3 in mononuclear complexes [M(II)(L3)(2)] (M = Ni(II) (2); M = Co(II) (3)) and H(2)L4 in tetranuclear complex [Mn(II)(4)(HL4)(4)Cl(4)] (4) as found from the crystal structures of complexes 2-4. Electrochemical studies for complexes 2 and 3 evidence complicated redox properties. [Mn(II)(4)(HL4)(4)Cl(4)] (4) has a cubane-like structure with a "4 + 2" fashion The magnetic susceptibility of 4 is well fitted considering one Mn---Mn interaction J(a)(Mn(II)-Mn(II)) = -0.50(1) cm(-1) with g = 2.00(7).

  7. Tuning of the spin distribution between ligand- and metal-based spin: electron paramagnetic resonance of mixed-ligand molybdenum tris(dithiolene) complex anions.

    Science.gov (United States)

    Fekl, Ulrich; Sarkar, Biprajit; Kaim, Wolfgang; Zimmer-De Iuliis, Marco; Nguyen, Neilson

    2011-09-19

    Electron paramagnetic resonance spectra of homoleptic and mixed-ligand molybdenum tris(dithiolene) complex anions [Mo(tfd)(m)(bdt)(n)](-) (n + m = 3; bdt = S(2)C(6)H(4); tfd = S(2)C(2)(CF(3))(2)) reveal that the spin density has mixed metal-ligand character with more ligand-based spin for [Mo(tfd)(3)](-) and a higher degree of metal-based spin for [Mo(bdt)(3)](-): the magnitude of the isotropic (95,97)Mo hyperfine interaction increases continuously, by a factor of 2.5, on going from the former to the latter. The mixed complexes fall in between, and the metal character of the spin increases with the bdt content. The experiments were corroborated by density functional theory computations, which reproduce this steady increase in metal-based character. PMID:21853970

  8. Novel metals and metal complexes as platforms for cancer therapy.

    Science.gov (United States)

    Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping

    2010-06-01

    Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.

  9. Electron Transfer Mediators for Photoelectrochemical Cells Based on Cu(I Metal Complexes

    Directory of Open Access Journals (Sweden)

    Michele Brugnati

    2007-01-01

    Full Text Available The preparation and the photoelectrochemical characterization of a series of bipyridine and pyridyl-quinoline Cu(I complexes, used as electron transfer mediators in regenerative photoelectrochemical cells, are reported. The best performing mediators produced maximum IPCEs of the order of 35–40%. The J-V curves recorded under monochromatic light showed that the selected Cu(I/(II couples generated higher Vocs and fill factors compared to an equivalent I-/I3- cell, due to a decreased dark current.

  10. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand

    Science.gov (United States)

    Abou-Hussein, A. A.; Linert, Wolfgang

    2015-04-01

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  11. A series of transition and non-transition metal complexes from a N 4O 2 hexadentate Schiff base ligand: Synthesis, spectroscopic characterization and efficient antimicrobial activities

    Science.gov (United States)

    Sarkar, Saikat; Dey, Kamalendu

    2010-11-01

    Some transition and non-transition metal complexes of the hexadentate N 4O 2 donor Schiff base ligand 1,8- N-bis(3-carboxy)disalicylidene-3,6-diazaoctane-1,8-diamine, abbreviated to H 4fsatrien, have been synthesized. All the 14 metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic (UV-Vis, IR, NMR, ESR) data. The analytical data helped to elucidate the structures of the metal complexes. The Schiff base, H 4fsatrien, is found to act as a dibasic hexadentate ligand using N 2N 2O 2 donor set of atoms (leaving the COOH group uncoordinated) leading to an octahedral geometry for the complexes around all the metal ions except VO 2+ and UO 22+. However, surprisingly the same ligand functions as a neutral hexadentate and neutral tetradentate one towards UO 22+ and VO 2+, respectively. In case of divalent metal complexes they have the general formula [M(H 2fsatrien)] (where M stands for Cu, Co, Hg and Zn); for trivalent metal complexes it is [M(H 2fsatrien)]X· nH 2O (where M stands for Cr, Mn, Fe, Co and X stands for CH 3COO, Cl, NO 3, ClO 4) and for the complexes of VO 2+ and UO 22+, [M(H 4fsatrien)]Y (where M = VO and Y = SO 4; M = UO 2 and Y = 2 NO 3). The Schiff base ligand and most of the complexes have been screened in vitro to judge their antibacterial ( Escherichia coli and Staphylococcus aureus) and antifungal ( Aspergillus niger and Pencillium chrysogenum) activities.

  12. Unusual cocrystals made of a Schiff base metal complex and an organic molecule - Close-packing vs. hydrogen bond interactions

    Science.gov (United States)

    Buvaylo, Elena A.; Kokozay, Vladimir N.; Rubini, Katia; Vassilyeva, Olga Yu.; Skelton, Brian W.

    2014-08-01

    The mononuclear complexes [ML2]0 (M = Co, Ni, Zn; HL - Schiff base ligand formed in situ from 2-pyridinecarbaldehyde and anthranilic acid, AA) can efficiently interact with unreacted AA molecules to produce CoL2·AA·H2O (1), NiL2·AA·H2O (2) and ZnL2·AA·0.25CH3OH·0.5H2O (3) cocrystals. Compounds 1-3 have been obtained as single crystals and characterized by elemental analysis, IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction techniques. The compounds crystallize in the triclinic space group P1‾, with 1 and 2 being isomorphous. Neutral ML2 molecules in 1-3 show no crystallographically imposed symmetry with the metal atoms octahedrally surrounded by two anionic ligands in a mer configuration. Of the two crystallographically distinct AA molecules, one molecule only is engaged in H-bonding N/Osbnd H⋯O interactions with ML2 units. The solid-state organization of the cocrystals is described as an insertion of the organic molecules between the layers of ML2 complexes as they occur in the reported native NiL2·H2O structure.

  13. Lanthanide metal complex-based membrane electrodes for sensing of biological amino alcohols

    International Nuclear Information System (INIS)

    Electrodes selective for amino alcohols were prepared by incorporating lanthanide tris(β-diketonates) in PVC membranes, which formed 1:1 highly coordinated complexes with amino alcohols. Several electrodes gave near-Nernstian slopes for 2-amino-3-methyl-1-butanol in the linear concentration range of 1.0 x 10-1 to 1.0 x 10-3 M, while the low detection limits of these electrodes were order of ∼10-4 M. Although the observed response profiles were significantly dependent on the natures of the targeted amino alcohols, the electrodes exhibited stable potentiometric signals in the pH range of 6-12 in short time period of 20 s. The related monoalcohol, diol, and zwitterionic amino acid substrates gave no response, indicating that the present type of lanthanide tris(β-diketonates) were applicable in potentiometric sensing of amino alcohols

  14. Synthesis and spectral studies on metal complexes of s-triazine based ligand and non linear optical properties

    Science.gov (United States)

    Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.

    2014-11-01

    A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.

  15. Synthesis and characterization of bioactive binuclear transition metal complexes of Schiff base ligand derived from 4-amino-pyrimidine-2-one, diacetyl and glycine

    Directory of Open Access Journals (Sweden)

    Srivastava Abhay Nanda

    2014-01-01

    Full Text Available A series of novel binuclear transition metal complexes was synthesized by reaction of a Schiff base ligand (1-Methyl-2-(2-oxo-1,2-dihydro-pyrimidin-4-ylimino-propylideneamino-acetic acid (LaH derived from 4-amino-pyrimidine-2-one, diacetyl, glycine and corresponding chloride salt of Cu(II, Ni(II, Co(II and Zn(II metals in 1:1 (metal : ligand molar ratio. The compounds were characterized by elemental analyses, molar conductance measurement, magnetic moment measurement and various spectral studies viz. IR, UV-visible, 1H-NMR, 13C-NMR, EPR and ESI-MS. Molar conductance measurement data revealed non-electrolytic nature of metal complexes. Electronic absorption spectral data, electronic paramagnetic resonance parameters and magnetic moment values revealed an octahedral geometry for binuclear metal complexes. Cyclic voltammetric study of Ni(II complex shows a couple of one electron anodic responses near 0.70 V and 1.10 V. In vitro biological activity of Schiff base ligand and binuclear complexes has been checked against bacteria (Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi and fungi (Candida albicans and Candida parapsilosis to assess their antibacterial and antifungal properties.

  16. Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane

    Science.gov (United States)

    El-Tabl, Abdou Saad; El-Saied, Fathey A.; Plass, Winfried; Al-Hakimi, Ahmed Noman

    2008-11-01

    A new series of mono and binuclear Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), La(III), Ru(III), Hf(IV), ZrO(II) and UO 2(II) complexes of phenylaminodibenzoylhydrazone have been synthesized and characterized by elementals analyses, IR UV-vis spectra, magnetic moments, conductances, thermal analyses (DTA and TGA) and electron spin resonance (ESR) measurements. The IR spectral data show that, the ligand behaves as a neutral bidentate type ( 15 and 16), monobasic bidentate type ( 6), or monobasic tridentate type ( 5, 7, 8, 10, 11, 13, 14, 17- 21) or dibasic tridentate type 2- 4, 9 and 12 towards the metal ion. Molar conductances in DMF solution indicate that, the complexes are non-electrolytes. The ESR spectra of solid complexes ( 9 and 10) show axial and non-axial types indicating a d ground state with significant covalent bond character. However, complexes ( 11 and 12), show isotropic type, indicating manganese(II) octahedral geometry. Antibacterial and antifungal tests of the ligand and its metal complexes are also carried out and it has been observed that the complexes are more potent bactericides and fungicides than the ligand.

  17. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties

    Directory of Open Access Journals (Sweden)

    Mahendra Raj Karekal

    2013-01-01

    Full Text Available A new Schiff base of 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and 3-formyl-2-hydroxy-1H-quinoline (HL, and its Cu(II, Co(II, Ni(II, Zn(II, Cd(II, and Hg(II complexes have been synthesized and characterized in the light of microanalytical, IR, H1 NMR, UV-Vis, FAB-mass, ESR, XRD, and TGA spectral studies. The magnetic susceptibility measurements and low conductivity data provide evidence for monomeric and neutral nature of the complexes. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as tridentate ligand. The Cu(II, Co(II, and Ni(II complexes were octahedral, whereas Zn(II, Cd(II, and Hg(II complexes were tetrahedral in nature. The redox behavior of the Cu(II complex was investigated by electrochemical method using cyclic voltammetry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC method. The DNA cleavage experiment performed using agarose gel electrophoresis method showed the cleavage of DNA by all the metal complexes. The free radical scavenging activity of newly synthesized compounds has been determined at a different concentration range by means of their interaction with the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH.

  18. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine.

    Science.gov (United States)

    Emara, Adel A A

    2010-09-15

    The binuclear Schiff base, H2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria (Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and (Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi (Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms. PMID:20627808

  19. Synthesis, spectral characterization, molecular modeling, thermal study and biological evaluation of transition metal complexes of a bidentate Schiff base ligand

    Science.gov (United States)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Qanungo, Kushal; Sharma, Saroj K.

    2013-09-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized [where L = 3-Bromoacetophenone thiosemicarbazone and X = CH3COO-, Cl- and NO3-]. All the complexes were characterized by elemental analysis, magnetic moments, IR, electronic and EPR spectral studies. The ligand behaved as bidentate and coordinated through sulfur of sbnd Cdbnd S group and nitrogen atoms of sbnd Cdbnd N group. The copper(II) and nickel(II) complexes were found to have magnetic moments 1.94-2.02 BM, 2.96-3.02 BM respectively which was corresponding to one and two unpaired electrons respectively. The molar conductance of the complexes in solution of DMSO lies in the range of 10-20 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of EPR, electronic and infrared spectral studies, tetragonal geometry has been assigned for copper(II) complexes and an octahedral geometry for nickel(II) complexes. The values of Nephelauxetic parameter β lie in the range 0.19-0.37 which indicated the covalent character in metal ligand ‘σ' bond. Synthesized ligand and its copper(II) and nickel(II) complexes have also been screened against different bacterial and fungal species which suggested that complexes are more active than the ligands in antimicrobial activities.

  20. Some regularities in formation and solvent extraction of complexes in metal-salicylic acid or its derivative- organic base systems

    International Nuclear Information System (INIS)

    The influence of concentrations of the reagents, pH and solvent on the conditions for the formation and extraction of Sc, Ti, Zr, Hf, Th complexes has been examined in salicylic acid (H2Sal)-heterocyclic amine systems. The extraction chemism and factors, which affect the reactions between the metal ions and the ligands, are discussed. It has been shown that Zr, Hf, Ti form species of ion associate type, Sc and Th form different-ligand complexes under conditions for interphase equilibrium in a Me-H2Sal-heterocyclic amine system

  1. Potentiometric and Thermodynamic Studies of Some Schiff-Base Derivatives of 4-Aminoantipyrine and Their Metal Complexes

    Directory of Open Access Journals (Sweden)

    A. A. El-Bindary

    2013-01-01

    Full Text Available The proton-ligand dissociation constant of 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-phenol ( and 4-(4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-benzoic acid ( and metal-ligand stability constants of their complexes with metal ions (Mn2+, Co2+, Ni2+, and Cu2+ have been determined potentiometrically in 0.1 mol·dm−3 KCl and 10% (by volume ethanol-water mixture and at 298, 308, and 318 K. The stability constants of the formed complexes increase in the order Mn2+, Co2+, Ni2+, and Cu2+. The effect of temperature was studied, and the corresponding thermodynamic parameters (, , and were derived and discussed. The dissociation process is nonspontaneous, endothermic, and entropically unfavourable. The formation of the metal complexes has been found to be spontaneous, endothermic, and entropically favourable.

  2. Synthesis and spectroscopic studies of some transition metal complexes of a novel Schiff base ligands derived from 5-phenylazo-salicyladehyde and o-amino benzoic acid

    Science.gov (United States)

    Refat, Moamen S.; El-Deen, Ibrahim M.; Ibrahim, Hassan K.; El-Ghool, Samir

    2006-12-01

    Cu(II), Mn(II), Ni(II), and Zn(II) metal complexes with novel heterocyclic Schiff base derived from 5-phenyl azo-salicyladehyde and o-amino benzoic acid have been synthesized and characterized on the basis of elemental analyses, electronic, IR, and 1H NMR spectra, and also by aid of scanning electron microscopy (SEM), X-ray powder diffraction, molar ratio measurements, molar conductivity measurements, and thermogravimetric analyses. It has been found that the Schiff base behaves as neutral tridentate (ONO) ligand forming chelates with 1:1 (metal:ligand) stoichiometry.

  3. Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N 2O 2 Schiff base ligand derived from 4,6-diacetylresorcinol and benzylamine

    Science.gov (United States)

    Shebl, Magdy

    2008-09-01

    A tetradentate N 2O 2 donor Schiff base ligand, H 2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl -, NO 3-, AcO -, ClO 4- and SO 42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO 4- anion as compared to the strongly coordinating power of SO 42- and Cl - anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.

  4. Study on Syntheses and Anti-bacterial Activities of Some New Transition Metal Complexes with Schiff Base Ligand Containing Pyridine and Amide Moieties

    Institute of Scientific and Technical Information of China (English)

    LI, Mei-Ying(李美英); HU, Pei-Zhi(胡培植); ZHU, Jun-Cheng(朱军成); LIU, Yi(刘义); XU,Kuo-Xi(徐括喜)

    2004-01-01

    Several new transition metal complexes using Schiff base containing pyridine and amide moieties (N, N'-bis(β- salicylaliminoethyl)-2, 6-pyridinedicarboxylic amide, H4L) as the ligand have been prepared. Their compositions and structures are corroborated by elemental analysis, IR, UV, 1H NMR, DTA-TG and molar conductivity data. Their anti-bacterial activities have been studied by microcalorimetry. The result shows that the ligand and all complexes are potential anti-bacteria reagent and their inhibitory capacities are concentration-depended. The Mn complex has the strongest inhibitory capacity.

  5. In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation

    Directory of Open Access Journals (Sweden)

    Abhay Nanda Srivastva

    2016-01-01

    Full Text Available Novel binuclear metal complexes of general formula [M2(PymLX3] (where: M = Cu(II, Ni(II, Co(II or Zn(II; X = Cl− or CH3CO2− and PymL = C13H17N4O6 were synthesized by template condensation of Schiff base (L derived from glycine using 2,3-butanedione, 5-methyl-2,6-pyrimidine-dione and metal chloride/acetate salt in 1:1:2 stoichiometric ratio. Synthesized compounds were characterized by elemental analysis, conductance measurement, magnetic measurement, IR, UV–visible, 1H NMR, 13C NMR, EPR and ESI-MS spectral studies. IR spectral data suggest that Schiff base (L behaves as tetradentate ligand with two nitrogen and two oxygen donor sites of the azomethine group and carboxylic group, respectively and 5-methyl-2,6-pyrimidine-dione behaves as tridentate ligand with two oxygen atoms of the carbonyl group and one nitrogen atom of pyrimidine ring as binding sites. Physico-chemical data suggest octahedral geometry and non-electrolytic nature of metal complexes. The compounds were evaluated for their antimicrobial property by in vitro antimicrobial screening against bacteria Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi and fungi Candida albicans and Candida parapsilosis. The results indicate that metal complexes exhibit more activity than free Schiff base (L against studied bacteria and fungi.

  6. Synthesis of antibacterial and antifungal activity of metal (ii) complexes with schiff base derived from 3-methoxy-5-bromosalicylaldehyde

    International Nuclear Information System (INIS)

    In this study, the complexes of co (ii), ni (ii), cu (ii) and zn (ii) with 2-((e)-((4-aminophenyl)imino)methyl)-4-bromo-6-methoxyphenol were prepared and characterized by physical, spectral and analytical data. the metal: ligand stoichiometric ratio is 1:2 in all the complexes. it was determined that the bidentate behavior of the ligand is accomplished via the phenolic oxygen and the azomethine nitrogen atoms. both the antibacterial and antifungal activities and mic values of compounds were reported. among the tested compounds, the most effective compound providing a mic value of 64 micro g/ml are zn(l)2 against c. tropicalis and b. subtilis. (author)

  7. In vitro antibacterial and antifungal activities of binuclear transition metal complexes of ONNO Schiff base and 5-methyl-2,6-pyrimidine-dione and their spectroscopic validation

    OpenAIRE

    Abhay Nanda Srivastva; Netra Pal Singh; Chandra Kiran Shriwastaw

    2016-01-01

    Novel binuclear metal complexes of general formula [M2(PymL)X3] (where: M = Cu(II), Ni(II), Co(II) or Zn(II); X = Cl− or CH3CO2− and PymL = C13H17N4O6) were synthesized by template condensation of Schiff base (L) derived from glycine using 2,3-butanedione, 5-methyl-2,6-pyrimidine-dione and metal chloride/acetate salt in 1:1:2 stoichiometric ratio. Synthesized compounds were characterized by elemental analysis, conductance measurement, magnetic measurement, IR, UV–visible, 1H NMR, 13C NMR, EPR...

  8. Model based multi-wavelength spectrophotometric method for calculation of formation constants of phenanthrenequinone thiosemicarbazone complexes with some metallic cations

    OpenAIRE

    Naser Samadi; Mina Salamati; Abdolhossein Naseri

    2013-01-01

    In traditional spectrophotometric determination of stability constants of complexation, it is necessary to find a wavelength at which only one of the components has absorbance without any spectroscopic interference of the other reaction components. In the present work, a simple multi-wavelength model-based method has been developed to determine stability constants for complexation reaction regardless of the spectra overlapping of components. Also, pure spectra and concentration profiles of al...

  9. Base-Free Selective Oxidation of Glycerol over LDH Hosted Transition Metal Complexes Using 3% H2O2 as Oxidant

    Directory of Open Access Journals (Sweden)

    Xiaoli Wang

    2016-07-01

    Full Text Available A series of transition metal sulphonato-Schiff base complexes were intercalated into Mg–Al layered-double hydroxides (LDHs. The obtained catalysts were characterized by FTIR, XRD, N2 sorption, SEM and elemental analysis, and then were used in the selective oxidation of glycerol (GLY using 3% H2O2 as an oxidant. It was found that their catalytic performances were closely related to the loading of active complexes, the Schiff base ligands and the metal centers of the catalysts, as well as the reaction conditions. The optimal conversion of GLY was 85.0%, while the selectivity of 1,3-dihydroxyacetone (DHA was 56.5%. Moreover, the catalysts could be reused at least 10 times.

  10. A facile metal-free "grafting-from" route from acrylamide-based substrate toward complex macromolecular combs

    KAUST Repository

    Zhao, Junpeng

    2013-01-01

    High-molecular-weight poly(N,N-dimethylacrylamide-co-acrylamide) was used as a model functional substrate to investigate phosphazene base (t-BuP 4)-promoted metal-free anionic graft polymerization utilizing primary amide moieties as initiating sites. The (co)polymerization of epoxides was proven to be effective, leading to macromolecular combs with side chains being single- or double-graft homopolymer, block copolymer and statistical copolymer. © 2013 The Royal Society of Chemistry.

  11. Methyl Complexes of the Transition Metals.

    Science.gov (United States)

    Campos, Jesús; López-Serrano, Joaquín; Peloso, Riccardo; Carmona, Ernesto

    2016-05-01

    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity. PMID:26991740

  12. Methyl Complexes of the Transition Metals.

    Science.gov (United States)

    Campos, Jesús; López-Serrano, Joaquín; Peloso, Riccardo; Carmona, Ernesto

    2016-05-01

    Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.

  13. Metal Complexes of Quinolone Antibiotics and Their Applications: An Update

    Directory of Open Access Journals (Sweden)

    Valentina Uivarosi

    2013-09-01

    Full Text Available Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle at the 7-position, and a carbonyl oxygen atom at the 4-position quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.

  14. Dinuclear metal(ii)-acetato complexes based on bicompartmental 4-chlorophenolate: syntheses, structures, magnetic properties, DNA interactions and phosphodiester hydrolysis.

    Science.gov (United States)

    Massoud, Salah S; Ledet, Catherine C; Junk, Thomas; Bosch, Simone; Comba, Peter; Herchel, Radovan; Hošek, Jan; Trávníček, Zdeněk; Fischer, Roland C; Mautner, Franz A

    2016-08-01

    A series of dinuclear metal(ii)-acetato complexes: [Ni2(μ-L(Cl)O)(μ2-OAc)2](PF6)·3H2O (1), [Ni2(μ-L(Cl)O)(μ2-OAc)2](ClO4)·CH3COCH3 (2), [Cu2(μ-L(Cl)O)(μ2-OAc)(ClO4)](ClO4) (3), [Cu2(μ-L(Cl)O)(OAc)2](PF6)·H2O (4), [Zn2(μ-L(Cl)O)(μ2-OAc)2](PF6) (5) and [Mn2(L(Cl)-O)(μ2-OAc)2](ClO4)·H2O (6), where L(Cl)O(-) = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-chlorophenolate, were synthesized. The complexes were structurally characterized by spectroscopic techniques and single crystal X-ray crystallography. Six-coordinate geometries with doubly bridged acetato ligands were found in Ni(ii), Zn(ii) and Mn(ii) complexes 1, 2, 5 and 6, whereas with Cu(ii) complexes a five-coordinate species was obtained with 4, and mixed five- and six-coordinate geometries with a doubly bridged dimetal core were observed in 3. The magnetic properties of complexes 1-4 and 6 were studied at variable temperatures and revealed weak to very weak antiferromagnetic interactions in 1, 2, 4 and 6 (J = -0.55 to -9.4 cm(-1)) and ferromagnetic coupling in 3 (J = 15.4 cm(-1)). These results are consistent with DFT calculations performed at the B3LYP/def2-TZVP(-f) level of theory. Under physiological conditions, the interaction of the dinculear complexes 1-5 with supercoiled plasmid ds-DNA did not show any pronounced nuclease activity, but Ni(ii) complexes 1 and 2 revealed a strong ability to unwind the supercoiled conformation of ds-DNA. The mechanistic studies performed on the interaction of the Ni(ii) complexes with DNA demonstrated the important impact of the nickel(ii) ion in the unwinding process. In combination with the DNA study, the phosphatase activity of complexes 1, 3, and 5 was examined by the phosphodiester hydrolysis of bis(2,4-dinitrophenol)phosphate (BDNPP) in the pH range of 5.5-10.5 at 25 °C. The Michaelis-Menten kinetics performed at pH 7 and 10.7 showed that catalytic efficiencies kcat/KM (kcat = catalytic rate constant, KM = substrate binding constant) decrease in the order

  15. Multinuclear Alkali Metal Complexes of a Triphenylene-Based Hexamine and the Transmetalation to Tris(N-heterocyclic tetrylenes) (Ge, Sn, Pb).

    Science.gov (United States)

    Zhong, Fei; Yang, Xiaodong; Shen, Lingyi; Zhao, Yanxia; Ma, Hongwei; Wu, Biao; Yang, Xiao-Juan

    2016-09-01

    A C3-symmetric hexamine (LH6) based on the triphenylene and ortho-phenylenediamine (PDAH2) skeletons has been synthesized, and was partially or fully deprotonated upon treatment with alkali metal agents to afford amino-amido or diamido coordination sites. Four alkali metal complexes, the dinuclear [Na2(LH4)(DME)5] (1) and [K2(LH4)(DME)4] (2), trinuclear [K3(LH3)(DME)6] (3), and hexanuclear [Li6(L)(DME)6] (4), were obtained and used in transmetalation/ligand exchange with other metals. The hexalithium salt of the fully deprotonated ligand, [Li6L], reacted with heavier group 14 element halides to yield three tris(N-heterocyclic tetrylenes), the germylene [Ge3(L)] (5), stannylene [Sn3(L)] (6), and plumbylene [Pb3(L)] (7). The synthesis and crystal and electronic structures of these compounds are reported. PMID:27525542

  16. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    Science.gov (United States)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  17. Spectroscopy and interactions of metal and metal cation complexes

    OpenAIRE

    Plowright, Richard J.

    2010-01-01

    The work in this thesis looks at the spectroscopy and interactions of metals and metal cation complexes. There are two aspects of this vast subject that are considered: the electronic spectroscopy of Au-RG complexes and the ion-molecule chemistry of metals important in the mesosphere-lower thermosphere (MLT) region of the atmosphere. The spectroscopy of the molecular states in the vicinity of the strong Au 2P3/2, 1/2 ← 2S1/2 atomic transition, have been studied for the Au-RG (RG = Ne, Ar...

  18. Synthesis, spectroscopic, antimicrobial, DNA binding and cleavage studies of some metal complexes involving symmetrical bidentate N, N donor Schiff base ligand

    Science.gov (United States)

    Arish, D.; Nair, M. Sivasankaran

    2011-11-01

    The Schiff base ligand, N, N'-bis-(4-isopropylbenzaldimine)-1,2-diaminoethane (L), obtained by the condensation of 4-isopropylbenzaldehyde and 1,2-diaminoethane, has been used to synthesize the complexes of the type [ML 2X 2] [M = Co(II), Ni(II) and Zn(II); X = Cl and OAc]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analyses, mass, 1H and 13C-NMR, molar conductance, IR, UV-vis, magnetic moment, CV and thermal analyses, powder XRD and SEM. IR spectral data show that the ligand is coordinated to the metal ions in a bidentate manner. The geometrical structures of these complexes are found to be octahedral. Interestingly, reaction with Cu(II) ion with this ligand undergoes hydrolytic cleavage to form ethylenediamine copper(II) complex and the corresponding aldehyde. The antimicrobial results indicate that the chloro complexes exhibit more activity than the acetato complexes. The complexes bind to CT-DNA by intercalation modes. Novel chloroform soluble ZnL 2Cl 2 complex exhibits tremendous antimicrobial, DNA binding and cleaving properties.

  19. Revisited: the conception of lability of metal complexes

    NARCIS (Netherlands)

    Leeuwen, van H.P.

    2001-01-01

    Starting from the original reaction layer concept, the voltammetric properties of electroinactive metal complexes are critically reviewed in terms of their finite rates of dissociation into electroactive free metal ions. The limiting conditions for the reaction layer-based flux expressions are made

  20. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    Science.gov (United States)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  1. Synthesis, Physico-Chemical Characterization, Antibacterial and Antifungal Activities Studies of a New Schiff Base Ligand and its Transition Metal Complexes

    International Nuclear Information System (INIS)

    The complexes of Co(II), Cu(II) and Zn(II) with the Schiff base 2-((E)-((4-(4-aminophenoxy)phenyl)imino)methyl)-6-ethoxyphenol (LH) have been synthesized and their structure have been elucidated on the basis of elemental analyses, IR, 1H- and 13C-NMR spectra, electronic spectra, magnetic susceptibility measurements and thermogravimetric analyses (TGA). Mononuclear complexes with a metal:ligand ratio of 1:1 have been prepared with Co+2 and Zn+2 salts, whereas the copper(II) complex is dinuclear which have a metal:ligand ratio of 2:1. According to the results, it is suggested that the ligand is coordinated to each metal atom by the phenolic oxygen and the azomethine nitrogen atoms. The synthesized compounds were tested for antimicrobial activity against in vitro antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium) and antifungal activities (Candida globrata and Candida tropicalis) by the minimum inhibitory concentration (MIC) method. All of the selected compounds showed weak antimicrobial activity against test microorganisms (256-1024 μ g/mL). (author)

  2. Synthesis, spectroscopic studies, antimicrobial activities and antitumor of a new monodentate V-shaped Schiff base and its transition metal complexes

    Science.gov (United States)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Noureldeen, Amani F. H.

    2014-11-01

    Reaction of 4-aminoacetophenone and 4-bromobenzaldehyde in ethanol resulted in the formation of the monodentate V-shaped Schiff base (E)-1-(4-((4-bromo-benzylidene)amino)phenyl)ethanone (L). Interaction of L with different di- and trivalent metal ions revealed disubstituted derivatives. The ligand and its complexes were characterized by elemental analysis, mass, IR and NMR spectrometry. Biological activities of the ligand and complexes against the Escherchia coli and Staphylococcus aureus bacterias, and the two fungus Aspergillus flavus and Candida albicans were screened. The cytotoxicity of the compounds were checked as antitumor agents on liver carcinoma cell line (HepG2). They exhibited in vitro broad range of antitumor activities towards the cell line; the [ZnL2(H2O)2](NO3)2 complex was stronger antitumor towards HepG2 cell line as well as two breast cancer cell lines (MCF7 and T47D) relative to cis-platin.

  3. Metal complexes with paramagnetic thiosemicarbazone

    International Nuclear Information System (INIS)

    The complexes of Ni(2), Fe(2), Zn(2), Cd(2), Pd(2) and Pt(2) with the stable nitroxyl radical of thiosemicarbazone 4-formyl- 2, 2, 5, 5-tetramethyl-3-imidazoline-1-oxyl of the composition ML2 are synthesized. In the basis of the data of physical methods (IR, EPR, electron spectroscopy) a conclusion is made on the way of the ligand coordination. The study of the magnetic properties of the complexes has shown that in the compounds prepared a weak exchange interaction between unpaired electrons of paramagnetic centres takes place

  4. Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metal-Based Complexes that Deliver High Enantioselectivity and More

    Science.gov (United States)

    Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.

    2012-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680

  5. Synthesis, Characterization and Antibacterial Activity of Novel Schiff Bases Derived from 4-Phenyl-2-aminothiazole and their Mn(II, Fe(II, Co(II, Ni(II and Cu(II Metal complexes

    Directory of Open Access Journals (Sweden)

    A. S. Thakar

    2011-01-01

    Full Text Available Novel Schiff bases and their metal complexes were derived from some hetero cyclic β-diketones with 4-phenyl-2-aminothiazole. All the synthesized compounds were confirmed their structure by Elemental analysis, FT-IR, 1H NMR, 13C NMR, Mass spectra, TGA analysis and UV spectra. All the compounds were tested for their antibacterial activity. Spectroscopic measurements suggest that all Schiff base metal complexes are of type ML2.(H2O2 (M=Mn, Fe, Co, Ni and Cu and all the metal complexes shows moderate antibacterial activity in the agar cup assay method.

  6. Therapeutic treatment of Alzheimer's disease using metal complexing agents.

    Science.gov (United States)

    Price, Katherine A; Crouch, Peter J; White, Anthony R

    2007-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by deposition of extracellular amyloid plaques, formation of intracellular neurofibrillary tangles and neuronal dysfunction in the brain. A growing body of evidence indicates a central role for biometals such as copper in many critical aspects of AD. The amyloid beta (Abeta) peptide and its parental molecule, the amyloid precursor protein (APP) both modulate Cu and Zn metabolism in the brain. Therefore, aberrant changes to APP or Abeta metabolism could potentially alter biometal homoestasis in AD, leading to increased free radical production and neuronal oxidative stress. Modulation of metal bioavailability in the brain has been proposed as a potential therapeutic strategy for treatment of AD patients. The lipid permeable metal complexing agent, clioquinol (CQ), has shown promising results in animal models of AD and in small clinical trials involving AD patients. Moreover, a new generation of metal-ligand based therapeutics is currently under development. Patents now cover the generation of novel metal ligand structures designed to modulate metal binding to Abeta and quench metal-mediated free radical generation. However, the mechanism by which CQ and other metal complexing agents slows cognitive decline in AD animal models and patients is unknown. Increasing evidence suggests that ligand-mediated redistribution of metals at a cellular level in the brain may be important. Further research will be necessary to fully understand the complex pathways associated with efficacious metal-based pharmaceuticals for treatment of AD.

  7. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand

    Science.gov (United States)

    Shebl, Magdy; Khalil, Saied M. E.; Ahmed, Saleh A.; Medien, Hesham A. A.

    2010-09-01

    Condensation of o-acetoacetylphenol and 1,2-diaminopropane in 1:1 molar ratio under condition of high dilution yielded the mono-condensed dibasic Schiff base ligand with a N 2O 2 donors. The mono-condensed ligand has been used for further condensation with 2-hydroxy-5-nitrobenzaldehyde to obtain the new asymmetrical dicompartmental Schiff base ligand, H 3L, with N 2O 3 donors. The structure of the ligand was elucidated by analytical and spectroscopic tools (IR, 1H and 13C NMR spectra) which indicated that the coordinating sites are oxygen atoms of the phenolic OH groups, nitrogen atoms of the azomethine groups and the oxygen atom of the ketonic group. Reactions of the ligand with metal salts yielded mono- and homo-bi-nuclear complexes formulated as [M(HL)], where M dbnd Co(II), Ni(II) and Cu(II), [Fe(H 2L)Cl 2(H 2O)]ṡ2½H 2O, [Fe 2(HL)(ox)Cl 3(H 2O) 2]ṡ5H 2O, [UO 2(H 2L)(OAc)(H 2O) 2], [VO(H 3L)(SO 4)(H 2O)]ṡH 2O, [M 2(L)Cl(H 2O) 2]ṡ½H 2O, where M dbnd Co(II) and Ni(II) and [Cu(H 2L)Cl]. The mononuclear Ni(II) complex, [Ni(HL)], was used to synthesize homo- and hetero-bi- and tri-nuclear complexes with the molecular formulae [Ni 2(L)Cl(H 2O) 2], [Ni 2(L) 2FeCl(H 2O)]ṡH 2O and [Ni 2(HL) 2CoCl 2]. The structures of the complexes were characterized by various techniques such as elemental and thermal analyses, IR, 1H and 13C NMR, mass and electronic spectra as well as conductivity and magnetic moment measurements. Square-planar and octahedral geometries are suggested for the Cu(II), Co(II) and Ni(II) complexes, octahedral geometry for the Fe(III) and VO 2+ complexes while uranium(VI) ion is octa-coordinated in its complex. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli) and fungi ( Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active.

  8. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    Science.gov (United States)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  9. Synthesis, Characterization, Crystal Structure and Antibacterial Activities of Transition Metal(II Complexes of the Schiff Base 2-[(4-Methylphenyliminomethyl]-6-methoxyphenol

    Directory of Open Access Journals (Sweden)

    Guo-Liang Zhao

    2009-05-01

    Full Text Available Five transition metal(II complexes, [ML2Cl2] 1~5, were synthesized from the reaction of MCl2·nH2O (M = Mn, Co, Ni, Cu, Cd and the Schiff base ligand 2-[(4-methylphenyliminomethyl]-6-methoxyphenol (C15H15NO2, L, obtained by condensation of o-vanillin (2-hydroxy-3-methoxybenzaldehyde with p-toluidine. They were characterized by elemental analysis, molar conductance, FT-IR spectra, thermal analysis. The structure of complex 1 was determined by single-crystal X-ray diffraction. Its crystal structure is of monoclinic system, space group P21/c with a = 9.0111(18 Å, b = 11.222(2 Å, c =28.130 (6 Å, α = 90 º, β = 92.29(3 º, γ = 90 º, V = 2867.6(10 Å3, Z = 4. The Mn atom is six-coordinate and displays distorted octahedral geometry.The Schiff base ligand and its complexes have been tested in vitro to evaluate their antibacterial activity against bacteria, viz., Escherichia coli, Staphylococcus aureus and Bacillus subtilis. It has been found that the complexes have higher activity than the corresponding free Schiff base ligand against the same bacteria.

  10. The path for metal complexes to a DNA target.

    Science.gov (United States)

    Komor, Alexis C; Barton, Jacqueline K

    2013-05-01

    The discovery of cisplatin as a therapeutic agent stimulated a new era in the application of transition metal complexes for therapeutic design. Here we describe recent results on a variety of transition metal complexes targeted to DNA to illustrate many of the issues involved in new therapeutic design. We describe first structural studies of complexes bound covalently and non-covalently to DNA to identify potential lesions within the cell. We then review the biological fates of these complexes, illustrating the key elements in obtaining potent activity, the importance of uptake and subcellular localization of the complexes, as well as the techniques used to delineate these characteristics. Genomic DNA provides a challenging but valuable target for new transition metal-based therapeutics.

  11. Synthesis and spectroscopic characterization of some transition metal complexes of a new hexadentate N 2S 2O 2 Schiff base ligand

    Science.gov (United States)

    Sarkar, Saikat; Dey, Kamalendu

    2005-11-01

    A novel interesting hexadentate dibasic N 2S 2O 2 donor Schiff base ligand, H4dcsalpte, was synthesized by the condensation of 3-formylsalicylic acid and 1,2-di( o-aminophenylthio)ethane and characterized. The reactions of the ligand with different metal(II/III)salts under varied reaction conditions afforded a series of metal complexes. The ligand, H4dcsalpte, behaves either as a dibasic or neutral hexadentate one, depending on the reaction conditions. Structural investigations on the ligand and their complexes have been made based on elemental analyses, molar conductance values, magnetic moment values, cryomagnetic and spectral (UV-vis, IR, 1H NMR, and Mössbauer) data. Based on magnetic susceptibility, Mössbauer and electronic spectral data the iron(III) complex [Fe III( H2dcsalpte)]ClO 4 ( 8), isolated in the present investigation, it is inferred that the spin states 5/2 and 1/2 are in equilibrium. Similarly a tri-iron(III) complex [Fe III3( H2dcsalpte)( H3dcsalpte)Cl 3]Cl 3 ( 7), isolated in this study, has been inferred to contain two iron(III) sites in tetrahedral environment and one in the octahedral environment. The aerial oxidation of an equimolar mixture of H4dcsalpte and Co(CH 3COO) 2·4H 2O in ethanol under reflux gave two products, [Co( H2dcsalpte)]CH 3COO ( 10) and [( Hbtcsaldm)Co( Hbvcsaldm)] ( 11), a cobalt(III) complex bound to two dissimilar tridentate NSO donor ligands formed as a result of the oxidative cleavage of the C sbnd S bond. In the complex 11, Hbtcsaldm stands for the dianion of the tridentate Schiff base ligand N-(2'-benzenethiol)-3-carboxysalicylaldimine and Hbvcsaldm stands for the mono anion of the tridentate Schiff base ligand N-(benzene-2'-S-vinyl)-3-carboxysalicylaldimine, both being formed as a result of the oxidative cleavage of H4dcsalpte.

  12. Anisotropic Transport Properties of Complex Metallic Alloys

    OpenAIRE

    Smontara, Ana; Dolinšek, Janez

    2010-01-01

    Anisotropic transport properties (electrical resistivity, ρ, and thermal conductivity, κ) of the Y-phase Al-Ni-Co, o-Al13Co4 and Al4(Cr,Fe) complex metallic alloys were investigated. They belong to the class of decagonal approximant phases with stacked-layer crystallographic structure and allowed us to study the evolution of anisotropic transport properties with increasing structural complexity and the unit cell size.

  13. Metal ammine complexes for hydrogen storage

    DEFF Research Database (Denmark)

    Christensen, Claus H.; Sørensen, Rasmus Zink; Johannessen, Tue;

    2005-01-01

    The hopes of using hydrogen as an energy carrier are severely dampened by the fact that there is still no safe, high-density method available for storing hydrogen. We investigate the possibility of using metal ammine complexes as a solid form of hydrogen storage. Using Mg(NH3)(6)Cl-2 as the example...

  14. Synthesis, structure and superoxide dismutase activity of two self-assembly transition metal complexes containing a tridentate amino-Schiff base deviating from salicylaldehyde with glycine

    Institute of Scientific and Technical Information of China (English)

    HAN Jing; BAI FengYing; ZHAO HaiYan; XING YongHeng; ZENG XiaoQing; GE MaoFa

    2009-01-01

    Two new transition metal (Cu, Ni) complexes with amino-Schiff base ligand, (C_9H_7NO_3)Cu(C_(14)H_(12)N_2).H_2O (1) and (C_9H_7NO_3)Ni(C_3H_4N_2)_3.H_2O(2), have been designed and synthesized in ethanol solution at room temperature. Both of the complexes have been characterized by elemental analysis, IR spectra, UV-vis spectroscopy and X-ray single crystal diffraction. For complex 1, the coordination environment of the central copper atom is a distorted square pyramid, and one-dimensional chain is formed through the inter-molecular hydrogen bonds (O4-H2W…O3, O4-H2W…O3~(#1)(#1:…x+1, y,-z+3/2)) and weak interactions (π-π stacking interaction) between the phenyl rings. For complex 2, the nickel atom is 6-coordinated and in a distorted octahedral environment, and a discrete hydrogen-bond cluster (four molecules are connected by hydrogen bonds into a group) is formed via two types of intra-molecular hydrogen bonds (O-H…O, N-H…O) and inter-molecular hydrogen bonds (O-H…O, N-H…O).

  15. Four Hybrid Materials Based on Preyssler P5W30 Polyoxometalate and First-Row Transition-Metal Complex.

    Science.gov (United States)

    Hu, Tuo-Ping; Zhao, Ya-Qin; Jagličić, Zvonko; Yu, Kai; Wang, Xing-Po; Sun, Di

    2015-08-01

    Four Preyssler P5W30 based inorganic-organic hybrids, formulated as {[Cu12(pbtz)2(Hpbtz)2(OH)4(H2O)16][Na(H2O)P5W30O110]}·16H2O (1; H2pbtz = 5'-(pyridin-2-yl)-1H,2'H-3,3'-bi(1,2,4-triazole)), {[Cu10(ttbz)2(Httbz)4(OH)6(H2O)8][K(H2O)H2P5W30O110]}·30H2O (2; Httbz = 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene), {[Ni6(bpz)6(H2O)16][Na(H2O)H2P5W30O110]}·36H2O (3; bpz = 3,3',5,5'-tetramethyl-4,4-bipyrazole), {[Co4(bpz)6(H2O)9][K(H2O)H6P5W30O110]}·46H2O (4), have been isolated and structurally identified via microanalysis, thermogravimetry (TG), infrared (IR) spectroscopy, and X-ray single-crystal diffraction. Compound 1 exhibits a 3D binodal (3,6)-connected ant framework composed of dodeca-supported P5W30 polyoxometalate (POM) clusters and discrete [Cu6(pbtz)(Hpbtz)(OH)2(H2O)8] subunits. Compound 2 is a pillared-layer 3D network constructed from [Cu5(ttbz)(Httbz)2(OH)3(H2O)4] sheets pillared by individual P5W30 clusters. Compound 3 contains octa-supporting P5W30 POM clusters and novel [Ni6(bpz)6] crown-like metallamacrocycles, which construct a (4,4)-connected pts network. Compound 4 displays a complicated 3D (5,5)-connected {4(5)·6(4)·8}{4(5)·6(5)} network built by pentasupporting P5W30 POM clusters and discrete [Co4(bpz)6(H2O)9] subunits. In 1-4, the unified features are the Preyssler-type [P5W30O110] POM as the fundamental building block, which supports the transition-metal compounds with different modes to give the resultant diverse networks. The magnetism studies indicated antiferromagnetically coupled systems for the hexa- and pentanuclear Cu(II) units in 1 and 2, respectively. The electrochemical properties demonstrate that all compounds have electrocatalytic abilities toward the reduction of hydrogen peroxide. Furthermore, the catalytic activities of 1 in the cyanosilylation of aldehydes reaction have been investigated. PMID:26196681

  16. Spectral, magnetic, biocidal screening, DNA binding and photocleavage studies of mononuclear Cu(II) and Zn(II) metal complexes of tricoordinate heterocyclic Schiff base ligands of pyrazolone and semicarbazide/thiosemicarbazide based derivatives

    Science.gov (United States)

    Raman, N.; Selvan, A.; Manisankar, P.

    2010-07-01

    We depict the synthesis and characterization of copper(II) and zinc(II) coordination compounds of 4-(3',4'-dimethoxybenzaldehydene)2-3-dimethyl-1-phenyl-3-pyrazolin-5-semicarbazone ( 1a), 4-(3',4'-dimethoxybenzaldehydene)2-3-dimethyl-1-phenyl-3-pyrazolin-5-thiosemicarbazone ( 1b), 4-(3'-hydroxy-4'-nitrobenzaldehydene)2-3-dimeth yl-1-phenyl-3-pyrazolin-5-semicarbazone ( 1c) and 4-(3'-hydroxy-4'-nitrobenzal dehydene)2-3-dimethyl-1-phenyl-3-pyrazolin-5-thiosemicarbazone ( 1d). All the remote compounds have the general composition [ML 2] (M = Cu(II) and Zn(II)); L = Schiff base ( 1a- 1d). All the complexes were characterized by elemental analysis, molar conductivity, IR, 1H NMR, UV-vis, ESI-Mass, magnetic susceptibility measurements, cyclic voltammetric measurements, and EPR spectral studies. It has been originated that the Schiff bases with Cu(II) and Zn(II) ions form mononuclear complexes on 1:2 (metal:ligand) stoichiometry. Distorted octahedral environment is suggested for the metal complexes. The conductivity data confirm the non-electrolytic nature of the complexes. The interaction of CuL 21a- 1d complexes with CT DNA was investigated by spectroscopic, electrochemical and viscosity measurements. Results suggest that the copper complexes bind to DNA via an intercalative mode. Moreover, the complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365 nm. The Schiff bases and their metal complexes were screened for their antifungal and antibacterial activities against different species of pathogenic fungi and bacteria and their biopotency has been discussed.

  17. Transition metal complexes with thiosemicarbazide-based ligands. Part 58. Synthesis, spectral and structural characterization of dioxovanadium(V complexes with salicylaldehyde thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    LJILJANA S. VOJINOVIĆ-JEŠIĆ

    2011-06-01

    Full Text Available The first two complexes of dioxovanadium(V with salicylaldehyde thiosemicarbazone (SALTSC, of the coordination formulas [VO2(SALTSC––H]∙H2O (1 and NH4[VO2(SALTSC–2H] (2, were synthesized and characterized by elemental analysis, conductometric measurements, IR and UV–Vis spectroscopy and X-ray analysis. The complexes were obtained in the reaction of an aqueous ammoniacal solution of NH4VO3 and SALTSC. The results of the characterization showed that SALTSC was coordinated in the usual ONS tridentate mode as monoanion in complex 1 and dianion in complex 2. In both complexes, the vanadium atom is in a deformed square-pyramidal environment and is slightly shifted towards the apical oxo-ligand (» 0.52 Å.

  18. Synthesis and biological activities of transition metal complexes based on acetylsalicylic acid as neo-anticancer agents.

    Science.gov (United States)

    Rubner, Gerhard; Bensdorf, Kerstin; Wellner, Anja; Kircher, Brigitte; Bergemann, Silke; Ott, Ingo; Gust, Ronald

    2010-10-14

    [(μ(4)-η(2))-(Prop-2-ynyl)-2-acetoxybenzoate]dicobalthexacarbonyl (Co-ASS), a derivative of aspirin (ASS), demonstrated high growth-inhibitory potential against various tumor cells with interference in the arachidonic acid cascade as probable mode of action. The significance of the kind of metal and cluster was verified in this structure-activity study: Co(2)(CO)(6) was respectively exchanged by a tetrameric cobalt-, trimeric ruthenium-, or trimeric ironcarbonyl cluster. Furthermore, the metal binding motif was changed from alkyne to 1,3-butadiene. Compounds were evaluated for growth inhibition, antiproliferative effects, and apoptosis induction in breast (MCF-7, MDA-MB 231) and colon cancer (HT-29) cell lines and for COX-1/2 inhibitory effects at isolated isoenzymes. Additionally, the major COX metabolite prostaglandin E2 (PGE(2)) was quantified in arachidonic acid-stimulated MDA-MB 231 breast tumor cells. It was demonstrated that the metal cluster was of minor importance for effects on cellular activity if an alkyne was used as ligand. Generally, no correlation existed between growth inhibition and COX activity. Cellular growth inhibition and antiproliferative activity at higher concentrations of the most active compounds Prop-ASS-Co(4) and Prop-ASS-Ru(3) correlated well with apoptosis induction.

  19. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies

    Science.gov (United States)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.

  20. Antiretroviral activity of thiosemicarbazone metal complexes.

    Science.gov (United States)

    Pelosi, Giorgio; Bisceglie, Franco; Bignami, Fabio; Ronzi, Paola; Schiavone, Pasqualina; Re, Maria Carla; Casoli, Claudio; Pilotti, Elisabetta

    2010-12-23

    Thiosemicarbazones display a wide antimicrobial activity by targeting bacteria, fungi, and viruses. Here, we report our studies on the antiviral activity of two thiosemicarbazone metal complexes, [bis(citronellalthiosemicarbazonato)nickel(II)] and [aqua(pyridoxalthiosemicarbazonato)copper(II)] chloride monohydrate, against the retroviruses HIV-1 and HTLV-1/-2. Both compounds exhibit antiviral properties against HIV but not against HTLVs . In particular, the copper complex shows the most potent anti-HIV activity by acting at the post-entry steps of the viral cycle. PMID:21121632

  1. Evaluation of heavy metal complex phytotoxicity

    OpenAIRE

    Vita Vasilyevna Datsenko; Nataliya Lvovna Khimenko

    2016-01-01

    The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc i...

  2. Complex Metal Oxide Chemical Gas Sensors

    OpenAIRE

    Šutka, A

    2015-01-01

    The demand for alternative gas sensor materials is increasing following the progress in the electronic industry. Complex ternary oxide materials have been emerging rapidly over 10 last years. Among ternary metal oxide compounds, the spinel ferrites are the most attractive materials due to structural and compositional versatility. This report will highlight the recent developments and will show the potential of the spinel ferrites on gas sensor technology. Sensing mechanisms for a range of gas...

  3. Preparation and Catalysis of Aminomethylated Polystyrene Supported Unsymmetrical Schiff-Base Metal Complexes for the Oxidation of Cyclohexene

    Institute of Scientific and Technical Information of China (English)

    X.L.Shi; Y.Chang; F.Zha; Y.G.Wang

    2007-01-01

    1 Results The dominant position of molecular oxygen as the oxidant for bulk chemical oxyfunctionalizations is due to the fact that it is the only economically and environmentally friendly feasible oxidant for large scale processing.But molecular oxygen is not better oxidant than others,such as PhIO,NaOCl,H2O2,alkyl hydroperoxides,percarboxylic acids,magnesium monoperoxyphthalate.So we have to select high reactivity and general utility catalyst.The oxidation of hydrocarbons catalyzed by transition metal ...

  4. Late transition metal organometallic chemistry. rhodium, iridium and gold complexes with sigma and pi hydrocarbon-based ligands.

    OpenAIRE

    Fernández-Espada Pastor, María

    2015-01-01

    Los resultados que se presentan en esta Memoria se encuadran en una de las líneas de investigación que desarrolla el grupo de Química Organometálica y Catálisis Homogénea del Instituto de Investigaciones Químicas (Centro Mixto Universidad de Sevilla−CSIC), que tiene como objetivo el estudio de las reacciones de ruptura y formación de enlaces C—H, C—O, C—C y otros similares, inducidas de manera selectiva por complejos de metales de los grupos 9 (Rh e Ir) y, por primera vez en esta Tesis Doctor...

  5. Structure and Reactivity of Isolated Mononuclear and Oligonuclear Metal Complexes

    OpenAIRE

    Menges, Fabian

    2013-01-01

    This thesis reports on investigations on the structure and reactivity of dipeptide-alkali metal complexes, a series of ruthenium bearing catalysts, dysprosium based single molecule magnets and organometallic di-cobalt complexes. A variety of experimental and theoretical methods was used dependent on the problem: collision induced dissociation, hydrogen/deuterium exchange reactions, gas phase reactions with \\(D_2\\), infrared multiple-photon dissociation and the determination of minimum energy...

  6. Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes.

    Science.gov (United States)

    Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan

    2014-04-29

    Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory.

  7. Synthesis, Characterization and Biocidal Activity of some Schiff base and its Metal Complexes of Co(II, Cu(II and Ni(II

    Directory of Open Access Journals (Sweden)

    B. K. Rai

    2013-12-01

    Full Text Available A series of metal complexes derivatives of 1-propyl-2-6-diphenyl piperidone semicarbazone(PDPS with metal ions Cu(II, Co(II and Ni(II have been synthesized. The ligand and metal complexes obtained are characterized quantitatively and qualitatively by using, molar mass, elemental analyses, Infrared spectra, electronic spectra, magnetic susceptibility and conductivity measurements. On the basis of above physiochemical analysis, it has been observed that the ligand PDPS coordinate to the metal ion in a bidentate manner through azomethine nitrogen and oxygen atom of semicarbozone moiety. The remaining coordination centers are satisfied by anions such as X = Cl-, Br- and I-. Electronic spectral and magnetic susceptibility measurement proposed the general composition of the complex is [M(PDPS2X2] where M = Cu(II, X = Cl- and Br-; M = Co(II and Ni(II, X = Cl-, Br- and I-. The complexes of Co(II and Ni(II were proposed octahedral geometries whereas distorted octahedral geometry reported for Cu(II complexes. The preliminary in vitro antibacterial Screening activity revealed that complexes showed better inhibition against tested bacterial strains and higher compared to parent ligand.

  8. TDPAC studies on metal-complex ferrimagnets

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Yoshitaka [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Abe, Shizuko; Okada, Takuya [and others

    1997-03-01

    TDPAC spectra of {sup 117}In (left-arrow {sup 117}Cd) and {sup 111}Cd (left-arrow {sup 111m}Cd) in the mixed metal complex N(C{sub 4}H{sub 9}){sub 4}(M(II)Fe(III)(C{sub 2}O{sub 4}){sub 3})(M=Fe,Ni), the related substraces and LiNbO{sub 3} have been studied. In this paper, pure potassium iron (III) oxalate was prepared and mixed metal complexes were synthesized by changing amount of reagents and the order added, then observed by TDPAC. 2 mol%Cd was dispersed throughout potassium iron oxalate and potassium nickel oxalate, formulating M(II){sub 0.98}Cd(II){sub 0.02}C{sub 2}O{sub 4}{center_dot}2H{sub 2}O (M=Fe, Ni) with the same crystal structure. The formation reaction of mixed metal complex-Fe(II) was faster than that of iron oxalate. Its mixed metal complex-Ni(II) was slower than that of iron oxalate. The rate of quadrupole oscillation was obtained by {omega}{sub Q}({sup 117}In)=67.3 Mrad/s and {omega}{sub Q}({sup 111}Cd)=29.7 Mrad/s of which values were determined by TDPAC spectra of {sup 117}In and {sup 111}Cd in LiNbO{sub 3} at 4K. The value showed pure ion bond of oxygen coordinated with {sup 117}In and {sup 111}Cd. 0.08 {eta} was determined by TDPAC spectrum of {sup 111}Cd(left-arrow {sup 111m}Cd). The rate of {omega}{sub Q} of mixed metal oxalate complex was larger than 2.3, indicating 5s and 5p orbital electron took part in bond of oxygen of oxalic acid or approaching oxygen ion to In nucleus depend on the structual relaxation in decaying of {sup 117}In(left-arrow {sup 117}Cd). (S.Y.)

  9. Amorphous metal based nanoelectromechanical switch

    KAUST Repository

    Mayet, Abdulilah M.

    2013-04-01

    Nanoelectromechanical (NEM) switch is an interesting ultra-low power option which can operate in the harsh environment and can be a complementary element in complex digital circuitry. Although significant advancement is happening in this field, report on ultra-low voltage (pull-in) switch which offers high switching speed and area efficiency is yet to be made. One key challenge to achieve such characteristics is to fabricate nano-scale switches with amorphous metal so the shape and dimensional integrity are maintained to achieve the desired performance. Therefore, we report a tungsten alloy based amorphous metal with fabrication process development of laterally actuated dual gated NEM switches with 100 nm width and 200 nm air-gap to result in <5 volts of actuation voltage (Vpull-in). © 2013 IEEE.

  10. Binding of dihydromyricetin and its metal ion complexes with bovine serum albumin

    OpenAIRE

    Guo, Qingquan; Yuan, Juan; Zeng, Jinhua

    2014-01-01

    The binding mechanisms of the interaction of three dihydromyricetin (DMY)–metal complexes (DMY–Cu (II) complex, DMY–Mn (II) complex, DMY–Zn (II) complex) and DMY with bovine serum albumin (BSA) were investigated using fluorescence and ultraviolet spectroscopy at different temperatures. The results indicated some differences in the binding process between different DMY–metal complexes and BSA compared with that of free DMY. All of the complexes and DMY quenched the fluorescence of BSA based on...

  11. White Organic Light-Emitting Devices Based on 2-(2-Hydroxyphenyl) Benzothiazole and Its Chelate Metal Complex

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-Ming; HUA Yu-Lin; WANG Zhao-Qi; ZHENG Jia-Jin; FENG Xiu-Lan; SUN Yuan-Yuan

    2005-01-01

    @@ We present three kinds of organic light-emitting devices (OLED) fabricated to achieve the emission of bright and pure white light. Device A, with a double-layered structure using 2-(2-hydroxyphenyl) benzothiazole (HBT) and poly (N-vinylcarbazole) (PVK) as the emitting layer (EML) and the hole transport layer (HTL) respectively,could realize the blue-green light emission. Bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2), synthesized with zinc acetate dihydrate and HBT to form a complex, is used as main EMLs in a similar structure to fabricate devices B and C. Bright and pure white light emissions can be obtained from device C which was fabricated with a green-white emitting host Zn(BTZ)2 and red dopant 5,6,11,12-tetraphenylnaphthacene (rubrene). The maximum quantum efficiency of device C could reach 0.63%, and the corresponding brightness and CIE coordinates were 4000cd/m2 and (x = 0.341, y = 0.334) at the driving voltage of 20 V.

  12. Determination of catecholamines based on the measurement of the metal nanoparticle-enhanced fluorescence of their terbium complexes

    International Nuclear Information System (INIS)

    We have developed a method for the determination of the three catecholamines (CAs) epinephrine (EP), norepinephrine (NE), and dopamine (DA) at sub-nanomolar levels. It is found that the luminescence of the complexes formed between the CAs and Tb 3+ ion is strongly enhanced in the presence of colloidal silver nanoparticles (Ag-NPs). The Ag-NPs cause a transfer of the resonance energy to the fluorophores through the interaction of the excited-state fluorophores and surface plasmon electrons in the Ag-NPs. Under the optimized condition, the luminescence intensity of the system is linearly related to the concentration of the CAs. Linearity is observed in the concentration ranges of 2. 5-110 nM for EP, 2. 8-240 nM for NE, and 2. 4-140 nM for DA, with limits of detection as low as 0. 25 nM, 0. 64 nM and 0. 42 nM, respectively. Relative standard deviations were determined at 10 nM concentrations (for n = 10) and gave values of 0. 98%, 1. 05% and 0. 96% for EP, NE and DA, respectively. Catecholamines were successfully determined in pharmaceutical preparations, and successful recovery experiments are demonstrated for urine and serum samples. (author)

  13. Quinoxaline based bio-active mixed ligand transition metal complexes: Synthesis, characterization, electrochemical, antimicrobial, DNA binding, cleavage, antioxidant and molecular docking studies.

    Science.gov (United States)

    Dhanaraj, C Justin; Johnson, Jijo

    2015-10-01

    Co(II), Ni(II), Cu(II) and Zn(II) mixed ligand complexes have been synthesized from N(2), N(3)-bis(4-nitrophenyl)quinoxaline-2,3-diamine and 1,10-phenanthroline. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility, IR, UV-Vis., (1)H NMR, mass and ESR spectra. Octahedral geometry has been assigned for Co(II), Ni(II) and Zn(II) complexes and distorted octahedral geometry for Cu(II) complex. Electrochemical behavior of the synthesized complexes was studied using cyclic voltammetry. Grain size and surface morphologies of the complexes were determined by powder XRD and SEM analyses. The mixed ligand metal complexes were screened for antimicrobial activity against bacterial species Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species Aspergillus niger, and Candida albicans by disc diffusion method. The DNA binding and DNA cleavage activities of the compounds were determined using electronic absorption titration and agarose gel electrophoresis respectively. The superoxide radical scavenging and free radical scavenging activities of the Cu(II) complex was also evaluated. Molecular docking studies of the synthesized mixed ligand metal complexes were carried out against B-DNA dodecamer and the protein Plasmodium falciparum dihydrofolate reductase (pf DHFR).

  14. Evaluation of heavy metal complex phytotoxicity

    Directory of Open Access Journals (Sweden)

    Vita Vasilyevna Datsenko

    2016-07-01

    Full Text Available The experimental data dealing with the effect of heavy metals contained in the technogenic contaminated soils on plant objects under controlled conditions was discussed. The aim of this work is to define the quantitative indicators of copper and zinc potential phytotoxicity, namely germination energy, simultaneous germination and duration of the test plants. It was found that the activity of the test plant growth is linked with copper and zinc complex action. Joint effect of copper and zinc is manifested both in inhibition of lettuce growth and determined, above all, by the nature contamination, soil properties and biological specificity of the test plants.

  15. A Straightforward Electrochemical Approach to Imine- and Amine-bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State.

    Science.gov (United States)

    Chapman, Michael R; Henkelis, Susan E; Kapur, Nikil; Nguyen, Bao N; Willans, Charlotte E

    2016-08-01

    Synthetic methods to prepare organometallic and coordination compounds such as Schiff-base complexes are diverse, with the route chosen being dependent upon many factors such as metal-ligand combination and metal oxidation state. In this work we have shown that electrochemical methodology can be employed to synthesize a variety of metal-salen/salan complexes which comprise diverse metal-ligand combinations and oxidation states. Broad application has been demonstrated through the preparation of 34 complexes under mild and ambient conditions. Unprecedented control over metal oxidation state (M(II/III/IV) where M=Fe, Mn) is presented by simple modification of reaction conditions. Along this route, a general protocol-switch is described which allows access to analytically pure Fe(II/III)-salen complexes. Tuning electrochemical potential, selective metalation of a Mn/Ni alloy is also presented which exclusively delivers Mn(II/IV)-salen complexes in high yield. PMID:27547645

  16. [Applications of metal ions and their complexes in medicine I].

    Science.gov (United States)

    Nagy, László; Csintalan, Gabriella; Kálmán, Eszter; Sipos, Pál; Szvetnik, Attila

    2003-01-01

    The "inorganic medical chemistry" is a rapidly developing field with enormous potential for applications, which offers new possibilities to the pharmaceutical industry. For example, the titanocene dichloride is already in clinical use, and antimetastatic activity of a range of Ru(III) complexes is also well established. There are ways to minimize the toxicity of Gd(III) complexes and therefore they can be safely injected as MRI contrast agents. The so called "ligand design" allows paramagnetic ions to be targeted to specific organs. Such designed ligands also enable the targeting of radiodiagnostic (99mTc) and radiotherapeutic (186Re) isotopes. There is a significant progress in understanding the coordination chemistry and biochemistry of metal ion(s) containing complexes such as Au antiarthritic and Bi antiulcer drugs. Further, currently developing areas include Mn (SOD mimics), V (insulin mimics), Ru (NO scavengers), Ln-based photosensitizers, metal-targeted organic agents and the Fe overload. The expanding knowledge of the role of metals in biochemistry is expected to provide scope for the design of new drugs in many other areas too, for example neuropharmaceutical and antiaffective agents. Progress in coordination chemistry is strongly dependent on understanding not only the thermodynamics of reactions, but also the kinetics of metal complexes under biologically relevant conditions.

  17. Synthesis, Characterisation and Structural Studies of Complexes Containing Different Schiff Bases with Mn (Lll And Mn (Ii Transition Metals

    Directory of Open Access Journals (Sweden)

    Gulrez Nizami

    2014-01-01

    Full Text Available The Schiff bases 5-methyl2-hydroxyacetophenonemorpholine-N-thiohydrazide, 5-methyl2-hydroxyacetophenoneantipyrine 5-chloro2-hydroxyacetophenonemorpholine-N-thiohydrazone has reacted with MnII and MnIII to form co-ordination compounds having general formula [M (C14H19O2N3S 3H2O] Cl; [M (C14H19O2N3S.3H2O]; [M (C20H20N3O2 2] Cl; [M (C20H20N3O2 2];[M(C13H14O2N3SCl.3H2O]Cl and [M(C13H14O2N3SCl].3H2 O] respectively. Where M=Mn III and Mn II. The adducts have been characterized on the basis of elemental analyses molar conductance, I.R , visible spectra, magnetic susceptibility measurement and TGA. The ligands behave in dibasic tridentate manner in 5-methyl2-hydroxyacetophenonemorpholine-N-thiohydrazone and 5-chloro2-hydroxyacetophenonemorpholine-N-thiohydrazone.While5-methyl2hydroxyacetophenoneantipyrine behaves in monobasic tridentate manner. All these compounds are paramagnetic in nature and have octahedral geometry.

  18. Structural, photophysical and magnetic properties of transition metal complexes based on the dipicolylamino-chloro-1,2,4,5-tetrazine ligand.

    Science.gov (United States)

    Nazarenko, Iuliia; Pop, Flavia; Sun, Qinchao; Hauser, Andreas; Lloret, Francesc; Julve, Miguel; El-Ghayoury, Abdelkrim; Avarvari, Narcis

    2015-05-21

    The ligand 3-chloro-6-dipicolylamino-1,2,4,5-tetrazine (Cl-TTZ-dipica) , prepared by the direct reaction between 3,6-dichloro-1,2,4,5-tetrazine and di(2-picolyl)-amine, afforded a series of four neutral transition metal complexes formulated as [Cl-TTZ-dipica-MCl2]2, with M = Zn(II), Cd(II), Mn(II) and Co(II), when reacted with the corresponding metal chlorides. The dinuclear structure of the isostructural complexes was disclosed by single crystal X-ray analysis, clearly indicating the formation of [M(II)-(μ-Cl)2M(II)] motifs and the involvement of the amino nitrogen atom in semi-coordination with the metal centers, thus leading to distorted octahedral coordination geometries. Moreover, the chlorine atoms, either coordinated to the metal or as a substituent on the tetrazine ring, engage respectively in specific anion-π intramolecular and intermolecular interactions with the electron-poor tetrazine units in the solid state, thus controlling the supramolecular architecture. Modulation of the emission properties is observed in the case of the Zn(II) and Cd(II) complexes when compared to the free ligand. A striking difference is observed in the magnetic properties of the Mn(II) and Co(II) complexes. An antiferromagnetic coupling takes place in the dimanganese(II) compound (J = -1.25 cm(-1)) while the Co(II) centers are ferromagnetically coupled in the corresponding complex (J = +0.55 cm(-1)), the spin Hamiltonian being defined as H = -JSA·SB. PMID:25868861

  19. Metal plasmon enhanced europium complex luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Liu Feng [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada); Aldea, Gabriela [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada); Petru Poni Institute of Macromolecular Chemistry Iasi, Aleea Grigore Ghica Voda 41A, 700487 Iasi (Romania); Nunzi, Jean-Michel, E-mail: nunzijm@queensu.c [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario, K7L 3N6 (Canada)

    2010-01-15

    The plasmon enhanced luminescence of a rare-earth complex Tris(6, 6, 7, 7, 8, 8, 8-heptafluoro-2, 2-dimethyl-3, 5-octanedionato) europium (Eu(fod){sub 3}) was investigated. A polyvinyl alcohol (PVA) thin film was successfully adopted as a spacer to separate the Eu complex from the silver island film (SIF), and five-fold enhancement of the radiative decay rate of the Eu complex on SIF was demonstrated based on the luminescence intensity and lifetime measurement. Investigation of the distance dependent luminescence indicates that 7 nm is an optimal distance for SIF enhanced Eu luminescence. Plasmon enhanced rare-earth luminescence based on an organic film spacer would find potential applications in plasmon enhanced organic light emitting diode (OLED) devices.

  20. Nitrogen vacancy complexes in nitrogen irradiated metals

    International Nuclear Information System (INIS)

    Gas desorption and positron annihilation techniques have been employed to study the evolution of nitrogen associated defects in nitrogen irradiated metals: Fe, Ni, Mo and W. Nitrogen in these metals has a rather high affinity to vacancy type defects. The results obtained for low irradiation dose show that substitutional nitrogen (NV; with V = vacancy) is formed. The nitrogen vacancy complex dissociates at temperatures ranging from 350 K for Ni to 900 K for Mo and 1,100 K for W. At high doses defects are formed which can be characterized as nitrogen saturated vacancy clusters. These defect, as observed by helium probing, disappear during annealing for nickel at 800 K, and for Mo at 1,100 K. The direct observation of the desorbing nitrogen for nickel and molybdenum reveals a very fast desorption transient at the dissociation temperature of the clusters. This is the characteristic desorption transient of a small nitride cluster, e.g., by shrinkage with constant rate. For iron the nitrogen desorption is more complicated because of a general background that continuously rises with temperature. With the positron beam technique depth information was obtained for defects in iron and the defect character could be established with the help of the information provided on annihilation with conduction and core electrons of the defect trapped positrons

  1. Mono- and Dinuclear Macrocyclic Calcium Complexes as Platforms for Mixed-Metal Complexes and Clusters.

    Science.gov (United States)

    Connolly, Emma A; Leeland, James W; Love, Jason B

    2016-01-19

    Mono- and dinuclear calcium complexes of the Schiff-base macrocycles H4L have been prepared and characterized spectroscopically and crystallographically. In the formation of Ca(THF)2(H2L(1)), Ca2(THF)2(μ-THF)(L(1)), and Ca2(THF)4(L(2)), the ligand framework adopts a bowl-shaped conformation instead of the conventional wedge, Pacman-shaped structure as seen with the anthracenyl-hinged complex Ca2(py)5(L(3)). The mononuclear calcium complex Ca(THF)2(H2L(1)) reacts with various equivalents of LiN(SiMe3)2 to form calcium/alkali metal clusters and dinuclear transition metal complexes when reacted subsequently with transition metal salts. The dinuclear calcium complex Ca2(THF)2(μ-THF)(L(1)), when reacted with various equivalents of NaOH, is shown to act as a platform for the formation of calcium/alkali metal hydroxide clusters, displaying alternate wedged and bowl-shaped conformations.

  2. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    Science.gov (United States)

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. PMID:26067934

  3. Spectroscopic investigations of new binuclear transition metal complexes of Schiff bases derived from 4,6-diacetylresorcinol and 3-amino-1-propanol or 1,3-diamino-propane

    Science.gov (United States)

    Emara, Adel A. A.; Saleh, Akila A.; Adly, Omima M. I.

    2007-11-01

    The bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) serves as precursor for the formation of different Schiff base ligands, which are either di- or tetra-basic with two symmetrical sets of either O 2N or N 2O tridentate chelating sites. The condensation of 4,6-diacetylresorcinol with 3-amino-1-propanol (3-AP) or 1,3-diaminopropane (DAP), yields the corresponding hexadentate Schiff base ligands, abbreviated as H 4L a and H 2L b, respectively. The structures of these ligands were elucidated by elemental analyses, IR, mass, 1H NMR and electronic spectra. Reaction of the Schiff base ligands with copper(II), nickel(II), cobalt(II), zinc(II), cadmium(II), iron(III), chromium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded the corresponding transition metal complexes. A variety of binuclear complexes for the metal complexes were obtained with the ligands in its di- or tetra-deprotonated forms. The structures of the newly prepared complexes were identified by elemental analyses, infrared, electronic, mass, 1H NMR and ESR spectra as well as magnetic susceptibility measurements and thermal gravimetric analysis (TGA). The bonding sites are the azomethine and amino nitrogen atoms, and phenolic and alcoholic oxygen atoms. The metal complexes exhibit different geometrical arrangements such as square planar, tetrahedral, square pyramid and octahedral arrangement.

  4. Acute metal toxicology of olfaction in coho salmon: behavior, receptors, and odor-metal complexation

    Energy Technology Data Exchange (ETDEWEB)

    Rehnberg, B.C.; Schreck, C.B.

    1986-04-01

    The objective of this research was to determine the acute toxicities of mercury (Hg), copper (Cu), and zinc (Zn) to coho salmon olfaction. The authors used a behavioral assay of olfaction based on an avoidance reaction to L-serine in a two-choice Y-trough. A second objective was to gain some understanding of the mechanism of metal-induced olfactory inhibition by observing how metals affect the binding of L-serine to its olfactory cell membrane receptor. They have also taken the novel approach of addressing olfactory toxicology from the perspective of the odor molecule by considering metal speciation and metal-serpine complexation chemistry on the basis of chemical equilibrium computations.

  5. Unique chemical properties of metal-carbon bonds in metal-carboranyl and metal-carboryne complexes

    Institute of Scientific and Technical Information of China (English)

    QIU ZaoZao; XIE ZuoWei

    2009-01-01

    The metal-carbon bonds in metal-carboranyl and metal-carboryne complexes behave very differently from those in classical organometallic complexes. The unique electronic and steric properties of icosahedral carboranyl moiety make the M-C bond in metal-carboranyl complexes inert toward unsaturated molecules, and on the other hand, the sterically demanding carborane cage can induce unexpected C-C coupling reactions. The M-C bonds in metal-carboryne complexes are, however, active toward various kinds of unsaturated molecules and the reactivity patterns are dependent upon the electronic configurations of the metal ions. This account provides an overview of our recent work in this area.

  6. Unique chemical properties of metal-carbon bonds in metal-carboranyl and metal-carboryne complexes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The metal-carbon bonds in metal-carboranyl and metal-carboryne complexes behave very differently from those in classical organometallic complexes. The unique electronic and steric properties of ico-sahedral carboranyl moiety make the M-C bond in metal-carboranyl complexes inert toward unsaturated molecules, and on the other hand, the sterically demanding carborane cage can induce unexpected C-C coupling reactions. The M-C bonds in metal-carboryne complexes are, however, active toward various kinds of unsaturated molecules and the reactivity patterns are dependent upon the electronic configurations of the metal ions. This account provides an overview of our recent work in this area.

  7. Ag-DNA Emitter: Metal Nanorod or Supramolecular Complex?

    Science.gov (United States)

    Ramazanov, Ruslan R; Sych, Tomash S; Reveguk, Zakhar V; Maksimov, Dmitriy A; Vdovichev, Artem A; Kononov, Alexei I

    2016-09-15

    Ligand-stabilized luminescent metal clusters, in particular, DNA-based Ag clusters, are now employed in a host of applications such as sensing and bioimaging. Despite their utility, the nature of their excited states as well as detailed structures of the luminescent metal-ligand complexes remain poorly understood. We apply a new joint experimental and theoretical approach based on QM/MM-MD simulations of the fluorescence excitation spectra for three Ag clusters synthesized on a 12-mer DNA. Contrary to a previously proposed "rod-like" model, our results show that (1) three to four Ag atoms suffice to form a partially oxidized nanocluster emitting in visible range; (2) charge transfer from Ag cluster to DNA contributes to the excited states of the complexes; and (3) excitation spectra of the clusters are strongly affected by the bonding of Ag atoms to DNA bases. The presented approach can also provide a practical way to determine the structure and properties of other luminescent metal clusters. PMID:27564452

  8. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde

    Science.gov (United States)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber

  9. Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Edith eJoseph

    2012-01-01

    Full Text Available Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated in vitro. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g.L-1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archaeological and modern metal artefacts. The production of copper-oxalates was confirmed directly using metallic pieces (both archaeological and modern. The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates and probably goethite. However, the formation of a homogeneous layer on the object is not yet optimal. Silver nitrate was extracellularly reduced into nanoparticles of elemental silver by an unknown mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artefacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals.

  10. Protection of Metal Artifacts with the Formation of Metal-Oxalates Complexes by Beauveria bassiana.

    Science.gov (United States)

    Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel

    2011-01-01

    Several fungi present high tolerance to toxic metals and some are able to transform metals into metal-oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L(-1), and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal-oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal-oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals. PMID:22291684

  11. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine

    Science.gov (United States)

    Shebl, Magdy

    2009-07-01

    A new bis(tridentate NO2) Schiff base ligand, H4L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.

  12. Supramolecular structures constructed from three novel rare earth metal complexes

    Indian Academy of Sciences (India)

    Huaze Dong; Xiaojun Feng; Xia Liu; BiN Zheng; Jianhong Bi; Yan Xue; Shaohua Gou; Yanping Wang

    2015-05-01

    Three rare earth metal supramolecular complexes, {[Tb(2)4](ClO4)3·2H2O(1), [Eu(2)2(H2O)5] (ClO4)3(2) and [Gd(NO3)3(2)2]·2CH3CH2OH(3) ( 2 = 3-Dimethylamino-1-pyridin-2-yl-propenone), have been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. The crystal structure analysis reveals that the coordination numbers of three complexes (1–3) are 8, 9 and 10, respectively. Three complexes assembled into 3D frameworks based on C-H⋯O, O-H⋯O hydrogen bond linkages.

  13. Coupling of metal-based light-harvesting antennas and electron-donor subunits: Trinuclear Ruthenium(II) complexes containing tetrathiafulvalene-substituted polypyridine ligands

    DEFF Research Database (Denmark)

    Campagna, Sebastiano; Serroni, Scolastica; Puntoriero, Fausto;

    2002-01-01

    +) (4,4'-Mebpy = 4,4'-dimethyl-2,2'-bipyridine) and [{(bpy)(2)Ru(mu-2,3-dpp)}(2)Ru(bpy)](6+). The absorption spectra and redox behavior of all the new metal compounds can be interpreted by a multicomponent approach, in which specific absorption features and redox processes can be assigned to specific......Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF1, trans-bpy-TTF1, and cis-bpy-TTF2 have been prepared and characterized. X-ray analysis of trans-bpy-TTF1, is also reported. Such ligands have been used to prepare two new trinuclear Ru-II complexes, namely, [{(bpy)(2)Ru...... as light-harvesting antennas and the tetrathiafulvalene electron donors can induce charge separation. The absorption spectra, redox behavior, and luminescence properties (both at room temperature in acetonitrile and at 77 K in a rigid matrix of butyronitrile) of the trinuclear metal complexes have been...

  14. Studies on coordination chemistry and bioactivity of metal complexes of a bidentate NN schiff base, (2-pyridyl-methylene)(phenyl) hydrazine, produced from the condensation of pyridine-2-carboxaldehyde with phenylhydrazine

    International Nuclear Information System (INIS)

    A bidentate Schiff base, (2-pyridyl-methylene)(phenyl) hydrazine, with NN donor sequence, was isolated from the condensation of pyridine-2-carboxaldehyde with phenylhydrazine in ethanol. Metal complexes of this ligand with Ni(II), Zn(It), and Cu(n) ions were synthesized and characterized by a variety of physico-chemical techniques. The structure of the Schiff base was solved by X-ray diffraction studies, which indicated that it was monoclinic with a space group of C2/c. The complexes were all four coordinated. The compounds were tested against four pathogenic bacteria and fungi. The nickel complex, [Ni(NN)2Cl2], in particular, was found to be active against all the fungi tested. The complexes were however inactive against leukemic cell lines (CEM-SS). (author)

  15. An effective method for enhancing metal-ions' selectivity of ionic liquid-based extraction system: Adding water-soluble complexing agent.

    Science.gov (United States)

    Sun, Xiao Qi; Peng, Bo; Chen, Ji; Li, De Qian; Luo, Fang

    2008-01-15

    Selective extraction-separation of yttrium(III) from heavy lanthanides into 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)mim][PF(6)]) containing Cyanex 923 was achieved by adding a water-soluble complexing agent (EDTA) to aqueous phase. The simple and environmentally benign complexing method was proved to be an effective strategy for enhancing the selectivity of [C(n)mim][PF(6)]/[Tf(2)N]-based extraction system without increasing the loss of [C(n)mim](+).

  16. FEM study of extrusion complexity and dead metal zone

    OpenAIRE

    S.Z. Qamar

    2009-01-01

    Purpose: Quality of the extruded product and efficiency of the manufacturing process can be seriously affected by inconsistent metal flow through the extrusion die. Metal flow problems can also significantly reduce die life. Various researchers have investigated the effect of profile complexity on extrusion pressure, product quality, die life, etc. However, the relationship between shape complexity and metal flow through the extrusion die has not been studied in detail. Cold extrusion experim...

  17. Recognition Interactions of Metal-complexing Imprinted Polymer

    Institute of Scientific and Technical Information of China (English)

    Ying LIU; Guo Sheng DING; Jun De WANG

    2005-01-01

    Molecularly imprinted polymer, exhibiting considerable enantioselectivity for L-mandelic acid, was prepared using metal coordination-chelation interaction. By evaluating the recognition characteristics in the chromatographic mode, the recognition interactions were proposed: specific and nonspecific metal coordination-chelation interaction and hydrophobic interaction were responsible for substrate binding on metal-complexing imprinted polymer; while the selective recognition only came from specific metal coordination-chelation interaction and specific hydrophobic interaction.

  18. Metal complexes for DNA-mediated charge transport

    OpenAIRE

    Barton, Jacqueline K.; Olmon, Eric D.; Sontz, Pamela A.

    2011-01-01

    In all organisms, oxidation threatens the integrity of the genome. DNA-mediated charge transport (CT) may play an important role in the generation and repair of this oxidative damage. In studies involving long-range CT from intercalating Ru and Rh complexes to 5′-GG-3′ sites, we have examined the efficiency of CT as a function of distance, temperature, and the electronic coupling of metal oxidants bound to the base stack. Most striking is the shallow distance dependence and the sensitivity of...

  19. Synthesis, spectroscopic characterization and magnetic properties of homo- and heterodinuclear complexes of transition and non-transition metal ions with a new Schiff base ligand

    Science.gov (United States)

    Sarkar, Saikat; Biswas, Susobhan; Dey, Kamalendu

    2008-12-01

    Four homodinuclear complexes of Ni(II)-Ni(II), Cu(II)-Cu(II), Co(II)-Co(II) and Co(III)-Co(II) and five heterodinuclear complexes of Co(III)-Zn(II), Co(III)-Cu(II), Co(III)-Ni(II), Cu(II)-Zn(II) and Zn(II)-Cu(II) with the octadentate Schiff base compartmental ligand 1,8- N-bis(3-carboxy)disalicylidene-3,6-diazaoctane-1,8-diamine (H 4fsatrien) have been synthesized. The complexes have been characterized with the help of elemental analyses, molecular weights, molar conductances, magnetic susceptibilities and spectroscopic (UV-vis, IR, ESR) data. Cryomagnetic data also helped to elucidate the structural features of the Cu(II) complexes.

  20. Novel bipyridinyl oxadiazole-based metal coordination complexes: High efficient and green synthesis of 3,4-dihydropyrimidin-2(1H)-ones through the Biginelli reactions

    Science.gov (United States)

    Wang, Jin-Hua; Zhang, E.; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng

    2016-09-01

    Three new metal coordination complexes, namely, [Co(BPO)2(H2O)4](BS)2(H2O)2 (1), [Co(BPO)2(H2O)4](ABS)2(H2O)2 (2), [Co(BPO)2(H2O)4](MBS)2(H2O)2 (3) [BPO=2,5-di(pyridin-4-yl)-1,3,4-oxadiazole, BS=benzenesulphonate, ABS=4-aminobenzenesulphonate, MBS=4-methylbenzenesulphonate] were obtained under hydrothermal conditions. Complexes 1-3 were structurally characterized by single-crystal X-ray diffraction, powder X-ray diffraction, IR and thermogravimetric analyses (TGA). All of them display a zero-dimensional motif, in which strong intermolecular hydrogen bonding interactions (O-H···O/N) and packing interactions (C-H···π and π···π) make them achieve a three-dimensional supramolecular architecture. The primary catalytic results of these three complexes show that high efficiency for the green synthesis of a variety of 3,4-dihydropyrimidin-2(1H)-ones was observed under solvent free conditions through Biginelli reactions. The present catalytic protocols exhibit advantages such as excellent yield, easy isolation, eco-friendly conditions, and short reaction time.

  1. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    Science.gov (United States)

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  2. Synthesis and spectroscopic studies of homo-binuclear, alkoxo bridged homo- and hetero-tetranuclear metal complexes of a bis-N 2O 4 Schiff base ligand derived from ethanolamine and macroacyclic tetranaphthaldehyde

    Science.gov (United States)

    Karaoğlu, Kaan; Baran, Talat; Değirmencioğlu, İsmail; Serbest, Kerim

    2011-09-01

    Three new homo-binuclear Ni(II), Cu(II), Zn(II) complexes ( 2-4), homo-tetranuclear Cu(II) complex ( 5), and hetero-tetranuclear Cu(II)-Ni(II) complex ( 6) of a macroacyclic potentially bis-hexadentate N 2O 4 Schiff base have been synthesized. The imino-alcohol ligand, H 4L was obtained by the condensation of ethanolamine with 2,2'-[2,3-bis(1-formyl-2-naphthyloxymethyl)-but-2-ene-1,4-diyldioxy]bis(naphthalene-1-carbaldehyde). The structures of both the Schiff base and its complexes have been proposed by elemental analyses, spectroscopic data i.e. IR, 1H and 13C NMR, UV-vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. The ligand has two similar compartments to bind first primary two metal ions, and acts bi- or tetra-negative, bis-tetradentate forming five membered chelate ring. However, secondary two metal ions (either Cu 2+ or Ni 2+) are ligated with dianionic oxygen atoms of the alcohol groups and are linked to the 1,10-phenanthroline-nitrogen atoms in the tetranuclear complexes ( 5 and 6).

  3. TAXUS VI 2-year follow-up: randomized comparison of polymer-based paclitaxel-eluting with bare metal stents for treatment of long, complex lesions

    DEFF Research Database (Denmark)

    Grube, Eberhard; Dawkins, Keith D; Guagliumi, Giulio;

    2007-01-01

    AIMS: Drug-eluting stents (DESs) have shown to be effective in reducing in-stent restenosis, although data relating to long-term experience in treating more complex lesion subsets are limited. In order to assess the long-term safety and clinical efficacy of the polymer-based moderate release (MR)...

  4. Metal Ion Selectivity of Kojate Complexes: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Sarita Singh

    2013-01-01

    Full Text Available Density functional calculations have been performed on four-coordinate kojate complexes of selected divalent metal ions in order to determine the affinity of the metal ions for the kojate ion. The complexation reactions are characterized by high energies, showing that they are highly exothermic. It is found that Ni(II exhibits the highest affinity for the kojate ion, and this is attributed to the largest amount of charge transfer from the ligand to the metal ion. The Ni(II complex has distorted square planar structure. The HOMOs and LUMOs of the complexes are also discussed. All complexes display a strong band at ~1500 cm−1 corresponding to the stretching frequency of the weakened carbonyl bond. Comparison of the complexation energies for the two steps shows that most of the complexation energy is realized in the first step. The energy released in the second step is about one-third that of the first step.

  5. Metal complexes of a pentadentate N2O3bis(semicarbazone) Schiff-base. A case study of structure-spectroscopy correlation

    Science.gov (United States)

    Inoue, Mayara Hissami; Ribeiro, Ronny Rocha; Sabino, José Ricardo; Nunes, Fábio Souza

    2016-07-01

    Schiff condensation of 2,6-diformyl 4-methylphenol with semicarbazide hydrochloride in 1:2 molar ratio produces the bis(semicarbazone) ligand, herein called H3L. A comprehensive spectroscopic analysis of the compound was performed by 1H and 13C NMR, FTIR and electronic spectroscopies. Assignments to the UV-vis spectrum of H3L were supported by semi-empirical quantum mechanics ZINDO/S calculations. The ligand H3L forms monoclinic crystals in the space group P21/c and its structure is stabilized by classic hydrogen bonds with propanone molecules. It promptly reacts with first row metal ions to produce the following coordination compounds: [Co2(L)(μ-NO3)]·DMF, [Ni2(H2L)(μ-CH3COO)(CH3COO)2]·2H2O, [Cu2(L)(μ-NO3)(H2O)2]·H2O, [Cu2(L)(μ-CH3COO)(H2O)2]·H2O and [Cu2(H2L)(μ-Cl)Cl2]·3H2O, that have different compositions, depending on the degree of deprotonation of the ligand upon coordination. Electronic and EPR spectroscopies as well as effective magnetic moment measurements of the complexes were used in an attempt to better understand their mode of coordination, the microsymmetry around the metal ions and magnetic properties.

  6. Transistor-like behavior of transition metal complexes.

    Science.gov (United States)

    Albrecht, Tim; Guckian, Adrian; Ulstrup, Jens; Vos, Johannes G

    2005-07-01

    Electron transport through semiconductor and metallic nanoscale structures, molecular monolayers, and single molecules connected to external electrodes display rectification, switch, and staircase functionality of potential importance in future miniaturization of electronic devices. Common to most reported systems is, however, ultrahigh vacuum and/or cryogenic working conditions. Here we introduce a single-molecule device concept based on a class of robust redox active transition metal (Os(II)/(III)) complexes inserted between the working electrode and tip in an electrochemical scanning tunneling microscope (in situ STM). This configuration resembles a single-molecule transistor, where the reference electrode corresponds to the gate electrode. It operates at room temperature in a condensed matter (here aqueous) environment. Amplification on-off ratios up to 50 are found when the redox level is brought into the energy window between the Fermi levels of the electrodes by the overpotential ("gate voltage"). The current-voltage characteristics for two Os(II)/(III) complexes have been characterized systematically and supported by theoretical frames based on molecular charge transport theory.

  7. Kinetics of the reactions of hydrated electrons with metal complexes

    International Nuclear Information System (INIS)

    The reactivity of the hydrated electron towards metal complexes is considered. Experiments are described involving metal EDTA and similar complexes. The metal ions studied are mainly Ni2+, Co2+ and Cu2+. Rates of the reactions of the complexes with e-(aq) were measured using the pulse radiolysis technique. It is shown that the reactions of e-(aq) with the copper complexes display unusually small kinetic salt effects. The results suggest long-range electron transfer by tunneling. A tunneling model is presented and the experimental results are discussed in terms of this model. Results of approximate molecular orbital calculations of some redox potentials are given, for EDTA chelates as well as for series of hexacyano and hexaquo complexes. Finally, equilibrium constants for the formation of ternary complexes are reported. (Auth./G.J.P.)

  8. Investigation of complexing ability of ionites with various groups to some heavy and transition metal ions

    OpenAIRE

    Yedil Yergozhin; B. Taussarova; R. Ashkeyeva; L. Tugelbayeva

    2013-01-01

    The physico-chemical and complexing properties of the sorbent based on chloromethylated styrene and divinylbenzene copolymer with nicotinamide groups and copolymers based on metacryloilaminobenzene acids with 2-methyl-5-vinylpyridineisomers are studied. By potentiometric titration method the constant of polyelectrolytes functional groups ionization, the composition and strength of the resulting complexes with ions of some heavy and transition metals are determined.

  9. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  10. Bioactive luminescent transition-metal complexes for biomedical applications.

    Science.gov (United States)

    Ma, Dik-Lung; He, Hong-Zhang; Leung, Ka-Ho; Chan, Daniel Shiu-Hin; Leung, Chung-Hang

    2013-07-22

    The serendipitous discovery of the anticancer drug cisplatin cemented medicinal inorganic chemistry as an independent discipline in the 1960s. Luminescent metal complexes have subsequently been widely applied for sensing, bio-imaging, and in organic light-emitting diode applications. Transition-metal complexes possess a variety of advantages that make them suitable as therapeutics and as luminescent probes for biomolecules. It is thus highly desirable to develop new luminescent metal complexes that either interact with DNA through different binding modes or target alternative cellular machinery such as proteins as well as to provide a more effective means of monitoring disease progression. In this Review, we highlight recent examples of biologically active luminescent metal complexes that can target and probe a specific biomolecule, and offer insights into the future potential of these compounds for the investigation and treatment of human diseases.

  11. The mechanism of alkene addition to a nickel bis(dithiolene) complex: the role of the reduced metal complex.

    Science.gov (United States)

    Dang, Li; Shibl, Mohamed F; Yang, Xinzheng; Alak, Aiman; Harrison, Daniel J; Fekl, Ulrich; Brothers, Edward N; Hall, Michael B

    2012-03-14

    The binding of an alkene by Ni(tfd)(2) [tfd = S(2)C(2)(CF(3))(2)] is one of the most intriguing ligand-based reactions. In the presence of the anionic, reduced metal complex, the primary product is an interligand adduct, while in the absence of the anion, dihydrodithiins and metal complex decomposition products are preferred. New kinetic (global analysis) and computational (DFT) data explain the crucial role of the anion in suppressing decomposition and catalyzing the formation of the interligand product through a dimetallic complex that appears to catalyze alkene addition across the Ni-S bond, leading to a lower barrier for the interligand adduct. PMID:22364208

  12. A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes

    Science.gov (United States)

    Mohamadou, Aminou; Haudrechy, Arnaud

    2008-01-01

    Octahedral transition-metal complexes are involved in a number of reactions and octahedral coordination geometry, frequently observed for metallic centers, includes important topographical stereochemistry. Depending on the number and nature of different ligands, octahedral coordination units with at least two different monodentate ligands give…

  13. Inkjet printing of 3D metallic silver complex microstructures

    NARCIS (Netherlands)

    Wits, Wessel W.; Sridhar, Ashok

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief discussi

  14. Investigation of metal-polyelectrolyte complex toxicity.

    Science.gov (United States)

    Karahan, Mesut; Mustafaeva, Zeynep; Koç, Rabia Çakır; Bağırova, Melahat; Allahverdiyev, Adil M

    2014-05-01

    Water-soluble binary and ternary copper complexes of polyelectrolytes were synthesized, and the toxicity of these complexes was tested in mouse fibroblast cell line (L929) in vitro. Both the binary and ternary complexes were prepared at the ratio of 0.4 mole copper(II) ions per monomer of acrylic acid and 0.5 mole copper(II) ions per monomer of methyl vinyl ether maleic anhydride, furthermore at the ratio of 1 and 2 mole bovine serum albumin per mole of polyacrylic acid and poly(methyl vinyl ether-co-maleic anhydride), respectively. Compared to binary copper(II)-polyelectrolyte complexes, these ternary complexes have been determined to be of least toxicity. PMID:22914259

  15. Compartmentation and complexation of metals in hyperaccumulator plants

    Science.gov (United States)

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their “strange” behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites (e.g., nicotianamine) and possibly for export of Cu in Cd/Zn hyperaccumulators [metallothioneins (MTs)]. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e., detoxified by binding to strong ligands such as MTs. PMID:24065978

  16. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  17. Effects of Lability of Metal Complex on Free Ion Measurement Using DMT

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Temminghoff, E.J.M.

    2010-01-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically

  18. Metal-based antimicrobial protease inhibitors.

    Science.gov (United States)

    Kellett, A; Prisecaru, A; Slator, C; Molphy, Z; McCann, M

    2013-01-01

    Limitations associated with the production cost, metabolic instability, side-effects, resistance and poor pharmacokinetics of organic protease inhibitors (PIs), which form an essential component of the front line HAART treatment for HIV, have fuelled efforts into finding novel, transition metal-based alternatives. Some of the attractive features of metalbased therapeutics include synthetic simplicity, solubility control, redox capability, expansion of coordination number and topography matching of the complex to the protein's active site. Building asymmetry into the complex, which may offer better discrimination between host and rogue cell, can readily be achieved through coordination of chiral ligands to the metal centre. Although the scope of this review has been limited to metal-based agents that have been reported to bind/inhibit HIV-1 and parasitic proteases, some desirables, such as high activity, low dosage, minimal toxicity, crossinhibition, unique binding modes and selectivity, have already been delivered. The variability of the d-block metals, coupled with the availability of designer organic ligands, augers well for the future development of clinical metallo-drugs for deployment against protease-associated, fatal diseases.

  19. Cumulant Approximated Second-Order Perturbation Theory Based on the Density Matrix Renormalization Group for Transition Metal Complexes: A Benchmark Study.

    Science.gov (United States)

    Phung, Quan Manh; Wouters, Sebastian; Pierloot, Kristine

    2016-09-13

    The complete active space second order perturbation theory (CASPT2) can be extended to larger active spaces by using the density matrix renormalization group (DMRG) as solver. Two variants are commonly used: the costly DMRG-CASPT2 with exact 4-particle reduced density matrix (4-RDM) and the cheaper DMRG-cu(4)-CASPT2 in which the 4-cumulant is discarded. To assess the accuracy and limitations of the latter variant DMRG-cu(4)-CASPT2 we study the spin state energetics of iron porphyrin Fe(P) and its model compound FeL2, a model for the active center of NiFe hydrogenase, and manganese-oxo porphyrin MnO(P)(+); a series of excited states of chromium hexacarbonyl Cr(CO)6; and the interconversion of two Cu2O2(2+) isomers. Our results clearly show that PT2 on top of DMRG is essential in order to obtain quantitative results for transition metal complexes. Good results were obtained with DMRG-cu(4)-CASPT2 as compared to full CASPT2 and DMRG-CASPT2 in calculations with small- and medium-sized active spaces. In calculations with large-sized active spaces (∼30 active orbitals), the performance of DMRG-cu(4)-CASPT2 is less impressive due to the errors originating from both the finite number of renormalized states m and the 4-RDM approximation. PMID:27547847

  20. Synthesis, structures and electrochemical properties of two novel metal-organic coordination complexes based on trimesic acid (H 3BTC) and 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (BPO)

    Science.gov (United States)

    Wang, Xiu-Li; Li, Jin; Lin, Hong-Yan; Hu, Hai-Liang; Chen, Bao-Kuan; Mu, Bao

    2009-12-01

    Two novel metal-organic coordination complexes [Cu(HBTC)(BPO)]·H 2O ( 1) and [Co 3(BTC) 2(BPO) 3(H 2O) 2]·5.25H 2O ( 2), have been synthesized from hydrothermal reaction of metal chloride with the mixed ligands 1,3,5-benzenetricarboxylate (H 3BTC) and bent dipyridyl based ligand 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (BPO), and structurally characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction analysis. The results reveal that each dinuclear Cu II unit is bridged by two kinds of different ligands (H 3BTC and BPO) to form one-dimensional (1-D) chain structure in complex 1. The adjacent chains for 1 are further linked by π-π stacking interactions and hydrogen bonding interactions to form a three-dimensional (3-D) supramolecular framework. Complex 2 possesses a 3-D network composed of three different cobalt(II) centers [carboxylate-bridged dinuclear cobalt units and mononuclear cobalt ion] and bridging ligands BTC and BPO, which presents the first example of 3-D coordination polymer constructed from the BPO ligands simultaneously showing three different coordination modes. Moreover, the electrochemical behaviors of the two complexes bulk-modified carbon paste electrodes ( 1-CPE and 2-CPE) have been reported.

  1. π-Conjugated bis(terpyridine)metal complex molecular wires.

    Science.gov (United States)

    Sakamoto, Ryota; Wu, Kuo-Hui; Matsuoka, Ryota; Maeda, Hiroaki; Nishihara, Hiroshi

    2015-11-01

    Bottom-up approaches have gained significant attention recently for the creation of nano-sized, ordered functional structures and materials. Stepwise coordination techniques, in which ligand molecules and metal sources are reacted alternatively, offer several advantages. Coordination bonds are stable, reversible, and self-assembling, and the resultant metal complex motifs may contain functionalities unique to their own characteristics. This review focuses on metal complex wire systems, specifically the bottom-up fabrication of linear and branched bis(terpyridine)metal complex wires on electrode surfaces. This system possesses distinct and characteristic electronic functionalities, intra-wire redox conduction and excellent long-range electron transport ability. This series of comprehensive studies exploited the customizability of bis(terpyridine)metal complex wires, including examining the influence of building blocks. In addition, simple yet effective electron transfer models were established for redox conduction and long-range electron transport. A fabrication technique for an ultra-long bis(terpyridine)metal complex wire is also described, along with its properties and functionalities. PMID:25864838

  2. A new metalation complex for organic synthesis and polymerization reactions

    Science.gov (United States)

    Hirshfield, S. M.

    1971-01-01

    Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.

  3. Conformations and vibrational spectroscopy of metal-ion/polylalanine complexes

    NARCIS (Netherlands)

    R.C. Dunbar; J.D. Steill; J. Oomens

    2010-01-01

    The thermochemistry and structures of complexes of dialanine and trialanine with a series of singly and doubly charged metal ions have been examined by spectroscopic and computational approaches. Complexes with Li+, K+, Cs+, Ca2+, Sr2+ and Ba2+ were formed by electrospray ionization, and studied by

  4. Microstructure of N—Picolylpolyurethane Transition Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    Qun-DongShen; Tian-DouHu; 等

    1999-01-01

    Spectroscopic methods are used to investigate coordination structure of N-picolylpolyurethane transition metal complexes(PUPYM,M=Co2+ and Ni2+) .Geometrical arrangement of ligands in first-shell coordination sphere of metal ions is postulated to be tetrahedral CoL2Cl2 and octahedral NiL2-Cl2Z2.where L is the picolyl group and Z is a hydrate.From extended X-ray absorption fine structure (EXAFS) analysis,bond lengths for metal-chlorine and metal-ligand of PUPYM are similar to those of small molecular weight transition metal complexes.A two-phase model of PUPYM which best describes the experimental data of DMTA and SAXS.is proposed.One microphase is the hard domain of self segregated haed segments brought about by metal-ligand interaction.and the other phase is the matrix of soft segments.Transition metal ion-ligand moieties and their interactions dominate the macroscopic thermal behavior of PUPYM.The ligand field stabilization energy difference(ΔLFSE) between mteal d-electrons in complexes with two picolyl ligands in the coordination sphere of metal ions and complexes maintaining one picolyl ligand as coordination pendent group is calculated on the basis of observed coordination structure,and it represents the energy supplied to split coordination cross-links.ΔLFSE of polyurethane nickel(II) complex is larger than that of the cobalt(II) complex,Since the mobility of hard segments is in inverse proportion to the strength of coordination cross-links.a higher α-transition temperature of PUPYNi2+ with respect to PUPYCo2+ is found as expected.

  5. Donor Schiff Base Polymeric Complexes

    Directory of Open Access Journals (Sweden)

    Shubhangi N. Kotkar

    2013-01-01

    Full Text Available A series of new polymeric complexes of Mn(II, Co(II, Ni(II, Cu(II, and Zn(II were prepared with a Schiff base ligand derived from condensation of 2,4-dihydroxy acetophenone and p-phenylene diamine and characterized by elemental analysis and IR and NMR spectral data. The antimicrobial activity of the Schiff base and its polymeric complexes have been studied.

  6. Homochiral metal complexes for biodegradable polymer synthesis

    OpenAIRE

    Buffet, Jean-Charles

    2010-01-01

    Chapter One introduces the principle of alkoxide and phosphine oxide as ligands for lanthanides and electropositive metals, ligand self-recognition, stereoselective polymerisation of lactide, fixation of CO2 and finally copolymerisation of CO2 and epoxide. Chapter Two shows the synthesis of the proligands rac-HLR (a racemic phosphine oxide-alkoxide, A, where R = tBu, Ph or C6H3-Me-3,5) and explores the resolution into diastereomeric RRR- and SSS-M(LR)3 to afford C3–symmetric...

  7. Bioinspired catalysis metal-sulfur complexes

    CERN Document Server

    Weigand, Wolfgang

    2014-01-01

    The growing interest in green chemistry calls for new, efficient and cheap catalysts. Living organisms contain a wide range of remarkably powerful enzymes, which can be imitated by chemists in the search for new catalysts. In bioinspired catalysis, chemists use the basic principles of biological enzymes when creating new catalyst analogues. In this book, an international group of experts cover the topic from theoretical aspects to applications by including a wide variety of examples of different systems. This valuable overview of bioinspired metal-sulfur catalysis is a must-have for all sci

  8. Transition Metal Complexes of 5-bromo Salicylaldehyde-2-furoic acid hydrazide; Synthesis and Characterisation

    Directory of Open Access Journals (Sweden)

    MANISH KUMAR

    2012-12-01

    Full Text Available A series of transition metal complexes of the ligand 5-bromo salicylaldehyde-2-furoic acid hydrazide have been prepared using Ti(III, Mn(III, V(III, Co(III, Fe(III, Ru(III and Rh(III. The complexes have been characterized by elemental analyses, melting points, molar conductance, magnetic susceptibility measurement, electronic and infra red spectral studies. Based on these studies octahedral structures have been proposed for these complexes. The ligand has behaved in dibasic tridentate manner. The I.R. spectra of the complexes revealed non-participation of furan ring oxygen in coordination with the metal ions.

  9. Dynamic Inclusion Complexes of Metal Nanoparticles Inside Nanocups

    OpenAIRE

    Alarcón-Correa, M.; Lee, T-C; Fischer, P.

    2015-01-01

    Host–guest inclusion complexes are abundant in molecular systems and of fundamental importance in living organisms. Realizing a colloidal analogue of a molecular dynamic inclusion complex is challenging because inorganic nanoparticles (NPs) with a well-defined cavity and portal are difficult to synthesize in high yield and with good structural fidelity. Herein, a generic strategy towards the fabrication of dynamic 1:1 inclusion complexes of metal nanoparticles inside oxide nanocups with high ...

  10. Synthesis, spectral, thermal, potentiometric and antimicrobial studies of transition metal complexes of tridentate ligand

    Directory of Open Access Journals (Sweden)

    Sarika M. Jadhav

    2014-01-01

    Full Text Available A series of metal complexes of Cu(II, Ni(II, Co(II, Fe(III and Mn(II have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H pyran-2,4(3H-dione or DHA, o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40% solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions.

  11. Preparation and Characterization of Double Metal Cyanide Complex Catalysts

    Directory of Open Access Journals (Sweden)

    Weilin Guo

    2003-01-01

    Full Text Available A series of double metal cyanide (DMC complex catalysts were prepared in two different methods by using ß-cyclodextrin, PEG-1000 and Tween-60 as an additional complex ligands respectively. It was showed that a mixture of crystalline and amorphous DMC was synthesized by using traditional method in which the additional complex ligand was added after the precipitation of DMC. Amorphous and dispersed DMC with higher activity could be obtained when the additional complex ligand was added in the reactant solution before reaction. The effect of additional complex ligand and preparation method on the crystalline state and catalytic property of DMC were also investigated.

  12. Complex metallic alloys as new materials for additive manufacturing

    International Nuclear Information System (INIS)

    Additive manufacturing processes allow freeform fabrication of the physical representation of a three-dimensional computer-aided design (CAD) data model. This area has been expanding rapidly over the last 20 years. It includes several techniques such as selective laser sintering and stereolithography. The range of materials used today is quite restricted while there is a real demand for manufacturing lighter functional parts or parts with improved functional properties. In this article, we summarize recent work performed in this field, introducing new composite materials containing complex metallic alloys. These are mainly Al-based quasicrystalline alloys whose properties differ from those of conventional alloys. The use of these materials allows us to produce light-weight parts consisting of either metal–matrix composites or of polymer–matrix composites with improved properties. Functional parts using these alloys are now commercialized. (review)

  13. Dipicolinate complexes of main group metals with hydrazinium cation

    Indian Academy of Sciences (India)

    K Saravanan; S Govindarajan

    2002-02-01

    Some new coordination complexes of hydrazinium main group metal dipicolinate hydrates of formulae (N2H5)2M(dip)2.H2O (where, M =Ca, Sr, Ba or Pb and = 0, 2, 4 and 3 respectively and dip = dipicolinate), N2H5Bi(dip)2.3H2O and (N2H5)3Bi(dip)3.4H2O have been prepared and characterized by physico-chemical techniques. The infrared spectra of the complexes reveal the presence of tridentate dipicolinate dianions and non-coordinating hydrazinium cations. Conductance measurements show that the mono, di and trihydrazinium complexes behave as 1:1, 2:1 and 3:1 electrolytes respectively, in aqueous solution. Thermal decomposition studies show that these compounds lose water followed by endothermic decomposition of hydrazine to give respective metal hydrogendipicolinate intermediates, which further decompose exothermically to the final product of either metal carbonates (Ca, Sr, Ba and Pb) or metal oxycarbonates (Bi). The coordination numbers around the metal ions differ from compound to compound. The various coordination numbers exhibited by these metals are six (Ca), seven (Ba), eight (Sr) and nine (Pb and Bi). In all the complexes the above coordination number is attained by tridentate dipicolinate dianions and water molecules. The X-ray diffraction patterns of these compounds differ from one another suggesting that they are not isomorphous.

  14. Scanned stripping chronopotentiometry of metal complexes: lability diagnosis and stability computation

    NARCIS (Netherlands)

    Pinheiro, J.P.; Leeuwen, van H.P.

    2004-01-01

    A method is presented for analyzing the dynamic speciation features of metal complexes based on stripping chronopotentiometry at a scanned deposition potential (SSCP). The shift in the SSCP half-wave deposition potential, ¿Ed,1/2, is straightforwardly related to the complex stability, K, irrespectiv

  15. Bovine Serum Albumin Metal Complexes for Mimic of SOD

    Indian Academy of Sciences (India)

    GUIFANG YAN; YUFENG HE; GANG LI; YUBING XIONG; PENGFEI SONG; RONG-MIN WANG

    2016-11-01

    Superoxide anion radical (O•−₂ ) is a noxious reactive oxygen species (ROS). Transition metal ion complexes have been generally used as antioxidants to eliminate ROS. In this work, a neoteric watersoluble biopolymer metal complex (BSA-M) was prepared by conjugating the soluble biopolymer bovineserum albumin (BSA) with three transition metal ions (M, M=Cu, Co, Mn). The binding mode and ratio of metal ions bound to albumin were investigated. The BSA-M complexes were characterized by UV-Vis, circular dichroism (CD) spectra and polyacrylamide gel electrophoresis (PAGE). BSA served as polymerscaffold and the metal complex functioned as the catalytic active center. The results demonstrated that the structure of BSA remained unchanged when the binding ratio of transition metal ion complex to BSA was 5:1. Furthermore, the scavenging superoxide anion free radical (O•−₂ ) activity of biopolymer-metal complexes were determined by nitroblue tetrazolium light reduction assay method. The antioxidant capacity of BSA-M has markedly increased. The conjugated BSA-M (M=Cu, Mn) showed preeminent scavenging activity for O•−₂ , and the EC₅₀ value of the BSA-Cu was 0.038±0.0013μmol·L⁻¹, which is comparable to EC₅₀ value (0.041±0.001μmol·L⁻¹) of the natural superoxide dismutase (SOD), the analog quantity reached 107%. As a consequence, it can be considered as a bio-functional mimic of enzyme SOD and has a promising application prospect in antioxidant drug field.

  16. Characterization, molecular modeling and antimicrobial activity of metal complexes of tridentate Schiff base derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and 2-aminophenol.

    Science.gov (United States)

    Adly, Omima M I

    2012-09-01

    Metal complexes of Ni(II), Co(II), Cd(II), VO(IV) and UO(2)(VI) as well as several Cu(II) salts, including Cl(-),NO(3)(-),AcO(-),ClO(4)(-) and SO(4)(-2) with a tridentate O(2)N donor Schiff base ligand (H(2)L), synthesized by condensation of 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione with 2-aminophenol, were prepared and characterized on the basis of elemental analyses, spectral, magnetic, molar conductance and thermal gravimetric analysis. Square planar, tetrahedral and octahedral geometries have been assigned to the prepared complexes. Molecular parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data, and the changes of bond lengths are linearly correlated with IR data. The antimicrobial activities of the synthesized compounds were tested in vitro against the sensitive organisms Staphylococcus aureus as Gram positive bacteria, Proteus vulgaris as Gram negative bacteria and Candida albicans as fungus strain, and the results are discussed.

  17. Studies On Some Acid Divalent-Metal Nitrilotriacetate Complexes

    Directory of Open Access Journals (Sweden)

    N. E. Milad

    2000-10-01

    Full Text Available IR and 1H-NMR studies on nitrilotriacetic acid (H3NTA suggest that the acid exists in the zwitterion form, which allows the existence of intermolecular hydrogen bonding. A tetrahedral structure is established for eleven (1:1 anhydrous acid-metal (II nitrilotriacetates complexes. The ten Dq values for the colored complexes were determined spectrophotometrically. The pKa values for the eleven acid metal complexes [M(HNTA].(OH23] were determined and compared with the corresponding pKa values of the [M(OH2n]+2 ions and also with the log β1 values of the corresponding [M(NTA]- complexes. X-ray diffraction studies on the ligand and on eight of these complexes are described.

  18. Stability of complex coacervate core micelles containing metal coordination polymer.

    Science.gov (United States)

    Yan, Yun; de Keizer, Arie; Cohen Stuart, Martien A; Drechsler, Markus; Besseling, Nicolaas A M

    2008-09-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and bisligand molecules. The influence of added salt, polymer concentration, and charge composition was investigated by using light scattering and cryo-TEM techniques. The scattering intensity decreases strongly with increasing salt concentration until a critical salt concentration beyond which no micelles exist. The critical micelle concentration increases almost exponentially with the salt concentration. From the scattering results it follows that the aggregation number decreases with the square root of the salt concentration, but the hydrodynamic radius remains constant or increases slightly. It was concluded that the density of the core decreases with increasing ionic strength. This is in agreement with theoretical predictions and is also confirmed by cryo-TEM measurements. A complete composition diagram was constructed based on the composition boundaries obtained from light scattering titrations.

  19. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    Science.gov (United States)

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  20. Inkjet printing of 3D metallic silver complex microstructures

    OpenAIRE

    Wits, Wessel W.; Sridhar, Ashok

    2010-01-01

    To broaden the scope of inkjet printing, this paper focuses on printing of an organic silver complex ink on glass substrates towards the fabrication of metallic 3D microstructures. The droplet formation sequence of the inkjet printer is optimised to print continuous layers of metal. A brief discussion on orientation trials, aimed at optimising the print parameters, is followed by two different methodologies of printing 3D microstructures: wet-in-wet and wet-in-dry. The surface topography of t...

  1. Treatment of metal-containing wastewater by adsorption of metal-chelate complexes onto activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Shay, M.A.

    1989-01-01

    To eliminate difficulties associated with interference of chelating or complexing agents on precipitation of heavy metals from wastewaters, the feasibility of a process which utilized chelating agents in the removal of the heavy metals was investigated. Heavy metal ions were removed from simulated metal plating wastewater by sorption of a heavy metal chelate complex onto activated carbon. In this process, a chelate which might be present in a wastewater could be used in removal of a heavy metal, rather than interfere with its removal. System development of a continuous flow process consisted of bench scale column tests to answer questions about key adsorption column operating parameters. The metals investigated were Cu(II), Ni(II) and Zn(II). Hydrogen ion concentration had the largest effect on removal of heavy metalchelate complexes, but contact time and heavy metal:chelate ratio were important. The normal contact time for activated carbon columns of 30 to 60 minutes was found adequate to achieve heavy metal-chelate removals of at least 90% for citrate or EDTA complexes. For citrate complexes better removals were achieved at heavy metal:chelate ratios greater than 1:1. For EDTA, there was no advantage to ratios greater than 1:1. Increasing pH, at least to pH 9.0, increased the heavy metal chelate removal; however, for EDTA, removals greater than 90% could be achieved at a pH as low as 3.0. The maximum amount of Cu(II)-citrate complex that could be removed was 2.8 mg per gram of carbon, the maximum amount for Zn(II)citrate complex was 1.2 mg per gram of carbon, and for Ni(II)-citrate, the maximum was 1.3 mg per gram of carbon. For the EDTA complexes, the maximum removal was 2.1 mg of Cu(II)-EDTA complex per gram of carbon, 6.9 mg of Zn(II)-EDTA complex per gram of carbon, and 3.2 mg of Ni(II)-EDTA complex per gram of carbon.

  2. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  3. Metamaterial metal-based bolometers

    OpenAIRE

    Niesler, Fabian B. P.; Gansel, Justyna K.; Fischbach, Sarah; Wegener, Martin

    2012-01-01

    We demonstrate metamaterial metal-based bolometers, which take advantage of resonant absorption in that a spectral and/or polarization filter can be built into the bolometer. Our proof-of-principle gold-nanostructure-based devices operate around 1.5 \\mum wavelength and exhibit room-temperature time constants of about 134 \\mus. The ultimate detectivity is limited by Johnson noise, enabling room-temperature detection of 1 nW light levels within 1 Hz bandwidth. Graded bolometer arrays might allo...

  4. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    Science.gov (United States)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  5. Complexation-induced supramolecular assembly drives metal-ion extraction.

    Science.gov (United States)

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. PMID:25169678

  6. Luminescent molecular rods - transition-metal alkynyl complexes.

    Science.gov (United States)

    Yam, Vivian Wing-Wah; Wong, Keith Man-Chung

    2005-01-01

    A number of transition-metal complexes have been reported to exhibit rich luminescence, usually originating from phosphorescence. Such luminescence properties of the triplet excited state with a large Stoke's shift, long lifetime, high luminescence quantum yield as well as lower excitation energy, are envisaged to serve as an ideal candidate in the area of potential applications for chemosensors, dye-sensitized solar cells, flat panel displays, optics, new materials and biological sciences. Organic alkynes (poly-ynes), with extended or conjugatedπ-systems and rigid structure with linear geometry, have become a significant research area due to their novel electronic and physical properties and their potential applications in nanotechnology. Owing to the presence of unsaturated sp-hybridized carbon atoms, the alkynyl unit can serve as a versatile building block in the construction of alkynyl transition-metal complexes, not only throughσ-bonding but also viaπ-bonding interactions. By incorporation of linear alkynyl groups into luminescent transition-metal complexes, the alkynyl moiety with goodσ-donor,π-donor andπ-acceptor abilities is envisaged to tune or perturb the emission behaviors, including emission energy (color), intensity and lifetime by its role as an auxiliary ligand as well as to govern the emission origin from its direct involvement. This review summarizes recent efforts on the synthesis of luminescent rod-like alkynyl complexes with different classes of transition metals and details the effects of the introduction of alkynyl groups on the luminescence properties of the complexes.

  7. Tailoring optical complex fields with nano-metallic surfaces

    Directory of Open Access Journals (Sweden)

    Rui Guanghao

    2015-04-01

    Full Text Available Recently there is an increasing interest in complex optical fields with spatially inhomogeneous state of polarizations and optical singularities. Novel effects and phenomena have been predicted and observed for light beams with these unconventional states. Nanostructured metallic thin film offers unique opportunities to generate, manipulate and detect these novel fields. Strong interactions between nano-metallic surfaces and complex optical fields enable the development of highly compact and versatile functional devices and systems. In this review, we first briefly summarize the recent developments in complex optical fields. Various nano-metallic surface designs that can produce and manipulate complex optical fields with tailored characteristics in the optical far field will be presented. Nano-metallic surfaces are also proven to be very effective for receiving and detection of complex optical fields in the near field. Advances made in this nascent field may enable the design of novel photonic devices and systems for a variety of applications such as quantum optical information processing and integrated photonic circuits.

  8. Electrochemical Studies of Eight New Divalent Transition Metal Benzenesulphonate Ternary Complexes with 1,10-Phenanthroline

    Institute of Scientific and Technical Information of China (English)

    LU Yao; GUO Li-ping; MA Jian-fang; YANG Jin; WU Dongmei

    2004-01-01

    The electrochemical properties of eight new divalent transition metal benzenesulphonate complexes with 1,10-phenanthroline in different solvents and supporting electrolytes were investigated by means of cyclic voltammetry(CV). Based on the CV data the influences of various coordination modes on the electrochemical behavior of the complexes were discussed. The diffusion coefficient Dc and rate constant ks of those complexes in DMF systems were estimated according to CV and the results show that these processes were all quasi-reversible.

  9. Urease and α-chymotrypsin inhibitory activities of transition metal complexes of new Schiff base ligand: Kinetic and thermodynamic studies of the synthesized complexes using TG–DTA pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ikram, Muhammad, E-mail: ikram.chemistry@suit.edu.pk [Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar (Pakistan); Rehman, Sadia [Department of Chemistry, Sarhad University of Science and Information Technology, Peshawar (Pakistan); Institute of Chemical Sciences, University of Peshawar (Pakistan); Ali, Muhammad [Department of Biotechnology, Bacha Khan University Charsadda (Pakistan); Faridoon [Institute of Chemical Sciences, University of Peshawar (Pakistan); Schulzke, Carola [Institut für Biochemie, Ernst-Moritz-Arndt, Universität Greifswald, Felix-Hausdorff-Straße 4, 17487, Greifswald (Germany); Baker, Robert J. [School of Chemistry, University of Dublin, Trinity College, Dublin 2 (Ireland); Blake, Alexander J. [School of Chemistry, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Malook, Khan [Centralized Resource Laboratory, University of Peshawar (Pakistan); Wong, Henry [School of Chemistry, The University of Nottingham, Nottingham NG7 2RD (United Kingdom); Saeed-Ur-Rehman [Institute of Chemical Sciences, University of Peshawar (Pakistan)

    2013-06-20

    Graphical abstract: - Highlights: • Single crystal structural analysis of co-crystallized Schiff base ligand. • Urease and α-chymotrypsin inhibition activities of all the synthesized compounds. • TG–DTA studies of all the synthesized compounds under static air. • Kinetic and thermodynamic parameters evaluation using Horrowitz–Mettzger method. - Abstract: The Schiff base 2-[(E)-(quinolin-3-ylimino)methyl]phenol (H-QMP) was crystallized in Pc space group and complexed with Ni(II) and Co(II) in [M(QMP){sub 2}] and Cu(II) and Zn(II) in [M(QMP)(CH{sub 3}COO)]H{sub 2}O compositions. Elemental analyses, mass spectrometry, IR, UV–vis spectroscopy, conductance study and magnetic susceptibilities were used to characterize the complexes. The thermograms obtained in the range of 30–1000 °C were used for kinetic and thermodynamic calculations. The activation energies and order of pyrolysis were calculated using Horowitz–Metzger method. The calculated activation energies were subsequently used for the calculations of thermodynamic parameters including ΔS*, ΔH* and ΔG*. It was found that the thermal stability and activation energy follow the order Cu(II) > Ni(II) > Co(II) > Zn(II) and E{sub Ni}{sup *}>E{sub Cu}{sup *}>E{sub Co}{sup *}>E{sub Zn}{sup *}, respectively. All the compounds were also studied for their urease and α-chymotrypsin inhibition, showing medium to moderate activities for both the enzymes except nickel complex. Nickel complex shows IC{sub 50} = 9.9 ± 0.124 μM ± SEM, and the activity was rationalized by carrying out molecular modeling studies.

  10. Fluorescence properties of metal complexes of 2-N-Anilino pyrimidine

    International Nuclear Information System (INIS)

    2-N-Anilino pyrimidine was used as specific binder towards selected transition metals ion such as Mn (II), Ni (II) and Cr (II) in a 1:2 ratio (metal: ligand) to give their respective complexes. The structures of the ligand and complexes were confirmed by spectroscopic analysis. Fluorescence studies of metal complexes of 2-N-Anilino pyrimidine and the ligand itself were carried out under various conditions using methanol as the solvent. In general, metal ions, especially paramagnetic ions, are able to quench the fluorescence of organic ligands. The fluorescence intensity was studied based on several factors such as pH, capped and uncapped conditions. The compounds showed higher intensity in capped samples compared to uncapped samples. (author)

  11. Chemistry of Platinum and Palladium Metal Complexes in Homogeneous and Heterogeneous Catalysis: A Mini Review

    Directory of Open Access Journals (Sweden)

    Mehrban Ashiq

    2013-04-01

    Full Text Available Transition metal complexes of platinum and palladium are most widely used in catalysis. Many synthetic reactions have been carried out with such complexes (used as a catalyst which have specifically polymer ligands, through hydrosilylation, acetoxylation, hydrogenation, hydro-formylation, oligo-merisation and polymerization. Almost many platinum and palladium catalysts are heterogeneous in nature i.e. the reaction taking place on a solid surface. Now from few years homogeneous catalysts which are completely soluble in the liquid phase reactant, has acknowledged too much attention, yet having small industrial applications, mainly due to the striving of platinum and palladium complexes separation from the catalytic products. More recently a transitional type of platinum and palladium catalysts have been synthesized through attachment of the activated transition metal complexes on the surface of polymer support particularly insoluble which has been establish to offer encouraging new collection of catalysts for effective research on synthesis. Many of such complexes will be based on the palladium and platinum metals group. The major objective of this review is to inaugurate the relationship among the reactivity’s of homogeneous platinum and palladium complexes and heterogeneous complexes of these metals (those bonded to the surface of metals.

  12. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  13. Dimeric Complexes of Tryptophan with M2+ Metal Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J.

    2009-01-01

    IRMPD spectroscopy using the FELIX free electron laser and a Fourier transform ICR mass spectrometer was used to characterize the structures of electrosprayed dimer complexes M(2+)Trp(2) of tryptophan with a series of eight doubly charged metal ions, including alkaline earths Ca, Sr, and Ba, and tra

  14. Method for synthesizing metal bis(borano) hypophosphite complexes

    Science.gov (United States)

    Cordaro, Joseph G.

    2013-06-18

    The present invention describes the synthesis of a family of metal bis(borano) hypophosphite complexes. One procedure described in detail is the syntheses of complexes beginning from phosphorus trichloride and sodium borohydride. Temperature, solvent, concentration, and atmosphere are all critical to ensure product formation. In the case of sodium bis(borano) hypophosphite, hydrogen gas was evolved upon heating at temperatures above 150.degree. C. Included in this family of materials are the salts of the alkali metals Li, Na and K, and those of the alkaline earth metals Mg and Ca. Hydrogen storage materials are possible. In particular the lithium salt, Li[PH.sub.2(BH.sub.3).sub.2], theoretically would contain nearly 12 wt % hydrogen. Analytical data for product characterization and thermal properties are given.

  15. Labile Low-Molecular-Mass Metal Complexes in Mitochondria: Trials and Tribulations of a Burgeoning Field.

    Science.gov (United States)

    Lindahl, Paul A; Moore, Michael J

    2016-08-01

    Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to

  16. Investigation of complexing ability of ionites with various groups to some heavy and transition metal ions

    Directory of Open Access Journals (Sweden)

    Yedil Yergozhin

    2013-05-01

    Full Text Available The physico-chemical and complexing properties of the sorbent based on chloromethylated styrene and divinylbenzene copolymer with nicotinamide groups and copolymers based on metacryloilaminobenzene acids with 2-methyl-5-vinylpyridineisomers are studied. By potentiometric titration method the constant of polyelectrolytes functional groups ionization, the composition and strength of the resulting complexes with ions of some heavy and transition metals are determined.

  17. Bivalent transition metal complexes of coumarin-3-yl thiosemicarbazone derivatives: Spectroscopic, antibacterial activity and thermogravimetric studies

    Science.gov (United States)

    Refat, Moamen S.; El-Deen, Ibrahim M.; Anwer, Zeinab M.; El-Ghol, Samir

    2009-02-01

    Schiff base complexes of Cu(II), Co(II) and Ni(II) with two coumarin-3-yl thiosemicarbazone derivatives (1E)-1-(1-(2-oxo-2H-chromen-3-yl)ethylidene)thiosemicarbazide (OCET) and (1E)-1-(1-(6-bromo-2-oxo-2H-chromen-3-yl)ethylidene)thiosemicarbazide (BOCET) were synthesized by the reaction of Cu(II), Co(II) and Ni(II) chlorides with each mentioned ligand with molar ratio 1:2 metal-to-ligand. Both ligands and their metal complexes were characterized by different physicochemical methods, elemental analysis, molar conductivity, (UV-vis, Mass, Infrared, 1H NMR spectra) and also thermal analysis (TG and DTG) techniques. The discussion of the outcome data of the prepared complexes indicate that the coumarin-3-yl thiosemicarbazone derivatives ligands behave as a bidentate ligand through both thione sulphur and azomethine nitrogen with 1:2 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The kinetic thermodynamic parameters such as: E∗, Δ H∗, Δ S∗and Δ G∗are calculated from the DTG curves, all complexes are more ordered except Ni(II) complexes. The antibacterial activity of the coumarin-3-yl thiosemicarbazone derivatives and their metal complexes was evaluated against some kinds of Gram positive and Gram negative bacteria.

  18. Transition metal complexes with pyrazole-based ligands.Part 29. Reactions of zinc(II) and mercury(II) thiocyanate with 4-acetyl-3-amino-5-methylpyrazole

    OpenAIRE

    KATALIN MÉSZÁROS SZÉCSÉNYI; BERTA HOLLÓ; VUKADIN M. LEOVAC; Bogdanović, Goran A.; Jaćimović, Željko K.

    2009-01-01

    The work is concerned with the crystal and molecular structures of zinc(II) and mercury(II) complexes with 4-acetyl-3-amino-5-methyl-pyrazole (aamp) of the coordination formulae [Zn(NCS)2(aamp)2] and (Haamp)2[Hg(SCN)4]. The zinc(II) complex was obtained by the reaction of a warm methanolic solution of aamp with a mixture of zinc(II) nitrate and ammonium thiocyanate, whereas the mercury(II) complex was prepared by the reaction of a warm ethanolic solution of aamp and a warm, slightly acidified...

  19. Synthesis and Spectroscopic Characterization of New Ligand and Its Pd(II, Cu(II Metal Complexes

    Directory of Open Access Journals (Sweden)

    Isam Hussain Al-Karkhi

    2013-08-01

    Full Text Available A novel Schiff base ligand containing nitrogen and sulfur donor atoms was synthesized by condensing thioamide (TA with imidothioic acid (IT to form 1, 4 dithiane-2, 3-diamine (TAIT. Metal complexes of this ligand were prepared using Cu (II chloride dihydrates and Pd (III chloride. These complexes have been characterized using various physico-chemical and spectroscopic techniques. Based on physico-chemical and spectroscopic analyses, the structure of Cu (II complex is expected to be octahedral, while Pd (II complex is proposed to be square planner geometry. Schiff base and its metal complexes were expected to show strong bioactivity against microbes and cancer cells.

  20. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    Directory of Open Access Journals (Sweden)

    Enis Nadia Md Yusof

    2015-05-01

    Full Text Available Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC with 2-methoxybenzaldehyde (2MB and 3-methoxybenzaldehyde (3MB. The ligands were reacted separately with acetates of Cu(II, Ni(II and Zn(II yielding 1:2 (metal:ligand complexes. The metal complexes formed were expected to have a general formula of [M(NS2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1 and S2M3MBH (2 were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7 and estrogen receptor-negative (MDA-MB-231 breast cancer cell lines. Only the Cu(II complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II complexes have a strong DNA binding affinity.

  1. Highly active double metal cyanide complexes: Effect of central metal and ligand on reaction of epoxide/CO2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Various novel double metal cyanide (DMC) catalysts were successfully prepared by modifying the central metal (M) and one of cyanide ion (CN-) in Zna[M(CN)b]c complex. Such modifications have significant impact on the catalytic efficiency as well as the polymer selectivity for the reaction of PO/CO2. Zn-Ni(Ⅱ) DMC is a potential catalyst for alternating copolymerization of PO/CO2,and DMC catalysts based on Zn3[Co(CN)5X]2 (X = Br- and N3-) exhibit moderate efficiency for the production of polycarbonates.This research presents the preliminary exploration of novel DMC complex via chemical modification of its central metal and ligand.(C) 2007 Guo Rong Qi. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  2. Transition metal complexes of an isatinic quinolyl hydrazone

    Directory of Open Access Journals (Sweden)

    Seleem Hussein S

    2011-06-01

    Full Text Available Abstract Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring in the same compound. Quinoline ring has therapeutic and biological activities. On the other hand, isatin (1H-indole-2,3-dione and its derivatives exhibit a wide range of biological activities. Also, the indole ring occurs in Jasmine flowers and Orange blossoms. Recently, the physiological and biological activities of quinolyl hydrazones arise from their tendency to form metal chelates with transition metal ions. In this context, we have reported to isolate, characterize and study the biological activity of some transition metal complexes of an isatinic quinolyl hydrazone; 3-[2-(4-methyl quinolin-2-ylhydrazono] indolin-2-one. Results Mono- and binuclear as well as dimeric chelates were obtained from the reaction of a new isatinic quinolyl hydrazone with Fe(III, Co(II, Ni(II, Cu(II, VO(II and Pd(II ions. The ligand showed a variety of modes of bonding viz. (NNO2-, (NO- and (NO per each metal ion supporting its ambidentate and flexidentate characters. The mode of bonding and basicity of the ligand depend mainly on the type of the metal cation and its counter anion. All the obtained Pd(II- complexes have the preferable square planar geometry (D4h- symmetry and depend mainly on the mole ratio (M:L. Conclusion The effect of the type of the metal ion for the same anion (Cl- is obvious from either structural diversity of the isolated complexes (Oh, Td and D4h or the various modes of bonding. The isatinic hydrazone uses its lactim form in all complexes (Cl- except complex 5 (SO42- in which it uses its lactam form. The obtained Pd(II- complexes (dimeric, mono- and binuclear are affected by the mole ratio (M:L and have the square planar (D4h geometry. Also, the antimicrobial activity is highly influenced by the nature of the metal ion and the order for S. aureus bacteria is as follows: Nickel(II > Vanadyl(II > Cobalt

  3. Effect of Metal Ions on Melanin – Local Anaesthetic Drug Complexes

    OpenAIRE

    Ewa Buszman; Bożena Betlej; Dorota Wrześniok; Bożena Radwańska-Wala

    2003-01-01

    The affinity of melanin biopolymers for metal ions, drugs and other organic compounds is an important factor in the etiology of toxic retinopathy, hiperpigmentation, otic lesions and irreversible extrapyramidal disorders. The aim of the presented work was to examine the interaction of local anaesthetic drugs used in ophthalmology with model DOPA-melanin in the presence of metal ions. It has been demonstrated that the analyzed drugs form complexes with melanin biopolymer. Based on the .values ...

  4. Closo-Carborane-metal complexes containing metal-carbon and metal-boron sigma-bonds

    International Nuclear Information System (INIS)

    This paper examines the metal derivatives of the closo-carboranes formed through carborane carbon-metal and carborane boron-metal bonds. In order to provide a better perspective of the closo-carborane-metal compounds the authors include derivatives containing carboranyl groups bonded to boron and silicon, which are normally classified as nonmetals. The structures, nomenclature system, and general preparative methods of the closo-carboranes are examined

  5. Synthesis of some novel divalent transition metal complexes as antimicrobials

    Institute of Scientific and Technical Information of China (English)

    Kaushal K. Oza; Paresh N. Patel; Hasmukh S. Patel

    2011-01-01

    A novel series of transition metal complexes have been synthesized from the reaction of 5-((3-(methylthio)-5-(pyridin-4-yl)-4H-1,2,4-triazol-4-ylamino)methyl)quinolin-8-ol with transition metal salts. The structures of these compounds have been elucidated by elemental and spectral analysis. Furthermore, compounds were screened for in vitro antimicrobial activity against the representative panel of two Gram-positive and two Gram-negative bacteria and two strains of fungus. The various compounds show potent inhibitory action against test organisms.

  6. Photoinduced energy transfer in transition metal complex oligomers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  7. Photoinduced energy transfer in transition metal complex oligomers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  8. Metal complexes of 4,5-dimethylpyrazole-3-carboxaldehyde phenylthiosemicarbazone

    Science.gov (United States)

    El-Dissouky, Ali

    Several new transition metal complexes derived from 4,5-dimethyl-3-carboxaldehyde phenyl- thiosemicarbazone, LH, have been synthesized. The complexes are of stoichiometry, [CoL 2]X, X = Cl -, Br -, ClO -4 or NO -3, [MnL 2] and [CuX nL m], X = Cl -, Br -, NCS - or N -3; n = 1 or 0; m = 1 or 2 and L = the anion of LH. All complexes have been characterized by elemental analysis, spectral (i.r., electronic, NMR, ESR) and magnetic measurements. The ligand acts as tridentate monobasic co-ordinated to the metal ion via azomethine, pyrazole (N 2) nitrogen atoms and the thiolo-sulphur. The ligand field and ESR parameters are used to interpret the nature of bonding of LH with the metal ion, ground state and the ligand field strength of LH and the various co-ordinated simple ions. The coupling constants of various co-ordinated nuclei with copper (II) are estimated from ESR spectra of copper (II) complexes.

  9. Conventional and microwave synthesis, spectral, thermal and antimicrobial studies of some transition metal complexes containing 2-amino-5-methylthiazole moiety

    Directory of Open Access Journals (Sweden)

    A.P. Mishra

    2014-12-01

    Full Text Available Schiff base metal complexes of Cr(III, Co(II, Ni(II and Cu(II derived from 5-chlorosalicylidene-2-amino-5-methylthiazole (HL1 and 2-hydroxy-1-naphthylidene-2-amino-5-methylthiazole (HL2 have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, 1H-NMR, ESR, magnetic susceptibility, thermal, electrical conductivity and XRD analyses. The complexes exhibit coordination number 4 or 6. The complexes are coloured and stable in air. Analytical data reveal that all the complexes exhibit 1:2 (metal:ligand ratio. IR data show that the ligand coordinates with the metal ions in a bidentate manner through the phenolic oxygen and azomethine nitrogen. FAB-mass and thermal data show degradation pattern of the complexes. The thermal behaviour of metal complexes shows that the hydrated complexes lose water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. XRD patterns indicate crystalline nature for the complexes. The Schiff bases and metal complexes show good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.

  10. Inhomogeneous complexation of trace metals in water with organic nano-complexants

    Science.gov (United States)

    Dolgin, Bella; Bulatov, Valery; Hadar-Abuhatzira, Hodayah; Japarov, Julia; Schechter, Israel

    2011-12-01

    The complexation of heavy metals, such as Cd 2+ and Ni 2+, with organic complexants such as 1-(2-pyridylazo)-2-naphthol (PAN) and 1-(2-thiazolylazo)-2-naphthol (TAN) in water has been investigated. Under such conditions, both the reagents and the products form nano-particulates. These materials are important because their spectrum changes upon exposure to heavy metals and they may be used for design of new optical detectors. The kinetic schemes so far suggested for these complexation reactions are not valid for such experimental conditions, since they assume homogeneous behavior. We provide evidences to the inhomogeneous nature of these reactions. The complexation has been studied using TEM imaging, zeta-potentiometry, time-dependent particulate size analysis and time-dependent spectroscopy. Many of the experimental results are explained in terms of the nature of the nano-particulates of these two complexants. Several processes were identified, including crystal growing of the complexant, its reaction with metal ions in solution and on the surface area, chemical erosion of complexant crystallites and their decomposition, re-crystallization of the formed complexes and long term aggregation of both the complexant and the resulted complex. It was found that the needle-like nano-structures on the surface of the TAN particulates governs its reaction and particulate behavior. The known optimal complexation conditions, such as pH, and delay time are now understood in terms of the zeta-potential minima of the suspensions and in terms of the kinetic parameters. Also the interferences of some ions in the Ni-TAN complexation are now quantified and the kinetic data indicate the best delay time when the interfering effects are minimal.

  11. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  12. Effects of lability of metal complex on free ion measurement using DMT.

    Science.gov (United States)

    Weng, Liping; Van Riemsdijk, Willem H; Temminghoff, Erwin J M

    2010-04-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically and experimentally. The expressions of the lability parameter, Lgrangian , were derived for DMT. Analysis of new experimental studies using synthetic solution containing NTA as the ligand and Cu(2+) ions shows that when the ionic strength is low (DMT measurement. In natural waters, dissolved organic matter (DOM) is the most important source of ligands that complex metals. By comparing the fraction of labile species measured using other dynamic sensors (DGT, GIME) in several freshwaters, it is concluded that in most waters ion transport in DMT is controlled by diffusion in the membrane. Only in very soft waters (DMT. In this case, neglecting this effect may lead to an underestimation of the free metal ion concentration measured.

  13. Polynuclear transition metal complexes with thiocarbohydrazide and dithiocarbamates

    Science.gov (United States)

    Siddiqi, K. S.; Khan, Sadaf; Nami, Shahab A. A.; El-ajaily, M. M.

    2007-07-01

    Sn(tch) 2{MCl 2} 2 was prepared from the precursor Sn(tch) 2 and MCl 2. It was subsequently allowed to react with diethyldithiocarbamate which yielded the trinuclear complexes of the type Sn(tch) 2{M 2(dtc) 4}, where tch = thiocarbohydrazide, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and dtc = diethyldithiocarbamate. They were characterized on the basis of microanalytical, thermal (TGA/DSC), spectral (IR, UV-vis, EPR, 1H NMR) studies, conductivity measurement and magnetic moment data. On the basis of spectral data a tetrahedral geometry has been proposed for the halide complexes, Sn(tch) 2{MCl 2} 2 except for Cu(II) which exhibits a square planar coordination although the transition metal ion in Sn(tch) 2{M 2(dtc) 4} achieves an octahedral geometry where the dithiocarbamato moiety acts as a symmetrical bidentate ligand. The bidentate nature has been established by the appearance of a sharp single ν(C-S) around 1000 cm -1. A downfield shift observed in NH a and NH b protons on moving from Sn(tch) 2 to Sn(tch) 2{MCl 2} 2 is due to the drift of electrons toward metal atoms. A two-step pyrolysis has been observed in the Sn(tch) 2{MCl 2} 2 complexes while their dithiocarbamato derivatives exhibit a three-stage degradation pattern. Finally, the in vitro antibacterial activity of Sn(tch) 2{M 2(dtc) 4} and the mononuclear Sn(tch) 2 has been carried out on bacterial strains Escherichia coli and Salmonella typhi. The compounds were found to be active against the test organisms. The activity of the complexes is enhanced with increasing concentration. The maximum activity in both the strains was achieved by cobalt(II) dithiocarbamate complex. Minimum activity was found for Sn(tch) 2 which generally increases with the introduction of transition metal ion in the complex.

  14. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes.

    Energy Technology Data Exchange (ETDEWEB)

    Trovitch, R. J.; John, K. D.; Martin, R. L.; Obrey, S. J.; Sattelberger, A. P.; Scott, B. L.; Baker, R. T.; LANL; Univ. of Ottawa

    2009-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2}-{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the roles of the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  15. Transition metal complexes with thiosemicarbazide-based ligands. Part 45. Synthesis, crystal and molecular structure of [2,6-diacetylpyridine bis(S-methylisothiosemicarbazonato]diazide-iron(III

    Directory of Open Access Journals (Sweden)

    REFIK FAZLIC

    2003-05-01

    Full Text Available The template reaction of a warm methanolic solution of FeCl3.6H2O, S-methylisothiosemicarbazidehydroiodide and 2,6-diacetylpyridine in the presence of LiOAc and NaN3 yielded the high-spin complex [Fe(HL(N32], were HL is the monoanion of the ligand 2,6-diacetylpyridine bis(S-methylisothiosemicarbazone. X-Ray analysis of the complex showed its pentagonal-bipyramidal configuration, with pentadenate (N5 HL in the equatorial plane and two monodentate azide groups in the axial positions. Crystal data are: monoclinic, P21/c, a = 1.0263(2, b = 1.2525(2, c = 1.6660(3 nm, b = 98.94°, V = 2.1154 nm3, Z = 4, rx = 1.499 g cm-3, r0 = 1.48 g cm-3, F(000 = 984, m = 9.40 cm-3.

  16. Controlling Magnetism of a Complex Metallic System Using Atomic Individualism

    Science.gov (United States)

    Mudryk, Y.; Paudyal, D.; Pecharsky, V. K.; Gschneidner, K. A., Jr.; Misra, S.; Miller, G. J.

    2010-08-01

    When the complexity of a metallic compound reaches a certain level, a specific location in the structure may be critically responsible for a given fundamental property of a material while other locations may not play as much of a role in determining such a property. The first-principles theory has pinpointed a critical location in the framework of a complex intermetallic compound—Gd5Ge4—that resulted in a controlled alteration of the magnetism of this compound using precise chemical tools.

  17. Photoactivatable metal complexes: from theory to applications in biotechnology and medicine.

    Science.gov (United States)

    Smith, Nichola A; Sadler, Peter J

    2013-07-28

    This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal-carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)--a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers.

  18. mer and fac isomerism in tris chelate diimine metal complexes.

    Science.gov (United States)

    Dabb, Serin L; Fletcher, Nicholas C

    2015-03-14

    In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.

  19. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Science.gov (United States)

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-01

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [{Mn(acacen)}2Ru(NO)(CN)5]n and two complexes composed of different cyanorhenates, [Ni(cyclam)]2[ReO(OH)(CN)4](ClO4)2(H2O)1.25 and [Cu(cyclam)]2[Re(CN)7](H2O)12, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]3[Re(CN)7]2 (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]3[Re(CN)7]2 complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN)n]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu4N)2[Ru(NO)(CN)5], soluble in organic media.

  20. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds

    OpenAIRE

    Zahid H. Chohan; Arif, M.; Akhtar, Muhammad A.; Supuran, Claudiu T.

    2006-01-01

    A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L1)−(L5) were derived by condensation of β-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azo...

  1. Electrochemistry of metal complexes and their use in amperometric sensors

    OpenAIRE

    Somasundrum, Mithran

    1994-01-01

    This thesis concerns the utilization of metal complexes in amperometric sensors. Chapter One provides a general introduction to the area. The electrochemical theories relating to the development and use of amperometric sensors, are described, and applications for such sensors are outlined. These include trace element analysis for environmental and clinical use and the determination of NADH for the detection of clinical analytes. In Chapter Two, the electrochemical changes oc...

  2. POLYMER SUPPORT EFFECTS OF METAL COMPLEXES FOR CATALYSIS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    In the course of investigating the catalytic behavior of metal complexes for ring opening metathesis polymerization of cycloolefins, metathesis, hydroformylation and selective hydrogenation of olefins experimental results time and again indicate the presence of effects of macromolecular supports--the utilization of macromolecular supports increases obviously the activity, selectivity, and stability of the catalysts and so as to increase the conversion of substrates, yields of reactions, properties of formed polymers and so on. Discussed these effects on the basis of the authors' experiments.

  3. Ionic products of metal complexes with dithiocarbonic acid derivatives

    International Nuclear Information System (INIS)

    Ionic products of the complexes of certain sulfide-forming metal ions (In, Cd, Te, etc.) with alkyl derivates of dithiocarbonic acid have been defined. The possibility to use ionic products of alkyl xanthates for predicting the practicability of employing alkyl xanthates as analytic reagents in titrimetric methods of analysis, in extractional methods of separation and determination of elements, increase in the determination selectivity, is shown. 11 refs., 1 fig., 1 tab

  4. Creating Complex Hollow Metal Geometries Using Additive Manufacturing and Metal Plating

    OpenAIRE

    McCarthy, David Lee

    2012-01-01

    Additive manufacturing introduces a new design paradigm that allows the fabrication of geometrically complex parts that cannot be produced by traditional manufacturing and assembly methods. Using a cellular heat exchanger as a motivational example, this thesis investigates the creation of a hybrid manufacturing approach that combines selective laser sintering with an electroforming process to produce complex, hollow, metal geometries. The developed process uses electroless nickel plating on l...

  5. Cubane-type Cu(II)4 and Mn(II)2Mn(III)2 complexes based on pyridoxine: a versatile ligand for metal assembling.

    Science.gov (United States)

    Marino, Nadia; Armentano, Donatella; Mastropietro, Teresa F; Julve, Miguel; De Munno, Giovanni; Martínez-Lillo, José

    2013-10-21

    By using Vitamin B6 in its monodeprotonated pyridoxine form (PN-H) [PN = 3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine], two tetranuclear compounds of formula [Mn4(PN-H)4(CH3CO2)3Cl2]Cl·2CH3OH·2H2O (1) and [Cu4(PN-H)4Cl2(H2O)2]Cl2 (2) have been synthesized and magneto-structurally characterized. 1 crystallizes in the triclinic system with space group P1 whereas 2 crystallizes in the orthorhombic system with Fdd2 as space group. They exhibit Mn(II)2Mn(III)2 (1) and Cu(II)4 (2) cubane cores containing four monodeprotonated pyridoxine groups simultaneously acting as chelating and bridging ligands (1 and 2), three bridging acetate ligands in the syn-syn conformation (1), and two terminally bound chloride anions (1 and 2) plus two coordinated water molecules (2). The electroneutrality is achieved by the presence of chloride counterions in both compounds. Tri- [Mn(1) and Mn(3)] and divalent [Mn(2) and Mn(4)] manganese centers coexist in 1, all being six-coordinate with distorted Mn(1/3)O6 and Mn(2/4)O5Cl octahedral surroundings, respectively, the equatorial Mn-O bonds being about 0.2 Å shorter at the former ones. The two crystallographically independent copper(II) ions in 2 are five-coordinate in somewhat distorted CuO5 [Cu(1)] and CuO4Cl [Cu(2)] square pyramidal geometries. The values of the intracore metal-metal separation cover the ranges 3.144(1)-3.535(1) (1) and 2.922(6)-3.376(1) Å (2). The magnetic properties of 1 and 2 were investigated in the temperature range 1.9-300 K, and they correspond to an overall antiferromagnetic behavior with susceptibility maxima at 5.0 (1) and 65.0 K (2). The analysis of the magnetic susceptibility data showed the coexistence of intracore antiferro- and ferromagnetic interactions in the two compounds. Their values compare well with those existing in the literature for the parent systems.

  6. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Vergeldt, F.; Gerkema, E.; Maca, J.; As, van H.; Lens, P.N.L.

    2012-01-01

    Bioavailability of metals in anaerobic granular sludge has been extensively studied, because it can have a major effect on metal limitation and metal toxicity to microorganisms present in the sludge. Bioavailability of metals can be manipulated by bonding to complexing molecules such as ethylenediam

  7. Affinity of nat/68Ga-Labelled Curcumin and Curcuminoid Complexes for β-Amyloid Plaques: Towards the Development of New Metal-Curcumin Based Radiotracers

    Science.gov (United States)

    Rubagotti, Sara; Croci, Stefania; Ferrari, Erika; Iori, Michele; Capponi, Pier C.; Lorenzini, Luca; Calzà, Laura; Versari, Annibale; Asti, Mattia

    2016-01-01

    Curcumin derivatives labelled with fluorine-18 or technetium-99m have recently shown their potential as diagnostic tools for Alzheimer’s disease. Nevertheless, no study by exploiting the labelling with gallium-68 has been performed so far, in spite of its suitable properties (positron emitter, generator produced radionuclide). Herein, an evaluation of the affinity for synthetic β-amyloid fibrils and for amyloid plaques of three nat/68Ga-labelled curcumin analogues, namely curcumin curcumin (CUR), bis-dehydroxy-curcumin (bDHC) and diacetyl-curcumin (DAC), was performed. Affinity and specificity were tested in vitro on amyloid synthetic fibrils by using gallium-68 labelled compounds. Post-mortem brain cryosections from Tg2576 mice were used for the ex vivo visualization of amyloid plaques. The affinity of 68Ga(CUR)2+, 68Ga(DAC)2+, and 68Ga(bDHC)2+ for synthetic β-amyloid fibrils was moderate and their uptake could be observed in vitro. On the other hand, amyloid plaques could not be visualized on brain sections of Tg2576 mice after injection, probably due to the low stability of the complexes in vivo and of a hampered passage through the blood–brain barrier. Like curcumin, all nat/68Ga-curcuminoid complexes maintain a high affinity for β-amyloid plaques. However, structural modifications are still needed to improve their applicability as radiotracers in vivo. PMID:27608011

  8. Affinity of (nat/68)Ga-Labelled Curcumin and Curcuminoid Complexes for β-Amyloid Plaques: Towards the Development of New Metal-Curcumin Based Radiotracers.

    Science.gov (United States)

    Rubagotti, Sara; Croci, Stefania; Ferrari, Erika; Iori, Michele; Capponi, Pier C; Lorenzini, Luca; Calzà, Laura; Versari, Annibale; Asti, Mattia

    2016-01-01

    Curcumin derivatives labelled with fluorine-18 or technetium-99m have recently shown their potential as diagnostic tools for Alzheimer's disease. Nevertheless, no study by exploiting the labelling with gallium-68 has been performed so far, in spite of its suitable properties (positron emitter, generator produced radionuclide). Herein, an evaluation of the affinity for synthetic β-amyloid fibrils and for amyloid plaques of three (nat/68)Ga-labelled curcumin analogues, namely curcumin curcumin (CUR), bis-dehydroxy-curcumin (bDHC) and diacetyl-curcumin (DAC), was performed. Affinity and specificity were tested in vitro on amyloid synthetic fibrils by using gallium-68 labelled compounds. Post-mortem brain cryosections from Tg2576 mice were used for the ex vivo visualization of amyloid plaques. The affinity of (68)Ga(CUR)₂⁺, (68)Ga(DAC)₂⁺, and (68)Ga(bDHC)₂⁺ for synthetic β-amyloid fibrils was moderate and their uptake could be observed in vitro. On the other hand, amyloid plaques could not be visualized on brain sections of Tg2576 mice after injection, probably due to the low stability of the complexes in vivo and of a hampered passage through the blood-brain barrier. Like curcumin, all (nat/68)Ga-curcuminoid complexes maintain a high affinity for β-amyloid plaques. However, structural modifications are still needed to improve their applicability as radiotracers in vivo. PMID:27608011

  9. Syntheses, Crystal Structures and Properties of Two Metal-organic Complexes Based on 5-(4-Pyridyl)-methoxyl Isophthalic Acid

    Institute of Scientific and Technical Information of China (English)

    TAO Zhao-Lin; QIN Ling; ZHENG He-Gen

    2013-01-01

    Two new metal-organic frameworks,[Co3L2(NO2)2(H2O)2]n (1) and{[Ni(L)(H2O)5]·(H2O)2·DMF}n (2,H2L =5-(4-pyridyl)-methoxyl isophthalic acid),have been synthesized by the hydrothermal method and characterized by elemental analysis,infrared spectroscopy,thermogravimetric analysis (TGA) and X-ray crystallography.Compound 1 crystallizes in the monoclinic system with space group P2/c and adopts a slightly distorted octahedral configuration.In compound 1,the 2D bilayered structures are linked by O-H…O and O-H…N hydrogen bonds to form a 3D framework.Compound 2 crystallizes in the monoclinic system with space group P21/n,and the central nickel atoms are octa-coordinated with five O atoms from coordinated water molecules and one N atom from one H2L ligand.The abundant O-H…O hydrogen bonds and π…π interactions link the molecules into a 3D framework.In addition,compounds 1 and 2 exhibit strong ultraviolet absorption in the solid state at room temperature.

  10. Metal complexes as antibacterial agents: Synthesis, characterization and antibacterial activity of some 3d metal complexes of sulphadimidine

    Directory of Open Access Journals (Sweden)

    Adedibu Clement Tella

    2010-06-01

    Full Text Available Metal complexes of Sulphadimidine(SAD were synthesized.The complexes were formulated as [Co(SAD2Cl2], [Cu(SAD2 (H2O2], [Ni (SAD2 Cl2 H2O], [Cd (SAD2 Br2], [Fe (SAD3](H­2O­3 and [Mn (SAD2Cl2] characterized by elemental Analysis, conductivity, IR , UV-Vis, Magnet moment and 1H-NMR and Mass spectroscopies. Co(II, Mn (II,  and Ni(II sulphadimidine complexes consist of metal ion which coordinates through amino nitrogen of the terminal NH2 group and oxygen of sulfonamidic group of the two molecules of sulphadimidine ligand and two halide ions to form octahedral structure while Cd(II coordinates with sulphadimidine through amino nitrogen of the terminal NH2 group with two bromine ions to complete tetrahedral structure. In Cu(II sulphadimidine complex, copper ion coordinates through both pyrimidinic nitrogen (heterocyclic nitrogen and sulfonamidic nitrogen of the two molecules of sulphadimidine. Fe(III coordinates to three molecules of sulphadimidine through heterocyclic nitrogen (pyrimidinic nitrogen and sulfonamidic nitrogen,with three molecules of water outside the coordination sphere. Both Fe(III and Cu(II complexes exhibit octahedral geometry. The antibacterial activity of the complexes and the ligands was investigated against Esherichia coli,  Staphylococcus aureus and Klebsiella pneumonia .  The data obtained revealed that the complexes showed greater activity against the three micro-organisms when compared to parent compound. Stability constant of the complexes were evaluated for the metal salts, the order of stability constant b was found to be Cu (II > Fe (III >Ni(II> Co (II > Cd (II.The values of stability constant (b was found to be log 6.31, 5.93, 5.29, 4.63 and 3.92, respectively. The stability constant data revealed that this ligand may be used as antidote or chelating agent for medical treatment of metals overload or poisoning.

  11. Synthesis of N4 donor macrocyclic Schiff base ligands and their Ru (II), Pd (II), Pt (II) metal complexes for biological studies and catalytic oxidation of didanosine in pharmaceuticals

    Science.gov (United States)

    Ravi krishna, E.; Muralidhar Reddy, P.; Sarangapani, M.; Hanmanthu, G.; Geeta, B.; Shoba Rani, K.; Ravinder, V.

    2012-11-01

    A series of tetraaza (N4 donor) macrocyclic ligands (L1-L4) were derived from the condensation of o-phthalaldehyde (OPA) with some substituted aromatic amines/azide, and subsequently used to synthesize the metal complexes of Ru(II), Pd(II) and Pt(II). The structures of macrocyclic ligands and their metal complexes were characterized by elemental analyses, IR, 1H &13C NMR, mass and electronic spectroscopy, thermal, magnetic and conductance measurements. Both the ligands and their complexes were screened for their antibacterial activities against Gram positive and Gram negative bacteria by MIC method. Besides, these macrocyclic complexes were investigated as catalysts in the oxidation of pharmaceutical drug didanosine. The oxidized products were further treated with sulphanilic acid to develop the colored products to determine by spectrophotometrically. The current oxidation method is an environmentally friendly, simple to set-up, requires short reaction time, produces high yields and does not require co-oxidant.

  12. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds.

    Science.gov (United States)

    Chohan, Zahid H; Arif, M; Akhtar, Muhammad A; Supuran, Claudiu T

    2006-01-01

    A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L(1))-(L(5)) were derived by condensation of beta-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H(2)O)(4)]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)(2)(H(2)O)(2)] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22

  13. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II, Cu(II, Ni(II, and Zn(II Complexes with Amino Acid-Derived Compounds

    Directory of Open Access Journals (Sweden)

    Zahid H. Chohan

    2006-01-01

    Full Text Available A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II, copper(II, nickel(II, and zinc(II metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L1–(L5 were derived by condensation of β-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II ion and synthesized ligands in molar ratio of M: L (1: 1 resulted in the formation of the metal complexes of type [M(L(H2O4]Cl (where M = Co(II, Cu(II, and Zn(II and of M: L (1: 2 of type [M(L2(H2O2] (where M = Co(II, Cu(II, Ni(II, and Zn(II. The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II complexes agree with their proposed structures. The synthesized ligands, along with their metal(II complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi and two Gram-positive (Bacillus subtilis and Staphylococcus aureus bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3, (7, (10, (11, and (22, displayed potent cytotoxic

  14. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, Paul [Univ. of Missouri, Columbia, MO (United States)

    2015-07-31

    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  15. Pushing the Limits of Delta Bonding in Metal-Chromium Complexes with Redox Changes and Metal Swapping.

    Science.gov (United States)

    Eisenhart, Reed J; Rudd, P Alex; Planas, Nora; Boyce, David W; Carlson, Rebecca K; Tolman, William B; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2015-08-01

    Into the metalloligand Cr[N(o-(NCH2P((i)Pr)2)C6H4)3] (1, CrL) was inserted a second chromium atom to generate the dichromium complex Cr2L (2), which is a homobimetallic analogue of the known MCrL complexes, where M is manganese (3) or iron (4). The cationic and anionic counterparts, [MCrL](+) and [MCrL](-), respectively, were targeted, and each MCr pair was isolated in at least one other redox state. The solid-state structures of the [MCrL](+,0,-) redox members are essentially the same, with ultrashort metal-metal bonds between 1.96 and 1.74 Å. The formal shortness ratios (r) of these interactions are between 0.84 and 0.74 and are interpreted as triple to quintuple metal-metal bonds with the aid of theory. The trio of (d-d)(10) species [Cr2L](-) (2(red)), MnCrL (3), and [FeCrL](+) (4(ox)) are S = 0 diamagnets. On the basis of M-Cr bond distances and theoretical calculations, the strength of the metal-metal bond across the (d-d)(10) series increases in the order Fe Cr2)(2+) to the (MnCr)(3+) core. Complex 2(red) was further investigated by resonance Raman spectroscopy, and a band at 434 cm(-1) was assigned as the Cr-Cr bond vibration. Finally, 4(ox) exhibited a Mössbauer doublet with an isomer shift of 0.18 mm/s that suggests a primarily Fe-based oxidation to Fe(I). PMID:26168331

  16. Ab initio calculations on the magnetic properties of transition metal complexes

    International Nuclear Information System (INIS)

    We present a protocol for the ab initio determination of the magnetic properties of mono- and polynuclear transition metal compounds. First, we obtain the low lying electronic states by multireference methods. Then, we include spin-orbit coupling and an external magnetic field for the determination of zero-field splitting and g-tensors. For the polynuclear complexes the magnetic exchange coupling constants are determined by a modified complete active space self consistent field method. Based on the results of the ab initio calculations, magnetic data such as magnetic susceptibility or magnetization are simulated and compared to experimental data. The results obtained for the polynuclear complexes are further analysed by calculations on model complexes where part of the magnetic centers are substituted by diamagnetic ions. The methods are applied to different Co and Ni containing transition metal complexes

  17. STUDY ON SYNTHESIS AND RELAXIVITY OF PARAMAGNETIC POLYESTER METAL COMPLEXES FOR MRI

    Institute of Scientific and Technical Information of China (English)

    Ouyangming; ZhuoRenxi; 等

    1995-01-01

    Fifteen new polyester ligands were prepared by copolymerization of EDTA (ethylenediaminetertraacetic acid)dianhydride or DTPA (diethylenetriamine pentaacetic acid) dianhydride and dihydric alcohol or dihydric phenol.Their paramagnetic metal complexes were also synthesized.All polyester ligands and metal complexes were characterized by 1HNMR,IR spectra and elemental analyses.Preliminary study showed that the polyester metal complexes had higher relaxation effectiveness as compared to corresponding small molecular metal complexes.

  18. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    Science.gov (United States)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  19. Transition metal M(II complexes with isonicotinoylhydrazone-9-anthraldehyde

    Directory of Open Access Journals (Sweden)

    Dianu M.L.

    2010-01-01

    Full Text Available New complexes of isonicotinoylhydrazone-9-anthraldehyde with Cu(II, Co(II and Ni(II have been prepared and characterized by analytical and physico-chemical techniques, such as elemental and thermal analyses, magnetic susceptibility and conductivity measurements, and electronic, EPR and IR spectral studies. The infrared spectral studies revealed the bidentate or monodentate nature of the Schiff base in the complexes; the pyridine nitrogen does not participate in the coordination. A tetrahedral geometry is suggested for the nitrate-complexes and an octahedral geometry for the others. Thermal studies support the chemical formulation of these complexes.

  20. Solvation-driven charge transfer and localization in metal complexes.

    Science.gov (United States)

    Rondi, Ariana; Rodriguez, Yuseff; Feurer, Thomas; Cannizzo, Andrea

    2015-05-19

    In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole-dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent-solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and stabilization of CT

  1. Complex metal borohydrides: multifunctional materials for energy storage and conversion.

    Science.gov (United States)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world's energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future. PMID:27384871

  2. Complex metal borohydrides: multifunctional materials for energy storage and conversion

    Science.gov (United States)

    Mohtadi, Rana; Remhof, Arndt; Jena, Puru

    2016-09-01

    With the limited supply of fossil fuels and their adverse effect on the climate and the environment, it has become a global priority to seek alternate sources of energy that are clean, abundant, and sustainable. While sources such as solar, wind, and hydrogen can meet the world’s energy demand, considerable challenges remain to find materials that can store and/or convert energy efficiently. This topical review focuses on one such class of materials, namely, multi-functional complex metal borohydrides that not only have the ability to store sufficient amount of hydrogen to meet the needs of the transportation industry, but also can be used for a new generation of metal ion batteries and solar cells. We discuss the material challenges in all these areas and review the progress that has been made to address them, the issues that still need to be resolved and the outlook for the future.

  3. Metal complexation inhibits the effect of oxalic acid in aerosols as cloud condensation nuclei (CCN

    Directory of Open Access Journals (Sweden)

    T. Furukawa

    2010-11-01

    Full Text Available Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to cancel the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA play a key role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is one of the major components of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca and zinc (Zn in aerosols collected at Tsukuba in Japan with fractionation based on particle size using an impactor aerosol sampler. It was shown that 10–60% and 20–100% of the total Ca and Zn in the finer particles (<2.1 μm were present as Ca and Zn oxalate complexes, respectively. Oxalic acid can act as CCN because of its hygroscopic properties, while metal complexes are not hygroscopic, and so cannot be CCN. Based on the concentration of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not act as CCN in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is possible that the cooling effect of organic aerosols assumed in various climate modeling studies is overestimated because of the lack of information on metal oxalate complexes in aerosols.

  4. Fluoroquinolone-metal complexes: a route to counteract bacterial resistance?

    Science.gov (United States)

    Feio, Maria J; Sousa, Isabel; Ferreira, Mariana; Cunha-Silva, Luís; Saraiva, Raúl G; Queirós, Carla; Alexandre, José G; Claro, Vasco; Mendes, Adélia; Ortiz, Rosa; Lopes, Sandra; Amaral, Ana Luísa; Lino, João; Fernandes, Patrícia; Silva, Ana João; Moutinho, Lisete; de Castro, Baltazar; Pereira, Eulália; Perelló, Lourdes; Gameiro, Paula

    2014-09-01

    Microbial resistance to antibiotics is one of the biggest public health threats of the modern world. Antibiotic resistance is an area of much clinical relevance and therefore research that has the potential to identify agents that may circumvent it or treat resistant infections is paramount. Solution behavior of various fluoroquinolone (FQ) complexes with copper(II) in the presence and absence of 1,10-phenanthroline (phen) was studied in aqueous solution, by potentiometry and/or spectrophotometry, and are herein described. The results obtained showed that under physiological conditions (micromolar concentration range and pH7.4) only copper(II):FQ:phen ternary complexes are stable. Hence, these complexes were synthesised and characterised by means of UV-visible and IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. In these complexes, the FQ acts as a bidentate ligand that coordinates the metal cation through the carbonyl and carboxyl oxygen atoms and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth position of the penta-coordinated Cu(II) centre is generally occupied axially by an oxygen atom from a water molecule or from a nitrate ion. Minimum inhibitory concentration (MIC) determinations of the complexes and comparison with free FQ in various E. coli strains indicate that the Cu-complexes are as efficient antimicrobials as the free antibiotic. Moreover, results strongly suggest that the cell intake route of both species is different supporting, therefore, the complexes' suitability as candidates for further biological testing in FQ-resistant microorganisms.

  5. Microwave synthesis, spectral, thermal, and antimicrobial activities of some transition metal complexes involving 5-bromosalicylaldehyde moiety

    Directory of Open Access Journals (Sweden)

    Rajendra K. Jain

    2012-07-01

    Full Text Available The coordination complexes of Co(II, Ni(II and Cu(II derived from 5-bromosalicylidene-3,4-dimethylaniline (BSMA and 5-bromosalicylidene-3,4-dichloroaniline (BSCA have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, molar conductance, electronic spectra, 1H-NMR, FAB-mass, ESR, magnetic susceptibility, electrical conductivity and thermal analysis. The complexes are coloured and stable in air. Analytical data revealed that all the complexes exhibited 1:2 (metal: ligand ratio with coordination number 4 or 6. IR data shows that the ligand coordinates with the metal ions in a bidentate manner through the phenolic oxygen and azomethine nitrogen. FAB-mass and thermal data show degradation pattern of the complexes. Solid state electrical conductivity studies reflect semiconducting nature of the complexes. The Schiff base and metal complexes show a good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans.

  6. Role of the coordination center in photocurrent behavior of a tetrathiafulvalene and metal complex dyad.

    Science.gov (United States)

    Sun, Yong-Gang; Ji, Shu-Fang; Huo, Peng; Yin, Jing-Xue; Huang, Yu-De; Zhu, Qin-Yu; Dai, Jie

    2014-03-17

    Small organic molecule-based compounds are considered to be promising materials in photoelectronics and high-performance optoelectronic devices. However, photoelectron conversion research based on functional organic molecule and metal complex dyads is very scarce. We design and prepare a series of compounds containing a tetrathiafulvalene (TTF) moiety substituted with pyridylmethylamide groups of formulas [Ni(acac)2L]·2CH3OH (1), [Cu2I2L2]·THF·2CH3CN (2), and [MnCl2L2]n·2nCH3CH2OH (3) (L = 4,5-bis(3-pyridylmethylamide)-4',5'-bimethylthio-tetrathiafulvalene, acac = acetylacetone) to study the role of the coordination center in photocurrent behavior. Complex 1 is a mononuclear species, and complex 2 is a dimeric species. Complex 3 is a two-dimensional (2-D) coordination polymer. Spectroscopic and electrochemical properties of these complexes indicate that they are electrochemically active materials. The tetrathiafulvalene ligand L is a photoelectron donor in the presence of electron acceptor methylviologen. The effect of metal coordination centers on photocurrent response behavior is examined. The redox-active metal coordination centers should play an important role in improvement of the photocurrent response property. The different morphologies of the electrode films reflect the dimensions in molecular structures of the coordination compounds.

  7. Preparation and Catalytic Properties of Polymer Supported Dendritic Metal Complex

    Institute of Scientific and Technical Information of China (English)

    LI Cui-ling; YANG Zhi-wang; KANG Qiao-xiang; MA Heng-chang; MA Xiao-peng; GAO Qi-kuan; GUO Zhen; LEI Zi-qiang

    2004-01-01

    Polymer supported materials are extensively used as oxidizing agent, reducing agent catalysts, photosensitizers ion exchange resins and agriculturally and pharmacologically active agents1. The application of polymer metal complexes has been widely investigated2. The polymer supported complex undergoes swelling in a suitable solvent medium and provides enough surface area in carrying out electron transfer reactions, which clearly emphasizes the influence of a polymer network in heterogeneous catalysis.In the present, we have succeeded in the grafting of "dendrimer-like" hyperbranched polymer onto the surface of chloromethyl polystyrene reactions.All the catalysts show promising catalytic activities for the oxidation of iso-propylbenzene in the mild reaction condition, in each case, hypnone 1, 2-phenyl-2-propanol 2 were obtained as the major products

  8. Salicylaldiminato derivatives of cyclotriveratrylene: flexible strategy for new rim-metalated CTV complexes.

    Science.gov (United States)

    Bohle, D S; Stasko, D J

    2000-12-11

    The amino-derivatized cyclotriveratrylene analogue, triaminotrimethoxytribenzocyclononene [CTV(NH2)3(OMe)3], 1, is readily converted into triply substituted imine compounds [CTV(sal)3(OMe)3], 2, in high yield by treatment of the acid salt of 1 with a variety of substituted salicylaldehydes. Cleavage of the protecting methoxy group generates the tristridentate chelate CTV(sal)3(OH)3, 3, which is readily converted into new rim-metalated species CTV(sal)3(ONiL)3, 4a (a, L = pyrrolidine; b, L = 1-n-butyl-imidazole). Taken together, these results illustrate the remarkable synthetic flexibility that is possible for the CTV-based metal complexes by alteration of the metal, the salicylaldehyde component of the CTV ligand, or the ancillary ligands coordinated to the metal. PMID:11151378

  9. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture. 2500 Hassaka, Hikone, Shiga 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electric field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.

  10. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiang-Hong [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xiao, Dong-Rong, E-mail: xiaodr98@yahoo.com.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Luo, Qun-Li, E-mail: qlluo@swu.edu.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Wang, En-Bo, E-mail: wangeb889@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2013-02-15

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]{center_dot}H{sub 2}O (1), [M(norfH)(bpdc)]{center_dot}H{sub 2}O (M=Cd (2) and Mn (3)), [Mn{sub 2}(cfH)(odpa)(H{sub 2}O){sub 3}]{center_dot}0.5H{sub 2}O (4), [Co{sub 2}(norfH)(bpta)({mu}{sub 2}-H{sub 2}O)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) and [Co{sub 3}(saraH){sub 2}(Hbpta){sub 2}(H{sub 2}O){sub 4}]{center_dot}9H{sub 2}O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4 Prime -biphenyldicarboxylate, odpa=4,4 Prime -oxydiphthalate, bpta=3,3 Prime ,4,4 Prime -biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed. - Graphical abstract: Six novel 2D metal-quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: Black-Right-Pointing-Pointer Compounds 1-3 consist of novel 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Black-Right-Pointing-Pointer Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. Black-Right-Pointing-Pointer Compound 6 is the first example of metal-quinolone complexes with 2D bilayer structure. Black-Right-Pointing-Pointer Compounds 1-6 represent six unusual

  11. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    Science.gov (United States)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  12. Complexity measurement based on information theory and kolmogorov complexity.

    Science.gov (United States)

    Lui, Leong Ting; Terrazas, Germán; Zenil, Hector; Alexander, Cameron; Krasnogor, Natalio

    2015-01-01

    In the past decades many definitions of complexity have been proposed. Most of these definitions are based either on Shannon's information theory or on Kolmogorov complexity; these two are often compared, but very few studies integrate the two ideas. In this article we introduce a new measure of complexity that builds on both of these theories. As a demonstration of the concept, the technique is applied to elementary cellular automata and simulations of the self-organization of porphyrin molecules.

  13. Four transition metal complexes with a semicarbazone ligand bearing pyrazine unit

    Science.gov (United States)

    Chen, Hong; Ma, Xiu-qin; Lv, Yan-yun; Jia, Lei; Xu, Jun; Wang, Yuan; Ge, Zhi-jun

    2016-04-01

    Four new complexes based on L (where L = 3-ethyl-2-acetylpyrazine semicarbazone), namely [CoL2]Cl2·0.5H2O (1), [CoL2](NO3)2 (2), [CdL(H2O)2(NO3)](NO3)·H2O (3) and [CuL(CH3OH)Cl2]·[CuLCl2] (4) have been synthesized and characterized by X-ray diffraction analyses. The results show that the semicarbazone acts as a tridentate neutral ligand in all complexes. Each of complex 1 and 2 reveals a distorted octahedral geometry around the metal ion provided by two units of the ligand, while the ratio of the ligand and metal is 1:1 in complexes 3 and 4. The effect of complexes 1-4 on cell proliferation, apoptosis of human pancreatic cancer (Patu8988), human gastric cancer (SGC7901) and human hepatic cancer (SMMC7721) cell lines have been detected by MTT assay, Annexin V/PI double staining flow cytometry and TUNEL assay. The results show that complexes 1-4 can inhibit cell proliferation of Patu8988, SGC7901 and SMMC7721 cells, significantly higher than the effect of the ligand. However, the complex 4 reveals higher apoptosis rate, and displays up-regulated expression level of caspase 3, detected by western blotting, which also indicates the complex 4 can induce caspase-dependent cell apoptosis in SMMC7721.

  14. Synthesis and Application of Zeolite-encapsulated Nickel Schiff-base Complex

    Institute of Scientific and Technical Information of China (English)

    FENG; HuiXi

    2001-01-01

    Transition-metal complex-catalyzed oxidation of organic substrates with molecular oxygen is gaining importance as a viable alternative to the environmentally hazardous metal-oxide-based reagents. The complexes have received much attention recently due to the potential application of these complexes as oxidation catalysts for the oxidation of alkene, enolizable, aldehydes and other organic substrates. Recent studies of our group showed that metal complexes catalyzed the oxidation of organic substrates selectively in the presence of molecular oxygen 1,5. Here, it is reported that zeolite-encapsulated Ni (I) Schiff-base complex exhibit a catalytic activity and selectivity for the oxidation of styrene.  ……

  15. Synthesis and Application of Zeolite-encapsulated Nickel Schiff-base Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Transition-metal complex-catalyzed oxidation of organic substrates with molecular oxygen is gaining importance as a viable alternative to the environmentally hazardous metal-oxide-based reagents. The complexes have received much attention recently due to the potential application of these complexes as oxidation catalysts for the oxidation of alkene, enolizable, aldehydes and other organic substrates. Recent studies of our group showed that metal complexes catalyzed the oxidation of organic substrates selectively in the presence of molecular oxygen 1,5. Here, it is reported that zeolite-encapsulated Ni (I) Schiff-base complex exhibit a catalytic activity and selectivity for the oxidation of styrene.

  16. Simulation of the mobility of metal - EDTA complexes in groundwater: The influence of contaminant metals

    Science.gov (United States)

    Friedly, J.C.; Kent, D.B.; Davis, J.A.

    2002-01-01

    Reactive transport simulations were conducted to model chemical reactions between metal - EDTA (ethylenediaminetetraacetic acid) complexes during transport in a mildly acidic quartz - sand aquifer. Simulations were compared with the results of small-scale tracer tests wherein nickel-, zinc-, and calcium - EDTA complexes and free EDTA were injected into three distinct chemical zones of a plume of sewage-contaminated groundwater. One zone had a large mass of adsorbed, sewage-derived zinc; one zone had a large mass of adsorbed manganese resulting from mildly reducing conditions created bythe sewage plume; and one zone had significantly less adsorbed manganese and negligible zinc background. The chemical model assumed that the dissolution of iron(III) from metal - hydroxypolymer coatings on the aquifer sediments by the metal - EDTA complexes was kinetically restricted. All other reactions, including metal - EDTA complexation, zinc and manganese adsorption, and aluminum hydroxide dissolution were assumed to reach equilibrium on the time scale of transport; equilibrium constants were either taken from the literature or determined independently in the laboratory. A single iron(III) dissolution rate constant was used to fit the breakthrough curves observed in the zone with negligible zinc background. Simulation results agreed well with the experimental data in all three zones, which included temporal moments derived from breakthrough curves at different distances downgradient from the injections and spatial moments calculated from synoptic samplings conducted at different times. Results show that the tracer cloud was near equilibrium with respect to Fe in the sediment after 11 m of transport in the Zn-contaminated region but remained far from equilibrium in the other two zones. Sensitivity studies showed that the relative rate of iron(III) dissolution by the different metal - EDTA complexes was less important than the fact that these reactions are rate controlled. Results

  17. The QSAR study of flavonoid-metal complexes scavenging rad OH free radical

    Science.gov (United States)

    Wang, Bo-chu; Qian, Jun-zhen; Fan, Ying; Tan, Jun

    2014-10-01

    Flavonoid-metal complexes have antioxidant activities. However, quantitative structure-activity relationships (QSAR) of flavonoid-metal complexes and their antioxidant activities has still not been tackled. On the basis of 21 structures of flavonoid-metal complexes and their antioxidant activities for scavenging rad OH free radical, we optimised their structures using Gaussian 03 software package and we subsequently calculated and chose 18 quantum chemistry descriptors such as dipole, charge and energy. Then we chose several quantum chemistry descriptors that are very important to the IC50 of flavonoid-metal complexes for scavenging rad OH free radical through method of stepwise linear regression, Meanwhile we obtained 4 new variables through the principal component analysis. Finally, we built the QSAR models based on those important quantum chemistry descriptors and the 4 new variables as the independent variables and the IC50 as the dependent variable using an Artificial Neural Network (ANN), and we validated the two models using experimental data. These results show that the two models in this paper are reliable and predictable.

  18. Transition metal complexes with thiosemicarbazide-based ligands. Part46. Synthesis and physico-chemical characterization of mixed ligand cobalt(III-complexes with salicylaldehyde semi-, thiosemi- and isothiosemicarbazone and pyridine

    Directory of Open Access Journals (Sweden)

    VUKADIN M. LEOVAC

    2003-12-01

    Full Text Available Mixed ligand octahedral cobalt(III complexes with the tridentate salicylaldehyde semi-, thiosemi- and isothiosemicarbazone and pyridine of general formula [CoIII(L11-3(py3]X (H2L1 = salicylaldehyde semicarbazone, X = [CoIICl3(py]-, ClO4- . H2O, I- . 0.5 I2; H2L2 = salicylaldehyde thiosemicarbazone, X = [CoIICl3(py]-, [CoIIBr3(py]-, ClO4- . H2O, I3-; H2L3 = salicylaldehyde S-methylisothiosemicarbazone, X = [ CoIIBr3(py ]-, ClO4- . H2O, BF4- were synthesized. The tridentate coordination of all the three dianionic forms of the ligands involves the phenol oxygen, hydrazine nitrogen and the chalcogen (O or S in case of salicylaldehyde semi-, thiosemicarbazone and the terminal nitrogen atom in the case of isothiosemicarbazone. For all the complexes, a meridial octahedral arrangement is proposed, which is a consequence of the planarity of the chelate ligand. The compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility, IR and electronic absorption spectra. The thermal decomposition of the complexes was investigated by thermogravimetry, coupled TG-MS measurements and DSC.

  19. Model Based Metal Transfer Control

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2006-01-01

    In pulsed gas metal arc welding (pulsed GMAW) current pulses are used for detaching drops at the tip of the electrode. To obtain a high weld quality one drop should be detached for every pulse, and moreover, the amount of energy used for detachment should be kept at a minimum. Thus, each pulse mu...

  20. Facile Synthesis of Functionalized Carbene Metal Complexes from Coordinated Isonitriles.

    Science.gov (United States)

    Lothschütz, Christian; Wurm, Thomas; Zeiler, Anna; Freiherr V Falkenhausen, Alexander; Rudolph, Matthias; Rominger, Frank; Hashmi, A Stephen K

    2016-02-01

    The scope and limitations of the isonitrile-based NHC template synthesis were investigated with a series of precursors containing a nucleophilic amine in combination with tethered electrophiles. In the case of alkynes and phosphonic esters as electrophiles no ring closure was observed and new functionalized NAC gold complexes were obtained. By the use of unsaturated esters and phosphonic esters as Michael acceptors in the amine precursors, ester-modified gold and palladium NHC complexes were accessible in high efficiency. PMID:26033484

  1. MCPB.py: A Python Based Metal Center Parameter Builder.

    Science.gov (United States)

    Li, Pengfei; Merz, Kenneth M

    2016-04-25

    MCPB.py, a python based metal center parameter builder, has been developed to build force fields for the simulation of metal complexes employing the bonded model approach. It has an optimized code structure, with far fewer required steps than the previous developed MCPB program. It supports various AMBER force fields and more than 80 metal ions. A series of parametrization schemes to derive force constants and charge parameters are available within the program. We give two examples (one metalloprotein example and one organometallic compound example), indicating the program's ability to build reliable force fields for different metal ion containing complexes. The original version was released with AmberTools15. It is provided via the GNU General Public License v3.0 (GNU_GPL_v3) agreement and is free to download and distribute. MCPB.py provides a bridge between quantum mechanical calculations and molecular dynamics simulation software packages thereby enabling the modeling of metal ion centers. It offers an entry into simulating metal ions in a number of situations by providing an efficient way for researchers to handle the vagaries and difficulties associated with metal ion modeling. PMID:26913476

  2. Synthesis and Spectroscopic Characterization of New Ligand and Its Pd(II), Cu(II) Metal Complexes

    OpenAIRE

    Isam Hussain Al-Karkhi; Hamsa T. Sadiq; Ayad H. Jassim

    2013-01-01

    A novel Schiff base ligand containing nitrogen and sulfur donor atoms was synthesized by condensing thioamide (TA) with imidothioic acid (IT) to form 1, 4 dithiane-2, 3-diamine (TAIT). Metal complexes of this ligand were prepared using Cu (II) chloride dihydrates and Pd (III) chloride. These complexes have been characterized using various physico-chemical and spectroscopic techniques. Based on physico-chemical and spectroscopic analyses, the structure of Cu (II) complex is expected to be octa...

  3. Spectroscopic and Thermal Characterization of Gliclazide, Glibenclamide and Glimeperide Complexes with Transition and Inner Transition Metals

    Directory of Open Access Journals (Sweden)

    MOHAMMAD TAWKIR

    2012-12-01

    Full Text Available Metal complxes of Gliclazide, Glibenclamide and Glimeperide drugs were prepared and characterized based on elemental analysis, FT-IR, Molar conductance and thermal analysis (TGA and DTG technique. From elemental analysis data, the complexes were proposed to have general formulae (GLZ2Co2H2O, (GLZ2Cu, (GLB2Co2H2O, Cu(GLB 2, (GLM 2Hg and (GLM 2La2H2O. The molar conductance data reveal that all the metal complexes are non-electrolytic, IR spectra shows that GLZ, GLB and GLM are coordinated to metal ions in a neutral bidentate manner from the ESR spectra and XRD-spectra. It is found that the geometrical structures of these complexes are tetrahedral Cu(II ,Hg(II and octrahedral Co(II, La(II. The thermal behavior of these complexes studied using thermogravimetric analysis (TGA and DTG techniques. The results obtained shows that the hydrated complexes lose water molecules of hydration followed immediately by decomposition of the anions and ligand molecules in the successive unseparate steps. Thermogravimetric analysis was carried out to study the decomposition and various kinetic parameters. Freeman Carroll and Sharp Wentworth method have been applied for calculation of kinetic parameters. While data from freeman Carroll method have been used to determine various thermodynamic parameters such as order of reactions, energy of activation, frequency factor, entropy change, free energy change and apparent entropy change and order of reaction..

  4. Synthesis, Characterization and Biocidal Evaluation of Azole-Based Ligandsmetal Complexes

    Directory of Open Access Journals (Sweden)

    S. A. Olagboye

    2013-12-01

    Full Text Available Different metal complexes of the azole-based ligands have been synthesized and characterized based on the solubility, percentage yield, melting points and conductivity a well as the antimicrobial evaluations on the selected fungi species of plant pathogens. The studies revealed that solid metal complexes were soluble in 80% water and 20% (DMSO dimethylsulphuroxide and the percentage yields were of appreciable high while the conductivity results showed that metal complexes were non-electrolytes. The solid complexes were also screened against the fungi species: Rhizoctonia solani,Pythium aphaindermatum,Rhizoctonia cerealis,Sclerotium rofisil ,Phyphotoria palmivora (causative agent of black pod diseases and Benlate a commercial anti fungi agent (as control.The results of the present studies confirmed that metal complexes had good inhibitory actions on the growth of the fungi species and metal complexes appeared to be more proactive on the tested organisms than the free ligands.

  5. Metal-polybenzimidazole complexes as a nonviral gene carrier: effects of the DNA affinity on gene delivery.

    Science.gov (United States)

    Huang, Xueying; Dong, Xiongwei; Li, Xue; Meng, Xianggao; Zhang, Dan; Liu, Changlin

    2013-12-01

    The metal complex-based carriers are emerging likely as a new type of gene-delivery systems prone to systematic structural alteration and chemical tailoring. In our work, the DNA affinity of metal complexes with polybenzimidazoles was found to be one of the determinants that can regulate expression of the transgenes. Here, the correlations between the DNA affinity and transfection efficacy were explored by characterizing gene-delivering properties of a series of Co(2+)- and Ca(2+)-polybenzimidazole complexes. The binding equilibrium constants (Kobs) of the divalent metal complexes to DNA, which is considered as a measure of the DNA affinity of metal complexes, were evaluated by isothermal titration calorimetry (ITC) and UV-visible absorption titration. The properties of DNA condensates formed with the metal complexes including sizes, ζ potential and morphology were observed to be altered with Kobs values. The monodispersed spherical condensates were found only for the Ca(2+) complexes whose DNA affinity is weaker than that of the Co(2+) complexes. However, the cell internalization examination indicated that cell uptake of the DNA condensates is independent of homogeneity in their sizes and morphology. The comparison of transgene expression showed that that the Ca(2+) complex-mediated transfection has higher efficiency than the Co(2+) complexes under the conditions tested, and the transfection efficacy cannot be correlated with the cell uptake of DNA condensates. Moreover, the Ca(2+) complexes and their DNA condensates had lower cytotoxicity than the Co(2+) complexes. Thus, the DNA affinity should be one of the factors to be capable of regulating the gene-delivering property of metal complexes. PMID:24099694

  6. The Effect of the Serum Amino Acid Levels Thiosemicarbazone Derivatives and its Metal Complexes on Rats

    OpenAIRE

    Karatepe, Mustafa; Kaman, Dilara

    2013-01-01

    Advers biological activities of Thiosemicarbazone (TSC) and Schiff base (SB) derivatives have been widely studied in rats and in other animal species using different doses, times and routes of administration. To date, no attempt has been made to study alterations occurring in the amino acid profile in the effects of the thiosemicarbazone derivative and its metal complexes on the rats. At this study, the rats were injected subcutaneously with a new thiosemicarbazone and its LH-Zn and LH-Cu com...

  7. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  8. Thermodynamic data-base for metal fluorides

    International Nuclear Information System (INIS)

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project

  9. Thermodynamic data-base for metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.

  10. Electron spin resonance of radicals and metal complexes

    International Nuclear Information System (INIS)

    The materials are a collection of extended synopsis of papers presented at the conference sessions. The broad area of magnetic techniques applications has been described as well as their spectra interpretation methods. The ESR, NMR, ENDOR and spin echo were applied for studying the radiation and UV induced radicals in chemical and biological systems. Also in the study of complexes of metallic ions (having the paramagnetic properties) and their interaction with the matrix, the magnetic techniques has been commonly used. They are also very convenient tool for the study of reaction kinetics and mechanism as well as interaction of paramagnetic species with themselves and crystal lattice or with the surface as for thee catalytic processes

  11. Approaching the Hartree-Fock limit for organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, III, Henry F. [Univ. of Texas, Austin, TX (United States). Dept. of Chemistry. Inst. for Theoretical Chemistry; Univ. of California, Berkeley, CA (United States). Dept. of Chemistry. Lawrence Berkeley Lab.

    1981-04-01

    In theoretical studies of the electronic structure of organometallic complexes, the choice of basis set is critical, much more so than for analogous studies of molecules containing only H, C, N, and O. In this paper, this problem is discussed in the light of structural predictions for the transition metal hydrides MH, MH2, and MH4, for the fluorides MF2 and MF3, and for Ni(CO)4, Ni(C2H4)3, (CO)3NiCH2, and Ni(C4H4)2.

  12. Friction and solid-solid adhesion on complex metallic alloys

    International Nuclear Information System (INIS)

    The discovery in 1987 of stable quasicrystals in the Al–Cu–Fe system was soon exploited to patent specific coatings that showed reduced friction in ambient air against hard antagonists. Henceforth, it was possible to develop a number of applications, potential or commercially exploited to date, that will be alluded to in this topical review. A deeper understanding of the characteristics of complex metallic alloys (CMAs) may explain why material made of metals like Al, Cu and Fe offers reduced friction; low solid–solid adhesion came later. It is linked to the surface energy being significantly lower on those materials, in which translational symmetry has become a weak property, that is determined by the depth of the pseudo-gap at the Fermi energy. As a result, friction is anisotropic in CMAs that builds up according to the translation symmetry along one direction, but is aperiodic along the other two directions. A review is given in this article of the most salient data found along these lines during the past two decades or so. (focus issue)

  13. Alkali-crown ether complexes at metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Thontasen, Nicha; Deng, Zhitao; Rauschenbach, Stephan [Max Planck Institute for Solid State Research, Stuttgart (Germany); Levita, Giacomo [University of Trieste, Trieste (Italy); Malinowski, Nikola [Max Planck Institute for Solid State Research, Stuttgart (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); EPFL, Lausanne (Switzerland)

    2010-07-01

    Crown ethers are polycyclic ethers which, in solution, selectively bind cations depending on the size of the ring cavity. The study of a single host-guest complex is highly desirable in order to reveal the characteristics of these specific interactions at the atomic scale. Such detailed investigation is possible at the surface where high resolution imaging tools like scanning tunneling microscopy (STM) can be applied. Here, electrospray ion beam deposition (ES-IBD) is employed for the deposition of Dibenzo-24-crown-8 (DB24C8)-H{sup +}, -Na{sup +} and -Cs{sup +} complexes on a solid surface in ultrahigh vacuum (UHV). Where other deposition techniques have not been successful, this deposition technique combines the advantages of solution based preparation of the complex ions with a highly clean and controlled deposition in UHV. Single molecular structures and the cation-binding of DB24C8 at the surface are studied in situ by STM and MALDI-MS (matrix assisted laser desorption ionization mass spectrometry). The internal structure of the complex, i.e. ring and cavity, is observable only when alkali cations are incorporated. The BD24C8-H{sup +} complex in contrast appears as a compact feature. This result is in good agreement with theoretical models based on density functional theory calculations.

  14. Complex Wavelet Based Modulation Analysis

    DEFF Research Database (Denmark)

    Luneau, Jean-Marc; Lebrun, Jérôme; Jensen, Søren Holdt

    2008-01-01

     because only the magnitudes are taken into account and the phase data is often neglected. We remedy this problem with the use of a complex wavelet transform as a more appropriate envelope and phase processing tool. Complex wavelets carry both magnitude and phase explicitly with great sparsity and preserve well...... polynomial trends. Moreover an analytic Hilbert-like transform is possible with complex wavelets implemented as an orthogonal filter bank. By working in an alternative transform domain coined as “Modulation Subbands”, this transform shows very promising denoising capabilities and suggests new approaches for joint...

  15. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    Science.gov (United States)

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  16. Metal-metal interactions in linear tri-, penta-, hepta-, and nona-nuclear ruthenium string complexes.

    Science.gov (United States)

    Niskanen, Mika; Hirva, Pipsa; Haukka, Matti

    2012-05-01

    Density functional theory (DFT) methodology was used to examine the structural properties of linear metal string complexes: [Ru(3)(dpa)(4)X(2)] (X = Cl(-), CN(-), NCS(-), dpa = dipyridylamine(-)), [Ru(5)(tpda)(4)Cl(2)], and hypothetical, not yet synthesized complexes [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] (tpda = tri-α-pyridyldiamine(2-), tpta = tetra-α-pyridyltriamine(3-), ppta = penta-α-pyridyltetraamine(4-)). Our specific focus was on the two longest structures and on comparison of the string complexes and unsupported ruthenium backboned chain complexes, which have weaker ruthenium-ruthenium interactions. The electronic structures were studied with the aid of visualized frontier molecular orbitals, and Bader's quantum theory of atoms in molecules (QTAIM) was used to study the interactions between ruthenium atoms. The electron density was found to be highest and distributed most evenly between the ruthenium atoms in the hypothetical [Ru(7)(tpta)(4)Cl(2)] and [Ru(9)(ppta)(4)Cl(2)] string complexes.

  17. Oxalate metal complexes in aerosol particles: implications for the hygroscopicity of oxalate-containing particles

    Directory of Open Access Journals (Sweden)

    T. Furukawa

    2011-05-01

    Full Text Available Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca and zinc (Zn in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10–60% and 20–100% of the total Ca and Zn in the finer particles (<2.1 μm were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the

  18. Durer-pentagon-based complex network

    Directory of Open Access Journals (Sweden)

    Rui Hou

    2016-04-01

    Full Text Available A novel Durer-pentagon-based complex network was constructed by adding a centre node. The properties of the complex network including the average degree, clustering coefficient, average path length, and fractal dimension were determined. The proposed complex network is small-world and fractal.

  19. Binding Isotherms and Cooperative Effects for Metal-DNA Complexes

    CERN Document Server

    Gelagutashvili, Eteri

    2008-01-01

    The stoichiometric binding constants of Nickel(II), Cobalt(II), Manganese(II), Silver(I), Zinc(II) ions with DNA, from Spirulina platensis were determined from their binding isotherms by equilibrium dialysis and atomic absorption spectroscopy. It was shown, that the nature of these ions interaction with DNA, from S .platensis is different. For Cobalt(II), Zinc(II) ions were observed cooperative effects and existence of two different types of the binding sites. Nickel(II)_, Silver(I) -DNA complexes shows independent and identical binding sites and Manganese(II)_ negative cooperative interaction. The logarithm of binding constants for Cobalt (II)_, Nickel (II)_, Manganese (II)_, Zinc (II)_, Silver (I) - DNA, from S. platensis in 3 mM Na(I) are 5.11; 5.18; 4.77; 5.05; 5.42; respectively. The linear correlation of logarithm of binding constants (for complexes of metal-DNA from S. platensis) and the covalent index of Pauling are observed.

  20. Atomic Resolution Imaging of Nanoscale Structural Ordering in a Complex Metal Oxide Catalyst

    KAUST Repository

    Zhu, Yihan

    2012-08-28

    The determination of the atomic structure of a functional material is crucial to understanding its "structure-to-property" relationship (e.g., the active sites in a catalyst), which is however challenging if the structure possesses complex inhomogeneities. Here, we report an atomic structure study of an important MoVTeO complex metal oxide catalyst that is potentially useful for the industrially relevant propane-based BP/SOHIO process. We combined aberration-corrected scanning transmission electron microscopy with synchrotron powder X-ray crystallography to explore the structure at both nanoscopic and macroscopic scales. At the nanoscopic scale, this material exhibits structural and compositional order within nanosized "domains", while the domains show disordered distribution at the macroscopic scale. We proposed that the intradomain compositional ordering and the interdomain electric dipolar interaction synergistically induce the displacement of Te atoms in the Mo-V-O channels, which determines the geometry of the multifunctional metal oxo-active sites.

  1. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    Science.gov (United States)

    He, Jiang-Hong; Xiao, Dong-Rong; Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li; Luo, Qun-Li; Wang, En-Bo

    2013-02-01

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]rad H2O (1), [M(norfH)(bpdc)]rad H2O (M=Cd (2) and Mn (3)), [Mn2(cfH)(odpa)(H2O)3]rad 0.5H2O (4), [Co2(norfH)(bpta)(μ2-H2O)(H2O)2]rad H2O (5) and [Co3(saraH)2(Hbpta)2(H2O)4]rad 9H2O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4'-biphenyldicarboxylate, odpa=4,4'-oxydiphthalate, bpta=3,3',4,4'-biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {M(COO)}nn+ chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed.

  2. Base Metal Co-Fired Multilayer Piezoelectrics

    Directory of Open Access Journals (Sweden)

    Lisheng Gao

    2016-03-01

    Full Text Available Piezoelectrics have been widely used in different kinds of applications, from the automobile industry to consumer electronics. The novel multilayer piezoelectrics, which are inspired by multilayer ceramic capacitors, not only minimize the size of the functional parts, but also maximize energy efficiency. Development of multilayer piezoelectric devices is at a significant crossroads on the way to achieving low costs, high efficiency, and excellent reliability. Concerning the costs of manufacturing multilayer piezoelectrics, the trend is to replace the costly noble metal internal electrodes with base metal materials. This paper discusses the materials development of metal co-firing and the progress of integrating current base metal chemistries. There are some significant considerations in metal co-firing multilayer piezoelectrics: retaining stoichiometry with volatile Pb and alkaline elements in ceramics, the selection of appropriate sintering agents to lower the sintering temperature with minimum impact on piezoelectric performance, and designing effective binder formulation for low pO2 burnout to prevent oxidation of Ni and Cu base metal.

  3. Metal-metal interaction in Fischer carbene complexes: a study of ferrocenyl and biferrocenyl tungsten alkylidene complexes.

    Science.gov (United States)

    van der Westhuizen, Belinda; Speck, J Matthäus; Korb, Marcus; Friedrich, Joachim; Bezuidenhout, Daniela I; Lang, Heinrich

    2013-12-16

    A series of ferrocenyl (Fc = ferrocenyl; fc = ferrocen-1,1'-diyl) and biferrocenyl (Bfc = 1',1″-biferrocenyl; bfc = 1',1″-biferrocen-1,1‴-diyl) mono- and biscarbene tungsten(0) complexes of the type [(CO)5W═C(OMe)R] (1, R = Fc; 3, R = Bfc) and [(CO)5W═C(OMe)-R'-(OMe)C═W(CO)5] (2, R' = fc; 4, R' = bfc) were synthesized according to the classical synthetic methodology by reacting W(CO)6 with LiR (R = Fc, fc, bfc), followed by a subsequent alkylation using methyl trifluoromethanesulfonate. Electrochemical investigations were carried out on these complexes to get a closer insight into the electronic properties of 1-4. The ferrocenyl and biferrocenyl moieties in 1-4 show reversible one-electron redox events. It was further found that the Fischer carbene unit is reducible in an electrochemical one-electron transfer process. For the tungsten carbonyl moieties, irreversible oxidation processes were found. In addition, charge transfer studies were performed on 1-4 using in situ UV-vis-NIR and infrared spectroelectrochemical techniques. During the UV-vis-NIR investigations, typical low energy transitions for the mixed-valent biferrocenyl unit were found. A further observed high energy NIR absorption is attributed to a metal-metal charge transfer transition between the tungsten carbonyl fragment and the ferrocenyl/biferrocenyl group in the corresponding oxidized states, which can be described as class II systems according to Robin and Day. This assignment was verified by infrared spectroelectrochemical studies. The electrochemical investigations are supported by density functional theory calculations. The structural properties of 1-4 in the solid state were investigated by single-crystal X-ray diffraction studies showing no substituent effects on bond lengths and angles. The biferrocenyl derivatives exhibit syn-conformation of the ferrocenyl and carbene building blocks.

  4. Rare Earth Metal Complexes of Bidentate Nitroxide Ligands: Synthesis and Electrochemistry.

    Science.gov (United States)

    Kim, Jee Eon; Bogart, Justin A; Carroll, Patrick J; Schelter, Eric J

    2016-01-19

    We report rare earth metal complexes with tri- and bidentate ligands including strongly electron-donating nitroxide groups. The tridentate ligand 1,3,5-tris(2'-tert-butylhydroxylaminoaryl)benzene (H3arene-triNOx) was complexed to cerium(IV) in a 2:1 ligand-to-metal stoichiometry as Ce(Harene-triNOx)2 (1). Cyclic voltammetry of this compound showed stabilization of the tetravalent cerium cation with a Ce(IV/III) couple at E1/2 = -1.82 V versus Fc/Fc(+). On the basis of the uninvolvement of the third nitroxide group in the coordination chemistry with the cerium(IV) cation, the ligand system was redesigned toward a simpler bidentate mode, and a series of rare earth metal-arene-diNOx complexes were prepared with La(III), Ce(IV), Pr(III), Tb(III), and Y(III), [RE(arene-diNOx)2](-) ([2-RE](-), RE = La, Pr, Y, Tb) and Ce(IV)(arene-diNOx)2, where H2arene-diNOx = 1,3-bis(2'-tert-butylhydroxylaminoaryl)benzene. The core structures were isostructural throughout the series, with three nitroxide groups in η(2) binding modes and one κ(1) nitroxide group coordinated to the metal center in the solid state. In all cases except Ce(IV)(arene-diNOx)2, electrochemical analysis described two subsequent, ligand-based, quasi-reversible redox waves, indicating that a stable [N-O•] group was generated on the electrochemical time scale. Chemical oxidation of the terbium complex was performed, and isolation of the resulting complex, Tb(arene-diNOx)2·CH2Cl2 (3·CH2Cl2), confirmed the assignment of the cyclic voltammograms. Magnetic data showed no evidence of mixing between the Tb(III) states and the states of the open-shell ligand.

  5. Applications of "Hot" and "Cold" Bis(thiosemicarbazonato) Metal Complexes in Multimodal Imaging.

    Science.gov (United States)

    Cortezon-Tamarit, Fernando; Sarpaki, Sophia; Calatayud, David G; Mirabello, Vincenzo; Pascu, Sofia I

    2016-06-01

    The applications of coordination chemistry to molecular imaging has become a matter of intense research over the past 10 years. In particular, the applications of bis(thiosemicarbazonato) metal complexes in molecular imaging have mainly been focused on compounds with aliphatic backbones due to the in vivo imaging success of hypoxic tumors with PET (positron emission tomography) using (64) CuATSM [copper (diacetyl-bis(N4-methylthiosemicarbazone))]. This compound entered clinical trials in the US and the UK during the first decade of the 21(st) century for imaging hypoxia in head and neck tumors. The replacement of the ligand backbone to aromatic groups, coupled with the exocyclic N's functionalization during the synthesis of bis(thiosemicarbazones) opens the possibility to use the corresponding metal complexes as multimodal imaging agents of use, both in vitro for optical detection, and in vivo when radiolabeled with several different metallic species. The greater kinetic stability of acenaphthenequinone bis(thiosemicarbazonato) metal complexes, with respect to that of the corresponding aliphatic ATSM complexes, allows the stabilization of a number of imaging probes, with special interest in "cold" and "hot" Cu(II) and Ga(III) derivatives for PET applications and (111) In(III) derivatives for SPECT (single-photon emission computed tomography) applications, whilst Zn(II) derivatives display optical imaging properties in cells, with enhanced fluorescence emission and lifetime with respect to the free ligands. Preliminary studies have shown that gallium-based acenaphthenequinone bis(thiosemicarbazonato) complexes are also hypoxia selective in vitro, thus increasing the interest in them as new generation imaging agents for in vitro and in vivo applications. PMID:27149900

  6. Synthesis, spectroscopic characterization and biological activities of N4O2 Schiff base ligand and its metal complexes of Co(II), Ni(II), Cu(II) and Zn(II)

    Science.gov (United States)

    Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul

    The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.

  7. Metals complexation with humic acids in surface water of different natural–climatic zones

    Directory of Open Access Journals (Sweden)

    Dinu M. I.

    2013-04-01

    Full Text Available Humic acids extracted from different soils. The stability constants of metal humates and acid dissociation constant humic acids were calculated. Forms of metals in natural waters was determined with use account their chemical composition and content and properties of organic matter. We assessed metals speciation in water objects with account for competitive reactions resulting in formation of hydroxide, hydrocarbonate, sulfate, and chloride metal complexes and obtained a competitive series of metal activity in natural waters of the zones considered.

  8. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Guodong Du

    2004-12-19

    products, including mono-, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of {alpha}-ketols to {alpha}-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.

  9. Group 4 Metalloporphyrin diolato Complexes and Catalytic Application of Metalloporphyrins and Related Transition Metal Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Du, Guodong [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    -, bis-alkoxo, and chelating diolato complexes, depending on the identity of diols and the stoichiometry employed. It was also found that tin porphyrin complexes promoted the oxidative cleavage of vicinal diols and the oxidation of α-ketols to α-diketones with dioxygen. In extending the chemistry of metalloporphyrins and analogous complexes, a series of chiral tetraaza macrocyclic ligands and metal complexes were designed and synthesized. Examination of iron(II) complexes showed that they were efficient catalysts for the cyclopropanation of styrene by diazo reagents. Good yields and high diastereoselectivity were obtained with modest enantioselectivity. A rationalization of the stereoselectivity was presented on the basis of structural factors in a carbene intermediate.

  10. Direct synthesis of metal complexes starting from zero-valent metals

    Energy Technology Data Exchange (ETDEWEB)

    Gojon-Zorrilla, Gabriel; Kharisov, Boris I. [Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon (Mexico); Garnovskii, Alexander D. [Institute of Physical and Organic Chemistry (Russian Federation)

    1996-06-01

    The recent (1980-1994) literature on metal-vapor synthesis of coordination and organometallic compounds is reviewed. An account is given of the high-and low-temperature reactions between free metal atoms and a large variety of substrates, mainly alkenes, alkynes, dienes, arenes, funtionalized arenes, alkyl halides {beta}-diketones and simple inorganic molecules. The main experimental methods are described, as well as the results obtained thereby. It is shown that in many instances these methods present significant advantages over conventional synthetic procedures, offering unique access to some metal complexes. [Spanish] Se reviso la literatura reciente (1980-1994) sobre la sintesis de compuestos de coordinacion y compuestos organometalicos a partir de vapores metalicos. Se examinan las reacciones de los atomos metalicos libres con una gran variedad de substratos, principalmente alquenos, alquinos, dienos, hidrocarburos aromaticos y sus derivados, haluros de alquilo y arilo, {beta}-dicetonas y moleculas inorganicas simples. Se presentan los principales metodos experimentales, asi como los resultados obtenidos; se concluye que la crisintesis presenta en muchos casos ventajas significativas sobre los procedimientos sinteticos tradicionales, constituyendo frecuentemente la unica opcion disponible.

  11. Synthesis, thermal and spectroscopic behaviors of metal-drug complexes: La(III), Ce(III), Sm(III) and Y(III) amoxicillin trihydrate antibiotic drug complexes

    Science.gov (United States)

    Refat, Moamen S.; Al-Maydama, Hussein M. A.; Al-Azab, Fathi M.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-07-01

    The metal complexes of Amoxicillin trihydrate with La(III), Ce(III), Sm(III) and Y(III) are synthesized with 1:1 (metal:Amox) molar ratio. The suggested formula structures of the complexes are based on the results of the elemental analyses, molar conductivity, (infrared, UV-visible and fluorescence) spectra, effective magnetic moment in Bohr magnetons, as well as the thermal analysis (TG), and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results obtained suggested that Amoxicillin reacted with metal ions as tridentate ligands, coordinating the metal ion through its amino, imino, and β-lactamic carbonyl. The kinetic thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves.

  12. Interplay between Theory and Experiment for Ammonia Synthesis Catalyzed by Transition Metal Complexes.

    Science.gov (United States)

    Tanaka, Hiromasa; Nishibayashi, Yoshiaki; Yoshizawa, Kazunari

    2016-05-17

    Nitrogen fixation is an essential chemical process both biologically and industrially. Since the discovery of the first transition-metal-dinitrogen complex in 1965, a great deal of effort has been devoted to the development of artificial nitrogen fixation systems that work under mild reaction conditions. However, the transformation of chemically inert dinitrogen using homogeneous catalysts is still challenging because of the difficulty in breaking the strong triple bond of dinitrogen, and a very limited number of transition metal complexes have exhibited the catalytic activity for the direct transformation of dinitrogen into ammonia with low turnover numbers. To develop more effective nitrogen fixation systems, it is necessary to retrieve as much information as possible from the limited successful examples. Computational chemistry will provide valuable insights in the understanding of the reaction mechanisms involving unstable intermediates that are hard to isolate or characterize. We have been applying it for clarifying detailed mechanisms of dinitrogen activation and functionalization by transition metal complexes as well as for designing new catalysts for more effective nitrogen fixation. This Account summarizes recent progress in the elucidation of catalytic mechanisms of nitrogen fixation by using mono- and dinuclear molybdenum complexes, as well as cubane-type metal-sulfido clusters from a theoretical point of view. First, we briefly introduce experimental and theoretical contributions to the elucidation of the reaction mechanism of nitrogen fixation catalyzed by a mononuclear Mo-triamidoamine complex. Special attention is paid to our recent studies on Mo-catalyzed nitrogen fixation using dinitrogen-bridged dimolybdenum complexes. A possible catalytic mechanism is proposed based on theoretical and experimental investigations. The catalytic mechanism involves the formation of a monuclear molybdenum-nitride (Mo≡N) intermediate, as well as the regeneration of

  13. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  14. 21 CFR 872.3710 - Base metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Base metal alloy. 872.3710 Section 872.3710 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3710 Base metal alloy. (a) Identification. A base metal alloy is a device composed primarily of base metals, such as nickel, chromium, or cobalt, that...

  15. High antioxidative potential and low toxic effects of selenosemicarbazone metal complexes

    Directory of Open Access Journals (Sweden)

    Dekanski Dragana

    2013-01-01

    Full Text Available Novel metal-based compounds with therapeutic potential became the subject of intense investigation in inorganic chemistry and biomedical science. Recently, strong dose-dependent cytotoxic activity against several human cancer cell lines of selenosemicarbazone metal complexes was demonstrated. The aim of the present study was to investigate in vitro antioxidative potential of Ni(II, Cd(II and Zn(II selenosemicarbazone complexes. All three investigated complexes exhibited high ABTS radical scavenging capacity, comparable with ascorbic acid. In the acute toxicity study, administration of the compounds was performed orally to the mice at the single doses and they were observed for clinical signs, body weight effects, and mortality for 14 days after which they were sacrificed for gross organ necropsy. Body weight did not vary after administration, and the autoptic analysis failed to show appreciable macroscopic alterations of internal organs. Generally, the compounds exhibited low toxic effects as required for further in vivo therapeutic studies. [Projekat Ministarstva nauke Republike Srbije, br. 451-03-2372-IP type 1/79: Antioxidants based on selenium complex compounds - research and development

  16. Alkali Metal Complexes: Mixed Ligand Complexes of Some Alkali Metal Salts of Some Organic Acids with Isonitroso-PMethylace to phenone

    Directory of Open Access Journals (Sweden)

    O.P. Gupta

    2016-02-01

    Full Text Available A number of mixed ligand complexes of alkali metal salts of o-nitrophenol,2,4-dinitrophenol, 2,4,6,- trinitrophenol, 1-nitroso-2- naphthol and 8- hydroxyquinoline with Insoniroso–p methylacetopheone have been synthesized in absolute ethanol & characterized by elemental analysis and I .B. spectral data. Their I.R spectral data indicate the presence of hydrogen bonding in them, which many be one of the dominant factors of their stability. Further appreciable shift in 1650 cm-1 band (possibly vC=O and 1600 cm-1 band (possibly vC=NSuggests their coordination behavior in these mixed ligand complexes The reactions that take place in natural systems are highly specific and selective. Alkali metal ions actively participate in most of the reaction occurring in the biological systems, which are dominated by mixed ligand complexes. Studies of such mixed ligand complexes of alkali metals can threw light in understanding the role and mechanism of selective absorption of alkali metals ions by plants Coordinating ability of alkali metal with isonitrosoacetophenone1-2 and transition metals with isonitrosoacetophenone3 and isonitroso-p-methylacetophenone4 have been reported earlier. In the present paper we report the mixed ligand complexes of alkali metal salts having the general formula ML.HL, ‘ where M=Li, Na & K and L=deprotonated o- nitrophenol, 2,4 dinitrophenol, 2, 4, 6- trinitrophenol, 1-nitroso-2-naphthol or 8- hydroxquinoline; HL’= p -MeHINAP (isonitroso-p-methylacetophenone.

  17. Effect of G-quadruplex polymorphism on the recognition of telomeric DNA by a metal complex.

    Directory of Open Access Journals (Sweden)

    Caterina Musetti

    Full Text Available The physiological role(s played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by the use of metal-complexes, their binding to DNA being modulated by ligand and metal ion nature, and by complex stoichiometry. In this work we characterized thermodynamically and stereochemically the interactions of a Ni(II bis-phenanthroline derivative with telomeric G-quadruplex sequences using calorimetric, chiroptical and NMR techniques. We employed three strictly related sequences based on the human telomeric repeat, namely Tel22, Tel26 and wtTel26, which assume distinct conformations in potassium containing solutions. We were able to monitor specific enthalpy/entropy changes according to the structural features of the target telomeric sequence and to dissect the binding process into distinct events. Interestingly, temperature effects turned out to be prominent both in terms of binding stoichiometry and ΔH/ΔS contributions, while the final G-quadruplex-metal complex architecture tended to merge for the examined sequences. These results underline the critical choice of experimental conditions and DNA sequence for practical use of thermodynamic data in the rational development of effective G-quadruplex binders.

  18. Effect of G-quadruplex polymorphism on the recognition of telomeric DNA by a metal complex.

    Science.gov (United States)

    Musetti, Caterina; Krapcho, A Paul; Palumbo, Manlio; Sissi, Claudia

    2013-01-01

    The physiological role(s) played by G-quadruplexes renders these 'non-canonical' DNA secondary structures interesting new targets for therapeutic intervention. In particular, the search for ligands for selective recognition and stabilization of G-quadruplex arrangements has led to a number of novel targeted agents. An interesting approach is represented by the use of metal-complexes, their binding to DNA being modulated by ligand and metal ion nature, and by complex stoichiometry. In this work we characterized thermodynamically and stereochemically the interactions of a Ni(II) bis-phenanthroline derivative with telomeric G-quadruplex sequences using calorimetric, chiroptical and NMR techniques. We employed three strictly related sequences based on the human telomeric repeat, namely Tel22, Tel26 and wtTel26, which assume distinct conformations in potassium containing solutions. We were able to monitor specific enthalpy/entropy changes according to the structural features of the target telomeric sequence and to dissect the binding process into distinct events. Interestingly, temperature effects turned out to be prominent both in terms of binding stoichiometry and ΔH/ΔS contributions, while the final G-quadruplex-metal complex architecture tended to merge for the examined sequences. These results underline the critical choice of experimental conditions and DNA sequence for practical use of thermodynamic data in the rational development of effective G-quadruplex binders. PMID:23516498

  19. Highly Fluorescent Group 13 Metal Complexes with Cyclic, Aromatic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Moore, Evan G.; Raymond, Kenneth N.

    2008-02-11

    The neutral complexes of two ligands based on the 1-oxo-2-hydroxy-isoquinoline (1,2-HOIQO) motif with group 13 metals (Al, Ga, In) show bright blue-violet luminescence in organic solvents. The corresponding transition can be attributed to ligand-centered singlet emission, characterized by a small Stokes shifts of only a few nm combined with lifetimes in the range between 1-3 ns. The fluorescence efficiency is high, with quantum yields of up to 37% in benzene solution. The crystal structure of one of the indium(III) complexes (trigonal space group R-3, a = b = 13.0384(15) {angstrom}, c = 32.870(8) {angstrom}, ? = {beta} = 90{sup o}, {gamma} = 120{sup o}, V = 4839.3(14) {angstrom}{sup 3}, Z = 6) shows a six-coordinate geometry around the indium center which is close to trigonal-prismatic, with a twist angle between the two trigonal faces of 20.7{sup o}. Time-dependent density functional theory (TD-DFT) calculations (Al and Ga: B3LYP/6-31G(d)); In: B3LYP/LANL2DZ of the fac and mer isomers with one of the two ligands indicate that there is no clear preference for either one of the isomeric forms of the metal complexes. In addition, the metal centers do not have a significant influence on the electronic structure, and as a consequence, on the predominant intraligand optical transitions.

  20. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects.

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed. PMID:27367475

  1. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  2. Complex band structures of transition metal dichalcogenide monolayers with spin–orbit coupling effects

    Science.gov (United States)

    Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd

    2016-09-01

    Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M  =  Mo, W; X  =  S, Se, Te) while including spin–orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.

  3. A macrocyclic approach to transition metal and uranyl Pacman complexes

    OpenAIRE

    Love, J. B.

    2009-01-01

    Multielectron redox chemistry involving small molecules such as O-2, H2O, N-2, CO2, and CH4 is intrinsic to the chemical challenges surrounding sustainable, low-carbon energy generation and exploitation. Compounds with more than one metal reaction site facilitate this chemistry by providing both unique binding environments and combined redox equivalents. However, controlling the aggregation of metal cations is problematic, as both the primary coordination spheres of the metals and the metal-m...

  4. Capillary electrophoresis application in metal speciation and complexation characterization

    Science.gov (United States)

    Capillary electrophoresis is amenable to the separation of metal ionic species and the characterization of metal-ligand interactions. This book chapter reviews and discusses three representative case studies in applications of CE technology in speciation and reactions of metal with organic molecules...

  5. Digermylene Oxide Stabilized Group 11 Metal Iodide Complexes.

    Science.gov (United States)

    Yadav, Dhirendra; Siwatch, Rahul Kumar; Sinhababu, Soumen; Karwasara, Surendar; Singh, Dharmendra; Rajaraman, Gopalan; Nagendran, Selvarajan

    2015-12-01

    Use of a substituted digermylene oxide as a ligand has been demonstrated through the isolation of a series of group 11 metal(I) iodide complexes. Accordingly, the reactions of digermylene oxide [{(i-Bu)2ATIGe}2O] (ATI = aminotroponiminate) (1) with CuI under different conditions afforded [({(i-Bu)2ATIGe}2O)2(Cu4I4)] (2) with a Cu4I4 octahedral core, [({(i-Bu)2ATIGe}2O)2(Cu3I3)] (3) with a Cu3I3 core, and [{(i-Bu)2ATIGe}2O(Cu2I2)(C5H5N)2] (4) with a butterfly-type Cu2I2 core. The reactions of compound 1 with AgI and AuI produced [({(i-Bu)2ATIGe}2O)2(Ag4I4)] (5) with a Ag4I4 octahedral core and [{(i-Bu)2ATIGe}2O(Au2I2)] (6) with a Au2I2 core, respectively. The presence of metallophilic interactions in these compounds is shown through the single-crystal X-ray diffraction and atom-in-molecule (AIM) studies. Preliminary photophysical studies on compound 6 are also carried out. PMID:26558406

  6. Spectral, NLO, Fluorescence, and Biological Activity of Knoevenagel Condensate of β-Diketone Ligands and Their Metal(II Complexes

    Directory of Open Access Journals (Sweden)

    S. Sumathi

    2011-01-01

    Full Text Available Transition metal complexes of various acetylacetone-based ligands of the type ML (where M=  Cu(II, Ni(II, Co(II; L=  3-(aryl-pentane-2,4-dione have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, H1NMR, mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are nonelectrolytic in nature. Spectroscopic and other analytical data of the complexes suggest square planar geometry for copper(II, cobalt(II, and nickel(II complexes of 3-(3-phenylallylidenepentane-2,4-dione and octahedral geometry for other metal(II complexes. The redox behaviors of the copper(II complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against bacteria and fungus. The metal(II complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG efficiency of the ligands was found to have considerable effect compared to that of urea and KDP.

  7. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2013-03-01

    A new series of Cr(III), Mn(II), Ni(II), Zn(II) and Hg(II) complexes of Schiff-bases derived from the condensation of 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analysis, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mononegative tridentate manner except in Cr(III) complex in which the ligand exhibits mononegative bidentate manner. The parameters total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.20, 3.27 and 3.26 eV for Cr, Mn and Ni complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against the bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results show that the metal complexes be more potent in activity antibacterial than the parent Shciff base ligand towards one or more bacterial species. Finally, the biochemical studies showed that, Mn complex have powerful and complete degradation effect on DNA.

  8. Adaptive Beamforming Based on Complex Quaternion Processes

    Directory of Open Access Journals (Sweden)

    Jian-wu Tao

    2014-01-01

    Full Text Available Motivated by the benefits of array signal processing in quaternion domain, we investigate the problem of adaptive beamforming based on complex quaternion processes in this paper. First, a complex quaternion least-mean squares (CQLMS algorithm is proposed and its performance is analyzed. The CQLMS algorithm is suitable for adaptive beamforming of vector-sensor array. The weight vector update of CQLMS algorithm is derived based on the complex gradient, leading to lower computational complexity. Because the complex quaternion can exhibit the orthogonal structure of an electromagnetic vector-sensor in a natural way, a complex quaternion model in time domain is provided for a 3-component vector-sensor array. And the normalized adaptive beamformer using CQLMS is presented. Finally, simulation results are given to validate the performance of the proposed adaptive beamformer.

  9. Synthesis, magnetic and spectral studies on polystyrene-anchored coordination complexes of bi-, tri-, tetra- and hexavalent metal ions with unsymmetrical dibasic tetradentate ONNO donor Schiff base derived from 3-formylsalicylic acid, ethylenediamine and 2-benzoylacetanilide

    Indian Academy of Sciences (India)

    Dinesh Kumar; Arun Syamal; Jaipal; Lalit Kumar Sharma

    2009-01-01

    Polystyrene-anchored Cu(II), Zn(II), Cd(II), Ni(II), Mn(II), MoO2(II), UO2(II), Fe(III) and Zr(IV), complexes of the unsymmetrical dibasic tetradentate ONNO donor Schiff base derived from the condensation of chloromethylated polystyrene, 3-formylsalicylic acid, ethylenediamine and 2-benzoylacetanilide (PS-LH2) has been synthesized. The polystyrene anchored complexes have the formulae: PS-LM (where M = Cu, Zn, Cd, Ni, MoO2, UO2), PS-LFeCl.DMF, PS-LMn.2DMF and PS-LZr(OH)2.DMF. The polystyrene-anchored coordination compounds have been characterized by elemental analysis, IR, reflectance, ESR and magnetic susceptibility measurements. The per cent reaction conversion of polystyrene anchored Schiff base to polystyrene supported coordination compounds lies between 28.98 and 85.9. The coordinated dimethylformamide is completely lost on heating the complexes. The shifts of the ν(C=N)(azomethine) and ν(C-O)(phenolic) stretches have been monitored in order to find out the donor sites of the ligands. The Cu(II) complex is paramagnetic with square planar structure; the Ni(II) complex is diamagnetic with square planar structure; the Zn(II) and Cd(II) complexes are diamagnetic and have tetrahedral structure; the Mn(II) and Fe(III) complexes are paramagnetic and have octahedral structure; the MoO2(II) and UO2(II) complexes are diamagnetic and have octahedral structure and the Zr(IV) complexes are diamagnetic and have pentagonal bipyramidal structure.

  10. Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. [129 references

    Energy Technology Data Exchange (ETDEWEB)

    Boggs, S. Jr.; Livermore, D.; Seitz, M.G.

    1985-07-01

    Dissolved humic substances (humic and fulvic acids) occur in surface waters and groundwaters in concentrations ranging from less than 1 mg(C)/L to more than 100 mg(C)/L. Humic substances are strong complexing agents for many trace metals in the environment and are also capable of forming stable soluble complexes or chelates with radionuclides. Concentrations of humic materials as low as 1 mg(C)/L can produce a detectable increase in the mobility of some actinide elements by forming soluble complexes that inhibit sorption of the radionuclides onto rock materials. The stability of trace metal- or radionuclide-organic complexes is commonly measured by an empirically determined conditional stability constant (K'), which is based on the ratio of complexed metal (radionuclide) in solution to the product concentration of uncomplexed metal and humic complexant. Larger values of stability constants indicate greater complex stability. The stability of radionuclide-organic complexes is affected both by concentration variables and envionmental factors. In general, complexing is favored by increased of radionuclide, increased pH, and decreased ionic strength. Actinide elements are generally most soluble in their higher oxidation states. Radionuclides can also form stable, insoluble complexes with humic materials that tend to reduce radionuclide mobility. These insoluble complexes may be radionuclide-humate colloids that subsequently precipitate from solution, or complexes of radionuclides and humic substances that sorb to clay minerals or other soil particulates strongly enough to immobilize the radionuclides. Colloid formation appears to be favored by increased radionuclide concentration and lowered pH; however, the conditions that favor formation of insoluble complexes that sorb to particulates are still poorly understood. 129 refs., 25 figs., 19 tabs.

  11. A metal-based inhibitor of NEDD8-activating enzyme.

    Directory of Open Access Journals (Sweden)

    Hai-Jing Zhong

    Full Text Available A cyclometallated rhodium(III complex [Rh(ppy(2(dppz](+ (1 (where ppy=2-phenylpyridine and dppz=dipyrido[3,2-a:2',3'-c]phenazine dipyridophenazine has been prepared and identified as an inhibitor of NEDD8-activating enzyme (NAE. The complex inhibited NAE activity in cell-free and cell-based assays, and suppressed the CRL-regulated substrate degradation and NF-κB activation in human cancer cells with potency comparable to known NAE inhibitor MLN4924. Molecular modeling analysis suggested that the overall binding mode of 1 within the binding pocket of the APPBP1/UBA3 heterodimer resembled that for MLN4924. Complex 1 is the first metal complex reported to suppress the NEDDylation pathway via inhibition of the NEDD8-activating enzyme.

  12. A biomimicing approach to the mixed ligand complexes of bivalent transition metal

    Directory of Open Access Journals (Sweden)

    Bipin Bihari Prasad

    2013-03-01

    Full Text Available Metal complexes of the type ML1L2[M=Cu(II, Ni(II, and Co(II, L1=,'-dipyridyl(dipy., L2=2-hydroxybenzalidine anthranilic acid (HBAA] have been synthesized by using ,'-dipyridyl(dipy., 2-hdroxybenzalidine anthranilic acid (HBAA and metal(II acetate. The resulting mixed ligand metal complexes have been characterized on the basis of elemental analysis, IR-spectra, electronic spectra, magnetic susceptibilities and molar conductance measurements. The antifungal and antibacterial activities of ligands and there metal complexes have been screened against Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Escherichia coli and Staphylococcus aureus.

  13. Mechanism of electrochemical charge transport in individual transition metal complexes.

    Science.gov (United States)

    Albrecht, Tim; Guckian, Adrian; Kuznetsov, Alexander M; Vos, Johannes G; Ulstrup, Jens

    2006-12-27

    We used electrochemical scanning tunneling microscopy (STM) and spectroscopy (STS) to elucidate the mechanism of electron transport through individual pyridyl-based Os complexes. Our tunneling data obtained by two-dimensional electrochemical STS and STM imaging lead us to the conclusion that electron transport occurs by thermally activated hopping. The conductance enhancement around the redox potential of the complex, which is reminiscent of switching and transistor characterics in electronics, is reflected both in the STM imaging contrast and directly in the tunneling current. The latter shows a biphasic distance dependence, in line with a two-step electron hopping process. Under conditions where the substrate/molecule electron transfer (ET) step is dominant in determining the overall tunneling current, we determined the conductance of an individual Os complex to be 9 nS (Vbias = 0.1 V). We use theoretical approaches to connect the single-molecule conductance with electrochemical kinetics data obtained from monolayer experiments. While the latter leave some controversy regarding the degree of electronic coupling, our results suggest that electron transport occurs in the adiabatic limit of strong electronic coupling. Remarkably, and in contrast to established ET theory, the redox-mediated tunneling current remains strongly distance dependent due to the electronic coupling, even in the adiabatic limit. We exploit this feature and apply it to electrochemical single-molecule conductance data. In this way, we attempt to paint a unified picture of electrochemical charge transport at the single-molecule and monolayer levels. PMID:17177467

  14. Infrared Spectroscopic Analysis of Linkage Isomerism in Metal-Thiocyanate Complexes

    Science.gov (United States)

    Baer, Carl; Pike, Jay

    2010-01-01

    We developed an experiment suitable for an advanced inorganic chemistry laboratory that utilizes a cooperative learning environment, which allows students to develop an empirical method of determining the bonding mode of a series of unknown metal-thiocyanate complexes. Students synthesize the metal-thiocyanate complexes and obtain the FT-IR…

  15. 40 CFR Appendix B to Part 414 - Complexed Metal-Bearing Waste Streams

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Complexed Metal-Bearing Waste Streams B Appendix B to Part 414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT... 414—Complexed Metal-Bearing Waste Streams Chromium Azo dye intermediates/Substituted diazonium...

  16. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The res

  17. Alkynyl-functionalized gold NHC complexes and their coinage metal clusters

    OpenAIRE

    Kiefe, Claude; Bestgen, Sebastian; Gamer, Michael T.; Lebedkin, Sergei; Kappes, Manfred M.; Roesky, Peter W.

    2015-01-01

    Phenylpropynyl-functionalized imidazolium salts, as well as their gold complexes, were prepared in excellent yields affording suitable starting materials for metal cluster synthesis. The reactions of these gold complexes with coinage metal phenylacetylides [M(CCPh)]x (M = Cu, Ag) resulted in the formation of novel heterometallic hexanuclear clusters which exhibit mixed metallophillic interactions and intense white photoluminescence at low temperature.

  18. Metal complexes of pyridine-fused macrocyclic polyamines targeting the chemokine receptor CXCR4.

    Science.gov (United States)

    Hamal, Sunil; D'huys, Thomas; Rowley, William F; Vermeire, Kurt; Aquaro, Stefano; Frost, Brian J; Schols, Dominique; Bell, Thomas W

    2015-11-14

    The chemokine receptor CXCR4 acts as a key cell surface receptor in HIV infections, multiple forms of cancer, and various other pathologies, such as rheumatoid arthritis and asthma. Macrocyclic polyamines and their metal complexes are known to exert anti-HIV activity, many acting as HIV entry inhibitors by specifically binding to CXCR4. Three series of pyridopentaazacylopentadecanes, in which the pyridine ring is fused to zero, one, or two saturated six-membered rings, were synthesized by manganese(ii)-templated Schiff-base cyclization of triethylenetetramine with various dicarbonyl compounds. By evaluating these macrocyclic polyamines and their complexes with Mn(2+), Cu(2+), Fe(3+), and Zn(2+), we have discovered novel CXCR4-binding compounds. The MnCl2 complex of a new pentaazacyclopentadecane with one fused carbocyclic ring (11) was found to have the greatest potency as an antagonist of the chemokine receptor CXCR4 (IC50: 0.014 μM), as evidenced by inhibiting binding of CXCL12 to PBMCs (peripheral blood mononuclear cells). Consequently, this compound inhibits replication of the CXCR4-using (X4) HIV-1 strain NL4-3 in the TZM-bl cell line with an IC50 value of 0.52 μM and low cytotoxicity (CC50: >100 μM). In addition, 18 other compounds were evaluated for their interaction with CXCR4 via their ability to interfere with ligand chemokine binding and HIV entry and infection. Of these, the metal complexes of the two more hydrophobic series with one or two fused carbocyclic rings exhibited the greatest potency. The Zn(2+) complex 21 was among the most potent, showing that redox activity of the metal center is not associated with CXCR4 antagonist activity. PMID:26338723

  19. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  20. A study of the formation constants of ternary and quaternary complexes of some bivalent transition metals

    Directory of Open Access Journals (Sweden)

    MADHURJYA NEOG

    2010-01-01

    Full Text Available The formation of hetero-ligand 1:1:1, M(II-Opda-Sal/Gly ternary and 1:1:1:1, M(II-Opda-Sal-Gly quaternary complexes, where M(II = Ni, Cu, Zn and Cd; Opda = o‑phenylenediamine, Sal = salicylic acid, Gly = glycine, was studied pH-metrically in aqueous medium. The formation constants for the resulting ternary and quaternary complexes were evaluated at a constant ionic strength, μ = 0.20 mol dm-3 and temperature, 30±0.1 °C. The order of the formation constants in terms of the metal ion for both type of complexes was found to be Cu(II > Ni(II > Zn(II > Cd(II. This order was explained based on the increasing number of fused rings, the coordination number of the metal ions, the Irving – William order and the stability of various species. The expected species formed in solution were pruned with the Fortran IV program SPEPLOT and the stability of the ternary and quaternary complexes is explained.

  1. On the study of the Metal-complex Dye Polyurethane Ionomer

    Institute of Scientific and Technical Information of China (English)

    WANG; ChengLi

    2001-01-01

    The reaction of toluene diisocyanate with polyester, dimethylol propionic acid, metal-complex dye and other additives to form the structure of metal-complex dye polyurethane ionomer molecule has been proven by FT-IR spectra. In aqueous solution, the surface tension of metal-complex dye polyurethane ionomer molecule is seen to slightly increase with increasing concentrtion of metal-complex dye and neopentyl glycol, respectively. This is because the adsorption of hydrophobics of ionomer molecules at the surface of aqueous solution becomes even more order. Under the same experimental condition, the surface tension of metal-complex dye polyurethane ionomer molecule in aqueous solution appears to slightly decrease with increasing NCO/OH ratio, as a result of increased hydrophobics of ionomer molecule adsorbed at the surface of aqueous solution.  ……

  2. On the study of the Metal-complex Dye Polyurethane Ionomer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The reaction of toluene diisocyanate with polyester, dimethylol propionic acid, metal-complex dye and other additives to form the structure of metal-complex dye polyurethane ionomer molecule has been proven by FT-IR spectra. In aqueous solution, the surface tension of metal-complex dye polyurethane ionomer molecule is seen to slightly increase with increasing concentrtion of metal-complex dye and neopentyl glycol, respectively. This is because the adsorption of hydrophobics of ionomer molecules at the surface of aqueous solution becomes even more order. Under the same experimental condition, the surface tension of metal-complex dye polyurethane ionomer molecule in aqueous solution appears to slightly decrease with increasing NCO/OH ratio, as a result of increased hydrophobics of ionomer molecule adsorbed at the surface of aqueous solution.

  3. Transition Metal d-Orbital Splitting Diagrams: An Updated Educational Resource for Square Planar Transition Metal Complexes

    Science.gov (United States)

    Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias

    2016-01-01

    The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…

  4. Compartmentation and complexation of metals in hyperaccumulator plants

    OpenAIRE

    Leitenmaier, Barbara; Küpper, Hendrik

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their “strange” behavior in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defense against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of ...

  5. Compartmentation and complexation of metals in hyperaccumulator plants

    OpenAIRE

    Barbara eLeitenmaier; Hendrik eKüpper

    2013-01-01

    Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of c...

  6. Metals complexation with humic acids in surface water of different natural–climatic zones

    OpenAIRE

    Dinu M. I.

    2013-01-01

    Humic acids extracted from different soils. The stability constants of metal humates and acid dissociation constant humic acids were calculated. Forms of metals in natural waters was determined with use account their chemical composition and content and properties of organic matter. We assessed metals speciation in water objects with account for competitive reactions resulting in formation of hydroxide, hydrocarbonate, sulfate, and chloride metal complexes and obtained a competitive series of...

  7. Dithiocarbamate Complexes as Single Source Precursors to Metal Sulfide Nanoparticles for Applications in Catalysis

    OpenAIRE

    Roffey, A. R.

    2014-01-01

    Herein we report the solvothermal decomposition of a range of metal dithiocarbamate complexes for the synthesis of metal sulfide nanoparticles. Metal sulfides exist in a variety of structural phases, some of which are known to be catalytically active towards various processes. The aim of this work was to synthesise a variety of different metal sulfide phases for future catalysis testing, particularly the iron sulfide greigite (Fe3S4, a thiospinel containing Fe2+ and Fe3+) which is to be teste...

  8. Chemoelectronic circuits based on metal nanoparticles.

    Science.gov (United States)

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions. PMID:26974958

  9. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  10. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    Science.gov (United States)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  11. (BB)-Carboryne Complex of Ruthenium: Synthesis by Double B-H Activation at a Single Metal Center.

    Science.gov (United States)

    Eleazer, Bennett J; Smith, Mark D; Popov, Alexey A; Peryshkov, Dmitry V

    2016-08-24

    The first example of a transition metal (BB)-carboryne complex containing two boron atoms of the icosahedral cage connected to a single exohedral metal center (POBBOP)Ru(CO)2 (POBBOP = 1,7-OP(i-Pr)2-2,6-dehydro-m-carborane) was synthesized by double B-H activation within the strained m-carboranyl pincer framework. Theoretical calculations revealed that the unique three-membered (BB)>Ru metalacycle is formed by two bent B-Ru σ-bonds with the concomitant increase of the bond order between the two metalated boron atoms. The reactivity of the highly strained electron-rich (BB)-carboryne fragment with small molecules was probed by reactions with electrophiles. The carboryne-carboranyl transformations reported herein represent a new mode of cooperative metal-ligand reactivity of boron-based complexes. PMID:27526855

  12. Achieving C-N bond cleavage in dinuclear metal cyanide complexes.

    Science.gov (United States)

    Cavigliasso, Germán; Christian, Gemma J; Stranger, Robert; Yates, Brian F

    2011-07-28

    Cleavage of cyanide is more difficult to achieve compared to dinitrogen and carbon monoxide, even though these species contain triple bonds of greater strength. In this work, we have used computational methods to investigate thermodynamic and mechanistic aspects of the C-N bond cleavage process in [L(3)M-CN-M'L(3)] systems consisting of a central cyanide unit bound in an end-on fashion to two terminal metal tris-amide complexes. In these systems, [M] is a d(3) transition metal from the 3d, 4d, 5d, or 6d series and groups 4 through 7, and [L] is either [NH(2)], [NMe(2)], [N(i)PrPh], or [N(t)BuAr]. A comparison of various models for the experimentally relevant [L(3)Mo-CN-MoL(3)] system has shown that while the C-N cleavage step appears to be an energetically favourable process, a large barrier exists for the dissociation of [L(3)Mo-CN-MoL(3)]((-)) into [L(3)Mo-C]((-)) and [N-MoL(3)], which possibly explains why C-N bond scission is not observed experimentally. The general structural, bonding, and thermochemical trends across the transition metal series investigated, indicate that the systems exhibiting the greatest degree of C-N activation, and most favourable energetics for C-N cleavage, also possess the most favourable electronic properties, namely, a close match between the relevant π-like orbitals on the metal-based and cyanide fragments. The negative charge on the cyanide fragment leads to significant destabilization of the π* level which needs to be populated through back-donation from the metal centres in order for C-N bond scission to be achieved. Therefore, metal-based systems with high-lying d(π) orbitals are best suited to C-N cleavage. In terms of chemical periodicity, these systems can be identified as the heavier members within a group and the earlier members within a period. As a consequence, Mo complexes are not well suited to cleaving the C-N bond, whereas the Ta analogues are the most favourable systems and should, in principle, be capable of

  13. Synthesis and structure of new carbohydrate metal-organic frameworks and inclusion complexes

    Science.gov (United States)

    Sha, Jing-Quan; Wu, Lian-He; Li, Shu-Xian; Yang, Xiao-Ning; Zhang, Yu; Zhang, Qian-Nan; Zhu, Pei-Pei

    2015-12-01

    Two new metal-organic framework compounds based on natural β-cyclodextrin molecules (β-CD) and alkali metals (Na+/K+) were synthesized and characterized by elemental analyses, IR, XPRD and 1HNMR. Single-crystal X-ray diffraction analysis reveals that compounds 1 and 2 possess the bowl-like pore and the "8" type double channels configuration. Due to the [blow + channel] double configuration, 5-Fluorouracil (5-FU) and Quercetin inclusion complexes of compound 1 are studied, and the results show that the two kinds of drug with different structure and size can be included into the compound at the same time, which is expected to become a new type of multi-functional green crystalline solid material.

  14. Synthesis, characterization, structural analysis of metal(II) complexes of N'-[(E)-3-Bromo-5-Chloro-2-hydroxybenzidene]-4-hydroxybenzohydrazide-Multisubstituted Schiff base as a F(-) and Cu(2+) ions selective chemosensor.

    Science.gov (United States)

    Sundar, A; Prabhu, M; Indra Gandhi, N; Marappan, M; Rajagopal, G

    2014-08-14

    New colorimetric chemosensor, N'-[(E)-3-Bromo-5-Chloro-2-hydroxybenzidene]-4-hydroxybenzohydrazide, containing OH and NH groups as binding sites have been synthesized and characterized by spectral UV, IR, NMR and ESR. The molecular structure of ligand is determined by X-ray crystallography and it has the monoclinic space group P21/c with cell parameters a=15.1058(6), b=14.3433(6), c=17.5800(8)Å and Z=8. The electronic spectral measurements show that Co(2+), Ni(2+) and Zn(2+) complexes have tetrahedral geometry, while Cu(2+) complex has square planar geometry. Magnetic measurements show that Cu(2+), Co(2+) and Ni(2+) complexes have paramagnetic behavior and Zn(2+) complex has diamagnetic behavior. Anion binding studies carried out using (1)H NMR and UV-visible spectrophotometric titrations revealed that these receptors exhibit selective recognition towards F(-) over other halide anions. The selectivity for F(-) among the halides is attributed mainly to the hydrogen-bond interaction of the receptor with F(-). Receptor (5 × 10(-5)M) shows color change from colorless to yellow in the presence of tetrabutylammonium fluoride (TBAF, 1.5 × 10(-3)M). Moreover, F(-)-induced color changes remain the same even in the presence of large excess of Cl(-), Br(-) and I(-). The binding constant is found to be higher towards F(-) ion and this may be due to presence of OH group, which offers extra binding site. Chromogenic receptor undergoes distinct color changes from colorless to green on gradual addition of Cu(2+) can be used as colorimetric probes for spectrophotometric and visual analysis of Cu(2+) in the presence of other transition metal ions such as Co(2+), Ni(2+) and Zn(2+). PMID:24759756

  15. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    Science.gov (United States)

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  16. Supramolecular fullerene-porphyrin chemistry. Fullerene complexation by metalated "jaws porphyrin" hosts.

    Science.gov (United States)

    Sun, Dayong; Tham, Fook S; Reed, Christopher A; Chaker, Leila; Boyd, Peter D W

    2002-06-12

    Porphyrins and fullerenes are spontaneously attracted to each other. This new supramolecular recognition element is explored in discrete, soluble, coordinatively linked porphyrin and metalloporphyrin dimers. Jawlike clefts in these bis-porphyrins are effective hosts for fullerene guests. X-ray structures of the Cu complex with C60 and free-base complexes with C70 and a pyrrolidine-derivatized C60 have been obtained. The electron-rich 6:6 ring-juncture bonds of C60 show unusually close approach to the porphyrin or metalloporphyrin plane. Binding constants in toluene solution increase in the order Fe(II) metalated porphyrins. This is ascribed to electrostatic forces, enhancing the largely van der Waals forces of the pi-pi interaction. The ordering with metals is ascribed to a subtle interplay of solvation and weak interaction forces. Conflicting opinions on the relative importance of van der Waals forces, charge transfer, electrostatic attraction, and coordinate bonding are addressed. The supramolecular design principles arising from these studies have potential applications in the preparation of photophysical devices, molecular magnets, molecular conductors, and porous metal-organic frameworks. PMID:12047181

  17. Production of Decorative Cast Metal Matrix Composites with a Complex Relief and Nonmetal Reinforcement Phase

    Directory of Open Access Journals (Sweden)

    Daniela Spasova

    2016-02-01

    Full Text Available The present paper is relevant to the research of possibilities for the production of decorative complex relief metal matrix composites (MMCs of the “invitro” type, with unformed and unchanging reinforcement (strengthening phase in the process of creating a composite. The research on the methods of metal matrix composites development in this paper has been brought to the application of different space vacuum schemes for composite synthesisof vacuuming the space for composites synthesis by using the notion of the “capillary forming”. In this method the metal matrix (copper alloy melt was infiltrated in the space between the pellets of reinforcement phase (quartz particles – SiO2, whereas the classical method adopted for the obtaining MMCs “in vitro”, uses a mechanism of forced insertion of the reinforcement phase into the ready for use melt, followed by homogenization of the composite structure. In the particular case, because the obtained composite will have a complex relief three-dimensional surface, the conditions for compacting the building phases in the three directions x, y, z should be virtually equalized. In order to accomplish the task set, a laboratory system is developed. The experiments were conducted with laboratory equipment elaborated on the base of another equipment for "capillary forming" with extra vacuum. The structures of the obtained MMCs were tested by metallographic analysis.

  18. Metal-ion complexes of functionalised 1,10-phenanthrolines as hydrolytic synzymes.

    OpenAIRE

    Weijnen, J.G.J.

    1993-01-01

    In this thesis metal-ion complexes of functionalised 1,10-phenanthroline derivatives have been studied as model systems for hydrolytic metallo-enzymes. Amphiphilic metallo- complexes incorporated into micelles or vesicles and water-soluble complexes in pure aqueous buffer solutions, have been found catalytically active in the hydrolysis of activated (chiral) carboxylic and phosphate esters. The effect of changing the ligand structure and the metal ion on the activity and enantioselectivity of...

  19. Coordination Chemistry of Disilylated Stannylenes with Group 10 d10 Transition Metals: Silastannene vs Stannylene Complexation

    OpenAIRE

    Arp, Henning; Marschner, Christoph; Baumgartner, Judith; Zark, Patrick; Müller, Thomas

    2013-01-01

    The coordination behavior of disilylated stannylenes toward zerovalent group 10 transition metal complexes was studied. This was accomplished by reactions of PEt3 adducts of disilylated stannylenes with zerovalent group 10 transition metal complexes. The thus obtained products differed between the first row example nickel and its heavier congeners. While with nickel stannylene complex formation was observed, coordination of the stannylenes to palladium and platinum compounds led to unusual si...

  20. CD Spectroscopic Study on the Molecular Recognition of Chiral Salen-Metal Complexes

    Institute of Scientific and Technical Information of China (English)

    刘涛; 阮文娟; 南晶; 朱志昂

    2003-01-01

    The molecular recognition behavior of the chiral salen-metal complexes towards guest molecules, such as imidazole derivatives and amino-acid ester, was systematically investigated by means of circular dichroism (CD) spectra. The coordination numbers of the host-guest complexes as well as the recognition capability of the salen-metal complexes were explained by character and intensity analyses of the CD spectra.

  1. Tuning carrier density at complex oxide interface with metallic overlayer

    Science.gov (United States)

    Zhou, Y.; Shi, Y. J.; Jiang, S. W.; Yue, F. J.; Wang, P.; Ding, H. F.; Wu, D.

    2016-06-01

    We have systematically investigated the electronic transport properties of the LaAlO3/SrTiO3 interfaces with several different metal capping layers. The sheet carrier density can be tuned in a wide range by the metallic overlayer without changing the carrier mobility. The sheet carrier density variation is found to be linearly dependent on the size of metal work function. This behavior is explained by the mechanism of the charge transfer between the oxide interface and the metal overlayer across the LaAlO3 layer. Our results confirm the existence of a built-in electric field in LaAlO3 film with an estimated value of 67.7 eV/Å. Since the metallic overlayer is essential for devices, the present phenomena must be considered for future applications.

  2. Activation of epidermal growth factor receptor by metal-ligand complexes decreases levels of extracellular amyloid beta peptide.

    Science.gov (United States)

    Price, Katherine A; Filiz, Gulay; Caragounis, Aphrodite; Du, Tai; Laughton, Katrina M; Masters, Colin L; Sharples, Robyn A; Hill, Andrew F; Li, Qiao-Xin; Donnelly, Paul S; Barnham, Kevin J; Crouch, Peter J; White, Anthony R

    2008-01-01

    The epidermal growth factor receptor is a receptor tyrosine kinase expressed in a range of tissues and cell-types. Activation of the epidermal growth factor receptor by a number of ligands induces downstream signalling that modulates critical cell functions including growth, survival and differentiation. Abnormal epidermal growth factor receptor expression and activation is also involved in a number of cancers. In addition to its cognate ligands, the epidermal growth factor receptor can be activated by metals such as zinc (Zn) and copper (Cu). Due to the important role of these metals in a number of diseases including neurodegenerative disorders, therapeutic approaches are being developed based on the use of lipid permeable metal-complexing molecules. While these agents are showing promising results in animal models and clinical trials, little is known about the effects of metal-ligand complexes on cell signalling pathways. In this study, we investigated the effects of clioquinol (CQ)-metal complexes on activation of epidermal growth factor receptor. We show here that CQ-Cu complexes induced potent epidermal growth factor receptor phosphorylation resulting in downstream activation of extracellular signal-regulated kinase. Similar levels of epidermal growth factor receptor activation were observed with alternative lipid permeable metal-ligands including neocuproine and pyrrolidine dithiocarbamate. We found that CQ-Cu complexes induced a significant reduction in the level of extracellular Abeta1-40 in cell culture. Inhibition of epidermal growth factor receptor activation by PD153035 blocked extracellular signal-regulated kinase phosphorylation and restored Abeta1-40 levels. Activation of the epidermal growth factor receptor by CQ-Cu was mediated through up-regulation of src kinase activity by a cognate ligand-independent process involving membrane integrins. These findings provide the first evidence that metal-ligand complexes can activate the epidermal growth

  3. Study of the Complexation Behavior of Calixarene with Transition Metal Cations by UV-vis and Fluorescent Spectra

    Institute of Scientific and Technical Information of China (English)

    YANG,Jun-Lin(杨俊林); ZHENG,Qi-Yu(郑企雨); AN,Li-Na(安丽娜); CHEN,Chuan-Feng(陈传峰); LIN,Hong-Zhen(蔺洪振); BAI,Feng-Lian(白凤莲); HUANG,Zhi-Tang(黄志镗)

    2002-01-01

    A new fluorescent compound based on calix[4]arene skeleton was synthesized. Its complexation ability with transition metal ions, such as Fe3+, Co2+, Ni2+, Cu2+, Zn2+ and Ag+, was investigated by UV-vis and fluorescent spectra.

  4. Study of the Complexation Behavior of Calixarene with Transition Metal Cations by UV—vis and Fluorescent Spectra

    Institute of Scientific and Technical Information of China (English)

    杨俊林; 郑企雨; 等

    2002-01-01

    A new fluorescent compound based on calix[4] arene skeleton was synthesized.Its complexation ability with transition metal ions,such as Fe3+,Co2+,Ni2+,Cu2+,Zn2+ and Ag+,Was investigated by UV-vis and fluorescent spectra.

  5. Polymer-cobalt(III) complexes: structural analysis of metal chelates on DNA interaction and comparative cytotoxic activity.

    Science.gov (United States)

    Nehru, Selvan; Arunachalam, Sankaralingam; Arun, Renganathan; Premkumar, Kumpati

    2014-01-01

    A new series of pendant-type polymer-cobalt(III) complexes, [Co(LL)2(BPEI)Cl](2+), (where BPEI = branched polyethyleneimine, LL = dipyrido[3,2-a:2',3'-c](6,7,8,9-tetrahydro)phenazine (dpqc), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and imidazo[4,5-f]1,10-phenanthroline (ip)) each with three different degrees of coordination have been synthesized and characterized. Studies to know the mode and strength of interaction between these polymer-metal complexes and calf thymus DNA have been performed by UV-Visible absorption and emission techniques. Among these series, each polymer metal complex having higher binding strength with DNA has been selected to test against human cancer/normal cell lines. On the basis of these spectral studies, it is proposed that our polymer-metal complexes bind with DNA mainly through intercalation along with some electrostatic binding. The order of binding strength for the complexes with ligand, dpqc > dpq > ip. The analysis of the results suggests that polymer-cobalt(III) complexes with higher degree of coordination effectively binds with DNA due to the presence of large number of positively charged cobalt(III) chelates in the polymer chain which cooperatively act to increase the overall binding strength. These polymer-cobalt(III) complexes with hydrophobic ligands around the cobalt(III) metal centre favour the base stacking interactions via intercalation. All the complexes show very good anticancer activities and increasing of binding strength results in higher inhibition value. The polymer-cobalt(III) complex with dpqc ligand possess two fold increased anticancer activity when compared to complexes with other ligands against MCF-7 cells. Besides, the complexes were insensitive towards the growth of normal cells (HEK-293) at the IC50 concentration.

  6. Process for the displacement of cyanide ions from metal-cyanide complexes

    Science.gov (United States)

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  7. Synthesis of Dichloride-Diphenylacetonitrile Palladium and Metal-Polymer Composite Based on Uhmwpe

    Directory of Open Access Journals (Sweden)

    A. M. Nemeryuk

    2016-05-01

    Full Text Available New complex of Pd (II with phenylacetonitrile, suitable for use as a precursor of palladium nano particles in the composition of metal-based composite UHMWPE was obtained. The thermodynamic characteristics of metal-polymer composite, found the effect of nano particles of palladium in the crystallization processes in UHMWPE and other characteristics of the material.

  8. Synthesis, thermal and optical properties of metal(II) complexes with a novel ligand derived from pyrazolone-5

    Science.gov (United States)

    Li, Xiaoyi; Wu, Yiqun; Gu, Donghong; Gan, Fuxi

    2011-03-01

    Three novel metal(II) complexes, CoL2, NiL2 and CuL2 (L = (Z)-4-(2-(1,3-dimethyl-5-oxo-1H-pyrazol-4(5H)-ylidene)hydrazinyl)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one were synthesized. Their structures were postulated based on elemental analyses, 1H NMR, ESI-MS, FT-IR spectra and UV-vis spectra. The effect of different central metal(II) ions on absorption bands of the metal(II) complexes in CHCl3 solutions was researched. The result indicates that the bathochromic shift is CuL2 > NiL2 > CoL2. The absorption properties of thin films and thermal stability of these complexes are also discussed. In addition, the optical constants (complex refractive index N= n+ ik) and thickness of the complex thin films on polished single-crystal silicon substrates were measured by spectroscopic ellipsometry. Results indicate that the metal(II) complexes would be a promising recording medium candidate for blu-ray recordable optical storage system due to good absorption at 405 nm, high thermal stability and sharp thermal decomposition, and a high n values of 1.35-1.45 and a low k values of 0.33-0.39.

  9. Investigation on the gas-phase radiolysis of metal complexes

    International Nuclear Information System (INIS)

    Gas-phase radiolysis of metal carbonyls has been performed. These carbonyls with iron, chromium and cobalt are sublimed easily by heating under atmospheric condition, and formed fine powder by gamma-ray-or electron-irradiation. Chemical compositions of fine powders prepared by electron beam irradiation are estimated as metal oxide after physical analysis such as microscopic observation, particle sizing, thermal and chemical analysis. These metal oxides thus obtained contain CO2, H2O, and some carbonic compounds, and they are removed easily by heating up to 400degC. (author)

  10. ANTIBACTERIAL ACTIVITY OF BENZIMIDAZOLES 2-THIO, 2-AMINODERIVATIVES AND COMPLEXES OF BENZIMIDAZOLES WITH TRANSITIONAL METALS

    Directory of Open Access Journals (Sweden)

    E. I. Mayboroda

    2014-01-01

    Full Text Available The literature data about antibacterial properties of benzimidazole 2-thio-, 2-aminoderivatives and benzimidazole complexes have been generalized and systematized in the review. Today prevention and treatment of diseases caused by microorganisms is an actual problem of modern therapy. Therefore, the search for active molecules, the based on them development of some new, more effective antimicrobial agents is an important task of modern pharmaceutical chemistry. Promising compounds for solving these problems are benzimidazole derivatives. They are available, functionally capable, stable and have a wide spectrum of biological activities (antiviral, anthelmintic, antibacterial, anticancer, antidiabetic.The purpose of this paper is to generalize and systematize information about the antimicrobial action of 2-thio-, 2-amino-substituted benzimidazoles and benzimidazole derivatives complexes with transition metals.These compounds and their complexes with transition metals are active against pathogenic strains Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhimurium, Proteus vulgaris, Bacillus cereus, Micrococcus luteus, Helicobacter рylori and others.

  11. Thermokinetic Study on the Complexation Reaction of the First-Row Transitional Metal Chlorides with Histidine

    Institute of Scientific and Technical Information of China (English)

    CHEN,San-Ping(陈三平); GAO,Sheng-Li(高胜利); SHI,Qi-Zhen(史启祯)

    2004-01-01

    The enthalpy change of the complexation reactions of the first-row transitional metal chlorides including CrCl3,MnCl2, FeCl2, CoCl2, NiCl2 and CuCl2 with L-α-histidine in water were determined by a microcalorimeter at 298.15-323.15 K. The standard enthalpy of formation of Cr(His)3+2 (aq) and M(His)2+2 (aq) (M=Mn, Fe, Co,Ni and Cu) were calculated. Based on the thermodynamic and kinetic equations of the reactions, three thermodynamic parameters (the activation enthalpy, the activation entropy, the activation free energy), the rate constants, and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) are obtained. The solid complexes of CrCl3, MnCl2, FeCl2, CoCl2, NiCl2 and CuCl2 with histidine were prepared and acterized by IR as well. The results showed that, with the atomic number increasing, three thermodynamic parameters, △G≠(-), △H≠(-) and △S≠(-) of the complexation reaction of these metal chlorides with L-α-histidine in water present an analogy regularity.

  12. Quantifying factors that influence metal ion release in photocaged complexes using ZinCast derivatives.

    Science.gov (United States)

    Gwizdala, Celina; Singh, Charlene V; Friss, Tracey R; MacDonald, John C; Burdette, Shawn C

    2012-07-14

    Two generations of nitrobenzhydrol-based photocages for Zn(2+) have been prepared and characterized. The first series includes the tridentate ZinCast-1 utilizes a bis-pyridin-2-ylmethyl-aniline ligand that forms a 5,5-chelate ring upon metal binding. The related photocages ZinCast-2 with a N-[2-(pyridine-2-yl)ethyl]-N-(pyridine-2-ylmethyl)aniline (5,6-chelate ring) and ZinCast-3 with a N,N-bis[2-(pyridine-2-yl)ethyl]aniline (6,6-chelate ring) were synthesized for comparative studies. The complexes formed by the ions Cu(2+), Zn(2+) and Cd(2+) with three ZinCast and their photoproducts (ZinUnc) were interrogated by UV-Vis spectroscopy. The studies indicate that ZinCast-1 forms complexes of the highest stability and ZinCast-3 exhibits the most significant changes in metal affinity upon uncaging. These results suggest that the changes in nitrogen atom donor ability as well as the initial complex stability must be considered to design a photocage with the desired properties. The composite results were used to design ZinCast-4 and ZinCast-5, the second generation photocages that incorporate an additional adjacent ether ligand into the Zn(2+) chelator. PMID:22491711

  13. Determination of stability constants of aminoglycoside antibiotics with their metal complexes

    Science.gov (United States)

    Tiwow, Vanny M. A.

    2014-03-01

    One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.

  14. Photochemical activation and reactivity of polynuclear transition metal complex molecules. Final report

    International Nuclear Information System (INIS)

    Several bi- and trinuclear metal complexes containing ligands from β-polyketonates have been synthesized and characterized including homo- and hetero-polynuclear complexes. New synthetic approaches to the preparation of heterobi- and trinuclear complexes have been developed that allow the preparation of a large number of molecules containing heavy-metal ions such as Pd2+ or UO22+ and a first-row transition-metal ion. The electrochemical properties of these complexes have been investigated and many exhibit the ability to transfer two electrons at very nearly the same potential. Photochemical studies on binuclear Cu(II) and Ni(II) showed that these compounds yielded reduced metal species and decomposition upon irradiation. Luminescence of hetero-complexes of uranyl polyketonates is observed at 770K with the UO22+ moiety functioning as an isolated chromophore in which emission is observed only on direct excitation of UO22+ and energy transfer to lower states in the molecule is not observed

  15. Transistor-like behavior of transition metal complexes

    DEFF Research Database (Denmark)

    Albrecht, Tim; Guckian, A; Ulstrup, Jens;

    2005-01-01

    Electron transport through semiconductor and metallic nanoscale structures,(1) molecular monolayers,2-6 and single molecules(7-15) connected to external electrodes display rectification, switch, and staircase functionality of potential importance in future miniaturization of electronic devices...

  16. Metal-ion complexes of functionalised 1,10-phenanthrolines as hydrolytic synzymes.

    NARCIS (Netherlands)

    Weijnen, J.G.J.

    1993-01-01

    In this thesis metal-ion complexes of functionalised 1,10-phenanthroline derivatives have been studied as model systems for hydrolytic metallo-enzymes. Amphiphilic metallo- complexes incorporated into micelles or vesicles and water-soluble complexes in pure aqueous buffer solutions, have been found

  17. Impact of ligand protonation on higher-order metal complexation kinetics in aqueous systems

    NARCIS (Netherlands)

    Town, R.M.; Leeuwen, van H.P.

    2008-01-01

    The impact of ligand protonation on the complexation kinetics of higher-order complexes is quantitatively described. The theory is formulated on the basis of the usual situation for metal complex formation in aqueous systems in which the exchange of water for the ligand in the inner coordination sph

  18. Asymmetric catalysis mediated by the ligand sphere of octahedral chiral-at-metal complexes.

    Science.gov (United States)

    Gong, Lei; Chen, Liang-An; Meggers, Eric

    2014-10-01

    Due to the relationship between structure and function in chemistry, access to novel chemical structures ultimately drives the discovery of novel chemical function. In this light, the formidable utility of the octahedral geometry of six-coordinate metal complexes is founded in its stereochemical complexity combined with the ability to access chemical space that might be unavailable for purely organic compounds. In this Minireview we wish to draw attention to inert octahedral chiral-at-metal complexes as an emerging class of metal-templated asymmetric "organocatalysts" which exploit the globular, rigid nature and stereochemical options of octahedral compounds and promise to provide new opportunities in the field of catalysis.

  19. Positron life time and annihilation Doppler broadening measurements on transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Levay, B. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Fizikai Kemiai es Radiologiai Tanszek); Varhelyi, Cs. (Babes-Bolyai Univ., Cluj (Romania)); Burger, K. (Eoetvoes Lorand Tudomanyegyetem, Budapest (Hungary). Szervetlen es Analitikai Kemiai Intezet)

    1982-01-01

    Positron life time and annihilation Doppler broadening measurements have been carried out on 44 solid coordination compounds. Several correlations have been found between the annihilation life time (tau/sub 1/) and line shape parameters (L) and the chemical structure of the compounds. Halide ligands were the most active towards positrons. This fact supports the assumption on the possible formation of (e/sup +/X/sup -/) positron-halide bound state. The life time was decreasing and the annihilation energy spectra were broadening with the increasing negative character of the halides. The aromatic base ligands affected the positron-halide interaction according to their basicity and space requirement and thus they indirectly affected the annihilation parameters, too. In the planar and tetrahedral complexes the electron density on the central met--al ion affected directly the annihilation parameters, while in the octahedral mixed complexes it had only an ind--irect effect through the polarization of the halide ligands.

  20. Ensemble and single-molecule studies on fluorescence quenching in transition metal bipyridine-complexes.

    Directory of Open Access Journals (Sweden)

    Dominik Brox

    Full Text Available Beyond their use in analytical chemistry fluorescent probes continuously gain importance because of recent applications of single-molecule fluorescence spectroscopy to monitor elementary reaction steps. In this context, we characterized quenching of a fluorescent probe by different metal ions with fluorescence spectroscopy in the bulk and at the single-molecule level. We apply a quantitative model to explain deviations from existing standard models for fluorescence quenching. The model is based on a reversible transition from a bright to a dim state upon binding of the metal ion. We use the model to estimate the stability constants of complexes with different metal ions and the change of the relative quantum yield of different reporter dye labels. We found ensemble data to agree widely with results from single-molecule experiments. Our data indicates a mechanism involving close molecular contact of dye and quenching moiety which we also found in molecular dynamics simulations. We close the manuscript with a discussion of possible mechanisms based on Förster distances and electrochemical potentials which renders photo-induced electron transfer to be more likely than Förster resonance energy transfer.

  1. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Timothy J. Deming

    2013-01-01

    Full Text Available The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals. This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.

  2. Versatile tuning of supramolecular hydrogels through metal complexation of oxidation-resistant catechol-inspired ligands.

    Science.gov (United States)

    Menyo, Matthew S; Hawker, Craig J; Waite, J Herbert

    2013-11-21

    The mussel byssal cuticle employs DOPA-Fe(3+) complexation to provide strong, yet reversible crosslinking. Synthetic constructs employing this design motif based on catechol units are plagued by oxidation-driven degradation of the catechol units and the requirement for highly alkaline pH conditions leading to decreased performance and loss of supramolecular properties. Herein, a platform based on a 4-arm poly(ethylene glycol) hydrogel system is used to explore the utility of DOPA analogues such as the parent catechol and derivatives, 4-nitrocatechol (nCat) and 3-hydroxy-4-pyridinonone (HOPO), as structural crosslinking agents upon complexation with metal ions. HOPO moieties are found to hold particular promise, as robust gelation with Fe(3+) occurs at physiological pH and is found to be largely resistant to oxidative degradation. Gelation is also shown to be triggered by other biorelevant metal ions such as Al(3+), Ga(3+) and Cu(2+) which allows for tuning of the release and dissolution profiles with potential application as injectable delivery systems.

  3. Critical survey of stability constants of EDTA complexes critical evaluation of equilibrium constants in solution stability constants of metal complexes

    CERN Document Server

    Anderegg, G

    2013-01-01

    Critical Survey of Stability Constants of EDTA Complexes focuses on the computations, values, and characteristics of stability constants. The book emphasizes that for a critical discussion of experimentally determined stability constants, it is important to consider the precision of the values that manifests the self-consistency of the constant, taking into consideration the random errors. The publication reviews the stability constants of metal complexes. The numerical calculations affirm the reactions and transformations of metal ions when exposed to varying conditions. The text also present

  4. Synthesis, Characterization, Antibacterial and Anti-Inflammatory Activities of Enoxacin Metal Complexes

    Directory of Open Access Journals (Sweden)

    Saeed Arayne

    2009-01-01

    Full Text Available The present work comprises the synthesis of enoxacin (Heno complexes with various transition metals. Two types of complexes [M(eno2(H2O2]3H2O(M=CuII, NiII or MnII and [M(eno(H2O2]Cl⋅4H2O  (M=FeIII were obtained. The complexes were characterized by different physicochemical, spectroscopic, and elemental analysis. Results suggest that enoxacin interacts with the metals as a monoanionic bidentate ligand. These complexes were also tested for their antibacterial activity against eleven (11 different microorganisms, and the results were compared with the parent drug. Moreover all the metal complexes were also tested for their ability to scavenge reactive oxygen species where by MnII and CuII complexes exhibited potential to mediate anti-inflammatory response.

  5. Structure Characterization and Properties of Metal-Surfactant Complexes Dispersed in Organic Solvents.

    Science.gov (United States)

    de la Iglesia, Pablo; Jaeger, Vance W; Xi, Yuyin; Pfaendtner, Jim; Pozzo, Lilo D

    2015-08-25

    This work describes the synthesis and characterization of metal-surfactant complexes. Dioctyl sulfosuccinate and dodecylbenzenesulfonate are associated with multivalent aluminum, iron, and vanadium ions using an ion exchange reaction. The metal complexes are dispersible in various organic solvents. In solvents with low polarity, the complexes form "inverse" macromolecular structures with multiple metal ions. In contrast, in alcohols, the complex size is reduced, showing a more disperse conformation. The metal and surfactant ions are still strongly bonded to each other in all the solvents probed. Small-angle X-ray and neutron scattering (SAXS and SANS) are used to characterize the structures. Simultaneous fitting of neutron and X-ray scattering spectra is performed in order to obtain an accurate description of the system. Scattering results are also validated by performing molecular dynamics (MD) simulations. The conductive and electrochemical properties of the complexes in solution are also evaluated. The dispersion of metal-organic complexes significantly increases electric conductivity, and some metal ions in the core of the complexes are shown to be electrochemically active in apolar solvents.

  6. Bivalent transition metal complexes of cetirizine: Spectroscopic, equilibrium studies and biological activity

    Science.gov (United States)

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abobakr, Lamis O.

    2013-08-01

    Metal complexes of cetirizineṡ2HCl (CTZ = 2-[2-[4-[(4-chlorophenyl)phenyl methyl]piperazine-1-yl]-ethoxy]acetic acid, dihydrochloride have been prepared and characterized by elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and UV-Vis spectra. The analytical data of the complexes show the formation of 1:2 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated CTZ ligand. IR spectra show that CTZ is coordinated to the metal ions in a monodentate manner through carboxylate-O atom. Protonation equilibria of CTZ and its metal complexation by some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaCl) using an automatic potentiometric technique. Thermodynamic parameters for the protonation equilibria of CTZ were calculated and discussed. The stability order of M(II)-CTZ complexes were found to obey Mn2+ pH. The CTZ ligand and its metal complexes were screened for their biological activity against bacterial species (Bacillus subtillis RCMB 010067, Staphylococcus aureus RCMB 010028, Pseudomonas aeuroginosa RCMB 010043, and Escherichia coli RCMB 010052) and fungi as (Aspergillus flavus RCMB 02568, Pencicillium italicum RCMB 03924, Candida albicans RCMB 05031 and Geotricum candidum RCMB 05097). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent CTZ ligand against one or more bacterial or fungi species. MIC was evaluated for the isolated complexes.

  7. Effects of complexing compounds on sorption of metal ions to cement

    Energy Technology Data Exchange (ETDEWEB)

    Loevgren, Lars [Umeaa Univ. (Sweden). Inorganic chemistry

    2005-12-15

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  8. Effects of complexing compounds on sorption of metal ions to cement

    International Nuclear Information System (INIS)

    This present report is a literature review addressing the effects of complexing ligands on the sorption of radionuclides to solid materials of importance for repositories of radioactive waste. Focus is put on laboratory studies of metal ion adsorption to cement in presence of chelating agents under strongly alkaline conditions. As background information, metal sorption to different mineral and cement phases in ligand free systems is described. Furthermore, surface complexation model (SCM) theories are introduced. According to surface complexation theories these interactions occur at specific binding sites at the particle/water interface. Adsorption of cationic metals is stronger at high pH, and the adsorption of anions occurs preferentially at low pH. The adsorption of ions to mineral surfaces is a result of both chemical bonding and electrostatic attraction between the ions and charged mineral surfaces. By combining uptake data with spectroscopic information the sorption can be explained on a molecular level by structurally sound surface complexation models. Most of the metal sorption studies reviewed are dealing with minerals exhibiting oxygen atoms at their surfaces, mainly oxides of Fe(II,III) and Al(III), and aluminosilicates. Investigations of radionuclides are focused on clay minerals, above all montmorillonite and illite. Which mechanism that is governing the metal ion adsorption to a given mineral is to a large extent depending on the metal adsorbed. For instance, sorption of Ni to montmorillonite can occur by formation of inner-sphere mononuclear surface complexes located at the edges of montmorillonite platelets and by formation of a Ni phyllosilicate phase parallel to montmorillonite layers. Also metal uptake to cement materials can occur by different mechanisms. Cationic metals can both be attached to cement (calcium silicate hydrate, CSH) and hardened cement paste (HCP) by formation of inner-sphere complexes at specific surface sites and by

  9. Insights into aquatic toxicities of the antibiotics oxytetracycline and ciprofloxacin in the presence of metal: Complexation versus mixture

    International Nuclear Information System (INIS)

    Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC50 values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. - Highlights: ► The complex of antibiotic with metal is a mixture of various complexation modes. ► Antibiotic and metal act as various combined interactions when their complexation is ignored. ► Antibiotic, metal, and their complex act as concentration addition interaction. ► Complex commonly is the highest toxicant. ► Neglecting complexation renders improper classification of risks for antibiotics. - Antibiotic, heavy metal and their complex act primarily as concentration addition interaction and the complex commonly is highest toxic.

  10. Modification of Metal Complex on the Stereoselective Hydrogenation of 2,3-Butanedione

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The modification of some metal complexes on Pt/Al2O3 clusters leads to remarkable increases in both the activity and the selectivity for meso-2,3-butanediol in the stereoselective hydrogenation of 2,3-butanedione.

  11. SIMULTANEOUS DETERMINATION OF HEAVY METAL IONS BY CAILLARY ZONE ELECTROPHORESIS USING A COMPLEX SELECTOR

    OpenAIRE

    Neudachina, L. K.; Lebedeva, E. L.

    2014-01-01

    The usage of diglycylglycine (GGG) was proposed to improve the separation of the complexes of heavy metal ions with EDTA by capillary zone electrophoresis. The tripeptide can interact with the complexes in capillary and thereby acts as a complex selector.The influence of GGG on the electrophoretic behavior of ten metal complexes (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II) and Bi(III)) was studied in an acidic media using a negative polarity voltage supply. Three ...

  12. Synthesis, physico-chemical characterization and biological activity of 2-aminobenzimidazole complexes with different metal ions

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2004-01-01

    Full Text Available Complexes of 2-aminobenzimidazole (L with nitrates of cobalt(II nickel(II, copper (II, zinc(II and silver(I were synthesized. The molar ratio metal:ligand in the reaction of the complex formation was 1:2. It should be noticed, that the reaction of all the metal salts yielded bis(ligand complexes of the general formula M(L2(NO32 × nH2O (M=Co, Ni Cu, Zn or Ag; n=0, 1, 2 or 6. The complexes were characterized by elemental analysis of the metal, molar conductivity, magnetic susceptibility measurements and IR spectra. Co(II, Ni(II and Cu(II complexes behave as non-electrolytes, whilst Zn(II and Ag(I are 1:1 electrolytes. Cu(II complex has a square-planar stereochemistry, Ag(I complex is linear, whilst the Co(II, Ni(II and Zn(II complexes have a tetrahedral configuration. In all the complexes ligand is coordinated by participation of the pyridine nitrogen of the benzimidazole ring. The antimicrobial activity of the ligand and its complexes against Pseudomonas aeruginosa, Bacillus sp. Staphylococcus aureus and Saccharomyces cerevisiae was investigated. The effect of metal on the ligand antimicrobial activity is discussed.

  13. Synthesis and Characterization of Divalent Transition Metal Complexes Containing Thiosemicarbazone Ligands

    Directory of Open Access Journals (Sweden)

    (Dr. Prem Mohan Mishra

    2014-01-01

    Full Text Available Complexes of divalent transition metals Co(II, Ni (II and Cu(II with ligand 2 – hydroxy – 4 – nitro acetophenone thiosemicarbazone have been synthesized. The complexes were characterized on the basis of elemental analysis, magnetic studies, electrical conductance and IR and electronic spectra. The complexes of Co(II and Ni(II were found to be octahedral where as Cu(II complexes has square planer geometry

  14. Manipulation of a Schlenk Line: Preparation of Tetrahydrofuran Complexes of Transition-Metal Chlorides

    Science.gov (United States)

    Davis, Craig M.; Curran, Kelly A.

    2007-01-01

    Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…

  15. Sulfonate Functionalisation of Transition Metal Complexes: A Versatile Tool Towards Catalyst Recovery

    OpenAIRE

    Virboul, M.A.N.

    2011-01-01

    This thesis describes the synthesis and application of sulfonate-functionalised ligands in organometallic chemistry and (aqueous) catalysis. Due to their ability to trigger specific solubility, different NHC ligand precursors bearing a butyl-sulfonate chain were synthesised. The formation of transition metal complexes containing gold and rhodium was enabled by a simple procedure involving the initial synthesis of a silver complex and a transmetallation with a suitable metal precursor and an o...

  16. Pyridinediimine Iron Complexes with Pendant Redox-Inactive Metals Located in the Secondary Coordination Sphere.

    Science.gov (United States)

    Delgado, Mayra; Ziegler, Joshua M; Seda, Takele; Zakharov, Lev N; Gilbertson, John D

    2016-01-19

    A series of pyridinediimine (PDI) iron complexes that contain a pendant 15-crown-5 located in the secondary coordination sphere were synthesized and characterized. The complex Fe((15c5)PDI)(CO)2 (2) was shown in both the solid state and solution to encapsulate redox-inactive metal ions. Modest shifts in the reduction potential of the metal-ligand scaffold were observed upon encapsulation of either Na(+) or Li(+).

  17. New trends for metal complexes with anticancer activity

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.; Sadler, Peter J.

    2008-01-01

    Medicinal inorganic chemistry can exploit the unique properties of metal ions for the design of new drugs. This has, for instance, led to the clinical application of chemotherapeutic agents for cancer treatment, such as cisplatin. The use of cisplatin is, however, severely limited by its toxic side-

  18. Magnetic and transport properties of Co–Si–B metallic glasses with complex dopants

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshchuk, Yevhenii I.; Nakonechna, Olesya I., E-mail: lesnak4@gmail.com; Semenko, Mykhailo P.; Zakharenko, Mykola I.

    2014-10-01

    The structure, magnetic and resistivity characteristics of Co–Si–B metallic glasses containing complex dopants have been investigated. The intervals of thermal stability of the phases existing in the alloys studied have been determined. The temperature dependences of the resistivity were shown to be essentially nonlinear up to a certain temperature, evidencing for the contribution of several scattering mechanisms. Magnetic and resistivity behavior of these alloys are substantially governed by the phase separation within the region of the amorphous state stability and magnetic clusters formation. In the as-cast alloys these clusters are estimated to contain 2–4 Co atoms. Heat treatment significantly affects the structure and magnetic properties. It leads to increase of the Curie temperature and localized magnetic moment, whereas the crystallization temperature remains almost invariable. - Highlights: • We study magnetic and transport properties of Co–Si–B based metallic glasses. • Intervals of thermal stability of the existing phases have been determined. • We calculated paramagnetic moments per transition metal atom μ{sub TM}. • Possibility of the cluster structure of studied alloys is discussed. • Influence of heat treatment on μ{sub TM} and the Curie temperature is defined.

  19. Near-infrared dichroism of a mesogenic transition metal complex and its solubility in nematic hosts

    International Nuclear Information System (INIS)

    A transition metal complex possessing the nematic phase, bis (p-n-butylstyryl-1, 2-dithiolato) nickel, was synthesized and its optical properties and solubility in the nematic hosts K15 and MBBA were investigated. The metal complex displayed a high solubility in both host materials (up to 10% wt/wt) and a strong near-infrared absorption band centered at 860 nm. A blocking extinction of greater than OD = 3 was obtained with a 100 micron pathlength of a 0.5% wt/wt mixture of the nematic metal complex in K15, suggesting its usefulness for passive blocking of near infrared radiation. A 24 micron thick, homogeneously aligned guest-host cell containing a 1% wt/wt mixture of the metal complex in K15 possessed a contrast ratio of nearly 5:1 and a blocking extinction of OD = 3.5 at 860 nm, demonstrating for the first time the existence of near-infrared dichroism in this class of materials. The solubility and blocking extinction of the mesogenic metal complex in K15 was considerably superior to the non-mesogenic near ir laser dye bis(dimethylaminodithiobenzil) nickel in the same host. An interaction of the nematic metal complex in mixtures with MBBA which resulted in the creation of a new absorption band at 1050 nm was also observed. 21 refs., 9 figs

  20. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  1. Synthesis of monomeric and polymeric alkali and alkaline earth metal complexes using a phosphinoselenoic amide ligand in metal coordination sphere

    Indian Academy of Sciences (India)

    Jayeeta Bhattacharjee; Ravi K Kottalanka; Harinath Adimulam; Tarun K Panda

    2014-09-01

    We report the monomeric complexes of magnesium and calcium of composition [M(THF){2-Ph2P(Se)N(CMe3)}2] [M= Mg (3), n = 1 andM = Ca (4), n = 2)] and polymeric complexes of potassium and barium of composition [K(THF)2{Ph2P(Se)N(CMe3)}] (2) and [K(THF)Ba{Ph2P(Se)N(CMe3)}3](5) respectively. The potassium complex 2 was readily prepared by the reaction of potassium bis(trimethylsilyl)amide with phosphinoselenoic amide ligand (1) at ambient temperature. The calcium complex 4 was prepared by two synthetic routes: in the first method, commonly known as salt metathesis reaction, the potassium complex 2 was made to react with alkaline earth metal diiodide at room temperature to afford the corresponding calcium complex. The metal bis(trimethylsilyl)amides were made to react with protic ligand 1 in the second method to eliminate the volatile bis(trimethyl)silyl amine. The magnesium complex 3 and barium complex 5 were prepared only through the first method. Solid-state structures of all the new complexes were established by single crystal X-ray diffraction analysis. The smaller ionic radii of Mg2+ (0.72Å) and Ca2+ (0.99Å) ions form the monomeric complex, whereas the larger ions K+ (1.38Å) and Ba2+ (1.35Å) were found to form onedimensional polymeric complexes with monoanionic ligand 1. Compound 2 serves an example of magnesium complex with a Mg-Se direct bond.

  2. Phenalenyl-based mononuclear dysprosium complexes.

    Science.gov (United States)

    Lan, Yanhua; Magri, Andrea; Fuhr, Olaf; Ruben, Mario

    2016-01-01

    The phenalenyl-based dysprosium complexes [Dy(PLN)2(HPLN)Cl(EtOH)] (1), [Dy(PLN)3(HPLN)]·[Dy(PLN)3(EtOH)]·2EtOH (2) and [Dy(PLN)3(H2O)2]·H2O (3), HPLN being 9-hydroxy-1H-phenalen-1-one, have been synthesized. All compounds were fully characterized by means of single crystal X-ray analysis, paramagnetic (1)H NMR, MALDI-TOF mass spectrometry, UV-vis spectrophotometry and magnetic measurements. Both static (dc) and dynamic (ac) magnetic properties of these complexes have been investigated, showing slow relaxation of magnetization, indicative of single molecule magnet (SMM) behavior. Attempts to synthesize sublimable phenalenyl-based dysprosium complexes have been made by implementing a synthetic strategy under anhydrous conditions. The sublimed species were characterized and their thermal stability was confirmed. This opens up the possibility to deposit phenalenyl-based lanthanides complexes by sublimation onto surfaces, an important prerequisite for ongoing studies in molecular spintronics. PMID:27547617

  3. Capsules, secondary interactions and unusual multi-metallic complexes

    OpenAIRE

    Hart, John Stewart

    2012-01-01

    Research into inorganic supramolecular chemistry is burgeoning, in particular that which focuses on the formation of capsular molecules and the effects that these unique environments have on catalytic reactions. With the aim of producing new ligand designs that could not only support reactive metals, but also partake in supramolecular aggregation to provide a capsular microenvironment, new tripodal ligands and wide span imines and amines have been synthesised. Furthermore, t...

  4. Methanogens, sulphate and heavy metals: a complex system

    OpenAIRE

    Luz Ferreira Martins Paulo, Da, L.; Stams, A. J. M.; Machado de Sousa, D.Z.

    2015-01-01

    Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogasa renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria...

  5. Controlled Assembly of Endohedrally-Functionalized Metal-Ligand Supramolecular Complexes

    OpenAIRE

    Johnson, Amber

    2014-01-01

    An area of supramolecular chemistry that has recently been growing in popularity is the synthesis of metal-ligand cages. These are most commonly comprised of organic ligands and transition metal ions. Cage complexes often take the form of geometric polyhedra such as tetrahedra and octahedra, where the ligands act as the edges or faces and the metals serve as the vertices. Because these complexes have a polyhedral design, there is a central cavity in the cage, and this has been exploited for g...

  6. Extremely bulky amido first row transition metal(II) halide complexes: potential precursors to low coordinate metal-metal bonded systems.

    Science.gov (United States)

    Hicks, Jamie; Jones, Cameron

    2013-04-01

    Reactions of the extremely bulky potassium amide complexes, [KL'(η(6)-toluene)] or [KL"] (L'/L" = N(Ar*)(SiR3), Ar* = C6H2{C(H)Ph2}2Me-2,6,4; R = Me (L') or Ph (L")), with a series of first row transition metal(II) halides have yielded 10 rare examples of monodentate amido first row transition metal(II) halide complexes, all of which were crystallographically characterized. They encompass the dimeric, square-planar chromium complexes, [{CrL'(THF)(μ-Cl)}2] and [{CrL"(μ-Cl)}2], the latter of which displays intramolecular η(2)-Ph···Cr interactions; the dimeric tetrahedral complexes, [{ML'(THF)(μ-Br)}2] (M = Mn or Fe), [{ML"(THF)(μ-X)}2] (M = Mn, Fe or Co; X = Cl or Br) and [{CoL"(μ-Cl)}2] (which displays intramolecular η(2)-Ph···Co interactions); and the monomeric zinc amides, [L'ZnBr(THF)] (three-coordinate) and [L"ZnBr] (two-coordinate). Solution state magnetic moment determinations on all but one of the paramagnetic compounds show them to be high-spin systems. Throughout, comparisons are made with related bulky terphenyl transition metal(II) halide complexes, and the potential for the use of the prepared complexes as precursors to low-valent transition metal systems is discussed.

  7. Synthesis, characterization and antimicrobial investigation of some moxifloxacin metal complexes

    Science.gov (United States)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; El-Attar, Mohamed S.

    2011-12-01

    The new complexes of moxifloxacin (MOX), with Ti(IV), Y(III), Pd(II) and Ce(IV) have been synthesized. These complexes were then characterized by melting point, magnetic studies and spectroscopic techniques involving infrared spectra (IR), UV-Vis, 1H NMR. C, H, N and halogen elemental analysis and thermal behavior of complexes also investigated. The results suggested that the molar ratio for all complexes is M: MOX = 1:2 where moxifloxacin acts as a bidentate via one of the oxygen atoms of the carboxylate group and through the ring carbonyl group and the complexes have the following formula [Ti(MOX) 2](SO 4) 2·7H 2O, [Y(MOX) 2Cl 2]Cl·12H 2O, [Pd(MOX) 2(H 2O) 2]Cl 2·6H 2O and [Ce(MOX) 2](SO 4) 2·2H 2O. The activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DrTG) curves, using Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and three Gram-negative bacteria and compared with the reference drug moxifloxacin. The antibacterial activity of Ti(IV) complex is significant for E. coli K32 and highly significant for S. aureus K1, B. subtilis K22, Br. otitidis K76, P. aeruginosa SW1 and K. oxytoca K42 compared with free moxifloxacin.

  8. Reactivities of d~0 transition metal complexes toward oxygen:Synthetic and mechanistic studies

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Transition metals such as Fe in porphyrin complexes are known to bind or react with O2,and such reactions are critical to many biological functions and catalytic oxidation using O2.The transition metals in these reactions often contain valence d electrons,and oxidation of metals is an important step.In recent years,reactions of O2 with d0 transition metal complexes such as Hf(NR2)4(R=alkyl) have been used to make metal oxide thin films as insulating gate materials in new microelectronic devices.This feature article discusses our recent studies of such reactions and the formation of TiO2 thin films.In contrast to the reactions of many dn complexes where metals are often oxidized,reactions of d0 complexes such as Hf(NMe2)4 and Ta(NMe2)4(SiR3) with O2 usually lead to the oxidation of ligands,forming,e.g.,-ONMe2 and -OSiR3 from-NMe2 and-SiR3 ligands,respectively.Mechanistic and theoretical studies of these reactions have revealed pathways in the formation of the metal oxide thin films as microelectronic materials.

  9. Reactivities of d~0 transition metal complexes toward oxygen:Synthetic and mechanistic studies

    Institute of Scientific and Technical Information of China (English)

    CHEN ShuJian; ZHANG XinHao; LIN ZhenYang; WU YunDong; XUE ZiLing

    2009-01-01

    Transition metals such as Fe in porphyrin complexes are known to bind or react with O_2,and such reactions are critical to many biological functions and catalytic oxidation using O_2.The transition metals in these reactions often contain valence d electrons,and oxidation of metals is an important step.In recent years,reactions of O_2 with d~0 transition metal complexes such as Hf(NR_2)_4 (R=alkyl) have been used to make metal oxide thin films as insulating gate materials in new microelectronic devices.This feature article discusses our recent studies of such reactions and the formation of TiO_2 thin films.In contrast to the reactions of many d~n complexes where metals are often oxidized,reactions of d~0 complexes such as Hf(Nme_2)_4 and Ta(Nme_2)_4(SiR_3) with O_2 usually lead to the oxidation of ligands,forming,e.g.,-ONMe_2 and-OSiR_3 from-Nme_2 and-SiR_3 ligands,respectively.Mechanistic and theoretical studies of these reactions have revealed pathways in the formation of the metal oxide thin films as microelectronic materials.

  10. Modification of radiation response by metal complexes: a review with emphasis of nonplatinum studies

    International Nuclear Information System (INIS)

    There is a need to develop compounds which alter the effects of radiation, particularly in the hypoxic radioresistant cell, following the limited success to date of the electron-affinic nitroimidazoles. The chemistry of transition metals is briefly outlined to point out certain aspects which might be exploited in the design of radiosensitizers. The best known clinical example of a metal complex which enhances the effect of radiation in hypoxic cells is the successful antineoplastic cisplatin. Past studies on enhancement of radiation damage by complexes of metals other than platinum, mainly in bacterial spores and bacterial and mammalian cells, have been summarized according to the metal used. The many mechanisms by which metal complexes could interact with radiation are outlined, and examples are given where possible. This survey emphasizes the need for a systematic study of the effect of metal/ligand variation on radiosensitization with regard to mechanisms of action to assess the potential of these compounds as radiosensitizers. Metal complexes offer many advantages, both for the study of mechanisms by which radiation kills cells and for drug development. 146 references

  11. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands

    OpenAIRE

    Timothy J. Hubin; Amoyaw, Prince N. -A.; Roewe, Kimberly D.; Simpson, Natalie C.; Maples, Randall D.; Carder Freeman, TaRynn N.; Amy N. Cain; Le, Justin G.; Stephen J Archibald; Khan, Shabana I.; Tekwani, Babu L.; Khan, M. O. Faruk

    2014-01-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal comple...

  12. Complexes of 3.6 kDa Maltodextrin with Some Metals

    Directory of Open Access Journals (Sweden)

    Christopher H. Schilling

    2004-06-01

    Full Text Available Preparation of magnesium, lanthanum, and bismuth(III complexes of 3.6 kDa maltodextrin and some properties of the resulting materials are presented. The metal derivatives contain metals bound to the oxygen atoms of the hydroxyl groups of maltodextrin. Additionally, the metal atoms are coordinated to the hydroxyl groups of the D-glucose units of the macroligand. Such coordination stabilized the metal – oxygen bond against hydrolysis, even in boiling water. The presence of magnesium and lanthanum atoms increased the thermal stability of maltodextrin, whereas bismuth atoms decreased it.

  13. High pressure die casting of Fe-based metallic glass

    Science.gov (United States)

    Ramasamy, Parthiban; Szabo, Attila; Borzel, Stefan; Eckert, Jürgen; Stoica, Mihai; Bárdos, András

    2016-10-01

    Soft ferromagnetic Fe-based bulk metallic glass key-shaped specimens with a maximum and minimum width of 25.4 and 5 mm, respectively, were successfully produced using a high pressure die casting (HPDC) method, The influence of die material, alloy temperature and flow rate on the microstructure, thermal stability and soft ferromagnetic properties has been studied. The results suggest that a steel die in which the molten metal flows at low rate and high temperature can be used to produce completely glassy samples. This can be attributed to the laminar filling of the mold and to a lower heat transfer coefficient, which avoids the skin effect in the steel mold. In addition, magnetic measurements reveal that the amorphous structure of the material is maintained throughout the key-shaped samples. Although it is difficult to control the flow and cooling rate of the molten metal in the corners of the key due to different cross sections, this can be overcome by proper tool geometry. The present results confirm that HPDC is a suitable method for the casting of Fe-based bulk glassy alloys even with complex geometries for a broad range of applications.

  14. Catalytic Activity of Dual Metal Cyanide Complex in Multi-component Coupling Reactions

    Institute of Scientific and Technical Information of China (English)

    Anaswara RAVINDRAN; Rajendra SRIVASTAVA

    2011-01-01

    Several dual metal cyanide catalysts were prepared from potassium ferrocyanide,metal chloride (where metal =Zn2+,Mn2+,Ni2+,Co2+ and Fe2+),t-butanol (complexing agent) and PEG-4000 (co-complexing agent).The catalysts were characterized by elemental analysis (CHN and X-ray fluorescence),X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,Fourier-transform infiared spectroscopy,and UV-Visible spectroscopy.The dual metal cyanide catalysts were used in several acid catalyzed multi-component coupling reactions for the synthesis of pharmaceutically important organic derivatives.In all these reactions,the Fe-Fe containing dual metal cyanide catalyst was the best catalyst.The catalysts can be recycled without loss in catalytic activity.The advantage of this method is the use of mild,efficient and reusable catalysts for various reactions,which makes them candidates for commercial use.

  15. Synthesis, Structure and Characterization of a Series of Transition Metal Complexes with Tripodal Polyimidazole Ligand

    Institute of Scientific and Technical Information of China (English)

    任颜卫; 吴爱芝; 李珺; 张逢星; 张金花

    2005-01-01

    Five new metal transition metal complexes formed with tripodal polyimidazole ligand tri{2-[2-(1-methyl)imidazoly](methylimino)ethyl}amine ((min)3tren), [Zn(min)3tren](ClO4)2 (1) [Cu(min)3tren](ClO4)2 (2), [Ni(min)3tren]-(ClO4)2 (3), [Co(min)3tren](ClO4)2 (4), and [Mn(min)3tren](ClO4)2·CH3CN (5) were synthesized and characterized by elemental analysis, molar conductances, IR and electronic spectra. Analytical results show 1 : 1 metal-ligand stoichiometry and 2 : 1 type of electrolyte in all metal complexes. The crystal structures of 4 and 5 have been determined. The metal atoms in 4 and 5, being in distorted [MN6] octahedra, are coordinated with three imine nitrogen atoms and three imidazole nitrogen atoms.

  16. Capillary Electrophoresis for the Simultaneous Determination of Metals by Using Ethylenediamine Tetraacetic Acid as Complexing Agent and Vancomycin as Complex Selector

    Institute of Scientific and Technical Information of China (English)

    THREEPROM, Jirasak; SOM-AUM, Waraporn; LIN, Jin-Ming

    2006-01-01

    A new separation system of capillary electrophoresis for the simultaneous determination of metals by using ethylenediamine tetraacetic acid (EDTA) as complexing agent and employing vancomycin as complex selector was described. The Z-shape cell capillary electrophoresis was used to enhance the sensitivity for the determination of the complexes of Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ) and Fe(Ⅲ) with EDTA. The partial filling method (co-current mode) was used in order to increase the selectivity of the electrophoretic method, meanwhile vancomycin was not present at the detector path during the detection of metal-EDTA complexes. The vancomycin concentration, phosphate concentration and pH of the buffer strongly influenced mobility, resolution and selectivity of the studied analytes. Under the optimal condition, the relative standard deviations (n=5) of the migration time and the peak area were less than 3.14% and 7.35%, respectively. Application of the Z-shape cell capillary electrophoresis method with UV detection and vancomycin loading led to the reliable determination of these metal ions in tap water and the recoveries were 97%-101%. The detection limits based on a signal to noise ratio of 3: 1 were found in the range of 2-10 μg·L-1.

  17. Chemical Sensors Based on Metal Oxide Nanostructures

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  18. Half-sandwich pentamethylcyclopentadienyl group 9 metal complexes of 2-aminopyridyl ligands: Synthesis, spectral and molecular study

    Indian Academy of Sciences (India)

    Mahesh Kalidasan; Scott Forbes; Yurij Mozharivskyj; Mohan Rao Kollipara

    2015-06-01

    Thereaction of [Cp*M(-Cl)Cl]2 (M = Rh, Ir) with 2-aminopyridyl based ligands lead to the formation of mononuclear neutral complexes of general formula [Cp*MCl2(L)] {where L1= 2-aminopyridine, L2= 2-amino-3-picoline, L3= 2-amino-3-nirtopyridine, and L4= 2-amino-3-pyridine carboxyaldehyde}. The complexes have been characterized by FT-IR, UV-Vis, 1H-13C NMR and mass spectroscopic methods. X-ray crystallographic studies of the complexes have shown typical piano-stool geometry around the metal centre in which 2-aminopyridyl ligand acts as an N-monodentate ligand and the amino functionality is not involved in metal coordination. The intra/intermolecular arrangement is due to hydrogen bonding.

  19. Gallium(III) and indium(III) dithiolate complexes: Versatile precursors for metal sulfides

    Indian Academy of Sciences (India)

    Shamik Ghoshal; Vimal K Jain

    2007-11-01

    The chemistry of classical and organometallic complexes of gallium and indium with dithiolate ligands, i.e., dithiocarboxylates, xanthates, dithiocarbamates, dithiophosphates, dithiophophinates and dithioarsenates, has been reviewed. Synthesis, spectroscopic and structural aspects of these complexes are described. Their emerging role as single source molecular precursors for the preparation of metal sulfide thin films and nano-particles has been discussed.

  20. Raman scattering and photophysics in spin-state-labile d(6) metal complexes

    NARCIS (Netherlands)

    Browne, WR; McGarvey, JJ

    2006-01-01

    In this review two areas of d(6) transition metal ion chemistry and photophysics are briefly reviewed (i) that of Ru(II)dipyridophenazine (dppz) complexes as DNA intercalators and (ii) spin crossover behavior in Fe(II) complexes. In both areas the role of Raman spectroscopy in providing information

  1. Confirmation of molecular formulas of metallic complexes through X-ray fluorescence quantitative analysis

    International Nuclear Information System (INIS)

    X-ray fluorescence spectrophotometry was employed to determined the metal content in a series of five transition element complexes (Mn, Ti, Zn, V). The results confirmed the molecular formulas of these complexes, already proposed on the basis of elemental microanalysis, solution condutimetry and other analytical methods. (C.L.B.)

  2. Light induced electron transfer reactions of metal complexes

    International Nuclear Information System (INIS)

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed

  3. Unveiling the complex electronic structure of amorphous metal oxides

    OpenAIRE

    Arhammar, C.; Pietzsch, A; Bock, N.; Holmstrom, E.; Araujo, C. M.; Grasjo, J.; Zhao, S.; Green, S; Peery, T.; Hennies, F.; Amerioun, S.; Fohlisch, A.; Schlappa, J.; Schmitt, T; Strocov, V. N.

    2011-01-01

    Amorphous materials represent a large and important emerging area of material’s science. Amorphous oxides are key technological oxides in applications such as a gate dielectric in Complementary metal-oxide semiconductor devices and in Silicon-Oxide-Nitride-Oxide-Silicon and TANOS (TaN-Al2O3-Si3N4-SiO2-Silicon) flash memories. These technologies are required for the high packing density of today’s integrated circuits. Therefore the investigation of defect states in these structures is crucial....

  4. Synthesis and Reactivity of Tripodal Complexes Containing Pendant Bases

    Energy Technology Data Exchange (ETDEWEB)

    Blacquiere, Johanna M.; Pegis, Michael L.; Raugei, Simone; Kaminsky, Werner; Forget, Amelie; Cook, Sarah; Taguchi, Taketo; Borovik, Andrew S.; Mayer, James M.

    2014-09-02

    The synthesis of a new tripodal ligand family is reported, with tertiary-amine groups in the second-coordination sphere. The ligands are tris(amido)amine derivatives, with the pendant amines attached via a peptide coupling strategy. They were designed to be used in new catalysts for the oxygen reduction reaction (ORR), in which the pendant acid/base group could improve catalyst performance. Two members of the new ligand family were each metallated with Co(II) and Zn(II) to afford trigonal monopyramidal complexes. Reaction of the cobalt complexes, [Co(L)]-, with dioxygen reversibly generates a small amount of a Co(III)-superoxo species, which was characterized by EPR. Protonation of the zinc complex Zn[N{CH2CH2NC(O)CH2N(CH2Ph)2}3)-– ([Zn(TNBn)]-) with one equivalent of acid occurs with displacement and dissociation of an amide ligand. Addition of excess acid to the any of the complexes [M(L)]- results in complete proteolysis and formation of the ligands H3L. This decomposition limits the use of these complexes as catalysts for the ORR. An alternative ligand with two pyridyl arms was also prepared but could not be metallated. These studies highlight the importance of stability of the primary-coordination sphere of ORR electrocatalysts to both oxidative and acidic conditions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  5. Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity

    Science.gov (United States)

    Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin

    2015-11-01

    Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.

  6. Preparation, structural characterization and biological evaluation of L-tyrosinate metal ion complexes

    Science.gov (United States)

    Refat, Moamen S.; El-Korashy, Sabry A.; Ahmed, Ahmed S.

    2008-06-01

    The complexes formed between different metal ions and biological molecules like amino acids play an important role in human life. Sn(II), Sn(IV), Zn(II), Cd(II), Hg(II), Cr(III), Fe(III), La(III), ZrO(II) and UO 2(II) complexes are synthesized with L-tyrosine (tyr). These complexes are characterized by elemental analysis, molar conductance, magnetic measurements, mass, IR, UV-vis and 1H NMR spectra as well as thermogravimetric analysis (TGA/DTG). It has been found from the elemental analysis and the thermal studies that the ligand behaves as bidentate ligand forming chelates with 1:3 (metal:ligand) stoichiometry for trivalent metals and 1:2 for divalent and tetravalent metals. The molar conductance measurements of the complexes in DMSO indicate that the complexes are non-electrolyte. The activation energies and other kinetic parameters were calculated from the Coats-Redfern and Horowitz-Metzger equations. The biological activities of the metal complexes have also been studied against different bacteria and fungi.

  7. Catalytic hydrolysis of phosphate diester (BNPP) and plasmid DNA by mononuclear macrocyclic polyamine metal complexes

    Institute of Scientific and Technical Information of China (English)

    Qing Xiang Xiang; Li Qun Zhang; Xiao Qi Yu; Ru Gang Xie

    2009-01-01

    The activities of the catalytic hydrolysis of phosphate diester (BNPP) [bis(p-nitrophenyl)phosphate diester]and plasmid DNA (pUC 18) by mononuclear macrocyclic polyamine metal complexes have been investigated in this paper.The results showed that the highest activity in hydrolysis of BNPP was obtained with le-Zn(II) complex (composed of lipophilic group) as catalyst.The hydrolysis rate enhancement is up to 3.64 × 104 fold.These metal complexes could effectively promote the cleavage of plasmid DNA (pUC18) at physiological conditions.

  8. Synthesis, Crystal Structure and Luminescent Property of a Novel Pt(II) Complex with Weak Metal-metal Interaction

    Institute of Scientific and Technical Information of China (English)

    YUE Cheng-Yang; JIANG Fei-Long; FENG Rui; HONG Mao-Chun

    2008-01-01

    The title complex cis-bis(tetrahydrothiophene)-bis(nitrate) platinum(II), (tht)2Pt(NO3)2, was the reducing product from potassium hexachloroplatinate(IV) K2PtCl6 where the platinum is tetra-valenced. Crystal data for C8H16N2O6PtS2: monoclinic, space group P21/c, a = 9.8833(5), b = 8.6744(4), c = 18.6407(9) (A), β = 114.401(3)°, V = 1455.35(12) (A)3, Z = 4, Mr = 495.44, Dc = 2.261 g/cm3, F(000) = 944, μ = 9.950 mm-1, λ(MoKα) = 0.71073 (A), T = 293(2) K, 2θmax = 54.96o, GOOF = 1.033, R = 0.0350 and wR = 0.0785 for 2572 observed reflections with I > 2σ(I). X-ray diffraction studies reveal that the title complex has interesting weak metal-metal interactions and two molecules linked by metal-metal interaction exist as a group. Luminescent spectrum illuminates red emission of the complex at room temperature.

  9. Coinage metal complexes supported by a "PN(3)P" scaffold.

    Science.gov (United States)

    Rao, Gyandshwar Kumar; Gorelsky, Serge I; Korobkov, Ilia; Richeson, Darrin

    2015-11-28

    A series of monovalent group 11 complexes, [2,6-{Ph2PNMe}2(NC5H3)]CuBr 1, [2,6-{Ph2PNMe}2(NC5H3)]CuOTf 2, [2,6-{Ph2PNMe}2(NC5H3)]AgOTf 3, and [2,6-{Ph2PNMe}2(NC5H3)](AuCl)24, supported by a neutral PN(3)P ligand have been synthesized and characterized by multinuclear NMR and single crystal X-ray diffraction studies. The variation of the coordination properties were analyzed and electronic structure calculations have been carried out to provide insight on the bonding details in these complexes. The Cu(I) complexes displayed an unusual coordination geometry with a tridentate pincer ligand and an overall four coordinate trigonal pyramidal geometry. In contrast the Ag(I) analogue displayed a bidentate κ(2)-P,P' ligation leaving the pyridyl-N atom uncoordinated and yielding a pyramidalized trigonal planar geometry around Ag. The bimetallic Au(I) complex completed the series and displayed a monodentate P-bonded ligand and a linear coordination geometry.

  10. The Stability Constants of Complexes of BDBPH-Metals and Species Distributions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The stability constants of the mononuclear complexes of BDBPH-Zn(II), Cd(II) and Mn (Ⅱ) were determined by the potentiometric equilibrium measurements, and species distributions were also discussed. The metal ions do not combine with the ligand until the first two protons of the ligand have almost been completely neutralized. The main species were mononuclear complexes with the diprotonated ligand, MH2L. The three metal ions also form mono- and noprotonated (fully deprotonated) complexes, MHL, ML. The relative order of stabilities of the mononuclear complexes, ML, is Zn(Ⅱ)> Cd(Ⅱ)> Mn(Ⅱ). The ligand has strong tendency to form mononuclear complexes with Zn(Ⅱ), Cd(Ⅱ) and Mn(Ⅱ), and it can also form dinuclear complexes at high pH.

  11. Fabrication of carbon nanotube films from alkyne-transition metal complexes

    Science.gov (United States)

    Iyer, Vivekanantan S.; Vollhardt, K. Peter C.

    2007-08-28

    A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.

  12. Correlation between ionic radii of metal azodye complexes and electrical conductivity.

    Science.gov (United States)

    El-Ghamaz, N A; El-Sonbati, A Z; Diab, M A; El-Bindary, A A; Mohamed, G G; Morgan, Sh M

    2015-08-01

    5-(2,3-Dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) and its metal complexes with copper(II) (1), cobalt(II) (2) and nickel(II) (3) are synthesized and characterized by physico-chemical techniques. The thermal properties of the ligand (HL) and its metal complexes (1-3) are discussed. The thermal activation energies of decomposition (Ea) of HL and its metal complexes with Cu(II), Co(II) and Ni(II) are found to be 48.76, 36.83, 30.59 and 40.45 kJ/mol, respectively. The frequency and temperature dependence of ac conductivity, dielectric constants for HL and its complexes (1-3) are investigated in the temperature range 300-356 K and frequency range 0.1-100 kHz. Both of the ac conductivity and the values of the thermal activation energy for conduction, as well as the dielectric properties of the complexes of HL are found to depend on the nature of the metallic ions. The values of the thermal activation energies of electrical conductivity decrease with increasing the value of test frequency. The small polarons tunneling (SPT) is the dominant conduction mechanism for the ligand (HL), while for complex (2) the overlapping large tunneling model (OLPT) is the dominant conduction mechanism. The correlated barrier hopping (CBH) is the dominant conduction mechanism for both of the complexes (1) and (3).

  13. Poly-functional description of metal complexation by natural organic matter: theory and practice

    International Nuclear Information System (INIS)

    The Differential Equilibrium Function (DEF) approach to metal complexation interpretation and prediction is compared to other models or approaches. The basic features of DEF are summarized, both from the experimental and theoretical points of view. The relation of DEF with key environmental concepts or parameters, in particular minor vs major complexing sites, the buffering intensity of natural organic matter (NOM), and their poly functional vs polyelectrolyte properties, is discussed. The relation between DEF and Freundlich isotherm is described quantitatively. The practical applications of DEF are discussed for (i) interpretation of metal complexation by NOM, and (ii) prediction of metal complexation by NOM. It is shown that DEF (i.e. sound extrapolation is possible with care). DEF cans be readily incorporated in metal species distribution codes (e.g. MINEQL). DEF is not equivalent to a molecular complexation model which describes complexation at each individual site; DEF gives a rigorous representation of complexation by NOM as a whole chemical system. (authors). 23 refs., 6 figs

  14. Exploring Coordination Modes: Late Transition Metal Complexes with a Methylene-bridged Macrocyclic Tetra-NHC Ligand.

    Science.gov (United States)

    Altmann, Philipp J; Weiss, Daniel T; Jandl, Christian; Kühn, Fritz E

    2016-05-20

    A tetranuclear silver(I) N-heterocyclic carbene (NHC) complex bearing a macrocyclic, exclusively methylene-bridged, tetracarbene ligand was synthesized and employed as transmetalation agent for the synthesis of nickel(II), palladium(II), platinum(II), and gold(I) derivatives. The transition metal complexes exhibit different coordination geometries, the coinage metals being bound in a linear fashion forming molecular box-type complexes, whereas the group 10 metals adapt an almost ideal square planar coordination geometry within the ligand's cavity, resulting in saddle-shaped complexes. Both the Ag(I) and the Au(I) complexes show ligand-induced metal-metal contacts, causing photoluminescence in the blue region for the gold complex. Distinct metal-dependent differences of the coordination behavior between the group 10 transition metals were elucidated by low-temperature NMR spectroscopy and DFT calculations. PMID:27017146

  15. Reactions of aliphatic free radicals with transition metal complexes

    International Nuclear Information System (INIS)

    A pulse radiolytic study of the reactions of copper ions with free aliphatic radicals was carried out. It was found that all the aliphatic radicals studied react with Cusub(aq)sup(+) and Cusub(aq)sup(2+), forming an unstable compound, with a carbon-copper σ bond, according to the reaction Mnsub(aq)sup(n+)+ . CR1R2R3 → M-CR1R2Rsub(3)sup(n+). It was also found that the rates of formation of the intermediate compounds, their half-lives and their decomposition mechanism depend on the properties of the radical and the cation. Experiments for the determination of the influence of macrocyclic ligands of the Curtis type on the stability of intermediate compounds failed because of insufficient concentrations of these ligands. The processes of ligand hydridization, isomerization and decomposition for the macrocylic complexes Cusup(I)L were also studied. These complexes, which are unstable, are formed as a result of the reaction of the stable Cusup(II)L complexes with certain free aliphatic radicals

  16. β-Cyclodextrin as a Metal-anionic Porphyrin Complexation Accelerator in Aqueous Media.

    Science.gov (United States)

    Ohtomo, Takao; Yokoyama, Aya; Konno, Mitsuyuki; Ohno, Osamu; Igarashi, Shukuro; Takagai, Yoshitaka

    2016-01-01

    The rate of the complexation reaction between anionic porphyrins and 11 metal ions was found to be accelerated by the presence of β-cyclodextrin (β-CD) in aqueous media at room temperature without the need for additional heating or sonication. The porphyrin complexation reaction with metal ions under aqueous conditions can be difficult due to the strong hydration energy between the metal ions and water. In this study, the specific role of β-CD as an accelerator was determined and found to enhance the typically slow reaction of the porphyrin with metal ions. A significant acceleration effect was exhibited when the model anionic porphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphine-tetrasulfonic acid, and Pb(II) ions were combined in the presence of β-CD. Other than for Hg ion, the addition of β-CD decreased the metalation reaction time from 30 to 2 min. The order in the degree of acceleration was Pb > Zn, Cd > Cu > Fe, Pd > Sn > Ag, Co, Mn. Using Pb(II) as the model ion, it was determined that the complexation rate constant was enhanced by a factor of 2.4, while the dissociation rate constant was diminished by a factor of 135 in the presence of added β-CD relative to that in its absence. Overall, the complex was much more stable (formation equilibrium constant 324-fold greater in the β-CD medium. The formation of a ternary complex (cf. bicapped complex; (β-CD)2-porphyrin-metal ion) was demonstrated through the use of nuclear magnetic-resonance spectroscopy and mass spectrometry. This acceleration effect is expected to be applicable systems in which porphyrin ligands are employed for determining of metal ions in chemical analysis and separation science.

  17. β-Cyclodextrin as a Metal-anionic Porphyrin Complexation Accelerator in Aqueous Media.

    Science.gov (United States)

    Ohtomo, Takao; Yokoyama, Aya; Konno, Mitsuyuki; Ohno, Osamu; Igarashi, Shukuro; Takagai, Yoshitaka

    2016-01-01

    The rate of the complexation reaction between anionic porphyrins and 11 metal ions was found to be accelerated by the presence of β-cyclodextrin (β-CD) in aqueous media at room temperature without the need for additional heating or sonication. The porphyrin complexation reaction with metal ions under aqueous conditions can be difficult due to the strong hydration energy between the metal ions and water. In this study, the specific role of β-CD as an accelerator was determined and found to enhance the typically slow reaction of the porphyrin with metal ions. A significant acceleration effect was exhibited when the model anionic porphyrin, 5,10,15,20-tetraphenyl-21H,23H-porphine-tetrasulfonic acid, and Pb(II) ions were combined in the presence of β-CD. Other than for Hg ion, the addition of β-CD decreased the metalation reaction time from 30 to 2 min. The order in the degree of acceleration was Pb > Zn, Cd > Cu > Fe, Pd > Sn > Ag, Co, Mn. Using Pb(II) as the model ion, it was determined that the complexation rate constant was enhanced by a factor of 2.4, while the dissociation rate constant was diminished by a factor of 135 in the presence of added β-CD relative to that in its absence. Overall, the complex was much more stable (formation equilibrium constant 324-fold greater in the β-CD medium. The formation of a ternary complex (cf. bicapped complex; (β-CD)2-porphyrin-metal ion) was demonstrated through the use of nuclear magnetic-resonance spectroscopy and mass spectrometry. This acceleration effect is expected to be applicable systems in which porphyrin ligands are employed for determining of metal ions in chemical analysis and separation science. PMID:27302582

  18. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    Science.gov (United States)

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals. PMID:27273193

  19. Dissociative CdSe/ZnS Quantum Dot-Molecule Complex for Luminescent Sensing of Metal Ions in Aqueous Solutions

    OpenAIRE

    Baranov, A. V.; Orlova, A. O.; Maslov, V. G.; Toporova, Yu. A.; Ushakova, E. V.; Federov, A.; Artemyev, M. V.; Perova, T. S.; Berwick, Kevin

    2010-01-01

    The optical properties of dissociative luminescent sensors based on a complex consisting of highly luminescent hydrophobic core/shell CdSe/ZnS quantum dots (QDs) and 1-(2-pyridilazo)-2-naphtol (PAN) molecules in organic solutions and a polymer film are reported. It is demonstrated, using Ni2+ and Co2+ ions as an illustrative example, that the QD/PAN sensor may have applications in the quantitative luminescent sensing of metal ions in aqueous solutions.

  20. Progress in base-metal water oxidation catalysis.

    Science.gov (United States)

    Parent, Alexander Rene; Sakai, Ken

    2014-08-01

    This minireview provides a brief overview of the progress that has been made in developing homogeneous water oxidation catalysts based on base metals (manganese, iron, cobalt, nickel, and copper) from the 1990s to mid-2014. The impact of each contribution is analyzed, and opportunities for further improvement are noted. In addition, the relative stabilities of the base-metal catalysts that have been reported are compared to illustrate the importance of developing more robust catalytic systems by using these metals. This manuscript is intended to provide a firm foundation for researchers entering the field of water oxidation based on base metals and a useful reference for those currently involved in the field.

  1. Investigation of aromatase inhibitory activity of metal complexes of 8-hydroxyquinoline and uracil derivatives

    Directory of Open Access Journals (Sweden)

    Prachayasittikul V

    2014-08-01

    Full Text Available Veda Prachayasittikul,1 Ratchanok Pingaew,2 Chanin Nantasenamat,3 Supaluk Prachayasittikul,3 Somsak Ruchirawat,4,5 Virapong Prachayasittikul1 1Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 2Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand; 3Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand; 4Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 5Chulabhorn Graduate Institute, Bangkok, Thailand Purpose: Estrogens play important roles in the pathogenesis and progression of breast cancer as well as estrogen-related diseases. Aromatase is a key enzyme in the rate-limiting step of estrogen production, in which its inhibition is one strategy for controlling estrogen levels to improve prognosis of estrogen-related cancers and diseases. Herein, a series of metal (Mn, Cu, and Ni complexes of 8-hydroxyquinoline (8HQ and uracil derivatives (4–9 were investigated for their aromatase inhibitory and cytotoxic activities. Methods: The aromatase inhibition assay was performed according to a Gentest™ kit using CYP19 enzyme, wherein ketoconazole and letrozole were used as reference drugs. The cytotoxicity was tested on normal embryonic lung cells (MRC-5 using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay. Results: Only Cu complexes (6 and 9 exhibited aromatase inhibitory effect with IC50 0.30 and 1.7 µM, respectively. Cytotoxicity test against MRC-5 cells showed that Mn and Cu complexes (5 and 6, as well as free ligand 8HQ, exhibited activity with IC50 range 0.74–6.27 µM. Conclusion: Cu complexes (6 and 9 were found to act as a novel class of aromatase inhibitor. Our findings suggest that these 8HQ–Cu–uracil complexes are promising agents that could be potentially developed as a selective anticancer agent for breast cancer

  2. First-row transition-metal-diborane and -borylene complexes.

    Science.gov (United States)

    Sharmila, Dudekula; Mondal, Bijan; Ramalakshmi, Rongala; Kundu, Sangita; Varghese, Babu; Ghosh, Sundargopal

    2015-03-23

    A combined experimental and quantum chemical study of Group 7 borane, trimetallic triply bridged borylene and boride complexes has been undertaken. Treatment of [{Cp*CoCl}2 ] (Cp*=1,2,3,4,5-pentamethylcyclopentadienyl) with LiBH4 ⋅thf at -78 °C, followed by room-temperature reaction with three equivalents of [Mn2 (CO)10 ] yielded a manganese hexahydridodiborate compound [{(OC)4 Mn}(η(6) -B2 H6 ){Mn(CO)3 }2 (μ-H)] (1) and a triply bridged borylene complex [(μ3 -BH)(Cp*Co)2 (μ-CO)(μ-H)2 MnH(CO)3 ] (2). In a similar fashion, [Re2 (CO)10 ] generated [(μ3 -BH)(Cp*Co)2 (μ-CO)(μ-H)2 ReH(CO)3 ] (3) and [(μ3 -BH)(Cp*Co)2 (μ-CO)2 (μ-H)Co(CO)3 ] (4) in modest yields. In contrast, [Ru3 (CO)12 ] under similar reaction conditions yielded a heterometallic semi-interstitial boride cluster [(Cp*Co)(μ-H)3 Ru3 (CO)9 B] (5). The solid-state X-ray structure of compound 1 shows a significantly shorter boron-boron bond length. The detailed spectroscopic data of 1 and the unusual structural and bonding features have been described. All the complexes have been characterized by using (1) H, (11) B, (13) C NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis. The DFT computations were used to shed light on the bonding and electronic structures of these new compounds. The study reveals a dominant B-H-Mn, a weak B-B-Mn interaction, and an enhanced B-B bonding in 1. PMID:25689833

  3. Metal-metal multiply bonded complexes of technetium. 1. Synthesis and structural characterization of phosphine complexes that contain a Tc-Tc multiple bond

    International Nuclear Information System (INIS)

    A series of triply metal-metal bonded ditechnetium(II) phosphine complexes with the general formula Tc2Cl4(PR3)4 (PR3 = PEt3, PPrn3, PMePh2, PMe2Ph) have been prepared from mononuclear Tc(IV) precursors and fully characterized. Two-electron reduction of the Tc(IV) bis(phosphine) complexes TcCl4(PR3)2 (PR3 = PEt3, PPrn3, PMePh2, PMe2Ph) with finely divided zinc in aromatic solvents or tetrahydrofuran results in the formation of the corresponding electron-rich triply bonded compounds Tc2Cl4(PR3)4 in high yield. These are the first phosphine complexes of technetium that possess a metal-metal bond. The solid-state structures of the PEt3, PMe2Ph, and PMePh2 derivatives have been investigated by X-ray crystallography and are described in detail. Similar to the analogous dirhenium(II) complexes, the molecules adopt an eclipsed M2L8 conformation with approximate D2d symmetry. The Tc-Tc bond lengths are 2.133(3), 2.127(1), and 2.1384(5) angstrom for Tc2Cl4(PEt3)4, Tc2Cl4(PEt3)4, Tc2Cl4(PMe2Ph)4, and Tc2Cl4(PMePh2)4, respectively. Structural and spectroscopic evidence indicates that these dimers contain an electron-rich Tc-Tc triple bond with a σ2-π-4δ2δ*2 ground-state electronic configuration. Electrochemical studies reveal that each compound undergoes two reversible one-electron oxidation processes, which presumably produce the corresponding Tc25+ and Tc26+ dinuclear species. 1H HMR, 31P(1H) NMR, and UV-vis spectroscopic data are presented for each compound

  4. Complexes of metals with humus substances as natural biocolloids: mechanism and size

    Science.gov (United States)

    Dinu, Marina; Shkinev, Valery; Linnik, Vitaly

    2014-05-01

    Metal complexes with humus substances in the soil are natural biocolloids, which are characterized by the size of the nano- to milli grams. Physical state of the compound functional features humus substances (HS), the nature of metal - all these parameters define different mechanisms transportation of the metal in the soil profile. To assess changes in the composition humus substances complexes with metals and molecular weights humus substances used methods ultrotsentrifugation and filtration (electrochemical and chromatographic methods. Soil samples of gleepodzolic were selected in Hibin (Russia) by layers (0-50 cm) by 5 cm. According to the data within the layers ultrafiltration alkali metals do not stay in any of the fractions and to migrate as the ions (40-50 cm). Alkali- earth metals, on the contrary, delayed a layer ( 2-7 cm), most humified layer, explained by the appearance of active d- orbital of the metal cations, and their greater ability to form complexes than alkali metals. Aluminum content of elements of the subgroup represented by several peaks, mainly in the upper layers of the soil in those areas where the most represented type of fulvic humus substances. High concentration of iron in all studied soil layers. An exception is the 15-35 cm layer which contains humic substance in large quantities compared with fulvic acids, that may explain the decrease in the affinity of the metal to the functional groups and less strong sorption communication mechanism. Metal concentrations of nickel and cobalt are practically unchanged with soil depth. Indicating that almost the same ability to bind to humic and fulvic acids. In samples of 5-8 cm identified reduction of zinc and copper ions in the filtrates from 8 microns to 100 kDa. However, complexes with zinc ions of HS molecular weight less than 100 kDa in all filtrates predominates, particularly fulvic type complexes. Lead ions are predominantly high molecular weight complexes of over 1000 kD, so the filtrate

  5. The first one-pot synthesis of metal-organic frameworks functionalised with two transition-metal complexes.

    Science.gov (United States)

    Platero-Prats, Ana E; Bermejo Gómez, Antonio; Samain, Louise; Zou, Xiaodong; Martín-Matute, Belén

    2015-01-01

    The synthesis of a metal-organic framework (UiO-67) functionalised simultaneously with two different transition metal complexes (Ir and Pd or Rh) through a one-pot procedure is reported for the first time. This has been achieved by an iterative modification of the synthesis parameters combined with characterisation of the resulting materials using different techniques, including X-ray absorption spectroscopy (XAS). The method also allows the first synthesis of UiO-67 with a very wide range of loadings (from 4 to 43 mol %) of an iridium complex ([IrCp*(bpydc)(Cl)Cl](2-) ; bpydc=2,2'-bipyridine-5,5'-dicarboxylate, Cp*=pentamethylcyclopentadienyl) through a pre-functionalisation methodology.

  6. Synthesis of new microbial pesticide metal complexes derived from coumarin-imine ligand

    Science.gov (United States)

    Elhusseiny, Amel F.; Aazam, Elham S.; Al-Amri, Huda M.

    2014-07-01

    A series of metal complexes of zinc(II), cadmium(II), copper(II), nickel(II) and palladium(II) have been synthesized from coumarin-imine ligand, 8-[(1E)-1-(2-aminophenyliminio)ethyl]-2-oxo-2H-chromen-7-olate, [HL]. The structures of the complexes were proposed in the light of their spectroscopic, molar conductance, magnetic and thermal studies. The ligand coordinated in a tridentate manner through the azomethine nitrogen, the phenolic oxygen and the amine nitrogen and all complexes were non-electrolytes with different geometrical arrangements around the central metal ion. Photoluminescence data unambiguously showed remarkable fluorescence enhancement to Zn2+ over other cations. The antimicrobial screening tests revealed that copper(II) complex exhibited the highest potency and its minimum inhibitory concentration on the enzymatic activities of the tested microbial species was determined. No toxin productivity was detected for all tested toxigenic species upon the exposure of copper complex.

  7. A Heteroepitaxial Perovskite Metal-Base Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Yajima, T.; Hikita, Y.; /Tokyo U.; Hwang, H.Y.; /Tokyo U. /JST, PRESTO /SLAC

    2011-08-11

    'More than Moore' captures a concept for overcoming limitations in silicon electronics by incorporating new functionalities in the constituent materials. Perovskite oxides are candidates because of their vast array of physical properties in a common structure. They also enable new electronic devices based on strongly-correlated electrons. The field effect transistor and its derivatives have been the principal oxide devices investigated thus far, but another option is available in a different geometry: if the current is perpendicular to the interface, the strong internal electric fields generated at back-to-back heterojunctions can be used for oxide electronics, analogous to bipolar transistors. Here we demonstrate a perovskite heteroepitaxial metal-base transistor operating at room temperature, enabled by interface dipole engineering. Analysis of many devices quantifies the evolution from hot-electron to permeable-base behaviour. This device provides a platform for incorporating the exotic ground states of perovskite oxides, as well as novel electronic phases at their interfaces.

  8. Finite element simulations of sheet metal forming under complex strain paths

    Institute of Scientific and Technical Information of China (English)

    CHEN Wei; YANG Jichang; WU Xiaofeng; LU Dun; GUO Weigang

    2007-01-01

    Fracture is a common defect in sheet metal forming and it is essentially caused by tensile instability. This paper analyzes some experiments and theories for building forming limit diagrams of sheet metal and points out the advantages and disadvantages of current experiments and theories. According to this, a method that integrates the finite element simulation and experiment was used to research the forming limit diagrams of the sheet metal under complex strain paths. Taking the rear hanger that undergoes twice stamping as an example, the strain paths of the dangerous point of the rear hanger is investigated. Finally, the forming method of the rear hanger is confirmed. Results indicate that finite element method (FEM) can achieve the complex strain paths and different strain paths will have great impacts on the result of the sheet metal forming.

  9. Pharmacological Evaluation of Naproxen Metal Complexes on Antinociceptive, Anxiolytic, CNS Depressant, and Hypoglycemic Properties

    Science.gov (United States)

    Das, Narhari; Abdur Rahman, S. M.

    2016-01-01

    Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435

  10. Cage Opening of a Carborane Ligand by Metal Cluster Complexes.

    Science.gov (United States)

    Adams, Richard D; Kiprotich, Joseph; Peryshkov, Dmitry V; Wong, Yuen Onn

    2016-05-01

    The reaction of Os3 (CO)10 (NCMe)2 with closo-o-C2 B10 H10 has yielded two interconvertible isomers Os3 (CO)9 (μ3 -4,5,9-C2 B10 H8 )(μ-H)2 (1 a) and Os3 (CO)9 (μ3 -3,4,8-C2 B10 H8 )(μ-H)2 (1 b) formed by the loss of the two NCMe ligands and one CO ligand from the Os3 cluster. Two BH bonds of the o-C2 B10 H10 were activated in its addition to the osmium cluster. A second triosmium cluster was added to the 1 a/1 b mixture to yield the complex Os3 (CO)9 (μ-H)2 (μ3 -4,5,9-μ3 -7,11,12-C2 B10 H7 )Os3 (CO)9 (μ-H)3 (2) that contains two triosmium triangles attached to the same carborane cage. When heated, 2 was transformed to the complex Os3 (CO)9 (μ-H)(μ3 -3,4,8-μ3 -7,11,12-C2 B10 H8 )Os3 (CO)9 (μ-H) (3) by a novel opening of the carborane cage with loss of H2 . PMID:26971388

  11. Pore-controlled formation of 0D metal complexes in anionic 3D metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, MW; Bosch, M; Zhou, HC

    2015-01-01

    The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains crystallographically identifiable metal complexes trapped in the pores, where their formation is controlled by the size and shape of the MOF pores. A change in the structure and pore size of PCN-518 indicates that the existence of guest molecules may reciprocally affect the formation of host MOFs.

  12. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    Science.gov (United States)

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  13. Fluorescent zinc and copper complexes for detection of adrafinil in paper-based microfluidic devices.

    Science.gov (United States)

    Caglayan, Mehmet Gokhan; Sheykhi, Sara; Mosca, Lorenzo; Anzenbacher, Pavel

    2016-07-01

    Recognition of electroneutral Lewis bases and anions in aqueous media is extremely difficult. We show that fluorescent coordinatively unsaturated metal complexes can recognize various Lewis bases while providing an easy-to-detect fluorescence response. This approach is applied to the detection of adrafinil, a banned performance-enhancing drug. PMID:27293080

  14. Synthesis, Characterization and Antibacterial Activity of a Novel Curcumin Metal Complex

    OpenAIRE

    Anindya Bagchi; Prosenjit Mukherjee; Sarmistha Bhowmick; Anusree Raha

    2015-01-01

    In the present work a central transition metal cation (Ferrous sulphate) was selected where curcumin acts as ligand which ultimately give a chelate that is formed with enolic form of curcumin and because curcumin having anti-inflammatory activity, so a novel curcumin metal complex was synthesized with establishing their characterization spectrophotometrically and also in-vitro anti-inflammatory activity has been measured with comparing with the pure curcumin.

  15. Synthesis, Characterization and Antibacterial Activity of a Novel Curcumin Metal Complex

    Directory of Open Access Journals (Sweden)

    Anindya Bagchi

    2015-06-01

    Full Text Available In the present work a central transition metal cation (Ferrous sulphate was selected where curcumin acts as ligand which ultimately give a chelate that is formed with enolic form of curcumin and because curcumin having anti-inflammatory activity, so a novel curcumin metal complex was synthesized with establishing their characterization spectrophotometrically and also in-vitro anti-inflammatory activity has been measured with comparing with the pure curcumin.

  16. Structural and Spectral Properties of Curcumin and Metal- Curcumin Complex Derived from Turmeric (Curcuma longa)

    Science.gov (United States)

    Bich, Vu Thi; Thuy, Nguyen Thi; Binh, Nguyen Thanh; Huong, Nguyen Thi Mai; Yen, Pham Nguyen Dong; Luong, Tran Thanh

    Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa) were studied by SEM and vibrational (FTIR and Raman) techniques. By comparison between curcumin commercial, fresh turmeric and a yellow powder obtained via extraction and purification of turmeric, we have found that this insoluble powder in water is curcumin. The yellow compound could complex with certain ion metal and this metal-curcumin coloring complex is water soluble and capable of producing varying hues of the same colors and having antimicrobial, cytotoxicity activities for use in foodstuffs and pharmacy. The result also demonstrates that Micro-Raman spec-troscopy is a valuable non-destructive tool and fast for investigation of a natural plant even when occurring in low concentrations.

  17. Ethylenediamine complexes of transition metals in zeolite X

    International Nuclear Information System (INIS)

    Single-crystal X-ray diffraction studies of two ion-exchanged zeolite forms of the faujasite type are performed. Form I, NaCu[Cu(en)2]X [a=25.013(5) A, space group Fd3, 315F(hkl), R=0.050], is obtained by the treatment of zeolite NaX crystals with a [Cu(en)2]SO4 solution. Form II, NaCo[Co(en)x]X [a=25.000(5) A, space group Fd3, 532F(hkl), R=0.051], is obtained by the treatment of zeolite NaCoX with an ethylenediamine solution. Along with Na, Cu, and Co ions situated at the positions typical of zeolite X, the cationic complexes [Cu(en)2]2+ and [Co(en)x]2+ are found to be located in the large-sized zeolite cavities

  18. Computer-based sensing and visualizing of metal transfer mode in gas metal arc welding

    Institute of Scientific and Technical Information of China (English)

    Chen Maoai; Wu Chuansong; Lü Yunfei

    2008-01-01

    Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of the welding current and arc voltage with high speed imaging of the metal transfer. It can simultaneously display the metal transfer processes and waveforms of electrical welding parameters in real-time The metal transfer videos and waveforms of electrical welding parameters can be recorded. Metal transfers under various welding conditions have been investigated with the system developed.

  19. Stromatolites, Metals, Statistics and Microbial Mats: A Complex Interplay

    Science.gov (United States)

    Spear, J. R.

    2014-12-01

    Initially thought to be relatively 'simple' ecosystems for study, microbial mats have long been considered ideal for any number of research questions. Microbial mats can be found in any number of environments, both natural and manmade, and are typically dependent upon the physiochemical environment for their structure, maintenance and longevity. Ultimately, these and other parameters govern community whereby a microbial mat provides overall ecosystem services to their environment. On the edge of a hotspring in Yellowstone National Park we have found an active microbial mat community that can form a laminated, lithified, accretionary structure that is likely the best example of a living and growing stromatolite. In the outfall channel of the sulfidic Stinking Spring, Utah, we have found examples of both naturally occurring laminated and floating mats where the carbon flux is controlled by abiotic degassing of CO2 rather than metabolism. δ13C-bicarbonate uptake experiments reveal an autotrophic growth rate of 0 - 0.16%/day while δ13C-acetate reveals a higher heterotrophic growth rate of 0.03 - 0.65%/day, which highlights the role of heterotrophs in these mats. Similar growth experiments on Little Hot Creek, California laminated microbial mats reveal a trend for top-down microbial growth with similar microbial taxonomy and diversity to other mat-types. Of a curious note is that incubation experiments with Little Hot Creek mats reveals the importance of particular metals in mat structure and function. Statistically, alpha- and beta-diversity metrics are often used to characterize microbial communities in such systems, but from an analysis of a wastewater treatment system, Hill diversities can better interpret the effective number of species to produce an ecologically intuitive quantity to better understand a microbial mat ecosystem.

  20. Synthesis and catalytic activities of porphyrin-based PCP pincer complexes.

    OpenAIRE

    Fujimoto, Keisuke; Yoneda, Tomoki; Yorimitsu, Hideki; Osuka, Atsuhiro

    2013-01-01

    2,18-Bis(diphenylphosphino)porphyrins undergo peripheral cyclometalation with group 10 transition-metal salts to afford the corresponding porphyrin-based PCP pincer complexes. The porphyrinic plane and the PCP-pincer unit are apparently coplanar, with small strain. The catalytic activities of the porphyrin-based pincer complexes at the periphery were investigated in the allylation of benzaldehyde with allylstannane and in the 1,4-reduction of chalcone to discover the electronic interplay betw...

  1. Extraction-mass spectrometric determination of platinum metals in materials of complex composition

    International Nuclear Information System (INIS)

    A method is developed for the extraction mass-spectrometric determination of platinum metals, including ruthenium. The loWer limit of detectable contents is 1.6x10-6 mass.% (a coefficient of concentration is 50). The relative standard deviation is 0.19-0.38. Relative sensitivity coefficients determined experimentally with the aid of reference samples for platinum metals enable the systematic errors of analysis results to be taken into account. The method is most advisably used for the simultaneous determination of platinum metals in complex objects (minerals, rocks, etc.)

  2. DFT modeling and spectroscopic study of metal ligand bonding in La(III) complex of coumarin-3-carboxylic acid

    Science.gov (United States)

    Mihaylov, Tz.; Trendafilova, N.; Kostova, I.; Georgieva, I.; Bauer, G.

    2006-09-01

    The binding mode of coumarin-3-carboxylic acid (HCCA) to La(III) is elucidated at experimental and theoretical level. The complexation ability of the deprotonated ligand (CCA -) to La(III) is studied using elemental analysis, DTA and TGA data as well as FTIR, 1H NMR and 13C NMR spectra. The experimental data suggest the complex formula La(CCA) 2(NO 3)(H 2O) 2. B3LYP, BHLYP, B3P86, B3PW91, PW91P86 and MPW1PW91 functionals are tested for geometry and frequency calculations of the neutral ligand and all of them show bond length deviations bellow 1%. B3LYP/6-31G(d) level combined with large quasi-relativistic effective core potential for lanthanum is selected to describe the molecular, electronic and vibrational structures as well as the conformational behavior of HCCA, CCA - and La-CCA complex. The metal-ligand binding mode is predicted through molecular modeling and energy estimation of different La-CCA structures. The calculated atomic charges and the bonding orbital polarizations point to strong ionic metal-ligand bonding in La-CCA complex and insignificant donor acceptor interaction. Detailed vibrational analysis of HCCA, CCA - and La(CCA) 2(NO 3)(H 2O) 2 systems based on both calculated and experimental frequencies confirms the suggested metal-ligand binding mode.

  3. Synthesis, physical characterization and biological evaluation of Schiff base M(II complexes

    Directory of Open Access Journals (Sweden)

    Mahasin Alias

    2014-04-01

    Full Text Available Metal (II complexes of Cu, Ni, and Co with Schiff base derived from potassium 2-N (4-N,N-dimethylaminobenzyliden- 4-trithiocarbonate 1,3,4-thiadiazole (L were synthesized and characterized by standard physico-chemical procedures i.e. (metal analysis A.A, elemental chemical analysis C.H.N.S, FTIR, UV–vis, thermal analysis TGA, magnetic susceptibility and conductometric measurements. On the basis of these studies, a six coordinated octahedral geometry for all these complexes has been proposed. The Schiff base ligand and its complexes were also tested for their antibacterial activity to assess their inhibiting potential against Pseudomonas aeruginosa (as gram negative bacteria and Staphylococcus aureus (as gram positive bacteria using two different concentrations (5 and 10 mM. The results showed the Ni(II complex have the higher rate in antibacterial activity than other complexes and ligand when compared them with ampicillin as standard drug.

  4. Improved ORR activity of non-noble metal electrocatalysts by increasing ligand and metal ratio in synthetic complex precursors

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liucheng [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001 (China); Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada); Zhang Lei, E-mail: lei.zhang@nrc-cnrc.gc.ca [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada); Zhang Jiujun [Institute for Fuel Cell Innovation, National Research Council of Canada, Vancouver, BC V6T 1W5 (Canada)

    2011-06-30

    Highlights: > Various mole ratios between precursor Fe(II) and nitrogen-containing ligand of tripyridyl triazine (TPTZ) were investigated in order to further improve the ORR activity of Fe-N{sub x}/C catalyst. > The research results revealed that as the Fe to TPTZ mole ratio in the precursor complex was decreased, the catalytic ORR activity of Fe-N{sub x}/C increased monotonically in the mole ratio range of 1:2-1:6. > Increasing the amount of ligand in the precursor metal complex was demonstrated to be an effective way to compress the decomposition of ORR active site density and thereby enhance the ORR activity of Fe-N{sub x}/C. - Abstract: In an effort to improve oxygen reduction reaction (ORR) activity by increasing the catalytic active site density in carbon-supported non-noble metal catalysts, several nitrogen-containing catalysts were synthesized through a heat treatment process at 900 deg. C using precursor complexes of Fe(II) and tripyridyl triazine (TPTZ). Fe to TPTZ mole ratios of 1:2, 1:3, 1:4, 1:5, 1:6, and 1:7 were used to prepare the precursor complexes. X-ray diffraction and surface electrochemical techniques were used to characterize these catalysts (Fe-N{sub x}/C), and revealed that when the amount of TPTZ in the precursor complex was increased, the decomposition of Fe-N{sub x} sites, which are considered active sites for the ORR, was effectively reduced, resulting in higher Fe-N{sub x} site density and thus improving the catalysts' ORR activity. This beneficial effect was validated through rotating disk electrode tests and analysis of the ORR kinetics catalyzed by these catalysts. The obtained results showed that as the Fe to TPTZ mole ratio in the precursor complex was decreased, the catalytic ORR activity of Fe-N{sub x}/C increased monotonically in the mole ratio range of 1:2-1:6. Therefore, increasing the amount of ligand in the precursor metal complex was demonstrated to be an effective way to reduce the decomposition of ORR active site

  5. Synthesis, spectral studies, thermal behavior, and antibacterial activity of Ni(Ⅱ), Cu(Ⅱ), and Zn(Ⅱ) complexes with an ONO tridentate Schiff base

    Institute of Scientific and Technical Information of China (English)

    Mohammad Azarkish; Tahereh Sedaghat

    2012-01-01

    Three new transition metal complexes have been synthesized with a Schiff base,3-(2-hydroxy-5-chlorophenylimino)-1,3-diphenylpropen- 1-one.In all complexes Schiff base is completely deprotonated and coordinated to metal as tridentate ligand via phenolic and enolic oxygens and imine nitrogen.Thermal decomposition of the complexes has been studied by thermogravimetry.The in vitro antibacterial activity of Schiff bases and their complexes has been evaluated and compared with the standard drugs.

  6. Thermochemistry of complex oxides of uranium(6), arsenic and alkali metals

    International Nuclear Information System (INIS)

    Standard reaction enthalpies for stoichiometric mixtures of mono-potassium orthoarsenate, uranium(6) and alkali metal nitrate oxides as well as mixtures of complex oxides of the M1AsUO6 (M1 = Li, Na, K, Rb, Cs) general formulas and potassium nitrate with hydrofluoric acid are determined in adiabatic calorimeter at the temperature of 298.15 K. Standard enthalpies for formation of complex oxides of uranium(6), arsenic and alkali metals at the temperature of 298.15 K are calculated by the obtained results. 8 refs., 1 tab

  7. Transition Metal Complexes of Naproxen: Synthesis, Characterization, Forced Degradation Studies, and Analytical Method Verification

    Directory of Open Access Journals (Sweden)

    Md. Sharif Hasan

    2016-01-01

    Full Text Available The aim of our current research was to synthesize some transition metal complexes of Naproxen, determine their physical properties, and examine their relative stability under various conditions. Characterizations of these complexes were done by 1H-NMR, Differential Scanning Calorimetry (DSC, FT-IR, HPLC, and scanning electron microscope (SEM. Complexes were subjected to acidic, basic, and aqueous hydrolysis as well as oxidation, reduction, and thermal degradation. Also the reversed phase high-performance liquid chromatography (RP-HPLC method of Naproxen outlined in USP was verified for the Naproxen-metal complexes, with respect to accuracy, precision, solution stability, robustness, and system suitability. The melting points of the complexes were higher than that of the parent drug molecule suggesting their thermal stability. In forced degradation study, complexes were found more stable than the Naproxen itself in all conditions: acidic, basic, oxidation, and reduction media. All the HPLC verification parameters were found within the acceptable value. Therefore, it can be concluded from the study that the metal complexes of Naproxen can be more stable drug entity and offer better efficacy and longer shelf life than the parent Naproxen.

  8. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction

    Science.gov (United States)

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu

    2009-06-01

    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  9. Transition metal complexes with thiosemicarbazide-based ligands. Part 51. Square-planar nickel(II complex with acetylacetone bis(S-n-propylisothiosemicarbazone (L. Crystal and molecular structure of [Ni(L-H]NCS and two isomorphic complexes [Ni(L-H]I·EtOH and [Ni(L-H]I·iPrOH

    Directory of Open Access Journals (Sweden)

    VUKADIN M. LEOVAC

    2006-06-01

    Full Text Available The template reaction of a warm methanolic solution of Ni(OAc2·4H2O, S-n-propylisothiosemicarbazide hydroiodide and acetylacetone yielded the needle- like, brown, diamagnetic complex [Ni(L–H]I·MeOH, and in the presence of an excess of NH 4NCS, brown, prismatic crystals of the complex [Ni(L–H]NCS (1, both compounds involving the monoanionic form of the ligand, acetylacetone bis(S-n-propylisothiosemicarbazone, L. Slow recrystallization fromMeOH, EtOH, iPrOH and Me2CO gave the corresponding monosolvent complexes [Ni(L–H]I·solvent, of which only those involving EtOH and iPrOH were suitable for structural analysis. The crystallographic parameters of [Ni(L–H]I·EtOH (2 and [Ni(L–H]I·iPrOH (3 are very similar to each other, showing their structures are isomorphic. The crystal structures of the title compounds consist of the independent ions: NCS-, or I-, and the chemically identical cation [Ni(L–H]+, where L–H is the monoanion resulting from deprotonation of the acetylacetone moiety, a tetradentate N4 ligand forming a square-planar coordination around a Ni(II ion. It was found that the isothiosemicarbazide fragment of the ligand has an imido form. The complex cations of the compounds [Ni(L–H]NCS and [Ni(L–H]I·EtOH exhibit significant difference only in the conformation of their propyl groups.

  10. Antimicrobial and Thermal Properties of Metal Complexes of Grafted Fabrics with Acrylic Acid by Gamma Irradiation

    International Nuclear Information System (INIS)

    Cotton, cotton/PET blend and PET fabrics were treated against microbial effect by radiation - induced grafting of acrylic acid followed by metal complexation with some divalent transition metal ions Co (II), Ni (II) and Cu (II). The microbial resistance was evaluated by testing the mechanical properties of the treated fabrics after burring for one and two weeks in a moist soil reach with microorganisms. Also, the growth of microorganisms was examined by scanning electron microscope (SEM). Moreover, the effect of this treatment on the thermal decomposition behavior was investigated by thermogravimetric analysis (TGA). On the basis of microbial studies, it was found that the metal complexation of the grafted fabrics with acrylic acid enhanced the antimicrobial resistance of the fabrics and the antimicrobial resistance could be arranged according to the metal ions as follows: copper> nickel> cobalt. Also, the thermal stability of different fabrics could be arranged as follow: grafted fabrics complexed with Cu (II) > grafted fabrics complexed with Ni (II) > grafted fabrics complexed with Co (II)

  11. Magnetic interactions as a stabilizing factor of semiquinone species of lawsone by metal complexation

    Energy Technology Data Exchange (ETDEWEB)

    Valle-Bourrouet, Grettel [Universidad de Costa Rica, Escuela de Quimica, San Jose (Costa Rica); Ugalde-Saldivar, Victor M. [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, C.P. 04510, Mexico, D.F. (Mexico); Gomez, Martin [Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana-Xochimilco, C.P. 04960, Mexico, D.F. (Mexico); Ortiz-Frade, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, 76703, Pedro Escobedo, Queretaro (Mexico); Gonzalez, Ignacio [Universidad Autonoma Metropolitana - Iztapalapa, Departamento de Quimica, Area de Electroquimica, Apartado postal 55-534, 09340, Mexico, D.F. (Mexico); Frontana, Carlos, E-mail: ultrabuho@yahoo.com.m [Departamento de Quimica, Centro de Investigacion y Estudios Avanzados, Av. Instituto Politecnico Nacional No. 2508 Col. San Pedro Zacatenco, C.P. 07360, Mexico, D.F. (Mexico)

    2010-12-01

    Changes in electrochemical reactivity for lawsone anions (lawsone, 2-hydroxy-1,4-naphthoquinone, HLw) being coordinated to a series of metallic ions in dimethylsulfoxide solution were evaluated. Upon performing cyclic voltammetry experiments for metal complexes of this quinone with pyridine (Py) - structural formula M(II)(Lw{sup -}){sub 2}(Py){sub 2}; M: Co(II), Ni(II), Zn(II) - it was found that the reduction of coordinated Lw{sup -} units occurs during the first and second electron uptake in the analyzed compounds. The stability of the electrogenerated intermediates for each complex depends on the d electron configuration in each metal center and is determined by magnetic interactions with the available spins considering an octahedral conformation for all the compounds. This was evidenced by in situ spectroelectrochemical-ESR measurements in the Zn(II) complex in which due to the lack of magnetic interaction owing to its electron configuration, the structure of the coordinated anion radical species was determined. Successive reduction of the associated Lw{sup -} units leads to partial dissociation of the complex, determined by the identification of free radical dianion structures in solution. These results show some insights on how metal-lawsone complexation can modify the solution reactivity and stability of the electrogenerated radical species.

  12. Metal oxalate complexes as novel inorganic dopants: Studies on their effect on conducting polyaniline

    Indian Academy of Sciences (India)

    R Murugesan; E Subramanian

    2002-12-01

    Doped polyaniline materials with metal oxalate complexes of Cr, Fe, Mn, Co and Al were synthesized by in situ chemical oxidative polymerization of aniline using potassium perdisulphate as oxidant in aqueous sulphuric acid medium. These polymer materials were characterized by chemical analyses, spectral studies (UV-visible and IR), X-ray diffraction and thermal techniques and also by conductivity measurements by four-probe technique. The presence of complex anion in polyaniline material was confirmed by chemical and spectral analyses. The yield and conductivity of metal oxalate doped polyanilines were found to be high when compared to the simple sulphate ion doped polyaniline prepared under similar condition. UV-visible and IR spectral features not only confirmed the polyaniline doping by complex anions but also substantiated their facilitating effect on conductivity. The X-ray diffraction patterns indicated some crystalline nature in metal oxalate doped polyaniline and amorphous in polyaniline sulphate salt. The conductivity of the polymer samples strongly depended on the degree of crystallinity induced by complex counter anions as dopant. All the polymer materials, as evident from TGA curves, were observed to undergo three-step degradation of water loss, de-doping and decomposition of polymer. Further, the thermal stability of polyaniline was found to improve on doping with metal oxalate complex.

  13. In vitro anticancer activities of Schiff base and its lanthanum complex

    Science.gov (United States)

    Neelima; Poonia, Kavita; Siddiqui, Sahabjada; Arshad, Md; Kumar, Dinesh

    2016-02-01

    Schiff base metal complexes are well-known to intercalate DNA. The La(III) complexes have been synthesized such that they hinder with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although several promising chemotherapeutics have been developed, on the basis of Schiff base metal complex DNA intercalating system they did not proceed past clinical trials due to their dose-limiting toxicity. Herein, we discuss an alternative compound, the La(III) complex, [La(L1)2Cl3]·7H2O based on a Schiff base ligand 2,3-dihydro-1H-indolo-[2,3-b]-phenazin-4(5H)-ylidene)benzothiazole-2-amine (L1), and report in vitro cell studies. Results of antitumor activity using cell viability assay, reactive oxygen species (ROS) generation and nuclear condensation in PC-3 (Human, prostate carcinoma) cells show that the metal complex is more potent than ligand. La(III) complexes have been synthesized by reaction of lanthanum(III) salt in 1:2 M ratio with ligands L1 and 3-(ethoxymethylene)-2,3-dihydro-1H-indolo[2,3-b]-phenazin-4(5H)-ylidene)benzathiazole-2-amine (L2) in methanol. The ligands and their La(III) complexes were characterized by molar conductance, magnetic susceptibility, elemental analyses, FT-IR, UV-Vis, 1H/13C NMR, thermogravimetric, XRD, and SEM analysis.

  14. Photochemical activation and reactivity of polynuclear transition-metal-complex molecules. Progress report, June 1981-May 31, 1982

    International Nuclear Information System (INIS)

    Significant results obtained during the year are summarized for the following programs: (1) reversible, two electron transfer at a single potential in binuclear complexes; (2) photophysics of polyketonate complexes; (3) synthetic strategies and characterization of heavy metal heterobinuclear complexes; (4) high yield synthesis of ligands capable of binding 3 and 4 metal ions per molecule. Electrochemical studies have uncovered a number of new binuclear metal complexes that undergo reversible two-electron reduction at single potential including Cu(II) complexes with two different coordination environments, mixed Ni(II), Cu(II) complexes and binuclear Ni(II) complexes. In each case the species that exhibit these electron transfer properties have been shown to be Na+ ion-paired complexes. Several new trinuclear molecular complexes have been prepared and characterized that contain two UO22+ ions and one transition metal ion. The electrochemistry, absorption spectra, and luminescence have been investigated

  15. Metal Complexes Containing Natural and and Artificial Radioactive Elements and Their Applications

    Directory of Open Access Journals (Sweden)

    Oxana V. Kharissova

    2014-07-01

    Full Text Available Recent advances (during the 2007–2014 period in the coordination and organometallic chemistry of compounds containing natural and artificially prepared radionuclides (actinides and technetium, are reviewed. Radioactive isotopes of naturally stable elements are not included for discussion in this work. Actinide and technetium complexes with O-, N-, N,O, N,S-, P-containing ligands, as well π-organometallics are discussed from the view point of their synthesis, properties, and main applications. On the basis of their properties, several mono-, bi-, tri-, tetra- or polydentate ligands have been designed for specific recognition of some particular radionuclides, and can be used in the processes of nuclear waste remediation, i.e., recycling of nuclear fuel and the separation of actinides and fission products from waste solutions or for analytical determination of actinides in solutions; actinide metal complexes are also usefulas catalysts forcoupling gaseous carbon monoxide,as well as antimicrobial and anti-fungi agents due to their biological activity. Radioactive labeling based on the short-lived metastable nuclide technetium-99m (99mTc for biomedical use as heart, lung, kidney, bone, brain, liver or cancer imaging agents is also discussed. Finally, the promising applications of technetium labeling of nanomaterials, with potential applications as drug transport and delivery vehicles, radiotherapeutic agents or radiotracers for monitoring metabolic pathways, are also described.

  16. Development of the method of obtaining donor-acceptor complexes of titanium tetrachloride as a precursor of oxide materials based on titanium oxide and silicon matrix for the catalytically active nanoparticles of platinum group metals

    Directory of Open Access Journals (Sweden)

    A. M. Nemeryuk

    2015-12-01

    Full Text Available The method of preparation of the complex of titanium tetrachloride with dimethylformamide and reactivity when reacted with an alcohol and salts of hydrazine described. Obtained multinuclear complexes containing titanium and palladium as potential precursors of catalytically active materials.

  17. Chemistry of Platinum and Palladium Metal Complexes in Homogeneous and Heterogeneous Catalysis: A Mini Review

    OpenAIRE

    Mehrban Ashiq; Fareeha Mukhtar; Sineen Bari; Muhammad Danish; Muhammad Ali Mohsin

    2013-01-01

    Transition metal complexes of platinum and palladium are most widely used in catalysis. Many synthetic reactions have been carried out with such complexes (used as a catalyst) which have specifically polymer ligands, through hydrosilylation, acetoxylation, hydrogenation, hydro-formylation, oligo-merisation and polymerization. Almost many platinum and palladium catalysts are heterogeneous in nature i.e. the reaction taking place on a solid surface. Now from few years homogeneou...

  18. Binding energies of exciton complexes in transition metal dichalcogenides and effect of dielectric environment

    OpenAIRE

    Kylänpää, Ilkka; Komsa, Hannu-Pekka

    2015-01-01

    Excitons, trions, biexcitons, and exciton-trion complexes in two-dimensional transition metal dichalcogenide sheets of MoS$_2$, MoSe$_2$, MoTe$_2$, WS$_2$ and WSe$_2$ are studied by means of density functional theory and path integral Monte Carlo method in order to accurately account for the particle-particle correlations. In addition, the effect of dielectric environment on the properties of these exciton complexes is studied by modifying the effective interaction potential between particles...

  19. Crystallization Kinetics of Misch Metal Based Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The crystallization kinetics of Mm55Al25Cu10Ni5Co5 bulk metallic glass (BMG) was investigated by means of differential scanning calorimetry (DSC) in the mode of continuous heating or isothermal annealing. It was found that the apparent activation energy Eg, Ex and Ep of the BMG calculated by Kissinger's method were 189.58, 170.68 and 170.41 kJ·mol-1, respectively, which was bigger than those of La55Al25Cu10Ni5Co5 BMG indicating that thermal stability of the former was higher than that of the latter. The local activation energy obtained using Ozawa equation decreased as crystallization proceeded except for the initial stage. The Avrami exponents were calculated to be in the range of 3.26~5.23 for different crystallization stages and isothermal temperatures. This implied that crystallization of Mm55Al25Cu10Ni5Co5 BMG was governed by diffusion-controlled three-dimensional growth with either reduced or increased nucleation rate, depending on isothermal temperature. Inconsistency of thermal stability with glass-forming ability for Mm(La)-Al-Cu-Ni-Co BMGs was discussed.

  20. Coordination diversity of new mononucleating hydrazone in 3d metal complexes: Synthesis, characterization and structural studies

    Directory of Open Access Journals (Sweden)

    RAJESH S. BALIGAR

    2006-12-01

    Full Text Available The mononucleating hydrazone ligand LH3, a condensation product of salicyloylhydrazine and (2-formylphenoxyacetic acid, was synthesized and its coordination behavior with first row transition metal(II ions was investigated by isolating and elucidating the structure of the complexes using elemental analysis, conductivity and magnetic susceptibility measurements, as well as IR, 1H-NMR, electronic and EPR spectral techniques. The ligand forms mononuclear metal(II complexes of the type [CoLH(H2O2], [NiLH(H2O2, [CuLH] and [ZnLH]. The ligand field parameters, Dq, B and b values, in the case of the cobalt and nickel complexes support not only the octahedral geometry around the metal ion, but also imply the covalent nature of the bonding in the complexes. The EPR study revealed the presence of a spin exchange interaction in the solid copper complex and the covalent nature of the bonding. The 1H-NMR study of the zinc(II complex indicated the non-involvement of the COOH group in the coordination. The physico-chemical study supports for the presence of octahedral geometry around cobalt(II, nickel(II and tetrahedral geometry around copper(II and zinc(II ions.